WO2016158651A1 - 窒化ガリウム系焼結体及びその製造方法 - Google Patents
窒化ガリウム系焼結体及びその製造方法 Download PDFInfo
- Publication number
- WO2016158651A1 WO2016158651A1 PCT/JP2016/059341 JP2016059341W WO2016158651A1 WO 2016158651 A1 WO2016158651 A1 WO 2016158651A1 JP 2016059341 W JP2016059341 W JP 2016059341W WO 2016158651 A1 WO2016158651 A1 WO 2016158651A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gallium nitride
- sintered body
- less
- oxygen content
- based sintered
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/0632—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with gallium, indium or thallium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/025—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/20—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/38—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/68—Crystals with laminate structure, e.g. "superlattices"
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/10—Solid density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/785—Submicron sized grains, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Definitions
- Gallium nitride is used as a light emitting layer of a blue light emitting diode (LED) and a raw material of a blue laser diode (LD), and has attracted attention as a power device material.
- the gallium nitride thin film can be manufactured by a metal organic chemical vapor deposition (MOCVD) method or a sputtering method.
- a metal gallium target has been used as a method of forming a gallium nitride thin film by a sputtering method (see Patent Document 1).
- a metal gallium target since the melting point of metal gallium is about 29.8 ° C., the metal gallium target melts at the time of sputtering. It was difficult.
- a high-density gallium nitride sintered body has also been proposed (see Patent Document 2).
- the sintered body is densified under a very high pressure of 58 Kbar (5.8 GPa).
- the apparatus for applying the film is a very expensive apparatus, and it is difficult to produce a large-sized sintered body, and since it is difficult to increase the size, there is a problem that the film tends to be inferior in homogeneity.
- GaN single crystal thin films exhibit high performance characteristics that cannot be obtained with polycrystalline thin films.
- the single crystal thin film is generally epitaxially grown using a single crystal substrate.
- Japanese Laid-Open Patent Publication No. 11-172424 Japanese Unexamined Patent Publication No. 2005-508822 Japanese Unexamined Patent Publication No. 2012-144424 Japanese Unexamined Patent Publication No. 2014-159368 Japanese Unexamined Patent Publication No. 2014-91851 Japanese Unexamined Patent Publication No. 2002-3297 Japanese Unexamined Patent Publication No. 2004-111883
- An object of the present invention is to provide a gallium nitride-based sintered body having a low oxygen content, a high density, and a low resistance and in which metal gallium is hardly deposited, and a method for producing the same.
- the present inventors made extensive studies. As a result, low oxygen content, high density, low resistance nitriding is achieved by using hot press treatment at high temperature under high vacuum using gallium nitride powder with low oxygen content and high bulk density. The inventors have found that a gallium-based sintered body can be produced, and that a conductive gallium nitride-based sputtering target can be produced without performing a backing treatment using a special material, and the present invention has been completed.
- the aspects of the present invention are as follows.
- the gallium nitride sintered body of the present invention is characterized in that the oxygen content is 1 atm% or less, and preferably 0.5 atm% or less.
- gallium nitride sintered body of the present invention the resistivity, characterized in that at 1 ⁇ 10 2 ⁇ cm or less, more preferably 1 ⁇ 10 1 ⁇ cm or less, more preferably 1 ⁇ 10 0 ⁇ cm or less .
- the low-resistance sintered body can be used not only for RF sputtering but also for DC sputtering when used as a sputtering target.
- the gallium nitride sintered body of the present invention preferably has a density of 3.0 g / cm 3 or more and 5.4 g / cm 3 or less, and the lower limit thereof is more preferably 3.5 g / cm 3 , and 4.0 g / cm 3. 3 is more preferable.
- the density of the gallium nitride sintered body described here indicates the density including open pores, and indicates the measurement result of bulk density in JIS R1634. Such a gallium nitride based sintered body can be used as a sputtering target.
- the gallium nitride sintered body of the present invention preferably has an average particle size of 0.5 ⁇ m or more and 3 ⁇ m or less. By setting it as such a particle diameter, it becomes possible to obtain the sintered compact with few open pores, a low oxygen content, and high intensity
- the above physical property values of the gallium nitride powder are controlled. It has been found that a sintered body having a high strength can be obtained with reduced oxygen contamination of impurities.
- the manufacturing method of the present invention is a manufacturing method of a gallium nitride sintered body by a hot press method, using gallium nitride powder having an oxygen content of 2 atm% or less as a raw material, and the ultimate vacuum in the chamber during hot pressing is Heating is performed at 70 Pa or less, 1060 ° C. or more and less than 1300 ° C. With such a manufacturing method, even a gallium nitride-based sintered body having a weight of 10 g or more can be manufactured with a high yield.
- the raw material gallium nitride powder needs to have an oxygen content of 2 atm% or less.
- the specific surface area of the powder is small, preferably 1.5 m 2 / g or less, more preferably 0.8 m 2. / G.
- the lower limit is preferably larger than 0.1 m 2 / g. If the specific surface area is smaller than that, the crystal particles are too large, the adhesion between the particles is weak, it is difficult to retain the shape when finally fired, and further, if the specific surface area is small, In general, since sinterability is lowered, firing becomes difficult.
- the light bulk density of gallium nitride as a raw material is preferably 0.8 g / cm 3 or more, more preferably 1.0 g / cm 3. 3 or more.
- the light bulk density is a value obtained by filling a container having a constant volume without applying a load such as vibration and dividing the capacity of the filled powder by the volume of the container.
- the light bulk density is preferably less than 2.5 g / cm 3 . If the light bulk density is increased more than that, the strength of the granules constituting the powder becomes too high, and the strength of the sintered body is remarkably lowered because the granules remain uncrushed during molding and firing.
- the average particle diameter of gallium nitride used as a raw material is preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
- the sintering start temperature and the decomposition temperature are close, the sintering temperature range is narrow, and large grain growth does not occur during sintering, so the distribution of primary particles before sintering has a large effect on the sintered body. give.
- the particle diameter of primary particles refers to the diameter of the smallest unit particles observed by SEM, the average particle diameter is measured by the diameter method, and is measured for at least 100 particles, and then a numerical value at a 50% particle diameter. Point to.
- the particle diameter is larger and the adhesion force is smaller than before, so if there are open pores that can be immersed, the bonding force between the particles is relatively weak.
- the immersion is performed, cracks are generated due to the stress generated during the immersion and the difference in thermal expansion coefficient caused by heating and sputtering.
- gallium nitride powder which does not contain impurities as much as possible, because the semiconductor characteristics change due to high crystallinity of the sputtering film or addition of elements.
- Hot pressing is a method in which sintering is carried out by applying temperature while pressing the powder. By uniaxial pressing during heating, diffusion during firing is assisted, and a material that has a low diffusion coefficient and is difficult to sinter is used. It is a firing method that allows sintering.
- Calcination temperature is 1060 ° C or higher and lower than 1300 ° C.
- 1060 ° C. or higher is necessary, and in order to suppress decomposition of gallium nitride into nitrogen and metal gallium to a certain amount, it must be lower than 1300 ° C.
- the pressure at the time of baking shall be 30 Mpa or more and 100 Mpa or less, More preferably, it is 50 Mpa or more and 90 Mpa or less.
- the hot press atmosphere is performed under vacuum.
- the degree of vacuum at the start of heating is 70 Pa or less, preferably 10 Pa or less, more preferably 10 ⁇ 1 Pa, and particularly preferably 10 ⁇ 2 Pa or less. Accordingly, oxygen and oxygen elements such as water mixed from the atmosphere can be reduced, and oxidation during firing can be suppressed.
- the decomposition of the gallium nitride powder gradually proceeds from around 1060 ° C., but by sintering under vacuum, a part of the metal gallium that is decomposed and generated together with nitrogen as a decomposition gas. It is discharged from the sintered body to the outside.
- the clearance between the die and the upper punch is 0.2 mm or more.
- metal gallium does not become an inhibitor during sintering, and an appropriate amount is contained, so that the sintering progressed, resulting in high density and suppressed oxidation.
- a gallium nitride sintered body can be obtained.
- metal gallium is partially decomposed in the region of 1060 ° C. or higher and 1300 ° C. or lower.
- sintering of gallium nitride also proceeds, it is inhibited by metal gallium by applying high pressure vacuum sintering. As the gallium nitride sintering progresses, the density is improved.
- the sintered body is preferably conductive, and for that purpose, metallic gallium is preferably present. Whether or not metallic gallium is included in gallium nitride is clear by confirming the resistivity of the sintered body, and the substrate has a high resistivity as represented by gallium nitride single crystal. Such a sintered body has a resistivity as low as 10 2 ⁇ ⁇ cm or less. Molded products and sintered bodies in which decomposition of gallium nitride does not proceed even when the same raw material is used have high resistivity.
- gallium nitride is dispersed in the gallium nitride raw material powder, or gallium nitride is decomposed during sintering.
- a method of generating gallium nitride is preferable. By doing so, a small amount of metal gallium can be uniformly dispersed in the sintered body.
- the content is preferably less than 30 wt%, more preferably less than 10 wt%.
- the obtained sintered body may be processed into a predetermined dimension according to the use of a sputtering target or the like.
- the processing method is not particularly limited, and a surface grinding method, a rotary grinding method, a cylindrical grinding method, or the like can be used.
- the gallium nitride sintered body may be fixed (bonded) to a flat or cylindrical support with an adhesive such as a solder material as necessary, and used as a sputtering target. It is preferable that the sputtering target does not have a layer containing tungsten between the target member and the bonding layer. By not using an expensive metal tungsten target, the cost is reduced and a tungsten film formation step is not required, so that productivity is improved.
- the sputtering target of the present invention preferably uses a tin-based solder material, an indium-based solder material, or a zinc-based solder material as the bonding layer.
- a tin-based solder material an indium-based solder material, or a zinc-based solder material as the bonding layer.
- indium solder having high conductivity and thermal conductivity and being soft and easily deformable is preferable.
- the sputtering target of the present invention is preferably made of a metal such as Cu, SUS or Ti because of its high thermal conductivity and high strength as a support.
- a metal such as Cu, SUS or Ti
- the shape of the support it is preferable to use a flat plate-shaped support for a flat plate-shaped molded product and to use a cylindrical support for a cylindrical molded product.
- the gallium nitride sintered body is bonded to the support through the bonding layer.
- Tin-based solder material, indium-based solder material, zinc-based solder material, etc. can be used for the bonding layer, but when using an indium-based solder material, indium wettability to the gallium nitride sintered body is improved.
- a layer for improving wettability may be formed between the sintered body and the solder material.
- the material of the layer is preferably inexpensive and has high wettability to indium. For example, it is preferable to use nickel or chromium. This layer is preferably formed uniformly over the entire interface with the solder material.
- a method for forming such a barrier layer is not particularly limited, and sputtering, vapor deposition, coating, or the like can be used.
- the gallium nitride film of the present invention is characterized in that its crystal phase has a hexagonal crystal structure. This is because although gallium nitride has a crystal phase such as a cubic crystal, the hexagonal crystal structure is the most stable as the crystal phase and is optimal for the construction of a semiconductor device.
- the intensity ratio of (002) plane to (101) plane in 2 ⁇ / ⁇ measurement in an X-ray diffractometer is I (002) / I (101) is 150 or more. It is characterized by. I (002) / I (101) is preferably 300 or more, and more preferably 1000 or more.
- the gallium nitride film of the present invention is characterized in that the minimum oxygen content is 5 ⁇ 10 21 atm / cm 3 or less.
- the minimum oxygen content is preferably 3 ⁇ 10 21 atm / cm 3 or less, and more preferably 2 ⁇ 10 21 atm / cm 3 or less.
- the minimum oxygen content is measured by measuring the oxygen content in the depth direction of the film using a SIMS (secondary ion mass spectrometer). The minimum value of oxygen content in between.
- the half width of the 2 ⁇ / ⁇ measurement peak on the (002) plane is preferably 0.3 ° or less, more preferably 0.2 ° or less, and More preferably, it is 1 ° or less.
- the 2 ⁇ / ⁇ measurement peak refers to a numerical value measured using a general powder XRD apparatus.
- the gallium nitride film of the present invention is characterized in that the half width of the ⁇ measurement peak on the (002) plane is 2 ° or less. By doing so, it becomes a film in which crystals are aligned, and the performance when used as a device is improved. More preferably, it is 1 ° or less, and more preferably 0.1 ° or less.
- the ⁇ measurement method is a method for precisely measuring the orientation of crystal axes, it is necessary to use an XRD apparatus having a movable range in the ⁇ direction on the measurement sample side.
- sputtering at a sputtering gas pressure of less than 0.3 Pa during film formation.
- a DC sputtering method As a sputtering method, a DC sputtering method, an RF sputtering method, an AC sputtering method, a DC magnetron sputtering method, an RF magnetron sputtering method, an ion beam sputtering method, or the like can be appropriately selected.
- the DC magnetron sputtering method and the RF magnetron sputtering method are preferable in that high-speed film formation is possible.
- the gas pressure during sputtering is less than 0.3 Pa, preferably 0.1 Pa or less, more preferably 0.08 Pa or less. The lower the gas pressure during sputtering, the easier it is for particles emitted from the sputtering target to reach the substrate with high energy and to rearrange epitaxially.
- the degree of vacuum in the film formation apparatus before film formation is preferably 3 ⁇ 10 ⁇ 5 Pa or less, and more preferably 1 ⁇ 10 ⁇ 5 Pa or less. By making the degree of vacuum lower, residual gas is hardly mixed as an impurity during film formation, and the crystallinity of the thin film is improved.
- the pretreatment method includes reverse sputtering treatment, acid treatment, UV treatment, and the like, but reverse sputtering treatment is preferable from the viewpoint of preventing redeposition of impurities after the treatment.
- Reverse sputtering is a method of cleaning the surface by collision of plasma atomized atoms not on the sputtering target side but on the substrate side. By using such a mechanism, the surface of the substrate is washed and sent to the film formation chamber without being exposed to the outside air, so that the film can be formed while maintaining the cleanliness of the substrate surface.
- the substrate heating temperature in the film forming step (hereinafter sometimes referred to as film forming temperature) is preferably 100 ° C. or higher and 800 ° C. or lower, more preferably 400 ° C. or higher and 800 ° C. or lower, and particularly preferably 600 ° C. or higher and 750 ° C. or lower.
- film forming temperature is preferably 100 ° C. or higher and 800 ° C. or lower, more preferably 400 ° C. or higher and 800 ° C. or lower, and particularly preferably 600 ° C. or higher and 750 ° C. or lower.
- the sputtering apparatus becomes expensive, and the merit of using the sputtering method is reduced. It is particularly preferable to form a film at 400 ° C. or higher. By forming a film at 400 ° C. or higher, it is possible to arrange the sputtered particles particularly with good crystallinity. It is desirable that the gas at the time of film formation contains nitrogen. By doing so, a film with few nitrogen defects can be manufactured.
- nitrogen is a main component.
- Argon may be added depending on the case in order to stabilize the discharge.
- As a partial pressure to be added about 0.05 to 1 may be added to nitrogen 1.
- the power density is preferably 5 W / cm 2 or less, more preferably 2.5 W / cm 2 or less, and further preferably 1.5 W / cm 2 or less.
- the lower limit is preferably 0.1 W / cm 2, and more preferably 0.3 W / cm 2 .
- the power density is calculated by dividing the power applied during discharge by the area of the sputtering target.
- the sputtering target mainly composed of gallium nitride to be used has a low density. Peeling off is not preferable. If it is less than 0.1 W / cm 2 , the plasma will not be stable, so that it will be difficult to discharge, and the film formation rate will decrease, so the productivity of the film will decrease.
- the thickness formed by sputtering is preferably 30 nm or more, more preferably 50 nm or more. By doing so, it becomes possible to obtain a predetermined crystalline thin film. Further, the surface roughness Ra is preferably 10 nm or less, and more preferably 5 nm or less. When the surface roughness Ra is larger than 10 nm, there is a concern that the yield may be lowered when a light emitting element or a transistor element is formed.
- the gallium nitride film of the present invention can also be suitably used as a laminated substrate comprising a substrate and a gallium nitride film.
- examples of the substrate include a glass substrate containing alkali-free glass or quartz, a polymer film base made of resin, a ceramic or metal substrate, and the like.
- sapphire gallium nitride single crystal
- silicon single crystal that are conventionally used, and more preferably sapphire and silicon single crystal.
- the plane orientation it is preferable to use a sapphire (001) plane with relatively good lattice matching.
- the plane orientation may be inclined as an offset angle.
- Such a laminated base material is suitably used as a semiconductor element composed of a plurality of functional parts.
- a semiconductor element composed of a plurality of functional parts.
- it is used for power devices such as light emitting elements such as LEDs, laser diodes, and transistors.
- the semiconductor element is suitably used for various electronic devices.
- the laminated substrates it is a laminate comprising a silicon single crystal layer, a metal sulfide layer and a gallium nitride layer, and it is preferable that a metal sulfide layer exists between the silicon single crystal layer and the gallium nitride layer. In particular, it is preferable that a metal sulfide layer is laminated on the silicon single crystal layer.
- the silicon single crystal layer it is preferable to use a silicon single crystal substrate, and it is particularly preferable to use a Si (100) substrate. Compared with a conventional sapphire substrate or GaN single crystal substrate, an element can be manufactured at a low cost, and the substrate size can correspond to various sizes.
- the metal sulfide layer Since the metal sulfide layer has low reactivity with silicon, it does not form an amorphous state and suppresses the formation of an amorphous layer due to an interface reaction. Further, since the metal sulfide layer reduces the lattice strain between the substrate and the thin film, the dislocation density can be suppressed.
- the lattice strain is preferably 10% or less, and more preferably 5% or less.
- the metal sulfide is not particularly limited as long as there is no problem in terms of lattice strain, but zinc sulfide, manganese sulfide (MnS), magnesium sulfide, and calcium sulfide are preferably used, and manganese sulfide is more preferably used.
- the gallium nitride sintered body of the present invention is suitable for use as a sputtering target because it has a low oxygen content, high density, and low resistance, and metal gallium does not easily precipitate.
- the specific surface area of the powder was measured using a Micrometrics Tristar. (Light bulk density) Measurement was performed using a powder tester PT-N type (manufactured by Hosokawa Micron Corporation). (Bulk density of sintered body) The bulk density of the sintered body was measured in accordance with the bulk density measurement method in JIS R1634. (Oxygen content) The oxygen content of the sintered body was measured with an oxygen / nitrogen analyzer (manufactured by LECO). (Heating test) The sintered body was subjected to a heat treatment at 250 ° C.
- the particle diameters of the powder and the sintered body were measured for at least two fields of view by the diameter method from an image observed with an SEM, and after measuring 100 or more particles, the 50% particle diameter was defined as the average particle diameter.
- Crystal plane confirmation, half width, strength ratio measurement method A normal powder X-ray diffractometer (device name: Ultimate III, manufactured by Rigaku Corporation) was used for normal measurement. The conditions for XRD measurement are as follows.
- High-precision measurement was performed using the following configuration of the XRD device (Bruker D8 DISCOVER), removing CuK ⁇ 2 using a HIGH RESOLUTION mode, Ge (220) monochromator under the conditions of 40 kV and 40 mA, and performing an ⁇ scan. .
- Monochromator Ge (220)
- Pathfinder Crystal3B Measurement mode: ⁇ scan Measurement interval: 0.01 ° (If the half width is 0.1 ° or less, 0.0005 °)
- Measurement time 0.5 seconds
- Measurement range: ⁇ 0 ° -35 ° (Measurement of oxygen content in membrane)
- SIMS secondary ion mass spectrometer.
- the oxygen content was measured in the depth direction of the film, and the minimum content between 5 nm and 30 nm from the interface was calculated for the place assumed to be the substrate.
- Example 1 30 g of the gallium nitride powder shown in Table 1 was put into a 52 mm ⁇ carbon mold and put into a hot press. The ultimate vacuum before starting the temperature rise starts firing under the conditions shown in Table 1, the temperature is raised at 200 ° C./h, and finally increased to the temperature shown in Table 1. The pressure condition was increased to the pressure shown in Table 1 when the maximum temperature was maintained, and the hot press treatment was performed at a temperature and pressure holding time of 1 hour. The temperature was lowered to about 50 ° C. in 5 hours, the mold was taken out, and the sintered body was recovered. All were sintered bodies of 10 g or more. Table 2 shows the weight, density, oxygen content, resistivity, average particle diameter, and heating test results of the obtained polycrystalline gallium nitride sintered body.
- Example 5 Using 250 g of the gallium nitride powder shown in Table 1, it was put into a 130 mm ⁇ carbon mold and put into a hot press. The ultimate vacuum before starting the temperature rise starts firing under the conditions shown in Table 1, the temperature is raised at 200 ° C./h, and finally increased to the temperature shown in Table 1. The pressure condition was raised to the pressure shown in Table 1 when the maximum temperature was maintained, and the hot press treatment was performed at a temperature and pressure retention time of 2 hours. After the temperature was lowered, the mold was taken out and the sintered body was recovered. Table 2 shows the weight, density, oxygen content, resistivity, average particle diameter, and heating test results of the obtained polycrystalline gallium nitride sintered body.
- Comparative Example 4 Compared to 24.5 g of the processed gallium nitride sintered body, the gallium nitride sintered body manufactured under the same conditions as in Comparative Example 1 was used, whereas metal gallium (purity 6N, oxygen content 0.0174 atm%, DOWA Electronics Co., Ltd.) Company) was prepared in an amount 1.35 times the amount of the sintered body, and both were put into a vacuum packaging bag and vacuum packaged at 1000 Pa.
- the packaging container was heated to about 50 ° C. to completely dissolve the metal gallium, and then charged into CIP and pressurized at 100 MPa for 60 seconds. After taking out, the metal gallium remaining in the periphery after heating at about 50 ° C.
- the present invention relates to a metal gallium permeable gallium nitride sintered body.
- Measurement methods for various evaluations are as follows. (Measurement method of crystal orientation and half width) Scanning at 2 ⁇ / ⁇ using an XRD apparatus, the crystal orientations of gallium nitride and metal sulfide were identified from the peak positions, and the main crystal orientations were confirmed. Among them, the half width at 2 ⁇ / ⁇ was measured for the peak corresponding to the gallium nitride (110) plane. (How to check rotational symmetry) A phi scan was performed on the gallium nitride thin film using an XRD apparatus, and the rotational symmetry was confirmed.
- a GaN thin film was formed on the MnS / Si thin film under the following conditions to obtain a laminate.
- Discharge method RF sputtering Film-forming equipment: Magnetron sputtering equipment Target size: 2 inches ⁇ Film forming pressure: 1Pa Introduced gas: Argon + 10 vol% Nitrogen Discharge power: 100W Substrate temperature: 700 ° C Film thickness: 10nm The results of various evaluations are as shown below.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
(1)酸素含有量が1atm%以下であり、抵抗率が1×102Ω・cm以下であることを特徴とする窒化ガリウム系焼結体。
(2)密度が3.0g/cm3以上5.4g/cm3以下であることを特徴とする(1)に記載の焼結体。
(3)焼結体の平均粒径が0.5μm以上3μm以下であることを特徴とする(1)又は(2)に記載の焼結体。
(4)焼結体の重量が10g以上であることを特徴とする(1)~(3)のいずれかに記載の焼結体。
(5)大気中で250℃の加熱処理を1時間行ってもターゲット部材から金属ガリウムの析出が目視で確認できないことを特徴とする(1)~(4)のいずれかに記載の焼結体。
(6)ホットプレス法による窒化ガリウム系焼結体の製造方法であって、酸素含有量2atm%以下の窒化ガリウム粉末を原料とし、ホットプレス時にチャンバー中の到達真空度が70Pa以下、1060℃以上1300℃未満で加熱することを特徴とする窒化ガリウム系焼結体の製造方法。
(7)(1)~(5)のいずれかに記載の焼結体を用いることを特徴とする窒化ガリウムスパッタリングターゲット。
(8)ターゲット部材とボンディング層の間にタングステンを含む層が存在しないことを特徴とする(7)に記載のスパッタリングターゲット。
(9)ボンディング層がインジウム、錫、亜鉛のうち少なくとも1成分を含むことを特徴とする(7)又は(8)に記載のスパッタリングターゲット。
(10)(6)~(9)に記載のスパッタリングターゲットを用いることを特徴とする窒化ガリウム系薄膜の製造方法。
(比表面積)
粉末の比表面積はMicrometrics Tristarを用いて測定した。
(軽装かさ密度)
パウダーテスターPT-N型(ホソカワミクロン製)を用いて測定を行った。
(焼結体のかさ密度)
焼結体のかさ密度は、JISR1634におけるかさ密度測定の方法に準じて行なった。
(酸素含有量)
焼結体の酸素含有量は、酸素・窒素分析装置(LECO製)により測定した。
(加熱試験)
焼結体を大気中でホットプレートを用いて250℃の加熱処理を1時間行い、焼結体から金属ガリウムの析出の有無について目視で確認した。
(粒子径の測定)
粉末及び焼結体の粒子径の測定は、SEMでの観察像から直径法にて少なくとも2視野以上について測定し、100以上の粒子を測定した上で50%粒径を平均粒子径とした。
(結晶面の確認、半価幅、強度比の測定方法)
通常の測定は一般的な粉末X線回折装置(装置名:UltimaIII、リガク社製)を用いた。XRD測定の条件は以下のとおりである。
測定モード : 2θ/θスキャン
測定間隔 : 0.01°
発散スリット: 0.5deg
散乱スリット: 0.5deg
受光スリット: 0.3mm
計測時間 : 1.0秒
測定範囲 : 2θ=20°~80°
XRDパターンの同定分析には、XRD解析ソフトウェア(商品名:JADE7、MID社製)を用いた。六方晶はJCPDSNo.00-050-0792を参考として窒化ガリウム結晶面を確認し、(002)面についてその半価幅を測定し、強度比はI(002)とI(101)について下記の式を用いて算出する。
強度比=I(002)/I(101)
(101)面と思われるピークが検出されない場合は、36~37°のバックグラウンドピーク強度をI(101)とみなし計算を実施する。
モノクロメーター: Ge(220)
パスファインダー: Crystal3B
測定モード : ωスキャン
測定間隔 : 0.01°
(半価幅が0.1°以下の場合は0.0005°)
計測時間 : 0.5秒
測定範囲 : ω=0°~35°
(膜中の酸素含有量測定)
膜中の酸素含有量はSIMS(二次イオン質量分析計)を用いて測定した。膜の深さ方向に対し酸素の含有量を測定し、基板と想定される場所に対して、その界面から5nm~30nmの間の最低含有量を算出した。
表1に示される窒化ガリウム粉末を30g用いて52mmφのカーボン製の金型に投入しホットプレスに投入した。昇温開始前の到達真空度は表1に示された条件にて焼成を開始し、温度は200℃/hにて昇温し、最終的に表1の温度まで増加させ、その際の加圧条件は最高温度保持の際に表1の圧力まで上昇させ、温度並びに圧力の保持時間1時間にてホットプレス処理を行った。降温は5時間で約50℃まで降温し、金型を取り出し、焼結体の回収を行なった。いずれも10g以上の焼結体であった。得られた多結晶窒化ガリウム焼結体の重量、密度、含有酸素量、抵抗率、平均粒径及び加熱試験の結果を表2に示す。
表1に示される窒化ガリウム粉末を250g用いて130mmφのカーボン製の金型に投入しホットプレスに投入した。昇温開始前の到達真空度は表1に示された条件にて焼成を開始し、温度は200℃/hにて昇温し、最終的に表1の温度まで増加させ、その際の加圧条件は最高温度保持の際に表1の圧力まで上昇させ、温度並びに圧力の保持時間2時間にてホットプレス処理を行った。降温後金型を取り出し、焼結体の回収を行なった。得られた多結晶窒化ガリウム焼結体の重量、密度、含有酸素量、抵抗率、平均粒径及び加熱試験の結果を表2に示す。
表1に示す窒化ガリウム粉末を用いて、表1の真空度、焼成温度、荷重とした以外は実施例1と同様の昇温速度、保持時間、降温条件でホットプレス処理を行ったところ、得られた多結晶窒化ガリウム焼結体の重量、密度、含有酸素量、抵抗率、平均粒径及び加熱試験の結果は表2のようになった。比較例2では保形できず、焼結体を得ることができなかった。
比較例1と同様の条件にて作製した窒化ガリウム焼結体に対し、加工した窒化ガリウム焼結体24.5gに対して、金属ガリウム(純度6N、酸素含有量0.0174atm%、DOWAエレクトロニクス株式会社製)を焼結体に対し1.35倍量用意し、共に真空包装袋に投入し、1000Paにて真空包装を行った。包装容器を50℃程度まで加熱し、金属ガリウムを完全に溶解させた後、CIPに投入し、100MPaで60秒間加圧を行なった。取り出した後に50℃程度で加熱した後に周辺に残った金属ガリウムを除去し、金属ガリウム浸透窒化ガリウム焼結体を得た。それに対して250℃で加熱試験を実施したところGa金属の析出が見られた。なお、表2に記載の平均粒径の値は、金属ガリウムを浸透させる前の焼結体の平均粒径に関するものであり、重量、密度、含有酸素量、抵抗率及び加熱試験の結果については金属ガリウム浸透窒化ガリウム焼結体に関するものである。
実施例1と同様の方法で作製した焼結体に対し、比較例4と同様の手法にて金属ガリウム浸透体の作製を試みたが、浸透の際に割れを生じてしまった。
窒化ガリウムスパッタリングターゲットを用いて、マグネトロンスパッタ装置で表3の条件にてスパッタ成膜試験を実施した。
以上の条件にて成膜を行なった結果、表4に示されるような、窒化ガリウム薄膜となった。
(結晶方位、半価幅の測定方法)
XRD装置を用いて2θ/ωにて走査し、ピーク位置から窒化ガリウム、金属硫化物の結晶方位を同定し、主な結晶方位を確認した。そのうち、窒化ガリウム(110)面に相当するピークに対し、2θ/ωでの半価幅を測定した。
(回転対称性の確認方法)
XRD装置を用いて窒化ガリウム薄膜に対するphiスキャンを実施し、回転対称性を確認した。
(ロッキングカーブ半価幅の測定方法)
XRD装置を用いて同定された窒化ガリウム(110)面に対するωスキャンを実施し、ロッキングカーブ半価幅を測定した。
(窒化ガリウム薄膜中の酸素含有量の測定方法)
SIMS(二次イオン質量分析計 装置名:PHI ADEPT1010)を利用し、窒化ガリウム薄膜について、シリコン単結晶層に近い界面から50nmの間の酸素量を測定し、その最小値を酸素含有量とした。界面から50nmの位置の特定はSIMS測定による組成変化から各層の物質を把握することで確認した。
(表面粗さの測定方法)
AFM装置を用いて10μm角の範囲にて表面状態を測定し、その中で10μmの長さの測定における表面粗さRaを測定した。
2インチφのSi(100)単結晶基板上にMnSが50nm製膜された基板を利用した。MnSは(100)面に配向していることを確認した。
(スパッタ条件)
放電方式 :RFスパッタ
製膜装置 :マグネトロンスパッタ装置
ターゲットサイズ :2インチφ
製膜圧力 :1Pa
導入ガス :アルゴン+10vol%窒素
放電パワー :100W
基板温度 :700℃
膜厚 :10nm
各種評価の結果は以下に示す通りである。
GaN配向面 :(110)面
2θ/ω半価幅 :0.7 °
ロッキングカーブ半価幅 :3.4°
酸素含有量 :3×1021atm/cm3
(積層膜参考例2)
積層膜参考例1で得られた積層体のGaN層の上に、さらにGaN層を基板温度1100℃にてMOCVD法で約1000nm形成した。各種評価の結果は以下に示す通りである。
GaN配向面 :(110)面
半価幅 :0.18°
ロッキングカーブ半価幅:1.9°
酸素含有量 :1×1021atm/cm3
(積層膜参考例3)
MnSのバッファ層を形成せずに直接Si(100)基板上にGaN薄膜を形成した場合緻密な膜を形成することができなかった。
Claims (10)
- 酸素含有量が1atm%以下であり、抵抗率が1×102Ω・cm以下であることを特徴とする窒化ガリウム系焼結体。
- 密度が3.0g/cm3以上5.4g/cm3以下であることを特徴とする請求項1に記載の窒化ガリウム系焼結体。
- 焼結体の平均粒径が0.5μm以上3μm以下であることを特徴とする請求項1又は2に記載の窒化ガリウム系焼結体。
- 焼結体の重量が10g以上であることを特徴とする請求項1~3のいずれかに記載の窒化ガリウム系焼結体。
- 大気中で250℃の加熱処理を1時間行ってもターゲット部材から金属ガリウムの析出が目視で確認できないことを特徴とする請求項1~4のいずれかに記載の窒化ガリウム系焼結体。
- ホットプレス法による窒化ガリウム系焼結体の製造方法であって、酸素含有量2atm%以下の窒化ガリウム粉末を原料とし、ホットプレス時にチャンバー中の到達真空度が70Pa以下、1060℃以上1300℃未満で加熱することを特徴とする窒化ガリウム系焼結体の製造方法。
- 請求項1~5のいずれかに記載の窒化ガリウム系焼結体を用いることを特徴とする窒化ガリウムスパッタリングターゲット。
- ターゲット部材とボンディング層の間にタングステンを含む層が存在しないことを特徴とする請求項7に記載のスパッタリングターゲット。
- ボンディング層がインジウム、錫、亜鉛のうち少なくとも1成分を含むことを特徴とする請求項7又は8に記載のスパッタリングターゲット。
- 請求項7~9のいずれかに記載のスパッタリングターゲットを用いることを特徴とする窒化ガリウム系薄膜の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21208680.5A EP3998370B1 (en) | 2015-03-30 | 2016-03-24 | Gallium nitride-based film and method for manufacturing same |
EP16772532.4A EP3279367B1 (en) | 2015-03-30 | 2016-03-24 | Gallium nitride-based sintered compact and method for manufacturing same |
US15/562,112 US20180072570A1 (en) | 2015-03-30 | 2016-03-24 | Gallium nitride-based sintered compact and method for manufacturing same |
CN201680015322.0A CN107429383B (zh) | 2015-03-30 | 2016-03-24 | 氮化镓系烧结体和其制造方法 |
KR1020177026289A KR102679764B1 (ko) | 2015-03-30 | 2016-03-24 | 질화갈륨계 소결체 및 그 제조 방법 |
CN202010696987.0A CN111826618B (zh) | 2015-03-30 | 2016-03-24 | 氮化镓系烧结体和其制造方法 |
US17/590,120 US11802049B2 (en) | 2015-03-30 | 2022-02-01 | Gallium nitride-based sintered compact and method for manufacturing same |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-069913 | 2015-03-30 | ||
JP2015069913A JP6596875B2 (ja) | 2015-03-30 | 2015-03-30 | 窒化ガリウムを含む積層体およびその製造方法 |
JP2015089571 | 2015-04-24 | ||
JP2015-089571 | 2015-04-24 | ||
JP2015-150959 | 2015-07-30 | ||
JP2015150959 | 2015-07-30 | ||
JP2015152855 | 2015-07-31 | ||
JP2015-152855 | 2015-07-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/562,112 A-371-Of-International US20180072570A1 (en) | 2015-03-30 | 2016-03-24 | Gallium nitride-based sintered compact and method for manufacturing same |
US17/590,120 Continuation US11802049B2 (en) | 2015-03-30 | 2022-02-01 | Gallium nitride-based sintered compact and method for manufacturing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016158651A1 true WO2016158651A1 (ja) | 2016-10-06 |
Family
ID=57005071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/059341 WO2016158651A1 (ja) | 2015-03-30 | 2016-03-24 | 窒化ガリウム系焼結体及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20180072570A1 (ja) |
EP (2) | EP3998370B1 (ja) |
KR (1) | KR102679764B1 (ja) |
CN (2) | CN107429383B (ja) |
TW (1) | TWI668198B (ja) |
WO (1) | WO2016158651A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018046277A (ja) * | 2016-09-13 | 2018-03-22 | 東ソー株式会社 | 窒化ガリウム系膜ならびにその製造方法 |
WO2018230663A1 (ja) * | 2017-06-15 | 2018-12-20 | 東ソー株式会社 | 窒化ガリウム粒子およびその製造方法 |
JP2021181595A (ja) * | 2020-05-18 | 2021-11-25 | 東京エレクトロン株式会社 | 複合ターゲット、複合ターゲットの製造方法及び窒化物半導体膜の形成方法 |
US20210380488A1 (en) * | 2018-10-10 | 2021-12-09 | Tosoh Corporation | Gallium nitride-based sintered body and method for manufacturing same |
WO2023182211A1 (ja) * | 2022-03-25 | 2023-09-28 | 東ソー株式会社 | 窒化ガリウム焼結体及びその製造方法 |
KR20230150361A (ko) | 2021-03-30 | 2023-10-30 | 엔지케이 인슐레이터 엘티디 | 스퍼터링 타겟 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108110106B (zh) * | 2017-12-14 | 2019-08-27 | 扬州乾照光电有限公司 | 一种led芯片的制备方法及led芯片 |
TWI825187B (zh) * | 2018-10-09 | 2023-12-11 | 日商東京威力科創股份有限公司 | 氮化物半導體膜之形成方法 |
JP6595731B1 (ja) * | 2018-10-26 | 2019-10-23 | 株式会社サイオクス | 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体 |
WO2020174922A1 (ja) * | 2019-02-28 | 2020-09-03 | 住友電工ハードメタル株式会社 | 立方晶窒化硼素多結晶体及びその製造方法 |
JP2021059483A (ja) * | 2019-10-07 | 2021-04-15 | 東ソー株式会社 | 窒化ガリウム粒子およびその製造方法 |
CN111153700B (zh) * | 2019-12-31 | 2022-06-21 | 欧钛鑫光电科技(苏州)有限公司 | 一种氮化物靶材的制备方法 |
WO2024054772A2 (en) * | 2022-09-06 | 2024-03-14 | The Regents Of The University Of California | Method for the synthesis of gallium nitride with n2 near room temperature |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006290729A (ja) * | 2003-06-30 | 2006-10-26 | Kenichiro Miyahara | 薄膜接合体 |
JP2012144805A (ja) * | 2010-12-21 | 2012-08-02 | Tosoh Corp | 窒化ガリウム成形物及びその製造方法 |
JP2013129568A (ja) * | 2011-12-21 | 2013-07-04 | Tosoh Corp | 窒化ガリウム粉末ならびにその製造方法 |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0629239A (ja) | 1992-02-27 | 1994-02-04 | Eastman Kodak Co | リフト−オフプロセスを利用した半導体素子におけるセルフアライン拡散バリアの製造方法及び拡散バリアを有する半導体素子 |
US6291840B1 (en) * | 1996-11-29 | 2001-09-18 | Toyoda Gosei Co., Ltd. | GaN related compound semiconductor light-emitting device |
JPH11172424A (ja) | 1997-12-12 | 1999-06-29 | Minolta Co Ltd | ガリウム化合物の製造方法 |
US5942148A (en) * | 1997-12-24 | 1999-08-24 | Preston; Kenneth G. | Nitride compacts |
EP0996173B1 (en) * | 1998-10-23 | 2015-12-30 | Xerox Corporation | Semiconductor structures including polycrystalline GaN layers and method of manufacturing |
WO2001080311A1 (en) * | 2000-04-17 | 2001-10-25 | Virginia Commonwealth University | Defect reduction in gan and related materials |
JP4258106B2 (ja) | 2000-04-21 | 2009-04-30 | 富士電機デバイステクノロジー株式会社 | 酸化物薄膜素子およびその製造方法 |
US6861130B2 (en) | 2001-11-02 | 2005-03-01 | General Electric Company | Sintered polycrystalline gallium nitride and its production |
JP4279533B2 (ja) | 2002-09-09 | 2009-06-17 | 日鉱金属株式会社 | スパッタリングターゲット及び光記録媒体 |
JP3867161B2 (ja) | 2002-09-20 | 2007-01-10 | 独立行政法人物質・材料研究機構 | 薄膜素子 |
KR100507610B1 (ko) * | 2002-11-15 | 2005-08-10 | 광주과학기술원 | 질화물 반도체 나노상 광전소자 및 그 제조방법 |
EP1712662A4 (en) * | 2003-06-30 | 2009-12-02 | Kenichiro Miyahara | SUBSTRATE FOR THE MANUFACTURE OF THIN FILMS, SUBSTRATE FOR THIN FILMS AND LIGHT EMITTING ELEMENT |
CN101124353B (zh) * | 2004-09-27 | 2011-12-14 | 盖利姆企业私人有限公司 | 生长第(ⅲ)族金属氮化物薄膜的方法和装置、以及第(ⅲ)族金属氮化物薄膜 |
EP1809788A4 (en) * | 2004-09-27 | 2008-05-21 | Gallium Entpr Pty Ltd | METHOD AND APPARATUS FOR GROWING GROUP (III) METAL NITRIDE FILM AND GROUP (III) METAL FILM |
US7772288B2 (en) * | 2004-12-01 | 2010-08-10 | Cornell Research Foundation, Inc. | Group III nitride coatings and methods |
WO2006060660A2 (en) * | 2004-12-01 | 2006-06-08 | Cornell Research Foundation, Inc. | Group iii nitride coatings and methods |
EP1930294A4 (en) * | 2005-08-24 | 2012-12-26 | Mitsubishi Chem Corp | PROCESS FOR PRODUCING GROUP 13 METAL NITRIDE CRYSTAL, METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE, AND SOLUTION AND CASTING USED THEREIN |
US8946674B2 (en) * | 2005-08-31 | 2015-02-03 | University Of Florida Research Foundation, Inc. | Group III-nitrides on Si substrates using a nanostructured interlayer |
JP2007157765A (ja) * | 2005-11-30 | 2007-06-21 | Rohm Co Ltd | 窒化ガリウム半導体発光素子 |
US8643027B2 (en) * | 2005-12-06 | 2014-02-04 | Primet Precision Materials, Inc. | Milled particle compositions and related methods and structures |
JP4187175B2 (ja) * | 2006-03-13 | 2008-11-26 | 国立大学法人東北大学 | 窒化ガリウム系材料の製造方法 |
EP2004882A2 (en) * | 2006-04-07 | 2008-12-24 | The Regents of the University of California | Growing large surface area gallium nitride crystals |
US9045821B2 (en) * | 2010-03-02 | 2015-06-02 | Sumitomo Metal Mining Co., Ltd. | Laminate, method for producing same, and functional element using same |
JP4720949B1 (ja) | 2010-04-09 | 2011-07-13 | 住友金属鉱山株式会社 | Cu−Ga合金粉末の製造方法及びCu−Ga合金粉末、並びにCu−Ga合金スパッタリングターゲットの製造方法及びCu−Ga合金スパッタリングターゲット |
KR101935755B1 (ko) * | 2010-12-20 | 2019-01-04 | 토소가부시키가이샤 | 금속 갈륨 침투 질화갈륨 성형물 및 이의 제조방법 |
CN102226294B (zh) * | 2011-05-12 | 2012-11-21 | 北京工业大学 | 一种优化硅基GaN场发射特性的晶体结构调制方法 |
JP2014091851A (ja) | 2012-11-02 | 2014-05-19 | Tosoh Corp | 窒化ガリウムターゲットならびにその製造方法 |
KR101386007B1 (ko) * | 2012-11-08 | 2014-04-16 | 한국세라믹기술원 | 질화갈륨계 반도체기판의 형성방법 및 질화갈륨계 반도체기판용 기판 구조체 |
JP2014224020A (ja) * | 2013-05-16 | 2014-12-04 | 佐藤 忠重 | GaN自立基板の製造方法 |
TWI793382B (zh) * | 2013-08-08 | 2023-02-21 | 日商三菱化學股份有限公司 | 自立GaN基板、GaN單結晶之製造方法及半導體裝置之製造方法 |
JP2015069913A (ja) | 2013-09-30 | 2015-04-13 | 三菱マテリアル株式会社 | 表面処理されたito導電膜及びその製造方法 |
TWI583456B (zh) | 2013-11-05 | 2017-05-21 | 王正平 | 溝槽型精密下料裝置 |
JP6323658B2 (ja) | 2014-02-12 | 2018-05-16 | 三菱自動車工業株式会社 | 車両用電池システム |
JP6394936B2 (ja) | 2014-02-18 | 2018-09-26 | 株式会社リコー | 画像形成装置、画像形成装置の駆動方法 |
WO2016009577A1 (ja) | 2014-07-18 | 2016-01-21 | キヤノンアネルバ株式会社 | 窒化物半導体層の成膜方法及び半導体装置の製造方法 |
-
2016
- 2016-03-24 CN CN201680015322.0A patent/CN107429383B/zh active Active
- 2016-03-24 EP EP21208680.5A patent/EP3998370B1/en active Active
- 2016-03-24 KR KR1020177026289A patent/KR102679764B1/ko active IP Right Grant
- 2016-03-24 EP EP16772532.4A patent/EP3279367B1/en active Active
- 2016-03-24 WO PCT/JP2016/059341 patent/WO2016158651A1/ja active Application Filing
- 2016-03-24 US US15/562,112 patent/US20180072570A1/en not_active Abandoned
- 2016-03-24 CN CN202010696987.0A patent/CN111826618B/zh active Active
- 2016-03-29 TW TW105109830A patent/TWI668198B/zh active
-
2022
- 2022-02-01 US US17/590,120 patent/US11802049B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006290729A (ja) * | 2003-06-30 | 2006-10-26 | Kenichiro Miyahara | 薄膜接合体 |
JP2012144805A (ja) * | 2010-12-21 | 2012-08-02 | Tosoh Corp | 窒化ガリウム成形物及びその製造方法 |
JP2013129568A (ja) * | 2011-12-21 | 2013-07-04 | Tosoh Corp | 窒化ガリウム粉末ならびにその製造方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018046277A (ja) * | 2016-09-13 | 2018-03-22 | 東ソー株式会社 | 窒化ガリウム系膜ならびにその製造方法 |
JP7031181B2 (ja) | 2016-09-13 | 2022-03-08 | 東ソー株式会社 | 窒化ガリウム系膜ならびにその製造方法 |
WO2018230663A1 (ja) * | 2017-06-15 | 2018-12-20 | 東ソー株式会社 | 窒化ガリウム粒子およびその製造方法 |
JP2019001681A (ja) * | 2017-06-15 | 2019-01-10 | 東ソー株式会社 | 窒化ガリウム粒子およびその製造方法 |
US20210380488A1 (en) * | 2018-10-10 | 2021-12-09 | Tosoh Corporation | Gallium nitride-based sintered body and method for manufacturing same |
JP2021181595A (ja) * | 2020-05-18 | 2021-11-25 | 東京エレクトロン株式会社 | 複合ターゲット、複合ターゲットの製造方法及び窒化物半導体膜の形成方法 |
JP7302791B2 (ja) | 2020-05-18 | 2023-07-04 | 東京エレクトロン株式会社 | 複合ターゲット、複合ターゲットの製造方法及び窒化物半導体膜の形成方法 |
KR20230150361A (ko) | 2021-03-30 | 2023-10-30 | 엔지케이 인슐레이터 엘티디 | 스퍼터링 타겟 |
DE112022000737T5 (de) | 2021-03-30 | 2023-11-16 | Ngk Insulators, Ltd. | Sputtertarget |
WO2023182211A1 (ja) * | 2022-03-25 | 2023-09-28 | 東ソー株式会社 | 窒化ガリウム焼結体及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107429383B (zh) | 2020-07-24 |
KR102679764B1 (ko) | 2024-06-28 |
EP3279367A1 (en) | 2018-02-07 |
US20220153582A1 (en) | 2022-05-19 |
EP3279367B1 (en) | 2021-12-01 |
CN107429383A (zh) | 2017-12-01 |
EP3279367A4 (en) | 2018-10-10 |
CN111826618B (zh) | 2022-11-01 |
KR20170132745A (ko) | 2017-12-04 |
US20180072570A1 (en) | 2018-03-15 |
EP3998370B1 (en) | 2024-07-24 |
US11802049B2 (en) | 2023-10-31 |
TW201700437A (zh) | 2017-01-01 |
EP3998370A1 (en) | 2022-05-18 |
TWI668198B (zh) | 2019-08-11 |
CN111826618A (zh) | 2020-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11802049B2 (en) | Gallium nitride-based sintered compact and method for manufacturing same | |
EP2761642B1 (en) | Ion beam generator and method of manufacturing a composition using said generator | |
JP6947232B2 (ja) | 窒化ガリウム系膜ならびにその製造方法 | |
JP7040561B2 (ja) | 窒化ガリウム系焼結体及びその製造方法 | |
JP7031181B2 (ja) | 窒化ガリウム系膜ならびにその製造方法 | |
JP2024051069A (ja) | 窒化ガリウム系焼結体及びその製造方法 | |
Shervin et al. | Flexible single-crystalline GaN substrate by direct deposition of III-N thin films on polycrystalline metal tape | |
WO2020075661A1 (ja) | 窒化ガリウム系焼結体及びその製造方法 | |
JP7320070B2 (ja) | 下地基板及びその製造方法 | |
JP7500941B2 (ja) | 窒化ガリウム系焼結体及びその製造方法 | |
JP2024040414A (ja) | 窒化ガリウム系焼結体及びその製造方法 | |
JP7556197B2 (ja) | 積層膜及びその製造方法 | |
JP2024145344A (ja) | 積層体、構造体及び半導体デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16772532 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2016772532 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177026289 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15562112 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |