WO2016169551A1 - Vorrichtung, verfahren und anlage zur der inhomogenen abkühlung eines flächigen gegenstandes - Google Patents

Vorrichtung, verfahren und anlage zur der inhomogenen abkühlung eines flächigen gegenstandes Download PDF

Info

Publication number
WO2016169551A1
WO2016169551A1 PCT/DE2016/100116 DE2016100116W WO2016169551A1 WO 2016169551 A1 WO2016169551 A1 WO 2016169551A1 DE 2016100116 W DE2016100116 W DE 2016100116W WO 2016169551 A1 WO2016169551 A1 WO 2016169551A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
main surface
partial
period
partial surface
Prior art date
Application number
PCT/DE2016/100116
Other languages
English (en)
French (fr)
Inventor
Jörg Ammon
Harald Kobolla
Original Assignee
Semikron Elektronik Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semikron Elektronik Gmbh & Co. Kg filed Critical Semikron Elektronik Gmbh & Co. Kg
Priority to CN201680018528.9A priority Critical patent/CN107980014B/zh
Priority to US15/556,241 priority patent/US10391572B2/en
Publication of WO2016169551A1 publication Critical patent/WO2016169551A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • B23K3/085Cooling, heat sink or heat shielding means
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/003Cooling means
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/38Heating by cathodic discharges
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Definitions

  • the invention describes a device and an associated method for the inhomogeneous cooling of a flat object, in particular from the field of electrical engineering. Furthermore, the application of the device in a system, more precisely a soldering system for electrical components is described.
  • solder joint To connect solder joint with each other or with a component carrier. To produce such a solder joint liquefied solder, which is arranged between the two elements to be connected and is in contact with the elements to be connected, cooled below the melting point. The solidified by the cooling solder forms a cohesive solder joint of the two elements.
  • solder joint in the case of flat solder joints, it is desirable for the solder joint to form a homogeneous layer, that is to say a layer without gas inclusions, so-called voids.
  • Heat sink causes a targeted inhomogeneous cooling of the solder.
  • a shortcoming of the prior art cooling device is the complex control of the controlled heat sink.
  • the invention has for its object to provide a device and an associated method, which causes a simple way inhomogeneous cooling of a major surface of a sheet-like object, and to provide a soldering machine, in which this device can be arranged.
  • the device according to the invention serves for the inhomogeneous cooling of a planar article having a first main surface and a second main surface opposite this.
  • the planar article is cooled by a cooling device from the direction of the first main surface.
  • a heating device acts on a first partial surface locally in such a way that the flat
  • Heat is applied to the object on this first subarea relative to a second subarea adjoining this first subarea in such a way that this first subarea is cooled more slowly in comparison to the second subarea and thus the second main surface of the plane object during the second
  • Cooling at least in a sub-period of cooling has an inhomogeneous temperature distribution.
  • cooling of the second main surface is understood in particular to mean that the volume of the flat article adjacent thereto, ie its volume region extending from the second main surface to the interior of the article, is also cooled down in the same way
  • surface is explicitly not to be understood in the mathematical sense, but rather as a surface, which thus may have a certain topology, ie height differences in its course. Of course, if this is not excluded per se, in the
  • Singular called features in particular the first and second part surface, also be present several times.
  • the flat article is a base plate of a
  • Power semiconductor module with power electronics arranged thereon
  • the planar object may be a power electronic substrate with power semiconductor components arranged thereon, wherein solder is arranged between the substrate and the respective power semiconductor component.
  • the cooling device is a water cooling device or as
  • Air cooling device formed.
  • any cooling device during cooling can be in thermal contact with the first main surface of the flat article or can be arranged at a distance from the first main surface of the flat article.
  • any cooling device may be designed to cool the first main surface homogeneously, this being understood to be a cooling of the first main surface that is uniform in the context of technical feasibility.
  • the heating device is arranged at a distance from the second main surface.
  • the heating device is preferably designed as an IR LED (infrared light emitting diode) or as a technical realization of a black body, which in turn is preferably formed as a halogen lamp, wherein the respective preferred peak wavelength between 0.7 microns and 10 microns, preferably 0 , 7 to 3 microns.
  • the heating device designed as an IR LED or black emitter will be assigned an additional beam shaper.
  • This can in particular as a diaphragm, an aperture matrix, a filter, a filter matrix, a hologram, a
  • the inventive method for using an above-mentioned device for inhomogeneous cooling of a flat article with a first Main surface and one of these opposite second major surface comprises the following steps: a. The sheet article is cooled from the direction of the first main surface by a cooling device for a first period of time. b. For a second period of time, a heating device acts locally on a partial surface of the second main surface in such a way that the planar article impinges heat on this partial surface relative to the second partial surface, thereby slowing the planar article on this first partial surface in comparison with the second partial surface for a third period of time is cooled and thus in this third period an inhomogeneous
  • the second period it is preferable for the second period to lie completely or partially before, during or after the first period.
  • the term period is not to be understood here exclusively as a contiguous period, but rather a period may also include several partial periods, i. in other words a period can also be interrupted.
  • Essential for the method is that the respective periods are selected such that the solidification of the solder is delayed by the local, relative heating, in the region of the first partial surface until the solidification has begun in the region of the second partial surface.
  • the time course of a solidification front can be controlled such that a voids formation is substantially reduced and thus the resulting solder layer has a high quality.
  • a soldering system according to the invention with a device mentioned above is designed as a continuous soldering machine with a plurality of chambers.
  • Such soldering machines are known with various soldering methods, for example as Dampfphasenlötanlagen.
  • these Lötanmaschine three process chambers a prechamber for preheating below the soldering temperature, a main chamber in which the solder is liquefied and a cooling chamber.
  • a cooling chamber is the
  • inventive device arranged in.
  • FIG. 1 shows a first embodiment of a flat article in a lateral view.
  • FIG. 2 shows the first planar article and a first embodiment of the device according to the invention.
  • FIG. 3 shows a second embodiment of the device according to the invention with a second embodiment of the flat article.
  • FIG. 4 shows the first planar article in plan view.
  • Figure 5 shows a time course of the surface temperature of the second
  • FIG. 6 shows a third embodiment of the device according to the invention with the first flat object.
  • FIG. 1 shows a first embodiment of a flat article 2 in a lateral view.
  • the flat article 2 has a base plate 20.
  • This is, without limitation of generality, a base plate of a power semiconductor module and consists of copper or an alloy with the majority of copper. Furthermore, this base plate 20 has a solderable
  • two power electronic substrate 22 are arranged and cohesively connected by means of a solder layer, not shown, with the base plate 20.
  • these electronic power substrates 22 are designed in the usual way and each have a layer sequence beginning with a solderable layer which is connected to the base plate.
  • this layer follows a layer of an industrial ceramic, which in turn follows a conductive layer, which is structured in itself and thus forms tracks.
  • Conductor tracks are power semiconductor devices 24 arranged and connected in a commercially usual way cohesively.
  • these components 20, 22, 24, 26 form the first flat object 2 whose first main surface 200 is formed by the surface of the base plate 20 facing away from the power electronic substrates 22.
  • the second, the first opposing main surface 202 of the flat object 2 is formed through the exposed surfaces of the base plate 20, the power electronic
  • This second surface thus has a certain topography, ie a surface contour, which is not reproduced to scale in this representation.
  • This first planar object 2 forms a customary component of a power semiconductor module.
  • Figure 2 shows the first sheet-like object 2 and a first embodiment of the device according to the invention, which here serves the cohesive, here lottechnische connection of the base plate 20 with the two power electronic substrates 22, in which case the power semiconductor devices 24 are already materially connected to the substrates 22 to train.
  • the first device according to the invention has a cooling device 1, which is designed here as a water cooling device 10, with cooling channels shown schematically.
  • the cooling effect of this cooling device 10 can be regulated in its entirety on the amount of water flowing through and its temperature. It thus arises on the base plate 20, so the first major surface 200 of the sheet-like object 2 facing top in the context of the technology
  • the cooling device 10 may be spaced but also arranged in direct thermal contact with the first main surface 200 of the flat article 2 standing. Within the scope of the method, it may also be advantageous to bring the cooling device 10 into rapid, initial cooling contact with the base plate 20 and spaced from it in a later step to reduce the cooling capacity.
  • the concrete design of this procedural step is basically depending on the necessary cooling capacity. However, it is essential here that a local temperature control of the active surface of the cooling device 10 does not take place.
  • the first device according to the invention further comprises a heating device 4, which here from a combination of an infrared radiator 40, for example a
  • Halogen lamp with a peak wavelength of 1, 2 microns with an arrangement of a convex mirror 50 and a mirror array 52, and with shutters, not shown, there is.
  • the emanating from the halogen lamp 40 light 400 is guided over the mirrors and apertures such that it is on the edge region of
  • FIG. 3 shows a second embodiment of the device according to the invention with a second flat object 2.
  • the latter has a power electronic substrate 22.
  • This power electronic substrate 22 is otherwise customary and has a layer sequence of a lower metallic layer, which is however only optional. This layer is followed by a layer of an industrial ceramic, or another electrically insulating layer, which in turn is followed by a conductive layer, which is structured in itself and thus forms printed conductors.
  • Power semiconductor components 24 are arranged on these printed conductors and connected thereto in terms of soldering technology. For clarity only, the power electronic substrate 22, the solder layer 26, and the power semiconductor devices 24 are shown spaced apart.
  • the second, the first opposite major surface 202 of the sheet 2 is formed by the exposed surfaces of the power electronic substrate 22 and the
  • This second surface 202 thus has a certain topography, that is to say a surface contour which is not reproduced to scale in this representation.
  • This second planar object 2 likewise forms a customary component of a power semiconductor module.
  • the second device according to the invention also has a cooling device 1, here as air cooling device 12, with cooling fins schematically illustrated, is trained.
  • a cooling device here as air cooling device 12, with cooling fins schematically illustrated, is trained.
  • the cooling effect of this cooling device 12 is very homogeneous and is usually lower than that of a water cooling device. This can be advantageous for a particularly gentle cooling of the flat article 2.
  • the cooling device 12 is preferably arranged in direct thermal contact with the first main surface 200 of the flat article 2 standing.
  • the second device further comprises a heating device 4, which here consists of a combination of a plurality of IR LEDs 42, with a peak wavelength of 0.9 micrometers, each with associated lenses 54, for example, a microlens grid, and associated apertures 56 ,
  • a heating device 4 which here consists of a combination of a plurality of IR LEDs 42, with a peak wavelength of 0.9 micrometers, each with associated lenses 54, for example, a microlens grid, and associated apertures 56 ,
  • the light 400 emanating from the IR LEDs 42 is guided via the respective associated lenses and diaphragms in such a way that it is located on the edge region of the
  • the effect of the heating device 4 is shown schematically by a temperature profile 600, as it occurs during the process on the second main surface 202. At the edges of the power semiconductor components 24, a higher temperature prevails in each case during the cooling phase in which the solder solidifies than in the middle of the respective power semiconductor component 24.
  • FIG. 4 shows the first planar article 2 in plan view. Shown here is a base plate 20 with two power electronic substrates 22, wherein only one of the two power semiconductor devices 24 are shown.
  • the hatched areas correspond to the first partial surfaces 204 of the second main surface 202, which have a higher temperature relative to them and, as here opposite them, enclosed by second partial surfaces 206.
  • the essential feature of the heating device is that it can locally heat the first partial area 204 with respect to the total area, and specifically with respect to a second partial area 206.
  • this is not in particular an absolute heating with respect to a starting temperature of the second main surface, even if this is the case at the beginning of the process in short term, but rather relative heating of the first partial surface 204 relative to the second partial surface 206.
  • this means that, in absolute terms, the effect of the cooling device substantially exceeds that of the heating device.
  • the heating device thus counteracts the cooling device in such a way that the first partial area cools down more slowly than the adjacent second partial area.
  • the solder solidifies, starting in the second partial surface and the
  • Heating device whereby by way of example gas inclusions, so-called. Lunker, are significantly reduced in the solder layer.
  • FIG. 5 shows a temporal profile of the surface temperature 60, 602, 603, 604, 605 of the second main surface 202 along the section A-A of the first planar article from FIG. 4, during the time sequence of the method according to the invention. Shown are each relative temperatures.
  • the regions at the edge of the power electronic substrates are slightly warmer than their central regions, which have the same temperature as the base plate.
  • the cooling begins with the cooling of the first main surface by means of the cooling device. Since the start of the cooling takes place with a time delay on the second main surface, the heating device can either be made shortly before, at the same time or also shortly after the start of the cooling of the first main surface. It is advantageous in this case if the starting temperature is not exceeded locally at the first partial surfaces.
  • FIG. 6 shows a third embodiment of the device according to the invention with the first flat object 2.
  • the heating device 4 is designed to be simple and very variable. It consists of a matrix of IR LEDs 42, which are individually controllable, ideally also individually adjustable in their performance and which are arranged above the relevant area of the second main surface. For further improvement, in particular homogenization of the power above-mentioned and customary beam shaper for the respective IR LEDs 42 can be used.
  • the area, the first partial area can be determined, at which the solder begins to solidify.
  • the course of the solidification front as well as its propagation speed can be individually controlled.
  • a simple power control of the IR LEDs a highly individual temporal and spatial sequence of the solidification of the solder is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Die erfindungsgemäße Vorrichtung dient der inhomogenen Abkühlung eines flächigen Gegenstandes (2) mit einer ersten Hauptfläche (200) und einer dieser gegenüber liegenden zweiten Hauptfläche (202). Hierbei wird der flächige Gegenstand aus Richtung der ersten Hauptfläche von einer Kühleinrichtung (1) gekühlt. Auf die zweite Hauptfläche wirkt eine Heizeinrichtung (4) auf eine erste Teilfläche (204) lokal derart ein, dass der flächige Gegenstand an dieser ersten Teilfläche relativ zu einer an diese erste Teilfläche anschließenden zweiten Teilfläche (206) derart mit Wärme beaufschlagt wird, dass diese erste Teilfläche im Vergleich zur zweiten Teilfläche langsamer abgekühlt wird und somit die zweite Hauptfläche des flächigen Gegenstands während des Abkühlvorgangs zumindest in einem Teilzeitraum der Abkühlung eine inhomogene Temperaturverteilungaufweist.

Description

Semikron Elektronik GmbH & Co. KG
Sigmundstr. 200 Postfach 820 251
90431 Nürnberg 90253 Nürnberg
Vorrichtung, Verfahren und Anlage zur der inhomogenen Abkühlung eines flächigen Gegenstandes
Beschreibung
Die Erfindung beschreibt eine Vorrichtung sowie ein zugehöriges Verfahren zur inhomogenen Abkühlung eines flächigen Gegenstandes insbesondere aus dem Feld der Elektrotechnik. Weiterhin wird die Anwendung der Vorrichtung in einer Anlage, genauer eine Lötanlage für elektrotechnische Bauelemente beschrieben.
Insbesondere ist es fachüblich Bauelemente der Elektrotechnik mittels einer
Lötverbindung miteinander oder mit einem Bauelementeträger zu verbinden. Zur Herstellung einer derartigen Lötverbindung wird verflüssigtes Lot, das zwischen den beiden zu verbindenden Elementen angeordnet ist und in Kontakt mit den zu verbindenden Elementen steht, unter den Schmelzpunkt abgekühlt. Das durch den Abkühlprozess erstarrte Lot bildet eine stoffschlüssige Lotverbindung der beiden Elemente aus.
Insbesondere bei flächigen Lötverbindungen ist es dabei wünschenswert, dass die Lotverbindung eine homogene Schicht, also eine Schicht ohne Gaseinschlüsse, sog. Lunker ausbildet.
Aus der DE 10 201 1 081 606 A1 ist eine Kühlvorrichtung zum Abkühlen des noch flüssigen Lots bekannt, bei der eine komplex ausgebildete und gesteuerte
Wärmesenke eine gezielte inhomogene Abkühlung des Lots bewirkt. Die
Temperaturverteilung des Lots während des Abkühlungsprozesses soll inhomogen ausgebildet sein um zu bewirken, dass beim Abkühlen des Lot dessen
Erstarrungsfront ausgehend von einem Startbereiche nach Außen verläuft. Hierbei soll die Entstehung von Lunkern wirkungsvoll vermieden werden.
Ein Mangel der genannten Kühlvorrichtung gemäß dem Stand der Technik liegt in der komplexen Regelung der gesteuerten Wärmesenke.
In Kenntnis dieser genannten Gegebenheiten liegt der Erfindung die Aufgabe zugrunde, ein Vorrichtung und ein zugehöriges Verfahren zu schaffen, die auf einfache Weise eine inhomogene Abkühlung einer Hauptfläche eines flächigen Gegenstandes bewirkt, sowie eine Lötanlage anzugeben, in der diese Vorrichtung angeordnet werden kann.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung mit den
Merkmalen des Anspruchs 1 , durch ein Verfahren mit den Merkmalen des Anspruchs 13, sowie durch eine Lötanlage mit den Merkmalen des Anspruchs 15. Bevorzugte Ausführungsformen sind in den jeweiligen abhängigen Ansprüchen beschrieben.
Die erfindungsgemäße Vorrichtung dient der inhomogenen Abkühlung eines flächigen Gegenstandes mit einer ersten Hauptfläche und einer dieser gegenüber liegenden zweiten Hauptfläche. Hierbei wird der flächige Gegenstand aus Richtung der ersten Hauptfläche von einer Kühleinrichtung gekühlt. Auf die zweite Hauptfläche wirkt eine Heizeinrichtung auf eine erste Teilfläche lokal derart ein, dass der flächige
Gegenstand an dieser ersten Teilfläche relativ zu einer an diese erste Teilfläche anschließenden zweiten Teilfläche derart mit Wärme beaufschlagt wird, dass diese erste Teilfläche im Vergleich zur zweiten Teilfläche langsamer abgekühlt wird und somit die zweite Hauptfläche des flächigen Gegenstands während des
Abkühlvorgangs zumindest in einem Teilzeitraum der Abkühlung eine inhomogene Temperaturverteilung aufweist.
Hierbei wird unter dem Begriff „Abkühlen der zweiten Hauptfläche" insbesondere verstanden, dass das hieran angrenzende Volumen des flächigen Gegenstandes, also sein dortiger sich von der zweiten Hauptfläche ins Innere des Gegenstandes erstreckender Volumenbereich, ebenso mit abgekühlt wird. Analoges gilt für die erste und zweite Teilfäche. Weiterhin ist hier jeweils der Begriff „Fläche" explizit nicht im mathematischen Sinne zu verstehen, sondern als eine Oberfläche, die somit eine gewisse Topologie, also Höhenunterschiede in ihrem Verlauf aufweisen kann. Selbstverständlich können, sofern dies nicht per se ausgeschlossen ist, die im
Singular genannten Merkmale, insbesondere die erste und zweite Teilfläche, auch mehrfach vorhanden sein.
Vorzugsweise ist der flächige Gegenstand eine Grundplatte eines
Leistungshalbleitermoduls mit hierauf angeordneten leistungselektronischen
Substraten, wobei zwischen der Grundplatte und dem jeweiligen Substrat Lot angeordnet ist. Alternativ kann der flächige Gegenstand ein leistungselektronisches Substrat mit hierauf angeordneten Leistungshalbleiterbauelementen sein, wobei zwischen dem Substrat und dem jeweiligen Leistungshalbleiterbauelement Lot angeordnet ist.
Vorzugsweise ist die Kühleinrichtung als Wasserkühleinrichtung oder als
Luftkühleinrichtung ausgebildet. Grundsätzlich kann jegliche Kühleinrichtung während der Abkühlung mit der ersten Hauptfläche des flächigen Gegenstandes in thermischen Kontakt stehen oder von der ersten Hauptfläche des flächigen Gegenstandes beabstandet angeordnet sein. Ebenso kann jegliche Kühleinrichtung dazu ausgebildet sein die erste Hauptfläche homogen zu kühlen, wobei hierbei eine im Rahmen der technischen Ausführbarkeit gleichmäßige Kühlung der ersten Hauptfläche verstanden wird.
In besonders bevorzugter Weise ist die Heizeinrichtung von der zweiten Hauptfläche beabstandet angeordnet. Dabei ist die Heizeinrichtung bevorzugt als eine IR-LED (Infrarot Leuchtdiode) oder als technische Realisierung eines schwarzer Strahlers ausgebildet, der wiederum bevorzugt als eine Halogenlampe ausgebildet ist, wobei die jeweils bevorzugte Peak-Wellenlänge zwischen 0,7 Mikrometer und 10 Mikrometer, bevorzugt 0,7 bis 3 Mikrometer, beträgt.
Häufig wird der als IR-LED oder schwarzer Strahler ausgebildeten Heizeinrichtung ein zusätzlichen Strahlformer zugeordnet sein. Dieser kann insbesondere als eine Blende, eine Blendenmatrix, ein Filter, eine Filtermatrix, ein Hologramm, eine
Hologrammmatrix, ein Axicon, eine Axiconmatrix, ein Spiegel, eine Spiegelmatrix, eine Linse oder eine Linsenmatrix, oder als eine Kombination hieraus ausgebildet sein.
Das erfindungsgemäße Verfahren zur Verwendung einer oben genannten Vorrichtung zur inhomogenen Abkühlung eines flächigen Gegenstandes mit einer ersten Hauptfläche und einer dieser gegenüber liegenden zweiten Hauptfläche, weist folgende Schritte auf: a. Der flächige Gegenstand wird aus Richtung der erste Hauptfläche von einer Kühleinrichtung für einen ersten Zeitraum gekühlt. b. Für einen zweiten Zeitraum wirkt eine Heizeinrichtung auf eine Teilfläche der zweite Hauptfläche lokal derart ein, dass der flächige Gegenstand an diese Teilfläche relativ zur zweiten Teilfläche mit Wärme beaufschlagt und hierdurch der flächige Gegenstand an dieser erste Teilfläche im Vergleich zur zweiten Teilfläche für einen dritten Zeitraum langsamer abgekühlt wird und somit in diesem dritten Zeitraum eine inhomogene
Temperaturverteilung aufweist.
Hierbei ist es bevorzugt, wenn der zweite Zeitraum ganz oder teilweise vor, während oder nach dem ersten Zeitraum liegt. Der Begriff Zeitraum ist hier nicht ausschließlich als zusammenhängender Zeitraum zu verstehen, vielmehr kann ein Zeitraum auch mehrere Teilzeiträume einschließen, d.h. in anderen Worten ein Zeitraum kann auch unterbrochen sein.
Wesentlich für das Verfahren ist es, dass die jeweiligen Zeiträume derart ausgewählt werden, dass die Erstarrung des Lots, durch das lokale, relative Erwärmen, im Bereich der ersten Teilfläche solange verzögert wird, bis die Erstarrung im Bereich der zweiten Teilfläche eingesetzt hat. Somit kann der zeitliche Verlauf einer Erstarrungsfront derart gesteuert werden, dass eine Lunkerbildung wesentlich verringert wird und damit die entstandene Lotschicht eine hohe Qualität aufweist.
Eine erfindungsgemäße Lötanlage mit einer oben genannten Vorrichtung ist als Durchlauflötanlage mit einer Mehrzahl von Kammern ausgebildet. Solche Lötanlagen sind mit verschiedenen Lötverfahren, beispielhaft als Dampfphasenlötanlagen, bekannt. Meist weise diese Lötanlangen drei Prozesskammern, eine Vorkammer zur Vorerwärmung unterhalb der Lottemperatur, ein Hauptkammer in der das Lot verflüssigt wird und ein Abkühlkammer auf. In dieser Abkühlkammer ist die
erfindungsgemäße Vorrichtung in angeordnet.
Es versteht sich, dass die verschiedenen Ausgestaltungen der Erfindung einzeln oder in beliebigen Kombinationen realisiert sein können, um Verbesserungen zu erreichen. Insbesondere sind die vorstehend genannten und hier oder im Folgenden erläuterten Merkmale nicht nur in den angegebenen Kombinationen, sondern auch in anderen sich nicht ausschließenden Kombinationen oder in Alleinstellung einsetzbar, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Weitere Erläuterungen der Erfindung, vorteilhafte Einzelheiten und Merkmale, ergeben sich aus der nachfolgenden Beschreibung der in den Figuren 1 bis 6 schematisch dargestellten Ausführungsbeispiele der Erfindung, oder von jeweiligen Teilen hiervon.
Figur 1 zeigt eine erste Ausgestaltung eines flächigen Gegenstands in seitlicher Ansicht.
Figur 2 zeigt den ersten flächigen Gegenstand und eine erste Ausgestaltung der erfindungsgemäßen Vorrichtung.
Figur 3 zeigt eine zweite Ausgestaltung der erfindungsgemäßen Vorrichtung mit einer zweiten Ausgestaltung des flächigen Gegenstands.
Figur 4 zeigt den ersten flächigen Gegenstand in Draufsicht.
Figur 5 zeigt einen zeitlichen Verlauf der Oberflächentemperatur der zweiten
Hauptfläche des ersten flächigen Gegenstands während des erfindungsgemäßen Verfahrens.
Figur 6 zeigt eine dritte Ausgestaltung der erfindungsgemäßen Vorrichtung mit dem ersten flächigen Gegenstand.
Figur 1 zeigt eine erste Ausgestaltung eines flächigen Gegenstands 2 in seitlicher Ansicht. Bei dieser Ausgestaltung weist der flächige Gegenstand 2 eine Grundplatte 20 auf. Diese ist ohne Beschränkung der Allgemeinheit eine Grundplatte eines Leistungshalbleitermoduls und besteht aus Kupfer oder eine Legierung mit dem Hauptanteil Kupfer. Weiterhin weist diese Grundplatte 20 eine lotfähige
Oberflächenbeschichtung beispielhaft aus einer dünnen Schicht Nickel auf.
Auf einer Oberfläche der Grundplatte 20 sind zwei leistungselektronische Substrat 22 angeordnet und stoffschlüssig, mittels einer nicht dargestellten Lotschicht mit der Grundplatte 20 verbunden. Diese leistungselektronischen Substrate 22 sind im übrigen fachüblich ausgebildet und weisen jeweils eine Schichtfolge beginnend mit einer lotfähigen Schicht, die mit der Grundplatte verbunden ist, auf. Auf diese Schicht folgt eine Schicht aus einer Industriekeramik, auf die wiederum eine leitfähige Schicht folgt, die in sich strukturiert ist und somit Leiterbahnen ausbildet. Auf diesen
Leiterbahnen sind Leistungshalbleiterbauelemente 24 angeordnet und auf fachübliche Weise stoffschlüssig damit verbunden.
Diese Komponenten 20, 22, 24, 26 bilden hier den ersten flächigen Gegenstand 2 aus, dessen erste Hauptfläche 200 ausgebildet wird durch die den leistungselektronischen Substraten 22 abgewandte Oberfläche der Grundplatte 20. Die zweite, der ersten gegenüberliegende Hauptfläche 202 des flächigen Gegenstands 2 wird gebildet durch die frei liegenden Oberflächen der Grundplatte 20, der leistungselektronischen
Substrate 22 und der Leistungshalbleiterbauelemente 24. Diese zweite Oberfläche weist somit eine gewisse Topographie, also eine Oberflächenkontur auf, die in dieser Darstellung nicht maßstäblich wiedergegeben ist. Diese erste flächige Gegenstand 2 bildet eine fachübliche Komponente eines Leistungshalbleitermoduls aus.
Figur 2 zeigt den ersten flächigen Gegenstand 2 und eine erste Ausgestaltung der erfindungsgemäßen Vorrichtung, die hier dazu dient die stoffschlüssige, hier lottechnische, Verbindung der Grundplatte 20 mit den beiden leistungselektronischen Substraten 22, wobei hier die Leistungshalbleiterbauelemente 24 mit den Substraten 22 bereits stoffschlüssig verbunden sind, auszubilden. Ausschließlich zur
Verdeutlichung sind die Grundplatte 20, die Lotschicht 26 und die Substrate 22 beabstandet dargestellt.
Die erste erfindungsgemäße Vorrichtung weist eine Kühleinrichtung 1 auf, die hier als Wasserkühleinrichtung 10, mit schematisch dargestellten Kühlkanälen, ausgebildet ist. Die Kühlwirkung dieser Kühleinrichtung 10 kann in Ihrer Gesamtheit über die Menge des durchfließenden Wassers und dessen Temperatur geregelt werden. Es entsteht somit auf der der Grundplatte 20, also der ersten Hauptfläche 200 des flächigen Gegenstandes 2 zugewandten Oberseite eine im Rahmen der techniküblichen
Genauigkeit eine homogene Temperaturverteilung.
Die Kühleinrichtung 10 kann beabstandet aber auch in direktem thermischen Kontakt mit der ersten Hauptfläche 200 des flächigen Gegenstandes 2 stehend angeordnet sein. Im Rahmen des Verfahrens kann es auch vorteilhaft sein, die Kühleinrichtung 10 zu schnellen, initialen Abkühlung in Kontakt mit der Grundplatte 20 zu bringen und in einem späteren Schritt von dieser beabstandet zu verwendet, um die Kühlleistung zu verringern. Die konkrete Ausgestaltung dieses Verfahrensschritts ist grundsätzlich abhängig von der notwendigen Kühlleistungen. Wesentlich ist hier allerdings, dass eine lokale Temperaturregelung der aktiven Oberfläche der Kühleinrichtung 10 nicht erfolgt.
Die erste erfindungsgemäße Vorrichtung weist weiterhin eine Heizeinrichtung 4 auf, die hier aus einer Kombination eines Infrarotstrahlers 40, beispielhaft einer
Halogenlampe mit einer Peak-Wellenlänge von 1 ,2 Mikrometer mit einer Anordnung eines konvexen Spiegels 50 und einer Spiegelmatrix 52, sowie mit nicht dargestellten Blenden besteht. Das von der Halogenlampe 40 ausgehende Licht 400 wird über die Spiegel und Blenden derart geführt, dass es auf dem Randbereich der
leistungselektronischen Substrate 22 auftrifft. Zur Wirkung wird hier besonders auf die Beschreibung zur Figur 4 verwiesen.
Figur 3 zeigt eine zweite Ausgestaltung der erfindungsgemäßen Vorrichtung mit einem zweiten flächigen Gegenstand 2. Bei dieser zweiten Ausgestaltung des flächigen Gegenstands 2 weist dieser ein leistungselektronisches Substrat 22 auf. Dieses leistungselektronische Substrat 22 ist im übrigen fachüblich ausgebildet und weist eine Schichtfolge aus einer unteren metallischen Schicht auf, die allerdings nur optional ist. Auf diese Schicht folgt eine Schicht aus einer Industriekeramik, oder einer anderen elektrisch isolierenden Schicht, auf die wiederum eine leitfähige Schicht folgt, die in sich strukturiert ist und somit Leiterbahnen ausbildet. Auf diesen Leiterbahnen sind Leistungshalbleiterbauelement 24 angeordnet und lottechnisch damit verbunden. Ausschließlich zur Verdeutlichung sind das leistungselektronische Substrat 22 die Lotschicht 26 und die Leistungshalbleiterbauelemente 24 beabstandet dargestellt.
Diese Komponenten 22, 24, 26 wilden hier den zweiten flächigen Gegenstand 2 aus, dessen erste Hauptfläche 200 ausgebildet wird durch die Unterseite des
leistungselektronischen Substrats 22. Die zweite, der ersten gegenüberliegende Hauptfläche 202 des flächigen Gegenstands 2 wird gebildet durch die frei liegenden Oberflächen des leistungselektronischen Substrats 22 und der
Leistungshalbleiterbauelemente 24. Diese zweite Oberfläche 202 weist somit eine gewisse Topographie, also eine Oberflächenkontur auf, die in dieser Darstellung nicht maßstäblich wiedergegeben ist. Diese zweite flächige Gegenstand 2 bildet ebenfalls eine fachübliche Komponente eines Leistungshalbleitermoduls aus.
Die zweite erfindungsgemäße Vorrichtung weist ebenfalls eine Kühleinrichtung 1 auf, die hier als Luftkühleinrichtung 12, mit schematisch dargestellten Kühlfinnen, ausgebildet ist. Die Kühlwirkung dieser Kühleinrichtung 12 erfolgt insgesamt sehr homogen und ist üblicherweise geringer als diejenige einer Wasserkühleinrichtung. Dies kann vorteilhaft sein für eine besonders schonende Abkühlung des flächigen Gegenstandes 2. Die Kühleinrichtung 12 ist bevorzugt in direktem thermischen Kontakt mit der ersten Hauptfläche 200 des flächigen Gegenstandes 2 stehend angeordnet.
Die zweite erfindungsgemäße Vorrichtung weist weiterhin eine Heizeinrichtung 4 auf, die hier aus einer Kombination einer Mehrzahl von IR-LEDs 42, mit einer Peak- Wellenlänge von 0,9 Mikrometer mit jeweils zugeordneten Linsen 54, beispielhaft einem Mikrolinsenraster, sowie von zugeordneten Blenden 56 besteht. Das von den IR-LEDs 42 ausgehende Licht 400 wird über die jeweils zugeordneten Linsen und Blenden derart geführt, dass es auf dem Randbereich der
Leistungshalbleiterbauelemente 24 auftrifft. Zur grundsätzlichen Wirkung einer derartigen Heizeinrichtung wird hier zudem auf die Beschreibung zur den Figuren 5 und 6 verwiesen.
Die Wirkung der Heizeinrichtung 4 ist schematisch durch einen Temperaturverlauf 600, wie er sich im Verlauf des Verfahrens auf der zweiten Hauptfläche 202 einstellt dargestellt. An den Rändern der Leistungshalbleiterbauelemente 24 herrscht jeweils während der Abkühlphase in der das Lot erstarrt eine höher Temperatur als in der Mitte des jeweiligen Leistungshalbleiterbauelements 24.
Figur 4 zeigt den ersten flächigen Gegenstand 2 in Draufsicht. Dargestellt ist hier eine Grundplatte 20 mit zwei leistungselektronischen Substraten 22, wobei nur auf einem der beiden Leistungshalbleiterbauelemente 24 dargestellt sind.
Weiterhin dargestellt ist die Wirkung der Heizeinrichtung. Die schraffierten Flächen entsprechen hier den ersten Teilflächen 204 der zweiten Hauptfläche 202, die gegenüber sie umgebenden und wie hier gegenüber durch sie eingeschlossene zweite Teilflächen 206 eine höhere Temperatur aufweisen.
Das wesentliche der Heizeinrichtung ist, dass diese die erste Teilfläche 204 lokal gegenüber der Gesamtfläche, und konkret gegenüber einer zweiten Teilfläche 206 erwärmen kann. Bei dieser Erwärmung handelt es sich hier und auch allgemein im Rahmen der Erfindung insbesondere nicht um eine absolute Erwärmung gegenüber einer Starttemperatur der zweiten Hauptfläche, auch wenn dies zu Verfahrensbeginn kurzfristig möglich ist, sondern um eine relative Erwärmung der ersten Teilfläche 204 relativ zur zweiten Teilfläche 206. In anderen Worten heißt dies, dass absolut betrachtet die Wirkung der Kühleinrichtung diejenige der Heizeinrichtung wesentlich übersteigt. Dies ist explizit notwendig um eine Abkühlung des gesamten flächigen Gegenstandes und insbesondere der Lotschicht, zum Übergang vom flüssigen in den festen Zustand, zu bewirken. Die Heizeinrichtung wirkt also der Kühleinrichtung derart entgegen, dass die erste Teilfläche sich langsamer abkühlt als die benachbarte zweite Teilfläche. Somit erstarrt das Lot beginnend in der zweiten Teilfläche und die
Erstarrungsfront wandert in Richtung der stärksten Erwärmung durch die
Heizeinrichtung, wodurch beispielhaft Gaseinschlüsse, sog. Lunker, in der Lotschicht deutlich reduziert werden.
Figur 5 zeigt einen zeitlichen Verlauf der Oberflächentemperatur 60, 602, 603, 604, 605 der zweiten Hauptfläche 202 entlang des Schnitts A-A des ersten flächigen Gegenstands aus Figur 4, während des zeitlichen Ablaufs des erfindungsgemäßen Verfahrens. Dargestellt sind jeweils relative Temperaturen.
Zu einem ersten Zeitpunkt (1 . Kurve) nach Verfahrensbeginn sind die Bereiche am Rand der leistungselektronischen Substrate geringfügig wärmer als deren mittige Bereiche, die die gleiche Temperatur wie die Grundplatte aufweisen.
Zu einem späteren Zeitpunkt (2. Kurve) ist diese Temperaturdifferenz verstärkt, zudem zeigt sich eine leicht erhöhte Temperatur der Grundplatte zwischen den
leistungselektronischen Substraten.
Zu einem späteren Zeitpunkt (3. Kurve) hat sich dieser Effekt nochmals verstärkt, allerdings bleibt die Temperatur der Grundplatte unter derjenigen der Randbereiche der leistungselektronischen Substrate. Es wird hier deutlich, dass im Prozessverlauf sich die ersten Teilflächen ausdehnen und damit die zweiten Teilfläche schrumpfen. Idealerweise setzt die Erstarrung des Lots bei diesem Zeitpunkt ein, da hier der Erstarrungsbereich sehr begrenzt in der Mitte der jeweiligen leistungselektronischen Substrate liegt. Bei fortschreitender Abkühlung wandert nun die Erstarrungsfront von der Mitte zum Randbereich der leistungselektronischen Substrate.
Bis nahe an den Abschluss der Abkühlung bei dem zu einem späteren Zeitpunkt (4. Kurve) das Lot fast vollständig erstarrt ist besteht die relativ höhere Temperatur im Randbereich der leistungselektronischen Substrate. Ein typische Temperaturen zu Beginn des Verfahrens beträgt 250°C. Bei dieser Temperatur ist das Lot vollständig flüssig. Zudem ist der gesamte flächige Gegenstand im thermischen Gleichgewicht. Das Abkühlen beginnt mit der Abkühlung der ersten Hauptfläche mittels der Kühleinrichtung. Da der Beginn der Abkühlung zeitlich verzögert auf der zweite Hauptfläche erfolgt, kann die Heizeinrichtung entweder kurz vor, gleichzeitig oder auch kurz nach Beginn der Abkühlung der ersten Hauptfläche erfolgen. Es ist hierbei vorteilhaft, wenn die Starttemperatur nicht lokal an der ersten Teilflächen überschritten wird.
Der hier betrachtet wesentliche Teil des Abkühlvorgang endet, bei dem hier beispielhaft angenommenen Lot mit einer Erstarrungstemperatur von 220°C bei eine homogenen Temperatur des flächigen Gegenstandes von 200°C. In dieser
Abkühlphase von 250°C auf 200°C liegt die Temperaturdifferenz A& zwischen 2°C und 5°C, wobei dieser Wert insbesondere im Temperaturbereich der Abkühlphase von 230°C bis 210°C eingehalten wird.
Figur 6 zeigt eine dritte Ausgestaltung der erfindungsgemäßen Vorrichtung mit dem ersten flächigen Gegenstand 2. Wesentlich ist hierbei, dass die Heizeinrichtung 4 einfach und dabei sehr variabel ausgebildet ist. Sie besteht aus einer Matrix von IR- LEDs 42, die einzeln ansteuerbar, idealerweise auch in ihrer Leistung individuell regelbar sind und die oberhalb des relevanten Bereichs der zweiten Hauptfläche angeordnet sind. Zur weiteren Verbesserung, insbesondere Homogenisierung der Leistung können oben genannte und fachübliche Strahlformer für die jeweiligen IR- LEDs 42 eingesetzt werden.
Mit dieser dritten erfindungsgemäßen Vorrichtung ist nicht nur die abgebildete lokale Erwärmung, sondern eine annährend beliebige Verteilung und Steuerung der lokalen Erwärmung möglich.
Somit kann dezidiert derjenige Bereich, die erste Teilfläche, bestimmt werden an der das Lot zu erstarren beginnt. Ebenso kann der Verlauf der Erstarrungsfront wie auch deren Ausbreitungsgeschwindigkeit individuell gesteuerte werden. Somit ist durch eine einfache Leistungsregelung der IR-LEDs eine höchst individueller zeitlicher und räumlicher Ablauf der Erstarrung des Lots möglich.

Claims

Ansprüche
1 . Vorrichtung zur inhomogenen Abkühlung eines flächigen Gegenstandes (2) mit einer ersten Hauptfläche (200) und einer dieser gegenüber liegenden zweiten Hauptfläche (202), wobei der flächige Gegenstand (2) aus Richtung der ersten Hauptfläche (200) von einer Kühleinrichtung (1 ) gekühlt wird und wobei auf die zweite Hauptfläche (202) eine Heizeinrichtung (4) auf eine erste Teilfläche (204) lokal derart einwirkt, dass der flächige Gegenstand (2) an dieser ersten
Teilfläche (204) relativ zu einer an diese erste Teilfläche (204) anschließenden zweiten Teilfläche (206) derart mit Wärme beaufschlagt wird, dass diese erste Teilfläche (204) im Vergleich zur zweiten Teilfläche (206) langsamer abgekühlt wird und somit die zweite Hauptfläche (202) des flächigen Gegenstands (2) während des Abkühlvorgangs zumindest in einem Teilzeitraum der Abkühlung eine inhomogene Temperaturverteilung aufweist.
2. Vorrichtung nach Anspruch 1 , wobei
der flächige Gegenstand (2) eine Grundplatte (20) eines
Leistungshalbleitermoduls mit hierauf angeordneten leistungselektronischen Substraten (22) ist und zwischen der Grundplatte (20) und dem jeweiligen Substrat (22) Lot (26) angeordnet ist.
3. Vorrichtung nach Anspruch 1 , wobei
der flächige Gegenstand (2) ein leistungselektronisches Substrat (22) mit hierauf angeordneten Leistungshalbleiterbauelementen (24) ist und zwischen dem Substrat (22) und dem jeweiligen Leistungshalbleiterbauelement (24) Lot (26) angeordnet ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei
die Kühleinrichtung (1 ) als Wasserkühleinrichtung (10) oder als
Luftkühleinrichtung (12) ausgebildet ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei
die Kühleinrichtung (1 ) während der Abkühlung mit der ersten Hauptfläche (200) des flächigen Gegenstandes (2) in thermischen Kontakt steht oder von der ersten Hauptfläche (200) des flächigen Gegenstandes (2) beabstandet angeordnet ist.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei
die Kühleinrichtung (1 ) dazu ausgebildet ist die erste Hauptfläche (200) homogen zu kühlen.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei
die Heizeinrichtung (4) von der zweiten Hauptfläche (202) beabstandet angeordnet ist.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei
die Heizeinrichtung (4) als ein schwarzer Strahler, insbesondere eine
Halogenlampe (40), ausgebildet ist.
9. Vorrichtung nach einem der Ansprüche 1 bis 7, wobei
die Heizeinrichtung (4) als eine LED, insbesondere als eine IR-LED (42), ausgebildet ist.
10. Vorrichtung nach Anspruch 8 oder 9, wobei
der Heizeinrichtung (4) ein zusätzlichen Strahlformer (50, 52, 54, 56) zugeordnet ist.
1 1 . Vorrichtung nach Anspruch 8 oder 9, wobei
die Peak-Wellenlänge der Heizeinrichtung (4) zwischen 0,7 Mikrometer und 10 Mikrometer, insbesondere zwischen 0,7 Mikrometer und 3 Mikrometer, beträgt.
12. Vorrichtung nach Anspruch 10, wobei
der Strahlformer als eine Blende (54), eine Blendenmatrix, ein Filter, eine Filtermatrix, ein Hologramme, eine Hologrammmatrix, ein Axicon, eine
Axiconmatrix, ein Spiegel (50), eine Spiegelmatrix (52), eine Linse oder eine Linsenmatrix, oder als eine Kombination hieraus ausgebildet ist.
13. Verfahren zur Verwendung einer Vorrichtung gemäß einem der vorhergehenden Ansprüche zur inhomogenen Abkühlung eines flächigen Gegenstandes (2) mit einer ersten Hauptfläche (200) und einer dieser gegenüber liegenden zweiten Hauptfläche (202), wobei a. der flächige Gegenstand (2) aus Richtung der erste Hauptfläche (200) von einer Kühleinrichtung (1 ) für einen ersten Zeitraum gekühlt wird b. für einen zweiten Zeitraum eine Heizeinrichtung (4) auf eine erste
Teilfläche (204) der zweite Hauptfläche (202) lokal derart einwirkt, dass der flächige Gegenstand (2) an dieser ersten Teilfläche (204) relativ zur zweiten Teilfläche (206) mit Wärme beaufschlagt und hierdurch der flächige Gegenstand (2) an dieser erste Teilfläche (204) im Vergleich zur zweiten Teilfläche (206) für einen dritten Zeitraum langsamer abgekühlt wird und somit in diesem dritten Zeitraum eine inhomogene
Temperaturverteilung aufweist.
14. Verfahren nach Anspruch 13, wobei
der zweite Zeitraum ganz oder teilweise vor, während oder nach dem ersten Zeitraum liegt.
15. Lötanlage mit einer Vorrichtung gemäß einem der Ansprüche 1 bis 12, wobei die Lötanlage als Durchlauflötanlage mit einer Mehrzahl von Kammern ausgebildet ist, wobei die Vorrichtung in einer Abkühlkammer angeordnet ist.
PCT/DE2016/100116 2015-04-24 2016-03-15 Vorrichtung, verfahren und anlage zur der inhomogenen abkühlung eines flächigen gegenstandes WO2016169551A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680018528.9A CN107980014B (zh) 2015-04-24 2016-03-15 用于对平面物体进行非均匀地冷却的装置、方法和系统
US15/556,241 US10391572B2 (en) 2015-04-24 2016-03-15 Device, method, and system for cooling a flat object in a nonhomogeneous manner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015106298.4 2015-04-24
DE102015106298.4A DE102015106298B4 (de) 2015-04-24 2015-04-24 Vorrichtung, Verfahren und Anlage zur inhomogenen Abkühlung eines flächigen Gegenstandes

Publications (1)

Publication Number Publication Date
WO2016169551A1 true WO2016169551A1 (de) 2016-10-27

Family

ID=55966956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2016/100116 WO2016169551A1 (de) 2015-04-24 2016-03-15 Vorrichtung, verfahren und anlage zur der inhomogenen abkühlung eines flächigen gegenstandes

Country Status (4)

Country Link
US (1) US10391572B2 (de)
CN (1) CN107980014B (de)
DE (1) DE102015106298B4 (de)
WO (1) WO2016169551A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016103213A1 (de) * 2016-02-24 2017-08-24 Semikron Elektronik Gmbh & Co. Kg Vorrichtung, Verfahren und Anlage zur der inhomogenen Abkühlung eines flächigen Gegenstandes
CN107598356A (zh) * 2017-10-30 2018-01-19 上海法信机电设备制造有限公司 具有流量显示功能的水循环监测控制装置及焊接机器人
EP3670027A1 (de) * 2018-12-20 2020-06-24 Fundación Tekniker Wärmeaufnahmevorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0802010A1 (de) * 1996-04-16 1997-10-22 Matsushita Electric Industrial Co., Ltd. Verfahren und Vorrichtung zum Reflowlöten
WO2013000001A1 (de) * 2011-06-30 2013-01-03 Ebner Industrieofenbau Gesellschaft M.B.H. VERFAHREN ZUM ERWÄRMEN EINES FORMBAUTEILS FÜR EIN ANSCHLIEßENDES PRESSHÄRTEN SOWIE DURCHLAUFOFEN ZUM BEREICHSWEISEN ERWÄRMEN EINES AUF EINE VORGEGEBENE TEMPERATUR VORGEWÄRMTEN FORMBAUTEILS AUF EINE HÖHERE TEMPERATUR
DE102011081606A1 (de) 2011-08-26 2013-02-28 Infineon Technologies Ag Kühlvorrichtung und Lötanlage
JP2015009262A (ja) * 2013-07-01 2015-01-19 三菱電機株式会社 リフロー装置

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1954110A (en) * 1929-07-18 1934-04-10 Siemens Ag Automatic battery charging system
US2332368A (en) * 1940-08-02 1943-10-19 Gibson Electric Refrigerator Process of soldering
GB1236636A (en) * 1967-07-14 1971-06-23 Messer Griesheim Gmbh Apparatus for welding and cutting workpieces
US3710069A (en) * 1970-07-06 1973-01-09 Ibm Method of and apparatus for selective solder reflow
DE2105513C3 (de) * 1971-02-05 1973-09-27 Siemens Ag, 1000 Berlin U. 8000 Muenchen Infrarotlötverfahren für das Befestigen von Bauteilen durch Wiederaufschmelzen von Lot sowie Lötvorrichtung zur Durchführung des Verfahrens
JPS63144862A (ja) * 1986-12-05 1988-06-17 Mitsubishi Electric Corp 半田付装置
JPH08181427A (ja) * 1994-12-21 1996-07-12 Sony Corp リフロー半田付け装置
US5685475A (en) * 1995-09-08 1997-11-11 Ford Motor Company Apparatus for cooling printed circuit boards in wave soldering
JP3800251B2 (ja) * 1995-10-02 2006-07-26 ソニー株式会社 半田付け装置および半田付け方法
DE19539392A1 (de) * 1995-10-10 1997-04-17 Hertz Inst Heinrich Vorrichtung zur flußmittelfreien Kontaktierung von photonischen Komponenten auf einem Substrat
US5785233A (en) * 1996-02-01 1998-07-28 Btu International, Inc. Apparatus and method for solder reflow bottom cooling
JPH10125618A (ja) * 1996-10-23 1998-05-15 Fujitsu Ltd 半導体装置の製造方法
US6138893A (en) * 1998-06-25 2000-10-31 International Business Machines Corporation Method for producing a reliable BGA solder joint interconnection
US6742701B2 (en) * 1998-09-17 2004-06-01 Kabushiki Kaisha Tamura Seisakusho Bump forming method, presoldering treatment method, soldering method, bump forming apparatus, presoldering treatment device and soldering apparatus
JP3504166B2 (ja) * 1998-11-25 2004-03-08 株式会社新川 フリップチップボンディング装置
JP2001015545A (ja) * 1999-07-02 2001-01-19 Shinkawa Ltd ワイヤボンディング装置及び方法
US6347734B1 (en) * 2000-03-27 2002-02-19 Emc Corporation Methods and apparatus for installing a module on a circuit board using heating and cooling techniques
JP4073183B2 (ja) * 2001-08-01 2008-04-09 株式会社日立製作所 Pbフリーはんだを用いた混載実装方法及び実装品
DE10147789B4 (de) * 2001-09-27 2004-04-15 Infineon Technologies Ag Vorrichtung zum Verlöten von Kontakten auf Halbleiterchips
JP2003163236A (ja) * 2001-11-27 2003-06-06 Shinkawa Ltd ワイヤボンディング装置
US20040134975A1 (en) * 2003-01-10 2004-07-15 Visteon Global Technologies, Inc. Composite pallet for a vector transient reflow process
US6857559B2 (en) * 2003-04-10 2005-02-22 Visteon Global Technologies, Inc. System and method of soldering electronic components to a heat sensitive flexible substrate with cooling for a vector transient reflow process
JP2007142343A (ja) * 2005-11-22 2007-06-07 Toyota Industries Corp 半田付け装置及び半田付け方法
JP4941307B2 (ja) * 2005-12-12 2012-05-30 株式会社村田製作所 位置合わせ装置、接合装置及び位置合わせ方法
JP2007180456A (ja) * 2005-12-28 2007-07-12 Toyota Industries Corp 半田付け方法及び半導体モジュールの製造方法
JP4640170B2 (ja) * 2005-12-28 2011-03-02 株式会社豊田自動織機 半田付け方法及び半導体モジュールの製造方法並びに半田付け装置
US20070254255A1 (en) * 2006-03-28 2007-11-01 Neville James E System, apparatus and methods for board cooling
JP5082671B2 (ja) * 2007-08-16 2012-11-28 富士通株式会社 はんだ修正装置およびはんだ修正方法
US20100080542A1 (en) * 2008-09-29 2010-04-01 Honeywell International Inc. Infrared led apparatus and surface heater
JP5314607B2 (ja) * 2010-01-20 2013-10-16 東京エレクトロン株式会社 接合装置、接合方法、プログラム及びコンピュータ記憶媒体
JP5091296B2 (ja) * 2010-10-18 2012-12-05 東京エレクトロン株式会社 接合装置
JP5129848B2 (ja) * 2010-10-18 2013-01-30 東京エレクトロン株式会社 接合装置及び接合方法
US8308052B2 (en) * 2010-11-24 2012-11-13 Taiwan Semiconductor Manufacturing Company, Ltd. Thermal gradient reflow for forming columnar grain structures for solder bumps
JP5751258B2 (ja) * 2011-01-07 2015-07-22 富士電機株式会社 半導体装置の製造方法
US8444043B1 (en) * 2012-01-31 2013-05-21 International Business Machines Corporation Uniform solder reflow fixture
KR101660622B1 (ko) * 2012-04-25 2016-09-27 오리진 일렉트릭 캄파니 리미티드 납땜 장치 및 납땜 제품의 제조방법
JP6000626B2 (ja) * 2012-05-01 2016-10-05 新光電気工業株式会社 電子装置の製造方法及び電子部品搭載装置
JP5541354B1 (ja) * 2012-12-28 2014-07-09 千住金属工業株式会社 気体吹き出し孔の配列構造及びはんだ付け装置
JP5902107B2 (ja) * 2013-01-24 2016-04-13 オリジン電気株式会社 加熱接合装置及び加熱接合製品の製造方法
JP6144495B2 (ja) * 2013-01-24 2017-06-07 オリジン電気株式会社 加熱接合装置及び加熱接合製品の製造方法
TWI490956B (zh) * 2013-03-12 2015-07-01 Shinkawa Kk 覆晶接合器以及覆晶接合方法
EP3285341B1 (de) * 2013-05-28 2019-05-22 Fujikura Ltd. Verfahren zur herstellung eines spleissaufbaus
MX2016002072A (es) * 2013-08-19 2016-08-05 Philips Lighting Holding Bv Mejoramiento de la experiencia de bienes de consumo.
DE102014101539B9 (de) * 2014-02-07 2016-08-11 Benteler Automobiltechnik Gmbh Warmformlinie und Verfahren zur Herstellung von warmumgeformten Blechprodukten
DE102014103013B4 (de) * 2014-03-06 2017-09-21 Infineon Technologies Ag Verfahren zum Erzeugen einer getrockneten Pastenschicht, Verfahren zum Erzeugen einer Sinterverbindung und Durchlaufanlage zur Durchführung der Verfahren
DE102014111634A1 (de) * 2014-08-14 2016-02-18 Atv Technologie Gmbh Vorrichtung zum insbesondere thermischen Verbinden mikro-elektromechanischer Bauteile
WO2016040365A1 (en) * 2014-09-09 2016-03-17 Celltech Metals Inc. Method of creating a bonded structure and appartuses for same
WO2016104710A1 (ja) * 2014-12-26 2016-06-30 富士電機株式会社 加熱冷却機器
US20160229001A1 (en) * 2015-02-05 2016-08-11 GM Global Technology Operations LLC Thermal-management systems for controlling temperature of workpieces being joined by welding
US9576928B2 (en) * 2015-02-27 2017-02-21 Kulicke And Soffa Industries, Inc. Bond head assemblies, thermocompression bonding systems and methods of assembling and operating the same
KR102429619B1 (ko) * 2015-11-18 2022-08-04 삼성전자주식회사 본딩 스테이지와 이를 포함하는 본딩 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0802010A1 (de) * 1996-04-16 1997-10-22 Matsushita Electric Industrial Co., Ltd. Verfahren und Vorrichtung zum Reflowlöten
WO2013000001A1 (de) * 2011-06-30 2013-01-03 Ebner Industrieofenbau Gesellschaft M.B.H. VERFAHREN ZUM ERWÄRMEN EINES FORMBAUTEILS FÜR EIN ANSCHLIEßENDES PRESSHÄRTEN SOWIE DURCHLAUFOFEN ZUM BEREICHSWEISEN ERWÄRMEN EINES AUF EINE VORGEGEBENE TEMPERATUR VORGEWÄRMTEN FORMBAUTEILS AUF EINE HÖHERE TEMPERATUR
DE102011081606A1 (de) 2011-08-26 2013-02-28 Infineon Technologies Ag Kühlvorrichtung und Lötanlage
JP2015009262A (ja) * 2013-07-01 2015-01-19 三菱電機株式会社 リフロー装置

Also Published As

Publication number Publication date
DE102015106298B4 (de) 2017-01-26
US20180050406A1 (en) 2018-02-22
DE102015106298A1 (de) 2016-10-27
CN107980014B (zh) 2020-07-28
US10391572B2 (en) 2019-08-27
CN107980014A (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
DE102007028791B4 (de) Thermoelektrische Umwandlungsvorrichtung und Herstellungsverfahren dafür
WO2016169551A1 (de) Vorrichtung, verfahren und anlage zur der inhomogenen abkühlung eines flächigen gegenstandes
DE102015204240A1 (de) Halbleitervorrichtung und Verfahren zu deren Herstellung
DE2351056A1 (de) Verfahren zum ausrichten und befestigen von elektronischen schaltungen auf einem substrat
DE102007050405B4 (de) Elektrische Leistungskomponente, insbesondere Leistungshalbleiter-Modul, mit einer Kühlvorrichtung und Verfahren zum flächigen und wärmeleitenden Anbinden einer Kühlvorrichtung an eine elektrische Leistungskomponente
WO2018108195A1 (de) Thermoelektrische vorrichtung
DE102005039764A1 (de) Vorrichtung für eine thermische Kopplung und Verfahren zur Herstellung einer thermischen Kopplung
EP3618994B1 (de) Verfahren zum herstellen einer lötverbindung unter verwendung von basis- und andruckplatten und einer anschlagvorrichtung
DE102006034600B4 (de) Verfahren zur Herstellung einer Lötverbindung
DE102011081606B4 (de) Kühlvorrichtung und Lötanlage
DE102014118523B4 (de) Kühleinrichtung und Verfahren zum Abkühlen von flüssigem Lot zur Herstellung einer Lötverbindung
DE102013204813A1 (de) Verfahren und Vorprodukt zur Herstellung eines thermoelektrischen Moduls
DE10359564B4 (de) Verfahren zum Verbinden von Bauteilen
DE4221564A1 (de) Verfahren zur Herstellung einer Lötverbindung zwischen Chips und flächigen Kupferteilen
WO2019154581A1 (de) Schaltungsanordnung, leuchtvorrichtung sowie fahrzeugscheinwerfer
DE102015119252B4 (de) Vorrichtung für ein Heizgerät für ein Fahrzeug
DE10014308B4 (de) Vorrichtung zum gleichzeitigen Herstellen von mindestens vier Bondverbindungen und Verfahren dazu
WO2018219622A1 (de) Leuchtvorrichtung, scheinwerfer und verfahren
WO2010037383A2 (de) Verfahren und vorrichtung zum verbinden einer solarzelle mit einem zellverbinder
WO2017144040A1 (de) Vorrichtung verfahren und anlage zu der inhomogenen abkühlung eines flächigen gegenstandes
DE1591113A1 (de) Befestigung integrierter Schaltungen an Substraten
DE102014223289A1 (de) Leuchtvorrichtung und Verfahren zur Herstellung der Leuchtvorrichtung
DE102015210024A1 (de) Verfahren und Vorrichtung zum Verbinden eines elektrischen Leiters mit einer Leiterplatte
DE202009010928U1 (de) Indium-Target für Sputtereinrichtungen sowie Anordnung zur Herstellung solcher Indium-Targets
DE102009037328A1 (de) Indium-Target für Sputtereinrichtungen sowie Anordnung und Verfahren zur Herstellung solcher Indium-Targets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16722041

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15556241

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 16722041

Country of ref document: EP

Kind code of ref document: A1