WO2018155432A1 - メソポーラス触媒体及びそれを用いたガス処理装置 - Google Patents

メソポーラス触媒体及びそれを用いたガス処理装置 Download PDF

Info

Publication number
WO2018155432A1
WO2018155432A1 PCT/JP2018/005984 JP2018005984W WO2018155432A1 WO 2018155432 A1 WO2018155432 A1 WO 2018155432A1 JP 2018005984 W JP2018005984 W JP 2018005984W WO 2018155432 A1 WO2018155432 A1 WO 2018155432A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst body
gas
mesoporous
film
support
Prior art date
Application number
PCT/JP2018/005984
Other languages
English (en)
French (fr)
Inventor
貴紀 松本
中山 鶴雄
洋平 直原
真 雨宮
真吾 秋田
悠輔 山内
Original Assignee
株式会社Nbcメッシュテック
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nbcメッシュテック, 国立研究開発法人物質・材料研究機構 filed Critical 株式会社Nbcメッシュテック
Priority to JP2019501337A priority Critical patent/JP7082376B2/ja
Publication of WO2018155432A1 publication Critical patent/WO2018155432A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • the present invention relates to a catalyst body capable of decomposing organic components such as ethylene, carbon monoxide, ammonia and the like in gas.
  • exhaust gas generated from internal combustion engines such as automobiles and factories contains trace amounts of harmful components such as carbon monoxide, they are released into the atmosphere after they are removed using removal means.
  • a trace amount of malodorous substances may be produced and ammonia odor may be generated, and various removal means are applied.
  • ethylene gas having a ripening action is also released from agricultural crops during storage, and the ripening of the plant is progressing. Therefore, keeping the temperature and humidity constant and reducing the ethylene gas concentration are said to be effective for maintaining the freshness for a long time.
  • adsorption to an adsorbent such as activated carbon, radicals by a plasma generator, and decomposition and removal methods by active species such as ozone are widely used.
  • an adsorbent such as activated carbon, radicals by a plasma generator, and decomposition and removal methods by active species such as ozone are widely used.
  • active species such as plasma
  • the treatment method using active species such as plasma requires a generator of a certain size, is not a method that requires electric power to operate and can be used simply, and in the storage of agricultural products, it seems that decolorization etc. Cannot be used due to concerns over the above changes.
  • a method of oxidative decomposition of components contained in gas using a catalyst is also widely used.
  • the oxidation catalyst body in order to widen the contact area, a structure in which an active substance (catalyst particles) is supported on a carrier that is inorganic particles is used (Patent Document 1), or a membrane in which the active substance is made porous is used.
  • a method for treating a volatile organic compound is disclosed (Patent Document 4).
  • the catalyst body in which the oxidation catalyst particles are supported on the above-described cylindrical mesoporous carrier has a problem that the catalytic activity decreases with use.
  • the cause is not clearly understood, but the components to be treated by blocking the contact between the catalyst particles and the gas to be treated by the adsorption of moisture in the atmosphere and water generated by oxidation reaction into the pores. It is conceivable that the decomposition reaction does not proceed, or the pores are sealed with adsorbed water, and the flow of the gas to be treated into the pores itself is hindered.
  • An object of this invention is to provide the catalyst body which can maintain activity for a long period of time, and the gas processing apparatus using the same.
  • the gist of the present invention is as follows. [1] a support having a plurality of mesopores; Oxidation catalyst particles comprising at least one of a noble metal, an oxide thereof, and an alloy of the noble metal and a transition metal supported in mesopores of the support, A mesoporous catalyst body, wherein one mesopore communicates with at least one other mesopore in the support.
  • Support having mesopores obtained by drying and baking a solution containing a hydrolyzate of alkoxysilane or metal alkoxide and polyoxyethylene alkyl ether, polyalkylene oxide triblock copolymer or cationic surfactant And a mesopore of the support by subjecting the body to a solution or colloidal solution of a compound corresponding to at least one of the noble metal, its oxide, and an alloy of the noble metal and the transition metal, followed by firing and / or reduction treatment.
  • a mesoporous catalyst obtained by forming oxidation catalyst particles containing at least one of the noble metal, its oxide, and an alloy of the noble metal and transition metal.
  • the mesoporous catalyst body according to any one of [1] to [8], wherein the mesoporous catalyst body is a gas oxidation reaction catalyst.
  • At least a first electrode, a second electrode, and a dielectric disposed between the first electrode and the second electrode, the first electrode and the second electrode A plasma generating section for generating plasma by applying a voltage between and generating a discharge;
  • a gas processing apparatus comprising: the mesoporous catalyst body according to any one of [1] to [10] disposed in the flow path.
  • a support having mesopores obtained by drying and calcining a solution containing an alkoxysilane or metal alkoxide hydrolyzate and a polyoxyethylene alkyl ether, a polyalkylene oxide triblock copolymer or a cationic surfactant Is contacted with a solution or colloidal solution of a compound corresponding to at least one of the noble metal, its oxide, and an alloy of the noble metal and the transition metal, and is subjected to firing and / or reduction treatment in the mesopores of the support. And forming an oxidation catalyst particle containing at least one of the noble metal, its oxide, and an alloy of the noble metal and the transition metal.
  • the present invention it is possible to provide a catalyst body capable of maintaining the activity for a longer period of time and a gas treatment apparatus using the catalyst body.
  • the mesoporous catalyst body of the present embodiment (hereinafter also simply referred to as catalyst body) is a member having air permeability, and has a plurality of mesopore diameter pores (mesopores) that are open on the surface of the support and allow gas to pass therethrough.
  • an oxidation catalyst particle (hereinafter referred to as an oxidation catalyst particle) comprising at least one of a noble metal, a noble metal oxide and an alloy of a noble metal and a transition metal supported in mesopores of the support. In some cases).
  • one mesopore included in the support is in communication with at least one other mesopore.
  • the catalyst body of this embodiment can decompose components to be treated such as organic gas into carbon dioxide, water, etc. by an oxidation reaction and discharge them to the atmosphere.
  • Gases that can be treated in the catalyst body of the present embodiment are not particularly limited, but carbon monoxide in tobacco sidestream smoke, compounds emitted from plants such as agricultural products and flower buds, automobile interior materials, residential building materials, Examples include materials that volatilize from materials such as interior materials and casings and members of home appliances, and substances that volatilize from organic solvents such as paints, adhesives, and cleaning agents.
  • hydrocarbons such as methane, ethane, propane, butane, ethylene, propylene, isoprene, benzene, xylene, toluene, ethylbenzene, styrene, ⁇ -farnesene, ⁇ -farnesene, methanol, ethanol, propane-1- All, butan-1-ol, pentan-1-ol, hexane-1-ol, heptane-1-ol, octan-1-ol, trans-2-hexenol, cis-2-hexenol, trans-3-hexenol, Alcohols such as cis-3-hexenol, linalool, benzyl alcohol, formaldehyde, acetaldehyde, propionaldehyde, butanal, pentanal, nonanal, benzaldehyde, hexanal, trans-2-hexenal, c
  • thiols such as methanethiol, ethanethiol, and propanethiol
  • sulfur organic compounds such as methyl sulfide, methyl disulfide, and dimethyl sulfoxide.
  • a support is formed from SiO 2
  • the oxidation catalyst particles are made of platinum, platinum oxide, an alloy of platinum and a transition metal, palladium, palladium oxide, and an alloy of palladium and a transition metal.
  • platinum oxide is even more preferable.
  • a support is formed from a metal oxide, and the oxidation catalyst particles include gold and / or an alloy of gold and a transition metal.
  • the mesopore is a pore having a diameter of 2 nm or more and 50 ⁇ m or less obtained by the BET method, and an opening on the surface of the catalyst body is a pore communicating with another opening.
  • the shape of the mesopores and the positional relationship between the openings are not particularly limited.
  • one mesopore is branched inside the support and communicates with another mesopore (hereinafter also referred to as a communication structure). Whether or not the support has a communication structure can be confirmed by a three-dimensional transmission electron microscope (TEM).
  • TEM three-dimensional transmission electron microscope
  • the catalyst body of the present embodiment can be in various forms such as powder, particle body, and film. Among these, it is preferable to have a film-like form, particularly a film-like form having a film thickness of 1000 nm or less, since the catalyst efficiency is hardly lowered. Further, powder is preferable because it can be used in various shapes. In the case of powder, the size is not particularly limited, and can be appropriately set by those skilled in the art.
  • the gas to be treated diffuses into the catalyst body and comes into contact with the oxidation catalyst particles in the pores, and the components to be treated such as organic gas are oxidatively decomposed. Is done.
  • the conventional powdery mesoporous catalyst body has a cylinder structure in which the mesopores do not have a communication structure, and the opening on the upper surface of the support and the opening on the lower surface of one mesopore communicate in a straight line. It was.
  • this mesopore is lost if there is even one blockage portion due to adsorbed water in the mesopore, but there is a part where the distance to the airflow is relatively long inside the mesopore, especially in the case of powder. In this part, the desorption of moisture adsorbed inside the powder is difficult to occur. Therefore, in the conventional mesoporous catalyst body, it is presumed that the mesopores are easily blocked by the adsorbed water, and the catalytic activity is lowered.
  • the mesopores are connected to each other inside the support, so that even if moisture adheres to the inside of the support, the air permeability is hardly impaired, and the oxidation catalyst particles carried in the support mesopores and the gas to be treated It is difficult to prevent contact with As a result, the catalytic activity can be maintained for a longer period regardless of the shape of the catalyst body, such as powder, granules, and films.
  • the catalyst body of this embodiment as long as it has a communication structure and can achieve the object of the present invention, a part of the mesopores that does not communicate with other mesopores may be included.
  • the diameter of the mesopores is not particularly limited as long as the above definition is satisfied, but the average diameter by the BET method is 2 nm or more and 10 nm or less, and the particle diameter of the supported oxidation catalyst particles is also This is preferable because it is within the above range and a highly active catalyst body can be obtained.
  • the diameter of the pores of the support according to the present embodiment is a value calculated using an automatic specific surface area / pore distribution measuring device based on the BET method based on JIS-Z-8831.
  • the oxidation catalyst particles are not particularly limited as long as they are particles containing at least one of a noble metal having a catalytic function for promoting an oxidation reaction, a noble metal oxide, and an alloy of a noble metal and a transition metal.
  • noble metals refer to gold, silver and platinum group ruthenium, rhodium, palladium, osmium, iridium and platinum.
  • the noble metal oxide is an oxide of the above-mentioned noble metal or a hydrate thereof, specifically, Au 2 O 3 , Ag 2 O, AgO, Ag 2 O ⁇ Ag 2 O 3 , RuO 2 , RuO 4 , Rh 2 O 3 , PdO, OsO 2 , OsO 4 , IrO 2 , Ir 2 O 3 .nH 2 O, PtO 2 , PtO 2 .H 2 O, platinum black and the like can be mentioned.
  • the transition metal of the alloy is not particularly limited as long as it can form an alloy with a noble metal, but Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, W etc. are mentioned.
  • oxidation catalyst particles may be configured to include In this case, one or two selected from the group consisting of Au, Pt, Pd, PdO, Au 2 O 3 , PtO 2 , PtO 2 .H 2 O, and platinum black are used as the constituent components of suitable oxidation catalyst particles.
  • species or more are mentioned.
  • the average particle size of the oxidation catalyst particles is 10 nm or less (more preferably 1 nm or more and 10 nm or less, even more preferably 1 nm or more and less than 10 nm, even more preferably 1 nm or more and 6 nm or less), the specific surface area of the oxidation catalyst particles increases. The catalytic activity is greatly improved, and the decomposition efficiency of the component to be processed in the gas to be processed is further increased, which is preferable.
  • the average particle diameter of the oxidation catalyst particles can be obtained as an average value obtained by calculating the particle size in an image photograph of a transmission electron microscope (TEM).
  • the oxidation catalyst particles are preferably supported on the support containing the oxidation catalyst particles in an amount of 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and 0.5 to 10% by mass. % Is even more preferred.
  • the oxidation catalyst particles are easily aggregated, and the catalytic activity is reduced as compared with the case of being within the range. If it is less than 0.1% by mass, it is not preferable because sufficient catalytic activity cannot be obtained as compared with the case of being in the range.
  • the catalyst body of the present embodiment may include promoter particles and various metal elements, and is not particularly limited.
  • the catalyst may be a mixture of cocatalyst particles and oxidation catalyst particles, or a composite catalyst composed of composite particles obtained by combining various metal elements with oxidation catalyst particles.
  • the oxidation catalyst particles may be within the above-mentioned size range.
  • the size of the composite particles may be within the above-mentioned size range.
  • metal particles (nanoparticles) other than the catalyst particles used in the promoter or composite catalyst include base metals and oxides thereof. Two or more kinds of these noble metal and oxide thereof, base metal and oxide thereof may be mixed and supported on the inner surface of the support pore.
  • the support having mesopores according to the present embodiment may be produced including a step of forming mesopores using a compound as a template and removing the compound by heating, the heating temperature or higher is considered. It is preferable to be made of a material that does not deteriorate.
  • the support according to the present embodiment can be formed from a metal oxide.
  • the support composed of the metal oxide can act on the catalyst particles and enhance the catalytic activity of the catalyst body.
  • the metal oxide is a metal oxide, and the metal is a group 1 (excluding H), a group 2 to 12, a group 13 (excluding B), or a group 14 (excluding C and Si) in the periodic table. , Elements belonging to Group 15 (excluding N, P and As) and Group 16 (excluding O, S, Se, and Te), and lanthanoids and actinoids.
  • metal oxide examples include ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , amorphous Al 2 O 3 , TiO 2 , ZrO 2 , SnO.
  • metal oxides e.g., Al 2 O 3 -TiO 2, Al 2 O 3 -ZrO 2, Al 2 O 3 -CaO, Al 2 O 3 -CeO 2, Al 2 O 3 -Fe 2 O 3, TiO 2 -CeO 2, TiO2-ZrO 2, TiO 2 -WO 3, ZrO 2 -WO 3, SnO 2 -WO 3, CeO 2 -ZrO 2, Al 2 O 3 -TiO 2 -ZrO 2, cerium-zirconium It may be a composite oxide containing two or more metals such as bismuth composite oxide.
  • cerium-zirconium-bismuth composite oxide is a solid solution represented by the general formula Ce 1-X-Y Zr X Bi Y O 2- ⁇ , X, Y, the value is 0.1 ⁇ X ⁇ each [delta] 0 .3, 0.1 ⁇ Y ⁇ 0.3, 0.05 ⁇ ⁇ ⁇ 0.15.
  • the support may be formed of SiO 2.
  • the material of these supports may be selected according to the type of gas to be treated, the equipment to which the catalyst is applied, and various environmental conditions. SiO 2 , TiO 2 , Fe 2 O 3 , ZrO 2 , and CeO 2 are more desirable because they can support the catalyst particles more firmly and can adhere more firmly to the substrate when the substrate is used.
  • the shape of the support body which the catalyst body of this embodiment has is not specifically limited, For example, it can be set as a powder, a granular form, a film
  • the shape of the support is preferably a film.
  • the distance from the mesopores where the oxidation catalyst particles are present to the gas flow of the gas to be treated is shorter than that of other shapes such as powder. Therefore, when moisture in the gas is adsorbed in the mesopores of the membrane-like catalyst body, a concentration gradient to the gas flow to be treated occurs, and the re-diffusion of the adsorbed water into the air flow proceeds.
  • the film-like shape means a shape such as a layer that separates a space or covers at least a part of an object.
  • the catalyst body of the present embodiment can be formed in a film shape on a substrate, for example. At this time, whether or not the base material has air permeability is not particularly limited.
  • irregularities may be formed on the surface of the catalyst body by embossing or the like. When irregularities are formed on the surface of the catalyst body, the contact area with the flowing gas increases, and the oxidation reaction of the gas to be treated can be further promoted.
  • the catalyst body of this embodiment is a base material that is formed into a film on its surface, such as a filter or mesh, the gas to be treated is circulated in the thickness direction of the catalyst body of this embodiment. It doesn't matter.
  • the catalyst body of the present embodiment may be formed on both surfaces of the substrate, and in which form the catalyst body of the present embodiment is incorporated. What is necessary is just to decide according to the design etc.
  • the film thickness is desirably 50 nm or more and 1000 nm or less. If it is less than 50 nm, the absolute amount of the catalyst is reduced, so that it is difficult to decompose the organic gas in the gas to be treated as compared with the case where it is within the range. If it is larger than 1000 nm, the moisture adsorbed in the mesopores existing at a position away from the gas to be treated is difficult to be re-released, the amount of moisture adsorbed in the pores increases, and the action of the oxidation catalyst particles is inhibited. Compared with the case where it exists in the range, the catalyst efficiency of the said catalyst body falls.
  • the film thickness when the catalyst body of the present embodiment has a film shape can be measured by observing the cross section of the film with a TEM and measuring the size of the cross-sectional image.
  • the catalyst body of the present embodiment can be formed on a substrate.
  • the base material may be a non-breathable structure such as a plate shape or a breathable structure.
  • the air-permeable structure include a sheet-like structure in which a large number of through-holes are formed by punching, a fiber-like, cloth-like, or mesh-like fiber made of a woven fabric, a net, a nonwoven fabric, or the like.
  • a structure (filter shape) can be mentioned.
  • various shapes and sizes suitable for the purpose of use can be used as appropriate.
  • the base material on which the film-like catalyst body is formed may be heated when the support is formed in a film form, it is desirable to use a material having heat resistance that can withstand the heating temperature.
  • a material having heat resistance that can withstand the heating temperature.
  • metal materials, ceramics, glass, carbon fibers, silicon carbide fibers, heat resistant organic polymer materials, and the like are preferable, and metals, metal oxides, and glass are more preferable.
  • Metal materials used for the substrate include high melting point metals such as tungsten, molybdenum, tantalum, niobium, TZM (Titanium Zirconium Molybdenum), W-Re (Tungsten-rhenium), noble metals such as silver and ruthenium, and alloys thereof.
  • high melting point metals such as tungsten, molybdenum, tantalum, niobium, TZM (Titanium Zirconium Molybdenum), W-Re (Tungsten-rhenium), noble metals such as silver and ruthenium, and alloys thereof.
  • oxides, special metals such as titanium, nickel, zirconium, chromium, inconel, hastelloy, general metals such as aluminum, copper, stainless steel, zinc, magnesium, iron and alloys containing these general metals or oxides of these general metals Can be used.
  • a natural oxide thin film is usually formed on the metal surface and the alloy surface thereof, and when the support is formed from a silane compound, the base oxide and the support are strengthened using the natural oxide thin film. Can be fixed. In this case, it is preferable to remove oil and dirt adhering to the surface of the oxide thin film in advance by an ordinary known method in order to fix stably and firmly. Also, instead of using a natural oxide film, an oxide thin film is chemically formed on a metal surface or alloy surface by a known method, or an oxide thin film is formed by a known electrochemical method such as anodic oxidation. Also good.
  • examples of ceramics used for the base material include ceramics such as earthenware, ceramics, stoneware and porcelain, and ceramics such as glass, cement, gypsum, enamel and fine ceramics.
  • the composition of the ceramics to be composed can include elemental, oxide-based, hydroxide-based, carbide-based, carbonate-based, nitride-based, halide-based, phosphate-based, etc. It may be a composite.
  • ceramics used for the base material barium titanate, lead zirconate titanate, ferrite, alumina, forsterite, zirconia, zircon, mullite, steatite, cordierite, aluminum nitride, silicon nitride, carbonized Examples thereof include silicon, new carbon, and new glass, and ceramics such as high-strength ceramics, functional ceramics, superconducting ceramics, nonlinear optical ceramics, antibacterial ceramics, biodegradable ceramics, and bioceramics.
  • the glass used for the substrate is soda lime glass, potash glass, crystal glass, quartz glass, chalcogen glass, uranium glass, water glass, polarizing glass, tempered glass, laminated glass, heat resistant glass / borosilicate glass, bulletproof glass. , Glass fiber, dichroic glass, gold stone (brown gold stone / sand gold stone / purple gold stone), glass ceramics, low melting point glass, metallic glass, and glass such as saphiret.
  • base materials include ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, medium heat Portland cement, low heat Portland cement, sulfate-resistant Portland cement, and Portland cement with blast furnace slag, fly ash and silica. It is also possible to use cements such as blast furnace cement, silica cement, and fly ash cement, which are mixed cements to which a quality mixed material is added.
  • titania, zirconia, alumina, ceria (cerium oxide), zeolite, apatite, silica, activated carbon, diatomaceous earth, and the like can be used as the base material.
  • metal oxides such as chromium, manganese, iron, cobalt, nickel, copper, and tin can be used for the substrate.
  • polyimide polyether ether ketone, polyphenylene sulfide, polyaramide, polybenzothiazole, polybenzoxazole, polybenzimidazole, polyquinoline, polyquinoxaline, fluororesin, etc.
  • thermosetting such as phenol resin and epoxy resin
  • a heat-resistant organic polymer material known to those skilled in the art, such as an adhesive resin.
  • the catalyst body of the present embodiment includes, for example, a support having mesopores obtained by drying and calcining a solution containing an alkoxysilane or metal alkoxide hydrolyzate and a surfactant, a noble metal, its oxide, Alternatively, a solution of a compound corresponding to at least one of an alloy of a noble metal and a transition metal or a colloidal solution of the noble metal compound is brought into contact, and subjected to firing and / or reduction treatment, and the noble metal and its oxide in the mesopores of the support Alternatively, it can be obtained by forming oxidation catalyst particles containing at least one of an alloy of a noble metal and a transition metal.
  • a support is formed.
  • a precursor of a support containing a substance that acts as a template for mesopores is formed inside, and then a substance that acts as a template is decomposed and removed to form mesopores. Can be obtained.
  • An example of the method will be described.
  • a solution containing a surfactant as a template and a hydrolyzate of alkoxysilane or metal alkoxide hereinafter referred to as a precursor solution is prepared.
  • an alkoxysilane or metal alkoxide is added to a solution in which a surfactant is dissolved, and the pH is adjusted to hydrolyze the alkoxysilane or metal alkoxide.
  • a hydrolyzate having a silanol group or a metal hydroxide is produced.
  • the surfactant forms micelles in the solution and becomes a template for mesopores.
  • the precursor solution is heated to volatilize the solvent, and the silanol group or metal hydroxide is condensed and cured to form a precursor of the support. Thereafter, the substrate is further baked to a high temperature of 300 ° C.
  • the film-like support can be obtained, for example, by heating the precursor solution after being applied to the substrate to volatilize the solvent and perform condensation curing. Further, if the precursor solution is made into particles with a spray dryer or the like and then solvent evaporation and condensation curing are performed, a powdery support can be obtained.
  • the powder support may be obtained by pulverizing after obtaining a solid support in the above-described step.
  • the precursor solution can include three components: (1) a hydrolyzate of alkoxysilane or metal alkoxide, (2) a solvent (solvent), and (3) a surfactant.
  • a hydrolyzate of alkoxysilane or metal alkoxide When hydrolyzing an alkoxysilane or metal alkoxide in a solution to obtain a hydrolyzate, water is required, so the solvent should be water or a mixed solvent of water and alcohols such as ethanol or methanol. Is preferred.
  • a catalyst for hydrolysis treatment of alkoxysilane or metal alkoxide may be further included in the solution, and it is preferable to use an acid such as nitric acid or hydrochloric acid as the catalyst.
  • the ratio of the surfactant, the alkoxysilane, or the metal alkoxide is not particularly limited, can be set as appropriate, and is not particularly limited. By changing the molar ratio of surfactant / alkoxysilane or metal alkoxide, the pore volume ratio and the porosity of the obtained support can be controlled.
  • the pH is Precipitation of the precursor.
  • the precipitation can be achieved by adjusting only the molar ratio of water to alkoxysilane or metal alkoxide, adjusting the molar ratio with pH adjustment, or adding alcohol, or both molar ratio adjustment and alcohol addition. It can also be avoided.
  • a nonionic surfactant or a cationic surfactant can be used.
  • the nonionic surfactant for example, polyhydric alcohol fatty acid ester, polyoxyalkylene fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyalkylene oxide block copolymer and the like can be used. Of these, it is desirable to use polyoxyethylene ether or polyalkylene oxide block copolymer as the nonionic surfactant because a catalyst in which the catalytic activity is less likely to decrease is obtained. For the same reason, it is also preferable to use a cationic surfactant.
  • polyoxyethylene alkyl ether examples include C 12 H 25 (OCH 2 CH 2 ) n OH (n is 2 to 100), C 16 H 33 (OCH 2 CH 2 ) n OH (n is 2 to 100). , C 18 H 37 (OCH 2 CH 2 ) n OH (n is 2 to 100), etc., can be used alone or in a mixture.
  • Commercially available polyoxyethylene ethers such as Brij (registered trademark) 56, Brij76, Brij78 can also be used.
  • polyalkylene oxide block copolymer examples include polyalkylene oxide triblock copolymers of ethylene oxide and propylene oxide, and more specifically, pluronic surfactants such as Pluronic (registered trademark) L121 and P123.
  • cationic surfactant examples include distearyldimethylammonium chloride, benzalkonium chloride, cetylpyridinium chloride, hexadecyltrimethylammonium bromide, didecyldimethylammonium chloride, and decalinium chloride.
  • the surfactant may be selected according to the target mesopore diameter.
  • a hydrophobic compound such as 1,3,5-trimethylbenzene, 1,3,5-triethylbenzene, 1,3,5-triisopropylbenzene, n-heptane may be added to the precursor solution. Since the hydrophobic compound can increase the micelle diameter in the precursor solution, it can be used to adjust the mesopore diameter.
  • alkoxysilane examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane. Hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, and the like.
  • the metal alkoxide examples include tetrapropoxyaluminum, tetrapropoxytin, tetrapropoxytitanium, and tetrapropoxyzirconium.
  • the precursor solution is applied onto the substrate to form a film-like support.
  • the method of applying the precursor solution to the substrate is not limited as long as the precursor solution can be uniformly and thinly applied, but there are a spin coating method and a Dip & blow method in which an unnecessary solution is blown off after the substrate is immersed in the precursor solution. Applicable and may be selected according to the shape of the substrate to be applied. Also, the heating conditions for removing the template molecules after forming the precursor are not particularly limited, and the precursor may be heated at 300 to 600 ° C., for example.
  • the oxidation catalyst particles are supported on the mesopores of the support to obtain the catalyst body of this embodiment.
  • a solution or colloidal solution of a compound corresponding to at least one of a noble metal, its oxide, or an alloy of a noble metal and a transition metal contained in an oxidation catalyst particle to be supported on a support (hereinafter simply referred to as a noble metal compound solution).
  • the noble metal compound solution is introduced into the mesopores of the support.
  • a solution obtained by further dissolving a transition metal salt in addition to the compound corresponding to the noble metal may be used as the noble metal compound solution.
  • the catalyst body of this embodiment can be obtained by performing oxidation and / or reduction treatment to form oxidation catalyst particles in the mesopores.
  • firing and / or reduction treatment can be performed.
  • the alkali solution is used to adjust the noble metal compound solution to 20 to 90 ° C., preferably 50 to 70 ° C. while stirring and stirring to a pH of 3 to 10, preferably 5 to 8.
  • the support is immersed in the noble metal compound solution, followed by vacuum degassing to allow the noble metal compound solution to penetrate into the pores.
  • oxidation catalyst particles containing noble metal and the like in the pores can be obtained by heating and firing at 200 to 600 ° C.
  • the noble metal compound solution after impregnating the noble metal compound solution into the pores, it is immersed in a sodium borohydride solution or a hydrogen reduction method in which a baking treatment at 200 to 600 ° C. and a exposure to a hydrogen stream at 100 to 300 ° C. are performed.
  • the oxidation catalyst particles can also be formed in the pores by performing a known reduction operation such as a liquid phase reduction method.
  • the oxidation catalyst particles can be obtained in the pores only by heating and baking at 200 to 600 ° C. without performing the above-described known reduction operation.
  • the reduction of the compound contained in the noble metal compound solution may be partially limited, and the noble metal alone and the noble metal oxide may coexist in the oxidation catalyst particles in the mesopores.
  • a compound containing a noble metal element for example, as a gold compound, HAuCl 4 ⁇ 4H 2 O, NH 4 AuCl 4 , KAuCl 4 ⁇ nH 2 O, KAu (CN) 4 , Na 2 AuCl 4 , KAuBr 4 ⁇ 2H 2 O, NaAuBr 4 etc. for platinum compounds, chloroplatinic acid, dinitrodiammine platinum, dichlorotetraammine platinum etc. are palladium Examples of the compound include dinitrodiammine palladium and ammonium chloropalladate.
  • the concentration of the noble metal compound in the noble metal compound solution is not particularly limited, but it is preferable to prepare the solution at 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 5 mol / L because the generated oxidation catalyst particles are unlikely to aggregate.
  • the transition metal salt that can be contained in the noble metal compound solution is not particularly limited as long as it is a compound that can be dissolved in the solution and does not cause precipitation even when it coexists with the metal compound corresponding to the above-mentioned noble metal or noble metal oxide. Illustrative are halides such as chlorides and bromides of transition metals, nitrates, carbonates, bicarbonates, carboxylates and the like.
  • the concentration of the transition metal salt is not particularly limited, but it is preferable to prepare the solution at 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 5 mol / L because the generated oxidation catalyst particles are unlikely to aggregate.
  • the catalyst body according to the present embodiment has an oxidation catalyst particle having at least one of a noble metal, a noble metal oxide, and an alloy of a noble metal and a transition metal in a mesopore in a support having a communication structure.
  • a noble metal a noble metal oxide
  • activity can be maintained for a long term compared with the past.
  • the catalyst body of this embodiment can decompose and remove ethylene and the like even at a temperature lower than room temperature (23.4 ° C.). Further, although depending on the size of the catalyst body, it can be decomposed and removed even at a concentration of about 0.5 ppm.
  • the mesoporous catalyst body of the present embodiment can be used to configure a member or device that can remove organic gas components and the like.
  • Such members and devices include filters such as air purifiers, air conditioners, refrigerators, air purification filters installed in warehouses and showcases, packaging members for fruits and flowers, exhaust gas purification devices such as internal combustion engines, Examples thereof include a steam reformer for a fuel cell.
  • the mesoporous catalyst body of the present embodiment is provided in an article (freshness-preserving agent) used for sustaining a state that can withstand various uses such as raw food, food processing, and ornamental for fruits and vegetables. May be.
  • FIG. 1 is a diagram schematically showing a part of a cross section of a gas processing apparatus 200 according to the first embodiment.
  • the gas processing apparatus 200 according to the present embodiment includes a plasma and a catalyst body film 100 that generate a component to be processed in a gas to be processed supplied in the direction of arrow A to the gas processing apparatus 200 in the gas processing apparatus 200. It is a device that oxidizes and decomposes by function.
  • the gas processing apparatus 200 includes a plasma generation unit including an application electrode 11, a ground electrode 12, and a dielectric 13, and a (high voltage) power source 14 that is a power supply unit is connected to the application electrode 11.
  • the ground electrode 12 and the application electrode 11 are disposed to face each other, and the dielectric 13 is disposed between the ground electrode 12 and the application electrode 11.
  • the dielectric 13 is in close contact with only the ground electrode 12 and is separated from the application electrode 11.
  • the application electrode 11, the ground electrode 12, and the dielectric 13 are members / apparatus (plasma generation unit) for generating plasma, and are connected between the application electrode 11 and the ground electrode 12 by the power source 14.
  • the application electrode 11, the ground electrode 12, and the dielectric 13 form a low-temperature plasma reaction layer (region where plasma exists) by discharge between the application electrode 11 and the dielectric 13.
  • One of the application electrode 11 and the ground electrode 12 is the first electrode, and the other is the second electrode.
  • each of the plurality of electrodes of any one type is the first electrode and each of the plurality of electrodes of the other type is This is the second electrode.
  • the dielectric 13 is provided only between the ground electrode 12 and the catalyst body film 100, but is not limited thereto.
  • the application electrode 11 is provided.
  • the catalyst body film 100 may be provided.
  • the application electrode 11 is an electrode to which a voltage is applied by the power source 14.
  • the ground electrode 12 is grounded by a ground wire 12a.
  • the application electrode 11, the ground electrode 12, and the dielectric 13 have a breathable structure through which the gas to be processed can pass.
  • examples of the structure of the application electrode 11, the ground electrode 12, and the dielectric 13 include a lattice shape, a saddle shape, a porous shape by punching, an expanded mesh shape, and a honeycomb shape. Two or more types of structures may be combined.
  • the application electrode 11 and the ground electrode 12 may have a needle-like structure.
  • the application electrode 11, the ground electrode 12, and the dielectric 13 may have the same shape / structure among the shapes / structures described above. In FIG. 1, the application electrode 11 has a large number of small openings as in a mesh, and the ground electrode 12 and the dielectric 13 have a large number of openings as in a porous shape by punching.
  • the gas to be processed supplied from the arrow A direction to the plasma generation unit reaches the low temperature plasma reaction layer formed between the application electrode 11 and the dielectric 13 through the opening formed in the application electrode 11.
  • the gas to be processed that has reached the low-temperature plasma reaction layer is directly discharged to the outside of the plasma generation unit, or the outside of the plasma generation unit through the opening formed in the dielectric 13 and the opening formed in the ground electrode 12.
  • the plasma generating portion includes an opening formed in the application electrode 11, the ground electrode 12, and the dielectric 13, and a flow composed of a low-temperature plasma reaction layer formed between the application electrode 11 and the dielectric 13. A road is formed.
  • a catalyst film 100 that is in close contact with the dielectric 13 and the application electrode 11 is disposed in the low-temperature plasma reaction layer (between the application electrode 11 and the dielectric 13). .
  • the to-be-processed gas which flowed through the flow path and reached the low-temperature plasma reaction layer can pass through the catalyst body film 100 via the mesopores. Therefore, the component to be processed in the gas to be processed is oxidized and decomposed by the function of the catalyst film 100 on which plasma acts.
  • a material that functions as an electrode can be used.
  • a metal such as Cu, Ag, Au, Ni, Cr, Fe, Al, Ti, W, Ta, Mo, Co, or an alloy thereof can be used.
  • the dielectric 13 only needs to have a property of becoming an insulator.
  • Examples of the material of the dielectric 13 include ZrO 2 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , amorphous Al 2 O 3 , and aluminate.
  • the catalyst body film 100 when the catalyst body film 100 also has a function as a dielectric (for example, when a part of the catalyst body is an insulator), the catalyst body film 100 can also be used as a dielectric.
  • the dielectric 13 may not be provided.
  • usage conditions such as the quantity of the to-be-processed gas which flows into a flow path, and a flow rate, are not specifically limited.
  • a blower may be connected to the gas processing apparatus 200 and a predetermined amount of gas to be processed may be sent to the flow path at a predetermined flow rate.
  • the gas processing apparatus 200 is left in the gas to be processed, and the gas to be processed naturally You may just flow into a flow path.
  • the power source 14 is a power source that can apply a high voltage.
  • a high voltage power source such as an alternating high voltage or a pulse high voltage, a power source in which an alternating current or a pulse is superimposed on a DC bias, or the like can be used.
  • Examples of the AC high voltage include sine wave AC, rectangular AC, triangular AC, and sawtooth AC.
  • a predetermined voltage may be applied between the application electrode 11 and the ground electrode 12 so that plasma is generated in the discharge space formed by the application electrode 11, the ground electrode 12, and the dielectric 13 by the power source 14.
  • the voltage applied by the power source 14 varies depending on the concentration of the component to be processed contained in the gas to be processed, but can be usually 1 to 20 kV, preferably 2 to 10 kV.
  • the type of discharge generated by the electric power supplied from the power supply 14 for generating plasma is not particularly limited as long as the plasma can be generated. For example, silent discharge, creeping discharge, corona discharge, pulse discharge, etc. I just need it. Further, two or more kinds of these discharges may be combined to generate plasma.
  • the output frequency of the power source 14 is preferably a high frequency, specifically, 0.5 kHz or more. Furthermore, 0.5 kHz or more and 30 kHz or less are preferable, and 1 kHz or more and 20 kHz or less are more preferable. If the frequency is lower than 0.5 kHz, the amount of intermediate products and ozone produced may increase. If the frequency is higher than 30 kHz, decomposition due to oxidation may be suppressed for any component to be treated.
  • the dielectric 13 is in close contact with the ground electrode 12, but the present invention is not limited to this. It is only necessary that plasma can be generated, and it is sufficient that the dielectric 13 is in close contact with at least one of the application electrode 11 and the ground electrode 12. Further, the dielectric 13 may be disposed in close contact with the application electrode 11 and the ground electrode 12, and the catalyst film 100 may be provided between the two dielectrics 13. Furthermore, when forming the catalyst body film 100 on the base material mentioned above, the dielectric 13 can also be utilized as a base material.
  • FIG. 2 is a diagram schematically showing a part of a cross section of the gas processing apparatus 300 of the second embodiment.
  • the gas processing apparatus 300 of this embodiment generates plasma by silent discharge.
  • the gas processing apparatus 300 according to the present embodiment has a laminated structure in which two opposing dielectrics 13 are disposed between the application electrode 11 and the ground electrode 12, and each dielectric 13 is connected to the application electrode 11 and the ground. It is in close contact with the electrode 12.
  • the gas processing apparatus 300 forms a low-temperature plasma reaction layer by discharge between the two dielectrics 13 by applying a voltage between the application electrode 11 and the ground electrode 12 using the high voltage power supply 14.
  • the dielectric 13 is laminated in close contact with both the application electrode 11 and the ground electrode 12, but only one of the dielectrics 13 may be provided.
  • the application electrode 11, the ground electrode 12, and the dielectric 13 have a non-breathable structure through which the gas to be processed does not pass. Therefore, the gas to be processed that is supplied to the plasma generation unit from the direction of arrow a in FIG. 2 passes through the low-temperature plasma reaction layer formed between the two dielectrics 13 and is discharged to the outside of the plasma generation unit. (Direction of arrow b). That is, a flow path constituted by a low-temperature plasma reaction layer (a region where plasma exists) formed between the two dielectrics 13 is formed in the plasma generation unit.
  • the to-be-processed gas which flows through a low-temperature plasma reaction layer can pass the catalyst body film
  • the catalyst body film 100 may or may not be in close contact with the dielectric 13. Although depending on the amount of gas to be processed, the catalyst film 100 should not be in close contact with the dielectric 13 when the pressure loss in the flow path becomes high.
  • the catalyst body film 100 may also be used as the dielectric 13, and the dielectric body 13 may be used as a base material on which the catalyst body film 100 is formed.
  • the gas processing device 300 has a multilayer structure, so that it is easy to secure a flow path. For this reason, it becomes easy to increase the amount of gas to be processed, and a large amount of components to be processed can be efficiently decomposed.
  • the gas processing apparatus 300 is installed so that the component can be efficiently oxidized and decomposed according to the amount of the component to be processed and the use conditions such as the flow rate.
  • the catalyst body film 100 may be either a single layer or a plurality of layers, and can be arbitrarily set.
  • FIG. 3 is a diagram schematically showing a part of a cross section of the gas processing apparatus 400 of the third embodiment.
  • the gas processing apparatus 400 of the present embodiment two opposing ground electrodes 12, two dielectrics 13 disposed between the two ground electrodes 12, and an application disposed between the two dielectrics 13.
  • An electrode 11 is provided.
  • the ground electrode 12 and the dielectric 13 are in close contact with each other, and the dielectric 13 and the application electrode 11 are arranged at a predetermined interval.
  • the gas processing apparatus 400 can generate plasma between the two dielectrics 13 and the application electrode 11 by applying a voltage between the application electrode 11 and the ground electrode 12 using the high voltage power supply 14. And two plasma reaction layers sandwiching the application electrode 11 can be formed.
  • the ground electrode 12 and the dielectric 13 have a non-breathable structure through which the gas to be processed does not pass.
  • the application electrode 11 has a plurality of openings and has a breathable structure through which the gas to be processed passes. For this reason, the gas to be processed supplied to the plasma generation unit from the direction of arrow a in FIG. 2 passes through the low temperature plasma reaction layer while moving through the two plasma reaction layers through the opening formed in the application electrode 11. Then, it is discharged outside the plasma generator. That is, an opening formed in the application electrode 11 and a flow path constituted by two plasma reaction layers are formed in the plasma generation unit.
  • the catalyst film 100 that is in close contact with the application electrode 11 is disposed in each of the two low-temperature plasma reaction layers (between the two dielectrics 13 and the application electrode 11). Yes.
  • the to-be-processed gas which moves a flow path can pass the catalyst body film
  • the gas processing apparatus 400 has a multi-layer structure, which makes it easy to secure a flow path. For this reason, it becomes easy to increase the amount of gas to be processed, and a large amount of components to be processed can be efficiently decomposed.
  • the gas processing apparatus 400 is installed so that the component can be efficiently oxidized and decomposed according to the amount of the component to be processed and the use conditions such as the flow rate.
  • the catalyst body film 100 may be either a single layer or a plurality of layers, and can be arbitrarily set.
  • FIG. 4 is a diagram schematically showing a part of a cross section of the gas processing apparatus 500 of the fourth embodiment.
  • the gas processing apparatus 500 of this embodiment generates plasma by silent discharge and decomposes components to be processed.
  • the cylindrical application electrode 11, the catalyst body film 100, and the dielectric 13 are configured such that they are laminated radially outwardly in an annual ring shape with the columnar ground electrode 12 as the central axis. This is a cylindrical structure.
  • two dielectrics 13 are provided.
  • One dielectric 13 is disposed radially outside the ground electrode 12 and is in close contact with the ground electrode 12.
  • the other dielectric 13 is disposed radially inside the application electrode 11 and is in close contact with the application electrode 11.
  • the gas processing apparatus 500 can form a low-temperature plasma reaction layer by discharge between the two dielectrics 13 by applying a voltage between the application electrode 11 and the ground electrode 12 using the high-voltage power supply 14. it can.
  • both the application electrode 11 and the ground electrode 12 are laminated in close contact with the dielectric 13, but only one of the dielectrics 13 may be provided.
  • the application electrode 11, the ground electrode 12, and the dielectric 13 have a non-breathable structure through which the gas to be processed does not pass.
  • the gas to be processed supplied from one of the circular end faces (in the direction of arrow a in FIG. 3) to the plasma generating section passes through the low-temperature plasma reaction layer formed between the two dielectrics 13, It discharges
  • the to-be-processed gas which flows through a low-temperature plasma reaction layer can pass the catalyst body film
  • a space is formed between the catalyst body film 100 and the two dielectrics 13. Further, the catalyst body film 100 may be in close contact with one dielectric 13 or may not be in close contact.
  • an annual ring-shaped multilayer structure may be used, and the multilayer structure makes it easy to secure a flow path. For this reason, it becomes easy to increase the amount of gas to be processed, and a large amount of components to be processed can be efficiently decomposed.
  • the gas processing apparatus 500 has a plurality of cylindrical annual rings of the catalyst body film 100 so that the processing target gas can be efficiently oxidized and decomposed according to the amount of components to be processed and the use conditions such as the flow rate. But even one can be set arbitrarily.
  • the power source 14 applies a voltage to the application electrode 11 and the component containing the component is processed. Gas is supplied to the flow path.
  • components in the gas to be processed that flow through the flow path and reach the mesopores are oxidized and decomposed at room temperature without being heated by the catalyst body film 100.
  • components in the gas to be treated may be oxidized and decomposed by plasma.
  • the surface of the catalyst body film 100 gold catalyst particles
  • the catalytic activity may be lost, or a reaction intermediate such as formaldehyde may be generated.
  • the surface of the catalyst film 100 is cleaned and the catalytic activity is maintained for a longer period. Moreover, there is almost no production amount of a reaction intermediate, and decomposition of harmful components due to oxidation can be maintained for a longer period.
  • the application electrode 11 has been described as being arranged on the upstream side in the gas flow direction.
  • the present invention is not limited to this, and the gas may flow from the ground electrode 12 side.
  • the gas processing apparatuses of the first to fourth embodiments described above can suppress the generation of reaction intermediates by the combination of the catalyst body film 100 and plasma, and at the same time, the catalyst body film 100 (gold catalyst particles) during the decomposition process. ), The catalyst body film 100 is cleaned by plasma, so that the catalytic activity of the catalyst body film 100 can be maintained for a longer period of time. Therefore, according to the gas processing apparatus of the first to fourth embodiments, it is possible to realize a gas processing apparatus capable of oxidizing and decomposing a target compound for a longer period of time.
  • Example 1 Into a beaker, 5.2 g of tetraethoxysilane (TEOS) was added, and 6.0 g of ethanol was further added. To this was further added 2.7 g of 0.01M hydrochloric acid, and the mixture was stirred at room temperature for 20 minutes (solution A). To another beaker, 1.38 g of a nonionic surfactant (Pluronic P123) and 2.62 g of ethanol were added and stirred at room temperature for 30 minutes (solution B). The solution B was added to the solution A and mixed at room temperature, followed by further stirring for 3 hours to prepare a precursor solution of mesoporous silica.
  • TEOS tetraethoxysilane
  • the solvent of the precursor solution was distilled off, and the resulting solid was dried and pulverized to obtain a powdery support.
  • the powdery support was put into a solution containing diammine dinitroplatinum nitrate and stirred.
  • the powder was filtered from the solution, dried at 300 ° C. for 3 hours, and then calcined in a reducing gas containing 10% hydrogen gas and 90% nitrogen gas for 1 hour at 250 ° C. to obtain a Pt / mesoporous silica powder.
  • the amount of Pt supported on the mesoporous silica film was 1 wt%.
  • the specific surface area, pore volume, and pore diameter of the mesoporous silica film were 377 m 2 / g, 0.52 cm 3 / g, and 7.0 nm, respectively.
  • the particle size of Pt was observed by TEM, it was 3.2 nm.
  • Example 2 Pd / mesoporous silica powder was obtained in the same manner as in Example 1 except that palladium chloride was used instead of diammine dinitroplatinum nitrate. When the particle size of Pd was observed by TEM, it was 3.0 nm.
  • Example 3 A catalyst body of platinum iron alloy / mesoporous silica powder was obtained in the same manner as in Example 1 except that iron (III) chloride was further dissolved in a solution containing diammine dinitroplatinum nitrate. When the particle size of the Pt / Fe alloy was observed by TEM, it was 3.6 nm.
  • Example 4 Into a beaker, 5.2 g of tetraethoxysilane (TEOS) was added, and 6.0 g of ethanol was further added. To this was further added 2.7 g of 0.01M hydrochloric acid, and the mixture was stirred at room temperature for 20 minutes (solution A).
  • TEOS tetraethoxysilane
  • the ceramic honeycomb with the mesoporous silica film fixed thereon was immersed in a solution containing diamine dinitroplatinum nitrate, and the excess solution was removed by air blowing. After drying at 300 ° C. for 3 hours, firing was performed at 250 ° C. for 1 hour in a reducing gas containing 10% hydrogen gas and 90% nitrogen gas to obtain a Pt / mesoporous silica film / honeycomb.
  • the supported amount of Pt with respect to the mesoporous silica film is 1 wt%.
  • the specific surface area, pore volume, and pore diameter of the mesoporous silica film were 377 m 2 / g, 0.52 cm 3 / g, and 7.0 nm, respectively. .
  • the mesoporous silica film had a thickness of 500 nm.
  • the particle size of Pt was observed with TEM, it was 3.2 nm.
  • a Pt / mesoporous silica film / honeycomb was obtained in the same manner as in Example 4 except that 1.3 g of mesitylene was further added to the B liquid.
  • the amount of Pt supported on the mesoporous silica film was 1 wt%.
  • the specific surface area, pore volume, and pore diameter of the mesoporous silica film were 401 m 2 / g, 0.64 cm 3 / g, and 20 nm, respectively.
  • the mesoporous silica film had a thickness of 500 nm.
  • the particle size of Pt was observed with TEM, it was 12 nm.
  • Example 6 10.4 g of tetraethoxysilane (TEOS) was put in a beaker, and 12.0 g of ethanol was further added. To this, 4.5 g of 0.01M hydrochloric acid was further added and stirred at room temperature for 20 minutes (solution A). To another beaker, 2.9 g of a nonionic surfactant (Brij (registered trademark) 56) and 8.0 g of ethanol were added and stirred at room temperature for 30 minutes (liquid B). Then, B liquid was added to A liquid, mixed under room temperature conditions, and further stirred for 3 hours to obtain a precursor solution of mesoporous silica.
  • TEOS tetraethoxysilane
  • a ceramic honeycomb (manufactured by Iwatani Corporation) was immersed in the mesoporous silica precursor solution, and the pressure was reduced for 15 minutes. The ceramic honeycomb was pulled up and the excess solution was removed by air blowing. Then, the temperature was raised at 1 ° C./min and fired at 450 ° C. for 4 hours to obtain a ceramic honeycomb having a fixed mesoporous silica film. Thereafter, the ceramic honeycomb with the mesoporous silica film fixed thereto was immersed in a solution containing diamine dinitroplatinum nitrate solution, and the excess solution was removed by air blowing. After drying at 300 ° C. for 3 hours, firing was performed at 250 ° C.
  • the amount of Pt supported on the mesoporous silica film was 1 wt%.
  • the specific surface area, pore volume, and pore diameter of the mesoporous silica film were 380 m 2 / g, 0.38 cm 3 / g, and 4.5 nm, respectively.
  • the mesoporous silica film had a thickness of 500 nm.
  • Example 7 A Pt / mesoporous silica film / honeycomb was obtained in the same manner as in Example 6 except that 1.3 g of mesitylene was further added to the B liquid. The amount of Pt supported on the mesoporous silica film was 1 wt%.
  • the specific surface area, pore volume, and pore diameter of the mesoporous silica film were 365 m 2 / g, 0.44 cm 3 / g, and 12 nm, respectively.
  • the mesoporous silica film had a thickness of 500 nm.
  • the particle size of Pt was observed with TEM, it was 3.2 nm.
  • Example 8 Into a beaker, 6.2 g of tetraethoxysilane (TEOS) was added, and 4.8 g of ethanol was further added. To this, 2.2 g of 0.01M hydrochloric acid was further added and stirred at room temperature for 20 minutes (solution A). To another beaker, 1.53 g of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB) and 2.2 g of 0.01M hydrochloric acid were added and stirred at room temperature for 30 minutes (solution B). Then, B liquid was added to A liquid, mixed under room temperature conditions, and further stirred for 3 hours to obtain a precursor solution of mesoporous silica.
  • TEOS tetraethoxysilane
  • CTAB hexadecyltrimethylammonium bromide
  • a ceramic honeycomb (manufactured by Iwatani Corporation) was immersed in the mesoporous silica precursor solution, and the pressure was reduced for 15 minutes. Thereafter, the ceramic honeycomb was pulled up and the excess solution was removed by air blowing, then heated at 1 ° C./min and fired at 450 ° C. for 4 hours to obtain a ceramic honeycomb having a fixed mesoporous silica film. After that, the ceramic honeycomb with the mesoporous silica film fixed thereon was immersed in a solution containing diamine dinitroplatinum nitrate, and the excess solution was removed by air blowing. After drying at 300 ° C. for 3 hours, firing was performed at 250 ° C.
  • the amount of Pt supported on the mesoporous silica film was 1 wt%.
  • the specific surface area, pore volume, and pore diameter of the mesoporous silica film were 341 m 2 / g, 0.50 cm 3 / g, and 2.43 nm, respectively.
  • the mesoporous silica film had a thickness of 500 nm. Moreover, when the particle size of Pt was observed with TEM, it was 2.0 nm.
  • Example 9 A Pd / mesoporous silica membrane / honeycomb was obtained in the same manner as in Example 4 except that palladium chloride was used instead of diammine dinitroplatinum nitrate.
  • the amount of Pt supported on the mesoporous silica film was 1 wt%.
  • the specific surface area, pore volume, and pore diameter of the mesoporous silica film were 377 m 2 / g, 0.52 cm 3 / g, and 7 nm, respectively.
  • the mesoporous silica film had a thickness of 500 nm. Further, when the particle size of Pd was observed by TEM, it was 3.0 nm.
  • Example 10 A Pd / mesoporous silica membrane / honeycomb was obtained in the same manner as in Example 6 except that palladium chloride was used instead of diammine dinitroplatinum nitrate.
  • the amount of Pt supported on the mesoporous silica film was 1 wt%.
  • the specific surface area, pore volume, and pore diameter of the mesoporous silica film were 380 m 2 / g, 0.38 cm 3 / g, and 4.5 nm, respectively. .
  • the mesoporous silica film had a thickness of 500 nm. Further, when the particle size of Pd was observed by TEM, it was 3.0 nm.
  • Example 11 A Pd / mesoporous silica membrane / honeycomb was obtained in the same manner as in Example 8 except that palladium chloride was used instead of diammine dinitroplatinum nitrate.
  • the amount of Pt supported on the mesoporous silica film was 1 wt%.
  • the specific surface area, pore volume, and pore diameter of the mesoporous silica film were 341 m 2 / g, 0.5 cm 3 / g, and 2.43 nm, respectively. .
  • the mesoporous silica film had a thickness of 500 nm.
  • the particle size of Pd was observed with TEM, it was 2.0 nm.
  • Example 12 A platinum oxide / mesoporous silica film / honeycomb was obtained in the same manner as in Example 4 except that the firing treatment was not performed in a reducing gas containing 10% hydrogen gas and 90% nitrogen gas.
  • the amount of platinum oxide supported on the mesoporous silica film was 1 wt%.
  • the platinum oxide / mesoporous silica film / honeycomb was measured by the BET method.
  • the specific surface area, pore volume, and pore diameter of the mesoporous silica film were 377 m 2 / g, 0.52 cm 3 / g, and 7 nm, respectively. .
  • the mesoporous silica film had a thickness of 500 nm. Moreover, it was 3.2 nm when the particle size of the platinum oxide was observed with TEM.
  • Example 13 Palladium oxide / mesoporous silica was prepared in the same manner as in Example 4 except that palladium chloride was used in place of diammine dinitroplatinum nitrate and no calcination treatment was performed in a reducing gas containing 10% hydrogen gas and 90% nitrogen gas. A membrane / honeycomb was obtained. The amount of palladium oxide supported on the mesoporous silica film was 1 wt%. The palladium oxide / mesoporous silica membrane / honeycomb was measured by the BET method.
  • the specific surface area, pore volume, and pore diameter of the mesoporous silica membrane were 377 m 2 / g, 0.52 cm 3 / g, and 7 nm, respectively. .
  • the mesoporous silica film had a thickness of 500 nm. Moreover, when the particle size of palladium oxide was observed with TEM, it was 3.0 nm.
  • the specific surface area, pore volume, and pore diameter of mesoporous silica were 760 m 2 / g, 0.84 cm 3 / g, and 3.7 nm, respectively. Moreover, when the particle size of Pt was observed with TEM, it was 3.1 nm.
  • Titanium isopropoxide (hereinafter referred to as “TTIP”) is mixed with isopropyl alcohol (hereinafter referred to as “IPA”) as a dispersion medium and hydrochloric acid as a catalyst, and then a predetermined amount of water is added, and then at about 4 ° C. for 1 hour. Hydrolyzed.
  • a titanium dioxide colloidal sol was prepared by allowing to stand at room temperature for 10 hours after hydrolysis.
  • a ceramic honeycomb manufactured by Iwatani Corporation was immersed in the titanium dioxide colloid sol, and the pressure was reduced for 15 minutes. Thereafter, the ceramic honeycomb was pulled up, and the excess solution was removed by air blowing. Then, the temperature was raised at 1 ° C./min and fired at 450 ° C. for 4 hours to obtain a ceramic honeycomb in which the titanium dioxide film was fixed. Then, after immersing in a solution containing diamine dinitroplatinum nitrate solution in a ceramic honeycomb to which a titanium dioxide film is fixed, and removing the excess solution by air blowing, in a reducing gas containing 10% hydrogen gas and 90% nitrogen gas Firing at 250 ° C.
  • the amount of Pt supported on the titanium dioxide film was 1 wt%.
  • the specific surface area, pore volume, and pore diameter of the mesoporous silica film were 100 m 2 / g, 0.10 cm 3 / g, and 5.0 nm, respectively.
  • the mesoporous silica film had a thickness of 1000 nm.
  • the particle size of Pt was observed with TEM, it was 3.0 nm.
  • Example 14 To 0.2 g of the surfactant (Pluronic P123), 3.55 mL of ethanol was added, and the mixture was stirred for 20 minutes or more and dissolved to obtain Liquid A. To 0.63 mL of hydrochloric acid, 1.05 g of tetraisopropyl orthotitanate (TTIP) was added and stirred for 5 minutes to obtain solution B. The A liquid was added to the B liquid and further stirred for 15 minutes to obtain a precursor solution of mesoporous titanium oxide. The solvent was distilled off from the precursor solution, and the resulting solid was pulverized in an electric furnace at 450 ° C. for 4 hours to obtain a powdery support.
  • TTIP tetraisopropyl orthotitanate
  • a predetermined concentration of aqueous chloroauric acid solution was placed in a beaker and heated to 70 ° C. in a water bath.
  • the pH was adjusted to 7 by slowly adding 0.1 M aqueous sodium hydroxide solution.
  • the aqueous chloroauric acid solution was cooled to room temperature, the above powder support was added, and the mixture was heated to 70 ° C. and stirred for 1 hour after reaching 70 ° C.
  • the powder was filtered off from the solution and washed 5 times with pure water. Firing was carried out at 300 ° C. for 2 hours in an electric furnace to obtain Au-supported mesoporous titanium oxide powder.
  • the amount of Au supported on the Au-supported mesoporous titanium oxide powder was 20% by mass.
  • the specific surface area, pore volume, and pore diameter of the mesoporous titanium oxide powder were 118 m 2 / g, 0.54 g / cm 3 , and 9.23 nm, respectively. there were.
  • the particle diameter of Au was observed with TEM, it was 2.4 nm.
  • Example 15 The same as in Example 14 except that 0.286 mL of acetic acid and 0.1 mL of pure water were added to 16.7 g of 2.5% iron (III) isopropoxide / isopropanol solution, and the mixture was stirred for 10 minutes to obtain solution B.
  • Au-supported iron oxide powder was obtained.
  • the amount of Au supported on the Au-supported iron oxide powder was measured by atomic absorption, the amount of Au supported on the mesoporous titanium oxide powder was 20% by mass.
  • the specific surface area, pore volume, and pore diameter of the mesoporous iron oxide powder were 351 m 2 / g, 0.48 g / cm 3 , and 6.20 nm, respectively.
  • the particle diameter of Au was observed with TEM, it was 3.3 nm.
  • Example 16 A catalyst body of gold-iron alloy / mesoporous titanium oxide powder was obtained in the same manner as in Example 14, except that iron (III) chloride was further dissolved in a chloroauric acid aqueous solution. When the particle size of the Au / Fe alloy was observed with TEM, it was 3.8 nm.
  • Example 17 Ti plate fixed with Au-supported mesoporous titanium oxide film
  • the surfactant Pluronic P123
  • 3.55 mL of ethanol was added, and the mixture was stirred for 20 minutes or more and dissolved to obtain Liquid A.
  • To 0.63 mL of hydrochloric acid 1.05 g of tetraisopropyl orthotitanate (TTIP) was added and stirred for 5 minutes to obtain solution B.
  • TTIP tetraisopropyl orthotitanate
  • Ti titanium
  • the formed Ti plate was placed in a petri dish and allowed to stand for 2 hours in a ⁇ 20 ° C., 20% RH environment (freezer). After removing from the freezer and returning to room temperature, the petri dish lid was opened and the Ti plate was taken out. Firing was performed at 450 ° C. for 4 hours in an electric furnace to obtain a Ti plate on which a mesoporous titanium oxide film (film-like support) was fixed. In firing, the temperature rise and fall were 1 ° C. per minute.
  • a predetermined concentration of aqueous chloroauric acid solution was placed in a beaker and heated to 70 ° C. in a water bath.
  • the pH was adjusted to 7 by slowly adding 0.1 M aqueous sodium hydroxide solution.
  • the aqueous chloroauric acid solution was cooled to room temperature, immersed in a Ti plate on which a mesoporous titanium oxide film was fixed, and deaerated by reducing the pressure for about 15 minutes.
  • the mixture was again heated to 70 ° C. in a water bath, and stirred for 1 hour after reaching 70 ° C.
  • the Ti plate on which the mesoporous titanium oxide film was fixed was taken out, washed 5 times with pure water, and excess water was removed with a waste cloth.
  • Firing was performed at 300 ° C. for 2 hours in an electric furnace to obtain a Ti plate on which the Au-supporting mesoporous titanium oxide film was fixed.
  • the film thickness was 100 nm.
  • the amount of Au supported was measured by atomic absorption, the amount of Au supported on the mesoporous titanium oxide film was 20% by mass.
  • the specific surface area, pore volume, and pore diameter of the mesoporous titanium oxide film were 118 m 2 / g, 0.54 g / cm 3 , respectively. It was 9.23 nm. Moreover, when the particle diameter of Au was observed with TEM, it was 2.4 nm.
  • Example 18 Ti plate fixed with Au-supported mesoporous titanium oxide film
  • a Ti plate on which the Au-supported mesoporous titanium oxide film was immobilized was obtained in the same manner as in Example 17 except that the mesoporous titanium oxide film was immobilized on the Ti plate at a firing temperature of 300 ° C.
  • the film thickness was 100 nm.
  • the amount of Au supported on the mesoporous titanium oxide film was 30% by mass.
  • the specific surface area, pore volume, and pore diameter of the mesoporous titanium oxide film were 206 m 2 / g and 0.34 g / cm 3 , respectively. 3.71 nm.
  • the particle diameter of Au was observed with TEM, it was 2.4 nm.
  • Example 19 Ti plate fixed with Au-supported mesoporous zirconium oxide film
  • a surfactant Pluronic P123
  • solution A a surfactant
  • Zr (OPr) 4 zirconium (IV) propoxide
  • acetic acid 0.286 mL of acetic acid and 0.1 mL of pure water were added and stirred for 10 minutes to obtain a liquid B.
  • hydrochloric acid was added and stirred for 1 hour to obtain a precursor solution of mesoporous zirconium oxide.
  • a precursor solution of mesoporous zirconium oxide was used, and a film was formed on a Ti plate at a rotational speed of 3000 rpm using a spin coater.
  • the formed Ti plate was placed in a petri dish and allowed to stand for 2 hours in a ⁇ 20 ° C., 20% RH environment (freezer). After removing from the freezer and returning to room temperature, the petri dish lid was opened and the Ti plate was taken out. Firing was performed at 450 ° C. for 4 hours in an electric furnace to obtain a Ti plate on which a mesoporous zirconium oxide film (film-like support) was fixed. In firing, the temperature rise and fall were 1 ° C. per minute.
  • a predetermined concentration of aqueous chloroauric acid solution was placed in a beaker and heated to 70 ° C. in a water bath.
  • the pH was adjusted to 7 by slowly adding 0.1 M aqueous sodium hydroxide solution.
  • the aqueous chloroauric acid solution was cooled to room temperature, immersed in a Ti plate on which a mesoporous zirconium oxide film was immobilized, and degassed by reducing the pressure for about 15 minutes.
  • the mixture was again heated to 70 ° C. in a water bath, and stirred for 1 hour after reaching 70 ° C.
  • the Ti plate on which the mesoporous zirconium oxide film was fixed was taken out, washed 5 times with pure water, and excess water was removed with a waste cloth. Firing was performed at 300 ° C. for 2 hours in an electric furnace to obtain a Ti plate on which the Au-supported mesoporous zirconium oxide film was immobilized.
  • the film thickness was 150 nm. Further, when measured by atomic absorption, the amount of Au supported on the mesoporous zirconium oxide film was 10.6% by mass.
  • the specific surface area, pore volume, and pore diameter of the mesoporous zirconia film were 85.2 m 2 / g and 0.29 g / cm, respectively. 3 and 6.18 nm.
  • the particle diameter of Au was observed with TEM, it was 2.5 nm.
  • Example 20 Ti plate fixed with Au-supported mesoporous zirconium oxide film
  • a Ti plate having an Au-supported mesoporous zirconium oxide film immobilized thereon was obtained in the same manner as in Example 19 except that the mesoporous zirconium oxide film was immobilized on a Ti plate at a firing temperature of 300 ° C.
  • the film thickness was 150 nm.
  • the amount of Au supported on the mesoporous zirconium oxide film was 18.2% by mass.
  • the specific surface area, pore volume, and pore diameter of the mesoporous zirconium oxide film were 94.3 m 2 / g and 0.42 g / cm, respectively. 3 and 4.19 nm.
  • the particle diameter of Au was observed with TEM, it was 2.5 nm.
  • Example 6 A Ti plate having an Au-supported titanium oxide film immobilized thereon was obtained in the same manner as in Example 17 except that the precursor solution was prepared without using a surfactant (Pluronic P123).
  • the film thickness was 100 nm.
  • the amount of Au supported on the titanium oxide film was 6.6% by mass.
  • the Ti plate on which the Au-supported titanium oxide film was immobilized was measured by the BET method, the specific surface area of the titanium oxide film was 10 m 2 / g, and it was confirmed that this titanium oxide film did not have a mesoporous structure. It was done. Further, when the particle diameter of Au was observed by TEM, it was 5 nm.
  • Example 7 A Ti plate having an Au-supported zirconium oxide film immobilized thereon was obtained in the same manner as in Example 19 except that a precursor solution was prepared without using a surfactant (Pluronic P123).
  • a precursor solution was prepared without using a surfactant (Pluronic P123).
  • the film thickness was 150 nm.
  • the amount of Au supported on the zirconium oxide film was 5% by mass.
  • the Ti plate on which the Au-supported zirconium oxide film was immobilized was measured by the BET method, the specific surface area of the titanium oxide film was 7.9 m 2 / g, and this titanium oxide film does not have a mesoporous structure. Was confirmed. Further, when the particle diameter of Au was observed by TEM, it was 5 nm.
  • the film thickness was 100 nm. Further, when measured by atomic absorption, the amount of Au supported on mesoporous silica was 1% by mass.
  • the specific surface area, pore volume, and pore diameter were 871 m 2 / g, 1.13 cm 3 / g, and 7.5 nm, respectively. Further, when the particle diameter of Au was observed by TEM, it was 0.8 nm.
  • Comparative Examples 1 and 2 showed 8.4% removal rate of ethylene after 1 day, but decreased to 4.7% and 3.0% after 7 days. In Comparative Examples 3 to 5, the removal rate was zero after one day. On the other hand, it was confirmed that the ethylene removal rates of Examples 1 to 13 were not drastically lowered after 1 day and after 7 days.
  • the examples can decompose and remove hydrocarbons such as ethylene at a low concentration of about 0.5 ppm at a temperature of 5 ° C., which is lower than room temperature, which is generally considered, and the degradation activity thereof is unlikely to occur. It was shown that it can be used.
  • a gas processing apparatus 300 As the gas processing apparatus, a gas processing apparatus 300 according to the second embodiment shown in FIG. 2 was prepared.
  • the catalyst body 100 Ti plates obtained in Examples 17 to 20 and Comparative Examples 6 to 8 were used, respectively.
  • a copper tape was used as the application electrode 11 and the installation electrode 12.
  • a plasma generation power source was used to connect the application electrode 11 and the ground electrode 12 to the plasma generation power source, and plasma was generated by applying a voltage.
  • the applied voltage was 8 kVp-p, and the discharge output was 0.1 W.
  • carbon monoxide CO
  • the oxidation reaction of the gas treatment apparatus 300 in which the Ti plates of Examples and Comparative Examples were used was evaluated. Specifically, carbon monoxide (concentration: 1,000 ppm) and air are mixed to prepare a gas to be processed, and the gas to be processed is flowed (between two dielectrics 13) while controlling the flow rate with a mass flow controller. Supplied to.
  • Analysis of the gas to be processed before and after the treatment by the gas processing apparatus 300 uses an infrared spectrophotometer (FTIR-6000, manufactured by JASCO Corporation) equipped with a gas cell having a long optical path (2.5 m). It was.
  • the reaction conditions were a carbon monoxide concentration of 1,000 ppm, an oxygen concentration of 20%, a relative humidity of 50%, a gas flow rate of 0.1 L / min, a catalyst size of 25 cm 2 , and a reaction temperature of room temperature.
  • Test Examples 1 to 14 were performed while changing the catalyst body to be used and changing the presence or absence of plasma generation.
  • the CO concentration (hereinafter also referred to as “initial CO concentration”) in the gas to be processed before being supplied to the gas processing device 300, and the target after being processed by the gas processing device 300
  • the CO concentration in the process gas (hereinafter also referred to as “post-reaction CO concentration”) was measured, and the CO removal rate was calculated using the following equation.
  • the time which processed the to-be-processed gas with the gas processing apparatus 300 is shown in Table 3 and Table 4 mentioned later.
  • CO removal rate (%) ⁇ (initial CO concentration ⁇ post-reaction CO concentration) / initial CO concentration ⁇ ⁇ 100
  • Test Example 2 A CO removal test was performed in the same manner as in Test Example 1 except that the Ti plate obtained in Example 18 was used.
  • Test Example 3 A CO removal test was performed in the same manner as in Test Example 1 except that the Ti plate obtained in Example 19 was used.
  • Test Example 4 A CO removal test was performed in the same manner as in Test Example 1 except that the Ti plate obtained in Example 20 was used.
  • Test Example 5 A CO removal test was performed in the same manner as in Test Example 1 except that the Ti plate obtained in Comparative Example 6 was used.
  • Test Example 6 A CO removal test was performed in the same manner as in Test Example 1 except that the Ti plate obtained in Comparative Example 7 was used.
  • Test Example 7 A CO removal test was performed in the same manner as in Test Example 1 except that the Ti plate obtained in Comparative Example 8 was used.
  • Test Example 8 Using the Ti plate obtained in Example 17, a plasma with a discharge power of 0.1 W was generated and a CO removal test was performed.
  • Test Example 9 A CO removal test was performed in the same manner as in Test Example 8 except that the Ti plate obtained in Example 18 was used.
  • Test Example 10 A CO removal test was performed in the same manner as in Test Example 8 except that the Ti plate obtained in Example 19 was used.
  • Test Example 11 A CO removal test was performed in the same manner as in Test Example 8, except that the Ti plate obtained in Example 20 was used.
  • Test Example 12 A CO removal test was performed in the same manner as in Test Example 8 except that the Ti plate obtained in Comparative Example 6 was used.
  • Test Example 13 A CO removal test was performed in the same manner as in Test Example 8 except that the Ti plate obtained in Comparative Example 7 was used.
  • Test Example 14 A CO removal test was performed in the same manner as in Test Example 8 except that the Ti plate obtained in Comparative Example 8 was used.
  • Table 2 shows the CO removal rates in Test Examples 1 to 14. *
  • Test Examples 15 to 17 Carbon monoxide removal test (Test Examples 15 to 17)] Using the powder catalyst bodies of Example 14 (Test Example 15), Example 15 (Test Example 16), and Example 16 (Test Example 17), carbon monoxide was decomposed in Test Examples 15 to 17. It was. Carbon monoxide and air were mixed to prepare a test gas having a carbon monoxide concentration of 1,000 ppm, and the flow rate was controlled by a mass flow controller and supplied to the catalyst body. For the analysis of the gas to be processed before treatment and the gas to be treated after 1 hour of treatment, an infrared spectrophotometer (FTIR-6000, manufactured by JASCO Corporation) equipped with a gas cell having a long optical path (2.5 m) was used.
  • FTIR-6000 infrared spectrophotometer
  • the reaction conditions were a carbon monoxide concentration of 1,000 ppm, an oxygen concentration of 20%, a relative humidity of 60%, a gas flow rate of 1.0 L / min, and a reaction temperature of room temperature.
  • the CO removal rate was calculated using the following equation, and the results are shown in Table 3.
  • CO removal rate (%) ⁇ (initial CO concentration ⁇ post-reaction CO concentration) / initial CO concentration ⁇ ⁇ 100
  • an infrared spectrophotometer (FTIR-6000, manufactured by JASCO Corporation) equipped with a gas cell having a long optical path (2.5 m) was used.
  • the reaction conditions were an ammonia concentration of 5 ppm, an oxygen concentration of 20%, a relative humidity of 50%, a gas flow rate of 0.1 L / min, a catalyst amount of 25 cm 3 , and a reaction temperature of room temperature.
  • the ammonia removal rate was calculated using the following formula, and the results are shown in Table 4.
  • Ammonia removal rate (%) ⁇ (initial ammonia level ⁇ post-reaction ammonia concentration) / initial ammonia concentration ⁇ ⁇ 100
  • Test Example 19 An ammonia removal test was performed in the same manner as in Test Example 18 except that the Ti plate obtained in Comparative Example 8 was used.
  • Trimethylamine removal rate (%) ⁇ (initial trimethyl concentration ⁇ post-reaction trimethyl concentration) / initial trimethylamine concentration ⁇ ⁇ 100
  • Test Example 20 Using the Ti plate obtained in Example 19, plasma with a discharge power of 0.1 W was generated and a trimethylamine removal test was performed.
  • Test Example 21 A trimethylamine removal test was performed in the same manner as in Test Example 20, except that the Ti plate obtained in Comparative Example 8 was used.
  • the CO removal rates in Test Examples 1 to 4 were 92% or more. Further, as shown in Table 3, the CO removal rate of Test Examples 15 to 17 was 92% or more. On the other hand, in Test Examples 5 to 7, the CO removal rate was 4% or less. From these results, it was confirmed that the gas treatment apparatus 300 using Examples 14 to 20 had superior catalytic activity as compared with the gas treatment apparatus 300 using Comparative Examples 6 to 8.
  • the gas processing apparatus 300 using Examples 17 to 20 has excellent catalytic activity compared to the gas processing apparatus 300 using Comparative Examples 6 to 8, and can maintain the catalytic activity. I understand.
  • Example 19 As shown in Table 4, in Test Example 18, the ammonia removal rate after 1 hour was 91.2%, and the CO removal rate after 24 hours was 90.8%. On the other hand, the ammonia removal rate after 1 hour of Test Example 19 was 1.8% or less, and the ammonia removal rate after 24 hours was 1.7%. From these results, it can be understood that the gas processing apparatus 300 using Example 19 has superior catalytic activity as compared to the gas processing apparatus 300 using Comparative Example 8, and can maintain the catalytic activity.
  • the trimethylamine removal rate after 1 hour was 94.2%, and the trimethylamine removal rate after 24 hours was 93.8%.
  • the trimethylamine removal rate after 1 hour of Test Example 21 was 2.2%, and the trimethylamine removal rate after 24 hours was also 2.2%. From these results, it can be understood that the gas processing apparatus 300 using Example 19 has superior catalytic activity as compared to the gas processing apparatus 300 using Comparative Example 8, and can maintain the catalytic activity. From the above results, the effectiveness of the present invention was shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

【課題】 活性をより長期に維持できる触媒体を提供する。 【解決手段】 複数のメソ孔を有する支持体と、支持体のメソ孔内に担持されている、貴金属、その酸化物、および貴金属と遷移金属との合金の少なくとも一つを含む酸化触媒粒子とを備え、支持体において、一のメソ孔が少なくとも一つの他のメソ孔と連通しているメソポーラス触媒体。

Description

メソポーラス触媒体及びそれを用いたガス処理装置
 本発明は、例えば気体中のエチレンなどの有機成分や一酸化炭素、アンモニアなどを分解できる触媒体に関する。
 自動車や工場などの内燃機関から発生する排気ガスには微量の一酸化炭素などの有害成分が含まれるため、除去手段を用いてこれらを除去してから大気中に放出されている。また、密閉した保管庫などでは微量の悪臭物質が産生されアンモニア臭が発生する場合があり、種々の除去手段が施されている。
 また、植物からは多種多様な微量の有機ガスが放出されるが、保管中の農作物からも熟成作用を有するエチレンガスが放出され、自身の熟成を進行させていることが知られている。そのため、温度、湿度を一定に保つとともにこのエチレンガス濃度を低減することが、鮮度を長期間保持するために有効であるとされている。
 気体中に含まれる成分を除去する方法としては、活性炭などの吸着剤への吸着、プラズマ発生装置によるラジカルや、オゾンなど活性種による分解除去方法などが広く用いられている。しかしながら吸着剤による吸着処理では吸着剤の吸着量には上限があり、定期的な吸着剤の交換が必要である。プラズマなど活性種を用いた処理方法では一定の大きさの発生装置が必要とし、また、稼動するには電力を必要とし簡便に利用できる方法ではなく、さらに農作物の保管においては、脱色等の見掛け上の変化が懸念されるため使用できない。
 また、上述のプラズマ法のような物理的に発生させた活性種で酸化分解する方法以外に、触媒を用いて気体中に含まれる成分を酸化分解する方法も広く用いられている。酸化触媒体としては、接触面積を広くするため、無機粒子である担体に活性物質(触媒粒子)を担持させた構造体を使用したり(特許文献1)、活性物質を多孔質化した膜で揮発性有機化合物を処理する方法が開示されている(特許文献4)。また、シリンダー状のメソ孔を有する無機メソポーラス担体の細孔内に触媒粒子を担持させている触媒体も開発されており、無機粒子の外表面に触媒粒子を担持させた触媒体や活性物質を多孔質化した膜と比較して、非常に広い比表面積を有し活性の高い触媒体が得られている(特許文献2、3)。
特開2003-080077号公報 特開2004-283770号公報 特開2007-326094号公報 特開2006-326530号公報
 しかしながら、上述のシリンダー状のメソポーラス担体に酸化触媒粒子を担持させた触媒体は、使用とともに触媒活性が低下していくという問題点がある。その原因ははっきりとは分かっていないが、細孔中に大気中の水分や酸化反応で生じた水が吸着することにより、触媒粒子と被処理気体との接触が阻害されて処理対象となる成分の分解反応が進行しない、あるいは細孔が吸着水で封止されてしまい、被処理気体の細孔内への流通自体が阻害されてしまうことなどが考えられる。
 本発明は活性をより長期に維持できる触媒体ならびにそれを用いたガス処理装置を提供することを目的とする。
 本発明の要旨は以下のとおりである。
[1] 複数のメソ孔を有する支持体と、
 前記支持体のメソ孔内に担持されている、貴金属、その酸化物、および前記貴金属と遷移金属との合金の少なくとも一つを含む酸化触媒粒子とを備え、
 前記支持体において、一のメソ孔が少なくとも一つの他のメソ孔と連通しているメソポーラス触媒体。
[2] アルコキシシランもしくは金属アルコキシドの加水分解物と、ポリオキシエチレンアルキルエーテル、ポリアルキレンオキシドトリブロックコポリマーもしくは陽イオン界面活性剤とを含有する溶液を乾燥および焼成して得られるメソ孔を有する支持体と、貴金属、その酸化物、および前記貴金属と遷移金属との合金の少なくとも一つに対応する化合物の溶液もしくはコロイド溶液とを接触させ、焼成および/または還元処理を行い前記支持体のメソ孔内に前記貴金属、その酸化物、および前記貴金属と遷移金属との合金の少なくとも一つを含む酸化触媒粒子を形成することにより得られるメソポーラス触媒体。
[3] 前記支持体が金属酸化物もしくはSiO2により形成されている[1]もしくは[2]に記載のメソポーラス触媒体。
[4] 前記金属酸化物が、TiO2、Fe2O3、ZrO2、およびCeO2からなる群から1種または2種以上選択される化合物である[3]に記載の触媒体。
[5] 前記貴金属が金、白金およびパラジウムからなる群から選択される1種または2種以上である[1]から[4]のいずれか一つに記載のメソポーラス触媒体。
[6] 前記支持体が粉体である[1]から[5]のいずれか一つに記載のメソポーラス触媒体。
[7] 前記メソ孔のBET法で測定した平均孔径が2nm以上10nm以下である[1]から[6]のいずれか一つに記載のメソポーラス触媒体。
[8] 前記酸化触媒粒子の平均粒径が1nm以上10nm以下である[1]から[7]のいずれか一つに記載のメソポーラス触媒体。
[9] 前記酸化触媒粒子の担持量が、当該酸化触媒粒子を含む支持体に対して0.1~30質量%である[1]から[8]のいずれか一つに記載のメソポーラス触媒体。
[10] 前記メソポーラス触媒体が気体の酸化反応用触媒である[1]から[8]のいずれか一つに記載のメソポーラス触媒体。
[11] 第1の電極と、第2の電極と、前記第1の電極と前記第2の電極の間に配置される誘電体とを少なくとも備え、前記第1の電極と前記第2の電極の間に電圧を印加して放電を発生させることによりプラズマを発生させるプラズマ発生部と、
 前記プラズマ発生部によって発生した前記プラズマが存在する領域に形成される、被処理気体が流れる流路と、
 前記流路に配置される[1]から[10]のいずれか一つに記載のメソポーラス触媒体と、を備えることを特徴とするガス処理装置。
[12] アルコキシシランもしくは金属アルコキシドの加水分解物、およびポリオキシエチレンアルキルエーテル、ポリアルキレンオキシドトリブロックコポリマーもしくは陽イオン界面活性剤を含有する溶液を乾燥および焼成して得られるメソ孔を有する支持体と、貴金属、その酸化物、および前記貴金属と遷移金属との合金の少なくとも一つに対応する化合物の溶液またはコロイド溶液とを接触させ、焼成および/または還元処理を行い前記支持体のメソ孔内に前記貴金属、その酸化物、および前記貴金属と遷移金属との合金の少なくとも一つを含む酸化触媒粒子を形成することを含むメソポーラス触媒体の製造方法。
 本発明によれば、活性をより長期に維持できる触媒体及びそれを用いたガス処理装置を提供することができる。
第1実施形態のガス処理装置200の断面の一部を模式的に表した図である。 第2実施形態のガス処理装置300の断面の一部を模式的に表した図である。 第3実施形態のガス処理装置400の断面の一部を模式的に表した図である。 第4実施形態のガス処理装置500の断面の一部を模式的に表した図である。 実施例1の触媒体が連通構造を有することを理解できる3次元トモグラフィー像である。 実施例1の触媒体が連通構造を有することを理解できる3次元トモグラフィー像である。 実施例1の触媒体が連通構造を有することを理解できる3次元トモグラフィー像である。
 以下、本発明の実施形態について詳述する。
 本実施形態のメソポーラス触媒体(以下、単に触媒体ともいう)は、通気性を有する部材であり、支持体の表面において開口しており気体が通気可能な複数のメソ孔径の細孔(メソ孔)を有する多孔質である支持体と、当該支持体のメソ孔内に担持された貴金属、貴金属酸化物および貴金属と遷移金属との合金の少なくとも一つを含む酸化触媒粒子(以下、酸化触媒粒子という場合もある)とを含む。本実施形態の触媒体においては支持体が含む一のメソ孔が少なくとも一つの他のメソ孔と連通している。
 本実施形態の触媒体は、有機ガスなどの処理対象となる成分を酸化反応で二酸化炭素や水などに分解処理し、大気中に排出できる。本実施形態の触媒体において処理可能な気体としては、特に限定されないが、タバコ副流煙中の一酸化炭素や、農産物や花卉などの植物から発せられる化合物、自動車の内装材、住宅の建材・内装材、家電の筐体・部材などの素材から揮発する物質、塗料、接着剤、洗浄剤などの有機溶剤から揮発する物質などが挙げられる。具体的には、メタン、エタン、プロパン、ブタン、エチレン、プロピレン、イソプレン、ベンゼン、キシレン、トルエン、エチルベンゼン、スチレン、α-ファルネセン、β-ファルネセンなどの炭化水素類、メタノール、エタノール、プロパン-1-オール、ブタン-1-オール、ペンタン-1-オール、ヘキサン-1-オール、ヘプタン-1-オール、オクタン-1-オール、トランス-2-ヘキセノール、シス-2-ヘキセノール、トランス-3-ヘキセノール、シス-3-ヘキセノール、リナロール、ベンジルアルコールなどのアルコール類、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブタナール、ペンタナール、ノナナール、ベンズアルデヒド、ヘキサナール、トランス-2-ヘキセナール、シス-2-ヘキサナール、トランス-2-オクテナール、トランス-2-ノネナール、シス-2-ノネナール、トランス,シス-2,6-ノナジエナール、トランス,シス-2,4-デカジエンナールなどのアルデヒド類、アセトン、エチルメチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノンなどのケトン類、蟻酸メチル、酢酸エチル、酢酸ペンチル、酢酸イソペンチル、酢酸オクチル、酢酸ヘキシル、酢酸ベンジル、酪酸メチル、酪酸エチル、酪酸ペンチル、サリチル酸メチル、カプロン酸エチル、吉草酸ペンチル、エチル-2-メチルプロパネート、エチルブタノエート、メチル-2-メチルブタノネート、エチル-2-メチルブタノエート、エチル-3-メチルブタノエート、メチル-3-ヒドロキシブタノエート、メチルヘキサノエート、エチルヘキサノエート、ヘキシルヘキサノエート、メチル-3-ヒドロキシヘキサノエート、オクチルヘキサノエート、エチルオクタノエート、メチル-3-ヒドロキシオクタノエート、ニコチン酸エチル、γ-ヘキサラクトン、γ-オクタラクトン、δ-オクタラクトン、γ-デカラクトン、δ-デカラクトン、γ-ドデカラクトン、δ-ドデカラクトンなどのエステル類、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、2-メチルプロパン酸、2-メチルブタン酸などのカルボン酸類、トランス-ネロリドール、シス-ネロリドール、ファルネソールなどのテルペン類やオイゲノール、バニリンなどのフェノール類、アンモニアやトリメチルアミン、トリエチルアミンなどのアミン類、メタンチオール、エタンチオール、プロパンチオールなどのチオール類、硫化メチル、二硫化メチル、ジメチルスルホキシドなどの硫黄有機化合物などが例示される。
 このうち、エチレンや一酸化酸素などの分解においては、本実施形態の触媒体を用いるときに触媒活性がより長時間維持されるため、好ましい。また、エチレンを分解対象とするときにはSiOにより支持体が形成され、酸化触媒粒子が白金、白金酸化物、白金と遷移金属との合金、パラジウム、パラジウム酸化物およびパラジウムと遷移金属との合金からなる群から選択される1種または2種以上を含むことがより好ましく、白金、白金酸化物および白金と遷移金属との合金からなる群から選択される1種または2種以上を含むことがさらにより好ましく、白金酸化物を含むことがさらにより一層好ましい。一酸化炭素を分解対象とするときには金属酸化物により支持体が形成され、酸化触媒粒子が金および/または金と遷移金属との合金を含むことがより好ましい。
 本明細書において、メソ孔とはBET法で求めた直径が2nm以上50 nm 以下である細孔であり、触媒体の表面における開口部が他の開口部と連通している細孔を指す。メソ孔の形状やその開口部の位置関係などは特に限定されない。
 本実施形態の触媒体において、一のメソ孔は、支持体内部で分岐して他のメソ孔と連通している(以下、連通構造ともいう)。なお、支持体が連通構造を有するか否かは3次元透過型電子顕微鏡(TEM)により確認することができる。
 本実施形態の触媒体は、粉体、粒子体、膜状など様々な形態とすることができる。このうち、膜状、特に膜厚1000nm以下の膜状の形態を有するとさらに触媒効率の低下が生じにくくなるので好ましい。また、粉体であると、様々な形状形態で使用できるので好ましい。粉体の場合、その大きさは特に限定されず、当業者が適宜設定できる。
 被処理気体を本実施形態の触媒体に曝すことによって、被処理気体が触媒体内部へ拡散して、細孔内の酸化触媒粒子と接触し、有機ガス等の処理対象となる成分が酸化分解される。
 従来の粉末状のメソポーラス触媒体は、メソ孔が連通構造を有さず、1のメソ孔における支持体の上面の開口部と下面の開口部が直線状に通じているシリンダー構造などを有していた。この場合、メソ孔に吸着水などによる閉塞部が1箇所でも存在するとこのメソ孔の通気性は失われるが、特に粉体ではメソ孔内部に気流までの距離が相対的に長くなる部位があり、この部位において粉体内部に吸着した水分の脱離が起き難い状態になっている。そのため、従来のメソポーラス触媒体においては、吸着水によるメソ孔の閉塞が生じ易く、触媒活性が低下するものと推察される。
 一方、連通構造は支持体内部においてメソ孔が互いにつながっているので支持体内部に水分が付着しても通気性が損なわれにくく、支持体メソ孔内に担持された酸化触媒粒子と被処理気体との接触が妨げられにくい。その結果、粉体、顆粒状、膜状など触媒体の形状を問わず、触媒活性をより長期に維持できる。
 なお、本実施形態の触媒体においては、連通構造を有し本発明の目的を奏することができる限り、メソ孔の一部に他のメソ孔と連通しないものが含まれていてもよい。
 本実施形態の触媒体において、メソ孔の径は上述の定義を満足する限り特に限定されないが、BET法による平均直径が2nm以上10nm以下であることが、担持される酸化触媒粒子の粒径も当該範囲内になり、より高活性の触媒体が得られるので好ましい。
 なお、本実施形態に係る支持体が有する細孔の直径はJIS-Z-8831に基づくBET法による自動比表面積/細孔分布測定装置を用いて算出した値である。
 酸化触媒粒子は、酸化反応を促進する触媒機能を有する貴金属、貴金属酸化物および貴金属と遷移金属との合金のうち少なくともいずれか1種を含む粒子であれば、特に限定されない。
 本明細書において、貴金属とは金、銀および白金族のルテニウム、ロジウム、パラジウム、オスミウム、イリジウムおよび白金を指す。貴金属酸化物は上述の貴金属の酸化物およびその水和物であり、具体的にはAu2O3、Ag2O、AgO、Ag2O・Ag2O3、RuO2、RuO4、Rh2O3、PdO、OsO2、OsO4、IrO2、Ir2O3・nH2O、PtO2、PtO2・H2O、白金黒等を挙げることができる。
 合金の遷移金属は貴金属と合金を形成できれば特に限定されないが、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、Wなどが挙げられる。
 好ましくは酸化触媒能がより高い、金、白金、パラジウム、これらの酸化物、および金、白金およびパラジウムの少なくともいずれか1つと遷移金属との合金からなる群から選択される1種または2種以上を含むように酸化触媒粒子が構成されるのがよい。この場合、好適な酸化触媒粒子の構成成分として、Au、Pt、Pd、PdO、Au2O3、PtO2、PtO2・H2O、および白金黒からなる群から選択される1種または2種以上から構成される粒子が挙げられる。
 酸化触媒粒子の平均粒径が10nm以下(より好ましくは1nm以上10nm以下、さらにより好ましくは1nm以上10nm未満、さらにより一層好ましくは1nm以上6nm以下)であれば、酸化触媒粒子の比表面積が増大し触媒活性が飛躍的に向上して被処理気体中の処理対象となる成分の分解効率がさらに高まるので、好ましい。
 なお、酸化触媒粒子の平均粒径は透過型電子顕微鏡(TEM)の画像写真での粒子サイズを算出し、その平均値として得ることができる。
 酸化触媒粒子は当該酸化触媒粒子を含む支持体に対して、0.1~30質量%担持されることが好ましく、0.5~20質量%とするのがより好ましく、0.5~10質量%がさらにより好ましい。30質量%よりも多く担持させると、酸化触媒粒子同士が凝集しやすくなり、範囲内にある場合と比較して触媒活性が減少する。0.1質量%未満では、範囲内にある場合と比較して、十分な触媒活性が得られないので好ましくない。
 なお、本実施形態の触媒体においては、酸化触媒粒子に加えて、助触媒粒子や各種金属元素などを含んでいてもよく、特に限定されない。具体的には、助触媒粒子と酸化触媒粒子が混在するものや、各種金属元素を酸化触媒粒子と複合化させた複合粒子からなる複合触媒であってもよい。酸化触媒粒子単独の場合や酸化触媒粒子に助触媒を混合させた場合には、酸化触媒粒子が上述の大きさの範囲内であればよい。また、他の金属元素を複合した複合粒子の場合には、複合粒子の大きさが上述の大きさの範囲内であればよい。助触媒または複合触媒において用いる触媒粒子以外の金属粒子(ナノ粒子)としては卑金属およびそれらの酸化物などが挙げられる。これらの貴金属およびその酸化物、卑金属およびその酸化物の粒子は2種以上混合されて、支持体細孔内表面に担持されてもよい。
 本実施形態に係るメソ孔を有する支持体は、鋳型となる化合物を用いてメソ孔を形成し、当該化合物を加熱除去する工程を含んで製造される場合があることも考慮すると、加熱温度以上で劣化を生じない材料で構成されていることが好ましい。
 本実施形態に係る支持体は、金属酸化物から形成することができる。金属酸化物から構成される支持体は、触媒粒子に作用し、触媒体の触媒活性を高めることができる。
 金属酸化物は、金属の酸化物であり、金属とは、周期表における、1族(Hを除く)、2~12族、13族(Bを除く)、14族(C及びSiを除く)、15族(N、P及びAsを除く)、及び16族(O、S、Se、及びTeを除く)に属する元素、並びにランタノイド及びアクチノイドをいう。金属酸化物としては、例えば、γ-Al、α-Al、θ-Al、η-Al、アモルファスのAl、TiO、ZrO、SnO、MgO、ZnO、Bi、In、MnO、Mn、Nb、FeO、Fe、Fe、Sb、CuO、CuO、NiO、Ni、Ni、CoO、Co、Co、WO、CeO、Pr11、Y、In、PbO、ThOなどの金属酸化物が挙げられる。また、金属酸化物は、例えば、Al-TiO、Al-ZrO、Al-CaO、Al-CeO、Al-Fe、TiO-CeO、TiO2-ZrO、TiO-WO、ZrO-WO、SnO-WO、CeO-ZrO、Al-TiO-ZrO、セリウム・ジルコニウム・ビスマス複合酸化物などの2種以上の金属を含む複合酸化物であってもよい。尚、セリウム・ジルコニウム・ビスマス複合酸化物は一般式Ce1-X-YZrBi2-δで表わされる固溶体であり、X、Y、δの値がそれぞれ0.1≦X≦0.3、0.1≦Y≦0.3、0.05≦δ≦0.15の範囲である。
 また、支持体はSiO2で形成されていてもよい。
 これらの支持体の材質は処理対象のガス等の種類や触媒体を適用する機器や諸環境条件に応じて選択すればよい。SiO2、TiO2、Fe2O3、ZrO2、CeO2は触媒粒子をより強固に担持できるとともに、基材を用いる場合に該基材とより強固に接着できるのでより望ましい。
 上述のとおり、本実施形態の触媒体が有する支持体の形状は特に限定されず、例えば粉体、顆粒状、膜状などとすることができる。一方で、支持体の形状は膜状であることが好ましい。
 支持体が膜状である場合、酸化触媒粒子が存在するメソ孔と被処理気体の気流までの距離は、粉体状など他の形状の触媒体と比較して短い。そのため、膜状の触媒体のメソ孔内に気体中の水分が吸着した場合、被処理気体気流への濃度勾配が発生し、気流への吸着水の再拡散が進行し、結果として吸着水が一定量に抑制される。それによって、支持体が膜状の形状を有するときにはメソ孔の閉塞がさらに生じにくい構造となっている。
 なお、本明細書において、膜状の形状とは、空間を隔てたり、あるいは物体の少なくとも一部を覆ったりしている層のような形状を意味する。
 本実施形態の触媒体は例えば、基材上に膜状に形成させることができる。このとき、基材が通気性を有するか否かは特に限定されない。通気性のない基材上に本実施形態の触媒体が配置されている場合には、触媒体表面にエンボス加工などにより凹凸が形成されていてもよい。触媒体の表面に凹凸が形成されていると、流通する気体との接触面積が増加し、被処理気体の酸化反応をより促進することができる。
 本実施形態の触媒体がその表面において膜状に形成される基材がフィルター状やメッシュ状など通気可能な基材であれば、本実施形態の触媒体の厚み方向に被処理気体を流通させても構わない。また、基材が板状などの形状を有する場合には基材の両面に本実施形態の触媒体が形成されていてもよく、いずれの形態で用いるかは本実施形態の触媒体を組み込む装置の設計等に応じて決めればよい。
 本実施形態の触媒体が膜状の形状を有する場合にその膜厚は50nm以上1000nm以下であることが望ましい。50nm未満であると、触媒の絶対量が低減するので、範囲内にある場合と比較して、被処理気体中の有機ガスを分解し難くなる。1000nmより大きくなると、被処理気体から離れた位置に存在するメソ孔に吸着した水分は再放出されにくくなり、細孔内に吸着する水分量が増加し、酸化触媒粒子の作用を阻害する。範囲内にある場合と比較して、当該触媒体の触媒効率が低下する。
 なお、本実施形態の触媒体が膜状の形状を有するときの膜厚は膜の断面をTEM観察し、断面画像のサイズを測ることにより測定することができる。
 本実施形態の触媒体は基材上に形成されるようにすることができる。基材上に本実施形態の触媒体を膜状に形成する場合には、より容易に触媒体の膜厚を薄くすることができるため、好ましい。基材は、上述のように、板状など通気性のない構造でも通気性を有する構造でもよい。通気性を有する構造としては、例えば、パンチング加工により多数の貫通孔が形成されているシート状のものや、繊維状、布状、メッシュ状で、織物、網物、不織布などから構成される繊維構造体(フィルター状)を挙げることができる。その他、使用目的に合った種々の形状及びサイズ等のものを適宜利用できる。
 膜状の触媒体が形成される基材には膜状に支持体を形成する際に加熱する場合があるため、当該加熱温度に耐える耐熱性を有する材料を用いることが望ましい。具体的には金属材料、セラミックス、ガラス、炭素繊維、炭化珪素繊維や耐熱性有機高分子材料などが好ましく、さらには金属、金属酸化物、ガラスがより好ましい。
 基材に用いられる金属材料としては、タングステン、モリブデン、タンタル、ニオブ、TZM(Titanium Zirconium Molybdenum)、W-Re(Tungsten-rhenium)などの高融点金属や、銀、ルテニウムなどの貴金属及びそれらの合金または酸化物、チタン、ニッケル、ジルコニウム、クロム、インコネル、ハステロイなどの特殊金属、アルミニウム、銅、ステンレス鋼、亜鉛、マグネシウム、鉄などの汎用金属およびこれら汎用金属を含む合金またはこれら汎用金属の酸化物を用いることができる。また、各種めっき及び真空蒸着や、CVD法や、スパッタ法などにより、上述した金属、合金または酸化物の被膜が形成された部材を金属材料として用いてもよい。
 なお、上述した金属表面及びその合金表面には、通常、自然酸化薄膜が形成されており、支持体をシラン化合物から形成する場合、この自然酸化薄膜を利用して基材と支持体とを強固に固定させることができる。この場合には、予め、酸化薄膜の表面に付着している油分や汚れを通常の公知の方法により除去することが、安定に、かつ、強固に固定するためには好ましい。また、自然酸化膜を利用する代わりに、金属表面又は合金表面に、公知の方法により化学的に酸化薄膜を形成したり、陽極酸化などの電気化学的な公知の方法により酸化薄膜を形成してもよい。
 さらに、基材に用いられるセラミックスとしては、土器、陶器、石器、磁器などの陶磁器、ガラス、セメント、石膏、ほうろう及びファインセラミックスなどのセラミックスを挙げることができる。構成するセラミックスの組成は、元素系、酸化物系、水酸化物系、炭化物系、炭酸塩系、窒化物系、ハロゲン化物系、及びリン酸塩系などを挙げることができ、また、それらの複合物でもよい。
 また、基材に用いられるセラミックスとしては、さらに、チタン酸バリウム、チタン酸ジルコン酸鉛、フェライト、アルミナ、フォルステライト、ジルコニア、ジルコン、ムライト、ステアタイト、コーディエライト、窒化アルミニウム、窒化ケイ素、炭化ケイ素、ニューカーボン、ニューガラスなどや、高強度セラミックス、機能性セラミックス、超伝導セラミックス、非線形光学セラミックス、抗菌性セラミックス、生分解性セラミックス、及びバイオセラミックスなどのセラミックスを挙げることができる。
 また、基材に用いられるガラスとしては、ソーダ石灰ガラス、カリガラス、クリスタルガラス、石英ガラス、カルコゲンガラス、ウランガラス、水ガラス、偏光ガラス、強化ガラス、合わせガラス、耐熱ガラス・硼珪酸ガラス、防弾ガラス、ガラス繊維、ダイクロガラス、ゴールドストーン(茶金石・砂金石・紫金石)、ガラスセラミックス、低融点ガラス、金属ガラス、及びサフィレットなどのガラスを挙げることができる。
 また、基材にはその他に、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、及びポルトランドセメントに高炉スラグ、フライアッシュ、シリカ質混合材を添加した混合セメントである高炉セメント、シリカセメント、及びフライアッシュセメントなどのセメントを使用することも可能である。
 また、基材にはその他に、チタニア、ジルコニア、アルミナ、セリア(酸化セリウム)、ゼオライト、アパタイト、シリカ、活性炭、珪藻土などを使用することができる。さらに、基材には、クロム、マンガン、鉄、コバルト、ニッケル、銅、錫などの金属酸化物を用いることも可能である。
 さらに、基材には、ポリイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアラミド、ポリベンゾチアゾール、ポリベンゾオキサゾール、ポリベンゾイミダゾール、ポリキノリン、ポリキノキサリン、フッ素樹脂などや、フェノール樹脂やエポキシ樹脂などの熱硬化性樹脂などの当業者に公知な耐熱性有機高分子材料を用いることも可能である。
 次に、本実施形態の触媒体を得る方法の一例について説明する。
 本実施形態の触媒体は、例えば、アルコキシシランもしくは金属アルコキシドの加水分解物、および界面活性剤を含有する溶液を乾燥および焼成して得られるメソ孔を有する支持体と、貴金属、その酸化物、または貴金属と遷移金属との合金の少なくとも一つに対応する化合物の溶液もしくは該貴金属化合物のコロイド溶液とを接触させ、焼成および/または還元処理を行い支持体のメソ孔内に貴金属、その酸化物、または貴金属と遷移金属との合金の少なくとも一つを含む酸化触媒粒子を形成することにより得ることができる。
 当該方法においては、まず、支持体を形成する。
 メソ孔を有する支持体は、例えば、メソ孔の鋳型として作用する物質を内部に含有している支持体の前駆体を形成し、その後鋳型として作用する物質を分解除去することでメソ孔を形成して得ることができる。
 当該方法の一例について説明する。まず、鋳型となる界面活性剤とアルコキシシランもしくは金属アルコキシドの加水分解物を含む溶液(以下、前駆体溶液と称する)を調製する。具体的には、例えば、界面活性剤を溶解した溶液にアルコキシシランもしくは金属アルコキシドを加え、pH調整を行ってアルコキシシランもしくは金属アルコキシドを加水分解する。これによりシラノール基を有するか、もしくは金属水酸化物である加水分解物を生成させる。界面活性剤は溶液中でミセルを形成しメソ孔の鋳型となる。この前駆体溶液を加熱することで溶媒を揮散させるとともに、シラノール基もしくは金属水酸化物を縮合硬化させて、支持体の前駆体を形成させる。その後、さらに300℃以上の高温に焼成することで、前駆体中の鋳型である界面活性剤を分解揮発させることにより除去し、メソ孔を有する支持体が得られる。
 なお、膜状の支持体は、例えば前駆体溶液を基材に塗布後に加熱して溶媒を揮散、縮合硬化を行うなどして得ることができる。また、前駆体溶液をスプレードライヤーなどで粒子状としてその後に溶媒揮散、縮合硬化を行えば、粉体の支持体が得られる。また、粉体の支持体は上記の工程で固体の支持体を得た後、粉砕して得てもよい。
 前駆体溶液は、例えば、(1)アルコキシシランもしくは金属アルコキシドの加水分解物、(2)溶媒(溶剤)、(3)界面活性剤の3つの成分を含んで構成することができる。アルコキシシランもしくは金属アルコキシドについて溶液中で加水分解処理を行い、加水分解物を得る場合には、水が必要なので、溶媒は水や、水とエタノールやメタノールなどのアルコール類との混合溶媒とすることが好ましい。また、アルコキシシランもしくは金属アルコキシドの加水分解処理のための触媒が溶液中にさらに含まれるようにしてもよく、当該触媒としては硝酸、塩酸等の酸を用いることが好ましい。
 界面活性剤やアルコキシシランもしくは金属アルコキシドの割合は特に限定されず、適宜設定でき、特に限定されない。界面活性剤/アルコキシシランもしくは金属アルコキシドのモル比を変えることで、得られる支持体における細孔体積率、多孔度を制御することができる。
 なお、膜状の支持体を形成する場合は特に、基材への塗布の前に前駆体溶液中に沈殿物を生成させないことがより均一な膜厚を有する膜形成の観点から好ましく、pHが酸性のアルコールを用いることで前駆体の沈殿を回避できる。別法としては、水とアルコキシシランもしくは金属アルコキシドのモル比だけを調節するかpH調整と共にモル比を調節し、或いはアルコールを添加し、またはモル比調節とアルコール添加の両方を行うことで沈殿を回避することもできる。
 界面活性剤としては例えば、非イオン性界面活性剤や陽イオン界面活性剤が使用できる。
 非イオン性界面活性剤としては、例えば、多価アルコール脂肪酸エステル、ポリオキシアルキレン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルやポリアルキレンオキシドブロックコポリマーなどが使用できる。
 このうち、非イオン性界面活性剤としては、ポリオキシエチレンエーテルやポリアルキレンオキシドブロックコポリマーを使用すると触媒活性の低下がより生じにくい触媒が得られるので、望ましい。また、同様の理由から、陽イオン界面活性剤が用いられることも好ましい。
 ポリオキシエチレンアルキルエーテルとして具体的には、C12H25(OCH2CH2)nOH(nは2~100)、C16H33(OCH2CH2)OH(nは2~100)、C18H37(OCH2CH2)OH(nは2~100)などが使用でき、単独でも混合物でも構わない。Brij(登録商標)56、Brij76、Brij78などの市販のポリオキシエチレンエーテルも使用できる。
 ポリアルキレンオキシドブロックコポリマーとしてはエチレンオキサイドとプロピレンオキサイドのポリアルキレンオキシドトリブロックコポリマーなどが挙げられ、より具体的にはPluronic(登録商標)L121、P123などのプルロニック系界面活性剤などが例示される。
 陽イオン界面活性剤としては塩化ジステアリルジメチルアンモニウム、塩化ベンザルコニウム、塩化セチルピリジニウム、臭化ヘキサデシルトリメチルアンモニウム、塩化ジデシルジメチルアンモニウム、塩化デカリニウムなどが例示される。
 界面活性剤の分子鎖長がメソ孔径に影響するので、目的のメソ孔の孔径に応じて界面活性剤を選択すればよい。また1,3,5-トリメチルベンゼン、1,3,5-トリエチルベンゼン、1,3,5-トリイソプロピルベンゼン、n-ヘプタンなどの疎水性化合物を前駆体溶液に添加するようにしてもよく、当該疎水性化合物は前駆体溶液中のミセル径を増大させられるので、メソ孔径の調製に使用することができる。
 アルコキシシランとしては、例えばテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシラン、オクチルトリエトキシシラン、デシルトリメトキシシランなどを挙げることができる。
 金属アルコキシドとしては、例えばテトラプロポキシアルミニウム、テトラプロポキシすず、テトラプロポキシチタニウム、テトラプロポキシジルコニウムなどを挙げることができる。 
 上述のとおり、基材上に膜状の支持体を形成させる場合は、基材上に前駆体溶液を塗布して膜状の支持体を形成する。基材に前駆体溶液を塗布する方法は、前駆体溶液を均一に薄く塗布できれば方法は問わないが、スピンコート法や基材を前駆体溶液に浸漬後に不要な溶液を吹き飛ばすDip&ブロー法などが適用でき、塗布する基材の形状などに合わせて選択すればよい。
 また、前駆体を形成した後に鋳型分子を除去するときの加熱条件も特に限定されず、例えば300~600℃で前駆体を加熱すればよい。
 次に、酸化触媒粒子を支持体のメソ孔に担持させ、本実施形態の触媒体を得る。まず、支持体と担持させる酸化触媒粒子に含有される貴金属、その酸化物、または貴金属と遷移金属との合金の少なくとも一つに対応する化合物の溶液もしくはコロイド溶液(以下、これらを単に貴金属化合物溶液とも称する)とを接触させて、支持体のメソ孔に貴金属化合物溶液を導入する。貴金属と遷移金属との合金が酸化触媒粒子を含まれるようにする場合は、貴金属に対応する化合物に加えて遷移金属の塩をさらに溶解した溶液を貴金属化合物溶液として用いるなどすればよい。その後、焼成および/または還元処理を行いメソ孔内に酸化触媒粒子を形成することにより、本実施形態の触媒体を得ることができる。
 具体的には、例えば、貴金属化合物溶液に支持体を浸漬後、焼成および/または還元処理を行うようにすることができる。
 より具体的には、貴金属化合物溶液を20~90℃、好ましくは50~70℃に加温、攪拌しながら、pH3~10、好ましくはpH5~8になるようにアルカリ溶液を用いて調整する。次いで、支持体を貴金属化合物溶液に浸漬し、続いて、減圧脱気処理を行い細孔に貴金属化合物溶液を浸透させる。その後、200~600℃で加熱焼成を行うことで細孔内に貴金属等を含む酸化触媒粒子を得ることができる。
 また、上述のように細孔に貴金属化合物溶液を浸透させた後に、200~600℃の焼成処理と100~300℃の水素気流に晒す処理を行う水素還元法や、水素化ホウ素ナトリウム溶液に浸漬する液相還元法など公知の還元操作を実施することでも、細孔内に、酸化触媒粒子を形成させることができる。なお、貴金属化合物溶液に含有させる化合物の種類によっては、上述の公知な還元操作を実施することなく200~600℃の加熱焼成処理のみで、酸化触媒粒子を細孔内に得ることもできる。また、貴金属化合物溶液に含まれる化合物の還元が一部に留まり、メソ孔内の酸化触媒粒子に貴金属単体と貴金属酸化物が共存してもよい。
 酸化触媒粒子を構成している貴金属、その酸化物、または貴金属と遷移金属との合金に対応し、貴金属元素を含む化合物としては、例えば、金化合物としてHAuCl4・4H2O、NH4AuCl4、KAuCl4・nH2O、KAu(CN)4、Na2AuCl4、KAuBr4・2H2O、NaAuBr4などが、白金化合物については塩化白金酸、ジニトロジアンミン白金、ジクロロテトラアンミン白金などが、パラジウム化合物についてはジニトロジアンミンパラジウム、塩化パラジウム酸アンモニウムなどが挙げられる。
 貴金属化合物溶液における貴金属化合物の濃度は特に限定されないが、1×10-2~1×10-5mol/Lとして溶液を調製するのが、生成した酸化触媒粒子が凝集しにくいので好ましい。
 貴金属化合物溶液に含まれ得る遷移金属の塩としては、溶液に溶解でき、上述の貴金属もしくは貴金属酸化物に対応する金属化合物と共存しても沈殿を生じない化合物であれば特に限定されず、用いる遷移金属の塩化物、臭化物などのハロゲン化塩、硝酸塩、炭酸塩、重炭酸塩、カルボン酸塩などが例示される。遷移金属塩の濃度は特に限定されないが、1×10-2~1×10-5mol/Lとして溶液を調製するのが、生成した酸化触媒粒子が凝集しにくいので好ましい。
 以上、本実施形態の触媒体は、通気性を有し、連通構造を有する支持体におけるメソ孔で貴金属、貴金属酸化物および貴金属と遷移金属との合金のいずれか一種以上を含む酸化触媒粒子を担持する構成を備えることにより、従来と比較して活性をより長期に維持することができる。
 また、本実施形態の触媒体は室温(23.4℃)より低い温度下においても、エチレンなどを分解除去できる。さらに、触媒体の大きさなどにもよるが、0.5ppm程度の濃度でも分解除去することができる。
 本実施形態のメソポーラス触媒体は、有機ガス成分等を除去可能な部材や装置を構成するために用いることができる。
 当該部材や装置としては、空気清浄機、エアコン、冷蔵庫などのフィルター類や、倉庫やショーケース内に設置する空気浄化フィルター、青果物や花卉類の包装部材、あるいは内燃機関などの排気ガス浄化装置や燃料電池の水蒸気改質器などを挙げることができる。さらに、青果物や花卉類について生食、食品加工、または観賞などの各種用途に耐え得る状態をより持続させるために使用される物品(鮮度保持剤)において、本実施形態のメソポーラス触媒体を備えるようにしてもよい。
 次に、本実施形態の触媒体が用いられるガス処理装置について説明する。なお、以下においては本実施形態の触媒体の一例として膜状の触媒体(触媒体膜)を用いる場合を例に挙げて説明する。
 図1は、第1実施形態のガス処理装置200の断面の一部を模式的に表した図である。本実施形態のガス処理装置200は、ガス処理装置200に対して矢印A方向に供給される被処理気体中の処理対象となる成分を、ガス処理装置200において発生させるプラズマと触媒体膜100の機能によって、酸化して分解する装置である。
 ガス処理装置200は、印加電極11と接地電極12と誘電体13とを備えるプラズマ発生部を有し、印加電極11には、電源部である(高圧)電源14が接続されている。接地電極12と印加電極11は、互いに対向して配置されており、接地電極12と印加電極11との間に誘電体13が配置されている。誘電体13は、接地電極12にのみ密着しており、印加電極11と離隔している。ガス処理装置200において、これら印加電極11と接地電極12と誘電体13は、プラズマを発生させるための部材・装置(プラズマ発生部)であり、電源14によって印加電極11と接地電極12との間に電圧が印加されることで、印加電極11と接地電極12と誘電体13によって、印加電極11と誘電体13との間に放電による低温プラズマ反応層(プラズマが存在する領域)が形成される。なお、印加電極11と接地電極12のいずれか一方が第1の電極であり、他方が第2の電極である。また、他の実施形態において印加電極11と接地電極12がそれぞれ複数組み合わせられる場合にも、いずれか一方の種類の複数の電極それぞれが第1の電極であり、他方の種類の複数の電極それぞれが第2の電極である。また、誘電体13は、接地電極12と触媒体膜100との間にのみ設けられているがこれに限定されず、例えば接地電極12と触媒体膜100との間に加えて、印加電極11と触媒体膜100との間に設けられてもよい。
 印加電極11は、電源14によって電圧が印加される電極である。接地電極12は、接地線12aによって接地されている。そして、印加電極11、接地電極12および誘電体13は、被処理気体が通過できる通気性を有する構造である。具体的には、印加電極11と接地電極12と誘電体13の構造としては、格子状や簾状、パンチング加工などによる多孔状やエキスパンドメッシュ状、ハニカム状の構造が挙げられ、これらの構造を2種以上組み合わせた構造であってもよい。印加電極11、接地電極12については、針状の構造でもよい。また、印加電極11と接地電極12と誘電体13は、上記した形状・構造のうち、同じ形状・構造であってもよい。図1では、印加電極11はメッシュのように開口が小さく多数存在し、接地電極12と誘電体13はパンチングによる多孔状のように開口が大きく少数存在している。
 矢印A方向からプラズマ発生部に供給される被処理気体は、印加電極11に形成される開口を介して、印加電極11と誘電体13との間に形成される低温プラズマ反応層に到達する。低温プラズマ反応層に到達した被処理気体は、プラズマ発生部の外部に直接排出されるか、誘電体13に形成される開口と接地電極12に形成される開口を介して、プラズマ発生部の外部に排出される。つまり、プラズマ発生部には、印加電極11と接地電極12と誘電体13に形成される開口、及び、印加電極11と誘電体13との間に形成される低温プラズマ反応層によって構成される流路が形成されている。
 プラズマ発生部に形成される流路のうち、低温プラズマ反応層(印加電極11と誘電体13との間)には、誘電体13と印加電極11に密着する触媒体膜100が配置されている。このため、流路を流れて低温プラズマ反応層に到達した被処理気体は、メソ孔を介して触媒体膜100を通過することができる。従って、被処理気体中の処理対象となる成分は、プラズマが作用する触媒体膜100の機能によって、酸化されて分解される。
 ガス処理装置200に用いられる印加電極11および接地電極12としては、電極として機能する材料を用いることができる。印加電極11、接地電極12の材料としては、例えば、Cu、Ag、Au、Ni、Cr、Fe、Al、Ti、W、Ta、Mo、Coなどの金属やその合金を用いることができる。
 誘電体13は、絶縁体となる性質を有していればよい。誘電体13の材料としては、例えば、ZrO、γ-Al、α-Al、θ-Al、η-Al、アモルファスのAl、アルミナナイトライド、ムライト、ステアライト、フォルステライト、コーディエライト、チタン酸マグネシウム、チタン酸バリウム、SiC、Si、Si-SiC、マイカ、ガラスなどの無機材料や、ポリイミド、液晶ポリマー、PTFE(polytetrafluoro ethylene)、ETFE(ethylenetetrafluoroethylene)、PVF(polyvinylfluoride)、PVDF(polyvinylidene difluoride)、ポリエーテルイミド、ポリアミドイミドなどの高分子材料が挙げられる。耐プラズマ性、耐熱性を考慮すると無機材料がより好ましい。
 なお、上述したように触媒体膜100が誘電体としての機能も備える場合(例えば、触媒体の一部が絶縁体であるような場合)、触媒体膜100を誘電体としても利用できるため、誘電体13を備えなくてもよい。また、本実施形態のガス処理装置200において、流路に流れる被処理気体の量や、流速などの使用条件は、特に限定されない。例えば、ガス処理装置200に送風機を接続し、所定量の被処理気体を所定の流速で流路に送ってもよく、ガス処理装置200を被処理気体中に放置し、自然に被処理気体が流路に流れ込むだけであってもよい。
 電源14は、高電圧を印加可能な電源である。電源14としては、交流高電圧、パルス高電圧などの高電圧電源、DCバイアスに交流あるいはパルスを重畳させた電源などを用いることができる。交流高電圧の例としては、正弦波交流、矩形波交流、三角波交流、鋸波交流などが挙げられる。この電源14により、印加電極11と接地電極12と誘電体13によって形成される放電空間にプラズマが発生するように、印加電極11と接地電極12との間に所定の電圧を印加すればよい。電源14による印加電圧は、被処理気体に含まれる処理対象となる成分の濃度などにより変動するが、通常1~20kV、好ましくは2~10kVとすることができる。なお、プラズマを発生させるために電源14から供給される電力により発生させる放電の種類としては、プラズマを発生させることができれば特に限定されないが、たとえば無声放電や沿面放電やコロナ放電やパルス放電などであればよい。また、これらの放電が2種類以上組み合わされて発生してプラズマを発生させてもよい。
 また、電源14の出力周波数は、高周波数が好ましく、具体的には0.5kHz以上とすることができる。さらには0.5kHz以上30kHz以下が好ましく、より好ましくは1kHz以上20kHz以下がよい。周波数が0.5kHzよりも小さいと中間生成物やオゾンの生成量が増えることがあり、30kHzよりも大きいと処理対象とするいずれの成分についても酸化による分解が抑制されることがある。
 なお、本実施形態では、誘電体13を接地電極12に密着させた構成としたが、これに限られない。プラズマを発生させることができればよく、誘電体13が、少なくとも印加電極11と接地電極12のいずれかに密着していればよい。また、印加電極11と接地電極12のそれぞれに誘電体13を密着して配置し、その2つの誘電体13の間に触媒体膜100を備える構成にしてもよい。さらに、触媒体膜100を上述した基材上に形成する場合、誘電体13を基材としても利用できる。
 次に、第2実施形態のガス処理装置300を説明する。本実施形態において、第1実施形態で説明した部材と同一の機能を有する部材については、同一の符号を用い、詳細な説明は省略する。以下、第1実施形態と異なる点について、主に説明する。
 図2は、第2実施形態のガス処理装置300の断面の一部を模式的に表した図である。本実施形態のガス処理装置300は、無声放電によりプラズマを発生させる。本実施形態のガス処理装置300は、印加電極11と接地電極12との間に、対向する2つの誘電体13が配置される積層構造であり、それぞれの誘電体13は、印加電極11と接地電極12に密着している。
 ガス処理装置300は、高電圧電源14を用いて印加電極11と接地電極12との間に電圧を印加することにより、2つの誘電体13の間に放電による低温プラズマ反応層を形成する。なお、図2では、印加電極11と接地電極12の両方に対して誘電体13がそれぞれ密着して積層されているが、誘電体13はいずれか一つだけでもよい。
 本実施形態のガス処理装置300において、印加電極11,接地電極12及び誘電体13は、被処理気体が通過しない通気性のない構造である。このため、図2の矢印a方向からプラズマ発生部に供給される被処理気体は、2つの誘電体13の間に形成される低温プラズマ反応層を通過して、プラズマ発生部の外部に排出される(矢印b方向)。つまり、プラズマ発生部には、2つの誘電体13の間に形成される低温プラズマ反応層(プラズマが存在する領域)によって構成される流路が形成されている。低温プラズマ反応層に形成される流路には、異なる誘電体13に密着する、対向する2つの触媒体膜100が所定の間隔をあけて配置されている。このため、低温プラズマ反応層を流れる被処理気体は、メソ孔を介して触媒体膜100を通過することができる。従って、被処理気体中の処理対象となる成分は、第一実施形態と同様に、プラズマが作用する触媒体膜100の機能によって、酸化されて分解される。なお、触媒体膜100は、誘電体13に密着してもよく、密着していなくてもよい。処理する被処理気体の量にもよるが、流路における圧力損失が高くなる場合は、触媒体膜100は、誘電体13に密着していない方がよい。なお、本実施形態も、触媒体膜100を誘電体13としても利用してもよく、また、誘電体13を触媒体膜100が形成される基材としても利用できる。
 ガス処理装置300は、多層構造とすることで、流路を確保しやすくなる。このため、処理するガス量を増やしやすくなり、多量の処理対象となる成分を効率よく分解できる。ガス処理装置300は、処理対象の成分の量や、流速などの使用条件に応じて、該成分を効率よく酸化して分解できるように設置される。触媒体膜100は単層でも複数層に分けてもどちらでもよく、任意に設定できる。
 次に、第3実施形態のガス処理装置400について説明する。本実施形態において、第1実施形態で説明した部材と同一の機能を有する部材については、同一の符号を用い、詳細な説明は省略する。以下、第1実施形態と異なる点について、主に説明する。
 図3は、第3実施形態のガス処理装置400の断面の一部を模式的に表した図である。本実施形態のガス処理装置400には、対向する2つの接地電極12と、2つの接地電極12の間に配置される2つの誘電体13と、2つの誘電体13の間に配置される印加電極11とが設けられている。接地電極12と誘電体13は、互いに密着しており、誘電体13と印加電極11は、所定の間隔をあけて配置されている。ガス処理装置400は、高電圧電源14を用いて印加電極11と接地電極12との間に電圧を印加することにより、2つの誘電体13と印加電極11との間にプラズマを発生させることができ、印加電極11を挟む2つのプラズマ反応層を形成することができる。
 本実施形態のガス処理装置400において、接地電極12及び誘電体13は、被処理気体が通過しない通気性のない構造である。一方、印加電極11は、複数の開口を有しており、被処理気体が通過する通気性の有る構造である。このため、図2の矢印a方向からプラズマ発生部に供給される被処理気体は、印加電極11に形成される開口を介して2つのプラズマ反応層を移動しながら、低温プラズマ反応層を通過し、プラズマ発生部の外部に排出される。つまり、プラズマ発生部には、印加電極11に形成される開口、及び、2つのプラズマ反応層によって構成される流路が形成されている。
 プラズマ発生部に形成される流路のうち、2つの低温プラズマ反応層(2つの誘電体13と印加電極11との間)には、印加電極11に密着する触媒体膜100がそれぞれ配置されている。このため、流路を移動する被処理気体は、メソ孔を介して触媒体膜100を通過することができる。従って、被処理気体中の処理対象となる成分は、プラズマが作用する触媒体膜100の機能によって、酸化されて分解される。
 ガス処理装置400は、第2実施形態のガス処理装置300と同様に、多層構造とすることで、流路を確保しやすくなる。このため、処理するガス量を増やしやすくなり、多量の処理対象となる成分を効率よく分解できる。ガス処理装置400は、処理対象の成分の量や、流速などの使用条件に応じて、該成分を効率よく酸化して分解できるように設置される。触媒体膜100は単層でも複数層に分けてもどちらでもよく、任意に設定できる。
 次に、第4実施形態のガス処理装置500について説明する。本実施形態において、第1実施形態で説明した部材と同一の機能を有する部材については、同一の符号を用い、詳細な説明は省略する。以下、第1実施形態と異なる点について、主に説明する。
 図4は、第4実施形態のガス処理装置500の断面の一部を模式的に表した図である。本実施形態のガス処理装置500は、無声放電によりプラズマを発生させ、処理対象となる成分を分解する。本実施形態のガス処理装置500では、筒型の印加電極11と触媒体膜100と誘電体13が、円柱状の接地電極12を中心軸として、年輪状に径方向外側に積層して構成される円筒状の構造である。
 ガス処理装置500において、誘電体13は、2つ設けられている。一方の誘電体13は、接地電極12の径方向外側に配置されるとともに、接地電極12に密着している。他方の誘電体13は、印加電極11の径方向内側に配置されるとともに、印加電極11に密着している。ガス処理装置500は、高電圧電源14を用いて印加電極11と接地電極12との間に電圧を印加することにより、2つの誘電体13の間に放電による低温プラズマ反応層を形成することができる。なお、図4では、印加電極11と接地電極12ともにそれぞれに対して誘電体13が密着して積層されているが、誘電体13はいずれか一つだけでもよい。
 本実施形態のガス処理装置500において、印加電極11,接地電極12及び誘電体13は、被処理気体が通過しない通気性のない構造である。このため、円形の両端面の一方(図3の矢印a方向)からプラズマ発生部に供給される被処理気体は、2つの誘電体13の間に形成される低温プラズマ反応層を通過して、他方の端面側から排出される(図3の矢印b方向)。つまり、プラズマ発生部には、2つの誘電体13の間に形成される低温プラズマ反応層によって構成される流路が形成されている。低温プラズマ反応層に形成される流路には、2つの誘電体13と離隔する触媒体膜100が配置されている。このため、低温プラズマ反応層を流れる被処理気体は、メソ孔を介して触媒体膜100を通過することができる。従って、被処理気体中の処理対象となる成分は、第1~第3実施形態と同様に、プラズマが作用する触媒体膜100の機能によって、酸化されて分解される。なお、図4において、触媒体膜100と2つの誘電体13との間には、空間が形成されている。また、触媒体膜100は、一方の誘電体13に密着していてもよいし、密着していなくてもよい。
 本実施形態のガス処理装置500のように、年輪状の多層構造としてもよく、多層構造とすることで、流路を確保しやすくなる。このため、処理するガス量を増やしやすくなり、多量の処理対象となる成分を効率よく分解できる。ガス処理装置500は、処理対象の成分の量や、流速などの使用条件に応じて、処理対象ガスを効率よく酸化して分解できるように、触媒体膜100の筒型年輪状の枚数は複数でも一枚でも任意に設定できる。
 ここで、第1~第4実施形態のガス処理装置において、被処理気体に含まれる成分を処理する場合には、電源14によって、印加電極11に電圧を印加した状態で、成分を含む被処理気体を流路に供給する。これにより、流路を流れてメソ孔に到達する被処理気体中の成分は、触媒体膜100により加温することなく常温で酸化して分解される。さらに、被処理気体中の成分は、プラズマにより酸化して分解されることもある。また、触媒体膜100のみであれば、成分との接触により触媒体膜100表面(金触媒粒子)が被毒し、触媒活性が失われたり、ホルムアルデヒドなどの反応中間体を生じたりすることがあるが、プラズマを併用することにより触媒体膜100の表面がクリーニングされ触媒活性がさらに長期間保たれる。また、反応中間体の生成量もほとんどなく、有害成分の酸化による分解をさらに長期間維持することができる。
 また、第1実施形態のガス処理装置200では、印加電極11をガスの流れ方向における上流側に配置するとして説明したが、これに限られず、接地電極12側からガスを流してもよい。
 以上説明した第1~第4実施形態のガス処理装置は、触媒体膜100とプラズマとの組み合わせにより、反応中間体の生成を抑制できると共に、分解処理の過程で触媒体膜100(金触媒粒子)が被毒しても、プラズマによって触媒体膜100がクリーニングされるため、触媒体膜100の触媒活性をさらに長期間持続することができる。従って、第1~第4実施形態のガス処理装置によれば、さらに長期間対象となる化合物を酸化して分解可能なガス処理装置を実現できる。
 次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。
[実施例1]
 ビーカーにテトラエトキシシラン(TEOS)5.2gを入れ、さらにエタノール6.0gを加えた。ここに、さらに0.01M塩酸2.7gを加え、室温で20分攪拌した(A液)。別のビーカーに非イオン系界面活性剤(Pluronic P123)1.38g及びエタノール2.62gを加え、室温で30分攪拌した(B液)。A液にB液を加え、室温条件下で混合した後、さらに3時間攪拌し、メソポーラスシリカの前駆体溶液を調製した。前駆体溶液の溶媒を留去し、生じた固形物を乾燥後粉砕して粉体状の支持体を得た。
 ジアンミンジニトロ白金硝酸を含む溶液に上記粉体状支持体を投入、攪拌した。溶液から粉体を濾別して300℃で3時間乾燥後、水素ガス10%、窒素ガス90%の還元処理ガス中で250℃、1時間焼成し、Pt/メソポーラスシリカ粉体を得た。メソポーラスシリカ膜に対するPtの担持量は1wt%であった。
 Pt/メソポーラスシリカ粉体についてBET法による測定を実施したところ、メソポーラスシリカ膜の比表面積、細孔容積、細孔径がそれぞれ377m/g、0.52cm/g、7.0nmであった。Ptの粒子サイズをTEMで観察したところ、3.2nmであった。
 また、触媒体のさまざまな角度からの電子顕微鏡像を立体画像に再構成する3次元トモグラフィーによって、Pt/メソポーラスシリカ粉体の連通構造の存在を確認した。再構成した立体画像の一部を図5、図6および図7に示す(傾斜角度60 ~ -50 °、 1 °ステップにて撮影)。各写真の酸化触媒粒子(明白色の点)およびメソ孔(酸化触媒粒子の周囲の暗部)の位置および形状が異なっており、メソ孔がシリンダー形状でなく、触媒体のメソ孔は触媒体内部で複数のメソ孔がつながった連通構造を有していることが確認できた。
 なお、他の実施例の触媒体も、実施例1と同様の方法で製造され、且つ以下に示す試験例において同様に触媒活性がより長く維持されていることが確認できているため、実施例1と同様に連通構造を有していると理解できる。
[実施例2]
 ジアンミンジニトロ白金硝酸に換えて塩化パラジウムを用いた以外は実施例1と同様の方法でPd/メソポーラスシリカ粉体を得た。Pdの粒子サイズをTEMで観察したところ、3.0nmであった。
[実施例3]
 ジアンミンジニトロ白金硝酸を含む溶液にさらに塩化鉄(III)を溶解して用いる以外は実施例1と同様の方法で、白金鉄合金/メソポーラスシリカ粉体の触媒体を得た。Pt/Fe合金の粒子サイズをTEMで観察したところ、3.6nmであった。
[実施例4]
 ビーカーにテトラエトキシシラン(TEOS)5.2gを入れ、さらにエタノール6.0gを加えた。ここに、さらに0.01M塩酸2.7gを加え、室温で20分攪拌した(A液)。別のビーカーに非イオン系界面活性剤(Pluronic(登録商標、以下同じ) P123)1.38g及びエタノール2.62gを加え、室温で30分攪拌した(B液)。その後、A液にB液を加え、室温条件下で混合し、さらに3時間攪拌し、メソポーラスシリカの前駆体溶液を得た。メソポーラスシリカ前駆体溶液にセラミックハニカム(岩谷産業社製)を浸漬させ、15分間減圧した。その後、セラミックハニカムを引上げ余剰分の溶液をエアブローで除去した後、1℃/分で昇温し、450℃で4時間焼成しメソポーラスシリカ膜を固定化したセラミックハニカムを得た。
 その後、メソポーラスシリカ膜を固定化したセラミックハニカムにジアンミンジニトロ白金硝酸を含む溶液に浸漬させ、余剰分の溶液をエアブローで除去した。300℃で3時間乾燥後、水素ガス10%、窒素ガス90%の還元処理ガス中で250℃、1時間焼成し、Pt/メソポーラスシリカ膜/ハニカムを得た。メソポーラスシリカ膜(粒子(実施例1の場合はPt粒子)を含む、以下同じ)に対するPtの担持量は1wt%であった。
 Pt/メソポーラスシリカ膜/ハニカムについてBET法による測定を実施したところ、メソポーラスシリカ膜の比表面積、細孔容積、細孔径がそれぞれ377m/g、0.52cm/g、7.0nmであった。また、メソポーラスシリカ膜の膜厚は500nmであった。また、Ptの粒子サイズをTEMで観察したところ、3.2nmであった。
[実施例5]
 B液にさらにメシチレン1.3gを加えた以外は実施例4と同様の方法でPt/メソポーラスシリカ膜/ハニカムを得た。メソポーラスシリカ膜に対するPtの担持量は1wt%であった。
 Pt/メソポーラスシリカ膜/ハニカムについてBET法による測定を実施したところ、メソポーラスシリカ膜の比表面積、細孔容積、細孔径がそれぞれ401m/g、0.64cm/g、20nmであった。また、メソポーラスシリカ膜の膜厚は500nmであった。また、Ptの粒子サイズをTEMで観察したところ、12nmであった。
[実施例6]
 ビーカーにテトラエトキシシラン(TEOS)10.4gを入れ、さらにエタノール12.0gを加えた。ここに、さらに0.01M塩酸4.5gを加え、室温で20分攪拌した(A液)。別のビーカーに非イオン系界面活性剤(Brij(登録商標)56)2.9g及びエタノール8.0gを加え、室温で30分攪拌した(B液)。その後、A液にB液を加え、室温条件下で混合し、さらに3時間攪拌し、メソポーラスシリカの前駆体溶液を得た。メソポーラスシリカ前駆体溶液にセラミックハニカム(岩谷産業社製)を浸漬させ、15分間減圧した。セラミックハニカムを引上げ余剰分の溶液をエアブローで除去した後、1℃/分で昇温し、450℃で4時間焼成しメソポーラスシリカ膜を固定化したセラミックハニカムを得た。
 その後、メソポーラスシリカ膜を固定化したセラミックハニカムにジアンミンジニトロ白金硝酸溶液を含む溶液に浸漬させ、余剰分の溶液をエアブローで除去した。300℃で3時間乾燥後、水素ガス10%、窒素ガス90%の還元処理ガス中で250℃、1時間焼成し、Pt/メソポーラスシリカ膜/ハニカムを得た。メソポーラスシリカ膜に対するPtの担持量は1wt%であった。
 Pt/メソポーラスシリカ膜/ハニカムについてBET法による測定を実施したところ、メソポーラスシリカ膜の比表面積、細孔容積、細孔径がそれぞれ380m/g、0.38cm/g、4.5nmであった。また、メソポーラスシリカ膜の膜厚は500nmであった。また、Ptの粒子サイズをTEMで観察したところ、3.2nmであった。
[実施例7]
 B液にさらにメシチレン1.3gを加えた以外は実施例6と同様の方法でPt/メソポーラスシリカ膜/ハニカムを得た。メソポーラスシリカ膜に対するPtの担持量は1wt%であった。
 Pt/メソポーラスシリカ膜/ハニカムをBET法による測定を実施したところ、メソポーラスシリカ膜の比表面積、細孔容積、細孔径がそれぞれ365m/g、0.44cm/g、12nmであった。また、メソポーラスシリカ膜の膜厚は500nmであった。また、Ptの粒子サイズをTEMで観察したところ、3.2nmであった。
[実施例8]
 ビーカーにテトラエトキシシラン(TEOS)6.2gを入れ、さらにエタノール4.8gを加えた。ここに、さらに0.01M塩酸2.2gを加え、室温で20分攪拌した(A液)。別のビーカーに陽イオン性界面活性剤(臭化ヘキサデシルトリメチルアンモニウム、CTAB)1.53g及び0.01M塩酸2.2gを加え、室温で30分攪拌した(B液)。その後、A液にB液を加え、室温条件下で混合し、さらに3時間攪拌し、メソポーラスシリカの前駆体溶液を得た。メソポーラスシリカ前駆体溶液にセラミックハニカム(岩谷産業社製)を浸漬させ、15分間減圧した。その後、セラミックハニカムを引上げ余剰分の溶液をエアブローで除去した後、1℃/分で昇温し、450℃で4時間焼成しメソポーラスシリカ膜を固定化したセラミックハニカムを得た。
 その後、メソポーラスシリカ膜を固定化したセラミックハニカムにジアンミンジニトロ白金硝酸を含む溶液に浸漬させ、余剰分の溶液をエアブローで除去した。300℃で3時間乾燥後、水素ガス10%、窒素ガス90%の還元処理ガス中で250℃、1時間焼成し、Pt/メソポーラスシリカ膜/ハニカムを得た。メソポーラスシリカ膜に対するPtの担持量は1wt%であった。
 Pt/メソポーラスシリカ膜/ハニカムについてBET法による測定を実施したところ、メソポーラスシリカ膜の比表面積、細孔容積、細孔径がそれぞれ341m/g、0.50cm/g、2.43nmであった。また、メソポーラスシリカ膜の膜厚は500nmであった。また、Ptの粒子サイズをTEMで観察したところ、2.0nmであった。
[実施例9]
 ジアンミンジニトロ白金硝酸に換えて塩化パラジウムを用いた以外は実施例4と同様の方法でPd/メソポーラスシリカ膜/ハニカムを得た。メソポーラスシリカ膜に対するPtの担持量は1wt%であった。
 Pd/メソポーラスシリカ膜/ハニカムについてBET法による測定を実施したところ、メソポーラスシリカ膜の比表面積、細孔容積、細孔径がそれぞれ377m/g、0.52cm/g、7nmであった。また、メソポーラスシリカ膜の膜厚は500nmであった。また、Pdの粒子サイズをTEMで観察したところ、3.0nmであった。
[実施例10]
 ジアンミンジニトロ白金硝酸に換えて塩化パラジウムを用いた以外は実施例6と同様の方法でPd/メソポーラスシリカ膜/ハニカムを得た。メソポーラスシリカ膜に対するPtの担持量は1wt%であった。
 Pd/メソポーラスシリカ膜/ハニカムについてBET法による測定を実施したところ、メソポーラスシリカ膜の比表面積、細孔容積、細孔径がそれぞれ380m/g、0.38cm/g、4.5nmであった。また、メソポーラスシリカ膜の膜厚は500nmであった。また、Pdの粒子サイズをTEMで観察したところ、3.0nmであった。
[実施例11]
 ジアンミンジニトロ白金硝酸に換えて塩化パラジウムを用いた以外は実施例8と同様の方法でPd/メソポーラスシリカ膜/ハニカムを得た。メソポーラスシリカ膜に対するPtの担持量は1wt%であった。
 Pd/メソポーラスシリカ膜/ハニカムについてBET法による測定を実施したところ、メソポーラスシリカ膜の比表面積、細孔容積、細孔径がそれぞれ341m/g、0.5cm/g、2.43nmであった。また、メソポーラスシリカ膜の膜厚は500nmであった。また、Pdの粒子サイズをTEMで観察したところ、2.0nmであった。
[実施例12]
 水素ガス10%、窒素ガス90%の還元処理ガス中での焼成処理を行わない以外は実施例4と同様の方法で白金酸化物/メソポーラスシリカ膜/ハニカムを得た。メソポーラスシリカ膜に対する白金酸化物の担持量は1wt%であった。
 白金酸化物/メソポーラスシリカ膜/ハニカムについてBET法による測定を実施したところ、メソポーラスシリカ膜の比表面積、細孔容積、細孔径がそれぞれ377m/g、0.52cm/g、7nmであった。また、メソポーラスシリカ膜の膜厚は500nmであった。また、白金酸化物の粒子サイズをTEMで観察したところ、3.2nmであった。
[実施例13]
 ジアンミンジニトロ白金硝酸に換えて塩化パラジウムを使用し、水素ガス10%、窒素ガス90%の還元処理ガス中での焼成処理を行わない以外は実施例4と同様の方法でパラジウム酸化物/メソポーラスシリカ膜/ハニカムを得た。メソポーラスシリカ膜に対するパラジウム酸化物の担持量は1wt%であった。
 パラジウム酸化物/メソポーラスシリカ膜/ハニカムについてBET法による測定を実施したところ、メソポーラスシリカ膜の比表面積、細孔容積、細孔径がそれぞれ377m/g、0.52cm/g、7nmであった。また、メソポーラスシリカ膜の膜厚は500nmであった。また、パラジウム酸化物の粒子サイズをTEMで観察したところ、3.0nmであった。
[比較例1]
 シリンダー状ナノ細孔構造を有するメソポーラスシリカ(ALDRICH、MCM-41)を10gに対して、Ptの仕込み量が1wt%に相当するジアンミンジニトロ白金硝酸溶液を混合し、加熱により蒸発乾固した。さらに得られた固形分を12時間減圧乾燥した。その後、得られた固形分を水素ガス10%、窒素ガス90%の還元処理ガス中で250℃、1時間焼成しPt/メソポーラスシリカ触媒粒子を調製した。その後、バインダーを用いて成形し、Pt/メソポーラスシリカ触媒粒子を顆粒状にしたものを作製した。
 BET測定を実施したところ、メソポーラスシリカの比表面積、細孔容積、細孔径がそれぞれ760m/g、0.84cm/g、3.7nmであった。また、Ptの粒子サイズをTEMで観察したところ、3.1nmであった。
[比較例2]
 メソポーラスシリカ(ALDRICH、MCM-41)に換えてシリンダー状ナノ細孔構造を有するメソポーラスシリカ(ALDRICH、SBA-15)を用いた以外は比較例1と同様の方法でPt/メソポーラスシリカ触媒粒子を顆粒状に成形したものを得た。
 BET測定を実施したところ、メソポーラスシリカの比表面積、細孔容積、細孔径がそれぞれ635m/g、1.07cm/g、6.3nmであった。また、Ptの粒子サイズをTEMで観察したところ、6.0nmであった。
[比較例3]
 ジアンミンジニトロ白金硝酸に換えて塩化パラジウムを用いた以外は比較例1と同様の方法でPd/メソポーラスシリカ触媒粒子を顆粒状に成形したものを得た。また、Pdの粒子サイズをTEMで観察したところ、3.0nmであった。
[比較例4]
 ジアンミンジニトロ白金硝酸に換えて塩化パラジウムを用いた以外は比較例2と同様の方法でPd/メソポーラスシリカ触媒粒子を顆粒状に成形したものを得た。また、Pdの粒子サイズをTEMで観察したところ、6.0nmであった。
[比較例5]
 チタンイソプロポキシド( 以下「TTIP」と称する)を分散媒としてのイソプロピルアルコール(以下「IPA」と称する)、触媒としての塩酸と混合し、その後所定量の水を加え、約4℃で1時間加水分解した。出発溶液の組成比(モル比)はTTIP/IPA/水/塩酸=1/140/4/0.4とした。加水分解後に室温で10時間放置することで、二酸化チタンコロイドゾルを調製した。その後、二酸化チタンコロイドゾル中にセラミックハニカム(岩谷産業社製)を浸漬させ、15分間減圧した。その後、セラミックハニカムを引上げ余剰分の溶液をエアブローで除去した後、1℃/分で昇温し、450℃で4時間焼成し二酸化チタン膜を固定化したセラミックハニカムを得た。
 その後、二酸化チタン膜を固定化したセラミックハニカムにジアンミンジニトロ白金硝酸溶液を含む溶液に浸漬させ、余剰分の溶液をエアブローで除去した後、水素ガス10%、窒素ガス90%の還元処理ガス中で250℃、1時間焼成し、Pt/二酸化チタン膜/ハニカムを得た。二酸化チタン膜に対するPtの担持量は1wt%であった。
 Pt/二酸化チタン膜/ハニカムをBET法による測定を実施したところ、メソポーラスシリカ膜の比表面積、細孔容積、細孔径がそれぞれ100m/g、0.10cm/g、5.0nmであった。また、メソポーラスシリカ膜の膜厚は1000nmであった。また、Ptの粒子サイズをTEMで観察したところ、3.0nmであった。
[実施例14]
 0.2gの界面活性剤(Pluronic P123)に対し、エタノール3.55mLを加え、20分以上撹拌して溶解させることによりA液を得た。塩酸0.63mLにオルトチタン酸テトライソプロピル(TTIP)1.05gを加え、5分間撹拌してB液を得た。
 A液をB液に加え、さらに15分間撹拌し、メソポーラス酸化チタンの前駆体溶液を得た。
 前駆体溶液から溶媒を留去し、生じた固形物を電気炉で450℃,4時間焼成後に粉砕して粉体状の支持体を得た。
 ビーカーに所定濃度の塩化金酸水溶液を入れ、ウォーターバスで70℃に加温した。0.1Mの水酸化ナトリウム水溶液をゆっくり加えていき、pHを7に調節した。塩化金酸水溶液を常温まで冷やし、上記の粉体支持体を加えて70℃まで加温し、70℃に到達してから1時間攪拌した。溶液から粉体を濾別し、純水で5回洗浄した。電気炉で300℃, 2時間焼成し、Au担持メソポーラス酸化チタン粉体を得た。
 Au担持メソポーラス酸化チタン粉体のAu担持量を原子吸光で測定したところ、メソポーラス酸化チタン粉体に対するAuの担持量は20質量%であった。Au担持メソポーラス酸化チタン粉体をBET法による測定を実施したところ、メソポーラス酸化チタン粉体の比表面積、細孔容積、細孔径がそれぞれ118m/g、0.54g/cm、9.23nmであった。また、Auの粒径をTEMで観察したところ、2.4nmであった。
[実施例15]
 16.7gの2.5%鉄(III)イソプロポキシド/イソプロパノール溶液に対し、酢酸0.286mLおよび純水0.1mLを加え、10分間攪拌してB液とした以外は実施例14と同様の方法でAu担持酸化鉄粉体を得た。Au担持酸化鉄粉体のAu担持量を原子吸光で測定したところ、メソポーラス酸化チタン粉体に対するAuの担持量は20質量%であった。メソポーラス酸化鉄粉体の比表面積、細孔容積、細孔径がそれぞれ351m/g、0.48g/cm、6.20nmであった。また、Auの粒径をTEMで観察したところ、3.3nmであった。
[実施例16]
 塩化金酸水溶液にさらに塩化鉄(III)を溶解して用いる以外は実施例14と同様の方法で、金鉄合金/メソポーラス酸化チタン粉体の触媒体を得た。Au/Fe合金の粒子サイズをTEMで観察したところ、3.8nmであった。
[実施例17]
(Au担持メソポーラス酸化チタン膜を固定化したTi板)
 0.2gの界面活性剤(Pluronic P123)に対し、エタノール3.55mLを加え、20分以上撹拌して溶解させることによりA液を得た。塩酸0.63mLにオルトチタン酸テトライソプロピル(TTIP)1.05gを加え、5分間撹拌してB液を得た。
 A液をB液に加え、さらに15分間撹拌し、メソポーラス酸化チタンの前駆体溶液を得た。その後、メソポーラス酸化チタンの前駆体溶液を用い、チタン(以下、Ti)板上にスピンコーターを用いて回転数3000rpmで成膜した。成膜したTi板をシャーレに入れ、-20℃, 20%RH環境下(冷凍庫)で2時間静置した。冷凍庫から出し、常温に戻してからシャーレの蓋を開けてTi板を取り出した。電気炉で450℃,4時間焼成し、メソポーラス酸化チタン膜(膜状支持体)を固定化したTi板を得た。なお、焼成においては昇温および降温を毎分1℃とした。
 ビーカーに所定濃度の塩化金酸水溶液を入れ、ウォーターバスで70℃に加温した。0.1Mの水酸化ナトリウム水溶液をゆっくり加えていき、pHを7に調節した。塩化金酸水溶液を常温まで冷やし、メソポーラス酸化チタン膜を固定化したTi板を浸し、約15分減圧して脱気した。再度ウォーターバスにて70℃まで加温し、70℃に到達してから1時間攪拌した。メソポーラス酸化チタン膜を固定化したTi板を取り出し、純水で5回洗浄し、ウエスで余分な水分を取り除いた。電気炉で300℃, 2時間焼成し、Au担持メソポーラス酸化チタン膜を固定化したTi板を得た。
 Au担持メソポーラス酸化チタン膜の断面をTEMで観察したところ、膜厚は100nmであった。また、Au担持量を原子吸光で測定したところ、メソポーラス酸化チタン膜に対するAuの担持量は20質量%であった。Au担持メソポーラス酸化チタン膜を固定化したTi板をBET法による測定を実施したところ、メソポーラス酸化チタン膜の比表面積、細孔容積、細孔径がそれぞれ118m/g、0.54g/cm、9.23nmであった。また、Auの粒径をTEMで観察したところ、2.4nmであった。
[実施例18]
(Au担持メソポーラス酸化チタン膜を固定化したTi板)
 焼成温度を300℃としてメソポーラス酸化チタン膜をTi板に固定化した以外は実施例17と同様の方法でAu担持メソポーラス酸化チタン膜を固定化したTi板を得た。
 Au担持メソポーラス酸化チタン膜の断面をTEMで観察したところ、膜厚は100nmであった。また、原子吸光で測定したところ、メソポーラス酸化チタン膜に対するAuの担持量は30質量%であった。Au担持メソポーラス酸化チタン膜を固定化したTi板をBET法による測定を実施したところ、メソポーラス酸化チタン膜の比表面積、細孔容積、細孔径がそれぞれ206m/g、0.34g/cm、3.71nmであった。また、Auの粒径をTEMで観察したところ、2.4nmであった。
[実施例19]
(Au担持メソポーラス酸化ジルコニウム膜を固定化したTi板)
 0.2gの界面活性剤(Pluronic P123)に対し、エタノールを1mL加え20分間攪拌してA液を得た。0.58gのジルコニウム(IV)プロポキシド(Zr(OPr))に対し、酢酸0.286mLおよび純水0.1mLを加え、10分間攪拌してB液を得た。
 B液にA液を加えた後、塩酸を0.093mL加え、1時間攪拌しメソポーラス酸化ジルコニウムの前駆体溶液を得た。
 その後、メソポーラス酸化ジルコニウムの前駆体溶液を用い、Ti板上にスピンコーターを用いて回転数3000rpmで成膜した。成膜したTi板をシャーレに入れ、-20℃、20%RH環境下(冷凍庫)で2時間静置した。冷凍庫から出し、常温に戻してからシャーレの蓋を開けてTi板を取り出した。電気炉で450℃,4時間焼成し、メソポーラス酸化ジルコニウム膜(膜状支持体)を固定化したTi板を得た。なお、焼成においては昇温および降温を毎分1℃とした。
 ビーカーに所定濃度の塩化金酸水溶液を入れ、ウォーターバスで70℃に加温した。0.1Mの水酸化ナトリウム水溶液をゆっくり加えていき、pHを7に調節した。塩化金酸水溶液を常温まで冷やし、メソポーラス酸化ジルコニウム膜を固定化したTi板を浸し、約15分減圧して脱気した。再度ウォーターバスにて70℃まで加温し、70℃に到達してから1時間攪拌した。メソポーラス酸化ジルコニウム膜を固定化したTi板を取り出し、純水で5回洗浄し、ウエスで余分な水分を取り除いた。電気炉で300℃, 2時間焼成し、Au担持メソポーラス酸化ジルコニウム膜を固定化したTi板を得た。
 Au担持メソポーラス酸化ジルコニウム膜の断面をTEMで観察したところ、膜厚は150nmであった。また、原子吸光で測定したところ、メソポーラス酸化ジルコニウム膜に対するAuの担持量は10.6質量%であった。Au担持メソポーラス酸化ジルコニウム膜を固定化したTi板をBET法による測定を実施したところ、メソポーラス酸化ジルコニア膜の比表面積、細孔容積、細孔径がそれぞれ85.2m/g、0.29g/cm、6.18nmであった。また、Auの粒径をTEMで観察したところ、2.5nmであった。
[実施例20]
(Au担持メソポーラス酸化ジルコニウム膜を固定化したTi板)
 焼成温度を300℃としてメソポーラス酸化ジルコニウム膜をTi板に固定化した以外は実施例19と同様の方法でAu担持メソポーラス酸化ジルコニウム膜を固定化したTi板を得た。
 Au担持メソポーラス酸化ジルコニウム膜の断面をTEMで観察したところ、膜厚は150nmであった。また、原子吸光で測定したところ、メソポーラス酸化ジルコニウム膜に対するAuの担持量は18.2質量%であった。Au担持メソポーラス酸化ジルコニウム膜を固定化したTi板をBET法による測定を実施したところ、メソポーラス酸化ジルコニウム膜の比表面積、細孔容積、細孔径がそれぞれ94.3m/g、0.42g/cm、4.19nmであった。また、Auの粒径をTEMで観察したところ、2.5nmであった。 
[比較例6]
 界面活性剤(Pluronic P123)を用いずに前駆体溶液を作製した以外は実施例17と同様の方法でAu担持酸化チタン膜を固定化したTi板を得た。
 Au担持酸化チタン膜の断面をTEMで観察したところ、膜厚は100nmであった。また、原子吸光で測定したところ、酸化チタン膜に対するAuの担持量は6.6質量%であった。Au担持酸化チタン膜を固定化したTi板をBET法による測定を実施したところ、酸化チタン膜の比表面積は10m/gであり、この酸化チタン膜はメソポーラス構造を有していないことが確認された。また、Auの粒径をTEMで観察したところ、5nmであった。
[比較例7]
 界面活性剤(Pluronic P123)を用いずに前駆体溶液を作製した以外は実施例19と同様の方法でAu担持酸化ジルコニウム膜を固定化したTi板を得た。
 Au担持酸化ジルコニウム膜の断面をTEMで観察したところ、膜厚は150nmであった。また、原子吸光で測定したところ、酸化ジルコニウム膜に対するAuの担持量は5質量%であった。Au担持酸化ジルコニウム膜を固定化したTi板をBET法による測定を実施したところ、酸化チタン膜の比表面積は7.9m/gであり、この酸化チタン膜ではメソポーラス構造を有していないことが確認された。また、Auの粒径をTEMで観察したところ、5nmであった。
[比較例8]
 Au(I)(TPP)Cl錯体470mgをエタノール20mLに加え30分攪拌した。水素化ホウ素ナトリウム35.9mgをエタノール7.5mLに溶かし、これを一気に上述の液に加え、3時間攪拌した。これにヘキサンを500mL加え、24時間静置した。さらに、ろ過し、数回ヘキサンで洗浄し乾燥させ、トリフェニルホスフィンで保護した金を得た。トリフェニルホスフィンで保護した金をジクロロメタン24mLに溶かし、メソポーラスシリカ(SBA-15)1gを添加し、2時間攪拌した。攪拌後ろ過した後、200℃で焼成することでAuを担持したメソポーラスシリカを得た。得られたAuを担持したメソポーラスシリカを水に懸濁させ、Ti板上にスピンコーターを用いて回転数3000rpmで成膜し、乾燥させることで、Au担持メソポーラスシリカを固定化したTi板を得た。
 Au担持メソポーラスシリカの断面をTEMで観察したところ、膜厚は100nmであった。また、原子吸光で測定したところ、メソポーラスシリカに対するAuの担持量は1質量%であった。Au担持メソポーラスシリカをBET法による測定を実施したところ、比表面積、細孔容積、細孔径がそれぞれ871m/g、1.13cm/g、7.5nmであった。また、Auの粒径をTEMで観察したところ、0.8nmであった。
[エチレン分解試験]
 実施例1~13および比較例1~5の触媒体を用いてエチレンの分解反応を行った。エチレン濃度10ppmを含む空気と、室内空気を混合して反応ガスを調製し、それぞれのガス流量はサーマルマスフローコントローラーで制御した。反応ガスの分析は長光路(20m)のガスセルを装填した赤外分光光度計(FTIR-6000、日本分光株式会社製)を用いた。反応条件はエチレン濃度0.5ppm、酸素濃度20%、ガス流量1L/min、反応温度5℃、相対湿度90%とした。 
 エチレンの除去率は以下の式から求めた。
エチレン除去率(%)={(初期エチレン濃度 - 反応後エチレン濃度)/初期エチレン濃度}×100 
 得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記の結果から理解できるとおり、比較例1と2はエチレンの1日後の除去率が8.4%を示すが7日後には4.7%および3.0%まで低下した。また、比較例3から5は、1日後から除去率がゼロであった。これに対して、実施例1から13のエチレン除去率は1日後と7日後で極端な低下がないことが確認された。
 以上より、実施例は一般的に考えられる室温より低い5℃の温度下で、0.5ppm程度の低濃度のエチレンなどの炭化水素を分解除去でき、またその分解活性の低下が起き難く、長期に使用可能であることが示された。
 (低温プラズマ反応器(ガス処理装置)を用いた一酸化炭素除去試験(試験例1~14))
 ガス処理装置として、図2に示す第2実施形態のガス処理装置300を用意した。触媒体100としては、実施例17~20と比較例6~8で得られたTi板をそれぞれ用いた。印加電極11及び設置電極12としては、銅テープを用いた。誘電体13としては、α-アルミナを用いた。
 プラズマの発生には、プラズマ発生用電源を用い印加電極11と接地電極12をプラズマ発生用電源に接続し、電圧を印加することでプラズマを発生させた。印加電圧は8kVp-p、放電出力は0.1Wとした。
 一酸化炭素(CO)を用い、実施例及び比較例のTi板が用いられるガス処理装置300の酸化反応を評価した。具体的には、一酸化炭素(濃度1,000ppm)と空気を混合して被処理気体を調製し、流量をマスフローコントローラーで制御しながら、被処理気体を流路(2つの誘電体13の間)に供給した。
 ガス処理装置300による処理前の被処理気体と処理後の被処理気体の分析は長光路(2.5m)のガスセルを装填した赤外分光光度計(FTIR-6000、日本分光株式会社製)を用いた。反応条件は一酸化炭素濃度1,000ppm、酸素濃度20%、相対湿度50%、ガス流量0.1L/min、触媒サイズ25cm2、反応温度室温とした。
 使用する触媒体を変更するとともにプラズマ発生の有無についても変更しながら試験例1~14を行った。
 上述した赤外分光光度計を用いて、ガス処理装置300に供給する前の被処理気体中のCO濃度(以下、「初期CO濃度」ともいう)と、ガス処理装置300で処理した後の被処理気体中のCO濃度(以下、「反応後CO濃度」ともいう)を測定し、以下の式を用いてCO除去率を算出した。なお、被処理気体をガス処理装置300で処理した時間は、後述する表3及び表4に示す。
 CO除去率(%)={(初期CO濃度 - 反応後CO濃度)/初期CO濃度}×100
(試験例1)
 実施例17で得られたTi板を用い、プラズマを発生させずにCO除去試験を実施した。
(試験例2)
 実施例18で得られたTi板を用いた以外は、試験例1と同様な方法でCO除去試験を実施した。
(試験例3)
 実施例19で得られたTi板を用いた以外は、試験例1と同様な方法でCO除去試験を実施した。
(試験例4)
 実施例20で得られたTi板を用いた以外は、試験例1と同様な方法でCO除去試験を実施した。
(試験例5)
 比較例6で得られたTi板を用いた以外は、試験例1と同様な方法でCO除去試験を実施した。
(試験例6)
 比較例7で得られたTi板を用いた以外は、試験例1と同様な方法でCO除去試験を実施した。
(試験例7)
 比較例8で得られたTi板を用いた以外は、試験例1と同様な方法でCO除去試験を実施した。
(試験例8)
 実施例17で得られたTi板を用い、放電電力0.1Wのプラズマを発生させCO除去試験を実施した。
(試験例9)
 実施例18で得られたTi板を用いた以外は、試験例8と同様な方法でCO除去試験を実施した。
(試験例10)
 実施例19で得られたTi板を用いた以外は、試験例8と同様な方法でCO除去試験を実施した。
(試験例11)
 実施例20で得られたTi板を用いた以外は、試験例8と同様な方法でCO除去試験を実施した。
(試験例12)
 比較例6で得られたTi板を用いた以外は、試験例8と同様な方法でCO除去試験を実施した。
(試験例13)
 比較例7で得られたTi板を用いた以外は、試験例8と同様な方法でCO除去試験を実施した。
(試験例14)
 比較例8で得られたTi板を用いた以外は、試験例8と同様な方法でCO除去試験を実施した。
 試験例1~14でのCO除去率を表2に示す。 
Figure JPOXMLDOC01-appb-T000002
[一酸化炭素除去試験(試験例15~17)]
 実施例14(試験例15)、実施例15(試験例16)、実施例16(試験例17)の粉体の触媒体を用いて、試験例15~17の一酸化炭素の分解反応を行った。
 一酸化炭素と空気を混合して一酸化炭素濃度1,000ppmの試験ガスを調製し、流量をマスフローコントローラーで制御しながら、触媒体に供給した。処理前の被処理気体と処理1時間後の被処理気体の分析は長光路(2.5m)のガスセルを装填した赤外分光光度計(FTIR-6000、日本分光株式会社製)を用いた。反応条件は一酸化炭素濃度1,000ppm、酸素濃度20%、相対湿度60%、ガス流量1.0L/min、反応温度室温とした。
 以下の式を用いてCO除去率を算出し、結果を表3に記載した。
 CO除去率(%)={(初期CO濃度 - 反応後CO濃度)/初期CO濃度}×100
Figure JPOXMLDOC01-appb-T000003
[低温プラズマ反応器(ガス処理装置)を用いたアンモニア除去試験(試験例18、19)]
 低温プラズマ反応器(ガス処理装置)を用いた一酸化炭素除去試験(試験例1~14)と同じガス処理装置を用いた。また、触媒体100には実施例19および比較例8で得られたTi板をそれぞれ用いた。
 アンモニアを10,000ppm含む窒素ガスと室内空気を混合して反応ガスを調製して使用した以外は、低温プラズマ反応器(ガス処理装置)を用いた一酸化炭素除去試験(試験例1~14)と同様に行った。反応ガスの分析は長光路(2.5m)のガスセルを装填した赤外分光光度計(FTIR-6000、日本分光株式会社製)を用いた。反応条件はアンモニア濃度5ppm、酸素濃度20%、相対湿度50%、ガス流量0.1L/min、触媒量25cm3、反応温度室温とした。
 以下の式を用いてアンモニア除去率を算出し、結果を表4に記載した。
 アンモニア除去率(%)={(初期アンモニア度 - 反応後アンモニア濃度)/初期アンモニア濃度}×100 
(試験例18)
 実施例19で得られたTi板を用い、放電電力0.1Wのプラズマを発生させアンモニア除去試験を実施した。
(試験例19)
 比較例8で得られたTi板を用いた以外は、試験例18と同様な方法でアンモニア除去試験を実施した。
Figure JPOXMLDOC01-appb-T000004
[低温プラズマ反応器(ガス処理装置)を用いたトリメチルアミン除去試験(試験例20、21)]
 低温プラズマ反応器(ガス処理装置)を用いた一酸化炭素除去試験(試験例1~14)と同じガス処理装置を用いた。また、触媒体100には実施例19および比較例8で得られたTi板をそれぞれ用いた。
 反応ガスには、トリメチルアミンを10,000ppm含む窒素ガスと室内空気を混合して反応ガスを調製して使用した以外は、低温プラズマ反応器(ガス処理装置)を用いた一酸化炭素除去試験(試験例1~14)と同様に行った。反応ガスの分析は長光路(2.5m)のガスセルを装填した赤外分光光度計(FTIR-6000、日本分光株式会社製)を用いた。反応条件はトリメチルアミン濃度10ppm、酸素濃度20%、相対湿度50%、ガス流量0.1L/min、触媒量25cm3、反応温度室温とした。
 以下の式を用いてトリメチルアミン除去率を算出し、結果を表5に記載した。
 トリメチルアミン除去率(%)={(初期トリメチル濃度 - 反応後トリメチル濃度)/初期トリメチルアミン濃度}×100 
(試験例20)
 実施例19で得られたTi板を用い、放電電力0.1Wのプラズマを発生させトリメチルアミン除去試験を実施した。
(試験例21)
 比較例8で得られたTi板を用いた以外は、試験例20と同様な方法でトリメチルアミン除去試験を実施した。
Figure JPOXMLDOC01-appb-T000005
 表2に示すように、試験例1~4はCO除去率が92%以上となった。また、表3に示すように試験例15~17についてもCO除去率が92%以上となった。一方、試験例5~7はCO除去率が4%以下であった。これらの結果から実施例14~20を用いたガス処理装置300は比較例6~8を用いたガス処理装置300と比較して優れた触媒活性を有することが確認された。
 表2に示すように、試験例8~11は1時間後のCO除去率が92%以上であり、24時間後のCO除去率が90.1%以上であった。一方、試験例12~14の1時間後のCO去率が4%以下であり、24時間後のCO除去率が0%であった。これらの結果から、実施例17~20を用いたガス処理装置300は、比較例6~8を用いたガス処理装置300と比較して優れた触媒活性を有し、その触媒活性を持続できることが理解できた。
 表4に示すように、試験例18は1時間後のアンモニア除去率が91.2%であり、24時間後のCO除去率が90.8%であった。一方、試験例19の1時間後のアンモニア除去率が1.8%以下であり、24時間後のアンモニア除去率が1.7%であった。これらの結果から、実施例19を用いたガス処理装置300は、比較例8を用いたガス処理装置300と比較して優れた触媒活性を有し、その触媒活性を持続できることが理解できた。
 表5に示すように、試験例20は1時間後のトリメチルアミン除去率が94.2%であり、24時間後のトリメチルアミン除去率が93.8%であった。一方、試験例21の1時間後のトリメチルアミン除去率が2.2%であり、24時間後のトリメチルアミン除去率も2.2%であった。これらの結果から、実施例19を用いたガス処理装置300は、比較例8を用いたガス処理装置300と比較して優れた触媒活性を有し、その触媒活性を持続できることが理解できた。
 以上の結果から、本発明の有効性が示された。

Claims (12)

  1.  複数のメソ孔を有する支持体と、
     前記支持体のメソ孔内に担持されている、貴金属、その酸化物、および前記貴金属と遷移金属との合金の少なくとも一つを含む酸化触媒粒子とを備え、
     前記支持体において、一のメソ孔が少なくとも一つの他のメソ孔と連通しているメソポーラス触媒体。
  2.  アルコキシシランもしくは金属アルコキシドの加水分解物と、ポリオキシエチレンアルキルエーテル、ポリアルキレンオキシドトリブロックコポリマーもしくは陽イオン界面活性剤とを含有する溶液を乾燥および焼成して得られるメソ孔を有する支持体と、貴金属、その酸化物、および前記貴金属と遷移金属との合金の少なくとも一つに対応する化合物の溶液もしくはコロイド溶液とを接触させ、焼成および/または還元処理を行い前記支持体のメソ孔内に前記貴金属、その酸化物、および前記貴金属と遷移金属との合金の少なくとも一つを含む酸化触媒粒子を形成することにより得られるメソポーラス触媒体。
  3.  前記支持体が金属酸化物もしくはSiO2により形成されている請求項1もしくは2に記載のメソポーラス触媒体。
  4.  前記金属酸化物が、TiO2、Fe2O3、ZrO2、およびCeO2からなる群から1種または2種以上選択される化合物である請求項3に記載の触媒体。
  5.  前記貴金属が金、白金およびパラジウムからなる群から選択される1種または2種以上である請求項1から4のいずれか一つに記載のメソポーラス触媒体。
  6.  前記支持体が粉体である請求項1から5のいずれか一つに記載のメソポーラス触媒体。
  7.  前記メソ孔のBET法で測定した平均孔径が2nm以上10nm以下である請求項1から6のいずれか一つに記載のメソポーラス触媒体。
  8.  前記酸化触媒粒子の平均粒径が1nm以上10nm以下である請求項1から7のいずれか一つに記載のメソポーラス触媒体。
  9.  前記酸化触媒粒子の担持量が、当該酸化触媒粒子を含む支持体に対して0.1~30質量%である請求項1から8のいずれか一つに記載のメソポーラス触媒体。
  10.  前記メソポーラス触媒体が気体の酸化反応用触媒である請求項1から9のいずれか一つに記載のメソポーラス触媒体。
  11.  第1の電極と、第2の電極と、前記第1の電極と前記第2の電極の間に配置される誘電体とを少なくとも備え、前記第1の電極と前記第2の電極の間に電圧を印加して放電を発生させることによりプラズマを発生させるプラズマ発生部と、
     前記プラズマ発生部によって発生した前記プラズマが存在する領域に形成される、被処理気体が流れる流路と、
     前記流路に配置される請求項1から10のいずれか一つに記載のメソポーラス触媒体と、を備えることを特徴とするガス処理装置。
  12.  アルコキシシランもしくは金属アルコキシドの加水分解物、およびポリオキシエチレンアルキルエーテル、ポリアルキレンオキシドトリブロックコポリマーもしくは陽イオン界面活性剤を含有する溶液を乾燥および焼成して得られるメソ孔を有する支持体と、貴金属、その酸化物、および前記貴金属と遷移金属との合金の少なくとも一つに対応する化合物の溶液またはコロイド溶液とを接触させ、焼成および/または還元処理を行い前記支持体のメソ孔内に前記貴金属、その酸化物、および前記貴金属と遷移金属との合金の少なくとも一つを含む酸化触媒粒子を形成することを含むメソポーラス触媒体の製造方法。
     
PCT/JP2018/005984 2017-02-23 2018-02-20 メソポーラス触媒体及びそれを用いたガス処理装置 WO2018155432A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019501337A JP7082376B2 (ja) 2017-02-23 2018-02-20 メソポーラス触媒体及びそれを用いたガス処理装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017032337 2017-02-23
JP2017032539 2017-02-23
JP2017-032539 2017-02-23
JP2017-032337 2017-02-23

Publications (1)

Publication Number Publication Date
WO2018155432A1 true WO2018155432A1 (ja) 2018-08-30

Family

ID=63253313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005984 WO2018155432A1 (ja) 2017-02-23 2018-02-20 メソポーラス触媒体及びそれを用いたガス処理装置

Country Status (3)

Country Link
JP (1) JP7082376B2 (ja)
TW (1) TWI746806B (ja)
WO (1) WO2018155432A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020168390A1 (en) * 2019-02-21 2020-08-27 Newsouth Innovations Pty Limited Nanoparticle and its use as a water-splitting catalyst
CN112774663A (zh) * 2019-11-04 2021-05-11 中国石油天然气股份有限公司 用于甲烷直接制乙烯的多级孔催化剂及其制备方法与应用
KR20210090530A (ko) * 2020-01-10 2021-07-20 주식회사 퀀텀캣 복합 기능을 갖는 공기 정화 필터 및 장치
JP2021192893A (ja) * 2020-06-08 2021-12-23 エヌ・イーケムキャット株式会社 排ガス処理部材
JP2022528253A (ja) * 2019-03-22 2022-06-09 クァントム キャット カンパニー リミテッド 低温下でも高い活性を有する、多孔性酸化物担体に捕集された金属性ナノ粒子触媒
CN114749177A (zh) * 2022-05-20 2022-07-15 烟台哈尔滨工程大学研究院 一种污水臭氧氧化催化剂的制备方法
CN115845793A (zh) * 2023-01-05 2023-03-28 烟台大学 一种高表面积高孔容积有序介孔固氟剂制备方法及应用
WO2023063353A1 (ja) * 2021-10-12 2023-04-20 株式会社フルヤ金属 触媒

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147558A (ja) * 1997-07-31 1999-02-23 Nitto Denko Corp 空気の浄化方法
JP2003320256A (ja) * 2002-04-26 2003-11-11 Nissan Motor Co Ltd 排気ガス浄化触媒及びこれを用いた排気ガス浄化装置
JP2007269586A (ja) * 2006-03-31 2007-10-18 Nichias Corp メソ多孔体の製造方法及びこれを使用したフィルタ
JP2008161838A (ja) * 2006-12-28 2008-07-17 Nbc Inc 触媒担持体
JP2009233535A (ja) * 2008-03-26 2009-10-15 Kyocera Corp 誘電性構造体、誘電性構造体の製造方法、誘電性構造体を用いた放電装置、並びに流体改質装置
JP2010265174A (ja) * 2010-07-27 2010-11-25 Asahi Kasei Chemicals Corp 変性メソポーラス酸化物
JP2012061393A (ja) * 2010-09-14 2012-03-29 Nbc Meshtec Inc 低温プラズマと触媒フィルターを用いるガス浄化方法及びその浄化装置
JP2014113537A (ja) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd プラズマ発生装置及び光触媒活性制御方法
JP2015051902A (ja) * 2013-09-09 2015-03-19 リコーイメージング株式会社 メソポーラスシリカ多孔質膜の製造方法
WO2016171231A1 (ja) * 2015-04-22 2016-10-27 三菱化学株式会社 ビスフェノール類の製造方法、ジルコニウム-リン複合固体酸触媒とその製造方法及びその再生方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147558A (ja) * 1997-07-31 1999-02-23 Nitto Denko Corp 空気の浄化方法
JP2003320256A (ja) * 2002-04-26 2003-11-11 Nissan Motor Co Ltd 排気ガス浄化触媒及びこれを用いた排気ガス浄化装置
JP2007269586A (ja) * 2006-03-31 2007-10-18 Nichias Corp メソ多孔体の製造方法及びこれを使用したフィルタ
JP2008161838A (ja) * 2006-12-28 2008-07-17 Nbc Inc 触媒担持体
JP2009233535A (ja) * 2008-03-26 2009-10-15 Kyocera Corp 誘電性構造体、誘電性構造体の製造方法、誘電性構造体を用いた放電装置、並びに流体改質装置
JP2010265174A (ja) * 2010-07-27 2010-11-25 Asahi Kasei Chemicals Corp 変性メソポーラス酸化物
JP2012061393A (ja) * 2010-09-14 2012-03-29 Nbc Meshtec Inc 低温プラズマと触媒フィルターを用いるガス浄化方法及びその浄化装置
JP2014113537A (ja) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd プラズマ発生装置及び光触媒活性制御方法
JP2015051902A (ja) * 2013-09-09 2015-03-19 リコーイメージング株式会社 メソポーラスシリカ多孔質膜の製造方法
WO2016171231A1 (ja) * 2015-04-22 2016-10-27 三菱化学株式会社 ビスフェノール類の製造方法、ジルコニウム-リン複合固体酸触媒とその製造方法及びその再生方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020168390A1 (en) * 2019-02-21 2020-08-27 Newsouth Innovations Pty Limited Nanoparticle and its use as a water-splitting catalyst
JP2022528253A (ja) * 2019-03-22 2022-06-09 クァントム キャット カンパニー リミテッド 低温下でも高い活性を有する、多孔性酸化物担体に捕集された金属性ナノ粒子触媒
JP7306750B2 (ja) 2019-03-22 2023-07-11 クァントム キャット カンパニー リミテッド 低温下でも高い活性を有する、多孔性酸化物担体に捕集された金属性ナノ粒子触媒
CN112774663A (zh) * 2019-11-04 2021-05-11 中国石油天然气股份有限公司 用于甲烷直接制乙烯的多级孔催化剂及其制备方法与应用
KR20210090530A (ko) * 2020-01-10 2021-07-20 주식회사 퀀텀캣 복합 기능을 갖는 공기 정화 필터 및 장치
KR102374213B1 (ko) * 2020-01-10 2022-03-15 주식회사 퀀텀캣 복합 기능을 갖는 공기 정화 필터 및 장치
JP2021192893A (ja) * 2020-06-08 2021-12-23 エヌ・イーケムキャット株式会社 排ガス処理部材
WO2023063353A1 (ja) * 2021-10-12 2023-04-20 株式会社フルヤ金属 触媒
CN114749177A (zh) * 2022-05-20 2022-07-15 烟台哈尔滨工程大学研究院 一种污水臭氧氧化催化剂的制备方法
CN115845793A (zh) * 2023-01-05 2023-03-28 烟台大学 一种高表面积高孔容积有序介孔固氟剂制备方法及应用
CN115845793B (zh) * 2023-01-05 2024-03-29 烟台大学 一种高表面积高孔容积有序介孔固氟剂制备方法及应用

Also Published As

Publication number Publication date
JPWO2018155432A1 (ja) 2019-12-12
TW201842967A (zh) 2018-12-16
JP7082376B2 (ja) 2022-06-08
TWI746806B (zh) 2021-11-21

Similar Documents

Publication Publication Date Title
JP7082376B2 (ja) メソポーラス触媒体及びそれを用いたガス処理装置
RU2602152C2 (ru) Устройство и способ обработки газа с использованием нетермической плазмы и каталитической среды
JP5157561B2 (ja) 可視光応答型光触媒とその製造方法
JP2013078759A (ja) 燃焼排ガス処理ユニット及びco2供給装置
JP5002864B2 (ja) 有機金属化合物を用いた酸化物光触媒材料およびその応用品
US20060105911A1 (en) Photocatalyst material and process for producing the same
JP2015116526A (ja) 光触媒複合体およびその製造方法、並びに光触媒複合体を含む光触媒脱臭システム
JP7063562B2 (ja) 多孔質触媒体膜及びそれを用いたガス処理装置
JP6889569B2 (ja) 有機ガス低減装置
JP7338947B2 (ja) 果物の熟成制御方法
JP4163374B2 (ja) 光触媒膜
JP5156286B2 (ja) 繊維状光触媒体及び浄化装置
JP7390663B2 (ja) 多孔質酸化鉄触媒体
KR102279008B1 (ko) 가시광 활성 광촉매를 포함하는 공기정화용 창호
JP2007098197A (ja) 光触媒材料の製造方法
KR102152874B1 (ko) 가시광 활성 광촉매를 포함하는 방음 패널
JP7311288B2 (ja) 触媒フィルタ
JP2009268943A (ja) 光触媒、該光触媒を含有する光触媒分散液、及び光触媒塗料組成物
JP2002253964A (ja) 有機金属化合物を用いた酸化物光触媒材料およびその応用品
KR102244534B1 (ko) 가시광 활성 광촉매를 포함하는 led
KR101377001B1 (ko) 광활성 특성이 향상된 비스무스가 도핑된 탄탈산나트륨 광촉매 입자의 제조 방법
JP2008044850A (ja) 酸化珪素膜で被覆された光触媒を含む抗菌消臭噴霧液
JP7165345B2 (ja) アミン系化合物の分解方法及びアミン系化合物分解触媒
JP7302942B2 (ja) 有機ガス低減装置および有機ガス低減方法
KR102345659B1 (ko) 가시광 활성 광촉매를 포함하는 방충-방진망

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501337

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757165

Country of ref document: EP

Kind code of ref document: A1