TWI825187B - 氮化物半導體膜之形成方法 - Google Patents

氮化物半導體膜之形成方法 Download PDF

Info

Publication number
TWI825187B
TWI825187B TW108135441A TW108135441A TWI825187B TW I825187 B TWI825187 B TW I825187B TW 108135441 A TW108135441 A TW 108135441A TW 108135441 A TW108135441 A TW 108135441A TW I825187 B TWI825187 B TW I825187B
Authority
TW
Taiwan
Prior art keywords
gallium nitride
target
vacuum chamber
forming
semiconductor film
Prior art date
Application number
TW108135441A
Other languages
English (en)
Other versions
TW202044347A (zh
Inventor
高橋伸明
三浦仁嗣
根石浩司
片山竜二
森勇介
今西正幸
Original Assignee
日商東京威力科創股份有限公司
國立大學法人大阪大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司, 國立大學法人大阪大學 filed Critical 日商東京威力科創股份有限公司
Publication of TW202044347A publication Critical patent/TW202044347A/zh
Application granted granted Critical
Publication of TWI825187B publication Critical patent/TWI825187B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本發明之課題在於提供一種能夠提高平坦性及光學特性之氮化物半導體膜之形成方法。 氮化物半導體膜之形成方法包括:於包含氮氣及氬氣之真空腔室內間歇性地濺射氮化鎵靶之製程、及於真空腔室內使自靶飛散之氮化鎵之濺射粒子沈積於溫度為560℃以上650℃以下之對象物上之製程。相對於供給至真空腔室之氮氣之流量與氬氣之流量之和,將氮氣之流量之比率設為6%以上18%以下。

Description

氮化物半導體膜之形成方法
本發明係關於一種氮化物半導體膜之形成方法。
將氮化鎵(GaN)膜用於藍色發光二極體(light emitting diode:LED)等。氮化鎵膜之特性受其結晶性影響較大。一般而言,結晶性良好之氮化鎵膜藉由有機金屬化學氣相沈積(metal organic chemical vapor deposition:MOCVD)法形成。又,亦提出有一種間歇性地濺射靶而形成氮化鎵膜之方法(專利文獻1)。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2008-270749號公報
[發明所欲解決之問題]
本發明提供一種能夠提高平坦性及光學特性之氮化物半導體膜之形成方法。 [解決問題之技術手段]
本發明之一態樣之氮化物半導體膜之形成方法包括:於包含氮氣及氬氣之真空腔室內間歇性地濺射氮化鎵靶之製程、及於上述真空腔室內使自上述靶飛散之氮化鎵之濺射粒子沈積於溫度為560℃以上650℃以下之對象物上之製程。相對於供給至上述真空腔室之氮氣之流量與氬氣之流量之和,將氮氣之流量之比率設為6%以上18%以下。 [發明之效果]
根據本發明能夠提高平坦性及光學特性。
以下,一邊參照隨附圖式,一邊對實施形態進行具體地說明。再者,於本說明書及圖式中,存在對實質上具有同一之功能構成之構成要素藉由標註同一之符號省略重複之說明之情況。
氮化鎵膜之平坦性例如能夠利用表面粗糙度RMS(均平方根粗糙度,root-mean-square roughness)進行評價,表面粗糙度RMS較佳為0.5 nm以下。又,氮化鎵膜之光學特性,例如能夠藉由帶邊波長相對於黃帶波段之光致發光強度比進行評價,光致發光強度比較佳為10以上。氮化鎵膜之光學特性特別受到氮化鎵膜自身之結晶性之影響。又,雜質濃度越低,則越能夠獲得更優異之光學特性。具備此種特性之氮化鎵膜可藉由MOCVD法形成,但在藉由MOCVD法之形成方法中,存在運轉成本較高,環境負荷較大等問題,故而較佳為利用其他方法形成具備良好特性之氮化鎵膜。根據以下說明之本發明之實施形態,能夠不依賴MOCVD法而形成具備上述特性之氮化鎵膜。
此處,對適合於實施形態之氮化鎵膜之形成方法之成膜裝置進行說明。圖1係表示適合於氮化鎵膜之形成之成膜裝置之模式圖。
如圖1所示,於該成膜裝置10中,於真空腔室11內設置有保持晶圓W之晶圓保持器12及安裝有靶T之陰極13。於晶圓保持器12與陰極13之間設置有可開閉之擋閘16。作為真空腔室11,例如較佳為使用能夠實現於650℃下10-7 Pa以下之高真空之腔室。對於真空腔室11,能夠使用用於藉由分子束磊晶(molecular beam epitaxy:MBE)法成膜之腔室。晶圓保持器12內置有加熱器14。晶圓保持器12之上表面與陰極13之下表面相互對向。因此,保持於晶圓保持器12之晶圓W之上表面與安裝於陰極13之靶T之下表面相互對向。於晶圓保持器12與陰極13之間連接有直流電源15。晶圓W為對象物之一例。
於真空腔室11中,安裝有氮氣(N2 )之供給管線21、氬氣(Ar)之供給管線22及排氣管線23。於供給管線21上設置有閥V21,於供給管線22上設置有閥V22,於排氣管線23上連接有泵P。
於成膜裝置10中,設置有加熱器14、直流電源15、閥V21、閥V22及控制泵P之動作之控制部30。控制部30例如由電腦構成,具備中央處理裝置(central processing unit:CPU)及記憶體等記憶媒體。於記憶媒體中儲存有控制成膜裝置10中執行之各種處理之程式。控制部30藉由使記憶於記憶媒體之程式於CPU中執行,控制成膜裝置10之動作。又,控制部30具備輸入介面及輸出介面。控制部30利用輸入介面接收來自外部之信號,利用輸出介面向外部發送信號。
上述程式可為記憶於可藉由電腦讀取之記憶媒體之程式,亦可為自該記憶媒體安裝至控制部30之記憶媒體之程式。作為可藉由電腦讀取之記憶媒體,例如可列舉硬碟(hard disk:HD)、軟碟(flexible disk:FD)、光碟(optical disk:OD)、磁光碟(magneto-optical disk:MO)、固態磁碟機(solid state drive:SSD)、記憶卡等。再者,程式可經由網際網路自伺服器下載,安裝至控制部30之記憶媒體。
其次,對使用了成膜裝置10之實施形態之氮化鎵膜之形成方法進行說明。圖2係表示實施形態之氮化鎵膜之形成方法之流程圖。圖3係表示實施形態之氮化鎵膜之形成方法中之溫度變化之圖。
實施形態之氮化鎵膜之形成方法包括:將晶圓W搬入至真空腔室11內之製程(步驟S101)、加熱晶圓W之製程(步驟S102)、及進行真空腔室11內之清洗之製程(步驟S103)。實施形態之氮化鎵膜之形成方法進而包括:進行預濺射處理之製程(步驟S104)、進行濺射處理之製程(步驟S105)、冷卻晶圓W之製程(步驟S106)、及將晶圓W自真空腔室11搬出之製程(步驟S107)。以下,對各種製程進行具體地說明。
於步驟S101前之待機時,控制部30驅動泵P,使真空腔室11內為高真空。例如,使真空腔室11內之壓力為10-7 Pa以下。並且,於步驟S101中,將晶圓W搬入至真空腔室11內,使晶圓W保持於晶圓保持器12。此時,亦可藉由加熱器14將晶圓保持器12之溫度預加熱至例如180℃~220℃。再者,較佳為於搬入至真空腔室11前進行晶圓W之超音波洗淨。例如使用丙酮及乙醇進行超音波洗淨,將超音波洗淨之時間設定為5分鐘~10分鐘。
於步驟S102中,向加熱器14供給電流,通過晶圓保持器12加熱晶圓W。將晶圓W之到達溫度例如設為較成膜溫度高50℃之溫度。步驟S102之期間相當於圖3中之期間t1。
於步驟S103中,一邊將晶圓保持器12之溫度維持於較成膜溫度高50℃之溫度,一邊於高真空下對真空腔室11內之構件,尤其是設置於晶圓保持器12附近之構件進行清洗。將清洗時間例如設為5分鐘~15分鐘。步驟S103之期間相當於圖3中之期間t2。
於步驟S104中,進行預濺射處理。具體而言,將晶圓W之溫度下降至成膜溫度,在擋閘16已關閉之狀態下,調整閥V21及V22之開度,一邊將氮氣及氬氣供給至真空腔室11內,一邊自直流電源15向晶圓保持器12與陰極13之間施加直流電壓。於預濺射處理中,自靶T飛散出氮化鎵之濺射粒子,因擋閘16關閉,故而濺射粒子不會到達晶圓W。於預濺射處理期間,自靶T之濺射粒子之飛散穩定。例如將預濺射處理之時間設為3分鐘~7分鐘。步驟S104之期間相當於圖3中之期間t3。
於步驟S105中,進行濺射處理。具體而言,打開擋閘16,繼續供給氮氣與氬氣、及自直流電源15施加電壓。於濺射處理中,因擋閘16打開,故而自靶T飛散之氮化鎵之濺射粒子沈積於晶圓W上,於晶圓W上生長氮化鎵膜。再者,間歇性地施加直流電壓。即,進行脈衝濺射。關於成膜溫度及氛圍等成膜條件之詳細內容將於下文敍述。步驟S105之期間相當於圖3中之期間t4。
於步驟S106中,停止供給氮氣及氬氣,停止對加熱器14通電以及施加直流電壓,冷卻晶圓W。步驟S106之期間相當於圖3中之期間t5。
於步驟S107中,當晶圓W之溫度達到預先設定之溫度時,將晶圓W自真空腔室11搬出。
如此,能夠於晶圓W上形成氮化鎵膜。
此處,關於成膜條件之詳細內容進行說明。
(成膜溫度:560℃~650℃) 於步驟S105之濺射處理中,將晶圓W之溫度設定為560℃以上650℃以下。若晶圓W之溫度未達560℃,則供給至晶圓W之表面之鎵之蒸發量減少,沈積量相對地增加。由於對過量之鎵氮化不足,因而未氮化之鎵元素殘留,藉由表面擴散而容易於晶圓W上凝聚。若產生鎵之凝聚,則於氮化鎵膜中氮氣相對地不足。即,於氮化鎵膜中容易產生由於氮氣缺乏而引起之點缺陷。結果,結晶性低,無法獲得充分之光學特性。因此,將晶圓W之溫度設為560℃以上,較佳為設為570℃以上。另一方面,若晶圓W之溫度超過650℃,則會促進晶圓W上之氮化鎵之熱分解,氮化鎵膜之表面容易變粗糙。結果,無法獲得充分之平坦性。又,亦存在伴隨氮化鎵之熱分解而使成膜速度降低之情況。因此,將晶圓W之溫度設為650℃以下,較佳為設為630℃以下,更佳為設為610℃以下。
(氮氣之流量之比率:6%~18%) 於步驟S105之濺射處理中,將氮氣之流量相對於氮氣之流量與氬氣之流量之和的比率RN2 設為6%以上18%以下。若比率RN2 未達6%,則與鎵反應之氮氣不足,鎵會凝聚於晶圓W上,於氮化鎵膜中容易產生由於氮氣缺乏而引起之點缺陷。結果,無法獲得充分之結晶性。因此,將比率RN2 設為6%以上,較佳為設為8%以上。另一方面,若比率RN2 超過18%,則鎵於晶圓W之表面上不易擴散,氮化鎵膜之表面容易變粗糙。結果,無法獲得充分之平坦性。因此,將比率RN2 設為18%以下,較佳為設為15%以下。將氮氣之流量與氬氣之流量之和例如設為50 sccm~1000 sccm。
(壓力:1.0 Pa以上) 於步驟S105之濺射處理中,較佳為將真空腔室11內之壓力(濺射壓力)設為1.0 Pa以上。若濺射壓力未達1.0 Pa,則存在自靶T飛散之濺射粒子以過高的速度撞擊晶圓W,令晶圓W產生損傷,產生結晶缺陷之情況。氮化鎵膜中之結晶缺陷越多,則黃帶波段之光致發光強度越高。因此,較佳為將真空腔室11內之壓力設為1.0 Pa以上,更佳為設為5.0 Pa以上,進而較佳為設為10.0 Pa以上。
(輸出密度:2 W/cm2 ~40 W/cm2 ) 於步驟S105之濺射處理中,較佳為將輸出密度設為2 W/cm2 以上40 W/cm2 以下。若輸出密度未達2 W/cm2 ,則存在難以將電漿維持於靶T之周圍之情況。因此,較佳為將輸出密度設為2 W/cm2 以上,更佳為設為5 W/cm2 以上。另一方面,若輸出密度超過40 W/cm2 ,則存在靶T之溫度變得過高之情況。因此,較佳為將輸出密度設為40 W/cm2 以下,更佳為設為15 W/cm2 以下。再者,例如藉由將脈衝接通時間設為300 μ秒以上,將其比率(占空比)設為50%以下,能夠將輸出密度設為2 W/cm2 ~40 W/cm2
(靶T之雜質之濃度) 作為靶T中所含有之雜質,可列舉氧(O)及碳(C)。若該等中之至少一者之濃度超過2.0×1018 原子/cm3 ,則形成之氮化鎵膜中之雜質濃度亦變高,黃帶波段之光致發光強度變高。因此,靶T之氧及碳之濃度分別較佳為2 .0×1018 原子/cm3 以下,更佳為1.0×1017 原子/cm3 以下,進而較佳為1.0×1016 原子/cm3 以下。
作為靶T,例如能夠使用濺射面沿+c軸配向之單晶或多結晶之靶。此種單晶或多結晶之靶例如能夠藉由液相生長法或氣相生長法進行製作。作為液相生長法,可列舉氨熱法及鈉(Na)通量法。作為氣相生長法,可列舉氫化物氣相磊晶(hydride vapor phase epitaxy:HVPE)法及無鹵素氣相磊晶(halogen-free vapor phase epitaxy:HFVPE)法。靶T之密度較佳為99%以上。作為靶T,亦可使用氮化鎵之燒結靶。
(真空腔室11) 作為真空腔室11,較佳為使用於生長溫度下能夠達到1×10-5 Pa以下之真空度之真空腔室。這是為了抑制真空腔室11內產生之雜質混入至氮化鎵膜中。
於真空腔室11內,亦可設置有用於安裝對氮化鎵膜賦予導電型之物質之靶之陰極。作為對氮化鎵膜賦予導電型之物質,可列舉鎂(Mg)及矽(Si)。藉由添加鎂能夠形成p型GaN膜,藉由添加矽能夠形成n型GaN膜。
於真空腔室11內,亦可設置有用於安裝使氮化鎵膜為混晶之物質之靶之陰極。作為使氮化鎵膜為混晶之物質,可列舉鋁(Al)及銦(In)。藉由含有鋁能夠形成AlGaN膜,藉由含有In能夠形成InGaN膜。即,根據本發明所形成之氮化物半導體膜並不限定於氮化鎵膜。GaN膜、AlGaN膜及InGaN膜例如不僅用於LED等光裝置,亦可用於高電子遷移率電晶體(high electron mobility transistor:HEMT)等電子裝置。
如此,於間歇性地濺射氮化鎵靶時,亦可間歇性地濺射混入至成膜之氮化鎵中之物質之靶。鎂、矽、鋁或銦之靶,可為該等物質之單一成分之靶,亦可為氮化物等化合物之靶。
(晶圓W) 作為晶圓W,較佳為使用於氮化鎵膜形成之面具備單晶之氮化鎵層之晶圓。這是為了形成結晶性良好之氮化鎵膜。作為此種晶圓W,例如能夠使用氮化鎵之單晶基板、附氮化鎵單晶模板之藍寶石基板或附氮化鎵單晶模板之矽基板。
其次,對具體的成膜條件與形成之氮化鎵膜之特性之關係進行說明。表1中示出成膜條件與氮化鎵膜之特性之關係。再者,關於表1中之氮化鎵膜之特性,於平坦性之評價中,將表面粗糙度RMS為0.5 nm以下之氮化鎵膜記為A,將表面粗糙度RMS超過0.5 nm且1.0 nm以下之氮化鎵膜記為B,將表面粗糙度RMS超過1.0 nm之氮化鎵膜記為C。於光學特性之評價中,將帶邊波長相對於黃帶波段之光致發光強度比為50以上之氮化鎵膜記為A,將帶邊波長相對於黃帶波段之光致發光強度比為10以上且未達50之氮化鎵膜記為B,將帶邊波長相對於黃帶波段之光致發光強度比未達10之氮化鎵膜記為C。於雜質之評價中,將氧濃度及碳濃度之任一者均為1.0×1018 原子/cm3 以下之氮化鎵膜記為A ,將氧濃度或碳濃度或該等兩者超過1.0×1018 原子/cm3 之氮化鎵膜記為B。
[表1]
條件 No. 成膜溫度 (℃) 比率RN2 (%) 氮化鎵靶 氮化鎵膜之特性
種類 氧濃度 (原子/cm3 ) 碳濃度 (原子/cm3 ) 平坦性 光學特性 雜質
1 500 10 燒結 <1.0 wt% 未測定 C C 未測定
2 550 10 燒結 <1.0 wt% 未測定 C C 未測定
3 560 10 燒結 <1.0 wt% 未測定 B B 未測定
4 570 10 燒結 <1.0 wt% 未測定 A B 未測定
5 580 10 燒結 <1.0 wt% 未測定 A B 未測定
6 600 10 燒結 <1.0 wt% 未測定 A B B
7 610 10 燒結 <1.0 wt% 未測定 A B B
8 620 10 燒結 <1.0 wt% 未測定 B B 未測定
9 630 10 燒結 <1.0 wt% 未測定 B B 未測定
10 640 10 燒結 <1.0 wt% 未測定 B 未測定 未測定
11 650 10 燒結 <1.0 wt% 未測定 B 未測定 未測定
12 660 10 燒結 <1.0 wt% 未測定 C 未測定 未測定
13 680 10 燒結 <1.0 wt% 未測定 C 未測定 未測定
14 700 10 燒結 <1.0 wt% 未測定 C C 未測定
15 600 5 燒結 <1.0 wt% 未測定 B C 未測定
16 600 6 燒結 <1.0 wt% 未測定 B B 未測定
17 600 7.5 燒結 <1.0 wt% 未測定 B B 未測定
18 600 8 燒結 <1.0 wt% 未測定 A A 未測定
19 600 10 單晶 <1.0×1019 <1.0×1016 A A A
20 600 12 單晶 <1.0×1019 <1.0×1016 A A 未測定
21 600 15 燒結 <1.0 wt% 未測定 A B 未測定
22 600 18 燒結 <1.0 wt% 未測定 B B 未測定
23 600 20 燒結 <1.0 wt% 未測定 C B 未測定
如表1所示,於條件No.1~No.2中,因成膜溫度未達下限值,故而產生氮氣缺乏,結晶性低,無法獲得充分之光學特性。於條件No.3~No.11中,因於適當之溫度條件下進行成膜,故而可獲得良好之平坦性及光學特性。於條件No.4~No.7中,因成膜溫度處於較佳之範圍內,故而可獲得特別優異之平坦性及光學特性。於條件No.12~No.14中,因成膜溫度超過上限值,故而促進氮化鎵之熱分解,無法獲得充分之平坦性。
於條件No.15中,因氮氣之流量之比率RN2 未達下限值,故而產生氮氣缺乏,結晶性低,無法獲得充分之光學特性。於條件No.16~No.22中,因於適當之條件下進行成膜,故而可獲得良好之平坦性及光學特性。於條件No.18~No.21下,因比率RN2 處於較佳之範圍內,故而可獲得特別優異之平坦性及光學特性。於條件No.23中,因比率RN2 超過上限值,故而鎵於晶圓W之表面上不易擴散,無法獲得充分之平坦性。
於條件No.19~No.20下,因靶之氧濃度及碳濃度處於較佳之範圍內,故而可獲得特別優異之平坦性及光學特性。
以上,對較佳之實施形態等進行了詳細說明,但並不限制於上述實施形態等,於不脫離專利申請範圍中記載之範圍之情況下,可對上述實施形態等施加各種變化及置換。
10:成膜裝置 11:真空腔室 12:晶圓保持器 13:陰極 14:加熱器 15:直流電源 16:擋閘 21、22:供給管線 23:排氣管線 30:控制部 P:泵 T:靶 V21、V22:閥 W:晶圓
圖1係表示適合於氮化鎵膜之形成之成膜裝置之模式圖。 圖2係表示實施形態之氮化鎵膜之形成方法之流程圖。 圖3係表示實施形態之氮化鎵膜之形成方法中之溫度變化之圖。
10:成膜裝置
11:真空腔室
12:晶圓保持器
13:陰極
14:加熱器
15:直流電源
16:擋閘
21、22:供給管線
23:排氣管線
30:控制部
P:泵
T:靶
V21、V22:閥
W:晶圓

Claims (8)

  1. 一種氮化物半導體膜之形成方法,其包括:於包含氮氣及氬氣之真空腔室內間歇性地濺射氮化鎵靶之製程、及於上述真空腔室內使自上述靶飛散之氮化鎵之濺射粒子沈積於溫度為560℃以上650℃以下之對象物上之製程,相對於供給至上述真空腔室之氮氣之流量與氬氣之流量之和,將氮氣之流量之比率設為6%以上18%以下,且將上述間歇性地濺射氮化鎵靶之製程中之輸出密度設為2W/cm2以上40W/cm2以下。
  2. 如請求項1之氮化物半導體膜之形成方法,其中將使上述濺射粒子沈積時之上述對象物之溫度設為570℃以上630℃以下。
  3. 如請求項1或2之氮化物半導體膜之形成方法,其中相對於供給至上述真空腔室之氮氣之流量與氬氣之流量之和,將氮氣之流量之比率設為8%以上15%以下。
  4. 如請求項1或2之氮化物半導體膜之形成方法,其中將上述真空腔室內之壓力設為1.0Pa以上。
  5. 如請求項1或2之氮化物半導體膜之形成方法,其中上述靶之氧及碳之濃度分別為1×1017原子/cm3以下。
  6. 如請求項1或2之氮化物半導體膜之形成方法,其中上述靶之與上述對象物對向之面沿+c軸配向。
  7. 如請求項1或2之氮化物半導體膜之形成方法,其中上述對象物之與上述靶對向之面具有單晶之氮化鎵層。
  8. 如請求項1或2之氮化物半導體膜之形成方法,其中除間歇性地濺射上述氮化鎵靶之製程以外,還包括間歇性地濺射混入至上述氮化鎵中之物質之靶之製程。
TW108135441A 2018-10-09 2019-10-01 氮化物半導體膜之形成方法 TWI825187B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-191242 2018-10-09
JP2018191242 2018-10-09

Publications (2)

Publication Number Publication Date
TW202044347A TW202044347A (zh) 2020-12-01
TWI825187B true TWI825187B (zh) 2023-12-11

Family

ID=70164538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108135441A TWI825187B (zh) 2018-10-09 2019-10-01 氮化物半導體膜之形成方法

Country Status (6)

Country Link
US (1) US12094710B2 (zh)
JP (1) JP7029715B2 (zh)
KR (1) KR102627680B1 (zh)
CN (1) CN112771647B (zh)
TW (1) TWI825187B (zh)
WO (1) WO2020075599A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116348631A (zh) * 2020-10-15 2023-06-27 日本碍子株式会社 13族元素氮化物结晶层的培养方法、氮化物半导体铸锭以及溅射靶
JPWO2022176422A1 (zh) * 2021-02-19 2022-08-25
JP7185809B1 (ja) * 2021-03-30 2022-12-07 日本碍子株式会社 スパッタリングターゲット
WO2023074374A1 (ja) * 2021-10-28 2023-05-04 株式会社ジャパンディスプレイ 積層構造体及び窒化ガリウム系半導体デバイス
WO2024024267A1 (ja) * 2022-07-25 2024-02-01 株式会社ジャパンディスプレイ 成膜装置および窒化ガリウム膜の成膜方法
WO2024024268A1 (ja) * 2022-07-25 2024-02-01 株式会社ジャパンディスプレイ 成膜装置
WO2024209900A1 (ja) * 2023-04-04 2024-10-10 株式会社ジャパンディスプレイ 成膜装置および窒化ガリウム膜の成膜方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035805A (ja) * 1999-07-19 2001-02-09 Sony Corp Iii族ナイトライド化合物半導体薄膜およびその形成方法、並びに半導体素子およびその製造方法
JP2008270749A (ja) * 2007-03-26 2008-11-06 Kanagawa Acad Of Sci & Technol エピタキシャル薄膜の形成方法、半導体基板の製造方法、半導体素子、発光素子及び電子素子

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100343949B1 (ko) * 2000-01-26 2002-07-24 한국과학기술연구원 상온에서 작동하는 자외선 수광, 발광소자용 ZnO박막의 제조 방법 및 그를 위한 장치
US7378356B2 (en) * 2002-03-16 2008-05-27 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
JP2008047762A (ja) * 2006-08-18 2008-02-28 Showa Denko Kk Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ
JP4191227B2 (ja) * 2007-02-21 2008-12-03 昭和電工株式会社 Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子並びにランプ
JP5272390B2 (ja) * 2007-11-29 2013-08-28 豊田合成株式会社 Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
JP2009277882A (ja) * 2008-05-14 2009-11-26 Showa Denko Kk Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子、並びにランプ
CN102326257A (zh) * 2009-02-20 2012-01-18 国立大学法人京都工芸纤维大学 光吸收材料及使用该光吸收材料的光电转换元件
JP5665463B2 (ja) * 2010-09-30 2015-02-04 Dowaエレクトロニクス株式会社 Iii族窒化物半導体素子製造用基板およびiii族窒化物半導体自立基板またはiii族窒化物半導体素子の製造方法
JP5731225B2 (ja) * 2011-02-18 2015-06-10 株式会社アルバック 窒化ガリウム膜の形成方法、及び窒化ガリウム膜の形成装置
JP5718709B2 (ja) * 2011-04-12 2015-05-13 株式会社アルバック 半導体層形成装置、半導体層製造方法
JP5705656B2 (ja) * 2011-05-31 2015-04-22 株式会社アルバック 窒化ガリウム柱状構造の形成方法、及び窒化ガリウム柱状構造の形成装置
JP2013134875A (ja) * 2011-12-26 2013-07-08 Stanley Electric Co Ltd 白熱電球、および、フィラメント
KR101687595B1 (ko) * 2014-07-18 2016-12-19 캐논 아네르바 가부시키가이샤 질화물 반도체층의 성막 방법 및 반도체 장치의 제조 방법
KR102679764B1 (ko) * 2015-03-30 2024-06-28 도소 가부시키가이샤 질화갈륨계 소결체 및 그 제조 방법
US20170294548A1 (en) * 2016-04-12 2017-10-12 Kyocera Corporation Insulation paste, method for manufacturing solar cell element and solar cell element
JP6861522B2 (ja) * 2017-01-23 2021-04-21 株式会社サイオクス 多結晶iii族窒化物ターゲットおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035805A (ja) * 1999-07-19 2001-02-09 Sony Corp Iii族ナイトライド化合物半導体薄膜およびその形成方法、並びに半導体素子およびその製造方法
JP2008270749A (ja) * 2007-03-26 2008-11-06 Kanagawa Acad Of Sci & Technol エピタキシャル薄膜の形成方法、半導体基板の製造方法、半導体素子、発光素子及び電子素子

Also Published As

Publication number Publication date
JP7029715B2 (ja) 2022-03-04
US20210217618A1 (en) 2021-07-15
TW202044347A (zh) 2020-12-01
CN112771647A (zh) 2021-05-07
WO2020075599A1 (ja) 2020-04-16
KR102627680B1 (ko) 2024-01-23
KR20210082458A (ko) 2021-07-05
CN112771647B (zh) 2024-09-27
JPWO2020075599A1 (ja) 2021-09-02
US12094710B2 (en) 2024-09-17

Similar Documents

Publication Publication Date Title
TWI825187B (zh) 氮化物半導體膜之形成方法
US11081623B2 (en) Oxygen controlled PVD AlN buffer for GaN-based optoelectronic and electronic devices
TWI575772B (zh) 沉積iii族氮化物半導體薄膜的方法
JP2012525708A (ja) Led製造のためのmocvdシングルチャンバスプリットプロセス
JP5668339B2 (ja) 半導体装置の製造方法
JP2015529009A (ja) 物理的気相成長法による窒化アルミニウムの緩衝及び活性層
WO2017215146A1 (zh) 形成薄膜的方法以及形成氮化铝薄膜的方法
JP6019129B2 (ja) Iii族窒化物基板の処理方法およびエピタキシャル基板の製造方法
TWI308365B (zh)
JP2004111848A (ja) サファイア基板とそれを用いたエピタキシャル基板およびその製造方法
JP3353527B2 (ja) 窒化ガリウム系半導体の製造方法
JP5814131B2 (ja) 構造体、及び半導体基板の製造方法
WO2014033649A1 (en) Method for depositing an aluminium nitride layer
JP2000049378A (ja) 発光素子用窒化物半導体及びその製造方法
JP7302791B2 (ja) 複合ターゲット、複合ターゲットの製造方法及び窒化物半導体膜の形成方法
Balakrishnan et al. Study on the initial stages of heteroepitaxial growth of hexagonal GaN on sapphire by plasma assisted MBE
US11600496B2 (en) In-situ p-type activation of III-nitride films grown via metal organic chemical vapor deposition
JP2004099405A (ja) 窒化物半導体積層体及びその成長方法
Kim et al. Excimer laser annealing with a line beam for improvement of structural and optical properties of polycrystalline GaN
JP4009043B2 (ja) p型III族窒化物半導体の製造方法
TW202330966A (zh) 濺鍍裝置及成膜方法
JP4873705B2 (ja) 窒化インジウム(InN)あるいは高インジウム組成を有する窒化インジウムガリウム(InGaN)エピタキシャル薄膜の形成方法
JP2006128536A (ja) 半導体エピタキシャルウェハ及びそれから切り出した半導体素子
JP2005260093A (ja) 窒化ガリウムのヘテロエピタキシャル成長方法
KR100626868B1 (ko) 저 전위밀도를 가지는 질화갈륨(GaN)막 및 그 형성방법