WO2016158458A1 - レジスト基材、レジスト組成物及びレジストパターン形成方法 - Google Patents
レジスト基材、レジスト組成物及びレジストパターン形成方法 Download PDFInfo
- Publication number
- WO2016158458A1 WO2016158458A1 PCT/JP2016/058519 JP2016058519W WO2016158458A1 WO 2016158458 A1 WO2016158458 A1 WO 2016158458A1 JP 2016058519 W JP2016058519 W JP 2016058519W WO 2016158458 A1 WO2016158458 A1 WO 2016158458A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- resist
- compound
- acid
- Prior art date
Links
- 0 C*C**(c1ccccc1)(c1ccccc1)C1=CC=C*C=C1 Chemical compound C*C**(c1ccccc1)(c1ccccc1)C1=CC=C*C=C1 0.000 description 1
- WFDUDWNZCAZYIY-UHFFFAOYSA-N Oc(cc1)ccc1-c(cc1)cc(C(c2ccccc2)c2cc(-c(cc3)ccc3O)ccc2O)c1O Chemical compound Oc(cc1)ccc1-c(cc1)cc(C(c2ccccc2)c2cc(-c(cc3)ccc3O)ccc2O)c1O WFDUDWNZCAZYIY-UHFFFAOYSA-N 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N c(cc1)ccc1N(c1ccccc1)c1ccccc1 Chemical compound c(cc1)ccc1N(c1ccccc1)c1ccccc1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C39/00—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
- C07C39/12—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
- C07C39/15—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/04—Condensation polymers of aldehydes or ketones with phenols only of aldehydes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/04—Condensation polymers of aldehydes or ketones with phenols only of aldehydes
- C08G8/08—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
- C08G8/20—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L61/00—Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
- C08L61/04—Condensation polymers of aldehydes or ketones with phenols only
- C08L61/06—Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
- C08L61/12—Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/16—Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
Definitions
- the present invention relates to a resist base material containing a compound and / or resin having a specific structure.
- the present invention also relates to a resist composition containing the substrate and a resist pattern forming method using the composition.
- a polymer material capable of forming an amorphous thin film has been used as a general resist material.
- a resist thin film prepared by applying a solution of a polymer resist material such as polymethyl methacrylate, polyhydroxystyrene having an acid dissociable reactive group or polyalkyl methacrylate on a substrate, ultraviolet rays, far ultraviolet rays, electron beams, A line pattern of about 45 to 100 nm is formed by irradiating extreme ultraviolet rays (EUV), X-rays or the like.
- EUV extreme ultraviolet rays
- the polymer resist has a large molecular weight of about 10,000 to 100,000 and a wide molecular weight distribution
- the lithography using the polymer resist causes roughness on the surface of the fine pattern, and it is difficult to control the pattern dimension. Therefore, the yield decreases. Therefore, there is a limit to miniaturization in conventional lithography using a polymer resist material.
- various low molecular weight resist materials have been proposed in order to produce finer patterns.
- Patent Document 1 an alkali developing negative radiation sensitive composition using a low molecular weight polynuclear polyphenol compound as a main component (see Patent Document 1 and Patent Document 2) has been proposed.
- Patent Document 3 As a low molecular weight resist material having high heat resistance, an alkali developing negative radiation sensitive composition using a low molecular weight cyclic polyphenol compound as a main component (see Patent Document 3 and Non-Patent Document 1) has been proposed. .
- the alkali-developable negative radiation-sensitive composition using a low molecular weight polynuclear polyphenol compound as a main component has a drawback that the heat resistance is not sufficient and the shape of the resulting resist pattern is deteriorated.
- the negative development type radiation sensitive composition of the alkali development type using a low molecular weight cyclic polyphenol compound as a main component has low solubility in a safe solvent used in a semiconductor manufacturing process, low sensitivity, and a resist pattern shape obtained. There are problems such as bad.
- the object of the present invention is a resist that has excellent heat resistance, high solubility in a safe solvent, excellent storage stability, can be formed into a good thin film, and can impart a good resist pattern shape. It is providing the base material, the resist composition containing this base material, and the resist pattern formation method using this composition.
- the present inventors have found that a resist base material containing a compound and / or resin having a specific structure can solve the above-mentioned problems, and completed the present invention. It was. That is, the present invention is as follows.
- R 1 is a 2n-valent group having 1 to 30 carbon atoms
- R 2 to R 5 are each independently a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
- One is a group containing an iodine atom, at least one of R 4 and / or at least one of R 5 is one or more selected from a hydroxyl group and a thiol group
- m 2 and m 3 are each independently M 4 and m 5 are each independently an integer of 0 to 9, provided that m 4 and m 5 are not 0 at the same time, and n is an integer of 1 to 4 And p 2 to p 5 are
- R 1 to R 5 and n are as defined in the formula (1), m 2 ′ and m 3 ′ are each independently an integer of 0 to 4, m 4 ′ and m 5 ′ are each independently an integer of 0 to 5, provided that m 4 ′ and m 5 ′ are not 0 at the same time.)
- [4] The resist substrate according to [3] above, wherein the compound represented by the formula (1a) is a compound represented by the following formula (1b).
- R 1 has the same meaning as described in the formula (1), and R 6 and R 7 are each independently a linear, branched or cyclic group having 1 to 10 carbon atoms.
- each R 8 independently represents a hydrogen atom, a cyano group, a nitro group, a heterocyclic group, a halogen atom, a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, or a carbon number of 3
- a thiol group or a hydroxyl group provided that at least one of R 8 is a group containing an iodine atom.
- each R 9 independently represents a cyano group, a nitro group, a heterocyclic group, a halogen atom, a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, or a branch having 3 to 20 carbon atoms.
- a cyclic aliphatic hydrocarbon group a cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a thiol group, or A hydroxyl group, and m 9 is an integer of 0 to 4.
- the resin is a resin obtained by reacting the compound represented by the formula (1) with a compound having a crosslinking reactivity. .
- R 1 is a 2n-valent radical of 1 to 30 carbon atoms
- R 2 - R 5 are each independently C 1 -C 10 straight alkyl, branched or cyclic Group, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a halogen atom, a thiol group, or a hydroxyl group, provided that at least selected from R 1 to R 5 One is a group containing an iodine atom, at least one of R 4 and / or at least one of R 5 is one or more selected from a hydroxyl group and a thiol group, and L is a straight chain having 1 to 20 carbon atoms.
- a branched or branched alkylene group or a single bond m 2 and m 3 are each independently an integer of 0 to 8
- m 4 and m 5 are each independently an integer of 0 to 9, However, m 4 and m 5 are not simultaneously zero
- n represents 1 to Of integers
- p 2 ⁇ p 5 are each independently an integer of 0 to 2.
- a resist pattern forming method comprising: Applying the resist composition according to any one of [10] to [12] on a substrate to form a resist film; Exposing the formed resist film; Developing the exposed resist film; Including methods.
- a resist base material that has excellent heat resistance, high solvent solubility, excellent storage stability, can form a good thin film, and can impart a good resist pattern shape.
- the resist base material of the present embodiment contains a compound represented by the following formula (1) and / or a resin obtained using the compound as a monomer.
- the resist base material according to the present embodiment has the following structure, and thus has an advantage of excellent heat resistance and high solvent solubility.
- R 1 is a 2n-valent group having 1 to 30 carbon atoms, and each aromatic ring is bonded through this R 1 .
- a 30 alkanehexyl group, and when n 4, an alkaneoctyl group having 3 to 30 carbon atoms.
- Examples of the 2n-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group.
- the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
- the 2n-valent group may have a double bond, a hetero atom, or an aromatic group having 6 to 30 carbon atoms.
- the aromatic group includes a cyano group, a nitro group, a heterocyclic group, a halogen atom, a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 20 carbon atoms, carbon It may have a cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a thiol group or a hydroxyl group. .
- R 2 to R 5 are each independently a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, A monovalent group selected from the group consisting of 1 to 30 alkoxy groups, halogen atoms, thiol groups or hydroxyl groups.
- at least one selected from R 1 to R 5 is a group containing an iodine atom
- at least one of R 4 and / or at least one of R 5 is one or more selected from a hydroxyl group and a thiol group. It is.
- at least one selected from R 1 ⁇ R 5" is selected from "R 1 ⁇ R 5 It does not mean “at least one group”.
- n 2 and p 5 are each independently an integer of 0 to 2.
- the group containing an iodine atom is not particularly limited.
- groups having 30 to 30 aromatic groups having 30 to 30 aromatic groups.
- a branched hydrocarbon group having 3 to 30 carbon atoms substituted with an iodine atom an alicyclic hydrocarbon group having 3 to 30 carbon atoms substituted with an iodine atom, and an iodine atom.
- Preferred is a substituted aromatic group having 6 to 30 carbon atoms or a group having an aromatic group having 6 to 30 carbon atoms substituted with an iodine atom, and an alicyclic carbonization having 3 to 30 carbon atoms substituted with an iodine atom.
- More preferred is a hydrogen group, an aromatic group having 6 to 30 carbon atoms substituted with an iodine atom, or a group having an aromatic group having 6 to 30 carbon atoms substituted with an iodine atom, and 6 to 6 carbon atoms substituted with an iodine atom. More preferred are groups having 30 aromatic groups.
- the group containing an iodine atom is not particularly limited, but examples thereof include an iodine atom, a linear aliphatic hydrocarbon group having 1 to 6 carbon atoms substituted with an iodine atom, and an iodine atom.
- an iodine atom a linear aliphatic hydrocarbon group having 1 to 6 carbon atoms substituted with an iodine atom, and an iodine atom.
- an iodine atom, a linear aliphatic hydrocarbon group having 1 to 6 carbon atoms substituted with an iodine atom, or a carbon atom number 3 to 6 substituted with an iodine atom A branched aliphatic hydrocarbon group is preferable, an iodine atom or a linear aliphatic hydrocarbon group having 1 to 6 carbon atoms substituted with an iodine atom is more preferable, and an iodine atom is more preferable.
- the compound represented by the above formula (1) has a relatively low molecular weight, it has high heat resistance due to the rigidity of its structure, so that it can be used under high temperature baking conditions. In addition, since it has a relatively low molecular weight and low viscosity, even a substrate having a step (particularly, a fine space or a hole pattern) can be easily filled uniformly into every corner of the step. .
- the compound represented by the above formula (1) is at least one of R 2 and / or at least one of R 3 from the viewpoint of easy crosslinking, further solubility in an organic solvent, and reduction of coating film defects. It is preferable that one is a hydroxyl group and / or a thiol group.
- the compound represented by the above formula (1) is more preferably a compound represented by the following formula (1a) from the viewpoint of feedability of raw materials.
- R 1 to R 5 and n have the same meaning as described in the above formula (1).
- m 2 ′ and m 3 ′ are each independently an integer of 0 to 4
- m 4 ′ and m 5 ′ are each independently an integer of 0 to 5.
- m 4 ′ and m 5 ′ are not 0 at the same time.
- the compound represented by the above formula (1a) is more preferably a compound represented by the following formula (1b) from the viewpoint of solubility in an organic solvent.
- R 1 has the same meaning as described in the above formula (1).
- R 6 and R 7 are each independently a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a halogen atom. Or it is a thiol group. However, at least one selected from R 1 , R 6 and R 7 is a group containing an iodine atom.
- m 6 and m 7 are each independently an integer of 0 to 7. In this specification, the term "at least one selected from R 1, R 6 and R 7" means "at least one group selected from R 1, R 6 and R 7", "R 1 , At least one group selected from R 6 and R 7 ”.
- the compound represented by the above formula (1b) is particularly preferably a compound represented by the following formula (1c) from the viewpoint of further solubility in an organic solvent.
- R 8 is independently a hydrogen atom, a cyano group, a nitro group, a heterocyclic group, a halogen atom, or a linear aliphatic group having 1 to 20 carbon atoms from the viewpoint of quality stabilization.
- the compound represented by the above formula (1c) is a compound represented by the following formula (1d) from the viewpoint of easy crosslinking, further solubility in an organic solvent, and reduction in coating film defects. Particularly preferred.
- each R 9 independently represents a cyano group, a nitro group, a heterocyclic group, a halogen atom, a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, or a 3 to 20 carbon atoms.
- m 9 is an integer of 0 to 4.
- R 2 to R 5 and m 2 to m 5 have the same meanings as described in the above formula (1).
- R 2 to R 5 have the same meaning as described in the above formula (1).
- m 2 ′ and m 3 ′ are each independently an integer of 0 to 4
- m 4 ′ and m 5 ′ are each independently an integer of 0 to 5.
- m 4 ′ and m 5 ′ are not 0 at the same time.
- R 2 to R 5 and m 2 to m 5 have the same meanings as described in the above formula (1).
- R 2 to R 5 have the same meaning as described in the above formula (1).
- m 2 ′ and m 3 ′ are each independently an integer of 0 to 4
- m 4 ′ and m 5 ′ are each independently an integer of 0 to 5.
- m 4 ′ and m 5 ′ are not 0 at the same time.
- the compound represented by the formula (1) in the present embodiment can be appropriately synthesized using a known technique, and the synthesis technique is not particularly limited.
- the synthesis technique is not particularly limited.
- A2 can be obtained by polycondensation reaction in the presence of an acid catalyst. Moreover, it can also carry out under pressure as needed.
- biphenols examples include, but are not limited to, biphenol, methyl biphenol, methoxy binaphthol, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, biphenol is more preferable from the viewpoint of stable supply of raw materials.
- bithiophenols examples include, but are not limited to, bithiophenol, methylbithiophenol, methoxybithiophenol, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, bithiophenol is more preferable from the viewpoint of stable supply of raw materials.
- binaphthols examples include, but are not limited to, binaphthol, methyl binaphthol, methoxy binaphthol, and the like. These can be used alone or in combination of two or more. Among these, binaphthol is more preferable from the viewpoint of increasing the carbon atom concentration and improving heat resistance.
- bithionaphthols examples include, but are not limited to, bithionaphthol, methylbithionaphthol, methoxybithionaphthol, and the like. These can be used alone or in combination of two or more. Among these, it is more preferable to use bithionaphthol from the viewpoint of increasing the carbon atom concentration and improving the heat resistance.
- the aldehyde is preferably a compound having 2 to 59 carbon atoms having a group containing 1 to 4 formyl groups and an iodine atom, and is selected from an aromatic aldehyde compound or an aliphatic aldehyde compound.
- an aldehyde compound having 7 to 24 carbon atoms is preferable.
- Iodobenzaldehyde, methyl iodobenzaldehyde, dimethyl iodobenzaldehyde, and ethyl iodobenzaldehyde are more preferable, and iodobenzaldehyde is more preferable.
- the aromatic aldehyde compound may have a linear or branched alkyl group having 1 to 4 carbon atoms, a cyano group, a hydroxyl group, a halogen or the like as long as the effects of the present invention are not impaired.
- An aromatic aldehyde compound can be used individually or in combination of 2 or more types.
- the aliphatic aldehyde compound is preferably a compound having 3 to 24 carbon atoms, such as iodopropanal, iodoisopropanal, iodobutanal, iodoisobutanal, iodo-t-butanal, iodopentanal, iodoisopenta.
- Nal iodoneopental, iodohexanal, iodoisohexanal, iodooctanal, iododecanal, iodododecanal, iodoundecenal, iodocyclopropanecarboxaldehyde, iodocyclobutanecarboxaldehyde, iodocyclohexanecarboxaldehyde, etc.
- the aliphatic aldehyde compound may have a linear or branched alkyl group having 1 to 4 carbon atoms, a cyano group, a hydroxyl group, a halogen atom, or the like as long as the effects of the present invention are not impaired.
- An aliphatic aldehyde compound can be used individually or in combination of 2 or more types.
- the acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited.
- inorganic acids and organic acids are widely known.
- inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, Organic acids such as naphthalenedisulfonic acid; Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride; or solid acids such as silicotungstic acid, phosphotungstic acid,
- an organic acid and a solid acid are preferable, and hydrochloric acid and sulfuric acid are more preferable from the viewpoint of production such as availability and ease of handling.
- 1 type can be used individually or in combination of 2 or more types.
- the amount of the acid catalyst used can be appropriately set according to the types of raw materials and catalysts, and further the reaction conditions, and is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferable.
- a reaction solvent may be used.
- the reaction solvent is not particularly limited as long as the reaction of aldehydes or ketones with biphenols, bithiophenols, binaphthols, bithionaphthols, or bianthracenediol proceeds. Can be appropriately selected and used.
- the reaction solvent include ethyl acetate, propyl acetate, butyl acetate, 4-butyrolactone, ethylene glycol, propylene glycol, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl.
- Examples include ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, or a mixed solvent thereof.
- a reaction solvent can be used individually by 1 type or in combination of 2 or more types.
- the amount of these solvents used can be appropriately set according to the types of raw materials and catalysts, and further the reaction conditions, and is not particularly limited, but is 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw materials. Is preferred.
- the reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
- the reaction temperature is preferably higher, and specifically, it is preferably in the range of 60 to 200 ° C.
- the reaction method can be appropriately selected from known methods, and is not particularly limited.
- the obtained compound can be isolated according to a conventional method, and is not particularly limited.
- a general method such as raising the temperature of the reaction vessel to 130-230 ° C. and removing volatile components at a pressure of about 1-50 mmHg, etc. By taking this, the target compound can be obtained.
- the reaction conditions are not particularly limited.
- biphenols, bithiophenols, binaphthols, bithionaphthols or bianthracenediol are added in an amount of 1.0 mol to excess with respect to 1.0 mol of aldehydes or ketones.
- the reaction is carried out at 50 to 150 ° C. for 20 minutes to 100 hours under normal pressure using 0.001 to 1.0 mole of acid catalyst.
- the target product can be isolated by a known method.
- the reaction solution is concentrated, pure water is added to precipitate the reaction product, cooled to room temperature, filtered and separated, and the resulting solid is filtered and dried, followed by column chromatography.
- the compound represented by the above formula (1), which is the target product can be obtained by separating and purifying from the by-product, and performing solvent distillation, filtration and drying.
- the resin in the present embodiment is a resin obtained using the compound represented by the above formula (1) as a monomer.
- Specific examples of the resin include a resin having a structure represented by the formula (2).
- R 1 is a 2n-valent group having 1 to 30 carbon atoms, independently each R 2 - R 5, C 1 -C 10 straight, branched or cyclic
- At least one is a group containing an iodine atom
- at least one of R 4 and / or at least one of R 5 is at least one selected from a hydroxyl group and a thiol group
- L is a straight chain having 1 to 20 carbon atoms.
- m 2 and m 3 are each independently an integer of 0 to 8
- m 4 and m 5 are each independently an integer of 0 to 9
- m 4 and m 5 are not simultaneously zero
- n represents 1 4 of an integer
- p 2 ⁇ p 5 are each independently an integer of 0 to 2.
- the resin in the present embodiment is obtained by reacting the compound represented by the above formula (1) with a compound having a crosslinking reactivity.
- a known compound can be used without particular limitation as long as the compound represented by the above formula (1) can be oligomerized or polymerized.
- Specific examples thereof include, but are not limited to, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates, unsaturated hydrocarbon group-containing compounds, and the like.
- the resin in the present embodiment include, for example, a resin obtained by novolakizing the compound represented by the above formula (1) by a condensation reaction with an aldehyde that is a crosslinking-reactive compound.
- aldehyde for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde
- examples thereof include, but are not limited to, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrenecarbaldehyde, pyrenecarbaldehyde, and furfural.
- aldehydes can be used individually by 1 type or in combination of 2 or more types.
- the amount of the aldehyde used is not particularly limited, but is preferably 0.2 to 5 mol, more preferably 0.5 to 2 mol, relative to 1 mol of the compound represented by the formula (1). is there.
- an acid catalyst may be used.
- the acid catalyst can be appropriately selected from known ones and is not particularly limited.
- inorganic acids and organic acids are widely known.
- inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, Adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, Organic acids such as naphthalenedisulfonic acid; Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron
- an organic acid and a solid acid are preferable, and hydrochloric acid or sulfuric acid is more preferable from the viewpoint of manufacturing such as availability and ease of handling.
- an acid catalyst 1 type can be used individually or in combination of 2 or more types.
- the amount of the acid catalyst used can be appropriately set according to the types of raw materials and catalysts, and further the reaction conditions, and is not particularly limited, but is 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferable.
- indene hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene, ⁇ -pinene, ⁇ -pinene
- aldehydes are not necessarily required.
- reaction solvent in the condensation reaction between the compound represented by the above formula (1) and the aldehyde, a reaction solvent can also be used.
- the reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. It is done.
- a reaction solvent can be used individually by 1 type or in combination of 2 or more types.
- the amount of these solvents used can be appropriately set according to the types of raw materials and catalysts, and further the reaction conditions, and is not particularly limited, but is in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw materials. It is preferable.
- the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited, but is usually in the range of 10 to 200 ° C.
- a reaction method a known method can be appropriately selected and used, and is not particularly limited.
- reaction method may be a method in which the compound represented by the above formula (1), the aldehydes, and the catalyst are charged together, or the above formula ( Examples thereof include a method in which the compound represented by 1) and aldehydes are dropped in the presence of a catalyst.
- the obtained compound can be isolated according to a conventional method, and is not particularly limited.
- a general method such as raising the temperature of the reaction vessel to 130-230 ° C. and removing volatile components at a pressure of about 1-50 mmHg, etc. By adopting, it is possible to obtain a novolak resin that is the target product.
- the resin in the present embodiment may be a homopolymer of the compound represented by the above formula (1), or may be a copolymer with other phenols.
- the copolymerizable phenols include phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol, Although propylphenol, pyrogallol, thymol, etc. are mentioned, it is not specifically limited to these.
- the resin in the present embodiment may be copolymerized with a polymerizable monomer other than the above-described phenols.
- polymerizable monomers include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4 -Vinylcyclohexene, norbornadiene, vinylnorbornaene, pinene, limonene and the like are mentioned, but not limited thereto.
- the resin in this embodiment may be a copolymer of two or more (for example, a quaternary system) of the compound represented by the above formula (1) and the above-described phenols.
- it may be a ternary or more (for example, ternary to quaternary) copolymer of the above-mentioned copolymerization monomer.
- the molecular weight of the resin in the present embodiment is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) is preferably 500 to 30,000, more preferably 750 to 20,000. When the molecular weight of the resin is 500 or more, the film formability tends to be improved, and when it is 30,000 or less, the solubility tends to be improved. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the baking, the degree of dispersion of the resin (weight average molecular weight Mw / number average molecular weight Mn) is preferably in the range of 1.2 to 7.0. In addition, the said molecular weight and dispersion degree can be calculated
- the resist composition in this embodiment contains the resist base material and a solvent.
- the content of each component is preferably 1 to 80% by mass of the solid component and 20 to 99% by mass of the solvent, more preferably 1 to 50% by mass of the solid component and 50 to 99% by mass of the solvent, and further preferably.
- the solid component is 2 to 40% by mass and the solvent is 60 to 98% by mass, particularly preferably 2 to 10% by mass and the solvent is 90 to 98% by mass.
- the solid component is the sum of solid components such as the resist base material (A), the acid generator (C), the acid crosslinking agent (G), the acid diffusion controller (E), and other optional components (F). means.
- the content of the resist substrate in the resist composition in the present embodiment is preferably 50 to 99.4% by mass, more preferably 55 to 90% by mass, and further preferably 60 to 80% by total weight of the solid component. % By mass, particularly preferably 60 to 70% by mass.
- the solvent contained in the resist composition of the present embodiment is not particularly limited.
- ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, ethylene glycol mono-n- Ethylene glycol monoalkyl ether acetates such as butyl ether acetate; ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol mono-n- Propyl ether acetate, propylene glycol mono-n-butyl ether acetate Propylene glycol monoalkyl ether acetates such as propylene glycol; propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether and propylene glycol monoeth
- the resist composition of the present embodiment is directly or indirectly by irradiation with any radiation selected from the group consisting of visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet light (EUV), X-ray, and ion beam. It is preferable to include one or more acid generators (C) that generate an acid.
- the content of the acid generator (C) is preferably 0.001 to 49% by mass, more preferably 1 to 40% by mass, and more preferably 3 to 30% by mass based on the total weight of the solid components. Further preferred is 10 to 25% by mass. When the content of the acid generator is in the above range, a high sensitivity and low edge roughness pattern profile tends to be obtained.
- the method for generating the acid is not particularly limited.
- an excimer laser is used instead of ultraviolet rays such as g-line and i-line, finer processing is possible.
- an electron beam, extreme ultraviolet rays, X-rays, or an ion beam is used as a high energy beam, further fine processing becomes possible.
- the acid generator (C) is preferably at least one selected from the group consisting of compounds represented by the following formulas (7-1) to (7-8).
- R 13 may be the same or different and each independently represents a hydrogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group.
- X 2 ⁇ is a sulfonate ion or a halide ion having an alkyl group, an aryl group, a halogen-substituted alkyl group or a halogen-substituted aryl group.
- Examples of the compound represented by the formula (7-1) include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, diphenyltolylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium perfluoro- n-octane sulfonate, diphenyl-4-methylphenylsulfonium trifluoromethanesulfonate, di-2,4,6-trimethylphenylsulfonium trifluoromethanesulfonate, diphenyl-4-t-butoxyphenylsulfonium trifluoromethanesulfonate, diphenyl-4-t- Butoxyphenylsulfonium nonafluoro-n-butanesulfonate, diphenyl-4-hydroxyphenylsulfonium trifluoro Tan
- R 14 may be the same or different and each independently represents a hydrogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group. Represents a hydroxyl group or a halogen atom.
- X ⁇ is the same as described above.
- Examples of the compound represented by the formula (7-2) include bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate, bis (4 -T-butylphenyl) iodonium perfluoro-n-octanesulfonate, bis (4-t-butylphenyl) iodonium-p-toluenesulfonate, bis (4-t-butylphenyl) iodoniumbenzenesulfonate, bis (4-t- Butylphenyl) iodonium-2-trifluoromethylbenzenesulfonate, bis (4-tert-butylphenyl) iodonium-4-trifluoromethylbenzenesulfonate, bis (4-tert-butylphenyl) iodonium-2,4
- Q is an alkylene group, an arylene group or an alkoxylene group
- R 15 is an alkyl group, an aryl group, a halogen-substituted alkyl group or a halogen-substituted aryl group.
- Examples of the compound represented by the formula (7-3) include N- (trifluoromethylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N -(Trifluoromethylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) naphthylimide, N- (10-camphorsulfonyl) Oxy) succinimide, N- (10-camphorsulfonyloxy) phthalimide, N- (10-camphorsulfonyloxy) diphenylmaleimide, N- (10-camphorsulfonyloxy) bicyclo [2.2.1] hept-5-ene -2,3-Dicarboxyimi N- (10-camphorsulfony
- R 16 may be the same or different and each independently represents an optionally substituted linear, branched or cyclic alkyl group, an optionally substituted aryl group, and optionally substituted. Heteroaryl groups or optionally substituted aralkyl groups.
- Examples of the compound represented by the formula (7-4) include diphenyl disulfone, di (4-methylphenyl) disulfone, dinaphthyl disulfone, di (4-tert-butylphenyl) disulfone, and di (4-hydroxyphenyl). ) At least one selected from the group consisting of disulfone, di (3-hydroxynaphthyl) disulfone, di (4-fluorophenyl) disulfone, di (2-fluorophenyl) disulfone and di (4-trifluoromethylphenyl) disulfone Preferably there is.
- R 17 may be the same or different and each independently represents an optionally substituted linear, branched or cyclic alkyl group, an optionally substituted aryl group, and optionally substituted. Heteroaryl groups or optionally substituted aralkyl groups.
- Examples of the compound represented by the formula (7-5) include ⁇ - (methylsulfonyloxyimino) -phenylacetonitrile, ⁇ - (methylsulfonyloxyimino) -4-methoxyphenylacetonitrile, ⁇ - (trifluoromethylsulfonyloxy).
- R 18 may be the same or different and each independently represents a halogenated alkyl group having one or more chlorine atoms and / or bromine atoms.
- the halogenated alkyl group preferably has 1 to 5 carbon atoms.
- R 19 and R 20 each independently represent a methyl group, an ethyl group, n- propyl group, an alkyl group of 1 to 3 carbon atoms such as isopropyl group; A cycloalkyl group such as a cyclopentyl group and a cyclohexyl group; an alkoxyl group having 1 to 3 carbon atoms such as a methoxy group, an ethoxy group and a propoxy group; an aryl group such as a phenyl group, a toluyl group and a naphthyl group, preferably a carbon number 6 to 10 aryl groups.
- L 19 and L 20 are each independently an organic group having a 1,2-naphthoquinonediazide group.
- Specific examples of the organic group having a 1,2-naphthoquinonediazide group include a 1,2-naphthoquinonediazide-4-sulfonyl group, a 1,2-naphthoquinonediazide-5-sulfonyl group, and a 1,2-naphthoquinonediazide-
- a 1,2-quinonediazidosulfonyl group such as a 6-sulfonyl group is preferred, and a 1,2-naphthoquinonediazide-4-sulfonyl group and a 1,2-naphthoquinonediazide-5-sulfonyl group are more preferred.
- J 19 is a single bond, a polymethylene group having 1 to 4 carbon atoms, a cycloalkylene group, a phenylene group, a group represented by the following formula (7-7-1), a carbonyl group, an ester group, an amide group or an ether group, Y 19 is a hydrogen atom, an alkyl group or an aryl group, X 20 is independently a group represented by the following formula (7-8-1).
- Z 22 each independently represents an alkyl group, a cycloalkyl group or an aryl group
- R 22 represents an alkyl group, a cycloalkyl group or an alkoxyl group
- r is 0 to 3 Is an integer.
- Other acid generators include bis (p-toluenesulfonyl) diazomethane, bis (2,4-dimethylphenylsulfonyl) diazomethane, bis (tert-butylsulfonyl) diazomethane, bis (n-butylsulfonyl) diazomethane, bis (isobutyl) Sulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, 1,3-bis (cyclohexylsulfonylazomethylsulfonyl) propane, 1, 4-bis (phenylsulfonylazomethylsulfonyl) butane, 1,6-bis (phen
- an acid generator having an aromatic ring is preferable, and an acid generator represented by the formula (7-1) or (7-2) is more preferable.
- An acid generator having a sulfonate ion having an aryl group or a halogen-substituted aryl group as X ⁇ in formula (7-1) or (7-2) is more preferred, and an acid generator having a sulfonate ion having an aryl group Are particularly preferable, and diphenyltrimethylphenylsulfonium-p-toluenesulfonate, triphenylsulfonium-p-toluenesulfonate, triphenylsulfonium trifluoromethanesulfonate, and triphenylsulfonium nonafluoromethanesulfonate are particularly preferable.
- line edge roughness (LER) tends to be reduced.
- the acid generator (C) may be used alone or in combination of two
- the resist composition of this embodiment preferably contains one or more acid crosslinking agents (G).
- the acid crosslinking agent (G) is a compound that can crosslink the compound represented by the formula (1) within a molecule or between molecules in the presence of an acid generated from the acid generator (C).
- Examples of such an acid crosslinking agent (G) include compounds having one or more groups (hereinafter referred to as “crosslinkable groups”) capable of crosslinking the compound represented by the formula (1). it can.
- crosslinkable group examples include (i) hydroxyalkyl groups such as hydroxy (C1-C6 alkyl group), C1-C6 alkoxy (C1-C6 alkyl group), acetoxy (C1-C6 alkyl group) and the like.
- a group derived therefrom (ii) a carbonyl group such as formyl group, carboxy (C1-C6 alkyl group) or a group derived therefrom; (iii) a dimethylaminomethyl group, a diethylaminomethyl group, a dimethylolaminomethyl group; Group, nitrogen-containing group such as diethylolaminomethyl group and morpholinomethyl group; (iv) glycidyl group-containing group such as glycidyl ether group, glycidyl ester group and glycidylamino group; C1-C6 allyloxy (C1-C6 alkyl group such as methyl group) , Groups derived from an aromatic group such as a C1-C6 aralkyloxy (C1-C6 alkyl group); can be exemplified (vi) vinyl group, polymerizable multiple bond-containing groups such as isopropenyl group.
- Examples of the acid crosslinking agent (G) having a crosslinkable group include (i) a methylol group-containing melamine compound, a methylol group-containing benzoguanamine compound, a methylol group-containing urea compound, a methylol group-containing glycoluril compound, and a methylol group-containing phenol compound. (Ii) alkoxyalkyl group-containing melamine compounds, alkoxyalkyl group-containing benzoguanamine compounds, alkoxyalkyl group-containing urea compounds, alkoxyalkyl group-containing glycoluril compounds, alkoxyalkyl group-containing phenol compounds, etc.
- the acid crosslinking agent (G) compounds having phenolic hydroxyl groups, and compounds and resins imparted with crosslinking properties by introducing the crosslinking groups into acidic functional groups in the alkali-soluble resin can be used.
- the introduction rate of the crosslinkable group is usually 5 to 100 mol%, preferably 10 to 60 mol%, more preferably, based on the total acidic functional group in the compound having a phenolic hydroxyl group and the alkali-soluble resin. 15 to 40 mol%.
- the acid crosslinking agent (G) is preferably an alkoxyalkylated urea compound or a resin thereof, or an alkoxyalkylated glycoluril compound or a resin thereof.
- Particularly preferred acid crosslinking agents (G) include compounds represented by the following formulas (8-1) to (8-3) and alkoxymethylated melamine compounds (acid crosslinking agent (G1)).
- R 7 each independently represents a hydrogen atom, an alkyl group or an acyl group
- R 8 to R 11 each independently represent a hydrogen atom, a hydroxyl group, Represents an alkyl group or an alkoxyl group
- X 2 represents a single bond, a methylene group or an oxygen atom
- the alkyl group represented by R 7 is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
- the acyl group represented by R 7 is preferably an acyl group having 2 to 6 carbon atoms, more preferably an acyl group having 2 to 4 carbon atoms, and examples thereof include an acetyl group and a propionyl group.
- the alkyl group represented by R 8 to R 11 is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
- the alkoxyl group represented by R 8 to R 11 is preferably an alkoxyl group having 1 to 6 carbon atoms, more preferably an alkoxyl group having 1 to 3 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, and a propoxy group.
- X 2 is preferably a single bond or a methylene group.
- R 7 to R 11 and X 2 may be substituted with an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, a hydroxyl group, or a halogen atom.
- the plurality of R 7 and R 8 to R 11 may be the same or different.
- Specific examples of the compound represented by the formula (8-2) include N, N, N, N-tetra (methoxymethyl) glycoluril, N, N, N, N-tetra (ethoxymethyl), and the like.
- N, N, N, N-tetra (methoxymethyl) glycoluril is particularly preferable.
- alkoxymethylated melamine compound examples include N, N, N, N, N, N-hexa (methoxymethyl) melamine, N, N, N, N, N-hexa (ethoxymethyl).
- N, N, N, N, N, N-hexa (methoxymethyl) melamine is particularly preferable.
- the acid crosslinking agent (G1) is, for example, an ether compound with a lower alcohol such as methyl alcohol, ethyl alcohol, propyl alcohol, or butyl alcohol after introducing a methylol group by condensation reaction of formalin with a urea compound or glycoluril compound. Then, the reaction solution is cooled and the precipitated compound or its resin is recovered.
- a lower alcohol such as methyl alcohol, ethyl alcohol, propyl alcohol, or butyl alcohol
- acid cross-linking agents (G) include 1 to 6 benzene rings in the molecule and two or more hydroxyalkyl groups and / or alkoxyalkyl groups in the molecule.
- a phenol derivative in which a group and / or an alkoxyalkyl group is bonded to any one of the benzene rings can be mentioned (acid crosslinking agent (G2)).
- the molecular weight is 1500 or less, 1 to 6 benzene rings in the molecule, and 2 or more hydroxyalkyl groups and / or alkoxyalkyl groups in combination, the hydroxyalkyl groups and / or alkoxy groups.
- Phenol derivatives in which an alkyl group is bonded to any one or more of the benzene rings are preferred.
- hydroxyalkyl group bonded to the benzene ring those having 1 to 6 carbon atoms such as hydroxymethyl group, 2-hydroxyethyl group, and 2-hydroxy-1-propyl group are preferable.
- the alkoxyalkyl group bonded to the benzene ring is preferably one having 2 to 6 carbon atoms. Specifically, methoxymethyl group, ethoxymethyl group, n-propoxymethyl group, isopropoxymethyl group, n-butoxymethyl group, isobutoxymethyl group, sec-butoxymethyl group, t-butoxymethyl group, 2-methoxy An ethyl group or a 2-methoxy-1-propyl group is preferable.
- L 1 to L 8 may be the same or different and each independently represents a hydroxymethyl group, a methoxymethyl group or an ethoxymethyl group.
- a phenol derivative having a hydroxymethyl group can be obtained by reacting a corresponding phenol compound having no hydroxymethyl group (a compound in which L 1 to L 8 are hydrogen atoms in the above formula) with formaldehyde in the presence of a base catalyst. It can. Under the present circumstances, it is preferable to make reaction temperature into 60 degrees C or less from a viewpoint of preventing resinification and gelatinization. Specifically, it can be synthesized according to the methods described in JP-A-6-282067, JP-A-7-64285 and the like.
- a phenol derivative having an alkoxymethyl group can be obtained by reacting a corresponding phenol derivative having a hydroxymethyl group with an alcohol in the presence of an acid catalyst. Under the present circumstances, it is preferable to make reaction temperature into 100 degrees C or less from a viewpoint of preventing resinification and gelatinization. Specifically, it can be synthesized according to the method described in EP632003A1 and the like.
- the phenol derivative having a hydroxymethyl group and / or alkoxymethyl group synthesized in this manner is excellent in stability during storage, but the phenol derivative having an alkoxymethyl group is further excellent in stability during storage. It is particularly preferable because of its tendency.
- the acid crosslinking agent (G2) may be used alone or in combination of two or more.
- acid crosslinking agents (G) include compounds having at least one ⁇ -hydroxyisopropyl group (acid crosslinking agent (G3)).
- the structure is not particularly limited as long as it has an ⁇ -hydroxyisopropyl group.
- the hydrogen atom of the hydroxyl group in the ⁇ - hydroxy isopropyl group one or more acid-dissociable groups (R-COO- group, R-SO 2 - group, wherein R is a C1-12 Linear hydrocarbon group, cyclic hydrocarbon group having 3 to 12 carbon atoms, alkoxy group having 1 to 12 carbon atoms, 1-branched alkyl group having 3 to 12 carbon atoms, and aromatic hydrocarbon having 6 to 12 carbon atoms It represents a substituent selected from the group consisting of groups.
- Examples of the compound having an ⁇ -hydroxyisopropyl group include substituted or unsubstituted aromatic compounds, diphenyl compounds, naphthalene compounds, and furan compounds containing at least one ⁇ -hydroxyisopropyl group.
- a compound represented by the following formula (9-1) hereinafter referred to as “benzene compound (1)”
- a compound represented by the following formula (9-2) hereinafter referred to as “ Diphenyl compound (2) ”
- a compound represented by the following formula (9-3) hereinafter referred to as“ naphthalene compound (3)
- a compound represented by the following formula (9-4) a compound represented by the following formula (9-4).
- each A 2 independently represents an ⁇ -hydroxyisopropyl group or a hydrogen atom, and at least one A 2 is an ⁇ -hydroxyisopropyl group.
- R 51 represents a hydrogen atom, a hydroxyl group, a linear or branched alkylcarbonyl group having 2 to 6 carbon atoms, or a linear or branched alkoxy group having 2 to 6 carbon atoms. Represents a carbonyl group.
- R 52 represents a single bond, a linear or branched alkylene group having 1 to 5 carbon atoms, —O—, —CO— or —COO—.
- R 53 and R 54 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms.
- benzene compound (1) examples include ⁇ -hydroxyisopropylbenzene, 1,3-bis ( ⁇ -hydroxyisopropyl) benzene, 1,4-bis ( ⁇ -hydroxyisopropyl) benzene, 1 ⁇ -hydroxyisopropylbenzenes such as 1,2,4-tris ( ⁇ -hydroxyisopropyl) benzene, 1,3,5-tris ( ⁇ -hydroxyisopropyl) benzene; 3- ⁇ -hydroxyisopropylphenol, 4- ⁇ -hydroxy ⁇ -hydroxyisopropylphenols such as isopropylphenol, 3,5-bis ( ⁇ -hydroxyisopropyl) phenol, 2,4,6-tris ( ⁇ -hydroxyisopropyl) phenol; 3- ⁇ -hydroxyisopropylphenyl methyl ketone, 4 - ⁇ -Hydroxyisopro Ruphenyl methyl ketone, 4- ⁇ -hydroxyisopropyl phenyl ethyl ketone, 4- ⁇ -hydroxy
- diphenyl compound (2) examples include 3- ⁇ -hydroxyisopropylbiphenyl, 4- ⁇ -hydroxyisopropylbiphenyl, 3,5-bis ( ⁇ -hydroxyisopropyl) biphenyl, 3, 3′-bis ( ⁇ -hydroxyisopropyl) biphenyl, 3,4′-bis ( ⁇ -hydroxyisopropyl) biphenyl, 4,4′-bis ( ⁇ -hydroxyisopropyl) biphenyl, 2,4,6-tris ( ⁇ - Hydroxyisopropyl) biphenyl, 3,3 ′, 5-tris ( ⁇ -hydroxyisopropyl) biphenyl, 3,4 ′, 5-tris ( ⁇ -hydroxyisopropyl) biphenyl, 2,3 ′, 4,6, -tetrakis ( ⁇ -Hydroxyisopropyl) biphenyl, 2,4,4 ', 6, -tetrakis ( ⁇ -hydroxy Isopropyl) biphenyl, 3,3 ′ ′
- naphthalene compound (3) examples include 1- ( ⁇ -hydroxyisopropyl) naphthalene, 2- ( ⁇ -hydroxyisopropyl) naphthalene, and 1,3-bis ( ⁇ -hydroxyisopropyl).
- furan compound (4) examples include 3- ( ⁇ -hydroxyisopropyl) furan, 2-methyl-3- ( ⁇ -hydroxyisopropyl) furan, 2-methyl-4- ( ⁇ -hydroxyisopropyl) furan, 2-ethyl-4- ( ⁇ -hydroxyisopropyl) furan, 2-n-propyl-4- ( ⁇ -hydroxyisopropyl) furan, 2-isopropyl-4- ( ⁇ -hydroxyisopropyl) furan 2-n-butyl-4- ( ⁇ -hydroxyisopropyl) furan, 2-t-butyl-4- ( ⁇ -hydroxyisopropyl) furan, 2-n-pentyl-4- ( ⁇ -hydroxyisopropyl) furan, 2 , 5-Dimethyl-3- ( ⁇ -hydroxyisopropyl) furan, 2,5-diethyl-3- ( ⁇ -hydroxyisopropyl) Furan, 3,4-bis ( ⁇ -hydroxyisopropyl) furan, 2,5-dimethyl-3,4-
- the acid cross-linking agent (G3) is preferably a compound having two or more free ⁇ -hydroxyisopropyl groups, the benzene compound (1) having two or more ⁇ -hydroxyisopropyl groups, and an ⁇ -hydroxyisopropyl group. More preferably, the diphenyl compound (2) having two or more and the naphthalene compound (3) having two or more ⁇ -hydroxyisopropyl groups, ⁇ -hydroxyisopropylbiphenyls having two or more ⁇ -hydroxyisopropyl groups, A naphthalene compound (3) having two or more ⁇ -hydroxyisopropyl groups is particularly preferred.
- the acid cross-linking agent (G3) is usually obtained by a method in which a acetyl group-containing compound such as 1,3-diacetylbenzene is reacted with a Grignard reagent such as CH 3 MgBr to be methylated and then hydrolyzed. It can be obtained by a method in which an isopropyl group-containing compound such as diisopropylbenzene is oxidized with oxygen or the like to generate a peroxide and then reduced.
- the content of the acid crosslinking agent (G) is preferably 0.5 to 49% by mass, more preferably 0.5 to 40% by mass based on the total weight of the solid component. More preferably, it is more preferably 2 to 20% by weight.
- the content of the acid crosslinking agent (G) is 0.5% by mass or more, the effect of suppressing the solubility of the resist film in an alkaline developer is improved, the remaining film rate is decreased, the pattern is swollen or meandered
- the amount is 49% by mass or less, a decrease in heat resistance as a resist tends to be suppressed.
- the blending ratio of at least one compound selected from the acid crosslinking agent (G1), the acid crosslinking agent (G2), and the acid crosslinking agent (G3) in the acid crosslinking agent (G) is not particularly limited. Various ranges can be set depending on the type of substrate used when forming the resist pattern.
- the ratio of the alkoxymethylated melamine compound and / or the compound represented by formula (9-1) to formula (9-3) in the total acid crosslinking agent component is preferably 50 to 99% by mass, More preferred is 60 to 99% by mass, still more preferred is 70 to 98% by mass, and particularly preferred is 80 to 97% by mass.
- the resolution tends to be improved by setting the proportion of the alkoxymethylated melamine compound and / or the compounds represented by the formulas (9-1) to (9-3) to 50% by mass or more of the total acid crosslinking agent component. In the case of 99% by mass or less, it becomes easy to obtain a rectangular cross-sectional shape as the pattern cross-sectional shape.
- the resist composition of this embodiment may contain an acid diffusion controller (E).
- the acid diffusion control agent (E) has an action of controlling undesired chemical reaction in the unexposed region by controlling the diffusion of the acid generated from the acid generator in the resist film by irradiation.
- the storage stability of the resist composition tends to be improved.
- the resolution is improved, and a change in the line width of the resist pattern due to fluctuations in the holding time before radiation irradiation and the holding time after radiation irradiation can be suppressed, and the process stability tends to be improved.
- Examples of such an acid diffusion controller (E) include radiolytically decomposable basic compounds such as a nitrogen atom-containing basic compound, a basic sulfonium compound, and a basic iodonium compound.
- the acid diffusion controller (E) can be used alone or in combination of two or more.
- Examples of the acid diffusion controller include nitrogen-containing organic compounds and basic compounds that are decomposed by exposure.
- Examples of the nitrogen-containing organic compound include the following formula (10):
- nitrogen-containing compound (I) a diamino compound having two nitrogen atoms in the same molecule
- nitrogen-containing compound (II) a diamino compound having two nitrogen atoms in the same molecule
- nitrogen-containing compound (II) a diamino compound having two nitrogen atoms in the same molecule
- nitrogen-containing compound (III) polyamino compounds and polymers having three or more compounds
- nitrogen-containing compound (III) examples thereof include polyamino compounds and polymers having three or more compounds
- amide group-containing compounds amide group-containing compounds
- urea compounds urea compounds
- nitrogen-containing heterocyclic compounds nitrogen-containing heterocyclic compounds
- an acid diffusion control agent (E) may be used individually by 1 type, and may use 2 or more types together.
- R 61 , R 62 and R 63 each independently represent a hydrogen atom, a linear, branched or cyclic alkyl group, an aryl group or an aralkyl group.
- the alkyl group, aryl group or aralkyl group may be unsubstituted or substituted with a hydroxyl group or the like.
- examples of the linear, branched or cyclic alkyl group include an alkyl group having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, and specifically include a methyl group, an ethyl group, and an n group.
- aryl group examples include aryl groups having 6 to 12 carbon atoms, and specific examples include a phenyl group, a tolyl group, a xylyl group, a cumenyl group, and a 1-naphthyl group.
- examples of the aralkyl group include aralkyl groups having 7 to 19 carbon atoms, preferably 7 to 13 carbon atoms, and specific examples include benzyl group, ⁇ -methylbenzyl group, phenethyl group, naphthylmethyl group and the like. .
- nitrogen-containing compound (I) examples include mono- compounds such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, n-dodecylamine, cyclohexylamine and the like.
- (Cyclo) alkylamines di-n-butylamine, di-n-pentylamine, di-n-hexylamine, di-n-heptylamine, di-n-octylamine, di-n-nonylamine, di-n -Di (cyclo) alkylamines such as decylamine, methyl-n-dodecylamine, di-n-dodecylmethyl, cyclohexylmethylamine, dicyclohexylamine; triethylamine, tri-n-propylamine, tri-n-butylamine, tri- n-pentylamine, tri-n-hexylamine, tri-n-heptylami , Tri-n-octylamine, tri-n-nonylamine, tri-n-decylamine, dimethyl-n-dodecylamine, di-n-dodecylmethylamine, dicycl
- Alkanolamines such as monoethanolamine, diethanolamine, triethanolamine; aniline, N-methylaniline, N, N-dimethylaniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 4-nitroaniline
- aromatic amines such as diphenylamine, triphenylamine and 1-naphthylamine.
- nitrogen-containing compound (II) examples include ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetrakis (2-hydroxypropyl), and the like.
- nitrogen-containing compound (III) examples include polyethyleneimine, polyallylamine, and N- (2-dimethylaminoethyl) acrylamide polymer.
- amide group-containing compound examples include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, pyrrolidone, N-methylpyrrolidone and the like can be mentioned.
- urea compound examples include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, And tri-n-butylthiourea.
- nitrogen-containing heterocyclic compound examples include imidazoles such as imidazole, benzimidazole, 4-methylimidazole, 4-methyl-2-phenylimidazole, 2-phenylbenzimidazole; Methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, 2-methyl-4-phenylpyridine, nicotine, nicotinic acid, nicotinamide, quinoline, 8- Pyridines such as oxyquinoline and acridine; and pyrazine, pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, morpholine, 4-methylmorpholine, piperazine, 1,4-dimethylpiperazine, 1,4-diazabicyclo [2.2 .2] Octa And the like can be given.
- imidazoles such as imidazole, benzimidazole,
- radiolytic basic compound examples include, for example, the following formula (11-1):
- R 71 , R 72 , R 73 , R 74 and R 75 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, 1 to 6 alkoxyl groups, hydroxyl groups or halogen atoms are represented.
- Z ⁇ represents HO ⁇ , R—COO ⁇ (wherein R represents an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 11 carbon atoms, or an alkaryl group having 7 to 12 carbon atoms) or the following formula ( 11-3):
- the radiation-decomposable basic compound examples include triphenylsulfonium hydroxide, triphenylsulfonium acetate, triphenylsulfonium salicylate, diphenyl-4-hydroxyphenylsulfonium hydroxide, and diphenyl-4-hydroxy.
- the content of the acid diffusion controller (E) is preferably 0.001 to 49% by mass, more preferably 0.01 to 10% by mass, and more preferably 0.01 to 5% by mass based on the total weight of the solid component. % Is more preferable, and 0.01 to 3% by mass is particularly preferable.
- the content of the acid diffusion controller is within the above range, it tends to be possible to prevent degradation of resolution, pattern shape, dimensional fidelity, and the like. Furthermore, even if the holding time from electron beam irradiation to heating after radiation irradiation becomes long, the shape of the pattern upper layer portion is less likely to deteriorate.
- the resist composition of the present embodiment includes, as necessary, other components (F) as a dissolution accelerator, a dissolution controller, a sensitizer, a surfactant, and the like, as long as the effects of the present invention are not impaired.
- Various additives such as organic carboxylic acids or phosphorus oxo acids or derivatives thereof may be contained alone or in combination.
- the low-molecular-weight dissolution accelerator increases the solubility of the compound represented by formula (1) in the developer when the solubility in the developer is too low, and has an effect of appropriately increasing the dissolution rate of the compound during development. It is a component that has.
- the dissolution accelerator include low molecular weight phenolic compounds such as bisphenols and tris (hydroxyphenyl) methane. These dissolution promoters can be used alone or in admixture of two or more.
- the content of the dissolution accelerator is appropriately adjusted according to the type of the compound, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, based on the total weight of the solid component. It is more preferably ⁇ 1% by mass, particularly preferably 0% by mass.
- the dissolution control agent is a component having an action of controlling the solubility of the compound represented by the formula (1) and appropriately reducing the dissolution rate during development when the solubility in the developer is too high.
- a dissolution control agent those that do not chemically change in steps such as baking of resist film, irradiation with radiation, and development are preferable.
- dissolution control agent examples include aromatic hydrocarbons such as phenanthrene, anthracene, and acenaphthene; ketones such as acetophenone, benzophenone, and phenylnaphthyl ketone; and sulfones such as methylphenylsulfone, diphenylsulfone, and dinaphthylsulfone. be able to.
- These dissolution control agents can be used alone or in combination of two or more.
- the content of the dissolution control agent is appropriately adjusted according to the type of the compound, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, based on the total weight of the solid component. It is more preferably ⁇ 1% by mass, particularly preferably 0% by mass.
- the sensitizer absorbs the energy of the irradiated radiation and transmits the energy to the acid generator (C), thereby increasing the amount of acid generated and improving the apparent sensitivity of the resist. It is a component to be made.
- Examples of such sensitizers include, but are not limited to, benzophenones, biacetyls, pyrenes, phenothiazines, and fluorenes. These sensitizers can be used alone or in combination of two or more.
- the content of the sensitizer is appropriately adjusted depending on the type of the compound, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, based on the total weight of the solid component. It is more preferably ⁇ 1% by mass, particularly preferably 0% by mass.
- the surfactant is a component having an action of improving the coating property and striation of the resist composition of the present embodiment, the developing property of the resist, and the like.
- a surfactant may be anionic, cationic, nonionic or amphoteric.
- a preferred surfactant is a nonionic surfactant. Since the nonionic surfactant has good affinity with the solvent used in the production of the resist composition, the effect becomes more remarkable.
- Specific examples of the nonionic surfactant include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, polyethylene glycol higher fatty acid diesters, and the like, but are not particularly limited thereto.
- the content of the surfactant is appropriately adjusted according to the type of the compound, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, based on the total weight of the solid component. It is more preferably ⁇ 1% by mass, particularly preferably 0% by mass.
- the resist composition of the present embodiment may contain an organic carboxylic acid or an oxo acid of phosphorus or a derivative thereof as an optional component for the purpose of preventing sensitivity deterioration or improving the resist pattern shape, retention stability, etc. Good. These compounds can be used in combination with an acid diffusion controller or may be used alone.
- organic carboxylic acid for example, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are suitable.
- Phosphorus oxoacids or derivatives thereof include phosphoric acid, phosphoric acid di-n-butyl ester, phosphoric acid such as diphenyl phosphate, or derivatives thereof such as phosphonic acid, phosphonic acid dimethyl ester, phosphonic acid di- Derivatives such as n-butyl ester, phenylphosphonic acid, phosphonic acid diphenyl ester, phosphonic acid dibenzyl ester and the like, phosphonic acid or their esters, phosphinic acid, phenylphosphinic acid and the like, and derivatives thereof Among these, phosphonic acid is particularly preferable.
- the organic carboxylic acid or phosphorus oxo acid or derivative thereof can be used alone or in combination of two or more.
- the content of the organic carboxylic acid or phosphorus oxo acid or derivative thereof is appropriately adjusted according to the type of the compound, but is preferably 0 to 49% by mass, preferably 0 to 5% by mass based on the total weight of the solid component. Is more preferably 0 to 1% by mass, particularly preferably 0% by mass.
- additives in the resist composition of the present embodiment, one or more additives other than those described above may be blended as necessary within a range not impairing the effects of the present invention.
- additives include dyes, pigments, and adhesion aids.
- a dye or a pigment when added to the resist composition, the latent image in the exposed area can be visualized to reduce the influence of halation during exposure.
- adhesion assistant when an adhesion assistant is blended, the adhesion to the substrate can be improved.
- examples of other additives include an antihalation agent, a storage stabilizer, an antifoaming agent, and a shape improving agent, and more specifically, 4-hydroxy-4′-methylchalcone and the like.
- the total amount of the optional component (F) is preferably 0 to 49% by mass of the total weight of the solid component, more preferably 0 to 5% by mass, and further preferably 0 to 1% by mass, It is particularly preferable that the content be 0% by mass.
- composition of the resist composition of the present embodiment is based on solid matter. %, Preferably 50 to 99.4 / 0.001 to 49 / 0.5 to 49 / 0.001 to 49/0 to 49, more preferably 55 to 90/1 to 40/0. 5 to 40 / 0.01 to 10/0 to 5, more preferably 60 to 80/3 to 30/1 to 30 / 0.01 to 5/0 to 1, particularly preferably 60 to 70/10 to 25 / 2 to 20 / 0.01 to 3/0.
- the blending ratio of each component is selected from each range so that the sum is 100% by mass. In the case of the above blending ratio, the performance such as sensitivity, resolution and developability tends to be excellent.
- the resist composition of the present embodiment is usually prepared by dissolving each component in a solvent at the time of use to make a uniform solution, and then filtering with a filter having a pore size of about 0.2 ⁇ m, if necessary. .
- the resist composition of the present embodiment can contain a resin as long as the effects of the present invention are not impaired.
- the resin include novolak resins, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resins, and polymers containing acrylic acid, vinyl alcohol, or vinylphenol as monomer units, or derivatives thereof. Can be mentioned.
- the content of these resins is appropriately adjusted according to the type of the resist base material, but is preferably 30 parts by weight or less, more preferably 10 parts by weight or less, further preferably 100 parts by weight of the resist base material. Is 5 parts by mass or less, particularly preferably 0 part by mass.
- the resist composition of this embodiment can form an amorphous film by spin coating.
- the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment in a developer at 23 ° C. is preferably 10 ⁇ / sec or more, more preferably 10 to 10,000 10 / sec, More preferably, it is ⁇ 1000 kg / sec.
- the dissolution rate is 10 ⁇ / sec or more, it is easy to dissolve in the developer and form a resist.
- the dissolution rate is 10,000 kg / sec or less, the resolution tends to be improved. This is because the contrast at the interface between the unexposed portion dissolved in the developer and the exposed portion not dissolved in the developer increases due to the change in solubility of the compound represented by formula (1) before and after exposure. Guessed.
- the dissolution rate is 10000 kg / sec or less, the effects of reducing LER and reducing defects are also observed.
- the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment with a KrF excimer laser, extreme ultraviolet light, electron beam or X-ray radiation at 23 ° C. in a developing solution is 5 ⁇ / sec. Or less, more preferably 0.05 to 5 kg / sec, still more preferably 0.0005 to 5 kg / sec.
- the dissolution rate is 5 ⁇ / sec or less, it is insoluble in the developer and it is easy to form a resist.
- the dissolution rate is 0.0005 K / sec or more, the resolution tends to be improved. This is presumably because the micro surface portion of the compound represented by the above formula (1) is dissolved and LER is reduced. Further, when the dissolution rate is 0.0005 K / sec or more, the effect of reducing defects is also observed.
- the resist pattern forming method includes a step of forming a resist film on a substrate using the resist composition of the present embodiment described above, a step of exposing the formed resist film, and developing the resist film. And a step of forming a resist pattern.
- the resist pattern of this embodiment can also be formed as an upper layer resist in a multilayer process.
- a resist film is formed by applying the resist composition of the present embodiment on a conventionally known substrate by a coating means such as spin coating, cast coating, roll coating or the like.
- the conventionally known substrate is not particularly limited, and examples thereof include a substrate for electronic components and a substrate on which a predetermined wiring pattern is formed. More specifically, a silicon substrate, a metal substrate such as copper, chromium, iron, and aluminum, a glass substrate, and the like can be given. Examples of the wiring pattern material include copper, aluminum, nickel, and gold.
- an inorganic and / or organic film may be provided on the substrate.
- An inorganic antireflection film is an example of the inorganic film.
- the organic film include an organic antireflection film (organic BARC). Further, surface treatment with hexamethylene disilazane or the like may be performed.
- the coated substrate is heated as necessary.
- the heating conditions vary depending on the composition of the resist composition, etc., but are preferably in the range of 20 to 250 ° C., more preferably 20 to 150 ° C.
- the adhesion of the resist to the substrate tends to be improved.
- the resist film is exposed to a desired pattern with any radiation selected from the group consisting of visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet light (EUV), X-ray, and ion beam.
- the exposure conditions and the like are appropriately selected according to the composition of the resist composition. In the present embodiment, it is preferable to heat after radiation irradiation in order to stably form a high-precision fine pattern in exposure.
- the heating conditions vary depending on the composition of the resist composition, etc., but are preferably in the range of 20 to 250 ° C., more preferably 20 to 150 ° C.
- a predetermined resist pattern is formed by developing the exposed resist film with a developer.
- a solvent having a solubility parameter (SP value) close to the compound of the formula (1) it is preferable to select a solvent having a solubility parameter (SP value) close to the compound of the formula (1) to be used.
- SP value solubility parameter
- ketone solvents, ester solvents, alcohol solvents, amide solvents , Polar solvents such as ether solvents, hydrocarbon solvents, or aqueous alkali solutions can be used.
- ketone solvent examples include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, phenylacetone, methyl ethyl ketone.
- ester solvents include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3 -Ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl formate, ethyl formate, butyl formate, propyl formate, ethyl lactate, butyl lactate, propyl lactate and the like.
- the alcohol solvent examples include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol (2-propanol), n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, Alcohols such as 4-methyl-2-pentanol, n-heptyl alcohol, n-octyl alcohol, n-decanol, glycol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, triethylene Glycol monoethyl ether, and triethylene glycol monoethyl ether and methoxymethyl butanol.
- Alcohols such as 4-methyl-2-pentanol, n-heptyl alcohol, n
- ether solvent examples include dioxane, tetrahydrofuran and the like in addition to the glycol ether solvent.
- amide solvents include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone and the like. Can be mentioned.
- hydrocarbon solvent examples include aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, octane and decane.
- the above solvents may be used singly or as a mixture of plural solvents, or may be used by mixing with other solvents or water within the range having the performance as a developer.
- the water content of the developer as a whole is preferably less than 70% by mass, more preferably less than 50% by mass, and less than 30% by mass. More preferably, it is even more preferable that it is less than 10 mass%, and it is especially preferable not to contain water
- alkaline aqueous solution examples include alkaline compounds such as mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), and choline. Can be mentioned.
- alkaline compounds such as mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), and choline. Can be mentioned.
- the developer contains at least one solvent selected from ketone solvents, ester solvents, alcohol solvents, amide solvents and ether solvents. This is preferable because the resist performance tends to be improved.
- the vapor pressure of the developer is preferably 5 kPa or less, more preferably 3 kPa or less, and even more preferably 2 kPa or less at 20 ° C.
- Examples of those having a vapor pressure of 5 kPa or less at 20 ° C. include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, and phenylacetone.
- Ketone solvents such as methyl isobutyl ketone; butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropionate, 3 -Methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, butyl formate, propyl formate, ethyl lactate, butyl lactate, lactate pro Ester solvents such as n-propyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, 4-methyl-2-pentanol, n-heptyl Alcohol solvents such as alcohol, n-
- Examples of those having a vapor pressure of 2 kPa or less at 20 ° C. include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, and phenylacetone.
- Ketone solvents such as: butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropionate, 3-methoxybutyl acetate Ester solvents such as 3-methyl-3-methoxybutyl acetate, ethyl lactate, butyl lactate and propyl lactate; n-butyl alcohol, se Alcohol solvents such as butyl alcohol, tert-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, 4-methyl-2-pentanol, n-heptyl alcohol, n-octyl alcohol, n-decanol; ethylene glycol, diethylene glycol, Glycol solvents such as triethylene glycol; glycol ethers such as ethylene
- the surfactant is not particularly limited, and for example, an ionic or nonionic fluorine-based and / or silicon-based surfactant can be used.
- fluorine and / or silicon surfactants include, for example, JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950.
- a nonionic surfactant is preferable, and a fluorine-based surfactant or a silicon-based surfactant is more preferable.
- the amount of the surfactant used is usually from 0.001 to 5% by mass, preferably from 0.005 to 2% by mass, more preferably from 0.01 to 0.5% by mass, based on the total amount of the developer. .
- a development method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle) Method), a method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed (dynamic dispensing method) ) Etc.
- the time for pattern development is not particularly limited, but is preferably 10 seconds to 90 seconds.
- a step of stopping development may be performed while substituting with another solvent.
- the rinse liquid used in the washing step after development is not particularly limited as long as it does not dissolve the resist pattern cured by crosslinking, and a solution or water containing a general organic solvent can be used.
- a rinse liquid containing at least one organic solvent selected from hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents, and ether solvents may be used. More preferably, it is a rinsing liquid containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents and amide solvents, and more preferably alcohol solvents or ester solvents.
- a rinsing liquid containing a solvent even more preferably a rinsing liquid containing a monohydric alcohol, and particularly preferably a rinsing liquid containing a monohydric alcohol having 5 or more carbon atoms.
- the time for the washing step is not particularly limited, but is preferably 10 seconds to 90 seconds.
- examples of the monohydric alcohol used in the washing step after development include linear, branched, and cyclic monohydric alcohols.
- 1-butanol, 2-butanol, 3-methyl- 1-butanol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 1-hexanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, 2-hexanol, cyclopentanol, 2- Heptanol, 2-octanol, 3-hexanol, 3-heptanol, 3-octanol, 4-octanol and the like are particularly preferable monohydric alcohols having 5 or more carbon atoms include 1-hexanol, 2-hexanol, 4-methyl. -2-pentanol, 1-pentanol, 3-methyl-1-butanol, etc.
- Each of the rinsing solutions may be used alone, or may be used by mixing a plurality thereof, or may be used by mixing with an organic solvent other than the above.
- the water content in the rinsing liquid is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less. By setting the water content to 10% by mass or less, better development characteristics tend to be obtained.
- the vapor pressure of the rinsing liquid is preferably 0.05 kPa or more and 5 kPa or less at 20 ° C., more preferably 0.1 kPa or more and 5 kPa or less, and further preferably 0.12 kPa or more and 3 kPa or less. .
- the vapor pressure of the rinsing liquid is preferably 0.05 kPa or more and 5 kPa or less at 20 ° C., more preferably 0.1 kPa or more and 5 kPa or less, and further preferably 0.12 kPa or more and 3 kPa or less.
- An appropriate amount of a surfactant can be added to the rinse solution.
- the developed wafer is cleaned using a rinsing solution containing the organic solvent.
- the cleaning method is not particularly limited. For example, a method of continuously applying a rinsing liquid onto a substrate rotating at a constant speed (rotary coating method), or immersing the substrate in a bath filled with the rinsing liquid for a certain period of time. A method (dip method), a method of spraying a rinsing solution on the substrate surface (spray method), and the like can be applied. Among these, a cleaning process is performed by a spin coating method, and the substrate is rotated at a speed of 2000 to 4000 rpm after cleaning. It is preferable that the rinsing liquid is removed from the substrate by rotation.
- a patterned wiring board can be obtained by etching after forming a resist pattern.
- etching method a known method such as dry etching using a plasma gas or wet etching using an alkali solution, a cupric chloride solution, a ferric chloride solution, or the like can be used.
- plating can also be performed.
- the plating method include copper plating, solder plating, nickel plating, and gold plating.
- the residual resist pattern after etching can be stripped with an organic solvent.
- organic solvent include PGMEA (propylene glycol monomethyl ether acetate), PGME (propylene glycol monomethyl ether), EL (ethyl lactate) and the like.
- peeling method include a dipping method and a spray method.
- the wiring board on which the resist pattern is formed may be a multilayer wiring board or may have a small diameter through hole.
- the wiring board according to the present embodiment can be formed by a method in which after a resist pattern is formed, a metal is vapor-deposited in a vacuum and then the resist pattern is dissolved in a solution, that is, a lift-off method.
- the reaction solution was concentrated and 50 g of heptane was added to precipitate the reaction product. After cooling to room temperature, the solution was filtered and separated. The solid obtained by filtration was dried and then subjected to separation and purification by column chromatography to obtain 4.2 g of the target compound (BiF-I-3) represented by the following formula. It was 586 as a result of measuring molecular weight by the said method about the obtained compound. The following peaks were found by 400 MHz- 1 H-NMR, and confirmed to have a chemical structure of the following formula.
- Example 4 Synthesis of Resin (BiFR-I-1) A four-necked flask with an inner volume of 1 L, which was equipped with a Dimroth condenser, a thermometer, and a stirring blade and capable of bottoming out was prepared. In this four-necked flask, 41.0 g (70 mmol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) of BiF-I-1 obtained in Example 1 and 21.0 g of a 40 mass% formalin aqueous solution (as formaldehyde) were placed in a nitrogen stream.
- the obtained resin (BiFR-I-1) had Mn: 1685, Mw: 3120, and Mw / Mn: 1.85.
- TG thermogravimetry
- the 10% heat loss temperature of the obtained resin (BiFR-I-1) was 300 ° C. or higher. Therefore, it was evaluated that application to high temperature baking was possible.
- the obtained resin (BiFR-I-2) had Mn: 2080, Mw: 3650, and Mw / Mn: 1.75.
- TG thermogravimetry
- the 10% heat loss temperature of the obtained resin (BiFR-I-2) was 300 ° C. or higher. Therefore, it was evaluated that application to high temperature baking was possible.
- a four-necked flask having an internal volume of 0.5 L equipped with a Dimroth condenser, a thermometer, and a stirring blade was prepared.
- This four-necked flask was charged with 100 g (0.51 mol) of the dimethylnaphthalene formaldehyde resin obtained as described above and 0.05 g of paratoluenesulfonic acid under a nitrogen stream, and the temperature was raised to 190 ° C. Stir after heating for hours. Thereafter, 52.0 g (0.36 mol) of 1-naphthol was further added, and the temperature was further raised to 220 ° C. to react for 2 hours.
- the obtained resin (CR-1) was Mn: 885, Mw: 2220, and Mw / Mn: 4.17.
- TG thermogravimetry
- Acid generator (C) P-1 Triphenylbenzenesulfonium trifluoromethanesulfonate (Midori Chemical Co., Ltd.)
- Acid crosslinking agent (G) C-1 Nikarac MW-100LM (Sanwa Chemical Co., Ltd.)
- Q-1 Trioctylamine (Tokyo Chemical Industry Co., Ltd.)
- Solvent S-1 Propylene glycol monomethyl ether (Tokyo Chemical Industry Co., Ltd.)
- Patterning evaluation of resist composition About each resist composition, patterning evaluation was performed in the following procedures. A uniform resist composition was spin-coated on a clean silicon wafer and then pre-exposure baked (PB) in an oven at 110 ° C. to form a resist film having a thickness of 60 nm. The resist film was irradiated with an electron beam of 1: 1 line and space setting at intervals of 50 nm, 40 nm, and 30 nm using an electron beam drawing apparatus (ELS-7500, manufactured by Elionix Co., Ltd.). After the electron beam irradiation, each was heated at a predetermined temperature for 90 seconds, and was developed by being immersed in a TMAH 2.38 mass% alkali developer for 60 seconds.
- ELS-7500 electron beam drawing apparatus
- Examples 1 to 5 have good heat resistance and solubility, but Comparative Example 1 has been confirmed to be inferior in heat resistance and solubility.
- Examples 1 to 5 it was confirmed that there was no precipitation and the storage stability was good (evaluation: ⁇ ).
- the resist of Comparative Example 1 was precipitated and the storage stability was poor (evaluation: x).
- the resist compositions obtained in Examples 1 to 5 had good thin film formation (evaluation: ⁇ ).
- the resist composition obtained in Comparative Example 1 it was confirmed that the film had defects and the thin film formation was poor (evaluation: x).
- the resist base material of this embodiment has higher heat resistance and solubility in a safe solvent than the resist base material containing the comparative compound (CR-1), good storage stability, and formation of a thin film. It can be seen that a good resist pattern shape can be imparted. As long as the above-described requirements of the present invention are satisfied, resist substrates other than those described in the examples also exhibit the same effect.
- the resist base material of the present invention has high heat resistance, high solubility in a safe solvent, excellent storage stability, can form a good thin film, and gives a good resist pattern shape. Therefore, the present invention has industrial applicability in the semiconductor field, display field, photomask, thin film magnetic head, compound semiconductor, research and development, etc. in which resist compositions such as acid amplification type non-polymeric resist materials are used. Have.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Materials For Photolithography (AREA)
- Phenolic Resins Or Amino Resins (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
また、低分子量環状ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物は、半導体製造プロセスに用いられる安全溶媒に対する溶解性が低い、感度が低い、及び得られるレジストパターン形状が悪い等の問題点がある。
上記事情に鑑み、本発明の目的は、耐熱性に優れ、安全溶媒に対する溶解性が高く、保存安定性に優れ、良好な薄膜成形が可能であり、かつ、良好なレジストパターン形状を付与できるレジスト基材、該基材を含有するレジスト組成物、及び該組成物を用いるレジストパターン形成方法を提供することにある。
すなわち、本発明は以下の通りである。
下記式(1)で表される化合物及び/又は前記化合物をモノマーとして得られる樹脂を含有するレジスト基材。
[2]
R2の少なくとも一つ及び/又はR3の少なくとも一つが水酸基及びチオール基から選ばれる1種以上である、上記[1]に記載のレジスト基材。
[3]
前記式(1)で表される化合物が、下記式(1a)で表される化合物である、上記[1]又は[2]に記載のレジスト基材。
[4]
前記式(1a)で表される化合物が、下記式(1b)で表される化合物である、上記[3]に記載のレジスト基材。
[5]
前記式(1b)で表される化合物が、下記式(1c)で表される化合物である、上記[4]に記載のレジスト基材。
[6]
前記式(1c)で表される化合物が、下記式(1d)で表される化合物である、上記[5]に記載のレジスト基材。
[7]
前記樹脂が、前記式(1)で表される化合物と架橋反応性のある化合物とを反応させることによって得られる樹脂である、上記[1]~[6]のいずれかに記載のレジスト基材。
[8]
前記架橋反応性のある化合物が、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート又は不飽和炭化水素基含有化合物である、上記[7]に記載のレジスト基材。
[9]
前記樹脂が、下記式(2)で表される構造を有する、上記[1]に記載のレジスト基材。
[10]
上記[1]~[9]のいずれかに記載のレジスト基材と溶媒とを含有するレジスト組成物。
[11]
酸発生剤をさらに含有する、上記[10]に記載のレジスト組成物。
[12]
酸架橋剤をさらに含有する、上記[10]又は[11]に記載のレジスト組成物。
[13]
レジストパターンの形成方法であって、
上記[10]~[12]のいずれかに記載のレジスト組成物を基板上に塗布してレジスト膜を形成する工程と、
形成されたレジスト膜を露光する工程と、
露光したレジスト膜を現像する工程と、
を含む方法。
本実施形態のレジスト基材は、下記式(1)で表される化合物及び/又は該化合物をモノマーとして得られる樹脂を含有する。本実施形態のレジスト基材は、下記構造を有することにより、耐熱性に優れ、また、溶媒溶解性が高くなるという利点を有する。
但し、上記R1~R5から選ばれる少なくとも一つはヨウ素原子を含む基であり、かつR4の少なくとも一つ及び/又はR5の少なくとも一つは水酸基及びチオール基から選ばれる1種以上である。
なお、本明細書において、「R1~R5から選ばれる少なくとも一つ」とは「R1~R5から選ばれる少なくとも1個の基」を意味し、「R1~R5から選ばれる少なくとも1種の基」を意味するものではない。
nは、1~4の整数である。
p2~p5は各々独立して0~2の整数である。
m2’及びm3’は各々独立して0~4の整数であり、m4’及びm5’は各々独立して0~5の整数である。但し、m4’及びm5’は同時に0となることはない。
m2’及びm3’は各々独立して0~4の整数であり、m4’及びm5’は各々独立して0~5の整数である。但し、m4’及びm5’は同時に0となることはない。
m2’及びm3’は各々独立して0~4の整数であり、m4’及びm5’は各々独立して0~5の整数である。但し、m4’及びm5’は同時に0となることはない。
本実施形態における樹脂は、上記式(1)で表される化合物をモノマーとして得られる樹脂である。該樹脂の具体例として、式(2)で表される構造を有する樹脂が挙げられる。
なお、上記分子量及び分散度は、後述する実施例に記載の方法により求めることができる。
本実施形態におけるレジスト組成物は、前記レジスト基材と溶媒とを含有する。各成分の含有量としては、好ましくは固形成分1~80質量%及び溶媒20~99質量%であり、より好ましくは固形成分1~50質量%及び溶媒50~99質量%であり、さらに好ましくは固形成分2~40質量%及び溶媒60~98質量%であり、特に好ましくは固形成分2~10質量%及び溶媒90~98質量%である。
ここで、固形成分とは、レジスト基材(A)、酸発生剤(C)、酸架橋剤(G)酸拡散制御剤(E)及びその他の任意成分(F)などの固形成分の総和を意味する。
本実施形態のレジスト組成物に含まれる溶媒としては、特に限定されないが、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のプロピレングリコールモノアルキルエーテル類;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル類;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、酢酸n-アミル、酢酸n-ヘキシル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メトキシ-3-メチルプロピオン酸ブチル、3-メトキシ-3-メチル酪酸ブチル、アセト酢酸メチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロペンタノン、シクロヘキサノン等のケトン類;N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ラクトン等のラクトン類等を挙げることができる。これらの溶媒は、単独で用いても、2種以上を併用してもよい。
本実施形態のレジスト組成物は、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線及びイオンビームからなる群から選ばれるいずれかの放射線の照射により直接的又は間接的に酸を発生する酸発生剤(C)を一種以上含むことが好ましい。酸発生剤(C)の含有量は、固形成分全重量の0.001~49質量%であることが好ましく、1~40質量%であることがより好ましく、3~30質量%であることがさらに好ましく、10~25質量%であることが特に好ましい。酸発生剤の含有量が上記範囲にある場合、高感度でかつ低エッジラフネスのパターンプロファイルが得られる傾向にある。本実施形態においては、系内に酸が発生すれば、酸の発生方法は特に限定されず、例えば、g線、i線などの紫外線の代わりにエキシマレーザーを用いた場合、より微細加工が可能となり、また高エネルギー線として電子線、極端紫外線、X線、イオンビームを用いた場合、さらなる微細加工が可能となる。
L19及びL20は、それぞれ独立に、1,2-ナフトキノンジアジド基を有する有機基である。1,2-ナフトキノンジアジド基を有する有機基としては、具体的には、1,2-ナフトキノンジアジド-4-スルホニル基、1,2-ナフトキノンジアジド-5-スルホニル基、1,2-ナフトキノンジアジド-6-スルホニル基等の1,2-キノンジアジドスルホニル基が好ましく、1,2-ナフトキノンジアジド-4-スルホニル基及び1,2-ナフトキノンジアジド-5-スルホニル基がより好ましい。
pは1~3の整数、qは0~4の整数であり、かつ1≦p+q≦5である。
J19は単結合、炭素数1~4のポリメチレン基、シクロアルキレン基、フェニレン基、下記式(7-7-1)で表わされる基、カルボニル基、エステル基、アミド基又はエーテル基であり、
Y19は水素原子、アルキル基又はアリール基であり、
X20は、それぞれ独立に下記式(7-8-1)で表される基である。
上記酸発生剤(C)は、単独で用いても、2種以上を併用してもよい。
本実施形態のレジスト組成物は、酸架橋剤(G)を一種以上含むことが好ましい。酸架橋剤(G)とは、酸発生剤(C)から発生した酸の存在下で、式(1)で表される化合物を分子内又は分子間架橋し得る化合物である。このような酸架橋剤(G)としては、例えば、式(1)で表される化合物を架橋し得る1種以上の基(以下、「架橋性基」という。)を有する化合物を挙げることができる。
本実施形態のレジスト組成物は、酸拡散制御剤(E)を含んでいてもよい。酸拡散制御剤(E)は、放射線照射により酸発生剤から生じた酸のレジスト膜中における拡散を制御して、未露光領域での好ましくない化学反応を阻止する作用等を有する。酸拡散制御剤(E)を含むことにより、レジスト組成物の貯蔵安定性が向上する傾向にある。また解像度が向上するとともに、放射線照射前の引き置き時間、放射線照射後の引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性が向上する傾向にある。このような酸拡散制御剤(E)としては、窒素原子含有塩基性化合物、塩基性スルホニウム化合物、塩基性ヨードニウム化合物等の放射線分解性塩基性化合物が挙げられる。酸拡散制御剤(E)は、単独で用いるか、又は2種以上を併用することができる。
低分子量溶解促進剤は、式(1)で表される化合物の現像液に対する溶解性が低すぎる場合に、その溶解性を高めて、現像時の前記化合物の溶解速度を適度に増大させる作用を有する成分である。前記溶解促進剤としては、例えば、低分子量のフェノール性化合物を挙げることができ、例えば、ビスフェノール類、トリス(ヒドロキシフェニル)メタン等を挙げることができる。これらの溶解促進剤は、単独で又は2種以上を混合して使用することができる。溶解促進剤の含有量は、前記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%であることが好ましく、0~5質量%であることがより好ましく、0~1質量%であることがさらに好ましく、0質量%であることが特に好ましい。
溶解制御剤は、式(1)で表される化合物が現像液に対する溶解性が高すぎる場合に、その溶解性を制御して現像時の溶解速度を適度に減少させる作用を有する成分である。このような溶解制御剤としては、レジスト被膜の焼成、放射線照射、現像等の工程において化学変化しないものが好ましい。
溶解制御剤の含有量は、前記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%であることが好ましく、0~5質量%であることがより好ましく、0~1質量%であることがさらに好ましく、0質量%であることが特に好ましい。
増感剤は、照射された放射線のエネルギーを吸収して、そのエネルギーを酸発生剤(C)に伝達し、それにより酸の生成量を増加する作用を有し、レジストの見掛けの感度を向上させる成分である。このような増感剤としては、例えば、ベンゾフェノン類、ビアセチル類、ピレン類、フェノチアジン類、フルオレン類等を挙げることができるが、特に限定はされない。これらの増感剤は、単独で用いるか、又は2種以上を併用することができる。増感剤の含有量は、前記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%であることが好ましく、0~5質量%であることがより好ましく、0~1質量%であることがさらに好ましく、0質量%であることが特に好ましい。
界面活性剤は、本実施形態のレジスト組成物の塗布性やストリエーション、レジストの現像性等を改良する作用を有する成分である。このような界面活性剤としては、アニオン系、カチオン系、ノニオン系あるいは両性のいずれでもよい。好ましい界面活性剤はノニオン系界面活性剤である。ノニオン系界面活性剤は、レジスト組成物の製造に用いる溶媒との親和性がよいため、その効果がより顕著となる。ノニオン系界面活性剤の具体例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリエチレングリコールの高級脂肪酸ジエステル類等が挙げられるが、これらに特に限定はされない。市販品としては、エフトップ(ジェムコ社製)、メガファック(大日本インキ化学工業社製)、フロラード(住友スリーエム社製)、アサヒガード、サーフロン(以上、旭硝子社製)、ペポール(東邦化学工業社製)、KP(信越化学工業社製)、ポリフロー(共栄社油脂化学工業社製)等を挙げることができる。界面活性剤の含有量は、前記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%であることが好ましく、0~5質量%であることがより好ましく、0~1質量%であることがさらに好ましく、0質量%であることが特に好ましい。
本実施形態のレジスト組成物は、感度劣化防止又はレジストパターン形状、引き置き安定性等の向上の目的で、任意の成分として、有機カルボン酸又はリンのオキソ酸若しくはその誘導体を含有していてもよい。これらの化合物は、酸拡散制御剤と併用することもできるし、単独で用いてもよい。有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。リンのオキソ酸若しくはその誘導体としては、リン酸、リン酸ジ-n-ブチルエステル、リン酸ジフェニルエステルなどのリン酸又はそれらのエステルなどの誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸ジ-n-ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステルなどのホスホン酸又はそれらのエステルなどの誘導体、ホスフィン酸、フェニルホスフィン酸などのホスフィン酸及びそれらのエステルなどの誘導体が挙げられ、これらの中でも、ホスホン酸が特に好ましい。
有機カルボン酸又はリンのオキソ酸若しくはその誘導体は、単独で用いるか、又は2種以上を併用することができる。有機カルボン酸又はリンのオキソ酸若しくはその誘導体の含有量は、前記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%であることが好ましく、0~5質量%であることがより好ましく、0~1質量%であることがさらに好ましく、0質量%であることが特に好ましい。
本実施形態のレジスト組成物には、本発明の効果を阻害しない範囲で、必要に応じて、上述した以外のその他の添加剤を、1種又は2種以上配合することができる。そのような添加剤としては、例えば、染料、顔料、及び接着助剤等が挙げられる。レジスト組成物に、例えば、染料又は顔料を配合すると、露光部の潜像を可視化させて、露光時のハレーションの影響を緩和できる。また、接着助剤を配合すると、基板との接着性を改善することができる。さらに、他の添加剤としては、ハレーション防止剤、保存安定剤、消泡剤、形状改良剤等、より具体的には4-ヒドロキシ-4’-メチルカルコン等を挙げることができる。
本実施形態によるレジストパターンの形成方法は、上述した本実施形態のレジスト組成物を用いて基板上にレジスト膜を形成する工程と、形成されたレジスト膜を露光する工程と、前記レジスト膜を現像してレジストパターンを形成する工程とを備える。本実施形態のレジストパターンは多層プロセスにおける上層レジストとして形成することもできる。
界面活性剤としては、特に限定されないが、例えば、イオン性や非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤としては、例えば、特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、同5824451号明細書記載の界面活性剤を挙げることができる。界面活性剤としては、非イオン性の界面活性剤が好ましく、フッ素系界面活性剤又はシリコン系界面活性剤がより好ましい。
(1)化合物の構造
化合物の構造は、Bruker社製Advance600II spectrometerを用いて、以下の条件で1H-NMR測定を行うことにより確認した。
周波数:400MHz
溶媒:d6-DMSO
内部標準:TMS
測定温度:23℃
化合物の分子量は、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いて、LC-MS分析により測定した。
また、以下の条件でゲル浸透クロマトグラフィー(GPC)分析を行い、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)、及び分散度(Mw/Mn)を求めた。
装置:Shodex GPC-101型(昭和電工(株)製)
カラム:KF-80M×3
溶離液:THF 1mL/min
温度:40℃
エスアイアイ・ナノテクノロジー社製「EXSTAR6000DSC」装置を用いて、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(30mL/min)気流中昇温速度10℃/minで500℃まで昇温した。その際、10%熱減量温度を測定した。
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器を準備した。この容器に、4,4-ビフェノール(東京化成社製試薬)30g(161mmol)と、4-ヨードベンズアルデヒド(東京化成社製試薬)15g(65mmol)と、4-ブチロラクトン100mLとを仕込み、p-トルエンスルホン酸(関東化学社製試薬)3.9g(21mmol)を加えて、反応液を調製した。この反応液を90℃で3時間撹拌して反応を行った。次に、反応液を濃縮し、ヘプタン50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(BiF-I-1)4.2gを得た。
得られた化合物について、前記方法により分子量を測定した結果、586であった。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式で表される化学構造を有することを確認した。
δ(ppm)9.4(4H,O-H)、6.8~7.8(18H,Ph-H)、6.2(1H,C-H)
また、熱重量測定(TG)の結果、得られた化合物(BiF-I-1)の10%熱減量温度は、300℃以上であった。そのため、高い耐熱性を有し、高温ベークへの適用が可能であるものと評価された。
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器を準備した。この容器に、4,4-ビフェノール(東京化成社製試薬)30g(161mmol)と、5-ヨードバニリン(東京化成社製試薬)15g(54mmol)と、4-ブチロラクトン100mLとを仕込み、p-トルエンスルホン酸(関東化学社製試薬)3.9g(21mmol)を加えて、反応液を調製した。この反応液を90℃で3時間撹拌して反応を行った。次に、反応液を濃縮し、ヘプタン50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(BiF-I-2)5.1gを得た。
得られた化合物について、前記方法により分子量を測定した結果、632であった。
得られた化合物について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式で表される化学構造を有することを確認した。
δ(ppm)9.3(4H,O-H)、6.4~7.3(16H,Ph-H)、6.1(1H,C-H)
また、熱重量測定(TG)の結果、得られた化合物(BiF-I-2)の10%熱減量温度は300℃以上であった。そのため、高い耐熱性を有し、高温ベークへの適用が可能であるものと評価された。
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器を準備した。この容器に、4,4-ビフェノール(東京化成社製試薬)30g(161mmol)と、3-ヨードベンズアルデヒド(東京化成社製試薬)15g(65mmol)と、4‐ブチロラクトン100mLとを仕込み、p-トルエンスルホン酸(関東化学社製試薬)3.9g(21mmol)を加えて、反応液を調製した。この反応液を90℃で3時間撹拌して反応を行った。次に、反応液を濃縮し、ヘプタン50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(BiF-I-3)4.2gを得た。
得られた化合物について、前記方法により分子量を測定した結果、586であった。
なお、400MHz-1H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)9.4(4H,O-H)、6.5~7.8(18H,Ph-H)、6.4(1H,C-H)
また、熱重量測定(TG)の結果、得られた化合物(BiF-I-3)の10%熱減量温度は、300℃以上であった。そのため、高い耐熱性を有し、高温ベークへの適用が可能であるものと評価された。
ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、実施例1で得られたBiF-I-1を41.0g(70mmol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液21.0g(ホルムアルデヒドとして280mmol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、オルソキシレンを減圧下で留去することにより、褐色固体の樹脂(BiFR-I-1)52.2gを得た。
また、熱重量測定(TG)の結果、得られた樹脂(BiFR-I-1)の10%熱減量温度は300℃以上であった。そのため、高温ベークへの適用が可能であるものと評価された。
ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、実施例1で得られたBiF-I-1を41.0g(70mmol、三菱ガス化学(株)製)、4-ビフェニルアルデヒド50.9g(280mmol、三菱ガス化学(株)製)、アニソール(関東化学(株)製)100mL及びシュウ酸二水和物(関東化学(株)製)10mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、有機相の溶媒および未反応の4-ビフェニルアルデヒドを減圧下で留去することにより、褐色固体の樹脂(BiFR-I-2)68.2gを得た。
また、熱重量測定(TG)の結果、得られた樹脂(BiFR-I-2)の10%熱減量温度は300℃以上であった。そのため、高温ベークへの適用が可能であるものと評価された。
ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
得られたジメチルナフタレンホルムアルデヒドの分子量は、Mn:562であった。
得られた樹脂(CR-1)は、Mn:885、Mw:2220、Mw/Mn:4.17であった。
また、熱重量測定(TG)の結果、得られた樹脂(CR-1)の10%熱減量温度は350℃未満であった。
(1)化合物の安全溶媒溶解性試験
化合物のシクロヘキサノン(CHN)、プロピレングリコールモノメチルエーテル(PGME)及びプロピレングリコールモノメチルエーテルアセテート(PGMEA)への溶解性は、各溶媒への溶解量を用いて以下の基準で評価した。なお、溶解量の測定は、23℃にて化合物を試験管に精秤し、対象となる溶媒を所定の濃度となるよう加え、超音波洗浄機にて30分間超音波をかけ、その後の液の状態を目視にて観察した。
評価A:20.0質量%≦溶解量
評価B:10.0質量%≦溶解量<20.0質量%
評価C:溶解量<10.0質量%未満
表1に従って各成分を調合し、均一溶液とした後、孔径0.1μmのテフロン(登録商標)製メンブランフィルターで濾過することによりレジスト組成物を調製した。
酸発生剤(C)
P-1:トリフェニルベンゼンスルホニウムトリフルオロメタンスルホネート(みどり化学(株))
酸架橋剤(G)
C-1:ニカラックMW-100LM(三和ケミカル(株))
酸拡散制御剤(E)
Q-1:トリオクチルアミン(東京化成工業(株))
溶媒
S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株))
調製した各レジスト組成物について、以下の手順で保存安定性評価を行った。レジスト組成物を調製後、23℃にて3日間静置し、析出の有無を目視にて観察することにより評価した。均一溶液で析出がない場合には○、析出がある場合は×と評価した。
また、均一状態のレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ40nmのレジスト膜を形成した。形成されたレジスト膜について、薄膜形成が良好な場合には○、形成した膜に欠陥がある場合には×と評価した。
各レジスト組成物について、以下の手順でパターニング評価を行った。均一なレジスト組成物を、清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。該レジスト膜を電子線描画装置(ELS-7500,(株)エリオニクス社製)を用いて、50nm、40nm及び30nm間隔の1:1のラインアンドスペース設定の電子線を照射した。電子線照射後に、それぞれ所定の温度で、90秒間加熱し、TMAH2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、超純水で30秒間洗浄し、乾燥して、ネガ型のレジストパターンを形成した。ラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察し、レジスト組成物の電子線照射による反応性を評価した。
また、実施例1~5は析出が無く保存安定性が良好であることを確認した(評価:○)。一方、比較例1のレジストは析出がみられ保存安定性は不良であることを確認した(評価:×)。
さらに、実施例1~5で得られたレジスト組成物では薄膜の形成が良好であることを確認した(評価:○)。一方、比較例1で得られたレジスト組成物では膜に欠陥があり、薄膜形成が不良であることを確認した(評価:×)。
前記した本発明の要件を満たす限り、実施例に記載したもの以外のレジスト基材も同様の効果を示す。
Claims (13)
- 下記式(1)で表される化合物及び/又は前記化合物をモノマーとして得られる樹脂を含有するレジスト基材。
(式(1)中、R1は炭素数1~30の2n価の基であり、R2~R5は各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基又は水酸基であり、但し、R1~R5から選ばれる少なくとも一つはヨウ素原子を含む基であり、R4の少なくとも一つ及び/又はR5の少なくとも一つは水酸基及びチオール基から選ばれる1種以上であり、m2及びm3は各々独立して0~8の整数であり、m4及びm5は各々独立して0~9の整数であり、但し、m4及びm5は同時に0となることはなく、nは1~4の整数であり、p2~p5は各々独立して0~2の整数である。) - R2の少なくとも一つ及び/又はR3の少なくとも一つが水酸基及びチオール基から選ばれる1種以上である、請求項1に記載のレジスト基材。
- 前記樹脂が、前記式(1)で表される化合物と架橋反応性のある化合物とを反応させることによって得られる樹脂である、請求項1~6のいずれか1項に記載のレジスト基材。
- 前記架橋反応性のある化合物が、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート又は不飽和炭化水素基含有化合物である、請求項7に記載のレジスト基材。
- 前記樹脂が、下記式(2)で表される構造を有する、請求項1に記載のレジスト基材。
(式(2)中、R1は炭素数1~30の2n価の基であり、R2~R5は各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基、炭素数1~30のアルコキシ基、ハロゲン原子、チオール基又は水酸基であり、但し、R1~R5から選ばれる少なくとも一つはヨウ素原子を含む基であり、R4の少なくとも一つ及び/又はR5の少なくとも一つは水酸基及びチオール基から選ばれる1種以上であり、Lは炭素数1~20の直鎖状若しくは分岐状のアルキレン基又は単結合であり、m2及びm3は各々独立して0~8の整数であり、m4及びm5は、各々独立して0~9の整数であり、但し、m4及びm5は同時に0となることはなく、nは1~4の整数であり、p2~p5は各々独立して0~2の整数である。) - 請求項1~9のいずれか1項に記載のレジスト基材と溶媒とを含有するレジスト組成物。
- 酸発生剤をさらに含有する、請求項10に記載のレジスト組成物。
- 酸架橋剤をさらに含有する、請求項10又は11に記載のレジスト組成物。
- レジストパターンの形成方法であって、
請求項10~12のいずれか1項に記載のレジスト組成物を基板上に塗布してレジスト膜を形成する工程と、
形成されたレジスト膜を露光する工程と、
露光したレジスト膜を現像する工程と、
を含む方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680020019.XA CN107533290B (zh) | 2015-03-30 | 2016-03-17 | 抗蚀基材、抗蚀剂组合物及抗蚀图案形成方法 |
US15/562,841 US10642156B2 (en) | 2015-03-30 | 2016-03-17 | Resist base material, resist composition and method for forming resist pattern |
JP2016561406A JP6156711B2 (ja) | 2015-03-30 | 2016-03-17 | レジスト基材、レジスト組成物及びレジストパターン形成方法 |
KR1020177026669A KR102527656B1 (ko) | 2015-03-30 | 2016-03-17 | 레지스트 기재, 레지스트 조성물 및 레지스트 패턴 형성방법 |
EP16772341.0A EP3279728B1 (en) | 2015-03-30 | 2016-03-17 | Resist base material, resist composition, and method for forming resist pattern |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015069991 | 2015-03-30 | ||
JP2015-069991 | 2015-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016158458A1 true WO2016158458A1 (ja) | 2016-10-06 |
Family
ID=57005779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/058519 WO2016158458A1 (ja) | 2015-03-30 | 2016-03-17 | レジスト基材、レジスト組成物及びレジストパターン形成方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10642156B2 (ja) |
EP (1) | EP3279728B1 (ja) |
JP (1) | JP6156711B2 (ja) |
KR (1) | KR102527656B1 (ja) |
CN (1) | CN107533290B (ja) |
TW (1) | TWI683800B (ja) |
WO (1) | WO2016158458A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018088469A1 (ja) * | 2016-11-11 | 2018-05-17 | 住友ベークライト株式会社 | 感光性樹脂組成物、樹脂膜、硬化膜、半導体装置の製造方法、および半導体装置 |
WO2019151403A1 (ja) | 2018-01-31 | 2019-08-08 | 三菱瓦斯化学株式会社 | 組成物、並びに、レジストパターンの形成方法及び絶縁膜の形成方法 |
CN110325501A (zh) * | 2017-02-23 | 2019-10-11 | 三菱瓦斯化学株式会社 | 化合物、树脂、组合物、图案形成方法和纯化方法 |
WO2020040162A1 (ja) * | 2018-08-24 | 2020-02-27 | 三菱瓦斯化学株式会社 | 化合物、及びそれを含む組成物、並びに、レジストパターンの形成方法及び絶縁膜の形成方法 |
WO2020040161A1 (ja) * | 2018-08-24 | 2020-02-27 | 三菱瓦斯化学株式会社 | 化合物、及びそれを含む組成物、並びに、レジストパターンの形成方法及び絶縁膜の形成方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102326848B1 (ko) | 2014-03-13 | 2021-11-17 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 레지스트 조성물 및 레지스트 패턴 형성방법 |
WO2015137486A1 (ja) | 2014-03-13 | 2015-09-17 | 三菱瓦斯化学株式会社 | 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法、及び化合物又は樹脂の精製方法 |
JP6939544B2 (ja) | 2015-03-30 | 2021-09-22 | 三菱瓦斯化学株式会社 | 化合物、樹脂、及びそれらの精製方法、リソグラフィー用の下層膜形成材料、下層膜形成用組成物、及び下層膜、並びに、レジストパターン形成方法、及び回路パターン形成方法 |
KR102527656B1 (ko) | 2015-03-30 | 2023-05-02 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 레지스트 기재, 레지스트 조성물 및 레지스트 패턴 형성방법 |
US11550220B2 (en) | 2019-10-31 | 2023-01-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Negative tone photoresist for EUV lithography |
CN117924721A (zh) * | 2023-12-18 | 2024-04-26 | 浙江大学衢州研究院 | 一种含锌的多酸基mof材料及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012153991A2 (ko) * | 2011-05-12 | 2012-11-15 | 성균관대학교 산학협력단 | 스트레커 반응용 촉매를 사용하는 키랄성 α-아미노나이트릴의 제조방법 |
WO2013024777A1 (ja) * | 2011-08-12 | 2013-02-21 | 三菱瓦斯化学株式会社 | 環状化合物、その製造方法、組成物及びレジストパターン形成方法 |
WO2015137485A1 (ja) * | 2014-03-13 | 2015-09-17 | 三菱瓦斯化学株式会社 | レジスト組成物及びレジストパターン形成方法 |
WO2015137486A1 (ja) * | 2014-03-13 | 2015-09-17 | 三菱瓦斯化学株式会社 | 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法、及び化合物又は樹脂の精製方法 |
Family Cites Families (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1167854B (de) | 1961-07-25 | 1964-04-16 | Pelikan Werke Wagner Guenther | Aufzeichnungs- und Vervielfaeltigungs-Material |
JPS5437492B1 (ja) | 1970-06-05 | 1979-11-15 | ||
US3833615A (en) | 1970-06-05 | 1974-09-03 | Polaroid Corp | Naphthalides and phthalides |
JPS5280022A (en) | 1975-12-26 | 1977-07-05 | Fuji Photo Film Co Ltd | Light solubilizable composition |
GB2145414B (en) | 1983-08-24 | 1987-04-15 | Ciba Geigy | O-linked polyphenols |
JP2700918B2 (ja) | 1989-04-26 | 1998-01-21 | 富士写真フイルム株式会社 | ポジ型フオトレジスト組成物 |
JP2761786B2 (ja) | 1990-02-01 | 1998-06-04 | 富士写真フイルム株式会社 | ポジ型フオトレジスト組成物 |
JPH04297430A (ja) | 1991-03-15 | 1992-10-21 | Idemitsu Kosan Co Ltd | ポリフェニル誘導体及びその製造方法 |
JP2904610B2 (ja) | 1991-04-24 | 1999-06-14 | 日東電工株式会社 | 半導体装置 |
JP3052449B2 (ja) | 1991-07-17 | 2000-06-12 | 住友化学工業株式会社 | レジストの金属低減化方法 |
JP3016231B2 (ja) | 1991-11-15 | 2000-03-06 | ジェイエスアール株式会社 | ネガ型レジスト組成物 |
US5281689A (en) | 1992-12-11 | 1994-01-25 | General Electric Company | Polycarbonate from bis[4'-(4-hydroxyphenyl)-phenyl]alkanes |
JP3377265B2 (ja) | 1992-12-24 | 2003-02-17 | 住友化学工業株式会社 | 感光性樹脂組成物の製造方法 |
JPH07271037A (ja) | 1994-03-31 | 1995-10-20 | Fuji Photo Film Co Ltd | ポジ型感電離放射線性樹脂組成物 |
JPH08137100A (ja) | 1994-11-11 | 1996-05-31 | Fuji Photo Film Co Ltd | ポジ型フォトレジスト組成物 |
JPH09106070A (ja) | 1995-10-09 | 1997-04-22 | Fuji Photo Film Co Ltd | ポジ型フォトレジスト組成物 |
JP3565466B2 (ja) | 1996-12-03 | 2004-09-15 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジ及び電子写真装置 |
JPH10307384A (ja) | 1997-05-08 | 1998-11-17 | Fuji Photo Film Co Ltd | ポジ型フォトレジスト組成物 |
JP2001122828A (ja) | 1999-10-27 | 2001-05-08 | Shinnakamura Kagaku Kogyo Kk | 2官能(メタ)アクリル酸エステル組成物とそのための2価アルコール |
US6660811B2 (en) | 2001-01-30 | 2003-12-09 | Dainippon Ink And Chemicals, Inc. | Epoxy resin composition and curing product thereof |
JP3774668B2 (ja) | 2001-02-07 | 2006-05-17 | 東京エレクトロン株式会社 | シリコン窒化膜形成装置の洗浄前処理方法 |
JP2002275112A (ja) | 2001-03-14 | 2002-09-25 | Nippon Soda Co Ltd | ビナフトール化合物およびその製造法 |
WO2004037879A2 (en) | 2002-10-24 | 2004-05-06 | South Dakota School Of Mines And Technology | Monomers containing at least one biaryl unit and polymers and derivatives prepared therefrom |
JP3914493B2 (ja) | 2002-11-27 | 2007-05-16 | 東京応化工業株式会社 | 多層レジストプロセス用下層膜形成材料およびこれを用いた配線形成方法 |
WO2004066377A1 (ja) | 2003-01-24 | 2004-08-05 | Tokyo Electron Limited | 被処理基板上にシリコン窒化膜を形成するcvd方法 |
JP3981030B2 (ja) | 2003-03-07 | 2007-09-26 | 信越化学工業株式会社 | レジスト下層膜材料ならびにパターン形成方法 |
EP1666970A4 (en) | 2003-09-18 | 2009-09-02 | Mitsubishi Gas Chemical Co | COMPOSITION FOR RESIST AND RADIATION COMPATIBLE COMPOSITION |
JP2005187335A (ja) | 2003-12-24 | 2005-07-14 | Midori Kagaku Kenkyusho:Kk | 新規なシアネートエステルとその製造方法 |
JP4388429B2 (ja) | 2004-02-04 | 2009-12-24 | 信越化学工業株式会社 | レジスト下層膜材料ならびにパターン形成方法 |
JP4249096B2 (ja) | 2004-02-20 | 2009-04-02 | 東京応化工業株式会社 | パターン形成材料用基材、ポジ型レジスト組成物およびレジストパターン形成方法 |
CN1942825B (zh) | 2004-04-15 | 2010-05-12 | 三菱瓦斯化学株式会社 | 抗蚀剂组合物 |
TWI495632B (zh) | 2004-12-24 | 2015-08-11 | Mitsubishi Gas Chemical Co | 光阻用化合物 |
JP4466854B2 (ja) | 2005-03-18 | 2010-05-26 | 信越化学工業株式会社 | フォトレジスト下層膜形成材料及びパターン形成方法 |
JP2006276742A (ja) | 2005-03-30 | 2006-10-12 | Fuji Photo Film Co Ltd | ポジ型レジスト組成物およびそれを用いたパターン形成方法 |
KR101156975B1 (ko) * | 2005-06-24 | 2012-06-20 | 주식회사 동진쎄미켐 | 포토레지스트용 폴리머 및 이를 포함하는 포토레지스트 조성물 |
JP4781280B2 (ja) | 2006-01-25 | 2011-09-28 | 信越化学工業株式会社 | 反射防止膜材料、基板、及びパターン形成方法 |
JP4638380B2 (ja) | 2006-01-27 | 2011-02-23 | 信越化学工業株式会社 | 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法 |
JP2007204574A (ja) | 2006-02-01 | 2007-08-16 | Fujifilm Corp | ポリアリレート、光学フィルム、および、画像表示装置 |
JP2009098155A (ja) | 2006-02-08 | 2009-05-07 | Mitsubishi Gas Chem Co Inc | 感放射線性組成物 |
US7452658B2 (en) | 2006-02-16 | 2008-11-18 | Cornell University | Molecular glass photoresists |
JP4858136B2 (ja) | 2006-12-06 | 2012-01-18 | 三菱瓦斯化学株式会社 | 感放射線性レジスト組成物 |
KR100833706B1 (ko) * | 2007-02-01 | 2008-05-29 | 삼성전자주식회사 | 감광성 폴리이미드 조성물, 폴리이미드 필름 및 이를 이용한 반도체 소자 |
JP5446118B2 (ja) | 2007-04-23 | 2014-03-19 | 三菱瓦斯化学株式会社 | 感放射線性組成物 |
JP4929110B2 (ja) | 2007-09-25 | 2012-05-09 | 株式会社東芝 | 感光性組成物およびそれを用いたパターン形成方法 |
CN101889247B (zh) | 2007-12-07 | 2013-04-03 | 三菱瓦斯化学株式会社 | 用于形成光刻用下层膜的组合物和多层抗蚀图案的形成方法 |
JP5317609B2 (ja) | 2008-09-24 | 2013-10-16 | 株式会社東芝 | 感光性化合物、感光性組成物、およびパターン形成方法 |
KR101741285B1 (ko) | 2009-09-15 | 2017-06-15 | 미츠비시 가스 가가쿠 가부시키가이샤 | 방향족 탄화수소 수지 및 리소그래피용 하층막 형성 조성물 |
WO2011040340A1 (ja) | 2009-09-29 | 2011-04-07 | Jsr株式会社 | パターン形成方法及びレジスト下層膜形成用組成物 |
JP5068828B2 (ja) | 2010-01-19 | 2012-11-07 | 信越化学工業株式会社 | レジスト下層膜形成用組成物、レジスト下層膜形成方法、及びパターン形成方法 |
JP5556773B2 (ja) * | 2010-09-10 | 2014-07-23 | 信越化学工業株式会社 | ナフタレン誘導体及びその製造方法、レジスト下層膜材料、レジスト下層膜形成方法及びパターン形成方法 |
JP2012083731A (ja) | 2010-09-13 | 2012-04-26 | Idemitsu Kosan Co Ltd | 感放射線性組成物、及びフォトレジスト組成物 |
US8741553B2 (en) | 2010-12-28 | 2014-06-03 | Mitsubishi Gas Chemical Company, Inc. | Aromatic hydrocarbon resin, underlayer film forming composition for lithography, and method for forming multilayer resist pattern |
CN103619892B (zh) | 2011-06-03 | 2016-08-24 | 三菱瓦斯化学株式会社 | 酚醛系树脂以及光刻用下层膜形成材料 |
KR20140079359A (ko) | 2011-08-12 | 2014-06-26 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 레지스트 조성물, 레지스트 패턴 형성방법, 이에 이용되는 폴리페놀 화합물 및 이로부터 유도될 수 있는 알코올 화합물 |
KR101907481B1 (ko) | 2011-08-12 | 2018-10-12 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 리소그래피용 하층막 형성재료, 리소그래피용 하층막 및 패턴형성방법 |
WO2013036546A2 (en) | 2011-09-07 | 2013-03-14 | Dow Corning Corporation | Titanium containing complex and condensation reaction catalysts, methods for preparing the catalysts, and compositions containing the catalysts |
CN103988127B (zh) | 2011-12-09 | 2019-04-19 | 旭化成株式会社 | 感光性树脂组合物、固化浮雕图案的制造方法、半导体装置及显示体装置 |
CN103304385B (zh) | 2012-03-16 | 2015-04-15 | 中国科学院化学研究所 | 含双酚a骨架结构的分子玻璃光刻胶及其制备方法和应用 |
JP5925721B2 (ja) | 2012-05-08 | 2016-05-25 | 信越化学工業株式会社 | 有機膜材料、これを用いた有機膜形成方法及びパターン形成方法 |
KR101912677B1 (ko) | 2012-08-10 | 2018-10-29 | 닛산 가가쿠 가부시키가이샤 | 레지스트 하층막 형성조성물 |
US8765339B2 (en) | 2012-08-31 | 2014-07-01 | Xerox Corporation | Imaging member layers |
CN103804196B (zh) | 2012-11-06 | 2016-08-31 | 中国科学院理化技术研究所 | 星形金刚烷衍生物分子玻璃及其制备方法、应用 |
KR102229657B1 (ko) | 2013-05-13 | 2021-03-18 | 닛산 가가쿠 가부시키가이샤 | 비스페놀알데히드를 이용한 노볼락 수지 함유 레지스트 하층막 형성 조성물 |
CN104557552B (zh) | 2013-10-22 | 2016-08-31 | 中国科学院理化技术研究所 | 一种星形四苯基乙烯衍生物分子玻璃、正性光刻胶、正性光刻胶涂层及其应用 |
US10745372B2 (en) | 2014-12-25 | 2020-08-18 | Mitsubishi Gas Chemical Company, Inc. | Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method |
CN107250089A (zh) | 2015-02-12 | 2017-10-13 | 三菱瓦斯化学株式会社 | 化合物、树脂、光刻用下层膜形成材料、光刻用下层膜形成用组合物、光刻用下层膜、抗蚀图案形成方法、电路图案形成方法和化合物或树脂的纯化方法 |
US20180044270A1 (en) | 2015-03-06 | 2018-02-15 | Mitsubishi Gas Chemical Company, Inc. | Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and method for purifying compound or resin |
US20180081270A1 (en) | 2015-03-30 | 2018-03-22 | Mitsubishi Gas Chemical Company, Inc. | Radiation-sensitive composition, amorphous film, and method for forming resist pattern |
KR102527656B1 (ko) | 2015-03-30 | 2023-05-02 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 레지스트 기재, 레지스트 조성물 및 레지스트 패턴 형성방법 |
JP6939544B2 (ja) * | 2015-03-30 | 2021-09-22 | 三菱瓦斯化学株式会社 | 化合物、樹脂、及びそれらの精製方法、リソグラフィー用の下層膜形成材料、下層膜形成用組成物、及び下層膜、並びに、レジストパターン形成方法、及び回路パターン形成方法 |
US10359701B2 (en) | 2015-04-07 | 2019-07-23 | Mitsubishi Gas Chemical Company, Inc. | Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and pattern forming method |
CN108349860A (zh) | 2015-09-03 | 2018-07-31 | 三菱瓦斯化学株式会社 | 化合物及其制造方法、组合物、光学部件形成用组合物、光刻用膜形成组合物、抗蚀剂组合物、抗蚀图案形成方法、辐射敏感组合物、非晶膜制造方法、光刻用下层膜形成材料、光刻用下层膜形成用组合物、光刻用下层膜制造方法、抗蚀图案形成方法、电路图案形成方法、纯化方法 |
WO2017043561A1 (ja) | 2015-09-10 | 2017-03-16 | 三菱瓦斯化学株式会社 | 化合物、樹脂、レジスト組成物又は感放射線性組成物、レジストパターン形成方法、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、回路パターンの形成方法、及び、精製方法 |
-
2016
- 2016-03-17 KR KR1020177026669A patent/KR102527656B1/ko active IP Right Grant
- 2016-03-17 CN CN201680020019.XA patent/CN107533290B/zh active Active
- 2016-03-17 EP EP16772341.0A patent/EP3279728B1/en active Active
- 2016-03-17 WO PCT/JP2016/058519 patent/WO2016158458A1/ja active Application Filing
- 2016-03-17 JP JP2016561406A patent/JP6156711B2/ja active Active
- 2016-03-17 US US15/562,841 patent/US10642156B2/en active Active
- 2016-03-29 TW TW105109862A patent/TWI683800B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012153991A2 (ko) * | 2011-05-12 | 2012-11-15 | 성균관대학교 산학협력단 | 스트레커 반응용 촉매를 사용하는 키랄성 α-아미노나이트릴의 제조방법 |
WO2013024777A1 (ja) * | 2011-08-12 | 2013-02-21 | 三菱瓦斯化学株式会社 | 環状化合物、その製造方法、組成物及びレジストパターン形成方法 |
WO2015137485A1 (ja) * | 2014-03-13 | 2015-09-17 | 三菱瓦斯化学株式会社 | レジスト組成物及びレジストパターン形成方法 |
WO2015137486A1 (ja) * | 2014-03-13 | 2015-09-17 | 三菱瓦斯化学株式会社 | 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法、及び化合物又は樹脂の精製方法 |
Non-Patent Citations (4)
Title |
---|
BEREKET GHEBREMARIAM ET AL.: "Synthesis of Asymmetric Septi-(p-Phenylene)s", TETRAHEDRON LETTERS, vol. 39, no. 30, 13 May 1998 (1998-05-13), pages 5335 - 5338, XP004123226 * |
CHEONG-JIN JANG ET AL.: "Synthesis and Supramolecular Nanostructure of Amphiphilic Rigid Aromatic-Flexible Dendritic Block Melecules", CHEMISTRY OF MATERIALS, vol. 16, no. 22, 10 September 2004 (2004-09-10), pages 4226 - 4231, XP055319547 * |
See also references of EP3279728A4 * |
TORU AMAYA ET AL.: "Synthesis of three-dimensionally arranged bis-biphenol ligand on hexaaryl benzene scaffold and its application for cross-pinacol coupling reaction", TETRAHEDRON LETTERS, vol. 52, no. 35, 2 July 2011 (2011-07-02), pages 4567 - 4569, XP028248912 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018088469A1 (ja) * | 2016-11-11 | 2018-05-17 | 住友ベークライト株式会社 | 感光性樹脂組成物、樹脂膜、硬化膜、半導体装置の製造方法、および半導体装置 |
JPWO2018088469A1 (ja) * | 2016-11-11 | 2018-11-15 | 住友ベークライト株式会社 | レジスト形成用感光性樹脂組成物、樹脂膜、硬化膜、半導体装置の製造方法、および半導体装置 |
KR20190034680A (ko) * | 2016-11-11 | 2019-04-02 | 스미또모 베이크라이트 가부시키가이샤 | 감광성 수지 조성물, 수지막, 경화막, 반도체 장치의 제조 방법, 및 반도체 장치 |
CN109791356A (zh) * | 2016-11-11 | 2019-05-21 | 住友电木株式会社 | 感光性树脂组合物、树脂膜、固化膜、半导体装置的制造方法和半导体装置 |
KR102004129B1 (ko) | 2016-11-11 | 2019-07-25 | 스미또모 베이크라이트 가부시키가이샤 | 감광성 수지 조성물, 수지막, 경화막, 반도체 장치의 제조 방법, 및 반도체 장치 |
CN110325501A (zh) * | 2017-02-23 | 2019-10-11 | 三菱瓦斯化学株式会社 | 化合物、树脂、组合物、图案形成方法和纯化方法 |
EP3587385A4 (en) * | 2017-02-23 | 2021-02-24 | Mitsubishi Gas Chemical Company, Inc. | COMPOUND, RESIN, COMPOSITION, PATTERN FORMING PROCESS AND PURIFICATION PROCESS |
WO2019151403A1 (ja) | 2018-01-31 | 2019-08-08 | 三菱瓦斯化学株式会社 | 組成物、並びに、レジストパターンの形成方法及び絶縁膜の形成方法 |
WO2020040162A1 (ja) * | 2018-08-24 | 2020-02-27 | 三菱瓦斯化学株式会社 | 化合物、及びそれを含む組成物、並びに、レジストパターンの形成方法及び絶縁膜の形成方法 |
WO2020040161A1 (ja) * | 2018-08-24 | 2020-02-27 | 三菱瓦斯化学株式会社 | 化合物、及びそれを含む組成物、並びに、レジストパターンの形成方法及び絶縁膜の形成方法 |
US20210206901A1 (en) * | 2018-08-24 | 2021-07-08 | Mitsubishi Gas Chemical Company, Inc. | Compound, composition containing the same, method for forming resist pattern and method for forming insulating film |
JPWO2020040161A1 (ja) * | 2018-08-24 | 2021-09-02 | 三菱瓦斯化学株式会社 | 化合物、及びそれを含む組成物、並びに、レジストパターンの形成方法及び絶縁膜の形成方法 |
JPWO2020040162A1 (ja) * | 2018-08-24 | 2021-09-02 | 三菱瓦斯化学株式会社 | 化合物、及びそれを含む組成物、並びに、レジストパターンの形成方法及び絶縁膜の形成方法 |
US20210331994A1 (en) * | 2018-08-24 | 2021-10-28 | Mitsubishi Gas Chemical Company, Inc. | Compound, composition containing the same, method for forming resist pattern and method for forming insulating film |
Also Published As
Publication number | Publication date |
---|---|
KR102527656B1 (ko) | 2023-05-02 |
US10642156B2 (en) | 2020-05-05 |
EP3279728A1 (en) | 2018-02-07 |
JP6156711B2 (ja) | 2017-07-05 |
TWI683800B (zh) | 2020-02-01 |
US20180107113A1 (en) | 2018-04-19 |
EP3279728B1 (en) | 2021-03-17 |
TW201700446A (zh) | 2017-01-01 |
CN107533290A (zh) | 2018-01-02 |
EP3279728A4 (en) | 2018-12-05 |
JPWO2016158458A1 (ja) | 2017-04-27 |
KR20170134390A (ko) | 2017-12-06 |
CN107533290B (zh) | 2021-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6948019B2 (ja) | レジスト組成物、レジストパターン形成方法、及びそれに用いるポリフェノール化合物 | |
JP6217817B2 (ja) | レジスト組成物、レジストパターン形成方法、それに用いるポリフェノール化合物及びそれから誘導され得るアルコール化合物 | |
JP6515919B2 (ja) | レジスト組成物及びレジストパターン形成方法 | |
JP6156711B2 (ja) | レジスト基材、レジスト組成物及びレジストパターン形成方法 | |
TWI596082B (zh) | 環狀化合物、其製造方法、組成物及光阻圖型之形成方法 | |
KR102599929B1 (ko) | 리소그래피용 재료 및 그 제조방법, 리소그래피용 조성물, 패턴 형성방법, 그리고, 화합물, 수지, 및 이들의 정제방법 | |
JP6739757B2 (ja) | 感放射線性組成物 | |
JP6908891B2 (ja) | 感放射線性組成物、アモルファス膜及びレジストパターン形成方法 | |
WO2015170734A1 (ja) | レジスト材料、レジスト組成物及びレジストパターン形成方法 | |
TWI615682B (zh) | 阻劑組成物 | |
TWI595312B (zh) | 光阻組成物 | |
JP5817524B2 (ja) | 感放射線性組成物及びレジストパターン形成方法 | |
JP5821343B2 (ja) | レジストパターン形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016561406 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16772341 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177026669 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15562841 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2016772341 Country of ref document: EP |