WO2016165534A1 - 有机胍催化熔融-固相缩聚合成聚(己二酸-共-对苯二甲酸丁二醇酯) - Google Patents

有机胍催化熔融-固相缩聚合成聚(己二酸-共-对苯二甲酸丁二醇酯) Download PDF

Info

Publication number
WO2016165534A1
WO2016165534A1 PCT/CN2016/076958 CN2016076958W WO2016165534A1 WO 2016165534 A1 WO2016165534 A1 WO 2016165534A1 CN 2016076958 W CN2016076958 W CN 2016076958W WO 2016165534 A1 WO2016165534 A1 WO 2016165534A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
reaction
pbat
cocat
melt
Prior art date
Application number
PCT/CN2016/076958
Other languages
English (en)
French (fr)
Inventor
李弘�
张全兴
孙向前
徐云龙
黄伟
李爱民
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to JP2018502306A priority Critical patent/JP2018510260A/ja
Priority to US15/263,322 priority patent/US9896539B2/en
Publication of WO2016165534A1 publication Critical patent/WO2016165534A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof

Definitions

  • the invention belongs to the technical field of environmentally friendly and biodegradable fat-aromatic copolyester synthesis, and particularly relates to a new process for synthesizing poly(adipic acid-co-terephthalate).
  • Aliphatic polyesters such as polylactic acid PLA
  • aromatic polyester such as: polyethylene terephthalate PET, polyterephthalic acid
  • Butylene glycol ester PBT has good mechanical properties but is difficult to degrade in nature.
  • Poly(adipic acid-co-terephthalate) [English abbreviation: PBAT] combines the properties of aliphatic polyester and aromatic polyester with excellent ductility, heat resistance and impact resistance. At the same time, it is also an excellent environmentally friendly and biodegradable material, so it can be used for the modification of aliphatic polyesters (such as polylactic acid PLA) to improve its thermomechanical properties.
  • PBAT PBAT
  • direct esterification with terephthalic acid (TA), adipic acid (AA) and 1,4-butanediol (BDO) TA
  • AA adipic acid
  • BDO 1,4-butanediol
  • DMT Dimethyl phthalate
  • the direct esterification method has the following advantages: (1) no flammable, explosive and toxic methanol is produced during the reaction, thereby making the synthesis process and production operation safer and more environmentally friendly; (2) the reaction process The by-product tetrahydrofuran (THF) is easily separated and recovered. So far, the PBAT synthesis reported in the literature mainly uses the melt polycondensation process. The disadvantage of this process is that for the bulk melt polycondensation, the color of the product is seriously deteriorated due to the higher polymerization temperature used, and the color of the product is seriously deteriorated with the extension of the reaction time. It is tan) and results in a broadening of the molecular weight distribution of the product polymer and a decrease in thermomechanical properties.
  • the present invention provides a ternary high-efficiency catalytic system using organic ruthenium as a catalyst to synthesize poly(adipic acid-co-terephthalic acid) by melt-solid phase polycondensation.
  • the new process of butanediol ester has a high molecular weight (M w 1.55 ⁇ 10 5 to 2.40 ⁇ 10 5 ), a narrow molecular weight distribution (PDI 1.50 to 1.90), and a good color (white).
  • the melt polycondensation (MP) process consists of two stages: (i) esterification: placing 1,4-butanediol (BDO), adipic acid (AA) and terephthalic acid (TA) in polymerization In the reaction vessel, a three-way catalytic system is added, and a low molecular weight prepolymer (M w 3.0 ⁇ 10 3 to 4.0 ⁇ 10 3 ) is obtained by esterification dehydration prepolymerization at 180-220 ° C; (ii) melt polycondensation reaction : The obtained prepolymer is subjected to melt polycondensation at 220 to 240 ° C to obtain a medium molecular weight PBAT (M w 1.5 ⁇ 10 3 to 3.0 ⁇ 10 4 );
  • the main catalyst is an organic quinone compound
  • the cocatalyst 1 is an orthotitanic acid or a raw zirconate
  • the cocatalyst 2 is a metal oxide
  • the amount of CAT is 0.1 ⁇ 0.5 ⁇ of the total molar amount of two kinds of dibasic acid monomers (AA+TA), and the molar ratio of CAT dosage to CoCAT 1 is (1 ⁇ 2):1, molar ratio of CAT dosage to CoCAT 2 dosage. It is (1 ⁇ 2): 1.
  • CAT is: bicyclic guanidine (TBD), bicyclic guanidine acetate (TBDA), creatinine (CR), creatinine glutamate (CRGL), tetramethylguanidine (TMG) or tetramethylguanidinium acetate (TMGA) one;
  • CoCAT 1 is: one of tetraisopropyl orthotitanate (TPOT) or tetraisopropyl zirconate (TPOZ);
  • CoCAT 2 is one of magnesium oxide (MgO), calcium oxide (CaO) or titanium dioxide (TDO).
  • the esterification reaction pressure is normal pressure, and the reaction time is 3 to 6 hours;
  • the melt polycondensation reaction pressure is 10 to 30 torr, and the reaction time is 3 to 5 hours;
  • the solid phase polycondensation reaction pressure is 0.5 to 3 torr, and the reaction time is 9 to 13 hours.
  • the molecular weight of the PBAT synthesized by the present invention can be controlled according to actual demand in the range of 1.55 ⁇ 10 5 to 2.40 ⁇ 10 5 , the molecular weight distribution index is narrow (PDI 1.50 to 1.90), and the product color is good (white).
  • the ternary high-efficiency catalytic system used has high catalytic activity, less catalyst dosage and short polymerization time;
  • TA (33.2 g, 0.20 mol), AA (7.3 g, 0.05 mol), BDO (36.05 g, 0.40 mol), CR (2.8 mg, 0.025 mmol), TPOT (8.5 mg, 0.025 mmol) and TDO (2.0 mg) , 0.025 mmol) was added to the reaction vessel, and the temperature was gradually raised to 180 ° C under argon gas protection and stirring to carry out an esterification reaction.
  • the reaction time of the entire esterification stage was controlled for 6 h.
  • the temperature was raised to 220 ° C by gradient heating, and the pressure of the system was gradually reduced to 10 torr to carry out melt polycondensation reaction. After 5 hours of reaction, the material was discharged under argon gas treatment and cooled to room temperature.
  • the weight average molecular weight (M w ) of the intermediate product polymer by the GPC method was 1.5 ⁇ 10 4 .
  • the GPC method test product had a polymer weight average molecular weight (M w ) of 1.55 ⁇ 10 5 and a molecular weight distribution index (PDI) of 1.50.
  • TA (33.2 g, 0.20 mol), AA (7.3 g, 0.05 mol), BDO (36.05 g, 0.40 mol), TBDA (7.4 mg, 0.038 mmol), TPOT (8.5 mg, 0.025 mmol) and TDO (2.0 mg) , 0.025 mmol) was added to the reaction vessel, and the temperature was gradually raised to 180 ° C under argon gas protection and stirring to carry out an esterification reaction.
  • the reaction time of the entire esterification stage was controlled for 6 h.
  • the temperature was raised to 220 ° C by gradient heating, and the pressure of the system was gradually reduced to 10 torr to carry out melt polycondensation reaction. After 5 hours of reaction, the material was discharged under argon gas treatment and cooled to room temperature.
  • the weight average molecular weight (M w ) of the intermediate product polymer by the GPC method was 1.8 ⁇ 10 4 .
  • the GPC method test product had a polymer weight average molecular weight (M w ) of 1.70 ⁇ 10 5 and a molecular weight distribution index (PDI) of 1.55.
  • the GPC method test product had a polymer weight average molecular weight (M w ) of 1.89 ⁇ 10 5 and a molecular weight distribution index (PDI) of 1.73.
  • the GPC method test product had a polymer weight average molecular weight (M w ) of 2.15 ⁇ 10 5 and a molecular weight distribution index (PDI) of 1.77.
  • TA (33.2 g, 0.20 mol), AA (7.3 g, 0.05 mol), BDO (54.07 g, 0.60 mol), TBD (17.4 mg, 0.125 mmol), TPOT (21.3 mg, 0.063 mmol) and MgO (2.5 mg) , 0.063 mmol) was added to the reaction vessel, and the temperature was gradually raised to 220 ° C under argon gas protection and stirring to carry out an esterification reaction. The reaction time of the entire esterification stage was controlled for 3 h. The temperature was raised to 240 ° C by gradient heating, and the pressure of the system was gradually reduced to 30 torr to carry out melt polycondensation reaction. After 3 hours of reaction, the material was discharged under argon gas protection and cooled to room temperature.
  • the weight average molecular weight (M w ) of the intermediate product polymer by the GPC method was 3.0 ⁇ 10 4 .
  • the GPC method test product had a polymer weight average molecular weight (M w ) of 2.28 ⁇ 10 5 and a molecular weight distribution index (PDI) of 1.84.
  • TA (33.2 g, 0.20 mol), AA (7.3 g, 0.05 mol), BDO (54.07 g, 0.60 mol), TMGA (21.8 mg, 0.125 mmol), TPOT (21.3 mg, 0.063 mmol) and MgO (2.5 mg) , 0.063 mmol) was added to the reaction vessel, and the temperature was gradually raised to 220 ° C under argon gas protection and stirring to carry out an esterification reaction. The reaction time of the entire esterification stage was controlled for 3 h. The temperature was raised to 240 ° C by gradient heating, and the pressure of the system was gradually reduced to 30 torr to carry out melt polycondensation reaction. After 3 hours of reaction, the material was discharged under argon gas protection and cooled to room temperature. The weight average molecular weight (M w ) of the intermediate product polymer by the GPC method was 2.8 ⁇ 10 4 .
  • the GPC method test product had a polymer weight average molecular weight (M w ) of 2.40 ⁇ 10 5 and a molecular weight distribution index (PDI) of 1.90.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

一种有机胍催化熔融-固相缩聚(MP-SSP)合成聚(己二酸-共-对苯二甲酸丁二醇酯)(PBAT)的新工艺。该方法采用有机胍、助催化剂1与助催化剂2组成的三元高效催化体系,通过MP-SSP联用技术合成高分子量PBAT。本发明的有益特点为:催化效率高,聚合反应时间短,聚合物分子量高,并且产品PBAT的分子量可在1.55×105~2.40×105范围内根据实际需求受控合成;产品分子量分布指数窄(PDI 1.50~1.90)、产品色泽好(白色);工艺流程简化,生产操作安全,易于大规模工业化实施。

Description

有机胍催化熔融-固相缩聚合成聚(己二酸-共-对苯二甲酸丁二醇酯) 技术领域
本发明属于环境友好暨生物降解性脂肪-芳香共聚酯合成技术领域,特别涉及聚(己二酸-共-对苯二甲酸丁二醇酯)合成的新工艺。
背景技术
脂肪族聚酯(如:聚乳酸PLA)具有优良的生物降解性,但其力学性能难以满足应用要求,芳香族聚酯(如:聚对苯二甲酸乙二醇酯PET,聚对苯二甲酸丁二醇酯PBT)具有良好的力学性能,但在自然界难以降解。聚(己二酸-共-对苯二甲酸丁二醇酯)[英文缩写:PBAT]兼具脂肪族聚酯和芳香族聚酯的特性,具有优良的延展性、耐热性和抗冲击性能,同时还是优良的环境友好及生物降解材料,因此可以用于脂肪族聚酯(如:聚乳酸PLA)的改性,提高其热机械性能。
PBAT的合成有二种方法:(1)以对苯二甲酸(TA),己二酸(AA)和1,4-丁二醇(BDO)为原料的直接酯化法;(2)以对苯二甲酸二甲酯(DMT),AA和BDO为原料的酯交换法。
与酯交换法相比,直接酯化法有下列优点:(1)反应过程中没有易燃、易爆及有毒的甲醇产生,从而使合成工艺及生产操作更为安全、环保;(2)反应过程中的副产物四氢呋喃(THF)容易分离回收。至今为止,文献报道的PBAT合成主要采用熔融缩聚工艺,这一工艺的缺点为:对于本体熔融缩聚而言,由于所用聚合反应温度较高,反应后期随反应时间的延长,产物色泽严重劣化(多为黄褐色)并且导致产品聚合物分子量分布变宽、热机械性能下降。
发明内容
为了克服单一熔融缩聚技术合成PBAT的缺点,本发明提供一种以有机胍为主催化剂的三元高效催化体系经熔融-固相缩聚联用技术合成聚(己二酸-共-对苯二甲酸丁二醇酯)的新工艺,所合成PBAT产品分子量高(Mw1.55×105~2.40×105)、分子量分布窄(PDI1.50~1.90)、色泽佳(白色)。
本发明技术方案
一种采用有机胍为主催化剂的三元高效催化体系、经熔融-固相缩聚联用技术合成PBAT的新工艺,具体步骤如下:
(1)熔融缩聚(MP)工序包括两个工段:(i)酯化反应:将1,4-丁二醇(BDO)、己二酸(AA)和对苯二甲酸(TA)置于聚合反应釜中,加入三元催化体系,在180~220℃下进行酯化脱水预聚反应合成得到低分子量预聚物(Mw3.0×103~4.0×103);(ii)熔融缩聚反应:将所得预聚物在220~240℃进行熔融缩聚反应,得到中等分子量PBAT(Mw1.5×103~3.0×104);
(2)固相缩聚(SSP)工序:将所得中等分子量PBAT破碎、筛分,取30~40目筛分物在160~190℃进行固相缩聚反应得到最终产物PBAT;
三元高效催化体系中主催化剂(CAT)为有机胍类化合物,助催化剂1(CoCAT1)为原钛酸或原锆酸酯,助催化剂2(CoCAT2)为金属氧化物;
CAT用量为两种二元酸单体(AA+TA)总摩尔量的0.1‰~0.5‰,CAT用量与CoCAT1用量摩尔比为(1~2):1,CAT用量与CoCAT2用量摩尔比为(1~2):1。
CAT为:双环胍(TBD)、双环胍醋酸盐(TBDA)、肌酐(CR)、肌酐谷氨酸盐(CRGL)、四甲基胍(TMG)或四甲基胍醋酸盐(TMGA)之一;
CoCAT1为:原钛酸四异丙酯(TPOT)或原锆酸四异丙酯(TPOZ)之一;
CoCAT2为:氧化镁(MgO)、氧化钙(CaO)或二氧化钛(TDO)之一。
三种单体的摩尔比为:AA:TA:BDO=1:4:(8~12)。
酯化反应压力为常压,反应时间3~6h;
熔融缩聚反应压力10~30torr,反应时间3~5h;
固相缩聚反应压力0.5~3torr,反应时间9~13h。
本发明合成的PBAT的分子量可在1.55×105~2.40×105范围内根据实际需求受控合成、分子量分布指数窄(PDI1.50~1.90)、产品色泽好(白色)。
本发明的优点和有益效果:
1.所用三元高效催化体系催化活性高、催化剂用量少、聚合反应时间短;
2.采用MP-SSP联用技术,工艺操作简便、易于工业化实施、产品分子量分布优化、产品色泽佳(白色)。
具体实施方式
实施例1
将TA(33.2g,0.20mol)、AA(7.3g,0.05mol)、BDO(36.05g,0.40mol)、CR(2.8mg,0.025mmol)、TPOT(8.5mg,0.025mmol)和TDO(2.0mg,0.025mmol)加入反应釜中,在氩气保护及搅拌下逐渐升温至180℃进行酯化反应。控制整个酯化阶段反应时间6h。采用梯度升温法升温至220℃,逐步降低体系压力至10torr,进行熔融缩聚反应,反应5h后氩气保护下出料,冷至室温。GPC法测试中间产物聚合物重均分子量(Mw)为1.5×104
取2.0g熔融缩聚产物,粉碎。过筛后取30目筛分物,置于固相反应器中。调节体系压力为0.5torr,温度为160℃,反应9h。GPC法测试产品聚合物重均分子量(Mw)为1.55×105,分子量分布指数(PDI)1.50。
实施例2
将TA(33.2g,0.20mol)、AA(7.3g,0.05mol)、BDO(36.05g,0.40mol)、TBDA(7.4mg,0.038mmol)、TPOT(8.5mg,0.025mmol)和TDO(2.0mg,0.025mmol)加入反应釜中,在氩气保护及搅拌下逐渐升温至180℃进行酯化反应。控制整个酯化阶段反应时间6h。采用梯度升温法升温至220℃,逐步降低体系压力至10torr,进行熔融缩聚反应,反应5h后氩气保护下出料,冷至室温。GPC法测试中间产物聚合物重均分子量(Mw)为1.8×104
取2.0g熔融缩聚产物,粉碎。过筛后取30目筛分物,置于固相反应器中。调节体系压力为0.5torr,温度为160℃,反应9h。GPC法测试产品聚合物重均分子量(Mw)为1.70×105,分子量分布指数(PDI)1.55。
实施例3
将TA(33.2g,0.20mol)、AA(7.3g,0.05mol)、BDO(45.06g,0.50mol)、CRGL(32.8mg,0.125mmol)、TPOZ(22.4mg,0.063mmol)和CaO(3.5mg,0.063mmol)加入反应釜中,在氩气保护及搅拌下逐渐升温至200℃进行酯化反应。控制整个酯化阶段反应时间5h。采用梯度升温法升温至230℃,逐步降低体系压力至20torr,进行熔融缩聚反应,反应4h后氩气保护下出料,冷至室温。GPC法测试中间产物聚合物重均分子量(Mw)为2.0×104
取2.0g熔融缩聚产物,粉碎。过筛后取35目筛分物,置于固相反应器中。调节体系压力为1.5torr,温度为180℃,反应11h。GPC法测试产品聚合物重均分子量(Mw)为1.89×105,分子量分布指数(PDI)1.73。
实施例4
将TA(33.2g,0.20mol)、AA(7.3g,0.05mol)、BDO(45.06g,0.50mol)、TMG(7.2mg,0.063mmol)、TPOZ(22.4mg,0.065mmol)和CaO(3.5mg,0.063mmol)加入反应釜中,在氩气保护及搅拌下逐渐升温至200℃进行酯化反应。控制整个酯化阶段反应时间5h。采用梯度升温法升温至230℃,逐步降低体系压力至20torr,进行熔融缩聚反应,反应4h后氩气保护下出料,冷至室温。GPC法测试中间产物聚合物重均分子量(Mw)为2.2×104
取2.0g熔融缩聚产物,粉碎。过筛后取35目筛分物,置于固相反应器中。调节体系压力为1.5torr,温度为180℃,反应11h。GPC法测试产品聚合物重均分子量(Mw)为2.15×105,分子量分布指数(PDI)1.77。
实施例5
将TA(33.2g,0.20mol)、AA(7.3g,0.05mol)、BDO(54.07g,0.60mol)、TBD(17.4mg,0.125mmol)、TPOT(21.3mg,0.063mmol)和MgO(2.5mg,0.063mmol)加入反应釜中,在氩气保护及搅拌下逐渐升温至220℃进行酯化反应。控制整个酯化阶段反应时间3h。采用梯度升温法升温至240℃,逐步降低体系压力至30torr,进行熔融缩聚反应,反应3h后氩气保护下出料,冷至室温。GPC法测试中间产物聚合物重均分子量(Mw)为3.0×104
取2.0g熔融缩聚产物,粉碎。过筛后取40目筛分物,置于固相反应器中。调节体系压力为3.0torr,温度为190℃,反应13h。GPC法测试产品聚合物重均分子量(Mw)为2.28×105,分子量分布指数(PDI)1.84。
实施例6
将TA(33.2g,0.20mol)、AA(7.3g,0.05mol)、BDO(54.07g,0.60mol)、TMGA(21.8mg,0.125mmol)、TPOT(21.3mg,0.063mmol)和MgO(2.5mg,0.063mmol)加入反应釜中,在氩气保护及搅拌下逐渐升温至220℃进行酯化反应。控制整个酯化阶段反应时间3h。采用梯度升温法升温至240℃,逐步降低体系压力至30torr,进行熔融缩聚反应,反应3h后氩气保护下出料,冷至室温。GPC法测试中间产物聚合物重均分子量(Mw)为2.8×104
取2.0g熔融缩聚产物,粉碎。过筛后取40目筛分物,置于固相反应器中。调节体系压力为3.0torr,温度为190℃,反应13h。GPC法测试产品聚合物重均分子量(Mw)为2.40×105,分子量分布指数(PDI)1.90。

Claims (4)

  1. 一种有机胍催化熔融-固相缩聚(MP-SSP)合成聚(己二酸-共-对苯二甲酸丁二醇酯)(PBAT)的工艺方法,其特征在于该工艺方法的步骤如下:
    (1)熔融缩聚(MP)工序包括两个工段:(i)酯化反应:将1,4-丁二醇(BDO)、己二酸(AA)和对苯二甲酸(TA)置于聚合反应釜中,加入三元催化体系,在180~220℃下进行酯化脱水预聚反应合成得到分子量为Mw 3.0×103~4.0×103的低分子量预聚物;(ii)熔融缩聚反应:将所得预聚物在220~240℃进行熔融缩聚反应,得到分子量为Mw 1.5×104~3.0×104中等分子量PBAT;
    (2)固相缩聚(SSP)工序:将所得中等分子量PBAT破碎、筛分,取30~40目筛分物在160~190℃进行固相缩聚反应得到最终产物PBAT;
    三元高效催化体系中主催化剂(CAT)为有机胍类化合物,助催化剂1(CoCAT1)为原钛酸或原锆酸酯,助催化剂2(CoCAT2)为金属氧化物;
    CAT用量为两种二元酸单体(AA+TA)总摩尔量的0.1‰~0.5‰,CAT用量与CoCAT1用量摩尔比为(1~2):1,CAT用量与CoCAT2用量摩尔比为(1~2):1。
  2. 根据权利要求1所述的方法,其特征在于:
    (1)CAT为:双环胍(TBD)、双环胍醋酸盐(TBDA)、肌酐(CR)、肌酐谷氨酸盐(CRGL)、四甲基胍(TMG)或四甲基胍醋酸盐(TMGA)之一;
    (2)CoCAT1为:原钛酸四异丙酯(TPOT)或原锆酸四异丙酯(TPOZ)之一;
    (3)CoCAT2为:氧化镁(MgO)、氧化钙(CaO)或二氧化钛(TDO)之一。
  3. 根据权利要求1或2所述的方法,其特征在于三种单体的摩尔比为:AA:TA:BDO=1:4:(8~12)。
  4. 根据权利要求1或2所述的方法,其特征在于:
    (1)酯化反应压力为常压,反应时间3~6h;
    (2)熔融缩聚反应压力10~30torr,反应时间3~5h;
    (3)固相缩聚反应压力0.5~3.0torr,反应时间9~13h。
PCT/CN2016/076958 2015-04-13 2016-03-22 有机胍催化熔融-固相缩聚合成聚(己二酸-共-对苯二甲酸丁二醇酯) WO2016165534A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018502306A JP2018510260A (ja) 2015-04-13 2016-03-22 有機グアニジン触媒融解−固相重縮合合成ポリ(ブチレンアジペート−co−ブチレンテレフタレート)
US15/263,322 US9896539B2 (en) 2015-04-13 2016-09-12 Method for synthesizing poly(butylene adipate-co-terephthalate)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510173430.8 2015-04-13
CN201510173430.8A CN104725616B (zh) 2015-04-13 2015-04-13 有机胍催化熔融-固相缩聚合成聚(己二酸-共-对苯二甲酸丁二醇酯)

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/263,322 Continuation-In-Part US9896539B2 (en) 2015-04-13 2016-09-12 Method for synthesizing poly(butylene adipate-co-terephthalate)

Publications (1)

Publication Number Publication Date
WO2016165534A1 true WO2016165534A1 (zh) 2016-10-20

Family

ID=53450075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076958 WO2016165534A1 (zh) 2015-04-13 2016-03-22 有机胍催化熔融-固相缩聚合成聚(己二酸-共-对苯二甲酸丁二醇酯)

Country Status (4)

Country Link
US (1) US9896539B2 (zh)
JP (1) JP2018510260A (zh)
CN (1) CN104725616B (zh)
WO (1) WO2016165534A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725616B (zh) * 2015-04-13 2017-01-11 南京大学 有机胍催化熔融-固相缩聚合成聚(己二酸-共-对苯二甲酸丁二醇酯)
CN105602209B (zh) * 2016-03-07 2017-02-08 天津金发新材料有限公司 一种pbat树脂组合物
CN106397747A (zh) * 2016-09-09 2017-02-15 珠海万通化工有限公司 一种聚酯树脂及其制备方法
CN106939077B (zh) * 2017-05-12 2018-12-25 南京大学 一种生物降解性三元共聚酯pbast的合成工艺方法
CN107674188A (zh) * 2017-09-29 2018-02-09 南京大学 一种有机胍催化合成生物降解性聚(丁二酸‑共‑对苯二甲酸丁二醇酯)的工艺方法
CN109081909A (zh) * 2018-07-09 2018-12-25 南京大学 一种利用有机双胍催化剂合成聚对苯二甲酸丙二醇酯的工艺
CN109081908A (zh) * 2018-07-09 2018-12-25 南京大学 有机双胍无毒酸盐催化直接熔融缩聚合成聚对苯二甲酸丁二醇酯的工艺
CN111848692B (zh) * 2020-08-02 2021-03-19 扬州普立特科技发展有限公司 生物质有机胍配合物的制备方法及其催化合成pet或peit聚酯的应用
CN112409578B (zh) * 2020-10-20 2022-10-11 金聚合科技(宁波)有限公司 一种超临界二氧化碳诱导pbat结晶/固相缩聚联用制备高分子量pbat的方法
CN113667108B (zh) * 2021-09-13 2022-08-05 万华化学集团股份有限公司 一种非均相钛系催化剂及其制备的复合石墨烯的pbat
CN113861394B (zh) * 2021-10-13 2023-05-26 万华化学集团股份有限公司 一种聚对苯二甲酸-己二酸-丁二醇共聚酯的制备方法
CN113831518B (zh) * 2021-11-15 2022-04-12 中核华纬工程设计研究有限公司 一种小分子酚改性pbat的方法
CN114672005B (zh) * 2022-03-16 2024-06-11 中国石油化工股份有限公司 一种钛系复合催化剂及合成聚对苯二甲酸-共-己二酸丁二醇酯的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101687984A (zh) * 2007-06-28 2010-03-31 巴斯夫欧洲公司 聚酯的固相聚合方法
CN104031253A (zh) * 2014-06-26 2014-09-10 南京大学 环胍催化剂法合成聚己二酸丁二醇酯-共-对苯二甲酸丁二醇酯的工艺方法
CN104119518A (zh) * 2014-07-22 2014-10-29 南京大学 生物有机胍盐催化法合成聚(丁二酸丁二醇酯-共-己二酸丁二醇酯)的方法
CN104725616A (zh) * 2015-04-13 2015-06-24 南京大学 有机胍催化熔融-固相缩聚合成聚(己二酸-共-对苯二甲酸丁二醇酯)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970986A (en) * 1956-02-01 1961-02-07 Du Pont Process for preparing linear polyesters involving interchange between a glycol and a dialkyl-ester of a dicarboxylic acid in the presence of a tertiary amine
NL262267A (zh) * 1961-03-10
DE4440858A1 (de) * 1994-11-15 1996-05-23 Basf Ag Biologisch abbaubare Polymere, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung bioabbaubarer Formkörper
JP4529485B2 (ja) * 2003-03-07 2010-08-25 三菱化学株式会社 ポリエステル重合触媒、その製造方法、及びそれを用いたポリエステルの製造方法
JP2004307595A (ja) * 2003-04-04 2004-11-04 Mitsui Chemicals Inc ポリエチレンテレフタレートの製造方法
JP2009001614A (ja) * 2007-06-19 2009-01-08 Musashino Chemical Laboratory Ltd ポリ乳酸ブロック共重合体の製造方法、該製造方法で得られたポリ乳酸ブロック共重合体、およびこれを用いた成形品
EP2268702B1 (de) * 2008-04-15 2012-11-14 Basf Se Verfahren zur kontinuierlichen herstellung von biologisch abbaubaren polyestern
US8367796B2 (en) * 2009-07-01 2013-02-05 International Business Machines Corporation Catalytic polymerization of polymers containing electrophilic linkages using nucleophilic reagents
CN102161752B (zh) * 2011-03-14 2013-02-27 南京大学 肌酐催化乳酸缩聚合成医用生物降解性聚乳酸的工艺方法
CN102702487A (zh) * 2012-07-02 2012-10-03 南京大学 肌酐催化缩聚d-乳酸合成高生物安全性聚d-乳酸的工艺方法
CN102875779B (zh) * 2012-10-16 2014-01-15 南京大学 双环胍催化乳酸缩聚合成医用生物降解性聚乳酸的工艺方法
JP6274017B2 (ja) * 2013-07-02 2018-02-07 三菱ケミカル株式会社 ポリブチレンテレフタレートの製造方法
US9487622B2 (en) * 2013-07-25 2016-11-08 Sabic Global Technologies B.V. Process for the preparation of modified poly(alkylene terephthalate) employing an in-situ titanium-containing catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101687984A (zh) * 2007-06-28 2010-03-31 巴斯夫欧洲公司 聚酯的固相聚合方法
CN104031253A (zh) * 2014-06-26 2014-09-10 南京大学 环胍催化剂法合成聚己二酸丁二醇酯-共-对苯二甲酸丁二醇酯的工艺方法
CN104119518A (zh) * 2014-07-22 2014-10-29 南京大学 生物有机胍盐催化法合成聚(丁二酸丁二醇酯-共-己二酸丁二醇酯)的方法
CN104725616A (zh) * 2015-04-13 2015-06-24 南京大学 有机胍催化熔融-固相缩聚合成聚(己二酸-共-对苯二甲酸丁二醇酯)

Also Published As

Publication number Publication date
US9896539B2 (en) 2018-02-20
CN104725616B (zh) 2017-01-11
CN104725616A (zh) 2015-06-24
JP2018510260A (ja) 2018-04-12
US20160376403A1 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
WO2016165534A1 (zh) 有机胍催化熔融-固相缩聚合成聚(己二酸-共-对苯二甲酸丁二醇酯)
JP2018510260A5 (zh)
CN111100276B (zh) 一种可生物降解聚酯弹性体及其制备方法
CN104371094B (zh) 高性能聚醚酯弹性体的两步投料合成法
WO2016011939A1 (zh) 生物质肌酐催化法合成聚(丁二酸丁二醇酯-共-己二酸丁二醇酯)的工艺方法
EP2881415A1 (en) Method for manufacturing biodegradable copolymer by split-injecting aromatic dicarboxylic acid compound
CN110183633B (zh) 1,4;3,6-二缩水己六醇改性的呋喃二甲酸基无规共聚物及其制法与应用
WO2020253244A1 (zh) 一种催化合成丙交酯的工艺方法
WO2018205559A1 (zh) 一种生物降解性聚(对苯二甲酸-共-己二酸-共-丁二酸丁二醇酯)(pbast)的合成方法
JP6016923B2 (ja) 生分解性ポリエステル共重合体樹脂の製造方法
CN109575252A (zh) 一种低熔点pbt共聚酯的制备方法
WO2019062599A1 (zh) 一种有机胍催化合成生物降解性聚(丁二酸-共-对苯二甲酸丁二醇酯)的方法
KR101255823B1 (ko) 투명성이 우수한 생분해성 지방족 폴리에스테르 수지조성물
CN103881072A (zh) 可生物降解脂肪族—芳香族嵌段混合聚酯的制备方法
TW561163B (en) Process for preparing polypropylene terephthalate/polyethylene terephthalate copolymers
WO2020253243A1 (zh) 一种碱金属化合物催化合成丙交酯的工艺方法
WO2004063278A1 (ja) ポリエステル樹脂組成物
CN114621425B (zh) 用于聚丁二酸-共-对苯二甲酸丁二醇酯合成的钛系组合物及合成pbst方法
CN114790282B (zh) 一种纳米微颗粒原位聚合催化剂的制备方法及其应用
JP2009242444A5 (zh)
CN114621424A (zh) 一种含衣康酸的脂肪族-芳香族线性共聚酯的制备方法
CN114920917A (zh) 一种低熔指、高结晶温度支化聚对苯二甲酸-己二酸丁二醇酯及其制备方法
KR101374037B1 (ko) 개선된 폴리에스테르의 중합공정
CN114672005B (zh) 一种钛系复合催化剂及合成聚对苯二甲酸-共-己二酸丁二醇酯的方法
CN114479030A (zh) 一种高玻璃转变温度低熔点pbt共聚酯及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018502306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779509

Country of ref document: EP

Kind code of ref document: A1