WO2016171231A1 - ビスフェノール類の製造方法、ジルコニウム-リン複合固体酸触媒とその製造方法及びその再生方法 - Google Patents

ビスフェノール類の製造方法、ジルコニウム-リン複合固体酸触媒とその製造方法及びその再生方法 Download PDF

Info

Publication number
WO2016171231A1
WO2016171231A1 PCT/JP2016/062684 JP2016062684W WO2016171231A1 WO 2016171231 A1 WO2016171231 A1 WO 2016171231A1 JP 2016062684 W JP2016062684 W JP 2016062684W WO 2016171231 A1 WO2016171231 A1 WO 2016171231A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid acid
acid catalyst
zirconium
compound
producing
Prior art date
Application number
PCT/JP2016/062684
Other languages
English (en)
French (fr)
Inventor
範和 小西
佐藤 崇
宇都宮 賢
アルマンド ボルグナ
リウ ヤン
ボウ ワン
Original Assignee
三菱化学株式会社
エージェンシー フォー サイエンス、 テクノロジー アンド リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社, エージェンシー フォー サイエンス、 テクノロジー アンド リサーチ filed Critical 三菱化学株式会社
Priority to JP2017514192A priority Critical patent/JP6726175B2/ja
Publication of WO2016171231A1 publication Critical patent/WO2016171231A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/28Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a method for producing bisphenols using a zirconium-phosphorus composite solid acid catalyst.
  • the present invention also relates to a novel zirconium-phosphorus composite solid acid catalyst, a production method thereof and a regeneration method thereof.
  • Bisphenol A (2,2-bis (4-hydroxyphenyl) propane
  • bisphenol C (2,2-bis (3-methyl-4-hydroxyphenyl) propane
  • bisphenol F bis (4-hydroxyphenyl) methane
  • raw materials such as polycarbonates, polyesters, epoxy resins, resin additives, adhesives, thermal paper developers, antioxidants, polymerization inhibitors, and the like.
  • Bisphenols are generally produced by a condensation reaction between a carbonyl compound and a phenol compound in the presence of an acidic catalyst.
  • a method for producing bisphenols specifically, a method using a cation exchange resin having an acidic group such as sulfonic acid as an acidic catalyst is known. It is also known to use a sulfur-containing compound as a promoter in the condensation reaction (see Patent Document 1).
  • the present invention has been made in view of such background arts, and its object is to provide a method for producing bisphenols with high conversion and high selectivity, and it is suitable for the production of these bisphenols and can be reused. It is to provide a novel catalyst.
  • the present inventor has studied various solid acid catalysts in order to solve the above problems. As a result, it has been found that the above problems can be solved by using a zirconium-phosphorus composite solid acid catalyst, and the present invention has been completed.
  • the gist of the present invention resides in the following (1) to (15).
  • a process for producing bisphenols comprising a step of contacting a carbonyl compound and a phenol compound in the presence of a solid acid catalyst, wherein the solid acid catalyst is a zirconium-phosphorus composite solid acid catalyst, A method for producing bisphenols.
  • It has a crystal structure of ZrP 2 O 7 type and has an acid strength of 80 ⁇ mol / g or more and 1200 ⁇ mol / g or less by the ammonia temperature programmed desorption method (NH 3 -TPD method), The solid acid catalyst according to (7).
  • a method for producing a bisphenol comprising a step of bringing a carbonyl compound and a phenol compound into contact with a solid acid catalyst, wherein the solid acid catalyst is described in any one of (7) to (9) above A method for producing a bisphenol, which is a solid acid catalyst.
  • a method for producing bisphenols comprising bringing a carbonyl compound and a phenol compound into contact with a solid acid catalyst, wherein the solid acid catalyst is a method for regenerating a zirconium-phosphorus composite solid acid catalyst according to (14) above The manufacturing method of bisphenol which is the catalyst regenerated by this.
  • bisphenols can be produced with high conversion and high selectivity. Further, since the catalyst used for the production of the bisphenols can be reused, the running cost of the catalyst can be kept low, and the catalyst disposal cost is not required, so that the bisphenols can be produced efficiently at low cost.
  • FIG. 1 is an X-ray diffraction pattern measured with a powder X-ray diffractometer of the solid acid catalyst obtained in Example 1.
  • FIG. 2 is an X-ray diffraction pattern measured with a powder X-ray diffractometer of the solid acid catalyst obtained in Reference Example 5.
  • the method for producing bisphenols of the present invention includes a step of bringing a carbonyl compound and a phenol compound into contact with a zirconium-phosphorus composite solid acid catalyst. That is, the method for producing bisphenols of the present invention produces bisphenols by a reaction between a carbonyl compound and a phenol compound. Industrially, in the method for producing bisphenols of the present invention, it is preferable to continuously carry out the reaction between a carbonyl compound and a phenol compound.
  • Examples of the carbonyl compound used in the method for producing bisphenols of the present invention include ketones and aldehydes, but are not particularly limited thereto.
  • ketones saturated fatty acid ketones having an alkyl group, aromatic ketones, unsaturated ketones, alicyclic ketones, and ketones substituted with halogens are preferable.
  • saturated fatty acid ketone having an alkyl group include acetone, methyl ethyl ketone, diethyl ketone, methyl-n-propyl ketone, and methyl isobutyl ketone.
  • Examples of aromatic ketones include phenyl methyl ketone and benzophenone.
  • Examples of unsaturated ketones include mesityl oxide.
  • Examples of the alicyclic ketone include cyclohexanone, cyclododecanone, and cyclohexanone having an alkyl group having 1 to 6 carbon atoms as a substituent (for example, 4-n-propylcyclohexanone).
  • ketone substituted with halogen examples include hexafluoroacetone, hexachloroacetone, hexabromoacetone, and methylpentafluorophenyl ketone.
  • the ketones preferably have 3 or more carbon atoms. Further, it is preferably 20 or less, more preferably 10 or less, and particularly preferably 6 or less. As the ketones, acetone is most preferable.
  • aldehydes examples include formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, pentylaldehyde, hexylaldehyde, heptylaldehyde, octylaldehyde, nonylaldehyde, caprylaldehyde, undecylaldehyde, laurylaldehyde, tridecylaldehyde, and cyclohexylaldehyde. Examples thereof include aldehydes having about 1 to 20 carbon atoms.
  • carbonyl compound used in the method for producing bisphenols of the present invention formaldehyde and acetone are particularly preferable, and acetone is most preferable.
  • carbonyl compound used for the manufacturing method of bisphenol of this invention may be used individually by 1 type, or may be used 2 or more types by arbitrary combinations and a ratio.
  • Examples of the phenol compound used in the method for producing bisphenols of the present invention include unsubstituted phenol; o-cresol, m-cresol, 2,3-xylenol, 2,5-xylenol, 2,6-xylenol, 2, Phenol substituted with an alkyl group having 1 to 4 carbon atoms such as 3,6-trimethylphenol and 2,6-di-tert-butylphenol; isopropenylphenol; o-chlorophenol, m-chlorophenol, 2,3- Examples include, but are not limited to, phenols substituted with halogens such as dichlorophenol, 2,5-dichlorophenol and 2,6-dichlorophenol; phenols substituted with an aryl group such as 2-phenylphenol.
  • the location substituted may be one place or multiple places.
  • phenol, isopropenylphenol and cresol are preferable, phenol and cresol are more preferable, and phenol is particularly preferable.
  • the phenol compound used for the manufacturing method of bisphenol of this invention may be used individually by 1 type, or may be used 2 or more types by arbitrary combinations and a ratio.
  • acetone When using acetone as the carbonyl compound, commercially available commercially available acetone can be used. Generally, those having a purity of 99.0% by weight or more are available. In addition, distilled and purified acetone, crude acetone obtained from a distillation column bottom liquid in a cumene method phenol process, and the like can also be used.
  • phenol as the phenol compound
  • commercially available commercially available acetone can be used. Generally, those having a purity of 98% by weight or more are available. Also, phenol obtained by cumene method, phenol obtained by toluene oxidation method and the like can be used.
  • cresol as a phenol compound
  • purification processes such as distillation
  • the molar ratio of the carbonyl compound and the phenol compound used in the method for producing bisphenols of the present invention is not particularly limited. A larger amount of phenolic compound is preferable from the viewpoint that by-products are less likely to be generated and the selectivity is likely to increase. On the other hand, a smaller amount of phenol compound is preferable from the viewpoint that unreacted phenol tends to decrease.
  • phenol compound 2 mol or more of the phenol compound is preferable with respect to 1 mol of the carbonyl compound, and 4 mol or more is more preferable. Moreover, 20 mol or less of a phenol compound is preferable with respect to 1 mol of carbonyl compounds, and 15 mol or less is still more preferable.
  • the method for producing bisphenols of the present invention uses a zirconium-phosphorus composite solid acid catalyst. That is, the method for producing bisphenols of the present invention includes a step of bringing a carbonyl compound and a phenol compound into contact with a solid acid catalyst.
  • the solid acid catalyst is a zirconium-phosphorus composite solid acid catalyst.
  • a zirconium-phosphorus composite solid acid catalyst particularly suitable for the method for producing bisphenols of the present invention will be described later.
  • 2- (3-methyl-2-hydroxyphenyl) -2- (3-methyl) is obtained by using a zirconium-phosphorus composite solid acid catalyst.
  • By-product such as -4-hydroxyphenyl) propane is suppressed and 2,2-bis (3-methyl-4-hydroxyphenyl) propane (hereinafter also referred to as “4,4′-BPC”) is highly converted.
  • 4,4′-BPC 2,2-bis (3-methyl-4-hydroxyphenyl) propane
  • the amount of the zirconium-phosphorus composite solid acid catalyst used in the method for producing bisphenols of the present invention is not particularly limited as long as it is an effective catalyst amount.
  • the amount of the zirconium-phosphorus composite solid acid catalyst used in the method for producing bisphenols of the present invention may be appropriately set according to the raw materials used, reaction conditions, and the like.
  • the effective catalyst amount means an amount capable of producing a desired bisphenol from a carbonyl compound and a phenol compound.
  • a zirconium-phosphorus composite solid acid catalyst is preferably used per 1 g of acetone. It is more preferable to use 0.5 g or more, and it is particularly preferable to use 1.0 g or more.
  • 10 g or less of the zirconium-phosphorus composite solid acid catalyst is preferably used per 1 g of acetone, more preferably 5 g or less, and particularly preferably 2.5 g or less.
  • the reaction between the carbonyl compound and the phenol compound is usually a condensation reaction.
  • the reaction of the carbonyl compound and the phenol compound is preferably performed in the presence of a sulfur-containing compound. That is, it is preferable that the manufacturing method of bisphenol of this invention includes the process made to contact a solid acid catalyst and a sulfur-containing compound.
  • catalytic activity can be improved by using a zirconium-phosphorus composite solid acid catalyst together with a sulfur-containing compound as a co-catalyst.
  • the sulfur-containing compound is preferably an organic compound having one or more mercapto groups (SH groups).
  • alkyl mercaptans such as ethyl mercaptan, propyl mercaptan, butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and cyclohexyl mercaptan; mercaptocarboxylic acids such as mercaptopropionic acid and mercaptoacetic acid; mercaptoethanol and mercapto Mercaptoalcohols such as butanol; mercaptopyridines such as mercaptopyridine, mercaptonicotinic acid, mercaptopyridinooxide and mercaptopyridinol; and thiophenols such as thiophenol and thiocresol, but not limited thereto .
  • alkyl mercaptans such as ethyl mercaptan
  • alkyl mercaptans are preferable.
  • the number of carbons contained in the alkyl mercaptans is preferably 2 or more, and more preferably 3 or more. Further, the number of carbon atoms of the alkyl mercaptan is preferably 6 or less, and more preferably 5 or less.
  • 1 type may be used independently or 2 or more types may be used by arbitrary combinations and a ratio.
  • the amount of sulfur-containing compound used is not particularly limited, and may be appropriately set according to the type of raw material, sulfur-containing compound, reaction conditions, and the like.
  • alkyl mercaptans when used as the sulfur-containing compound, it is preferably 0.01% by weight, more preferably 0.1% by weight or more, based on the total amount of the reaction solution, It is particularly preferably 0.5% by weight or more, and on the other hand, it is preferably 10% by weight or less, more preferably 7.0% by weight or less, and 5.0% by weight or less. Is particularly preferred.
  • the reaction conditions for the reaction of the carbonyl compound and the phenol compound may be appropriately set according to the types of raw materials, catalysts, thiol compounds, etc., and are not particularly limited.
  • the reaction temperature is preferably 30 ° C. or higher, more preferably 70 ° C. or higher, and particularly preferably 100 ° C. or higher.
  • the reaction rate can be increased by using a zirconium-phosphorus composite solid acid catalyst by a high temperature reaction of 100 ° C. or more as compared with the case of using an ion exchange resin catalyst. .
  • reaction temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower.
  • reaction time varies depending on the amount of catalyst, reaction temperature and the like, but is usually 1 to 12 hours.
  • reaction pressure it is possible to implement under any conditions of pressure reduction, pressurization, and a normal pressure.
  • the method for producing bisphenols of the present invention includes a step of separating and purifying bisphenols as target substances from the reaction solution.
  • the method for separating and purifying the target bisphenol from the reaction solution is not particularly limited, and may be carried out according to a known method.
  • an example of the purification method will be described in the case where the target substance is bisphenol A.
  • reaction solution after the above reaction is separated into a component containing bisphenol A and phenol and a low-boiling component containing water, unreacted acetone, and the like by-produced by the reaction.
  • This separation is preferably performed by evaporating the low-boiling components by distillation under reduced pressure.
  • this low boiling point component may contain phenol or the like.
  • the composition of the component containing bisphenol A and phenol after evaporating the low-boiling component can be adjusted to a desired composition by further removing phenol by distillation or adding phenol. Note that unreacted acetone contained in the separated low-boiling components can be separated and recovered and reused in the reaction.
  • adduct crystals crystals of an adduct of bisphenol A and phenol (hereinafter sometimes simply referred to as “adduct crystals” or “adduct”). A slurry containing is obtained.
  • Crystallization is performed by precipitating the adduct of bisphenol A and phenol by cooling, adding a poor solvent, evaporating after adding water, etc. (cooling with heat of evaporation), concentrating by removing phenol, and a combination of these methods. Just do it. Crystallization may be performed once or multiple times by any combination of methods in order to obtain an adduct having a desired purity.
  • the slurry obtained by crystallization is solid-liquid separated into adduct crystals and mother liquor by vacuum filtration, pressure filtration, centrifugal filtration or the like. And the crystal
  • the molten bisphenol A can be obtained by removing phenol from the melt by means such as flash distillation, thin film distillation or steam stripping. it can.
  • the removed phenol can be purified and used for washing the crystals of the adduct obtained by reaction or solid-liquid separation.
  • the manufacturing method of bisphenol of this invention includes the process of granulating molten bisphenol.
  • a granulating method for example, a method of obtaining a small spherical bisphenol A prill by injecting molten bisphenol A from a nozzle and bringing it into contact with a cooling gas is simple and preferable.
  • bisphenol A can also be obtained by recrystallizing from the adduct crystals obtained by solid-liquid separation without removing phenol.
  • the mother liquor separated by solid-liquid separation it is preferable to reuse unreacted raw materials and by-products contained therein or to produce bisphenol A from these components. Specifically, for example, at least a part of the mother liquor is returned to the reactor.
  • At least a part of the mother liquor is distilled after heating in the presence of alkali or acid to remove heavy components that become impurities and to acquire light components, and these light components are recombined using an acid catalyst or the like.
  • Bisphenol A can also be obtained by making it react.
  • bisphenol A can also be obtained by subjecting at least a part of the mother liquor to an isomerization reaction using an acid catalyst or the like.
  • a zirconium-phosphorus composite solid acid catalyst used in the method for producing bisphenols of the present invention can be suitably used.
  • the reaction of the carbonyl compound and the phenol compound in the method for producing bisphenols of the present invention can obtain bisphenols with high conversion and high selectivity by using a zirconium-phosphorus composite solid acid catalyst.
  • the conversion rate of the carbonyl compound is preferably 70% or more, more preferably 80% or more, still more preferably 85% or more, and particularly preferably 90.0% or more.
  • the selectivity of the desired bisphenol can exhibit a very high performance catalyst performance of preferably 85% or more, more preferably 90% or more, and particularly preferably 95.0% or more.
  • acetone conversion (%), 4,4′-bisphenol A selectivity (%) and 4,4′-bisphenol C selectivity (%) in the production method of bisphenols of the present invention are as follows: From the measured value by gas chromatography, it can be calculated as follows.
  • Solid acid catalyst of the present invention a zirconium-phosphorus composite solid acid (hereinafter sometimes referred to as “solid acid catalyst of the present invention”) as a catalyst used in the reaction for producing bisphenols by the reaction of a carbonyl compound and a phenol. Has been found to be suitable.
  • the solid acid catalyst of the present invention can be suitably used not only for the reaction of the carbonyl compound and the phenol compound in the method for producing bisphenols of the present invention but also for other reactions.
  • an acid catalyst has many strong acid points, and it is considered that the larger the specific surface area of the catalyst, the higher the catalytic activity.
  • the solid acid catalyst of the present invention is suitable for promoting the reaction to produce the desired bisphenols because the strength and amount of acid sites and the specific surface area are suitable for the side reaction in the reaction of the carbonyl compound and the phenol compound. It is believed that the desired bisphenols can be obtained with high conversion and high selectivity.
  • the solid acid catalyst of the present invention is suitable for promoting the reaction for obtaining 4,4'-BPA in terms of the strength and amount of acid sites and the specific surface area.
  • the inventors of the present invention particularly have a ZrP 2 O 7 type crystal structure as the solid acid catalyst of the present invention, and an acid strength by an ammonia temperature programmed desorption method (NH 3 -TPD method) is 80 ⁇ mol / g As described above, it has been found that a zirconium-phosphorus composite solid acid having a concentration of 1200 ⁇ mol / g or less is suitable.
  • NH 3 -TPD method ammonia temperature programmed desorption method
  • the present inventors have found that a zirconium-phosphorus composite solid acid having a BET specific surface area of 30 m 2 / g or more and 200 m 2 / g or less is particularly suitable as the solid acid catalyst of the present invention. That is, the bisphenol production method of the present invention preferably includes a step of bringing a carbonyl compound and a phenol compound into contact with these solid acid catalysts.
  • the solid acid catalyst of the present invention may be a solid acid containing zirconium and phosphorus.
  • Known zirconium-phosphorus composite solid acids include amorphous solid acids and crystalline solid acids having a two-dimensional layered structure or a three-dimensional network structure.
  • the present inventors have found that a zirconium-phosphorus composite solid acid having a ZrP 2 O 7 type crystal structure is particularly suitable as a catalyst used in a reaction for producing bisphenols from a carbonyl compound and phenols. I found it.
  • zirconium-phosphorus composite solid acid having a ZrP 2 O 7 type crystal structure is suitable as a catalyst used in a reaction for producing bisphenols from a carbonyl compound and phenols is presumed as follows.
  • a zirconium-phosphorus composite solid acid having an ⁇ -type crystal structure has a structure in which layers of zirconium atoms and phosphorus atoms are alternately stacked in layers through oxygen atoms.
  • the distance between the layers of zirconium atoms is 7.6 mm, and it has vacancies enclosing crystal water, P—OH—OH type 2 hydrogen bond and P—OH—OH—P type.
  • the layer structure is maintained by hydrogen bonding.
  • the zirconium-phosphorus composite solid acid having a ZrP 2 O 7 type crystal structure the encapsulated water molecule is released and the structure changes from a layered structure to a cubic crystal, whereby the acid strength is further increased. It is presumed that the state has changed to a state suitable for a reaction for producing bisphenols from a compound and phenols.
  • zirconium pyrophosphate crystals usually have a 2 ⁇ of 18.4 ° to 18.8 °, 23.9 ° to 24.3 °, 26.2 ° to 26. Diffraction lines are also observed at 6 °, 30.4 ° to 30.8 °, and 35.8 to 36.2 ° (see FIG. 1, which is a powder X-ray diffraction diagram of Example 1 described later).
  • the powder X-ray diffraction pattern of zirconium pyrophosphate is ASTM File No. It is 29-1399, and the d value is 4.12 (100), 3.69 (40), 4.76 (30), 3.37 (30), 2.92 (30).
  • the ⁇ -type crystal structure is known as a zirconium-phosphorus composite solid acid.
  • the ⁇ -type zirconium-phosphorus composite solid acid generally has 2 ⁇ of 11.9 ° to 12.2 °, 20.1 ° to 20.4 °, and 25.2 ° to 25.5 in powder X-ray diffraction measurement. Diffraction lines are confirmed at °, 34.3 ° to 34.6 °, and 37.5 ° to 37.8 ° (see FIG. 2 which is a powder X-ray diffraction diagram of Reference Example 5 described later).
  • the proportion of zirconium pyrophosphate crystals contained in the solid acid catalyst of the present invention is preferably large in terms of reaction activity. Therefore, in the solid acid catalyst of the present invention, in the result of the powder X-ray diffraction measurement, the diffraction lines other than the above six have an intensity of 2/3 or less of the diffraction line having the highest intensity among the above six. Is preferred, more preferably 1 ⁇ 2 or less, and particularly preferably ⁇ or less.
  • the ZrP 2 O 7 type crystal structure appears by heating zirconium phosphate, preferably at a high temperature, as will be described later.
  • the acid strength of the zirconium-phosphorus composite solid acid is high in that the reaction easily occurs.
  • the generated target substance is hardly decomposed and by-products are hardly generated.
  • the acidity is high in that a reaction for producing bisphenols from a carbonyl compound and phenols easily occurs.
  • the generated bisphenols are not decomposed and by-products are hardly generated.
  • the acid strength of the zirconium-phosphorus composite solid acid is preferably 80 ⁇ mol / g or more, more preferably 100 ⁇ mol / g or more, and more preferably 120 ⁇ mol / g or more as measured by the ammonia temperature programmed desorption method (NH 3 -TPD method). Particularly preferred.
  • the acid strength of the zirconium-phosphorus composite solid acid is preferably 1200 ⁇ mol / g or less, more preferably 1150 ⁇ mol / g or less, and particularly preferably 1100 ⁇ mol / g or less.
  • the acid strength by the ammonia temperature-programmed desorption method means an integrated value of the ammonia temperature-programmed desorption spectrum.
  • the acid strength of the solid acid catalyst of the present invention is measured based on the ammonia temperature-programmed desorption method (NH 3 -TPD method) as performed in the examples described later, and is based on the integrated value of the obtained TPD spectrum. Can be calculated. Specifically, the acid strength of the solid acid catalyst is measured by an ammonia temperature-programmed desorption method (NH 3 -TPD method) using “TPDRO110 Series Catalyst” manufactured by Thermo Scientific in the following procedure.
  • the catalyst is filled in a sample tube, degassed at 500 ° C. for 1 hour, cooled, then introduced with NH 3 gas, and allowed to stand at 100 ° C. for 1 hour.
  • degassing is performed at 100 ° C. for 1 hour to remove NH 3 gas not adsorbed on the catalyst.
  • the sample tube was attached to “TPDRO110 Series Catalyst” manufactured by Thermo Scientific, and the mass of NH 3 desorbed from the catalyst was increased from 150 ° C. to 800 ° C. at 10 ° C./min while flowing He at 50 ccm / min. Measure.
  • the acid strength of the solid acid catalyst of the present invention can be adjusted by the amount of phosphoric acid supply source when synthesizing the solid acid catalyst of the present invention described later, pH, heating temperature of zirconium phosphate, and the like.
  • the acid strength is preferably adjusted by the heating temperature of zirconium phosphate. Specifically, when the heating temperature is high, crystallization proceeds and the acid strength tends to be low. Therefore, the heating temperature may be adjusted to obtain an appropriate acid strength.
  • the solid acid catalyst of the present invention exhibits high catalytic activity due to the fact that crystallization has progressed to the extent that a ZrP 2 O 7 type crystal structure is formed and the acid strength has been moderately moderated. It is estimated that you can.
  • the reaction active site is likely to increase, but the generated target substance is not easily decomposed or a by-product is hardly generated. It is preferable that the point is small.
  • the BET specific surface area is large in that a reaction for producing bisphenols from a carbonyl compound and phenols easily occurs, It is preferable that the generated bisphenols are small in that they are difficult to decompose and by-products are generated.
  • the BET specific surface area of the zirconium-phosphorus composite solid acid is preferably 30 m 2 / g or more, more preferably 31 m 2 / g or more, and particularly preferably 32 m 2 / g or more.
  • it is preferably 200 m 2 / g or less, more preferably 199 m 2 / g or less, and particularly preferably 198 m 2 / g or less. That is, when the BET specific surface area of the zirconium-phosphorus composite solid acid is in the preferred range, high catalytic activity is easily exhibited.
  • the acid strength of the solid acid catalyst of the present invention was measured by measuring the amount of gas adsorbed on the catalyst using a specific surface area measuring instrument (“ASAP2420” manufactured by MICROMERITICS) by a gas adsorption method as described in Examples below. It can be calculated by an equation. Specifically, the acid strength of the solid acid catalyst of the present invention can be calculated by the following procedure.
  • the catalyst is filled in the sample tube, and the weight after drying under reduced pressure at 350 ° C. is measured.
  • the sample tube is cooled to ⁇ 196 ° C., nitrogen is introduced into the sample tube, nitrogen is adsorbed on the catalyst, and the relationship between nitrogen partial pressure and adsorption amount (adsorption isotherm) is measured.
  • the relative pressure of nitrogen is p
  • the adsorption amount of nitrogen is v (cm 3 / g STP), and a BET plot is performed.
  • the vertical axis is p / (v (1-p))
  • the horizontal axis is p
  • the slope b (unit g / cm 3 ) when p is plotted in the range of 0.05 to 0.20.
  • MA is a cross-sectional area of nitrogen molecules (0.162 nm 2 ).
  • zirconium - acid strength per BET specific surface area of the phosphate composite solid acid catalyst is preferably at 3.0 ⁇ mol / m 2 or more, further preferably 3.2 ⁇ mol / m 2 or more, 3.5Myumol / particularly preferably m 2 or more, also, on the other hand, it is preferably 6.0Myumol / m 2 or less, further preferably 5.8Myumol / m 2 or less, 5.6Myumol / m 2 or less It is particularly preferred. That is, by setting the acid strength and the porosity within an appropriate range in this way, high catalytic activity is easily exhibited.
  • the solid acid catalyst of the present invention is obtained by contacting a zirconium compound and a phosphoric acid compound.
  • the solid acid catalyst of the present invention is preferably obtained by bringing a zirconium compound serving as a zirconium source into contact with a phosphoric acid compound serving as a phosphoric acid source in an aqueous solution.
  • Zirconium supply sources include zirconium nitrate, zirconium acetate, zirconium sulfate, zirconium carbonate, zirconium oxysulfate, zirconium oxychloride, and the like. However, the zirconium supply source is not limited to these zirconium supply sources. These compounds may be water-containing compounds.
  • the zirconium supply source is preferably zirconium nitrate, zirconium acetate, zirconium sulfate, zirconium carbonate, zirconium oxysulfate, zirconium oxychloride, and more preferably zirconium oxychloride, from the viewpoint of reactivity and cost.
  • a zirconium supply source may be used individually by 1 type, or may be used 2 or more types by arbitrary combinations and a ratio.
  • Examples of the phosphoric acid supply source include phosphoric acid, sodium phosphate, potassium phosphate, calcium hydrogen phosphate, ammonium dihydrogen phosphate, and hydrates thereof.
  • the phosphoric acid supply source is not limited to these phosphoric acid compounds.
  • the phosphoric acid supply source is preferably phosphoric acid, ammonium dihydrogen phosphate, and more preferably ammonium dihydrogen phosphate, from the viewpoints of handleability and cost.
  • a phosphoric acid supply source may be used individually by 1 type, or may be used 2 or more types by arbitrary combinations and a ratio.
  • the molar ratio of the zirconium source and the phosphoric acid source used for the production of zirconium phosphate is not particularly limited.
  • the phosphoric acid supply source is preferably 2.0 mol or more, preferably 2.5 mol, relative to 1 mol of zirconium supply source. The above is more preferable.
  • 10 mol or less of phosphoric acid supply source is preferable with respect to 1 mol of zirconium supply source.
  • an organic structure directing agent is preferably present.
  • the order of contacting the zirconium compound, the phosphate compound, and the organic structure directing agent they may be contacted in any order as long as these three finally come into contact. Specifically, for example, these three may be contacted at the same time, or any two may be contacted and then the remaining one may be contacted.
  • An organic structure directing agent is an organic compound necessary for determining a mesoporous structure when producing a metal oxide or the like having a mesoporous structure.
  • a so-called template used for producing zeolite is known.
  • the organic structure definition agent is intercalated between layers of layered zirconium phosphate, and porous zirconium phosphate having a mesoporous or nanoporous structure is easily obtained. it is conceivable that.
  • organic structure directing agent examples include various surfactants such as cetyltrimethylammonium chloride (CTAC), cetyltrimethylammonium bromide (CTAB), decyltrimethylammonium chloride (DTAC), and tetramethylammonium chloride (TMAC).
  • CTAC cetyltrimethylammonium chloride
  • CAB cetyltrimethylammonium bromide
  • DTAC decyltrimethylammonium chloride
  • TMAC tetramethylammonium chloride
  • Nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkylphenol ethers, fatty acid alkanolamides, block copolymers of ethylene glycol and propylene glycol: amphoteric surfactants and the like.
  • examples of the organic structure directing agent include long-chain alkylamines such as hexadecylamine (HAD).
  • HAD hexadecylamine
  • quaternary ammonium salt is preferable as the organic structure directing agent used in the method for producing the solid acid catalyst of the present invention.
  • the quaternary ammonium salt include ammonium chloride, alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkyldimethylethylammonium salt, alkyldimethylbenzylammonium salt, and alkylpyridinium salt.
  • the alkyl group possessed by these quaternary ammonium salts is preferably a long-chain alkyl group or a long-chain alkylphenol group having 10 to 18 carbon atoms.
  • Halogen ions such as a chlorine ion, a bromine ion, and an iodine ion, are preferable, and a chlorine ion is especially preferable.
  • organic structure directing agent used in the method for producing the solid acid catalyst of the present invention a cationic surfactant is preferable, and tetraalkylammonium chloride such as cetyltrimethylammonium chloride and tetramethylammonium chloride (TMAC) is more preferable.
  • an organic structure directing agent may be used individually by 1 type, or may be used 2 or more types by arbitrary combinations and a ratio.
  • the amount used in the case of using the organic structure directing agent is not particularly limited, but is preferably 0.1 mol or more and preferably 2.0 mol or less with respect to 1 mol of the zirconium supply source.
  • the pH when the zirconium compound and the phosphate compound are brought into contact with each other is not particularly limited. However, from the viewpoint of yield, the pH when the zirconium compound and the phosphate compound are brought into contact is preferably 1 or more, and more preferably 5 or less. You may adjust pH when making a zirconium compound and a phosphoric acid compound contact using ammonium salt sodium hydroxide, potassium hydroxide, or ammonia water. Moreover, it can also adjust with the kind and quantity of the phosphoric acid supply source mentioned above.
  • zirconium phosphate precipitates at the bottom of the reaction solution.
  • zirconium phosphate can be recovered by filtering the precipitate.
  • the washing of zirconium phosphate is preferably performed using water and / or an organic solvent.
  • the zirconium phosphate is preferably dried after washing, and drying is preferably performed at 50 to 100 ° C.
  • the zirconium phosphate thus obtained is usually a particulate or amorphous white solid.
  • the obtained zirconium phosphate can be adjusted in particle size by pulverizing or pulverizing it as necessary.
  • the pulverization or pulverization can be performed using, for example, a known pulverizer or kneader such as a dry jet mill, a wet jet mill, a ball mill, a bead mill, a rotary mill, a bumper mixer, and the like.
  • the solid acid catalyst of the present invention is preferably obtained by heating zirconium phosphate. That is, it is preferable that the manufacturing method of the solid acid catalyst of this invention includes the process of heating a zirconium phosphate. And it is still more preferable that the manufacturing method of the solid acid catalyst of this invention includes the process of heating the zirconium phosphate obtained by making a zirconium compound and a phosphoric acid compound contact.
  • the method for producing a solid acid catalyst of the present invention is particularly preferably performed in the presence of the organic structure-directing agent. That is, it is particularly preferable to heat zirconium phosphate in the presence of an organic structure directing agent.
  • the organic structure directing agent is brought into contact with the zirconium compound and the phosphoric acid compound as described above. Also good. As the zirconium phosphate is heated at a higher temperature, crystallization of the zirconium phosphate proceeds, the specific surface area of the resulting solid acid catalyst is small, and the acid strength tends to be low. Therefore, by adjusting the heating temperature, the crystallinity, specific surface area and acid strength of the solid acid catalyst of the present invention can be within the above preferred ranges.
  • the heating temperature is preferably 550 ° C. or higher, more preferably 600 ° C. or higher, particularly preferably 620 ° C. or higher, and most preferably 650 ° C. or higher.
  • the heating temperature is preferably 900 ° C. or lower, more preferably 800 ° C. or lower, particularly preferably 780 ° C. or lower, and most preferably 750 ° C. or lower.
  • the heating time is not particularly limited, but is preferably long from the viewpoint of the uniformity of the solid acid catalyst of the present invention to be produced. On the other hand, the heating time is preferably short from the viewpoint of work efficiency. Therefore, specifically, the heating time is preferably 0.5 hours or longer, and more preferably 1 hour or longer. On the other hand, the heating time is preferably 24 hours or less, and more preferably 12 hours or less.
  • the atmosphere during heating may be any of air, an oxidizing gas atmosphere, and an inert gas atmosphere such as nitrogen or argon.
  • the zirconium-phosphorus composite solid acid catalyst used for the reaction can be recovered and then regenerated by heating. That is, the method for producing bisphenols of the present invention can be performed using this regenerated catalyst. Further, a catalyst obtained by regenerating the zirconium-phosphorus composite solid acid catalyst used in this reaction can be used as the zirconium phosphate as the raw material for producing the bisphenols of the present invention.
  • the zirconium-phosphorus composite solid acid catalyst used for the reaction is preferably washed with an organic solvent before heating. Further, the zirconium-phosphorus composite solid acid catalyst used for the reaction may be appropriately immersed in an aqueous phosphate solution before heating.
  • the catalyst used for the long-time reaction tends to have a high acid strength per catalyst weight as shown in the examples described later. Moreover, the catalyst used for the long-time reaction tends to have a small BET specific surface area. And the catalyst used for the reaction for a long time tends to reduce the catalytic activity and the selectivity of bisphenols.
  • the zirconium-phosphorus composite solid acid catalyst used in the reaction can be regenerated by heating. That is, the method for regenerating the zirconium-phosphorus composite solid acid catalyst used in the reaction includes a heating step. And the manufacturing method of bisphenol of this invention can be performed by making a carbonyl compound and a phenol compound thing contact this regenerated catalyst. By heating the catalyst used in the reaction, the acid strength of the catalyst can be lowered. Moreover, the BET specific surface area of a catalyst can be enlarged by heating the catalyst used for reaction.
  • the heating is preferably performed in the same manner as the above heating of zirconium phosphate. That is, it is particularly preferable that the zirconium-phosphorus composite solid acid catalyst used in the reaction is carried out at 550 ° C. or more and less than 900 ° C.
  • the acetone conversion (%), 4,4′-bisphenol A selectivity (%), and 4,4′-bisphenol C selectivity (%) are based on the values measured by gas chromatography. The calculation was performed under the following conditions.
  • Acetone conversion (%) [(moles of charged acetone ⁇ moles of unreacted acetone) / (moles of charged acetone)] ⁇ 100
  • Bisphenol A yield (%) [(number of moles of bisphenol A produced / number of moles of charged acetone)] ⁇ 100
  • Bisphenol A selectivity (%) [bisphenol A yield (%) / acetone conversion (%)] ⁇ 100
  • Bisphenol C selectivity (%) [bisphenol C yield (%) / acetone conversion (%)] ⁇ 100
  • Example 1 0.38 g of zirconium oxychloride octahydrate was added to 1.55 cm 3 of an aqueous solution of cetyltrimethylammonium chloride (hexadecyltrimethylammonium chloride) adjusted to 25% by weight and stirred at room temperature (20 to 25 ° C.) for 2 hours. .
  • Example 2 A zirconium-phosphorus composite solid acid catalyst was obtained in the same manner as in Example 1 except that the calcination temperature was changed to 700 ° C. in Example 1.
  • Example 1 A zirconium-phosphorus composite solid acid catalyst was obtained in the same manner as in Example 1 except that the calcination temperature was changed to 450 ° C. in Example 1.
  • Example 3 A zirconium-phosphorus composite solid acid catalyst was obtained in the same manner as in Example 1 except that the calcination temperature was changed to 800 ° C. in Example 1.
  • the ammonia temperature programmed desorption method (NH 3 -TPD method) was measured using “TPDRO110 Series Catalyst” manufactured by Thermo Scientific. Specifically, the sample tube was filled, degassed at 500 ° C. for 1 hour, cooled, then introduced with NH 3 gas, and allowed to stand at 100 ° C. for 1 hour.
  • the sample tube is filled with a zirconium-phosphorus composite solid acid catalyst, and the weight after drying under reduced pressure at 350 ° C. is measured.
  • the sample tube is cooled to ⁇ 196 ° C., and nitrogen is introduced into the sample tube. Then, nitrogen was adsorbed on the zirconium-phosphorus composite solid acid catalyst, and the relationship between nitrogen partial pressure and adsorption amount (adsorption isotherm) was measured.
  • MA is a cross-sectional area of nitrogen molecules (0.162 nm 2 ).
  • Example 3 A 50 cm 3 three-necked flask equipped with a reflux condenser and a stirrer was charged with 1.05 g of the zirconium-phosphorus composite solid acid catalyst obtained in Example 1 and dried under reduced pressure at 125 ° C. overnight. 8.21 g (87.2 mmol) of phenol, 0.56 g (9.7 mmol) of acetone and 0.33 g of butyl mercaptan were added, and a condensation reaction was performed while stirring at 110 ° C. After 6 hours of reaction, the acetone conversion was 91.9%, and 4,4′-BPA selectivity was 95.2%. Table 2 shows the results.
  • Example 4 In Example 3, the condensation reaction of phenol and acetone was performed in the same manner as in Example 3 except that the zirconium-phosphorus composite solid acid catalyst obtained in Example 2 was used. After 6 hours of reaction, the acetone conversion was 93.4%, and 4,4′-BPA selectivity was 96.5%. Table 2 shows the results.
  • Example 5 In Example 3, the condensation reaction of phenol and acetone was performed in the same manner as in Example 3 except that the zirconium-phosphorus composite solid acid catalyst obtained in Reference Example 1 was used. After 6 hours of reaction, the acetone conversion was 86.5%. After 8 hours of reaction, the acetone conversion was 94.8% and 4,4′-BPA selectivity was 94.4%. Table 2 shows the results.
  • Example 6 In Example 3, a condensation reaction of phenol and acetone was performed in the same manner as in Example 3 except that the zirconium-phosphorus composite solid acid catalyst obtained in Reference Example 2 was used. After 6 hours of reaction, the acetone conversion was 97.3% and 4,4′-BPA selectivity was 93.9%. Table 2 shows the results.
  • Example 7 In Example 3, a condensation reaction of phenol and acetone was performed in the same manner as in Example 3 except that the zirconium-phosphorus composite solid acid catalyst obtained in Reference Example 3 was used. After 6 hours of reaction, the acetone conversion was 73.4%. Further, the conversion rate of acetone after the lapse of 8 hours was 86.7%, and the selectivity of 4,4′-BPA was 95.9%. Table 2 shows the results.
  • the selectivity for 4,4'-BPA is the value after 8 hours of reaction in Examples 5 and 7, after 4 hours of reaction in Reference Example 4, and after 6 hours of reaction in other cases.
  • the acid strength, specific surface area and crystallinity of the solid acid catalyst of the present invention can be controlled by the heating temperature of the zirconium phosphate when producing the solid acid catalyst of the present invention, and the condensation reaction of phenol and acetone can be controlled. It was confirmed that acetone conversion and 4,4′-BPA selectivity can be controlled.
  • Example 8 In Example 1, the amount of the cetyltrimethylammonium chloride aqueous solution, the concentration of the ammonium dihydrogen phosphate aqueous solution, and the calcination temperature were changed as shown in Table 3, respectively. A catalyst was obtained.
  • the amount of the cetyltrimethylammonium chloride aqueous solution was a relative amount to the amount of the cetyltrimethylammonium chloride aqueous solution in Example 1.
  • Example 8 The crystal structure, acid strength, and BET specific surface area of these catalysts were measured in the same manner as in Example 1. As a result, the catalysts obtained in Examples 8, 11 and 12 were amorphous. The catalyst obtained in Example 10 was crystalline.
  • Example 8 BET specific surface area, respectively, in Example 8 is 320.8m 2 / g
  • Example 9 is 143m 2 / g
  • Example 12 117.2m 2 / g Met.
  • Example 13 In Example 3, a condensation reaction of phenol and acetone was performed in the same manner as in Example 3 except that the zirconium-phosphorus composite solid acid catalyst obtained in Examples 8 to 12 was used. Table 4 shows the conversion rate of acetone and the selectivity of 4,4′-BPA after the reaction for 6 hours.
  • Example 18 In Example 1, a zirconium-phosphorus composite solid was prepared in the same manner as in Example 1 except that the firing temperature was changed using an aqueous solution of an organic structure-directing agent in the amount shown in Table 5 instead of the aqueous cetyltrimethylammonium chloride solution. An acid catalyst was obtained.
  • the amount of the organic structure-defining agent was the relative molar amount relative to the amount of the cetyltrimethylammonium chloride aqueous solution in Example 1.
  • cetyltrimethylammonium chloride and hexadecylamine (HAD) were used in combination.
  • Examples 28 and 29 did not use an aqueous solution of an organic structure-defining agent.
  • Example 18 98.4m 2 / g
  • Example 19 91.3m 2 / g
  • Example 20 is 99.0m 2 / g
  • Example 22 is 180.3 m 2 / g
  • Example 23 is 97.2 m 2 / g
  • Example 24 is 58.4 m 2 / g
  • Example 25 is 101.3 m 2 / g
  • Example 26 there 174.1m 2 / g
  • example 27 is 301.1m 2 / g
  • example 28 4.8 m 2 / g
  • the example 29 was 3.2 m 2 / g.
  • the acid strengths were 853.7 ⁇ mol / g for Example 19, 1369 ⁇ mol / g for Example 22, 1294.8 ⁇ mol / g for Example 25, and 98.8 ⁇ mol / g for Example 28, respectively. .
  • Example 3 In Example 3, a condensation reaction of phenol and acetone was performed in the same manner as in Example 3 except that the zirconium-phosphorus composite solid acid catalyst obtained in Examples 18 to 29 was used. Table 6 shows the conversion rate of acetone and the selectivity of 4,4′-BPA after the reaction for 6 hours.
  • the obtained gel was washed with water, dried at 60 ° C. overnight, and calcined at 500 ° C. to obtain zirconium phosphate.
  • the crystal structure of the obtained zirconium phosphate was measured in the same manner as in Example 1.
  • the measured powder X-ray diffraction pattern is shown in FIG. This resulted in an ⁇ -type crystal structure.
  • the acid strength was 506.5 ⁇ mol / g, and the BET specific surface area was 70.3 m 2 / g.
  • Example 42 The tubular reactor was charged with 6.0 cm 3 of the zirconium-phosphorus composite solid acid catalyst obtained in Example 2.
  • a reaction raw material in which 8.21 g (87.2 mmol) of phenol, 0.56 g (9.7 mmol) of acetone and 0.33 g of butyl mercaptan were mixed was added to the tubular reaction tube at 110 ° C. at 1.0 cm 3 per hour.
  • the condensation reaction between phenol and acetone was carried out by continuously circulating the solution.
  • the zirconium-phosphorus composite solid acid catalyst was taken out from the tubular reactor, washed with acetone, and dried at 60 ° C. overnight.
  • Example 43 A condensation reaction of phenol and acetone was carried out in the same manner as in Example 3 except that the zirconium-phosphorus composite solid acid catalyst obtained by the above operation was used. After 6 hours of reaction, the acetone conversion was 21.0% and 4,4′-BPA selectivity was 12.9%. Table 7 shows the results.
  • Example 44 The dried zirconium-phosphorus composite solid acid catalyst obtained in Example 42 was regenerated by calcination at 700 ° C. for 2 hours in the air. For this regenerated catalyst, the acid strength and the BET specific surface area were measured in the same manner as in Example 1. As a result, the acid strength was 222.0 ⁇ mol / g, and the BET specific surface area was 40.2 m 2 / g. The results are shown in Table 7.
  • Example 45 In Example 3, the condensation reaction of phenol and acetone was performed in the same manner as in Example 3 except that the regenerated catalyst obtained in Example 44 was used. After 6 hours of reaction, the acetone conversion was 89.2% and the 4,4′-BPA selectivity was 91.5%. The results are shown in Table 7.
  • Example 46 In Example 3, o-cresol and acetone were subjected to a condensation reaction in the same manner as in Example 3 except that o-cresol was used instead of phenol. After 6 hours of reaction, the acetone conversion was 92.7% and the 4,4′-BPC selectivity was 98.5%. It was proved that the catalyst of the present invention is suitable for the production of bisphenol C by the condensation reaction of cresol and acetone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明は、ビスフェノール類を高転化率で高選択率に安価に効率良く製造する方法を提供する。また、このビスフェノール類の製造に好適で再利用可能な新規触媒を提供する。本発明は、カルボニル化合物とフェノール化合物を、固体酸触媒に接触させる工程を含むビスフェノール類の製造方法であって、前記固体酸触媒がジルコニウム-リン複合固体酸触媒であることを特徴とする、ビスフェノール類の製造方法に関する。

Description

ビスフェノール類の製造方法、ジルコニウム-リン複合固体酸触媒とその製造方法及びその再生方法
 本発明は、ジルコニウム-リン複合固体酸触媒を用いたビスフェノール類の製造方法に関する。また、本発明は、新規なジルコニウム-リン複合固体酸触媒とその製造方法およびその再生方法に関する。
 ビスフェノールA(2,2-ビス(4-ヒドロキシフェニル)プロパン)、ビスフェノールC(2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン)、ビスフェノールF(ビス(4-ヒドロキシフェニル)メタン)等のビスフェノール類は、ポリカーボネート、ポリエステル、エポキシ樹脂等の原料;樹脂添加剤;接着剤;感熱紙用顕色剤;抗酸化剤;重合禁止剤等の幅広い分野において、幅広く用いられている。
 ビスフェノール類は、一般的に、酸性触媒の存在下で、カルボニル化合物とフェノール化合物との縮合反応により製造されている。ビスフェノール類の製造方法としては、具体的には、酸性触媒としてスルホン酸等の酸性基を有する陽イオン交換樹脂を用いる方法が知られている。また、該縮合反応において、助触媒として含イオウ化合物を用いることも知られている(特許文献1参照)。
 また、ビスフェノール類を、メルカプト基を有する含窒素化合物で修飾したヘテロポリ酸及び/又はメルカプト基を有する含窒素化合物で修飾したヘテロポリ酸塩の存在下に、カルボニル化合物とフェノール類とを反応させることにより製造する方法も知られている(特許文献2参照)。
国際公開第2010/084929号 日本国特開2008-120791号公報
 しかしながら、上記イオン交換樹脂は、使用後の触媒を再利用することができないため、触媒のランニングコストが比較的に高く、触媒廃棄コストがかかるという問題点があった。
 上記ヘテロポリ酸触媒については、使用後の触媒の再利用は可能である。しかしながら反応収率が低い上に、触媒の一部が反応中に溶解してしまうため、使用後の触媒の回収・再利用が困難であった。
 本発明は、かかる背景技術に鑑みてなされたものであり、その目的は、ビスフェノール類を高転化率で高選択率に製造する方法を提供すると共に、このビスフェノール類の製造に好適で再利用可能な新規触媒を提供することにある。
 本発明者は、上記の課題を解決するために、種々の固体酸触媒について検討を行った。その結果、ジルコニウム-リン複合固体酸触媒を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明の要旨は、以下(1)~(15)に存する。
(1)カルボニル化合物とフェノール化合物を、固体酸触媒存在下に接触させる工程を含むビスフェノール類の製造方法であって、前記固体酸触媒がジルコニウム-リン複合固体酸触媒であることを特徴とする、ビスフェノール類の製造方法。
(2)前記接触を30℃以上、150℃以下で行なう、上記(1)に記載のビスフェノール類の製造方法。
(3)前記接触を含イオウ化合物の存在下で行なう、上記(1)又は(2)に記載のビスフェノール類の製造方法。
(4)前記カルボニル化合物がアセトンである、上記(1)~(3)の何れか一つに記載のビスフェノール類の製造方法。
(5)前記フェノール化合物がフェノールである、上記(1)~(4)の何れか一つに記載のビスフェノール類の製造方法。
(6)前記フェノール化合物がクレゾールである、上記(1)~(4)の何れか一つに記載のビスフェノール類の製造方法。
(7)カルボニル化合物とフェノール化合物との反応によるビスフェノール類の製造に用いる固体酸触媒であって、ジルコニウム-リン複合固体酸であることを特徴とする、固体酸触媒。
(8)ZrP型の結晶構造を有し、アンモニア昇温脱離法(NH-TPD法)による酸強度が80μmol/g以上、1200μmol/g以下であることを特徴とする、上記(7)に記載の固体酸触媒。
(9)BET比表面積が30m/g以上、200m/g以下である、上記(7)又は(8)に記載の固体酸触媒。
(10)カルボニル化合物とフェノール化合物とを、固体酸触媒に接触させる工程を含むビスフェノール類の製造方法であって、前記固体酸触媒が上記(7)~(9)の何れか1つに記載の固体酸触媒であることを特徴とする、ビスフェノール類の製造方法。
(11)上記(7)~(9)の何れか1つに記載の固体酸触媒の製造方法であって、リン酸ジルコニウムを550℃以上、900℃以下で加熱する工程を含む、固体酸触媒の製造方法。
(12)前記加熱する工程を、有機構造規定剤の存在下で行なう、上記(11)に記載の固体酸触媒の製造方法。
(13)前記リン酸ジルコニウムが、ジルコニウム化合物とリン酸化合物を接触させて得られるものである、上記(11)又は(12)に記載の固体酸触媒の製造方法。
(14)カルボニル化合物とフェノール化合物との反応によるビスフェノール類の製造に用いる固体酸触媒の再生方法であって、前記固体酸触媒がジルコニウム-リン複合固体酸触媒であり、前記製造に用いたジルコニウム-リン複合固体酸触媒を550℃以上、900℃未満で加熱する工程を含むことを特徴とする、ジルコニウム-リン複合固体酸触媒の再生方法。
(15)カルボニル化合物とフェノール化合物を、固体酸触媒に接触させることを含むビスフェノール類の製造方法であって、前記固体酸触媒が上記(14)に記載のジルコニウム-リン複合固体酸触媒の再生方法により再生された触媒である、ビスフェノール類の製造方法。
 本発明によれば、ビスフェノール類を高転化率で高選択率に製造することができる。また、このビスフェノール類の製造に用いた触媒は再利用できることから、触媒のランニングコストを低く抑えられる上に、触媒廃棄コストがかからず、安価に効率良くビスフェノール類を製造することができる。
図1は実施例1で得られた固体酸触媒の粉末X線回折装置で測定したX線回折図である。 図2は参考例5で得られた固体酸触媒の粉末X線回折装置で測定したX線回折図である。
 以下、本発明の実施の形態について詳細に説明する。以下の実施の形態は、本発明の実施態様の一例(代表例)であり、本発明はこれらに限定されるものではない。また、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。
(ビスフェノール類の製造方法)
 本発明のビスフェノール類の製造方法は、カルボニル化合物とフェノール化合物を、ジルコニウム-リン複合固体酸触媒に接触させる工程を含む。すなわち、本発明のビスフェノール類の製造方法は、カルボニル化合物とフェノール化合物との反応により、ビスフェノール類を製造する。本発明のビスフェノール類の製造方法は、工業的には、カルボニル化合物とフェノール化合物との反応を連続的に行うことが好ましい。
 本発明のビスフェノール類の製造方法に用いるカルボニル化合物としては、例えば、ケトン類およびアルデヒド類等が挙げられるが、これらに特に限定されない。
 ケトン類としては、アルキル基を有する飽和脂肪酸ケトン、芳香族ケトン、不飽和ケトン、脂環式ケトンおよびハロゲンで置換されたケトンが好ましい。アルキル基を有する飽和脂肪酸ケトンとしては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、メチル-n-プロピルケトンおよびメチルイソブチルケトン等が挙げられる。
芳香族ケトンとしては、例えば、フェニルメチルケトンおよびベンゾフェノン等が挙げられる。不飽和ケトンとしては、例えば、メシチルオキシド等が挙げられる。脂環式ケトンとしては、例えば、シクロヘキサノン、シクロドデカノンおよび炭素数1~6のアルキル基を置換基として有するシクロヘキサノン(例えば、4-n-プロピルシクロヘキサノン)等が挙げられる。
 ハロゲンで置換されたケトンとしては、例えば、ヘキサフルオロアセトン、ヘキサクロロアセトン、ヘキサブロモアセトンおよびメチルペンタフルオロフェニルケトン等が挙げられる。上記ケトン類が有する炭素数は、3以上であることが好ましい。また、20以下であることが好ましく、10以下であることが更に好ましく、6以下であることが特に好ましい。また、ケトン類としては、アセトンが最も好ましい。
 アルデヒド類としては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ペンチルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、オクチルアルデヒド、ノニルアルデヒド、カプリルアルデヒド、ウンデシルアルデヒド、ラウリルアルデヒド、トリデシルアルデヒドおよびシクロヘキシルアルデヒド等の炭素数1~20程度のアルデヒド類等が挙げられる。
 上記のカルボニル化合物のうち、本発明のビスフェノール類の製造方法に用いるカルボニル化合物としては、ホルムアルデヒド及びアセトンが特に好ましく、アセトンが最も好ましい。
 なお、本発明のビスフェノール類の製造方法に用いるカルボニル化合物は、1種を単独で用いても、2種以上を任意の組み合わせと比率で用いてもよい。
 本発明のビスフェノール類の製造方法に用いるフェノール化合物としては、例えば、無置換のフェノール;o-クレゾール、m-クレゾール、2,3-キシレノール、2,5-キシレノール、2,6-キシレノール、2,3,6-トリメチルフェノールおよび2,6-ジ-tert-ブチルフェノール等の炭素数1~4のアルキル基で置換されたフェノール;イソプロペニルフェノール;o-クロロフェノール、m-クロロフェノール、2,3-ジクロロフェノール、2,5-ジクロロフェノールおよび2,6-ジクロロフェノール等のハロゲンで置換されたフェノール;2-フェニルフェノール等のアリール基で置換されたフェノール等が挙げられるが、これらに特に限定されない。また、本発明のビスフェノール類の製造方法に用いるフェノール化合物が置換基を有する場合、置換されている箇所は一箇所でも複数箇所でもよい。
 これらの中でも、本発明のビスフェノール類の製造方法に用いるフェノール化合物としては、フェノール、イソプロペニルフェノールおよびクレゾールが好ましく、フェノールおよびクレゾールが更に好ましく、フェノールが特に好ましい。なお、本発明のビスフェノール類の製造方法に用いるフェノール化合物は、1種を単独で用いても、2種以上を任意の組み合わせと比率で用いてもよい。
 ポリカーボネート樹脂等の原料として有用なビスフェノールAを得る観点からは、フェノール化合物としてフェノールを使用し、カルボニル化合物としてアセトンを使用することが特に好ましい。また、カルボニル化合物とフェノール化合物との縮合反応で副生するイソプロペニルフェノールを用いることも同様に好ましい。
 難燃性に優れ、表面硬度が高いポリカーボネート樹脂等の原料として有用なビスフェノールCを得る観点からは、フェノール化合物としてクレゾールを使用し、カルボニル化合物としてアセトンを使用することが特に好ましい。
 カルボニル化合物としてアセトンを用いる場合、通常入手できる市販の工業用アセトンを使用することができる。一般的には純度99.0重量%以上のものが入手可能である。また、蒸留精製したアセトン、キュメン法フェノールプロセスにおける蒸留塔底液から得られる粗アセトン等も使用可能である。
 フェノール化合物としてフェノールを用いる場合についても、通常入手できる市販の工業用アセトンを使用することができる。一般的に、純度98重量%以上のものが入手可能である。また、クメン法により得られるフェノール、トルエン酸化法等により得られるフェノール等も使用可能である。
 なお、これらの原料は、必要に応じて、蒸留等の精製処理を行ったものを用いてもよい。フェノール化合物としてクレゾールを用いる場合についても、通常入手できる市販の工業用クレゾールを使用することができる。
 本発明のビスフェノール類の製造方法に用いるカルボニル化合物とフェノール化合物とのモル比は、特に限定されない。フェノール化合物が多い方が副生物の生成が起こり難く、選択率が高くなりやすい観点からは好ましい。また、一方で、フェノール化合物が少ない方が、未反応フェノールが少なくなりやすい観点からは好ましい。
 そこで、具体的には、カルボニル化合物1モルに対して、フェノール化合物2モル以上が好ましく、4モル以上が更に好ましい。また、カルボニル化合物1モルに対して、フェノール化合物20モル以下が好ましく、15モル以下が更に好ましい。
 本発明のビスフェノール類の製造方法は、ジルコニウム-リン複合固体酸触媒を用いる。すなわち、本発明のビスフェノール類の製造方法は、カルボニル化合物とフェノール化合物を、固体酸触媒に接触させる工程を含む。そして、この固体酸触媒がジルコニウム-リン複合固体酸触媒であることを特徴とする。本発明のビスフェノール類の製造方法に特に好適なジルコニウム-リン複合固体酸触媒については後述する。
 本発明のビスフェノール類の製造方法により、ビスフェノールAを製造する場合、ジルコニウム-リン複合固体酸触媒を用いることにより、2-(2-ヒドロキシフェニル)-2-(4-ヒドロキシフェニル)プロパンやDianin化合物(2,2,4-トリメチル-3,4-ジヒドロ-4-(4-ヒドロキシフェニル)-2H-1-ベンゾピラン)等の副生が抑制され、2,2-ビス(4-ヒドロキシフェニル)プロパン(以降において、「4,4’-BPA」とも表す。)を高転化率且つ高選択率で製造することができる。
 また、本発明のビスフェノール類の製造方法により、ビスフェノールCを製造する場合、ジルコニウム-リン複合固体酸触媒を用いることにより、2-(3-メチル-2-ヒドロキシフェニル)-2-(3-メチル-4-ヒドロキシフェニル)プロパン等の副生が抑制され、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン(以降において、「4,4’-BPC」とも表す)を高転化率且つ高選択率で製造することができる。
 本発明のビスフェノール類の製造方法に用いるジルコニウム-リン複合固体酸触媒の量は、有効触媒量であれば特に限定されない。本発明のビスフェノール類の製造方法に用いるジルコニウム-リン複合固体酸触媒の量は、使用する原料や反応条件等に応じて適宜設定すればよい。
 なお、本明細書において、有効触媒量とは、カルボニル化合物とフェノール化合物から所望するビスフェノール類を製造することができる量を意味する。例えば、アセトンとフェノールからビスフェノールAを製造する場合、または、アセトンとクレゾールからビスフェノールCを製造する場合、アセトン1gに対して、ジルコニウム-リン複合固体酸触媒を0.1g以上用いることが好ましく、0.5g以上用いることが更に好ましく、1.0g以上用いることが特に好ましい。また、一方で、アセトン1gに対して、ジルコニウム-リン複合固体酸触媒を10g以下用いることが好ましく、5g以下用いることが更に好ましく、2.5g以下用いることが特に好ましい。
 カルボニル化合物とフェノール化合物の反応は、通常、縮合反応である。カルボニル化合物とフェノール化合物の反応は、含イオウ化合物の存在下で行なうことが好ましい。すなわち、本発明のビスフェノール類の製造方法は、固体酸触媒及び含イオウ化合物に接触させる工程を含むことが好ましい。本発明のビスフェノール類の製造方法は、ジルコニウム-リン複合固体酸触媒に、助触媒として含イオウ化合物を併用することにより、触媒活性を向上させることができる。
 含イオウ化合物は、メルカプト基(SH基)を1個以上有する有機化合物が好ましい。具体的には、例えば、エチルメルカプタン、プロピルメルカプタン、ブチルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタンおよびシクロヘキシルメルカプタン等のアルキルメルカプタン類;メルカプトプロピオン酸およびメルカプト酢酸等のメルカプトカルボン酸類;メルカプトエタノールおよびメルカプトブタノール等のメルカプトアルコール類;メルカプトピリジン、メルカプトニコチン酸、メルカプトピリジノオキサイドおよびメルカプトピリジノール等のメルカプトピリジン類;チオフェノールおよびチオクレゾール等のチオフェノール類などが挙げられるが、これらに特に限定されない。
 これらの中でも、アルキルメルカプタン類が好ましい。アルキルメルカプタン類が有する炭素数は、2以上が好ましく、3以上が更に好ましい。また、アルキルメルカプタン類が有する炭素数は、6以下が好ましく、5以下が更に好ましい。なお、含イオウ化合物を用いる場合は、1種を単独で用いても、2種以上を任意の組み合わせと比率で用いてもよい。
 本発明のビスフェノール類の製造方法において含イオウ化合物を用いる場合におけるその使用量は、特に限定されず、原料や含イオウ化合物の種類や反応条件等に応じて適宜設定すればよい。
 具体的には、例えば、含イオウ化合物としてアルキルメルカプタン類を用いる場合、反応液の総量に対して、0.01重量%であることが好ましく、0.1重量%以上であることがさらに好ましく、0.5重量%以上であることが特に好ましく、また、一方で、10重量%以下であることが好ましく、7.0重量%以下であることがさらに好ましく、5.0重量%以下であることが特に好ましい。
 助触媒を存在させる方法としては、(1)反応原料中に助触媒を供給する方法と、(2)固体酸触媒を助触媒で変性させる方法とがある。本発明のビスフェノール類の製造方法において含イオウ化合物を用いる場合、(1)の方法が好ましい。
 カルボニル化合物とフェノール化合物の反応の反応条件は、原料、触媒及びチオール化合物等の種類などに応じて適宜設定すればよく、特に限定されない。反応速度、反応選択率および生産性等の観点から、反応温度は、30℃以上であることが好ましく、さらに好ましくは70℃以上、特に好ましくは100℃以上である。
 なお、本発明のビスフェノール類の製造方法は、ジルコニウム-リン複合固体酸触媒を用いることにより、イオン交換樹脂触媒を用いる場合に比べ、100℃以上という高温反応により反応速度を上げることが可能である。
 また、一方で、反応温度は、150℃以下であることが好ましく、さらに好ましくは130℃以下である。反応時間は、触媒量や反応温度等によっても変動するが、通常は1~12時間である。なお、反応圧力については、減圧、加圧および常圧のいずれの条件下でも実施することが可能である。
 上記反応を行った後の反応液中には、生成されたビスフェノール類の他に、未反応原料、反応時に副生する水及び不純物等が含まれている。そこで、これを精製することにより、目的とするビスフェノール類を取り出すことができる。すなわち、本発明のビスフェノール類の製造方法は、反応液から目的物質であるビスフェノール類を分離精製する工程を含むことが好ましい。反応液から目的物質であるビスフェノール類を分離精製する方法には特に制限はなく、公知の方法に準じて行えばよい。以下、目的物質がビスフェノールAの場合について、精製方法の例を説明する。
 まず、上記反応を行った後の反応液を、ビスフェノールAとフェノールとを含む成分と、反応で副生する水及び未反応アセトン等を含む低沸点成分とに分離する。この分離は、減圧下で蒸留することにより低沸点成分を蒸発させることが好ましい。
 なお、この低沸点成分には、フェノール等が含まれていてもよい。また、低沸点成分を蒸発させた後のビスフェノールAとフェノールとを含む成分の組成は、さらに蒸留等によってフェノールを除去する、又はフェノールを追加するなどによって、所望の組成に調整することができる。なお、分離された低沸点成分に含まれる未反応アセトンは、分離回収して、反応に再利用することができる。
 続いて、ビスフェノールAとフェノールとを含む成分を晶析することにより、ビスフェノールAとフェノールとの付加物の結晶(以下、単に「付加物の結晶」または「付加物」と言う場合がある。)を含有するスラリーを得る。
 晶析は、ビスフェノールAとフェノールとの付加物の析出を、冷却、貧溶媒の添加、水などの添加後に蒸発(蒸発熱で冷却)、フェノール除去による濃縮、及びこれらの方法の組み合わせなどにより行えばよい。晶析は、1回のみでも、所望の純度の付加物を得るために、任意の方法の組み合わせで複数回行ってもよい。
 晶析により得られるスラリーは、減圧濾過、加圧濾過または遠心濾過等により、付加物の結晶と母液とに固液分離される。そして、このようにしてビスフェノールAとフェノールとの付加物の結晶が回収される。なお、晶析するときに、ビスフェノールAの結晶を直接得ることもできる。
 続いて、固液分離により得られる付加物の結晶を溶融した後、その溶融液からフラッシュ蒸留、薄膜蒸留又はスチームストリッピング等の手段によって、フェノールを除去することにより、溶融ビスフェノールAを得ることができる。除去されたフェノールは、精製し、反応や固液分離で得られた付加物の結晶の洗浄等に供することができる。
 このようにして得られる溶融ビスフェノールAを固化することにより、造粒することができる。すなわち、本発明のビスフェノール類の製造方法は、溶融ビスフェノール類を造粒する工程を含むことが好ましい。造粒する方法は、例えば、ノズルから溶融ビスフェノールAを噴射させ、冷却ガスと接触させることにより、小球状のビスフェノールAプリルを得る方法などが簡便で好ましい。なお、固液分離で得られた付加物の結晶から、フェノールを除去せずに、再度、晶析を行うことによってもビスフェノールAを得ることができる。
 固液分離で分離された母液については、これに含まれる未反応原料や副生物を再利用又はこれらの成分からビスフェノールAを製造することが好ましい。具体的には、例えば、母液の少なくとも一部を反応器に戻すことが挙げられる。
 また、母液の少なくとも一部について、アルカリ又は酸の存在下で加熱後に蒸留することにより不純物となる重質分を除くと共に軽質分を取得し、この軽質分を、酸触媒等を用いて再結合反応させることによりビスフェノールAを得ることもできる。この他、母液の少なくとも一部について、酸触媒等を用いて異性化反応させることによりビスフェノールAを得ることもできる。
 なお、ここで、再結合反応や異性化反応に用いる酸触媒として、本発明のビスフェノール類の製造方法に用いるジルコニウム-リン複合固体酸触媒を好適に用いることができる。
 本発明のビスフェノール類の製造方法におけるカルボニル化合物とフェノール化合物の反応は、ジルコニウム-リン複合固体酸触媒を用いることにより、高転化率で高選択率にビスフェノール類を得ることができる。
 具体的には、カルボニル化合物の転化率については、好ましくは70%以上、より好ましくは80%以上、更に好ましくは85%以上、特に好ましくは90.0%以上を達成することができる。また、所望のビスフェノール類の選択率については、好ましくは85%以上、更に好ましくは90%以上、特に好ましくは95.0%以上という、極めて高性能な触媒性能を発現できる。
<転化率と変性率>
 後述する実施例で示す通り、本発明のビスフェノール類の製造方法におけるアセトン転化率(%)、4,4’-ビスフェノールA選択率(%)および4,4’-ビスフェノールC選択率(%)は、ガスクロマトグラフィーによる測定値から、以下のように算出することができる。
 ガスクロマトグラフィー:島津製作所株式会社製「GC-2010」
 カラム:Restack社製「Rtx-5(Crossbond 5% diphenyl-95% dimethyl polysiloxane) 30m×0.32mm×0.5μm」
 検出器:FID
 キャリアーガス:He
 アセトン転化率(%)=[(仕込みアセトンのモル数-未反応アセトンのモル数)/(仕込みアセトンのモル数)]×100
 ビスフェノールA収率(%)=[(生成したビスフェノールAのモル数/仕込みアセトンのモル数)]×100
 ビスフェノールA選択率(%)=[ビスフェノールA収率(%)/アセトン転化率(%)]×100
ビスフェノールC選択率(%)=[ビスフェノールC収率(%)/アセトン転化率(%)]×100
(固体酸触媒)
 本発明者らは、カルボニル化合物とフェノール類との反応によるビスフェノール類を製造する反応に用いる触媒として、ジルコニウム-リン複合固体酸(以下、「本発明の固体酸触媒」と言う場合がある。)が好適であることを見出した。
 但し、この本発明の固体酸触媒は、本発明のビスフェノール類の製造方法におけるカルボニル化合物とフェノール化合物との反応に限らず、これ以外の反応にも好適に用いることができると考えられる。
 なお、上述したように、本発明の固体酸触媒を用いることにより、カルボニル化合物とフェノール類から所望のビスフェノール類を高選択率で得られることについては、以下のように推定される。
 すなわち、カルボニル化合物とフェノール化合物の反応においては、酸触媒により、所望のビスフェノール類を生成する反応以外に様々な副反応が起こり得る。ここで、一般的に、酸触媒は、強い酸点が多く、触媒の比表面積が大きいほど触媒活性が高いと考えられている。
 そこで、本発明の固体酸触媒は、酸点の強さと量および比表面積が、所望のビスフェノール類を生成する反応の促進に好適であるために、カルボニル化合物とフェノール化合物の反応において、副反応を抑制し、所望のビスフェノール類を高転化率で高選択率に得ることができると考えられる。
 具体的には、例えば、アセトンとフェノールとの反応では、4,4’-BPA以外に、2-(2-ヒドロキシフェニル)-2-(4-ヒドロキシフェニル)プロパンやDianin化合物等が副生する。そこで、本発明の固体酸触媒は、酸点の強さと量および比表面積が、4,4’-BPAを得る反応の促進に好適であると考えられる。
 また、本発明者らは、本発明の固体酸触媒として、特に、ZrP型の結晶構造を有し、アンモニア昇温脱離法(NH-TPD法)による酸強度が80μmol/g以上、1200μmol/g以下であるジルコニウム-リン複合固体酸が好適であることを見出した。
 また、本発明者らは、本発明の固体酸触媒として、BET比表面積が30m/g以上、200m/g以下であるジルコニウム-リン複合固体酸が特に好適であることを見出した。すなわち、本発明のビスフェノール類の製造方法は、カルボニル化合物とフェノール化合物とを、これらの固体酸触媒に接触させる工程を含むことが好ましい。本発明の固体酸触媒は、ジルコニウムとリンを含む固体酸であればよい。
 ジルコニウム-リン複合固体酸としては、非晶質の固体酸の他、2次元層状構造や3次元網目状構造をとる結晶質の固体酸が知られている。ここで、本発明者らは、カルボニル化合物とフェノール類からビスフェノール類を製造する反応などに用いる触媒として、特にZrP型の結晶構造を有するジルコニウム-リン複合固体酸が好適であることを見出した。
 ZrP型の結晶構造を有するジルコニウム-リン複合固体酸が、カルボニル化合物とフェノール類からビスフェノール類を製造する反応などに用いる触媒としては好適な理由は、以下のように推定される。
 α型の結晶構造を有するジルコニウム-リン複合固体酸は、ジルコニウム原子とリン原子の層が酸素原子を介して交互に層状に積み重なった構造になっている。ここで、ジルコニウム原子の層同士の層間距離は7.6Åであり、結晶水を内包した空孔を有しており、P-OH-OH型の水素結合およびP-OH-OH-P型の水素結合により層構造が維持されている。
 これに対し、ZrP型の結晶構造を有するジルコニウム-リン複合固体酸は、この内包された水分子が離脱し、層状構造から立方晶に構造変化することにより、酸強度がより、カルボニル化合物とフェノール類からビスフェノール類を製造する反応などに適した状態へと変化しているものと推定される。
 なお、本明細書において、ZrP型の結晶構造を有するとは、粉末X線回折測定において、ピロリン酸ジルコニウム結晶の存在を示す2θ=21.3°~21.7°の回折線が確認されることを意味する。
 また、ピロリン酸ジルコニウム結晶は、粉末X線回折測定において、通常、この他に、2θが18.4°~18.8°、23.9°~24.3°、26.2°~26.6°、30.4°~30.8°および35.8~36.2°にも回折線が確認される(後述する実施例1の粉末X線回折図である図1を参照。)。
 なお、ピロリン酸ジルコニウムの粉末X線回折図は、ASTM File No.29-1399であり、d値で4.12(100)、3.69(40)、4.76(30)、3.37(30)、2.92(30)である。ここで、結晶格子の細かな乱れにより、強度比が若干変わる可能性があるが、上記の2θ=21.3°~21.7°の回折線は、d値で4.1に相当する。
 なお、ジルコニウム-リン複合固体酸としては、α型の結晶構造が公知である。α型のジルコニウム-リン複合固体酸は、粉末X線回折測定において、通常、2θが11.9°~12.2°、20.1°~20.4°、25.2°~25.5°、34.3°~34.6°および37.5°~37.8°に回折線が確認される(後述する参考例5の粉末X線回折図である図2を参照。)。
 本発明の固体酸触媒に含まれる、ピロリン酸ジルコニウム結晶の割合は、反応活性の点では多いことが好ましい。そこで、本発明の固体酸触媒は、その粉末X線回折測定結果において、上記6つ以外の回折線が、上記6つの中で最も高強度である回折線の2/3以下の強度であることが好ましく、1/2以下の強度であることが更に好ましく、1/3以下の強度であることが特に好ましい。
<粉末X線回折測定>
 本発明の固体酸触媒の結晶構造は、後述する実施例で行ったように、ペレット状に成型した触媒を、Bruker社製固体粉末X線回折装置「D8 ADVANCE」(線源CuKα)を用いて、2θ=10~80°の範囲で分析することにより測定することができる。
 なお、このZrP型の結晶構造は、後述するように、リン酸ジルコニウムを好ましくは高温で加熱することにより現れる。
 ジルコニウム-リン複合固体酸の酸強度は、反応が起こり易い点では高いことが好ましい。また、一方で、生成した目的物質の分解や副生物の生成が起こり難い点では低いことが好ましい。
 具体的には、例えば、本発明のビスフェノール類の製造方法の場合、カルボニル化合物とフェノール類からビスフェノール類を製造する反応が起こり易い点では酸性度が高いことが好ましい。また、一方で、生成したビスフェノール類の分解や副生物の生成が起こり難い点では低いことが好ましい。
 そこで、ジルコニウム-リン複合固体酸の酸強度は、アンモニア昇温脱離法(NH-TPD法)による酸強度が80μmol/g以上が好ましく、100μmol/g以上が更に好ましく、120μmol/g以上が特に好ましい。
 また、一方で、ジルコニウム-リン複合固体酸の酸強度は、1200μmol/g以下であることが好ましく、1150μmol/g以下であることが更に好ましく、1100μmol/g以下であることが特に好ましい。なお、ここで、アンモニア昇温脱離法(NH-TPD法)による酸強度は、アンモニア昇温脱離スペクトルの積分値を意味する。
<酸強度の測定>
 本発明の固体酸触媒の酸強度は、後述する実施例で行ったように、アンモニア昇温脱離法(NH-TPD法)に基づいて測定し、得られたTPDスペクトルの積分値に基づいて算出することができる。具体的には、固体酸触媒の酸強度は、以下の手順で、Thermo Scientific社製「TPDRO110 Series Catalyst」を用いて、アンモニア昇温脱離法(NH-TPD法)測定を行う。
 先ず、触媒を試料管に充填し、500℃で1時間脱気、冷却後、NHガスを導入し100℃で1時間静置する。次に、100℃で1時間脱気し、触媒に吸着していないNHガスを除去する。その後、試料管をThermo Scientific社製「TPDRO110 Series Catalyst」に取り付け、Heを50ccm/分で流通しながら150℃~800℃まで10℃/分で昇温し、触媒から脱離したNHの質量を測定する。
 この本発明の固体酸触媒の酸強度は、後述する本発明の固体酸触媒を合成するときのリン酸供給源の量、pH、リン酸ジルコニウムの加熱温度等によって調整することができる。これらのうち、リン酸ジルコニウムの加熱温度により酸強度を調整することが好ましい。具体的には、加熱温度が高いと結晶化が進行し、酸強度が低くなりやすいため、適切な酸強度となるよう加熱温度を調整すればよい。
 すなわち、本発明の固体酸触媒は、ZrP型の結晶構造が形成される程度に結晶化が進行していると共に、酸強度が適度に緩和されていることにより、高い触媒活性を発現することができると推定される。
 ジルコニウム-リン複合固体酸のBET(Brunauer-Emmet-Teller)比表面積法には、反応活性点が多くなりやすい点では大きいことが好ましいが、生成した目的物質の分解や副生物の生成が起こり難い点では小さいことが好ましい。
 具体的には、例えば、本発明のビスフェノール類の製造方法の場合、カルボニル化合物とフェノール類からビスフェノール類を製造する反応が起こり易い点ではBET比表面積が大きいことが好ましいが、また、一方で、生成したビスフェノール類の分解や副生物の生成が起こり難い点では小さいことが好ましい。
 そこで、ジルコニウム-リン複合固体酸のBET比表面積は、30m/g以上であることが好ましく、31m/g以上であることが更に好ましく、32m/g以上であることが特に好ましい。
 また、一方で、200m/g以下であることが好ましく、199m/g以下であることが更に好ましく、198m/g以下であることが特に好ましい。すなわち、ジルコニウム-リン複合固体酸のBET比表面積が当該好ましい範囲にあることで、高い触媒活性が発現されやすい。
<BET比表面積の測定>
 本発明の固体酸触媒の酸強度は、後述する実施例で行ったように、ガス吸着法による比表面積測定器(MICROMERITICS社製「ASAP2420」)を用いて触媒のガス吸着量を測定し、下式により算出することができる。具体的には、以下の手順で、本発明の固体酸触媒の酸強度を算出することができる。
 先ず、触媒を試料管に充填し、350℃で減圧乾燥後の重量を測定する。次に、試料管を-196℃に冷却し、試料管に窒素を導入し、触媒に窒素を吸着させ、窒素分圧と吸着量の関係(吸着等温線)を測定する。ここで、窒素の相対圧をp、窒素の吸着量をv(cm/g STP)とし、BETプロットを行う。
 そして、縦軸にp/(v(1-p))、横軸にpを取り、pが0.05~0.20の範囲でプロットしたときの傾きb(単位=g/cm)と切片c(単位=g/cm)から、下式に基づいて比表面積S(単位=m/g)を求める。
Figure JPOXMLDOC01-appb-M000001
 ここで、MAは窒素分子の断面積(0.162nm)である。
 また、ジルコニウム-リン複合固体酸触媒のBET比表面積あたりの酸強度は、3.0μmol/m以上であることが好ましく、3.2μmol/m以上であることが更に好ましく、3.5μmol/m以上であることが特に好ましく、また、一方で、6.0μmol/m以下であることが好ましく、5.8μmol/m以下であることが更に好ましく、5.6μmol/m以下であることが特に好ましい。すなわち、このように酸強度と多孔性を適度な範囲内とさせることにより、高い触媒活性が発現されやすい。
(固体酸触媒の製造方法)
 本発明の固体酸触媒は、ジルコニウム化合物とリン酸化合物を接触させて得られる。
 本発明の固体酸触媒は、ジルコニウム供給源となるジルコニウム化合物とリン酸供給源となるリン酸化合物を水溶液中で接触させることにより得ることが好ましい。
 ジルコニウム供給源としては、硝酸ジルコニウム、酢酸ジルコニウム、硫酸ジルコニウム、炭酸ジルコニウム、オキシ硫酸ジルコニウム、オキシ塩化ジルコニウム等が挙げられる。但し、ジルコニウム供給源は、これらのジルコニウム供給源に限定されない。これらの化合物は、含水化合物であってもよい。
 ジルコニウム供給源としては、これらの中でも、反応性及びコスト等の観点から、硝酸ジルコニウム、酢酸ジルコニウム、硫酸ジルコニウム、炭酸ジルコニウム、オキシ硫酸ジルコニウム、オキシ塩化ジルコニウムなどが好ましく、オキシ塩化ジルコニウムが更に好ましい。なお、ジルコニウム供給源は、1種を単独で用いても、2種以上を任意の組み合わせと比率で用いてもよい。
 リン酸供給源としては、リン酸、リン酸ナトリウム、リン酸カリウム、リン酸水素カルシウム、リン酸二水素アンモニウム及びこれらの水和物等が挙げられる。但し、リン酸供給源は、これらのリン酸化合物に限定されない。
 リン酸供給源は、これらの中でも、取扱性及びコスト等の観点から、リン酸、リン酸二水素アンモニウムなどが好ましく、リン酸二水素アンモニウムが更に好ましい。なお、リン酸供給源は、1種を単独で用いても、2種以上を任意の組み合わせと比率で用いてもよい。
 リン酸ジルコニウム製造に用いるジルコニウム供給源とリン酸供給源のモル比は、特に限定されない。但し、本発明のビスフェノール類の製造方法に用いる触媒として好適な結晶構造になりやすいことから、1モルのジルコニウム供給源に対して、リン酸供給源2.0モル以上が好ましく、2.5モル以上が更に好ましい。また、一方で、1モルのジルコニウム供給源に対して、リン酸供給源10モル以下が好ましい。
 ジルコニウム化合物とリン酸化合物を接触させるときは、有機構造規定剤を存在させておくことが好ましい。ジルコニウム化合物、リン酸化合物および有機構造規定剤を接触させる順番については、最終的にこの3つが接触する状態になれば何れの順に接触させても良い。具体的には、例えば、この3つを同時に接触させても、何れか2つを接触させた後に残りの1つを接触させても良い。有機構造規定剤は、メソポーラス構造を有する金属酸化物等を製造する際に、そのメソポーラス構造を決定するために必要な有機化合物である。有機構造規定剤としては、例えば、ゼオライトを製造する際に用いられる、所謂テンプレート(鋳型)などが知られている。
 本発明の固体酸触媒を、有機構造規定を用いて製造すると、有機構造規定剤が層状リン酸ジルコニウムの層間にインターカレートされ、メソポーラス或いはナノポーラス構造を有する多孔質なリン酸ジルコニウムが得られ易いと考えられる。
 有機構造規定剤としては、例えば、各種の界面活性剤、例えば、塩化セチルトリメチルアンモニウム(CTAC)、臭化セチルトリメチルアンモニウム(CTAB)、塩化デシルトリメチルアンモニウム(DTAC)および塩化テトラメチルアンモニウム(TMAC)等の陽イオン界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、脂肪酸アルカノールアミド、エチレングリコールとプロピレングリコールのブロック共重合体等の非イオン界面活性剤:両性界面活性剤等が挙げられる。また、有機構造規定剤としては、例えば、ヘキサデシルアミン(HAD)等の長鎖アルキルアミンも挙げられる。但し、本発明の固体酸触媒の製造方法に用いる有機構造規定剤は、これらに特に限定されない。
 これらの中でも、本発明の固体酸触媒の製造方法に用いる有機構造規定剤としては、第四級アンモニウム塩が好ましい。第四級アンモニウム塩としては、例えば、塩化アンモニウム、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルエチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩およびアルキルピリジニウム塩等が挙げられる。
 また、これらの第四級アンモニウム塩が有するアルキル基としては、炭素数10~18の長鎖アルキル基又は長鎖アルキルフェノール基が好ましい。第四級アンモニウム塩を構成する対アニオンとしては、特に限定されないが、塩素イオン、臭素イオンおよびヨウ素イオン等のハロゲンイオンが好ましく、塩素イオンが特に好ましい。
 これらの中でも、本発明の固体酸触媒の製造方法に用いる有機構造規定剤としては、陽イオン界面活性剤が好ましく、塩化セチルトリメチルアンモニウムおよび塩化テトラメチルアンモニウム(TMAC)などの塩化テトラアルキルアンモニウム更に好ましい。なお、有機構造規定剤は、1種を単独で用いても、2種以上を任意の組み合わせと比率で用いてもよい。
 有機構造規定剤を用いる場合の使用量は、特に限定されないが、ジルコニウム供給源1モルに対して、0.1モル以上が好ましく、2.0モル以下が好ましい。
 ジルコニウム化合物とリン酸化合物を接触させるときのpHは、特に限定されない。但し、収率の観点から、ジルコニウム化合物とリン酸化合物を接触させるときのpHは、1以上が好ましく、5以下が好ましい。ジルコニウム化合物とリン酸化合物を接触させるときのpHは、アンモニウム塩水酸化ナトリウム、水酸化カリウムまたはアンモニア水等を用いて調整してもよい。また、上述したリン酸供給源の種類と量により調整することもできる。
 なお、反応を均一に進める観点から、ジルコニウム化合物とリン酸化合物との接触は攪拌下で行うことが好ましい。
 上記の方法において、通常、リン酸ジルコニウムは、反応液の下の方に沈殿する。そこで、この沈殿を濾過することにより、リン酸ジルコニウムを回収することができる。なお、濾過により得られたリン酸ジルコニウムは、洗浄することが好ましい。
 リン酸ジルコニウムの洗浄は、水及び/又は有機溶媒を用いて行うことが好ましい。また、リン酸ジルコニウムは、洗浄後に乾燥させることが好ましく、乾燥は50~100℃で行うことが好ましい。このようにして得られるリン酸ジルコニウムは、通常、粒子状又は不定形状の白色固体である。
 ここで、得られたリン酸ジルコニウムは、必要に応じてこれを粉砕又は解砕等して、その粒径を調整することができる。粉砕又は解砕は、例えば、乾式ジェットミル、湿式ジェットミル、ボールミル、ビーズミル、ロータリーミル、バンパリーミキサー等の公知の粉砕装置又は混練装置などを用いて行うことができる。
 本発明の固体酸触媒は、リン酸ジルコニウムを加熱することにより得ることが好ましい。すなわち、本発明の固体酸触媒の製造方法は、リン酸ジルコニウムを加熱する工程を含むことが好ましい。そして、本発明の固体酸触媒の製造方法は、ジルコニウム化合物とリン酸化合物を接触させて得られるリン酸ジルコニウムを加熱する工程を含むことが更に好ましい。また、本発明の固体酸触媒の製造方法は、上述の有機構造規定剤の存在下で行うことが特に好ましい。すなわち、リン酸ジルコニウムを有機構造規定剤の存在下で加熱することが特に好ましい。ここで、有機構造規定剤は、上述のとおり、ジルコニウム化合物とリン酸化合物を接触させるときに接触させておいても、ジルコニウム化合物とリン酸化合物を接触させた後に有機構造規定剤を接触させても良い。リン酸ジルコニウムの加熱は、高温で行うほどリン酸ジルコニウムの結晶化が進行し、得られる固体酸触媒の比表面積が小さく、酸強度が低くなりやすい。そこで、加熱温度の調整により、本発明の固体酸触媒の結晶性、比表面積および酸強度を上記の好ましい範囲とすることができる。
 加熱温度は、具体的には、550℃以上が好ましく、600℃以上が更に好ましく、620℃以上が特に好ましく、650℃以上が最も好ましい。また、一方で、加熱温度は、900℃以下が好ましく、800℃以下が更に好ましく、780℃以下が特に好ましく、750℃以下が最も好ましい。
 加熱時間は、特に限定されないが、製造される本発明の固体酸触媒の均一性の観点からは長いことが好ましい。また、一方で、作業効率の観点からは、加熱時間は短いことが好ましい。そこで、具体的には、加熱時間は、0.5時間以上が好ましく、1時間以上が更に好ましい。また、一方で、加熱時間は、24時間以下が好ましく、12時間以下が更に好ましい。加熱時の雰囲気は、大気下、酸化性ガス雰囲気下、窒素或いはアルゴン等の不活性ガス雰囲気下のいずれでもよい。
(固体酸触媒の回収)
 反応に用いたジルコニウム-リン複合固体酸触媒は、回収した後、加熱により再生することができる。すなわち、本発明のビスフェノール類の製造方法は、この再生触媒を用いて行うことができる。また、上述の本発明のビスフェノール類の製造原料のリン酸ジルコニウムとして、この反応に用いたジルコニウム-リン複合固体酸触媒を再生させた触媒を用いることができる。反応に用いたジルコニウム-リン複合固体酸触媒は、加熱前に有機溶媒で洗浄することが好ましい。また、反応に用いたジルコニウム-リン複合固体酸触媒は、加熱前に、適宜、リン酸塩水溶液に浸漬させてもよい。
 長時間反応に用いた触媒は、後述する実施例に示すとおり、触媒重量当たりの酸強度が高くなりやすい。また、長時間反応に用いた触媒は、BET比表面積が小さくなりやすい。そして、長時間反応に用いた触媒は、触媒活性、ビスフェノール類の選択率が低下しやすい。
(固体酸触媒の再生)
 反応に用いたジルコニウム-リン複合固体酸触媒は、加熱することにより、再生することができる。すなわち、反応に用いたジルコニウム-リン複合固体酸触媒の再生方法は、加熱する工程を含む。そして、本発明のビスフェノール類の製造方法は、カルボニル化合物とフェノール化合物物を、この再生された触媒に接触させることにより行うことができる。反応に用いた触媒を加熱することにより、触媒の酸強度を低くすることができる。また、反応に用いた触媒を加熱することにより、触媒のBET比表面積を大きくすることができる。
 ここで、加熱は、上記のリン酸ジルコニウムの加熱と同様に行うことが好ましい。すなわち、反応に用いたジルコニウム-リン複合固体酸触媒を550℃以上、900℃未満で行うことが特に好ましい。
 以下、実施例及び参考例を挙げて本発明を更に具体的に説明する。但し、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
 なお、以下の実施例等において、アセトン転化率(%)、4,4’-ビスフェノールA選択率(%)および4,4’-ビスフェノールC選択率(%)は、ガスクロマトグラフィーによる測定値から、以下の条件でそれぞれ算出した。
<分析装置及び条件>
 ガスクロマトグラフィー:島津製作所株式会社製「GC-2010」
 カラム:Restack社製「Rtx-5(Crossbond 5% diphenyl-95% dimethyl polysiloxane) 30m×0.32mm×0.5μm」
 検出器:FID
 キャリアーガス:He
<算出式>
 アセトン転化率(%)=[(仕込みアセトンのモル数-未反応アセトンのモル数)/(仕込みアセトンのモル数)]×100
 ビスフェノールA収率(%)=[(生成したビスフェノールAのモル数/仕込みアセトンのモル数)]×100
 ビスフェノールA選択率(%)=[ビスフェノールA収率(%)/アセトン転化率(%)]×100
ビスフェノールC選択率(%)=[ビスフェノールC収率(%)/アセトン転化率(%)]×100
(実施例1)
 25重量%に調整した塩化セチルトリメチルアンモニウム(ヘキサデシルトリメチルアンモニウムクロリド)水溶液1.55cmにオキシ塩化ジルコニウム・8水和物0.38gを添加し、2時間室温(20~25℃)で撹拌した。
 その後、0.3モル/リットルのリン酸二水素アンモニウム水溶液11.76cmを加えて、さらに1晩室温(20~25℃)で撹拌した。撹拌後、濾別し、得られた固形物(リン酸ジルコニウム)を水洗し、60℃で一晩乾燥した。そして、得られた固形物を大気下、600℃で5時間焼成することにより、ジルコニウム-リン複合固体酸触媒を得た。
(実施例2)
 実施例1において、焼成温度を700℃に変更した以外は、実施例1と同様にして、ジルコニウム-リン複合固体酸触媒を得た。
(参考例1)
 実施例1において、焼成温度を450℃に変更した以外は、実施例1と同様にして、ジルコニウム-リン複合固体酸触媒を得た。
(参考例2)
 実施例1において、焼成温度を500℃に変更した以外は、実施例1と同様にして、ジルコニウム-リン複合固体酸触媒を得た。
(参考例3)
 実施例1において、焼成温度を800℃に変更した以外は、実施例1と同様にして、ジルコニウム-リン複合固体酸触媒を得た。
<粉末X線回折測定>
 ZrP型の結晶構造の存在を確認するために、実施例1~2及び参考例1~3で得られたジルコニウム-リン複合固体酸触媒の粉末X線回折測定を行った。測定された粉末X線回折図を図1に示す。
 ここでは、2θ=21.3°~21.7°の回折線が確認されたものを「結晶性あり」と評価し、当該回折線が確認できなかったものを「アモルファス」と評価した。表1に結果を示す。
 なお、粉末X線回折測定は、ペレット状に成型した触媒を、Bruker社製固体粉末X線回折装置「D8 ADVANCE」(線源CuKα)を用いて、2θ=10~80°の範囲で分析を行った。
<酸強度の測定>
 実施例1~2及び参考例1~3で得られたジルコニウム-リン複合固体酸触媒の酸強度の測定は、アンモニア昇温脱離法(NH-TPD法)に基づいて行い、得られたTPDスペクトルの積分値に基づいて算出した。表1に、結果を示す。
 なお、アンモニア昇温脱離法(NH-TPD法)測定は、Thermo Scientific社製「TPDRO110 Series Catalyst」を用いて行った。具体的には、触媒を試料管に充填し、500℃で1時間脱気、冷却後、NHガスを導入し100℃で1時間静置した。
 次に、100℃で1時間脱気し、触媒に吸着していないNHガスを除去した。その後、試料管をThermo Scientific社製「TPDRO110 Series Catalyst」に取り付け、Heを50ccm/分で流通しながら150℃~800℃まで10℃/分で昇温し、触媒から脱離したNHの質量を測定した。
<BET比表面積の測定>
 実施例1~2及び参考例1~3で得られたジルコニウム-リン複合固体酸触媒のBET比表面積は、ガス吸着法による比表面積測定器(MICROMERITICS社製「ASAP2420」)を用いて、ジルコニウム-リン複合固体酸触媒のガス吸着量を測定し、下式により比表面積を算出した。
 具体的には、ジルコニウム-リン複合固体酸触媒を試料管に充填し、350℃で減圧乾燥後の重量を測定し、次に、試料管を-196℃に冷却し、試料管に窒素を導入しジルコニウム-リン複合固体酸触媒に窒素を吸着させ、窒素分圧と吸着量の関係(吸着等温線)を測定した。
 ここで、窒素の相対圧をp、窒素の吸着量をv(cm/g STP)とし、BETプロットを行った。そして、縦軸にp/[v(1-p)]、横軸にpを取り、pが0.05~0.20の範囲でプロットしたときの傾きb(単位=g/cm)と切片c(単位=g/cm)から、下式に基づいて比表面積S(単位=m/g)を求めた。表1に結果を示す。
Figure JPOXMLDOC01-appb-M000002
 ここで、MAは窒素分子の断面積(0.162nm)である。
<BET比表面積あたりの酸強度の算出>
 上記のようにして算出した酸強度(μmol/g)をBET比表面積(m/g)で除することにより、BET比表面積あたりの酸強度(μmol/m)を算出した。表1に結果を示す。
Figure JPOXMLDOC01-appb-T000003
(実施例3)
 還流冷却器及び攪拌器を備えた50cm三つ口フラスコに、実施例1で得たジルコニウム-リン複合固体酸触媒1.05gを仕込み、125℃で一晩減圧乾燥した。フェノール8.21g(87.2ミリモル)、アセトン0.56g(9.7ミリモル)及びブチルメルカプタン0.33gを加え、110℃で撹拌しながら縮合反応を行った。6時間反応経過後のアセトンの転化率は91.9%、4,4’-BPAの選択率は95.2%であった。表2に結果を示す。
(実施例4)
 実施例3において、実施例2で得たジルコニウム-リン複合固体酸触媒を用いること以外は、実施例3と同様にフェノールとアセトンの縮合反応を行った。6時間反応経過後のアセトンの転化率は93.4%、4,4’-BPAの選択率は96.5%であった。表2に結果を示す。
(実施例5)
 実施例3において、参考例1で得たジルコニウム-リン複合固体酸触媒を用いること以外は、実施例3と同様にフェノールとアセトンの縮合反応を行った。6時間反応経過後のアセトンの転化率は86.5%であった。8時間反応経過後のアセトンの転化率は94.8%であり、4,4’-BPAの選択率は94.4%であった。表2に結果を示す。
(実施例6)
 実施例3において、参考例2で得たジルコニウム-リン複合固体酸触媒を用いること以外は、実施例3と同様にフェノールとアセトンの縮合反応を行った。6時間反応経過後のアセトンの転化率は97.3%、4,4’-BPAの選択率は93.9%であった。表2に結果を示す。
(実施例7)
 実施例3において、参考例3で得たジルコニウム-リン複合固体酸触媒を用いること以外は、実施例3と同様にフェノールとアセトンの縮合反応を行った。6時間反応経過後のアセトンの転化率は73.4%であった。また、8時間反応経過後のアセトンの転化率は86.7%、4,4’-BPAの選択率は95.9%であった。表2に結果を示す。
(参考例4)
 還流冷却器及び攪拌器を備えた50cm三つ口フラスコに、陽イオン交換樹脂触媒(三菱化学社製 SK104)2.71gを仕込み、90℃で一晩減圧乾燥した。フェノール8.23g(87.2ミリモル)、アセトン0.57g(9.7ミリモル)及びブチルメルカプタン0.03gを仕込み、70℃で撹拌しながら縮合反応を行った。
 4時間反応経過後のアセトンの転化率は98.7%、4,4’-BPAの選択率は92.9%であった。表2に結果を示す。
Figure JPOXMLDOC01-appb-T000004
注;表2において、4,4’-BPAの選択率は、実施例5と7は8時間反応後、参考例4は4時間反応後、それ以外は6時間反応後の値を示した。
 表1及び2に示すとおり、ジルコニウム-リン複合固体酸触媒を用いることにより、高転化率で、高選択率に4,4’-BPAを得ることができることが裏付けられた。また、特に、実施例3及び4において、95.0%以上の高い選択率で4,4’-BPAを得られることが裏付けられた。
 また、本発明の固体酸触媒を製造するときのリン酸ジルコニウムの加熱温度により、本発明の固体酸触媒の酸強度、比表面積および結晶性を制御することができ、フェノールとアセトンの縮合反応のアセトン転化率および4,4’-BPA選択率を制御することができることが裏付けられた。
(実施例8~12)
 実施例1において、塩化セチルトリメチルアンモニウム水溶液の量、リン酸二水素アンモニウム水溶液の濃度および焼成温度を各々表3のように変えた以外は、実施例1と同様にして、ジルコニウム-リン複合固体酸触媒を得た。
Figure JPOXMLDOC01-appb-T000005
注;表3において、塩化セチルトリメチルアンモニウム水溶液の量は、実施例1における塩化セチルトリメチルアンモニウム水溶液の量に対する相対量とした。
 これらの触媒の結晶構造、酸強度およびBET比表面積を実施例1と同様に測定した。この結果、実施例8、11および12で得られた触媒は、アモルファスであった。実施例10で得られた触媒は、結晶性ありであった。
 また、BET比表面積は、各々、実施例8が320.8m/g、実施例9が143m/g、実施例11が259.5m/g、実施例12が117.2m/gであった。
(実施例13~17)
 実施例3において、実施例8~12で得たジルコニウム-リン複合固体酸触媒を用いること以外は、実施例3と同様にフェノールとアセトンの縮合反応を行った。6時間反応経過後のアセトンの転化率および4,4’-BPAの選択率を表4に示す。
Figure JPOXMLDOC01-appb-T000006
注;表4において、4,4’-BPAの選択率は、全て6時間反応後の値を示した。
(実施例18~29)
 実施例1において、塩化セチルトリメチルアンモニウム水溶液の代わりに表5に示す量の有機構造規定剤の水溶液を用いて、焼成温度を変えた以外は、実施例1と同様にして、ジルコニウム-リン複合固体酸触媒を得た。
Figure JPOXMLDOC01-appb-T000007
注;表5において、有機構造既定剤の量は、実施例1における塩化セチルトリメチルアンモニウム水溶液の量に対する相対モル量とした。実施例22は、塩化セチルトリメチルアンモニウムとヘキサデシルアミン(HAD)を併用した。実施例28および29は、有機構造既定剤の水溶液を用いなかった。
 これらの触媒の結晶構造、酸強度およびBET比表面積を実施例1と同様に測定した。この結果、実施例25、26および27で得られた触媒は、アモルファスであった。実施例19、23および24で得られた触媒は、結晶性ありであった。
 また、BET比表面積は、各々、実施例18が98.4m/g、実施例19が91.3m/g、実施例20が99.0m/g、実施例21が96.9m/g、実施例22が180.3m/g、実施例23が97.2m/g、実施例24が58.4m/g、実施例25が101.3m/g、実施例26が174.1m/g、実施例27が301.1m/g、実施例28が4.8m/g、実施例29が3.2m/gであった。
 酸強度は、各々、実施例19が853.7μモル/g、実施例22が1369μモル/g、実施例25が1294.8μモル/g、実施例28が98.8μモル/gであった。
(実施例30~41)
 実施例3において、実施例18~29で得たジルコニウム-リン複合固体酸触媒を用いること以外は、実施例3と同様にフェノールとアセトンの縮合反応を行った。6時間反応経過後のアセトンの転化率および4,4’-BPAの選択率を表6に示す。
Figure JPOXMLDOC01-appb-T000008
 表2、4及び6に示すとおり、ジルコニウム-リン複合固体酸触媒を用いることにより、高転化率で、高選択率に4,4’-BPAを得ることができることが裏付けられた。また、特に、有機構造規定剤として、塩化セチルトリメチルアンモニウムおよび塩化テトラメチルアンモニウムなどの塩化テトラアルキルアンモニウムを用いて製造したジルコニウム-リン複合固体酸触媒がビスフェノール類の製造に好適であることが裏付けられた。
(参考例5)
 オキシ塩化ジルコニウム・8水和物6.33gを水100cmに溶解させ、0.3モル/リットルのリン酸二水素アンモニウム200cmを加えて撹拌した。撹拌後、遠心分離することによりゲルを得た。この得られたゲルに60重量%のリン酸水溶液を166.4cm加え、100℃で24時間還流させた後に、遠心分離することによりゲルを得た。
 この得られたゲルを水洗した後に、60℃で一晩乾燥させ、500℃で焼成することにより、リン酸ジルコニウムを得た。得られたリン酸ジルコニウムの結晶構造を実施例1と同様に測定した。測定された粉末X線回折図を図2に示す。この結果、α型の結晶構造であった。また、酸強度は、506.5μモル/g、BET比表面積は、70.3m/gであった。
(実施例42)
 実施例2で得られたジルコニウム-リン複合固体酸触媒6.0cmを、管型反応器に充填した。フェノール8.21g(87.2ミリモル)、アセトン0.56g(9.7ミリモル)及びブチルメルカプタン0.33gを混合した反応原料を、1時間当たり1.0cm、この管型反応管に110℃で連続的に流通させることにより、フェノールとアセトンとの縮合反応を行った。880時間経過後に、ジルコニウム-リン複合固体酸触媒をこの管型反応器から取り出し、アセトンで洗浄した後、60℃で一晩乾燥させた。
 この乾燥させた触媒について、酸強度およびBET比表面積を、実施例1と同様に測定した。この結果、酸強度は379.4μモル/g、BET比表面積は30.4m/gであった。結果を表7に示す。
(実施例43)
 上記操作で得たジルコニウム-リン複合固体酸触媒を用いること以外は、実施例3と同様にフェノールとアセトンの縮合反応を行った。6時間反応経過後のアセトンの転化率は21.0%、4,4’-BPAの選択率は12.9%であった。表7に結果を示す。
(実施例44)
 実施例42において得られた、乾燥させたジルコニウム-リン複合固体酸触媒を、大気下で、700℃で2時間焼成することにより再生させた。この再生させた触媒について、酸強度およびBET比表面積を実施例1と同様に測定した。この結果、酸強度は222.0μモル/g、BET比表面積は40.2m/gであった。結果を表7に示す。
 表7の結果より、酸強度については、反応に用いたことにより高くなっていたが、焼成により下がっていた。また、BET比表面積については、反応に用いたことにより小さくなっていたが、焼成により大きくなっていた。すなわち、触媒が再生されたことが裏付けられた。
(実施例45)
 実施例3において、実施例44で得た再生触媒を用いること以外は、実施例3と同様にフェノールとアセトンの縮合反応を行った。6時間反応経過後のアセトン転化率は、89.2%、4,4’-BPA選択率は91.5%であった。結果を表7に示す。
 表7の結果より、アセトン転化率および4,4’-BPA選択率が、どちらも実施例4の結果と同等まで向上していることから、焼成により、触媒が再生されたことが裏付けられた。
Figure JPOXMLDOC01-appb-T000009
(実施例46)
 実施例3において、フェノールの代わりにo-クレゾールを用いる以外は、実施例3と同様にo-クレゾールとアセトンの縮合反応を行った。6時間反応経過後のアセトン転化率は、92.7%、4,4’-BPC選択率は98.5%であった。クレゾールとアセトンの縮合反応によるビスフェノールCの製造にも、本発明の触媒が好適であることが裏付けられた。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2015年4月22日付けで出願された日本特許出願(特願2015-87712)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (15)

  1.  カルボニル化合物とフェノール化合物を、固体酸触媒に接触させる工程を含むビスフェノール類の製造方法であって、前記固体酸触媒がジルコニウム-リン複合固体酸触媒であることを特徴とする、
    ビスフェノール類の製造方法。
  2.  前記接触を30℃以上、150℃以下で行なう、
    請求項1に記載のビスフェノール類の製造方法。
  3.  前記接触を含イオウ化合物の存在下で行なう、
    請求項1又は2に記載のビスフェノール類の製造方法。
  4.  前記カルボニル化合物がアセトンである、
    請求項1~3の何れか一項に記載のビスフェノール類の製造方法。
  5.  前記フェノール化合物がフェノールである、
    請求項1~4の何れか1項に記載のビスフェノール類の製造方法。
  6.  前記フェノール化合物がクレゾールである、
    請求項1~4の何れか1項に記載のビスフェノール類の製造方法。
  7.  カルボニル化合物とフェノール化合物との反応によるビスフェノール類の製造に用いる固体酸触媒であって、ジルコニウム-リン複合固体酸であることを特徴とする、固体酸触媒。
  8.  ZrP型の結晶構造を有し、
     アンモニア昇温脱離法(NH-TPD法)による酸強度が80μmol/g以上、1200μmol/g以下であることを特徴とする、
    請求項7に記載の固体酸触媒。
  9.  BET比表面積が30m/g以上、200m/g以下である、
    請求項7又は8に記載の固体酸触媒。
  10.  カルボニル化合物とフェノール化合物とを、固体酸触媒に接触させる工程を含むビスフェノール類の製造方法であって、前記固体酸触媒が請求項7~9の何れか1項に記載の固体酸触媒であることを特徴とする、
    ビスフェノール類の製造方法。
  11.  請求項7~9の何れか1項に記載の固体酸触媒の製造方法であって、
    リン酸ジルコニウムを550℃以上、900℃以下で加熱する工程を含む、
    固体酸触媒の製造方法。
  12.  前記加熱する工程を、有機構造規定剤の存在下で行なう、
    請求項11に記載の固体酸触媒の製造方法。
  13.  前記リン酸ジルコニウムが、ジルコニウム化合物とリン酸化合物を接触させて得られるものである、
    請求項11又は12に記載の固体酸触媒の製造方法。
  14.  カルボニル化合物とフェノール化合物との反応によるビスフェノール類の製造に用いる固体酸触媒の再生方法であって、
    前記固体酸触媒がジルコニウム-リン複合固体酸触媒であり、
    前記製造に用いた固体酸触媒を550℃以上、900℃未満で加熱する工程を含むことを特徴とする、
    ジルコニウム-リン複合固体酸触媒の再生方法。
  15.  カルボニル化合物とフェノール化合物を、固体酸触媒に接触させることを含むビスフェノール類の製造方法であって、前記固体酸触媒が請求項14に記載のジルコニウム-リン複合固体酸触媒の再生方法により再生された触媒である、
    ビスフェノール類の製造方法。
PCT/JP2016/062684 2015-04-22 2016-04-21 ビスフェノール類の製造方法、ジルコニウム-リン複合固体酸触媒とその製造方法及びその再生方法 WO2016171231A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017514192A JP6726175B2 (ja) 2015-04-22 2016-04-21 ビスフェノール類の製造方法、ジルコニウム−リン複合固体酸触媒とその製造方法及びその再生方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-087712 2015-04-22
JP2015087712 2015-04-22

Publications (1)

Publication Number Publication Date
WO2016171231A1 true WO2016171231A1 (ja) 2016-10-27

Family

ID=57143165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062684 WO2016171231A1 (ja) 2015-04-22 2016-04-21 ビスフェノール類の製造方法、ジルコニウム-リン複合固体酸触媒とその製造方法及びその再生方法

Country Status (2)

Country Link
JP (1) JP6726175B2 (ja)
WO (1) WO2016171231A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155432A1 (ja) * 2017-02-23 2018-08-30 株式会社Nbcメッシュテック メソポーラス触媒体及びそれを用いたガス処理装置
JP2018145178A (ja) * 2017-03-06 2018-09-20 三菱ケミカル株式会社 2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパンの製造方法およびポリカーボネート樹脂の製造方法
JP2020083803A (ja) * 2018-11-21 2020-06-04 三菱ケミカル株式会社 ビスフェノール化合物の製造方法及び固体酸化物触媒
CN114436780A (zh) * 2020-11-02 2022-05-06 中国石油化工股份有限公司 一种双酚z的制备方法及双酚z
CN114835559A (zh) * 2022-07-04 2022-08-02 山东亿科化学有限责任公司 一种合成双酚f的催化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239313A (ja) * 1984-05-11 1985-11-28 Daiichi Kigenso Kagaku Kogyo Kk 結晶質リン酸ジルコニウムの製造方法
JPH07101711A (ja) * 1992-07-22 1995-04-18 Daiichi Kigenso Kagaku Kogyo Kk 結晶質リン酸ジルコニウム
JP2001503377A (ja) * 1995-12-19 2001-03-13 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ ビスフェノールの改良された製造方法
JP2008214248A (ja) * 2007-03-02 2008-09-18 Api Corporation ビスフェノール化合物の製造方法
WO2010084929A1 (ja) * 2009-01-22 2010-07-29 三菱化学株式会社 ビスフェノール化合物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239313A (ja) * 1984-05-11 1985-11-28 Daiichi Kigenso Kagaku Kogyo Kk 結晶質リン酸ジルコニウムの製造方法
JPH07101711A (ja) * 1992-07-22 1995-04-18 Daiichi Kigenso Kagaku Kogyo Kk 結晶質リン酸ジルコニウム
JP2001503377A (ja) * 1995-12-19 2001-03-13 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ ビスフェノールの改良された製造方法
JP2008214248A (ja) * 2007-03-02 2008-09-18 Api Corporation ビスフェノール化合物の製造方法
WO2010084929A1 (ja) * 2009-01-22 2010-07-29 三菱化学株式会社 ビスフェノール化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BISWAL,N. ET AL.: "Cs salt of tungstophosphoric acid-promoted zirconium titanium phosphate solid acid catalyst: An active catalyst for the synthesis of bisphenols", JOURNAL OF CHEMICAL SCIENCES(BANGALORE, INDIA, vol. 126, no. 2, 2014, pages 455 - 465, XP035317018 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155432A1 (ja) * 2017-02-23 2018-08-30 株式会社Nbcメッシュテック メソポーラス触媒体及びそれを用いたガス処理装置
JPWO2018155432A1 (ja) * 2017-02-23 2019-12-12 株式会社Nbcメッシュテック メソポーラス触媒体及びそれを用いたガス処理装置
JP7082376B2 (ja) 2017-02-23 2022-06-08 株式会社Nbcメッシュテック メソポーラス触媒体及びそれを用いたガス処理装置
JP2018145178A (ja) * 2017-03-06 2018-09-20 三菱ケミカル株式会社 2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパンの製造方法およびポリカーボネート樹脂の製造方法
JP7021561B2 (ja) 2017-03-06 2022-02-17 三菱ケミカル株式会社 2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンの製造方法およびポリカーボネート樹脂の製造方法
JP2020083803A (ja) * 2018-11-21 2020-06-04 三菱ケミカル株式会社 ビスフェノール化合物の製造方法及び固体酸化物触媒
JP7233894B2 (ja) 2018-11-21 2023-03-07 三菱ケミカル株式会社 ビスフェノール化合物の製造方法及び固体酸化物触媒
CN114436780A (zh) * 2020-11-02 2022-05-06 中国石油化工股份有限公司 一种双酚z的制备方法及双酚z
CN114835559A (zh) * 2022-07-04 2022-08-02 山东亿科化学有限责任公司 一种合成双酚f的催化方法
CN114835559B (zh) * 2022-07-04 2022-09-09 山东亿科化学有限责任公司 一种合成双酚f的催化方法

Also Published As

Publication number Publication date
JP6726175B2 (ja) 2020-07-22
JPWO2016171231A1 (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
WO2016171231A1 (ja) ビスフェノール類の製造方法、ジルコニウム-リン複合固体酸触媒とその製造方法及びその再生方法
JPH0529372B2 (ja)
JPH01135736A (ja) ビスフエノール合成の副生物を異性化する方法
JPS5822088B2 (ja) フェノ−ル化合物の選択的オルトアルキル化法
KR20010098470A (ko) 헤테로폴리산 촉매의 재생 방법 및 메트아크릴산의 제조방법
JPH11179210A (ja) イオン交換樹脂及びこれを触媒とするビスフェノール類の製造方法
JPH0377839A (ja) オルトアルキル化方法
KR20040106318A (ko) 페놀의 제조 및 정제법: 하이드로탈사이트에 의한하이드록시아세톤의 제거
JP2009022945A (ja) 触媒製造用原料、その製造方法、触媒の製造方法及びメタクリル酸の製造方法
JP7233894B2 (ja) ビスフェノール化合物の製造方法及び固体酸化物触媒
JP2005519132A (ja) フェノールの製造と精製
JP5126771B2 (ja) 変性イオン交換樹脂およびビスフェノール類の製造方法
KR20160027102A (ko) 방향족 알코올의 에스테르 교환반응을 위한 불균일계 촉매; 및 그의 제조 방법 및 용도
JP2008528620A (ja) 1,1,1−トリス(4−ヒドロキシフェニル)アルカンの製造法
US4429171A (en) Method for manufacture of orthomethylated phenol compounds
JP2010173949A (ja) ビスフェノール類の製造方法
JP2023140111A (ja) 固体酸化物触媒、その製造方法及びビスフェノール化合物の製造方法
CN1743299B (zh) 环烷醇和/或环烷酮的生产方法
JP6708799B2 (ja) 吸着剤およびその製造方法
JPWO2017187873A1 (ja) 芳香族炭化水素含有化合物の製造方法
US4014952A (en) Process for the preparation of isoprene
JPH0236139A (ja) フェノール及びフェノールエーテルのヒドロキシル化法
JP3260591B2 (ja) 固体酸塩基触媒およびその使用方法
Ghanbari Resketi et al. Immobilization of [MoO2 (acac) 2] on surface of hydroxyapatite nanoparticles: A heterogeneous and reusable catalyst for olefin epoxidation reactions
CN114950547B (zh) 酚钠盐改性水滑石的制备方法及其在制备酚醚类香料中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514192

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783252

Country of ref document: EP

Kind code of ref document: A1