WO2017215146A1 - 形成薄膜的方法以及形成氮化铝薄膜的方法 - Google Patents

形成薄膜的方法以及形成氮化铝薄膜的方法 Download PDF

Info

Publication number
WO2017215146A1
WO2017215146A1 PCT/CN2016/100297 CN2016100297W WO2017215146A1 WO 2017215146 A1 WO2017215146 A1 WO 2017215146A1 CN 2016100297 W CN2016100297 W CN 2016100297W WO 2017215146 A1 WO2017215146 A1 WO 2017215146A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering
target
substrate
aluminum
main
Prior art date
Application number
PCT/CN2016/100297
Other languages
English (en)
French (fr)
Inventor
王军
董博宇
郭冰亮
耿玉洁
马怀超
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to US15/547,559 priority Critical patent/US10640862B2/en
Priority to MYPI2018002524A priority patent/MY184359A/en
Priority to KR1020177035950A priority patent/KR102010168B1/ko
Priority to SG11201810601PA priority patent/SG11201810601PA/en
Publication of WO2017215146A1 publication Critical patent/WO2017215146A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass

Definitions

  • the present invention relates to a semiconductor process, and more particularly to a method of forming a thin film and a method of forming an aluminum nitride thin film.
  • Some embodiments of the present invention provide a method of forming a film comprising the following steps. First, the substrate is placed on the carrier base. Then, the first pre-sputtering is performed using the set target. After the first pre-sputtering, a second pre-sputtering is performed using the target. The masking disk is located between the target and the carrier base during the first pre-sputtering and the second pre-sputtering. After the second pre-sputtering, The masking disk is removed, and the substrate is subjected to main sputtering using a target to form a thin film on the substrate, wherein the first pre-sputtering and the second pre-sputtering have different process parameters.
  • the masking disc is removed, and the substrate is subjected to main sputtering using an aluminum-containing target to form an aluminum nitride film on the substrate, wherein the first pre-sputtering is different from the second pre-sputtering Process parameters.
  • FIG. 1 is a schematic flow chart of a method of forming a thin film according to some embodiments of the present invention
  • 2B is a schematic view showing a method of forming a film according to some embodiments of the present invention.
  • 2C is a schematic view of a method of forming a film according to some embodiments of the present invention.
  • FIG. 3 is a schematic diagram of an electronic device according to some embodiments of the present invention.
  • two pre-sputtering is performed using the same target before the main sputtering, so that the condition of the target can be stabilized before the main sputtering.
  • the pre-sputtering twice has different process parameters, so it can compensate for the negative influence on the film thickness uniformity when the operation time of the same sputtering process parameter is long, so the film formation quality can be improved and the film thickness can be improved. Sex.
  • the aluminum nitride film formed by the method of the invention has better quality, and the epitaxial growth quality of the gallium nitride layer formed on the aluminum nitride film is also improved.
  • the aluminum nitride film and the gallium nitride layer can be applied to an electronic device such as a light emitting diode device, and a gallium nitride layer with improved film quality can be used to enhance the electrical performance of the electronic device, and the aluminum nitride film with improved thickness uniformity is also used. It is positive for the stability of the mass production products of electronic devices.
  • FIG. 1 is a schematic flow diagram of a method of forming a thin film according to some embodiments of the present invention.
  • some embodiments of the present invention provide a method 100 of forming a thin film, and the method 100 includes a plurality of steps.
  • a sputtering process SR is performed, and the sputtering process SR includes the following steps 110, 121, 122, 130, and 140.
  • the substrate is placed on a carrier base.
  • a first pre-sputter is performed using the set target.
  • a second pre-sputter is performed using the target after the first pre-sputtering.
  • the masking disk is removed and the substrate is primarily sputtered with the target to form a film on the substrate.
  • the substrate on which the thin film is formed is carried out.
  • each batch of the substrate is processed by a sputtering process SR to form a film on the surface of each substrate of the batch, wherein the so-called batch of substrates refers to each sputtering process. All of the substrates processed may be one substrate or a plurality of substrates.
  • FIG. 2A-2C are schematic views of a method of forming a thin film according to some embodiments of the present invention.
  • some embodiments of the present invention provide a method 100 of forming a thin film, and the method 100 includes a plurality of steps.
  • a sputtering apparatus 20 is provided.
  • the sputtering apparatus 20 includes a chamber 21, a carrier base 22, and a shielding disk 24.
  • the sputtering apparatus 20 may further include a shielding disk magazine 25, a heat insulating ring 26, a cover ring 27, a lower end cover 28A, an upper end cover 28B, and a magnetron 29 that store the shielding disk 24, and the shielding disk library 25 is worn.
  • the inner wall 21S of the chamber 21 communicates with the internal environment of the chamber 21, but is not limited thereto. In other embodiments of the invention, other desirable components may also be provided within and/or outside of the sputtering apparatus 20 as desired.
  • the sputtering apparatus 20 may include a magnetron sputtering apparatus such as a radio frequency magnetron sputtering apparatus, a reactive magnetron sputtering apparatus, or the like to increase the deposition rate and uniformity of the sputtering film formation, but Not limited to this. Then, a sputtering process SR is performed, and the sputtering process SR includes steps 110, 121, 122, 130, and 140.
  • the substrate 31 is loaded into the chamber 21 and placed on the carrier base 22.
  • one or more substrates 31 may be first placed on the tray 23, and the tray 23 on which the substrate 31 is placed is loaded into the chamber 21 by, for example, a robot arm and placed on the carrier base 22.
  • the substrate 31 may also be placed directly on the carrier base 22 without the tray 23.
  • the substrate 31 may be a substrate formed of a sapphire substrate, silicon carbide (SiC), or other suitable material, such as a semiconductor substrate, a silicon-on-insulator (SOI) substrate, a glass substrate, or a ceramic substrate, and the tray 23 It can be made of, for example, silicon carbide (SiC) or molybdenum, but is not limited thereto.
  • SiC silicon carbide
  • SOI silicon-on-insulator
  • the first pre-sputtering is performed using the target T disposed in the chamber 21, and the shielding disk 24 is placed on the target T and the carrier during the first pre-sputtering.
  • the masking disk 24 may first be placed in the masking disk magazine 25 when the first pre-sputtering is not performed, and the masking disk 24 is moved from the masking disk library 25 to the chamber before the first pre-sputtering is performed.
  • the first pre-sputtering is performed between the target T and the substrate 31, and the shielding disk 24 is also located between the target T and the substrate 31 when the first pre-sputtering is performed.
  • a second pre-sputtering is performed with the target T, while the second pre-sputtering masking disk 24 is positioned between the target T and the carrier base 22.
  • the masking disk 24 is also located between the target T and the substrate 31 during the second pre-sputtering, thereby preventing the material of the target T from being formed on the substrate 31 by the second pre-sputtering.
  • the masking disk 24 can be viewed as a baffle to block the first pre-sputtering and the second pre-sputtering to prevent the substrate 31 from being affected.
  • the first pre-sputtering and the second pre-sputtering are performed after the substrate 31 is loaded into the chamber 21, and the shielding disk 24 is located at the target T when the first pre-sputtering and the second pre-sputtering are performed. Between the substrate 31 and the target T and the carrier base 22, but not limited thereto. In some other embodiments, the first pre-sputtering and the second pre-sputtering described above may also be performed before the substrate 31 is loaded into the chamber 21. It is worth noting that the first pre-sputtering and the second pre-sputtering have different process parameters, thereby stabilizing the condition in the chamber 21 and the condition of the target T, and compensating for the operation time with the same sputtering process parameters. The negative effect on the film thickness uniformity over a long period of time can achieve effects such as improved film formation quality and uniformity of film thickness.
  • the gas that is introduced into the chamber 21 during the first pre-sputtering may be different from the gas that is introduced into the chamber 21 when the second pre-sputtering is performed, but is not limited thereto.
  • other process parameters such as the power level of the target T loaded with power may be adjusted as needed so that the first pre-sputtering and the second pre-sputtering have different process parameters.
  • the gas that is introduced into the chamber 21 during the second pre-sputtering may be different from the gas that is introduced into the chamber 21 during the first pre-sputtering, but is introduced into the chamber 21 during the second pre-sputtering.
  • the gas may be the same as the gas that is introduced into the chamber 21 during the subsequent main sputtering, but is not limited thereto.
  • the sputtering power applied to the target T when performing the first pre-sputtering may be different from the sputtering power applied to the target T when the second pre-sputtering is performed, for example, when the second pre-sputtering is performed.
  • the sputtering power of the target T loading may be less than the sputtering power applied to the target T when the first pre-sputtering is performed, but is not limited thereto.
  • the target T is not charged after the first pre-sputtering and before the second pre-sputtering.
  • the source that is to say after the first pre-sputtering and before the second pre-sputtering, is preferably in a state of broken glow (ie, no radiance in the chamber 21), thereby ensuring the first pre-sputtering
  • the second pre-sputtering process state but not limited thereto.
  • the first pre-sputtering and the second pre-sputtering may also be continuously performed in a continuous glow manner as needed.
  • the masking disk 24 is removed and the substrate 31 is subjected to main sputtering by the target T to form a thin film on the substrate 31.
  • the process parameters of the main sputtering and the first pre-sputtering and/or the second pre-sputtering are at least partially identical, so that the condition in the chamber 21 tends to stabilize before the main sputtering is performed, but this is not limit.
  • the sputtering power applied to the target T when performing the first pre-sputtering may be the same as the sputtering power applied to the target T when performing the main sputtering, and the second pre-sputtering
  • the gas that is introduced into the chamber 21 may be the same as the gas that is introduced into the chamber 21 during the main sputtering, but is not limited thereto.
  • the method 100 of forming a film can be used to form a non-metallic film, a metal film, or a metal compound film.
  • the target T may be an aluminum-containing target such as a pure aluminum target or an aluminum nitride target, and thus, the above method 100 can be regarded as a method of forming an aluminum nitride film.
  • the first pre-sputtering and the first use of the aluminum-containing target (that is, the target T) disposed in the chamber 21 are performed.
  • a second pre-sputtering (such as the condition shown in FIG.
  • the shielding disk 24 is located between the aluminum-containing target (ie, the target T) and the substrate 31 when the first pre-sputtering and the second pre-sputtering are performed; After the second pre-sputtering, the masking disk 24 is removed and the substrate 31 is subjected to main sputtering using an aluminum-containing target (ie, the target T) to form an aluminum nitride film on the substrate (for example, FIG. 2C). The status shown).
  • the above-described main sputtering may include introducing a nitrogen-containing gas, an oxygen-containing gas, and an inert gas such as argon (Ar) into the chamber 21, and causing ions generated by the inert gas.
  • Ar argon
  • the aluminum-containing target that is, the target T
  • the aluminum nitride film includes oxygen-doped nitriding Aluminum film.
  • the flow rate of the nitrogen-containing gas such as nitrogen may be between 30 and 300 standard cubic centimeter per minute (sccm), and preferably may be between 100 sccm and Between 220 sccm; the flow rate of the inert gas such as argon may be between 15 sccm and 100 sccm, and preferably may be between 20 sccm and 70 sccm; the flow rate of the oxygen-containing gas such as oxygen may be between 0.5 sccm It is between 10 sccm, and preferably may be between 0.5 sccm and 5 sccm, but is not limited thereto.
  • sccm standard cubic centimeter per minute
  • the sputtering power applied to the target T may include a pulsed DC power source having a power range of 2,500 watts to 4,000 watts, and the power range may preferably be between 2,800 watts and 3,500 watts, but Not limited to this.
  • the first pre-sputtering may also include introducing a nitrogen-containing gas and an inert gas such as argon into the chamber 21 without introducing an oxygen-containing gas, and causing ions generated by the inert gas to impinge on the aluminum-containing target (That is, the target T), thereby achieving the effect of cleaning the target T, for example removing at least part of the aluminum nitride formed on the surface of the target T due to the prior process.
  • a nitrogen-containing gas and an inert gas such as argon
  • the flow rate of the nitrogen-containing gas such as nitrogen may be between 30 sccm and 200 sccm, and preferably may be between 50 sccm and 150 sccm; and an inert gas such as argon is introduced.
  • the flow rate may range from 15 sccm to 100 sccm, and preferably may range from 20 sccm to 70 sccm, but is not limited thereto.
  • the sputtering power applied to the target T may be between 2,500 watts and 4,000 watts, and preferably between 2,800 watts and 3,500 watts, but not limit.
  • the second pre-sputtering may include introducing a nitrogen-containing gas, an oxygen-containing gas, and an inert gas such as argon into the chamber 21, and causing ions generated by the inert gas to impinge on the aluminum-containing target (ie, the target).
  • the material T) is used to modify the surface of the target T after the first pre-sputter cleaning so that the surface of the target T is in the state of oxygen-doped aluminum nitride (which may also be regarded as aluminum oxynitride, AlON).
  • the flow rate of the nitrogen-containing gas such as nitrogen may be between 30 sccm and 300 sccm, and preferably may be between 100 sccm and 220 sccm; and an inert gas such as argon is introduced.
  • Flow rate can range from 15sccm to 100sccm And preferably may be between 20 sccm and 70 sccm; the flow rate through the oxygen-containing gas such as oxygen may range from 0.5 sccm to 10 sccm, and preferably may range from 0.5 sccm to 5 sccm, but not This is limited to this.
  • the sputtering power applied to the target T may be between 200 watts and 4,000 watts, and preferably may be between 500 watts and 1,500 watts, but not limit.
  • the power supply to the target T may be stopped after the second pre-sputtering and before the main sputtering, that is, the target T may not be loaded after the second pre-sputtering and before the main sputtering,
  • the method 100 described above may further include performing main sputtering (the condition shown in FIG. 2C) after moving the substrate 31 into the process chamber in the chamber 21, and loading the target T with a power source for main sputtering.
  • the target T is not loaded with power after the second pre-sputtering and before moving the substrate 31 to the process site.
  • the substrate 31 on which a thin film (for example, the above-described aluminum nitride film) is formed is removed from the chamber 21, thereby completing the above-described sputtering process SR.
  • the one-time sputtering process SR refers to the first pre-loading after the tray 23 on which one or more substrates 31 (ie, a batch of substrates 31) are placed is loaded into the chamber 21. Sputtering, second pre-sputtering, and one or more substrates 31 on the tray 23 (i.e., a batch of substrates 31) are subjected to main sputtering to form a film, and the tray 23 is moved out of the chamber 21.
  • the method of the present invention uses first pre-sputtering and second pre-sputtering with different process parameters to stabilize conditions within the chamber 21 and conditions of the target T, and to compensate for longer operating times with the same sputtering process parameters
  • the effect of improving the film formation quality and improving the film thickness uniformity can be achieved.
  • Table 1 and Table 2 below the effect of improving the film formation quality and improving the film thickness uniformity can be achieved.
  • Table 1 shows the thickness of the aluminum nitride film formed by the method of a comparative example (pre-sputtering and main sputtering have the same process parameters), and each sputtering process is a five-piece substrate placed on the tray (ie, each One batch of substrates contains five substrates) for main sputtering; and Table 2 is for the above method 100 (Pre-sputtering with two different process parameters) to form the thickness of the aluminum nitride film, and each sputtering process is also five substrates placed on the tray (ie, each batch of substrate contains 5 The substrate) is subjected to main sputtering.
  • FIG. 1 , FIG. 2C and FIG. 3 are schematic diagrams of an electronic device according to some embodiments of the present invention.
  • the method 100 of forming an aluminum nitride film can be used to form aluminum nitride in an electronic device 30 such as a gallium nitride based light emitting diode device (GaN-based LED). Buffer layer 32.
  • the electronic device 30 can include a substrate 31, an aluminum nitride buffer layer 32, and a gallium nitride layer 33.
  • the aluminum nitride buffer layer 32 is on the substrate 31, and the gallium nitride layer 33 is on the aluminum nitride buffer layer 32.
  • the aluminum nitride buffer layer 32 may be formed on the substrate 31 by the method 100 described above, and the gallium nitride layer 33 may be formed on the aluminum nitride buffer layer 32. Since the lattice mismatch and the thermal mismatch between the aluminum nitride buffer layer 32 and the substrate 31 (for example, the sapphire substrate) are relatively small, the aluminum nitride buffer layer 32 can be used to improve the subsequent The quality of the gallium nitride layer 33 formed by epitaxial growth on the aluminum nitride buffer layer 32 further enhances the performance of the electronic device 30.
  • the electronic device 30 may include a light emitting diode device or other suitable semiconductor electronic device, and when the electronic device 30 is a gallium nitride based light emitting diode device, the electronic device 30 may further include a gallium nitride layer 33.
  • Quantum The well layer 34 at this time, the gallium nitride layer 33 can be processed to form an N-type doped gallium nitride layer 33N, and the P-type doped gallium nitride layer 33P can be further formed on the quantum well layer 34, but This is limited to this.
  • the oxygen supply can improve the film formation quality of the gallium nitride layer 33 formed on the aluminum nitride buffer layer 32, and the electrical performance of the electronic device 30. Improvements can be made.
  • the method for forming a thin film of the present invention is to achieve stable two pre-sputtering with different process parameters by using the same target in the same chamber to be subjected to main sputtering before main sputtering.
  • the effect of the condition of the chamber and the target and on the other hand, can compensate for the negative influence on the film thickness uniformity when the operation time of the same sputtering process parameter is long, so that the film quality can be improved while improving the film formation quality.
  • the effect of film thickness uniformity is to achieve stable two pre-sputtering with different process parameters by using the same target in the same chamber to be subjected to main sputtering before main sputtering.
  • the method for forming a thin film of the present invention is used for forming an aluminum nitride thin film, since the film forming quality and thickness uniformity of the aluminum nitride thin film are improved, the gallium nitride layer which is subsequently formed on the aluminum nitride thin film is improved. The quality of epitaxial growth has also improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种形成薄膜的方法以及形成氮化铝薄膜的方法,利用主溅射之前先进行两次具有不同工艺参数的预溅射达到稳定靶材状况的效果。形成薄膜的方法可在基板上形成氮化铝薄膜,氮化铝薄膜可用于电子装置中位于基板与氮化镓层之间的缓冲层。

Description

形成薄膜的方法以及形成氮化铝薄膜的方法 技术领域
本发明涉及一种半导体工艺,特别是一种形成薄膜的方法与形成氮化铝薄膜的方法。
背景技术
物理气相沉积(physical vapor deposition,PVD)溅射工艺已广泛用于现今的半导体集成电路、发光二极管(light emitting diode,LED)、太阳能电池及显示器等工艺中。在PVD溅射设备的腔室中,通常是利用高功率直流电源连接至靶材,通过加载功率将腔室内的工作气体激发为等离子体(plasma),并吸引等离子体中的离子轰击靶材,以此使靶材的材料被溅射下来而沉积在晶片等基板上。不同的应用领域通常对溅射功率、溅射速率等工艺参数的要求也有所不同,但基本上对于提升成膜质量、成膜厚度均匀性以及增加设备产能的努力方向却是非常明确的。
发明内容
为解决上述技术问题,本发明提供一种形成薄膜的方法与形成氮化铝薄膜的方法,以溅射方式形成氮化铝薄膜,并在主溅射之前分别进行两次具有不同工艺参数的预溅射,以此达到稳定成膜工艺以及改善成膜厚度均匀性的目的。
本发明的一些实施例提供一种形成薄膜的方法,包括下列步骤。首先,将基板放置于承载底座上。然后,利用设置的靶材进行第一预溅射。在第一预溅射之后,利用靶材进行第二预溅射。在第一预溅射以及第二预溅射进行时,遮蔽盘位于靶材与承载底座之间。在第二预溅射之后, 将遮蔽盘移开,利用靶材对基板进行主溅射,以在基板上形成薄膜,其中第一预溅射与第二预溅射具有不同的工艺参数。
本发明的一些实施例提供一种形成氮化铝薄膜的方法,包括下列步骤。首先,将基板放置于承载底座上。然后,利用含铝靶材进行第一预溅射。在第一预溅射之后,利用含铝靶材进行第二预溅射。在第一预溅射以及第二预溅射进行时,遮蔽盘位于含铝靶材与承载底座之间。在第二预溅射之后,将遮蔽盘移开,利用含铝靶材对基板进行主溅射,以在基板上形成氮化铝薄膜,其中第一预溅射与第二预溅射具有不同的工艺参数。
在本发明的形成薄膜的方法中,在进行主溅射之前先利用同一靶材进行两次工艺参数不同的预溅射,以此可稳定靶材的状况,且可补偿以相同溅射工艺参数操作时间较久时对于成膜厚度均匀性的负面影响,故可达到改善成膜质量以及提升成膜厚度均匀性等效果。
附图说明
图1为本发明一些实施例的形成薄膜的方法的流程示意图;
图2A为本发明一些实施例的形成薄膜的方法示意图;
图2B为本发明一些实施例的形成薄膜的方法示意图;
图2C为本发明一些实施例的形成薄膜的方法示意图;以及
图3为本发明一些实施例的电子装置的示意图。
【符号说明】
20    溅射装置
21    腔室
21S   内壁
22    承载底座
23    托盘
24    遮蔽盘
25    遮蔽盘库
26    隔热环
27    覆盖环
28A   下端盖
28B   上端盖
29    磁控管
30    电子装置
31    基板
32    氮化铝缓冲层
33    氮化镓层
33N   N型掺杂氮化镓层
33P   P型掺杂氮化镓层
34    量子阱层
100   方法
110、121、122、130、140        步骤
SR    溅射流程
T     靶材
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图对本发明提供的形成薄膜的方法以及形成氮化铝薄膜的方法进行说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的形成薄膜的方法中,在进行主溅射之前是先利用同一靶材进行两次预溅射,使靶材的状况可于主溅射之前趋于稳定。此外,由 于两次的预溅射具有不同的工艺参数,故可补偿以相同溅射工艺参数操作时间较久时对于成膜厚度均匀性的负面影响,故可改善成膜质量并提升成膜厚度的均匀性。
本发明的方法所形成的氮化铝薄膜具有较好的质量,对于后续形成于氮化铝薄膜上的氮化镓层的外延生长(Epitaxy)质量亦有所提升。氮化铝薄膜与氮化镓层可应用于电子装置例如发光二极管装置中,成膜质量提升的氮化镓层可用以提升电子装置的电性表现,而厚度均匀性提升的氮化铝薄膜亦对电子装置的量产产品的稳定性有正面的帮助。
图1为本发明一些实施例的形成薄膜的方法的流程示意图,如图1所示,本发明一些实施例提供一种形成薄膜的方法100,而方法100包括多个步骤。首先,进行溅射流程SR,溅射流程SR包括下列的步骤110、步骤121、步骤122、步骤130以及步骤140。在步骤110处,将基板放置于承载底座上。在步骤121处,利用设置的靶材进行第一预溅射。在步骤122处,于第一预溅射之后,利用该靶材进行第二预溅射。在步骤130处,将遮蔽盘移开并利用靶材对基板进行主溅射,以于基板上形成一薄膜。在步骤140处,将形成有薄膜的基板载出。
上述的方法100仅为示例,而本发明并不以方法100的内容为限,其他需要的额外步骤可在方法100之前、之后和/或其中进行,而方法100中所述的步骤也可于其他实施例中被取代、删除或改变其顺序。此外,本说明书中所使用的“步骤”一词并不限于单一动作,此“步骤”一词可包括单一个动作、操作或手法,或者可为由多个动作、操作和/或手法所组成的集合。并且,本发明中,每一次溅射流程SR对一批次的基板进行加工以在该批次的各基板的表面形成薄膜,其中,所谓一批次的基板,指的是每一次溅射流程所处理的全部基板,其可以是一个基板,也可以是多个基板。
图2A至图2C为本发明一些实施例的形成薄膜的方法示意图。如 图2A以及图1所示,本发明一些实施例提供一种形成薄膜的方法100,而方法100包括多个步骤。首先,提供一溅射装置20。溅射装置20包括腔室21、承载底座22以及遮蔽盘24。在一些实施例中,溅射装置20还可包括存放遮蔽盘24的遮蔽盘库25、隔热环26、覆盖环27、下端盖28A、上端盖28B以及磁控管29,遮蔽盘库25穿透腔室21的内壁21S而与腔室21的内部环境连通,但并不以此为限。在本发明的其他实施例中,亦可视需要在溅射装置20之内和/或之外设置其他需要的部件。在一些实施例中,溅射装置20可包括磁控溅射装置例如射频磁控溅射装置、反应式磁控溅射装置等,用以提升溅射成膜的沉积速率以及均匀性,但并不以此为限。然后,进行溅射流程SR,溅射流程SR包括步骤110、步骤121、步骤122、步骤130以及步骤140。在步骤110处,将基板31载入腔室21内,并放置于承载底座22上。在一些实施例中,可先将一个或多个基板31放置于托盘23上,再将放置有基板31的托盘23通过例如机械手臂载入腔室21内并放置于承载底座22上。在另外一些实施例中,也可不通过托盘23而直接将基板31放置于承载底座22上。
在一些实施例中,基板31可为蓝宝石基板、碳化硅(SiC)或其它适合的材质所形成的基板,例如半导体基板、绝缘层覆硅(SOI)基板、玻璃基板或陶瓷基板,而托盘23可由例如碳化硅(SiC)或钼所制成,但并不以此为限。
然后,如图2B以及图1所示,在步骤121处,利用设置于腔室21内的靶材T进行第一预溅射,而第一预溅射时遮蔽盘24位于靶材T与承载底座22之间。在一些实施例中,遮蔽盘24在未进行第一预溅射时可先放置于遮蔽盘库25中,而要进行第一预溅射之前,遮蔽盘24自遮蔽盘库25移至腔室21中并位于靶材T与基板31之间再进行第一预溅射,且在第一预溅射进行时遮蔽盘24也位于靶材T与基板31之间,以 此避免靶材T的材料通过第一预溅射形成在基板31上。接着,在步骤122处,在第一预溅射之后,利用靶材T进行第二预溅射,而第二预溅射时遮蔽盘24位于靶材T与承载底座22之间。在一些实施例中,在第二预溅射进行时,遮蔽盘24也是位于靶材T与基板31之间,以此避免靶材T的材料通过第二预溅射形成在基板31上。换句话说,遮蔽盘24可被视为一挡板,用以阻挡第一预溅射以及第二预溅射以避免基板31被影响。在一些实施例中,第一预溅射与第二预溅射是在基板31加载腔室21内之后进行,且第一预溅射与第二预溅射进行时遮蔽盘24位于靶材T与基板31之间以及靶材T与承载底座22之间,但并不以此限。在一些其他实施例中,亦可于基板31加载腔室21内之前即先进行上述的第一预溅射与第二预溅射。值得说明的是,第一预溅射与第二预溅射具有不同的工艺参数,以此可稳定腔室21内的状况以及靶材T的状况,且可补偿以相同溅射工艺参数操作时间较久时对于成膜厚度均匀性的负面影响,故可达到改善成膜质量以及提升成膜厚度均匀性等效果。
举例来说,进行第一预溅射时通入腔室21内的气体可不同于进行第二预溅射时通入腔室21的气体,但并不以此为限。在本发明的一些其他实施例中,亦可视需要调整其他的工艺参数例如对靶材T加载电源的功率大小而使得第一预溅射与第二预溅射具有不同的工艺参数。举例来说,第二预溅射时通入腔室21内的气体可与第一预溅射时通入腔室21内的气体不同,但第二预溅射时通入腔室21内的气体可与后续进行主溅射时通入腔室21内的气体相同,但并不以此为限。在一些实施例中,进行第一预溅射时对靶材T加载的溅射功率可不同于进行第二预溅射时对靶材T加载的溅射功率,例如第二预溅射时对靶材T加载的溅射功率可小于进行第一预溅射时对靶材T加载的溅射功率,但并不以此为限。此外,当第一预溅射与第二预溅射所通入腔室21中的气体不同时,在第一预溅射之后以及第二预溅射之前优选地是不对靶材T加载电 源,也就是说在第一预溅射之后以及第二预溅射之前腔室21内优选地为断辉(即腔室21内不起辉)的状态,以此确保第一预溅射与第二预溅射各自的工艺状况,但并不以此为限。在一些其他实施例中,亦可视需要以不断辉的方式连续进行第一预溅射与第二预溅射。
之后,如图2C以及图1所示,在步骤130处,将遮蔽盘24移开并利用靶材T对基板31进行主溅射,以于基板31上形成薄膜。主溅射与第一预溅射和/或第二预溅射的工艺参数至少部分相同,以此使腔室21内的状况在主溅射进行之前即趋于稳定,但并不以此为限。举例来说,在一些实施例中,进行第一预溅射时对靶材T加载的溅射功率可与进行主溅射时对靶材T加载的溅射功率相同,而第二预溅射时通入腔室21内的气体可与进行主溅射时通入腔室21内的气体相同,但并不以此为限。
在一些实施例中,形成薄膜的方法100可用以形成非金属薄膜、金属薄膜或金属化合物薄膜。举例来说,当要在基板31上形成的薄膜为氮化铝(AlN)时,靶材T可为含铝的靶材,例如纯铝靶材或氮化铝靶材,这样,上述的方法100就可视为形成氮化铝薄膜的方法。
当方法100是用以形成氮化铝薄膜时,在基板31载入腔室21之后,利用设置于腔室21内的含铝靶材(也就是靶材T)进行第一预溅射与第二预溅射(例如图2B所示的状况),其中在第一预溅射与第二预溅射进行时遮蔽盘24位于含铝靶材(也就是靶材T)与基板31之间;而在第二预溅射之后,将遮蔽盘24移开并利用含铝靶材(也就是靶材T)对基板31进行主溅射,以于基板上形成氮化铝薄膜(例如图2C所示的状况)。此外,在形成氮化铝薄膜时,上述的主溅射可包括在腔室21内通入含氮气体、含氧气体以及惰性气体例如氩(argon,Ar),并使由惰性气体产生的离子(例如Ar离子)撞击含铝靶材(也就是靶材T),以于基板31上形成氮化铝薄膜,而此氮化铝薄膜则包括氧掺入的氮化 铝薄膜。举例来说,在主溅射时,通入含氮气体例如氮气的流量范围可介于30至300每分钟标准毫升(standard cubic centimeter per minute,sccm)之间,且优选地可介于100sccm至220sccm之间;通入惰性气体例如氩气的流量范围可介于15sccm至100sccm之间,且优选地可介于20sccm至70sccm之间;通入含氧气体例如氧气的流量范围可介于0.5sccm至10sccm之间,且优选地可介于0.5sccm至5sccm之间,但并不以此为限。此外,主溅射时,对靶材T加载的溅射功率可包括一功率范围介于2500瓦至4000瓦的脉冲直流电源,且功率范围优选地可介于2800瓦至3500瓦之间,但并不以此为限。
在一些实施例中,第一预溅射亦可包括在腔室21内通入含氮气体以及惰性气体例如氩而不通入含氧气体,并使由惰性气体产生的离子撞击含铝靶材(也就是靶材T),以此达到清洗靶材T的效果,例如除去至少部分的因为先前工艺而在靶材T的表面所形成的氮化铝。举例来说,在第一预溅射时,通入含氮气体例如氮气的流量范围可介于30sccm至200sccm之间,且优选地可介于50sccm至150sccm之间;通入惰性气体例如氩气的流量范围可介于15sccm至100sccm之间,且优选地可介于20sccm至70sccm之间,但并不以此为限。此外,在第一预溅射时,对靶材T加载的溅射功率可介于2500瓦至4000瓦之间,且优选地可介于2800瓦至3500瓦之间,但并不以此为限。
在一些实施例中,第二预溅射可包括在腔室21内通入含氮气体、含氧气体以及惰性气体例如氩,并使由惰性气体产生的离子撞击含铝靶材(也就是靶材T),以此对经过第一预溅射清洗后的靶材T表面进行修饰,使得靶材T表面处于氧掺入的氮化铝(亦可视为氮氧化铝,AlON)的状态。举例来说,在第二预溅射时,通入含氮气体例如氮气的流量范围可介于30sccm至300sccm之间,且优选地可介于100sccm至220sccm之间;通入惰性气体例如氩气的流量范围可介于15sccm至100sccm之 间,且优选地可介于20sccm至70sccm之间;通入含氧气体例如氧气的流量范围可介于0.5sccm至10sccm之间,且优选地可介于0.5sccm至5sccm之间,但并不以此为限。此外,在第二预溅射时,对靶材T加载的溅射功率可介于200瓦至4000瓦之间,且优选地可介于500瓦至1500瓦之间,但并不以此为限。
在一些实施例中,可在第二预溅射之后以及主溅射之前停止对靶材T加载电源功率,也就是在第二预溅射之后以及主溅射之前可不对靶材T加载电源,而待基板31移至工艺位要进行主溅射时再对靶材T加载电源功率以起辉,以此可增加靶材T的使用寿命,但并不以此为限。换句话说,上述的方法100还可包括将基板31在腔室21中移至工艺位之后进行主溅射(如图2C所示的状况),以及对靶材T加载电源以进行主溅射,其中在第二预溅射之后以及将基板31移至工艺位之前不对靶材T加载电源。
然后,在步骤140处,将形成有薄膜(例如上述的氮化铝薄膜)的基板31移出腔室21,从而完成一次上述的溅射流程SR。换句话说,在一些实施例中,一次的溅射流程SR是指将放置有一个或多个基板31(即,一批次的基板31)的托盘23加载腔室21后,进行第一预溅射、第二预溅射以及对托盘23上的一个或多个基板31(即,一批次的基板31)进行主溅射形成薄膜后将托盘23移出腔室21的流程。本发明的方法使用具有不同工艺参数的第一预溅射与第二预溅射,可稳定腔室21内的状况以及靶材T的状况,并可补偿以相同溅射工艺参数操作时间较久时对于成膜厚度均匀性的负面影响,故可达到改善成膜质量以及提升成膜厚度均匀性等效果。举例来说,请参考下列表1与表2。表1为一对照实施例的方法(预溅射与主溅射具有相同工艺参数)形成氮化铝薄膜的厚度状况,且每一次溅射流程是对托盘上放置的五片基板(即,每一批次的基板包含5个基板)进行主溅射;而表2为以上述的方法100 (进行两次具有不同工艺参数的预溅射)形成氮化铝薄膜的厚度状况,且每一次溅射流程亦是对托盘上放置的五片基板(即,每一批次的基板包含5个基板)进行主溅射。由表1与表2的结果可知,若预溅射的工艺参数与主溅射的工艺参数相同,不论是单片的基板上所形成的氮化铝薄膜的厚度的均匀性或是同一盘的五片基板(即,同一批次的基板)上的氮化铝薄膜的厚度的均匀性均明显差于以本发明的方法(本发明中进行两次具有不同工艺参数的预溅射)所形成氮化铝薄膜。此外,连续进行本发明的上述溅射流程20次,其结果显示:对于每一批次的基板而言,每个基板均具有很好的膜厚均匀性,且不同的基板之间的膜厚均匀性也很好;并且,对于不同批次的基板而言,不同批次之间的膜厚均匀性亦得到改善。换句话说,利用本发明的形成薄膜的方法,可有效地改善成膜厚度的均匀性。
表1
Figure PCTCN2016100297-appb-000001
表2
Figure PCTCN2016100297-appb-000002
此外,请参阅图1、图2C与图3,图3为本发明一些实施例的电子装置的示意图。如图1、图2C与图3所示,在一些实施例中,形成氮化铝薄膜的方法100可用于形成电子装置30例如氮化镓基发光二极管装置(GaN基LED)中的氮化铝缓冲层32。在一些实施例中,电子装置30可包括基板31、氮化铝缓冲层32以及氮化镓层33。氮化铝缓冲层32是位于基板31上,而氮化镓层33是位于氮化铝缓冲层32上。氮化铝缓冲层32可由上述的方法100形成于基板31上,而氮化镓层33则可形成于氮化铝缓冲层32上。由于氮化铝缓冲层32与基板31(例如蓝宝石基板)之间的晶格失配(lattice mismatch)以及热失配(thermal mismatch)程度相对较小,故氮化铝缓冲层32可用以改善后续于氮化铝缓冲层32上以外延生长方式形成的氮化镓层33的质量,进而达到提升电子装置30性能表现的效果。举例来说,电子装置30可包括发光二极管装置或其他适合的半导体电子装置,而当电子装置30为氮化镓基发光二极管装置时,电子装置30还可包括形成在氮化镓层33上的量子 阱层34,此时氮化镓层33可经处理而成为一N型掺杂氮化镓层33N,而量子阱层34上可再形成一P型掺杂氮化镓层33P,但并不以此为限。在形成氮化铝缓冲层32的主溅射时,通入氧气可改善后续于氮化铝缓冲层32上形成的氮化镓层33的成膜质量,而电子装置30的各种电性表现可获得改善。
综上所述,本发明的形成薄膜的方法是在主溅射之前先于欲进行主溅射的同一腔室中,利用同一靶材进行两次工艺参数不同的预溅射,以此达到稳定腔室内以及靶材的状况的效果,且另一方面亦可补偿以相同溅射工艺参数操作时间较久时对于成膜厚度均匀性的负面影响,故可在改善成膜质量的同时达到改善成膜厚度均匀性的效果。当本发明的形成薄膜的方法用于形成氮化铝薄膜时,由于氮化铝薄膜的成膜质量以及厚度均匀性均有所改善,故对于后续形成于氮化铝薄膜上的氮化镓层的外延生长质量亦有所提升。
前述内容概述了一些实施方式的特征,因而本领域普通技术人员可更加理解本申请文件揭示内容的各方面。本领域普通技术人员应理解可轻易使用本申请文件揭示内容作为基础,用于设计或修饰其他工艺与结构而实现与本申请文件所述的实施方式具有相同目的和/或达到相同优点。本领域普通技术人员亦应理解此均等架构并不脱离本申请文件揭示内容的精神与范围,以及本领域普通技术人员可进行各种变化、取代与替换,而不脱离本申请文件揭示内容的精神与范围。

Claims (22)

  1. 一种形成薄膜的方法,其特征在于,包括:
    将基板放置在承载底座上;
    以靶材进行第一预溅射;
    在所述第一预溅射之后,利用所述靶材进行第二预溅射;
    在所述第一预溅射以及所述第二预溅射进行时,遮蔽盘位于所述靶材与所述基板之间;
    在所述第二预溅射之后,将所述遮蔽盘移开;以及
    利用所述靶材对所述基板进行主溅射,以在所述基板上形成薄膜,
    其中,所述第一预溅射与所述第二预溅射具有不同的工艺参数。
  2. 如权利要求1所述的方法,其特征在于,进行所述第一预溅射时所通入的气体不同于进行所述第二预溅射时所通入的气体。
  3. 如权利要求1所述的方法,其特征在于,进行所述第二预溅射时所通入的气体与进行所述主溅射时所通入的气体相同。
  4. 如权利要求1所述的方法,其特征在于,进行所述第一预溅射时对所述靶材加载的溅射功率不同于进行所述第二预溅射时对所述靶材加载的溅射功率。
  5. 如权利要求4所述的方法,其特征在于,进行所述第二预溅射时对所述靶材加载的所述溅射功率小于进行所述第一预溅射时对所述靶材加载的所述溅射功率。
  6. 如权利要求4所述的方法,其特征在于,进行所述第一预溅射时对 所述靶材加载的所述溅射功率与进行所述主溅射时对所述靶材加载的溅射功率相同。
  7. 如权利要求1所述的方法,其特征在于,在所述第一预溅射之后以及所述第二预溅射之前不对所述靶材加载电源。
  8. 如权利要求1所述的方法,其特征在于,在所述第二预溅射之后以及所述主溅射之前不对所述靶材加载电源。
  9. 如权利要求8所述的方法,其特征在于,还包括:
    将所述基板移至工艺位之后进行所述主溅射;以及
    对所述靶材加载电源以进行所述主溅射;
    其中,在所述第二预溅射之后以及将所述基板移至所述工艺位之前不对所述靶材加载电源。
  10. 一种形成氮化铝薄膜的方法,其特征在于,包括:
    将基板放置于承载底座上;
    利用含铝靶材进行第一预溅射;
    在所述第一预溅射之后,利用所述含铝靶材进行第二预溅射;
    其中:
    在所述第一预溅射以及所述第二预溅射进行时,遮蔽盘位于所述含铝靶材与所述基板之间;
    在所述第二预溅射之后,将所述遮蔽盘移开;以及
    利用所述含铝靶材对所述基板进行主溅射,以在所述基板上形成氮化铝薄膜,
    所述第一预溅射与所述第二预溅射具有不同的工艺参数。
  11. 如权利要求10所述的方法,其特征在于,进行所述第一预溅射时所通入的气体不同于进行所述第二预溅射时所通入的气体。
  12. 如权利要求10所述的方法,其特征在于,进行所述第一预溅射时所通入的气体包括含氮气体以及惰性气体。
  13. 如权利要求10所述的方法,其特征在于,进行所述第二预溅射时所通入的气体包括含氮气体、含氧气体以及惰性气体。
  14. 如权利要求10所述的方法,其特征在于,进行所述第二预溅射时所通入的气体与进行所述主溅射时所通入的气体相同。
  15. 如权利要求10所述的方法,其特征在于,进行所述第一预溅射时对所述含铝靶材加载的溅射功率不同于进行所述第二预溅射时对所述含铝靶材加载的溅射功率。
  16. 如权利要求15所述的方法,其特征在于,进行所述第二预溅射时对所述含铝靶材加载的所述溅射功率小于进行所述第一预溅射时对所述含铝靶材加载的所述溅射功率。
  17. 如权利要求15所述的方法,其特征在于,进行所述第一预溅射时对所述含铝靶材加载的所述溅射功率与进行所述主溅射时对所述含铝靶材加载的溅射功率相同。
  18. 如权利要求15所述的方法,其特征在于,进行所述第一预溅射时对所述含铝靶材加载的所述溅射功率介于2500瓦至4000瓦之间。
  19. 如权利要求15所述的方法,其特征在于,进行所述第二预溅射时对所述含铝靶材加载的所述溅射功率介于200瓦至4000瓦之间。
  20. 如权利要求10所述的方法,其特征在于,在所述第一预溅射之后以及所述第二预溅射之前不对所述含铝靶材加载电源。
  21. 如权利要求10所述的方法,其特征在于,在所述第二预溅射之后以及所述主溅射之前不对所述含铝靶材加载电源。
  22. .如权利要求21所述的方法,其特征在于,还包括:
    将所述基板移至工艺位之后进行所述主溅射;以及
    对所述含铝靶材加载电源以进行所述主溅射,在所述第二预溅射之后以及将所述基板移至所述工艺位之前不对所述含铝靶材加载电源。
PCT/CN2016/100297 2016-06-12 2016-09-27 形成薄膜的方法以及形成氮化铝薄膜的方法 WO2017215146A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/547,559 US10640862B2 (en) 2016-06-12 2016-09-27 Method for forming film and method for forming aluminum nitride film
MYPI2018002524A MY184359A (en) 2016-06-12 2016-09-27 Method for forming film and method for forming aluminum nitride film
KR1020177035950A KR102010168B1 (ko) 2016-06-12 2016-09-27 박막 형성 방법 및 질화 알루미늄 박막 형성 방법
SG11201810601PA SG11201810601PA (en) 2016-06-12 2016-09-27 Method for forming film and method for forming aluminum nitride film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610409464.7A CN107488828B (zh) 2016-06-12 2016-06-12 形成薄膜的方法以及形成氮化铝薄膜的方法
CN201610409464.7 2016-06-12

Publications (1)

Publication Number Publication Date
WO2017215146A1 true WO2017215146A1 (zh) 2017-12-21

Family

ID=60641946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100297 WO2017215146A1 (zh) 2016-06-12 2016-09-27 形成薄膜的方法以及形成氮化铝薄膜的方法

Country Status (7)

Country Link
US (1) US10640862B2 (zh)
KR (1) KR102010168B1 (zh)
CN (1) CN107488828B (zh)
MY (1) MY184359A (zh)
SG (1) SG11201810601PA (zh)
TW (1) TWI614359B (zh)
WO (1) WO2017215146A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11739418B2 (en) * 2019-03-22 2023-08-29 Applied Materials, Inc. Method and apparatus for deposition of metal nitrides
CN110408905B (zh) * 2018-04-28 2021-01-08 北京北方华创微电子装备有限公司 溅射方法
JP2022525617A (ja) 2019-03-22 2022-05-18 アプライド マテリアルズ インコーポレイテッド 超電導膜を有する多層デバイスの堆積のための方法及び装置
TWI780579B (zh) 2020-02-03 2022-10-11 美商應用材料股份有限公司 具有整合化氮化鋁晶種或波導層的超導奈米線單光子偵測器
TWI753759B (zh) 2020-02-03 2022-01-21 美商應用材料股份有限公司 具有整合化氮化鋁種晶或波導層的超導奈米線單光子偵測器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465803A (ja) * 1990-07-06 1992-03-02 Clarion Co Ltd 酸化物誘電体薄膜作成方法
JPH04160144A (ja) * 1990-10-24 1992-06-03 Nec Corp 誘電体膜の製造方法
JPH09227860A (ja) * 1996-02-26 1997-09-02 Agency Of Ind Science & Technol 酸化ニオブエレクトロクロミック材料の製造方法
CN104862659A (zh) * 2015-05-22 2015-08-26 电子科技大学 一种氮化铝薄膜的中频磁控反应溅射方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256266A (en) * 1991-10-31 1993-10-26 Read-Rite Corporation Alumina material useful with thin film heads
EP0669412B1 (en) * 1994-02-25 2002-05-22 Sumitomo Electric Industries, Ltd. Aluminim nitride thin film substrate and process for producing same
JP2848480B2 (ja) * 1994-03-30 1999-01-20 株式会社デンソー 薄膜el表示装置及びその製造方法
JPH11269642A (ja) * 1998-03-23 1999-10-05 Advanced Display Inc 薄膜の形成方法および装置
JP3440873B2 (ja) * 1999-03-31 2003-08-25 豊田合成株式会社 Iii族窒化物系化合物半導体素子の製造方法
JP2001176962A (ja) * 1999-12-15 2001-06-29 Seiko Epson Corp 半導体装置及び製造方法
JP3994623B2 (ja) * 2000-04-21 2007-10-24 豊田合成株式会社 Iii族窒化物系化合物半導体素子の製造方法
CN102251215B (zh) * 2011-07-06 2013-03-06 西南民族大学 一种采用双缓冲层技术制备AlInN薄膜的方法
CN103103483A (zh) * 2011-11-11 2013-05-15 中国科学院沈阳科学仪器研制中心有限公司 一种带有基片水冷加热公转台的磁控溅射系统
TW201419574A (zh) * 2012-11-02 2014-05-16 Fitilite S Pte Ltd 半導體裝置及其製造方法以及發光二極體用之基板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465803A (ja) * 1990-07-06 1992-03-02 Clarion Co Ltd 酸化物誘電体薄膜作成方法
JPH04160144A (ja) * 1990-10-24 1992-06-03 Nec Corp 誘電体膜の製造方法
JPH09227860A (ja) * 1996-02-26 1997-09-02 Agency Of Ind Science & Technol 酸化ニオブエレクトロクロミック材料の製造方法
CN104862659A (zh) * 2015-05-22 2015-08-26 电子科技大学 一种氮化铝薄膜的中频磁控反应溅射方法

Also Published As

Publication number Publication date
TWI614359B (zh) 2018-02-11
TW201742937A (zh) 2017-12-16
MY184359A (en) 2021-04-01
KR20180010210A (ko) 2018-01-30
US20180230586A1 (en) 2018-08-16
KR102010168B1 (ko) 2019-08-12
US10640862B2 (en) 2020-05-05
SG11201810601PA (en) 2018-12-28
CN107488828A (zh) 2017-12-19
CN107488828B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
CN107492490B (zh) 半导体设备的成膜方法、氮化铝成膜方法以及电子装置
WO2017215146A1 (zh) 形成薄膜的方法以及形成氮化铝薄膜的方法
US11575071B2 (en) Oxygen controlled PVD ALN buffer for GAN-based optoelectronic and electronic devices
TWI575772B (zh) 沉積iii族氮化物半導體薄膜的方法
TWI567214B (zh) A method for forming a nitride semiconductor layer, and a method of manufacturing the semiconductor device
WO2020075599A1 (ja) 窒化物半導体膜の形成方法
JP2020050963A (ja) 窒化ガリウム系膜ならびにその製造方法
JPWO2012090422A1 (ja) エピタキシャル膜形成方法、スパッタリング装置、半導体発光素子の製造方法、半導体発光素子、および照明装置
CN114937721A (zh) 一种硅衬底GaN基LED外延片及其制备方法
WO2017215150A1 (zh) 半导体设备的成膜方法以及半导体设备的氮化铝成膜方法
US11319644B2 (en) System and method for increasing group III-nitride semiconductor growth rate and reducing damaging ion flux
US10643843B2 (en) Film forming method and aluminum nitride film forming method for semiconductor apparatus
TWI601855B (zh) 沉積氮化鋁層的方法
CN108538970B (zh) 一种发光二极管的制备方法
CN111341645A (zh) 氮化铝半导体薄膜的制作方法及其结构
JP2019149429A (ja) 成膜方法、半導体デバイスの製造方法及び半導体デバイス
US11600496B2 (en) In-situ p-type activation of III-nitride films grown via metal organic chemical vapor deposition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15547559

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177035950

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905258

Country of ref document: EP

Kind code of ref document: A1