WO2016158050A1 - 弾性波装置、通信モジュール機器及び弾性波装置の製造方法 - Google Patents

弾性波装置、通信モジュール機器及び弾性波装置の製造方法 Download PDF

Info

Publication number
WO2016158050A1
WO2016158050A1 PCT/JP2016/054465 JP2016054465W WO2016158050A1 WO 2016158050 A1 WO2016158050 A1 WO 2016158050A1 JP 2016054465 W JP2016054465 W JP 2016054465W WO 2016158050 A1 WO2016158050 A1 WO 2016158050A1
Authority
WO
WIPO (PCT)
Prior art keywords
support layer
wave device
acoustic wave
support
cover member
Prior art date
Application number
PCT/JP2016/054465
Other languages
English (en)
French (fr)
Inventor
大輔 関家
拓 菊知
康彦 平野
大志 田中
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020177021560A priority Critical patent/KR101931508B1/ko
Priority to JP2017509361A priority patent/JP6521059B2/ja
Priority to CN201680012366.8A priority patent/CN107251428B/zh
Publication of WO2016158050A1 publication Critical patent/WO2016158050A1/ja
Priority to US15/687,587 priority patent/US10164603B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1092Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the surface acoustic wave [SAW] device on the side of the IDT's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • H03H9/0523Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps for flip-chip mounting
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0542Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a lateral arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/059Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/105Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1071Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the SAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/02Forming enclosures or casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Definitions

  • the present invention relates to an acoustic wave device in which an acoustic wave element having a WLP (Wafer Level Package) structure is mounted on a mounting substrate, a communication module device, and a method of manufacturing the acoustic wave device.
  • WLP Wafer Level Package
  • an acoustic wave device in which an acoustic wave element having a WLP structure is mounted on a mounting substrate has been widely used for mobile phones and the like.
  • a support is provided on the piezoelectric substrate so as to surround a functional part on the piezoelectric substrate. Further, on the piezoelectric substrate, a support column is provided in a portion surrounded by the support.
  • the elastic wave element in the following Patent Document 2 has a cover member whose center is curved so as to approach the piezoelectric substrate side.
  • the acoustic wave element is sandwiched by two insulating layers from the upper surface and the lower surface, and the side surfaces are covered by a third insulating layer. When the three insulating layers are pressure-bonded, pressure is applied to the cover member, and the cover member is curved.
  • Patent Document 2 an acoustic wave element is sealed with three insulating layers that are pressure-bonded.
  • An object of the present invention is to provide an elastic wave device, a communication module device, and a method of manufacturing an elastic wave device, in which a mold resin is sufficiently filled between a mounting substrate and a cover member, and the cover member is not easily recessed. There is.
  • An acoustic wave device includes a piezoelectric substrate having a pair of opposing main surfaces, an excitation electrode provided on one main surface of the piezoelectric substrate, and the one main surface of the piezoelectric substrate. And at least one first support layer provided on the piezoelectric substrate so as to surround the excitation electrode and the first support layer when viewed in plan. A second support layer that is provided on the first and second support layers, and a cover member that seals the excitation electrode together with the second support layer and the piezoelectric substrate. A wave board, a mounting substrate on which the acoustic wave element is mounted, and a mold resin that is provided on the mounting board and seals the acoustic wave element. The first support layer is thinner than the thickness, and the cover portion But the away from the mounting substrate is curved toward the piezoelectric substrate in a convex shape, and the mold resin is filled between the cover member and the mounting substrate.
  • the first support layer has a width direction as a direction crossing the first support layer, and the second support layer is the first support layer. And the width of at least one of the first support layers is narrower than the width of the second support layer. In this case, the area of the portion where the excitation electrode and the like are arranged can be increased.
  • the width of at least one first support layer of the plurality of first support layers is other than And the thickness of at least one first support layer of the plurality of first support layers is thinner than the thickness of the other first support layers.
  • the area of the portion where the excitation electrode and the like are arranged can be increased.
  • the first support layer when the acoustic wave device is viewed in plan, the first support layer is in contact with the second support layer at both ends. In this case, since the first support layer can support the second support layer in the side surface direction, the strength is further increased.
  • the first support layer has one end portion and the other end portion, and when the elastic wave device is viewed in plan, the first support layer One end portion of the first support layer is in contact with the second support layer, and the shape of the other end portion of the first support layer is larger than the shape other than the other end portion.
  • the cover member can be stably supported.
  • the communication module device includes a front end unit including an elastic wave device configured according to the present invention, and an active element connected to the front end unit.
  • the mold resin can be more sufficiently filled between the mounting substrate and the cover member.
  • a method of manufacturing an acoustic wave device includes a piezoelectric substrate having a pair of opposing main surfaces, an excitation electrode provided on one main surface of the piezoelectric substrate, and the one of the piezoelectric substrates.
  • the piezoelectric substrate On the one main surface of the piezoelectric substrate so as to surround the excitation electrode and the first support layer in a plan view with at least one first support layer provided on the main surface A second support layer provided; and a cover member provided on the first and second support layers and sealing the excitation electrode together with the second support layer and the piezoelectric substrate; And a step of mounting the elastic wave device on a mounting substrate, and a step of providing a mold resin on the mounting substrate and sealing the elastic wave device, and In the step of manufacturing the wave element, the second support layer The first and second support layers are provided so that the thickness of the first support layer is smaller than the thickness of the first support layer, and the cover member is convex toward the piezoelectric substrate so as to be away from the mounting substrate. And in the step of sealing the acoustic wave element, the mold resin is provided so that the mold resin is filled between the mounting substrate and the cover member. In this case, the mold resin can be more sufficiently filled between the mounting substrate and the cover member.
  • a plurality of the first support layers are provided, and a width of at least one first support layer of the plurality of first support layers is:
  • the plurality of first support layers are provided so as to be smaller than the width of the other first support layer.
  • the thickness of at least one first support layer can be easily made thinner than the thickness of the second support layer. Therefore, productivity can be improved.
  • strength can be raised.
  • an elastic wave device a communication module device, and a method of manufacturing an elastic wave device, in which a mold resin is sufficiently filled between a mounting substrate and a cover member and the cover member is difficult to be dented, are provided. be able to.
  • FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • 2A is a plan view of the acoustic wave device according to the first embodiment of the present invention
  • FIG. 2B is a cross-sectional view of the acoustic wave device taken along line AA in FIG. 2A.
  • FIG. FIG. 3 is a front sectional view of the acoustic wave device according to the first modification of the first embodiment of the present invention.
  • FIG. 4A is a plan view of an acoustic wave device according to the second embodiment of the present invention, and FIG. 4B is a cross-sectional view of the acoustic wave device taken along line BB in FIG. FIG. FIG.
  • FIG. 5 is a plan view of an acoustic wave device according to a second modification of the second embodiment of the present invention.
  • FIG. 6A to FIG. 6C are front sectional views for explaining a method for manufacturing an acoustic wave device according to the second embodiment.
  • FIG. 7A and FIG. 7B are front sectional views for explaining a method for manufacturing the acoustic wave device according to the second embodiment.
  • FIG. 8 is a front sectional view of an acoustic wave device according to the third embodiment of the present invention.
  • FIG. 9A is a plan view of the acoustic wave device according to the fourth embodiment of the present invention, and FIG. 9B is an excitation of the acoustic wave device along the line CC in FIG. 9A.
  • FIG. 10 is a front sectional view of communication module equipment including the acoustic wave device of the present invention.
  • FIG. 11 is a block diagram illustrating an example of a communication module device including the acoustic wave device of the present invention.
  • FIG. 1 is a front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • excitation electrodes which will be described later, are shown by a schematic diagram in which a diagonal line is drawn in a rectangle.
  • the acoustic wave device 1 has a mounting substrate 3.
  • the material of the mounting substrate 3 is not particularly limited, for example, ceramics or the like can be used.
  • the acoustic wave element 2 is mounted on the mounting substrate 3. More specifically, electrode lands 4 a and 4 b are provided on the mounting substrate 3. On the other hand, although the details will be described later, the acoustic wave element 2 includes a piezoelectric substrate 13. A second support layer 15b is provided below the piezoelectric substrate 13 in FIG. A cover member 16 is provided below the second support layer 15b. A plurality of bumps 6 are provided below the cover member 16. The bump 6 is made of solder or the like. The acoustic wave element 2 is joined to the electrode lands 4 a and 4 b by bumps 6.
  • the mold resin 7 is provided on the mounting substrate 3.
  • the acoustic wave element 2 is sealed with the mold resin 7.
  • the feature of the present embodiment is that the cover member 16 is curved in a convex shape toward the piezoelectric substrate 13 so as to move away from the mounting substrate 3. Thereby, it is possible to sufficiently fill the mold resin 7 including the space between the cover member 16 and the mounting substrate 3. Furthermore, the first support layers 15a1 and 15a2 that support the cover member 16 make it difficult for the cover member 16 to be recessed. That is, the cover member 16 can be supported by the first support layers 15a1 and 15a2. Therefore, it is possible to have high durability while ensuring high filling property of the mold resin 7 including between the cover member 16 and the mounting substrate 3. This will be described together with details of the configuration of the acoustic wave element 2.
  • FIG. 2A is a plan view of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 2B is a cross-sectional view of the acoustic wave device taken along line AA in FIG.
  • the acoustic wave element 2 includes the piezoelectric substrate 13.
  • the piezoelectric substrate 13 has a first main surface 13a and a second main surface 13b which are a pair of main surfaces facing each other.
  • the piezoelectric substrate 13 is not particularly limited.
  • the piezoelectric substrate 13 is made of a piezoelectric single crystal such as LiNbO 3 or LiTaO 3 .
  • the piezoelectric substrate 13 may be made of piezoelectric ceramics.
  • an excitation electrode is provided on the second main surface 13 b as one main surface of the piezoelectric substrate 13.
  • the excitation electrodes are a plurality of IDT electrodes 14a to 14c.
  • a surface acoustic wave is excited.
  • reflectors are provided on both sides of the IDT electrode 14a in the surface acoustic wave propagation direction.
  • an elastic wave resonator is configured.
  • elastic wave resonators using IDT electrodes 14b and 14c as excitation electrodes are also configured.
  • a filter including each of the acoustic wave resonators is configured.
  • the circuit configuration of the acoustic wave element 2 is not particularly limited.
  • first support layers 15a1 and 15a2 and a second support layer 15b are provided on the second main surface 13b of the piezoelectric substrate 13. As shown in FIG.
  • the first support layer 15a1 is provided between the IDT electrode 14a and the IDT electrode 14b.
  • the first support layer 15a2 is provided between the IDT electrode 14b and the IDT electrode 14c. Note that at least one first support layer may be provided.
  • the first support layers 15a1 and 15a2 have a length direction L and a width direction W1 perpendicular to the thickness direction of the first support layers 15a1 and 15a2.
  • the second support layer 15b has a width direction W2 as a direction crossing the second support layer 15b.
  • the first support layers 15a1 and 15a2 have a rectangular shape in plan view from the second main surface 13b side of the piezoelectric substrate 13.
  • the first support layer 15a1 has both end portions 15a11 and 15a12 in the length direction L.
  • the first support layer 15a2 has both end portions 15a21 and 15a22 in the length direction L.
  • the planar shape of the first support layers 15a1 and 15a2 is not particularly limited.
  • the planar shape of the first support layers 15a1 and 15a2 may have a bent portion, for example.
  • the second support layer 15b surrounds the IDT electrodes 14a to 14c and the first support layers 15a1 and 15a2 in a plan view from the second main surface 13b side of the piezoelectric substrate 13. Both end portions 15a11, 15a12 of the first support layer 15a1 and both end portions 15a21, 15a22 of the first support layer 15a2 are in contact with the second support layer 15b.
  • the width of the first support layers 15a1 and 15a2 and the width of the second support layer 15b are the same.
  • the width of the first support layers 15a1 and 15a2 may be different from the width of the second support layer 15b.
  • the thickness of the first support layers 15a1 and 15a2 is smaller than the thickness of the second support layer 15b.
  • a cover member 16 is provided on the first support layers 15a1 and 15a2 and the second support layer 15b. More specifically, the cover member 16 is provided in contact with the first support layers 15a1 and 15a2 and the second support layer 15b. Therefore, the cover member 16 has a shape that follows the difference in thickness between the first support layers 15a1 and 15a2 and the second support layer 15b. Since the thickness of the first support layers 15a1 and 15a2 is thinner than the thickness of the second support layer 15b, the cover member 16 is curved in a convex shape toward the piezoelectric substrate 13 so as to approach the piezoelectric substrate 13.
  • Under bump metal layers 17 a and 17 b are provided so as to penetrate the second support layer 15 b and the cover member 16.
  • the under bump metal layer 17a has first and second end portions 17a11 and 17a12.
  • the under bump metal layer 17b has first and second end portions 17b11 and 17b12. The first end portions 17a11 and 17b11 of the under bump metal layers 17a and 17b reach the piezoelectric substrate 13, respectively.
  • a plurality of bumps 6 are provided on the cover member 16.
  • the second end portions 17a12 and 17b12 of the under bump metal layers 17a and 17b are connected to the bumps 6, respectively.
  • the IDT electrodes 14a to 14c are electrically connected to the under bump metal layer 17a or the under bump metal layer 17b.
  • each bump 6 is joined to the electrode lands 4a and 4b.
  • the IDT electrodes 14a to 14c are electrically connected to the mounting substrate 3 through the electrode lands 4a and 4b, the bumps 6, and the under bump metal layer 17a or the under bump metal layer 17b.
  • the distance between the mounting substrate and the cover member is narrower.
  • a solid mold resin softened by heating is filled under pressure.
  • the cover member 16 is curved in a convex shape toward the piezoelectric substrate 13 so as to move away from the mounting substrate 3. For this reason, the distance between the mounting substrate 3 and the cover member 16 is increased. Therefore, the mold resin 7 can be easily filled between the mounting substrate 3 and the cover member 16. As shown in FIG. 1, there is no gap between the cover member 16 and the mounting substrate 3 and the mold resin 7. Thus, the mold resin 7 can be reliably and sufficiently filled.
  • the cover member 16 is provided in contact with the first support layers 15a1 and 15a2. Therefore, by controlling the thickness of the first support layers 15a1 and 15a2, the difference in thickness between the first support layers 15a1 and 15a2 and the thickness of the second support layer 15b can be controlled. Since the cover member 16 has a shape that follows the difference between the thickness of the first support layers 15a1 and 15a2 and the thickness of the second support layer 15b, the degree of curvature of the cover member 16 can be reliably controlled. it can. Then, by making the thickness of the first support layers 15a1 and 15a2 smaller than the thickness of the second support layer 15b, the cover member 16 is recessed downward as shown in FIG.
  • the mold resin is more sufficiently filled between the mounting substrate and the cover member. Furthermore, both end portions 15a11 and 15a12 of the first support layer 15a1 and both end portions 15a21 and 15a22 of the first support layer 15a2 are in contact with the second support layer 15b. Thereby, since the 1st support layers 15a1 and 15a2 are supporting the 2nd support layer 15b in the side surface direction, intensity becomes still stronger. Since the thickness of the first support layers 15a1 and 15a2 is smaller than the thickness of the second support layer 15b, the degree of thermal contraction of the first support layers 15a1 and 15a2 when the support layer resin is cured is small. Therefore, the second support layer 15b is not easily deformed. Therefore, not only the strength in the thickness direction of the acoustic wave element 2 but also the strength in the side surface direction can be increased.
  • both end portions 15a11, 15a12 of the first support layer 15a1 and the both end portions 15a21, 15a22 of the first support layer 15a2 do not necessarily have to be in contact with the second support layer 15b. Even in this case, the strength in the thickness direction can be increased and the mold resin can be sufficiently filled.
  • the width of at least one first support layer may be wider than the width of the second support layer.
  • first support layers 55a1 and 55a2 are provided in the elastic wave element 52 of the first modification shown in FIG. 3.
  • the width of the first support layer 55a2 is wider than the width of the second support layer 15b. In this case, the strength of the acoustic wave element can be increased.
  • FIG. 4A is a plan view of an acoustic wave device according to the second embodiment of the present invention.
  • FIG. 4B is a cross-sectional view of the acoustic wave element taken along line BB in FIG.
  • the acoustic wave element 22 is different from the first embodiment in that the width of the first support layers 25a1 and 25a2 is narrower than the width of the second support layer 15b.
  • the elastic wave element 22 and the elastic wave device of the second embodiment have the same configurations as the elastic wave element 2 and the elastic wave device 1 of the first embodiment except for the points described above.
  • the interval between the mounting substrate and the cover member 16 can be widened. Therefore, the same effect as the first embodiment can be obtained. Further, since the widths of the first support layers 25a1 and 25a2 are narrow, the area of the portion where the IDT electrodes 14a to 14c and the like are disposed can be increased. Alternatively, the area of the piezoelectric substrate 13 can be reduced, and the acoustic wave element 22 and the acoustic wave device can be reduced in size.
  • the first support layers 65a1 and 65a2 have wide portions 65A1 and 65A2 that are wider than other portions. May be.
  • the shapes of the wide portions 65A1 and 65A2 are larger than the shapes other than the other portions.
  • the wide portion 65A1 is disposed at a position including the one end portion 65a11 of the first support layer 65a1.
  • the end portion 65a11 included in the wide portion 65A1 of the first support layer 65a1 is not in contact with the second support layer 15b.
  • the one end portion 65a21 of the first support layer 65a2 is also included in the wide portion 65A2 and does not contact the second support layer 15b. Thereby, the area of the portion where the IDT electrodes 14a to 14c and the like are arranged can be increased, and the cover member 16 can be stably supported.
  • the other end portions 65a12 and 65a22 of the first support layers 65a1 and 65a2 are in contact with the second support layer 15b.
  • the position of the wide portion 65A1 is not particularly limited. Note that the wide portion 65A1 is located near the center portion in the length direction L of the first support layer 65a1 when both end portions 65a11 and 65a12 of the first support layer 65a1 are in contact with the second support layer 15b. It is preferable.
  • the above position is the position farthest from the second support layer 15b in the length direction L. Therefore, the hollow portion composed of the cover member 16, the second support layer 15b, and the piezoelectric substrate 13 is easily crushed at the above position by the pressure in the thickness direction. By disposing the wide portion 65A1 at the above position, the strength of the acoustic wave element 62 can be effectively increased. The same applies to the wide portion 65A2.
  • the wide portion 65A1 may be disposed at a position that does not include any of the end portions 65a11 and 65a12 of the first support layer 65a1.
  • the wide portion 65A2 may also be disposed at a position that does not include any of the end portions 65a21 and 65a22 of the first support layer 65a2.
  • both end portions 65a11 and 65a12 of the first support layer 65a1 and both end portions 65a21 and 65a22 of the first support layer 65a2 may be in contact with the second support layer 15b. In this case, the strength of the acoustic wave element 62 can be further increased.
  • planar shapes of the wide portions 65A1 and 65A2 are rectangular, but the planar shape is not particularly limited. For example, it may be a polygon or a circle.
  • FIG. 6 (a) to 6 (c) are front sectional views for explaining a method for manufacturing an acoustic wave device according to the second embodiment.
  • FIG. 7A and FIG. 7B are front sectional views for explaining a method for manufacturing the acoustic wave device according to the second embodiment.
  • a piezoelectric substrate 13 is prepared.
  • IDT electrodes 14 a to 14 c are provided on the second main surface 13 b of the piezoelectric substrate 13.
  • a metal film is formed by, for example, a sputtering method or a CVD method.
  • the metal film is patterned by a photolithography method or the like.
  • first support layer and a second support layer are provided on the second main surface 13 b of the piezoelectric substrate 13.
  • the first support layer and the second support layer can be provided by, for example, a photolithography method. In this case, the first support layer and the second support layer can be provided simultaneously.
  • a photocurable resin layer 25 is laminated on the second main surface 13b of the piezoelectric substrate 13.
  • the first region 25X1 and the second region 25X2 of the photocurable resin layer 25 are exposed simultaneously.
  • exposure is performed so that the width of the first region 25X1 is smaller than the width of the second region 25X2.
  • the first and second regions 25X1 and 25X2 of the photocurable resin layer 25 are photocured.
  • the third region 25Y of the photocurable resin layer 25 is not exposed, the third region 25Y is not photocured. Note that the width of the first region 25X1 and the width of the second region 25X2 can be easily adjusted by adjusting the pattern of the mask used for exposure.
  • the area for exposing the first region 25X1 is smaller than the area for exposing the second region 25X2 of the photocurable resin layer 25. Accordingly, the speed of the photocuring reaction in the first region 25X1 can be made slower than the speed of the photocuring reaction in the second region 25X2. Therefore, even if the first region 25X1 and the second region 25X2 are exposed simultaneously, the uncured portion of the first region 25X1 can be made larger than the uncured portion of the second region 25X2.
  • the uncured portion of the photocurable resin layer is removed by etching.
  • the first support layers 25a1 and 25a2 are formed from the first region 25X1 of the photocurable resin layer 25 shown in FIG.
  • the second support layer 15b is formed from the second region 25X2 of the photocurable resin layer 25.
  • the thickness of the first support layers 25a1 and 25a2 is smaller than the thickness of the second support layer 15b.
  • the first support layers 25a1, 25a2 and the second support layer 15b can be provided simultaneously by the photolithography method described above.
  • the thickness of the first support layers 25a1 and 25a2 and the second support layer 15b can be adjusted by adjusting the line width to be exposed to the photocurable resin layer 25. Accordingly, the first support layers 25a1 and 25a2 and the second support layer 15b are provided, and at the same time, a difference in thickness between the two can be formed. Thus, productivity can be improved effectively.
  • the method for providing the first support layers 25a1, 25a2 and the second support layer 15b is not particularly limited.
  • the thickness of the first support layers 25a1, 25a2 and the second support layer 15b may be adjusted by, for example, polishing.
  • the cover member 16 is provided on the first support layers 25a1 and 25a2 and the second support layer 15b. At this time, the cover member 16 is provided so as to be in contact with the first support layers 25a1 and 25a2 and the second support layer 15b. Thereby, the cover member 16 is curved in a convex shape toward the piezoelectric substrate 13.
  • under bump metal layers 17a and 17b are provided so as to fill the plurality of through holes.
  • the under bump metal layers 17a and 17b can be provided by, for example, an electrolytic plating method.
  • bumps 6 are respectively provided on the cover member 16 so as to be connected to the under bump metal layers 17a and 17b. Thereby, the elastic wave element 22 can be obtained.
  • the acoustic wave element 22 is connected to the electrode lands 4 a and 4 b on the mounting substrate 3 through the bumps 6.
  • a mold resin 7 is provided on the mounting substrate 3. Thereby, the acoustic wave element 22 is sealed.
  • the cover member 16 of the acoustic wave element 22 is curved in a convex shape toward the piezoelectric substrate 13 so as to move away from the mounting substrate 3. Therefore, the mold resin 7 can be reliably and sufficiently filled between the mounting substrate 3 and the cover member 16. Thereby, the elastic wave apparatus 21 can be obtained.
  • FIG. 8 is a front sectional view of the acoustic wave device according to the third embodiment.
  • the thickness of the first support layer 35a2 of the acoustic wave element 32 is the same as the thickness of the second support layer 15b, and the width of the first support layer 35a2 is the same as the width of the second support layer 15b. It is the same size.
  • the width of the first support layer 35a1 is narrower than the width of the first support layer 35a2, and the thickness of the first support layer 35a1 is smaller than the thickness of the first support layer 35a2 and the second support layer 15b. thin.
  • the elastic wave element 32 and the elastic wave device of the third embodiment have the same configuration as the elastic wave element 2 and the elastic wave device 1 of the first embodiment except for the above points.
  • the cover member 36 is curved so as to be convex toward the piezoelectric substrate 13 side. Therefore, the same effect as the first embodiment can be obtained.
  • the difference in width and thickness between the first support layer 35a1, the first support layer 35a2 and the second support layer 15b can be easily determined by the same method as the method for manufacturing the acoustic wave device 22 of the second embodiment. Can be provided. Therefore, productivity can be improved. Furthermore, since it has the 1st support layer 35a2 with a wide width
  • the acoustic wave elements 2, 22, and 32 in the first embodiment, the second embodiment, and the third embodiment use surface acoustic waves.
  • the present invention is not limited to an acoustic wave element using a surface acoustic wave, and can also be applied to an acoustic wave device having an acoustic wave element using a bulk wave.
  • FIG. 9A is a plan view of an acoustic wave device according to the fourth embodiment of the present invention.
  • FIG. 9B is a cross-sectional view of the excitation portion of the acoustic wave device along CC in FIG. 9A.
  • the excitation unit is shown by a schematic drawing in which a diagonal line is drawn in a rectangle.
  • the acoustic wave element 42 is a membrane type acoustic wave element.
  • a bulk wave is excited.
  • the configuration of the portion where the bulk wave is excited is different from that of the first embodiment.
  • the substrate 48 of the acoustic wave element 42 is not limited to a piezoelectric substrate. Except for the above points, the elastic wave element 42 and the elastic wave device of the fourth embodiment have the same configurations as the elastic wave element 2 and the elastic wave device 1 of the first embodiment.
  • the acoustic wave element 42 has a substrate 48.
  • substrate 48 is not specifically limited, Ceramics etc. may be used.
  • excitation portions 44A to 44C which are portions where bulk waves are excited, are configured.
  • the excitation units 44A to 44C have the same configuration. The configuration of the excitation unit 44A will be described with reference to FIG.
  • a dielectric film 49 is provided on the substrate 48.
  • the dielectric film 49 has a first portion 49 a that is in contact with the substrate 48 and a second portion 49 b that is not in contact with the substrate 48.
  • a gap D is disposed between the substrate 48 and the second portion 49 b of the dielectric film 49.
  • the dielectric film 49 is not particularly limited, but may be made of, for example, SiO 2 or SiN.
  • a first electrode 44 a is provided on the dielectric film 49.
  • a piezoelectric film 43 is provided on the dielectric film 49 and the first electrode 44a.
  • a second electrode 44b is provided on the piezoelectric film 43.
  • the first electrode 44 a and the second electrode 44 b have a portion facing each other with the piezoelectric film 43 interposed therebetween.
  • the excitation unit 44A has a membrane type configuration.
  • the acoustic wave device of the fourth embodiment has a configuration in which the IDT electrodes 14a to 14c in FIG. 1 are replaced with the excitation units 44A to 44C. Therefore, also in this embodiment, the same effect as that of the first embodiment can be obtained.
  • the elastic wave device of the present invention is widely used in various electronic devices and communication devices. This example will be described with reference to FIG.
  • FIG. 10 is a front sectional view of a communication module device including the elastic wave device of the present invention.
  • the acoustic wave element 2 and the elements 5A and 5B are mounted on the mounting substrate 3 of the communication module device 10.
  • the elements 5A and 5B may be passive elements such as capacitors and resistors, or may be active elements such as ICs and transistors.
  • the number and type of elements mounted on the mounting substrate 3 are not particularly limited.
  • FIG. 11 is a block diagram showing an example of a communication module device including the acoustic wave device of the present invention.
  • the communication module device 10 includes, for example, a front end unit 2A and an active element 2B connected to the front end unit 2A. More specifically, the front end portion 2A includes a plurality of acoustic wave elements 2 and a switch 2Aa. The elastic wave element 2 to be used is switched by the switch 2Aa. The front end portion 2A is connected to the antenna 2C. Examples of the active element 2B include PA (Power Amplifier) and LNA (Low Noise Amplifier).
  • PA Power Amplifier
  • LNA Low Noise Amplifier
  • Mobile communication devices include mobile phones, smartphones, and car navigation systems.
  • Examples of health care devices include weight scales and body fat scales.
  • Health care devices and mobile communication devices include an antenna, an RF module, an LSI, a display, an input unit, a power source, and the like.
  • the cover member 16 of the acoustic wave element 2 in the communication module device 10 of the present invention is curved in a convex shape toward the piezoelectric substrate 13 so as to be away from the mounting substrate 3. . Therefore, the mold resin 7 can be reliably and sufficiently filled.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 実装基板とカバー部材との間にモールド樹脂が充分に充填されており、かつ、カバー部材が凹みにくい、弾性波装置を提供する。 弾性波装置1は、圧電基板13上に設けられている第1の支持層15a1,15a2と、平面視した場合において、第1の支持層15a1,15a2を囲むように、圧電基板13上に設けられている第2の支持層15bと、第1の支持層15a1,15a2上及び第2の支持層15b上に設けられているカバー部材16とを有する弾性波素子2と、弾性波素子2が実装されている実装基板3と、実装基板3上に設けられており、弾性波素子2を封止しているモールド樹脂7とを備える。第2の支持層15bの厚みよりも第1の支持層15a1,15a2の厚みは薄い。カバー部材16は、実装基板3から遠ざかるように圧電基板13に向かって凸状に湾曲している。実装基板3とカバー部材16との間にモールド樹脂7が充填されている。

Description

弾性波装置、通信モジュール機器及び弾性波装置の製造方法
 本発明は、WLP(Wafer Level Package)構造を有する弾性波素子が実装基板に実装されている弾性波装置、通信モジュール機器及び弾性波装置の製造方法に関する。
 従来、WLP構造を有する弾性波素子が実装基板に実装されている弾性波装置が、携帯電話機などに広く用いられている。
 下記の特許文献1における弾性波素子では、圧電基板上の機能部を囲むように、圧電基板上に支持体が設けられている。さらに、圧電基板上には、支持体に囲まれている部分に支持柱が設けられている。
 下記の特許文献2における弾性波素子は、圧電基板側に近づくように中央部が湾曲しているカバー部材を有する。弾性波素子は、上面及び下面から2層の絶縁層により挟まれており、側面を3層目の絶縁層により覆われている。3層の絶縁層を圧着するに際し、カバー部材に圧力が加わり、カバー部材が湾曲するとしている。
特許第5141852号 特開2014-14131号公報
 近年では、弾性波装置のさらなる低背化が求められている。よって、実装基板と弾性波素子のカバー部材との間隔がより狭くなっている。しかしながら、特許文献1におけるカバー部材は平坦である。そのため、弾性波素子をモールド樹脂により封止するに際し、実装基板とカバー部材との間のモールド樹脂の充填が充分でないことがあった。
 特許文献2では、圧着された3層の絶縁層により弾性波素子が封止されている。
 本発明の目的は、実装基板とカバー部材との間にモールド樹脂が充分に充填されており、かつ、カバー部材が凹みにくい、弾性波装置、通信モジュール機器及び弾性波装置の製造方法を提供することにある。
 本発明に係る弾性波装置は、対向し合っている一対の主面を有する圧電基板と、前記圧電基板の一方主面上に設けられている励振電極と、前記圧電基板の前記一方主面上に設けられている少なくとも1個の第1の支持層と、平面視した場合において、前記励振電極及び前記第1の支持層を囲むように、前記圧電基板の前記一方主面上に設けられている第2の支持層と、前記第1,第2の支持層上に設けられており、前記第2の支持層及び前記圧電基板と共に前記励振電極を封止しているカバー部材とを有する弾性波素子と、前記弾性波素子が実装されている実装基板と、前記実装基板上に設けられており、前記弾性波素子を封止しているモールド樹脂とを備え、前記第2の支持層の厚みよりも前記第1の支持層の厚みが薄く、前記カバー部材が、前記実装基板から遠ざかるように前記圧電基板に向かって凸状に湾曲しており、前記実装基板と前記カバー部材との間に前記モールド樹脂が充填されている。
 本発明に係る弾性波装置のある特定の局面では、前記第1の支持層が、前記第1の支持層を横断する方向としての幅方向を有し、前記第2の支持層が、前記第2の支持層を横断する方向としての幅方向を有し、少なくとも1個の前記第1の支持層の幅が、前記第2の支持層の幅よりも狭い。この場合には、励振電極などを配置する部分の面積を大きくすることができる。
 本発明に係る弾性波装置の他の特定の局面では、前記第1の支持層が複数存在し、前記複数の第1の支持層の内少なくとも1個の第1の支持層の幅が、他の第1の支持層の幅よりも狭く、かつ前記複数の第1の支持層の内少なくとも1個の第1の支持層の厚みが、他の第1の支持層の厚みよりも薄い。この場合には、励振電極などを配置する部分の面積を大きくすることができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記弾性波装置を平面視した場合に、前記第1の支持層が前記第2の支持層と両端で接している。この場合には、第1の支持層は、第2の支持層を側面方向において支持することができるので、強度が一層強くなる。
 本発明に係る弾性波装置の別の特定の局面では、前記第1の支持層が一方端部及び他方端部を有し、前記弾性波装置を平面視した場合に、前記第1の支持層の一方端部が前記第2の支持層と接しており、前記第1の支持層の他方端部の形状が、該他方端部以外の形状よりも大きい。この場合には、カバー部材を安定に支持することができる。
 本発明に係る通信モジュール機器は、本発明に従って構成された弾性波装置を含むフロントエンド部と、前記フロントエンド部に接続されている能動素子とを備える。この場合には、実装基板とカバー部材との間にモールド樹脂をより一層充分に充填することができる。
 本発明に係る弾性波装置の製造方法は、対向し合っている一対の主面を有する圧電基板と、前記圧電基板の一方主面上に設けられている励振電極と、前記圧電基板の前記一方主面上に設けられている少なくとも1個の第1の支持層と、平面視した場合において、前記励振電極及び前記第1の支持層を囲むように、前記圧電基板の前記一方主面上に設けられている第2の支持層と、前記第1,第2の支持層上に設けられており、前記第2の支持層及び前記圧電基板と共に前記励振電極を封止しているカバー部材とを有する弾性波素子を作製する工程と、前記弾性波素子を実装基板上に実装する工程と、前記実装基板上にモールド樹脂を設け、前記弾性波素子を封止する工程とを備え、前記弾性波素子を作製する工程では、前記第2の支持層の厚みよりも前記第1の支持層の厚みが薄くなるように、前記第1,第2の支持層を設け、かつ前記カバー部材を、前記実装基板から遠ざかるように前記圧電基板に向かって凸状に湾曲させ、前記弾性波素子を封止する工程では、前記実装基板と前記カバー部材との間に前記モールド樹脂が充填されるように、前記モールド樹脂を設ける。この場合には、実装基板とカバー部材との間にモールド樹脂をより一層充分に充填することができる。
 本発明に係る弾性波装置の製造方法のある特定の局面では、前記第1の支持層を複数設け、前記複数の第1の支持層の内少なくとも1個の第1の支持層の幅が、他の第1の支持層の幅よりも小さくなるように前記複数の第1の支持層を設ける。この場合には、第2の支持層の厚みよりも、少なくとも1個の第1の支持層の厚みを容易に薄くすることができる。よって、生産性を高めることができる。さらに、幅が広い第1の支持層を有するため、強度を高めることができる。
 本発明によれば、実装基板とカバー部材との間にモールド樹脂が充分に充填されており、かつ、カバー部材が凹みにくい、弾性波装置、通信モジュール機器及び弾性波装置の製造方法を提供することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。 図2(a)は、本発明の第1の実施形態における弾性波素子の平面図であり、図2(b)は、図2(a)中のA-A線に沿う弾性波素子の断面図である。 図3は、本発明の第1の実施形態の第1の変形例における弾性波素子の正面断面図である。 図4(a)は、本発明の第2の実施形態における弾性波素子の平面図であり、図4(b)は、図4(a)中のB-B線に沿う弾性波素子の断面図である。 図5は、本発明の第2の実施形態の第2の変形例における弾性波素子の平面図である。 図6(a)~図6(c)は、第2の実施形態における弾性波素子の製造方法を説明するための正面断面図である。 図7(a)及び図7(b)は、第2の実施形態に係る弾性波装置の製造方法を説明するための正面断面図である。 図8は、本発明の第3の実施形態における弾性波素子の正面断面図である。 図9(a)は、本発明の第4の実施形態における弾性波素子の平面図であり、図9(b)は、図9(a)中のC-C線に沿う弾性波素子の励振部の断面図である。 図10は、本発明の弾性波装置を含む通信モジュール機器の正面断面図である。 図11は、本発明の弾性波装置を含む通信モジュール機器の一例を示すブロック図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。なお、本願の図面においては、後述する励振電極を、矩形に対角線を引いた略図により示す。
 弾性波装置1は、実装基板3を有する。実装基板3の材料は特に限定されないが、例えば、セラミックスなどが用いられ得る。
 実装基板3上には、弾性波素子2が実装されている。より具体的には、実装基板3上には、電極ランド4a,4bが設けられている。他方、詳細は後述するが、弾性波素子2は、圧電基板13を有する。圧電基板13の図1における下側には、第2の支持層15bが設けられている。第2の支持層15bの下側には、カバー部材16が設けられている。カバー部材16の下側には、複数のバンプ6が設けられている。バンプ6は、半田などからなる。弾性波素子2は、バンプ6により、電極ランド4a,4bに接合されている。
 実装基板3上には、モールド樹脂7が設けられている。モールド樹脂7により、弾性波素子2が封止されている。
 本実施形態の特徴は、カバー部材16が実装基板3から遠ざかるように圧電基板13に向かって凸状に湾曲していることにある。それによって、カバー部材16と実装基板3との間を含めて、モールド樹脂7を充分に充填することが可能になる。さらに、カバー部材16を支える第1の支持層15a1,15a2があることによって、カバー部材16が凹みにくくなる。すなわち、第1の支持層15a1,15a2があることによって、カバー部材16を支えることができる。従って、カバー部材16と実装基板3との間を含めた、モールド樹脂7の高い充填性を担保しつつ、高い耐久性を有することが可能となる。これを、弾性波素子2の構成の詳細と共に説明する。
 図2(a)は、本発明の第1の実施形態における弾性波素子の平面図である。図2(b)は、図2(a)のA-A線に沿う弾性波素子の断面図である。
 上述したように、弾性波素子2は、圧電基板13を有する。図2(b)に示すように、圧電基板13は、対向し合っている一対の主面である、第1の主面13aと第2の主面13bとを有する。圧電基板13は、特に限定されないが、例えば、LiNbOやLiTaOなどの圧電単結晶からなる。圧電基板13は、圧電セラミックスなどからなっていてもよい。
 圧電基板13の一方の主面としての第2の主面13b上には、励振電極が設けられている。本実施形態では、励振電極は、複数のIDT電極14a~14cである。各IDT電極14a~14cに電圧を印加することにより、弾性表面波がそれぞれ励振される。図示されていないが、本実施形態では、IDT電極14aの弾性表面波伝搬方向の両側には、反射器が設けられている。それによって、弾性波共振子が構成されている。同様に、IDT電極14b,14cを励振電極とする弾性波共振子も、それぞれ構成されている。弾性波素子2においては、上記各弾性波共振子を含むフィルタが構成されている。なお、弾性波素子2の回路構成は、特に限定されない。
 図2(a)に示すように、圧電基板13の第2の主面13b上には、複数の第1の支持層15a1,15a2及び第2の支持層15bが設けられている。第1の支持層15a1は、IDT電極14aとIDT電極14bとの間に設けられている。第1の支持層15a2は、IDT電極14bとIDT電極14cとの間に設けられている。なお、第1の支持層は、少なくとも1個設けられていればよい。
 第1の支持層15a1,15a2は、第1の支持層15a1,15a2の厚み方向に垂直な長さ方向L及び幅方向W1を有する。第2の支持層15bは、第2の支持層15bを横断する方向としての幅方向W2を有する。第1の支持層15a1,15a2は、圧電基板13の第2の主面13b側からの平面視において、矩形状の形状を有する。第1の支持層15a1は、長さ方向Lの両端部15a11,15a12を有する。第1の支持層15a2は、長さ方向Lの両端部15a21,15a22を有する。なお、第1の支持層15a1,15a2の平面形状は特に限定されない。第1の支持層15a1,15a2の平面形状は、例えば、屈曲している部分を有してもよい。
 第2の支持層15bは、圧電基板13の第2の主面13b側からの平面視において、IDT電極14a~14c及び第1の支持層15a1,15a2を囲んでいる。第1の支持層15a1の両端部15a11,15a12及び第1の支持層15a2の両端部15a21,15a22は、第2の支持層15bに接している。本実施形態では、第1の支持層15a1,15a2の幅と第2の支持層15bの幅とは同じ広さである。なお、第1の支持層15a1,15a2の幅と第2の支持層15bの幅とは異なる広さであってもよい。図2(b)に示すように、第2の支持層15bの厚みよりも第1の支持層15a1,15a2の厚みは薄い。
 第1の支持層15a1,15a2上及び第2の支持層15b上には、カバー部材16が設けられている。より具体的には、カバー部材16は、第1の支持層15a1,15a2及び第2の支持層15bに接するように設けられている。よって、カバー部材16は、第1の支持層15a1,15a2及び第2の支持層15bの厚みの差に追従した形状となっている。第2の支持層15bの厚みよりも第1の支持層15a1,15a2の厚みは薄いため、カバー部材16は、圧電基板13に近づくように圧電基板13に向かって凸状に湾曲している。
 第2の支持層15b及びカバー部材16を貫通するように、アンダーバンプメタル層17a,17bが設けられている。アンダーバンプメタル層17aは、第1,第2の端部17a11,17a12を有する。アンダーバンプメタル層17bは、第1,第2の端部17b11,17b12を有する。アンダーバンプメタル層17a,17bの第1の端部17a11,17b11は、圧電基板13上にそれぞれ至っている。
 カバー部材16上には、複数のバンプ6が設けられている。アンダーバンプメタル層17a,17bの第2の端部17a12,17b12は、各バンプ6にそれぞれ接続されている。図示されていないが、IDT電極14a~14cは、アンダーバンプメタル層17aまたはアンダーバンプメタル層17bに電気的に接続されている。図1に示したように、各バンプ6は、電極ランド4a,4bに接合されている。電極ランド4a,4b、各バンプ6並びにアンダーバンプメタル層17aまたはアンダーバンプメタル層17bを介して、IDT電極14a~14cは実装基板3に電気的に接続されている。
 ところで、近年、弾性波装置のさらなる低背化が求められている。そのため、実装基板とカバー部材との間隔がより狭くなっている。モールド樹脂を設けるに際しては、加熱により軟化させた固体のモールド樹脂を、圧力をかけて充填する。しかしながら、間隔が狭い部分にモールド樹脂を充填することは困難であった。そのため、実装基板とカバー部材との間にモールド樹脂が充分に充填されていないことがあった。
 これに対して、図1に戻り、本実施形態では、カバー部材16が実装基板3から遠ざかるように圧電基板13に向かって凸状に湾曲している。そのため、実装基板3とカバー部材16との間隔が広くなっている。よって、実装基板3とカバー部材16との間にモールド樹脂7を容易に充填することができる。図1に示されているように、カバー部材16及び実装基板3とモールド樹脂7との間には、空隙が存在しない。このように、モールド樹脂7を確実に、かつ充分に充填することができる。
 図2(a)及び図2(b)に示すように、カバー部材16は、第1の支持層15a1,15a2に接するように設けられている。よって、第1の支持層15a1,15a2の厚みを制御することにより、第1の支持層15a1,15a2の厚みと第2の支持層15bとの厚みの差を制御できる。カバー部材16が、第1の支持層15a1,15a2の厚みと、第2の支持層15bの厚みとの差に追従した形状となることから、カバー部材16の湾曲度合いを確実に制御することができる。そして、第1の支持層15a1,15a2の厚みを、第2の支持層15bの厚みよりも薄くすることで、図2(b)に示すように、カバー部材16が下側に凹む。これにより、図1に示すように、実装基板とカバー部材との間にモールド樹脂がより一層充分に充填されることになる。さらに、第1の支持層15a1の両端部15a11,15a12及び第1の支持層15a2の両端部15a21,15a22は、第2の支持層15bに接している。これにより、第1の支持層15a1,15a2は、第2の支持層15bを側面方向において支持しているので、強度が一層強くなる。第1の支持層15a1,15a2の厚みが第2の支持層15bの厚みよりも薄いため、支持層樹脂硬化時の第1の支持層15a1,15a2の熱収縮の度合いは小さい。よって、第2支持層15bが変形しにくい。よって、弾性波素子2の厚み方向の強度だけでなく、側面方向の強度も高めることができる。
 なお、第1の支持層15a1の両端部15a11,15a12及び第1の支持層15a2の両端部15a21,15a22は、第2の支持層15bに必ずしも接していなくてもよい。この場合においても、厚み方向の強度を高めることができ、かつモールド樹脂を充分に充填することができる。
 本実施形態のように、複数の第1の支持層が設けられている場合、少なくとも1個の第1の支持層の幅は、第2の支持層の幅よりも広くてもよい。例えば、図3に示す第1の変形例の弾性波素子52では、第1の支持層55a1,55a2が設けられている。第1の支持層55a2の幅は、第2の支持層15bの幅よりも広い。この場合には、弾性波素子の強度を高めることができる。
 図4(a)は、本発明の第2の実施形態における弾性波素子の平面図である。図4(b)は、図4(a)中のB-B線に沿う弾性波素子の断面図である。
 弾性波素子22は、第1の支持層25a1,25a2の幅が第2の支持層15bの幅よりも狭い点で、第1の実施形態と異なる。第2の実施形態の弾性波素子22及び弾性波装置は、上記以外の点においては、第1の実施形態の弾性波素子2及び弾性波装置1と同様の構成を有する。
 本実施形態においても、実装基板とカバー部材16との間隔を広くすることができる。よって、第1の実施形態と同様の効果を得ることができる。さらに、第1の支持層25a1,25a2の幅が狭いため、IDT電極14a~14cなどを配置する部分の面積を大きくすることできる。あるいは、圧電基板13の面積を小さくすることもでき、弾性波素子22及び弾性波装置を小型にすることもできる。
 図5に示す第2の実施形態の第2の変形例の弾性波素子62のように、第1の支持層65a1,65a2は、他の部分よりも幅が広い幅広部65A1,65A2を有してもよい。言い換えれば、幅広部65A1,65A2の形状は、他の部分以外の形状よりも大きい。より具体的には、幅広部65A1は、第1の支持層65a1の一方端部65a11を含む位置に配置されている。第1の支持層65a1の幅広部65A1に含まれる端部65a11は、第2の支持層15bに接していない。第1の支持層65a2の一方端部65a21も、幅広部65A2に含まれており、第2の支持層15bに接していない。これにより、IDT電極14a~14cなどを配置する部分の面積を大きくすることができ、かつカバー部材16を安定に支持することができる。
 なお、弾性波素子62では、第1の支持層65a1,65a2の他方端部65a12,65a22は、第2の支持層15bに接している。
 幅広部65A1の位置は、特に限定されない。なお、第1の支持層65a1の両端部65a11,65a12が第2の支持層15bに接している場合の第1の支持層65a1の長さ方向Lの中央部付近に、幅広部65A1が位置していることが好ましい。上記の位置は、第2の支持層15bから、長さ方向Lにおいて最も離れている位置である。そのため、カバー部材16、第2の支持層15b及び圧電基板13からなる中空部は、厚み方向の圧力により、上記の位置において潰され易い。上記の位置に幅広部65A1を配置することにより、弾性波素子62の強度を効果的に高めることができる。幅広部65A2についても同様である。
 幅広部65A1は、第1の支持層65a1の端部65a11,65a12のいずれも含まない位置に配置されていてもよい。幅広部65A2も、第1の支持層65a2の端部65a21,65a22のいずれも含まない位置に配置されていてもよい。このとき、例えば、第1の支持層65a1の両端部65a11,65a12及び第1の支持層65a2の両端部65a21,65a22が、第2の支持層15bに接していてもよい。この場合、弾性波素子62の強度をより一層高めることができる。
 図5に示されているように、幅広部65A1,65A2の平面形状は矩形状だが、平面形状は特に限定されない。例えば、多角形や円形などであってもよい。
 次に、第2の実施形態に係る弾性波装置の製造方法を説明する。
 図6(a)~図6(c)は、第2の実施形態における弾性波素子の製造方法を説明するための正面断面図である。図7(a)及び図7(b)は、第2の実施形態に係る弾性波装置の製造方法を説明するための正面断面図である。
 図6(a)に示すように、圧電基板13を用意する。次に、圧電基板13の第2の主面13b上に、IDT電極14a~14cを設ける。IDT電極14a~14cを設けるに際しては、例えば、スパッタリング法やCVD法などにより金属膜を形成する。次に、フォトリソグラフィ法などにより、金属膜をパターニングする。
 次に、圧電基板13の第2の主面13b上に、第1の支持層及び第2の支持層を設ける。第1の支持層及び第2の支持層は、例えば、フォトリソグラフィ法などにより設けることができる。この場合、第1の支持層及び第2の支持層を同時に設けることもできる。
 より具体的には、図6(a)に示すように、圧電基板13の第2の主面13b上に光硬化性樹脂層25を積層する。次に、光硬化性樹脂層25の第1の領域25X1及び第2の領域25X2に同時に露光する。このとき、第2の領域25X2の幅よりも第1の領域25X1の幅が小さくなるように露光する。それによって、光硬化性樹脂層25の第1,2の領域25X1,25X2を光硬化する。光硬化性樹脂層25の第3の領域25Yには露光しないため、第3の領域25Yは光硬化されない。なお、露光に用いるマスクのパターンを調整することにより、第1の領域25X1の幅及び第2の領域25X2の幅を容易に調整することができる。
 上記露光に際し、光硬化性樹脂層25の第2の領域25X2を露光する面積よりも、第1の領域25X1を露光する面積は小さい。それによって、第2の領域25X2の光硬化反応の速度よりも第1の領域25X1の光硬化反応の速度を遅くすることができる。よって、第1の領域25X1及び第2の領域25X2を同時に露光しても、第2の領域25X2の未硬化部よりも第1の領域25X1の未硬化部を多くすることができる。
 次に、図6(b)に示すように、光硬化性樹脂層の未硬化部をエッチングにより除去する。それによって、図6(a)に示した光硬化性樹脂層25の第1の領域25X1から第1の支持層25a1,25a2を形成する。光硬化性樹脂層25の第2の領域25X2から第2の支持層15bを形成する。
 このとき、図6(a)に示した第2の領域25X2の未硬化部よりも第1の領域25X1の未硬化部の方が多い。よって、第2の領域25X2がエッチングにより除去される部分よりも、第1の領域25X1がエッチングにより除去される部分の方が多い。従って、第2の支持層15bの厚みよりも第1の支持層25a1,25a2の厚みは薄くなる。
 上記のフォトリソグラフィ法により、第1の支持層25a1,25a2及び第2の支持層15bを同時に設けることができる。加えて、光硬化性樹脂層25に露光する線幅を調整することにより、第1の支持層25a1,25a2及び第2の支持層15bの厚みを調整することができる。それによって、第1の支持層25a1,25a2及び第2の支持層15bを設けると同時に、両者の厚みの差も形成することができる。このように、生産性を効果的に高めることができる。
 なお、第1の支持層25a1,25a2及び第2の支持層15bを設ける方法は特に限定されない。第1の支持層25a1,25a2及び第2の支持層15bの厚みの調整は、例えば、研磨などにより行ってもよい。
 次に、図6(c)に示すように、第1の支持層25a1,25a2上及び第2の支持層15b上にカバー部材16を設ける。このとき、第1の支持層25a1,25a2及び第2の支持層15bに接するように、カバー部材16を設ける。それによって、カバー部材16を圧電基板13に向かって凸状に湾曲させる。
 次に、カバー部材16及び第2の支持層15bに複数の貫通孔を設ける。次に上記複数の貫通孔を満たすように、アンダーバンプメタル層17a,17bを設ける。アンダーバンプメタル層17a,17bは、例えば、電解めっき法などにより設けることができる。
 次に、アンダーバンプメタル層17a,17bに接続するように、カバー部材16上にバンプ6をそれぞれ設ける。これにより、弾性波素子22を得ることができる。
 次に、図7(a)に示すように、弾性波素子22を、各バンプ6を介して実装基板3上の電極ランド4a,4bに接続する。
 次に、図7(b)に示すように、実装基板3上にモールド樹脂7を設ける。それによって、弾性波素子22を封止する。弾性波素子22のカバー部材16は、実装基板3から遠ざかるように圧電基板13に向かって凸状に湾曲している。よって、実装基板3とカバー部材16との間にモールド樹脂7を確実に、かつ充分に充填することができる。これにより、弾性波装置21を得ることができる。
 図8は、第3の実施形態における弾性波素子の正面断面図である。
 弾性波素子32の第1の支持層35a2の厚みは、第2の支持層15bの厚みと同じ厚さであり、かつ第1の支持層35a2の幅は、第2の支持層15bの幅と同じ広さである。第1の支持層35a1の幅は、第1の支持層35a2の幅よりも狭く、かつ第1の支持層35a1の厚みは、第1の支持層35a2及び第2の支持層15bの厚みよりも薄い。第3の実施形態の弾性波素子32及び弾性波装置は、上記の点以外においては、第1の実施形態の弾性波素子2及び弾性波装置1と同様の構成を有する。
 この場合においても、カバー部材36は、圧電基板13側に向かって凸状になるように湾曲している。よって、第1の実施形態と同様の効果を得ることができる。
 第1の支持層35a1と第1の支持層35a2及び第2の支持層15bとの幅及び厚みの差は、第2の実施形態の弾性波素子22の製造方法と同様の方法により、容易に設けることができる。よって、生産性を高めることができる。さらに、幅が広い第1の支持層35a2を有するため、強度が高い。なお、第1の支持層35a1の幅は、第1の支持層35a2の幅以上の広さであってもよい。
 第1の実施形態、第2の実施形態及び第3の実施形態における弾性波素子2、22及び32は、弾性表面波を利用する。本発明は、弾性表面波を利用する弾性波素子に限られず、バルク波を利用する弾性波素子を有する弾性波装置にも適用することができる。
 図9(a)は、本発明の第4の実施形態における弾性波素子の平面図である。図9(b)は、図9(a)中のC-Cに沿う弾性波素子の励振部の断面図である。なお、図9(a)では、励振部を矩形に対角線を引いた略図により示す。
 弾性波素子42は、メンブレン型の弾性波素子である。弾性波素子42では、バルク波が励振される。第4の実施形態では、バルク波が励振される部分の構成が第1の実施形態と異なる。さらに、弾性波素子42の基板48は、圧電基板には限られない。上記の点以外においては、第4の実施形態の弾性波素子42及び弾性波装置は、第1の実施形態の弾性波素子2及び弾性波装置1と同様の構成を有する。
 図9(a)に示すように、弾性波素子42は、基板48を有する。基板48の材料は、特に限定されないが、セラミックスなどが用いられ得る。
 基板48上には、バルク波が励振される部分である励振部44A~44Cが構成されている。励振部44A~44Cは、いずれも同様の構成を有する。図9(b)を用いて、励振部44Aの構成を説明する。
 基板48上には、誘電体膜49が設けられている。誘電体膜49は、基板48に接している第1の部分49aと、基板48には接していない第2の部分49bとを有する。基板48と誘電体膜49の第2の部分49bとの間には、空隙Dが配置されている。誘電体膜49は、特に限定されないが、例えば、SiOやSiNなどからなっていてもよい。
 誘電体膜49上には、第1の電極44aが設けられている。誘電体膜49上及び第1の電極44a上には、圧電体膜43が設けられている。圧電体膜43上には、第2の電極44bが設けられている。第1の電極44aと第2の電極44bとは、圧電体膜43を介して対向し合っている部分を有する。
 第1の電極44a及び第2の電極44bに電圧を印加することにより、バルク波が励振される。上記のように励振される部分と、基板48との間には、空隙Dが配置されている。このように、励振部44Aは、メンブレン型の構成を有する。
 第4の実施形態の弾性波装置は、図1におけるIDT電極14a~14cが、励振部44A~44Cに置き換わった構成を有する。従って、本実施形態においても、第1の実施形態と同様の効果を得ることができる。
 本発明の弾性波装置は、様々な電子機器や通信機器に広く用いられる。この例を、図10を用いて説明する。
 図10は、本発明の弾性波装置を含む通信モジュール機器の正面断面図である。
 通信モジュール機器10の実装基板3上には、弾性波素子2及び素子5A,5Bが実装されている。素子5A,5Bは、コンデンサや抵抗などの受動素子であってもよく、ICやトランジスタなどの能動素子であってもよい。なお、実装基板3上に実装されている素子の個数及び種類は、特に限定されない。
 図11は、本発明の弾性波装置を含む通信モジュール機器の一例を示すブロック図である。
 通信モジュール機器10は、例えば、フロントエンド部2Aと、フロントエンド部2Aに接続されている能動素子2Bとを有する。より具体的には、フロントエンド部2Aは、複数の弾性波素子2と、スイッチ2Aaとを含む。スイッチ2Aaにより、用いられる弾性波素子2が切り替えられる。フロントエンド部2Aは、アンテナ2Cに接続されている。能動素子2Bとしては、例えば、PA(Power Amplifier)やLNA(Low Noise Amplifier)などを挙げることができる。この通信モジュール機器10は、移動体通信機器やヘルスケア通信機器などに用いられる。
 移動体通信機器としては、携帯電話、スマートフォン、カーナビなどがある。ヘルスケア機器としては、体重計や体脂肪計などがある。ヘルスケア機器や移動体通信機器は、アンテナ、RFモジュール、LSI、ディスプレイ、入力部、電源などを備えている。
 ここで、実装基板上に複数の素子が実装されている場合、モールド樹脂を複数の素子同士の間に充填する必要がある。そのため、実装基板と弾性波素子のカバー部材との間にモールド樹脂を充分に充填することは困難であった。これに対して、図10に示すように、本発明の通信モジュール機器10における弾性波素子2のカバー部材16は、実装基板3から遠ざかるように圧電基板13に向かって凸状に湾曲している。従って、モールド樹脂7を確実に、かつ充分に充填することができる。
 1…弾性波装置
 2…弾性波素子
 2A…フロントエンド部
 2Aa…スイッチ
 2B…能動素子
 2C…アンテナ
 3…実装基板
 4a,4b…電極ランド
 5A,5B…素子
 6…バンプ
 7…モールド樹脂
 10…通信モジュール機器
 13…圧電基板
 13a,13b…第1,第2の主面
 14a~14c…IDT電極
 15a1,15a2…第1の支持層
 15a11,15a12,15a21,15a22…端部
 15b…第2の支持層
 16…カバー部材
 17a,17b…アンダーバンプメタル層
 17a11,17b11…第1の端部
 17a12,17b12…第2の端部
 21…弾性波装置
 22…弾性波素子
 25…光硬化性樹脂層
 25a1,25a2…第1の支持層
 25X1,25X2…第1,第2の領域
 25Y…第3の領域
 32…弾性波素子
 35a1,35a2…第1の支持層
 36…カバー部材
 42…弾性波素子
 43…圧電体膜
 44A~44C…励振部
 44a,44b…第1,第2の電極
 48…基板
 49…誘電体膜
 49a,49b…第1,第2の部分
 52…弾性波素子
 55a1,55a2…第1の支持層
 62…弾性波素子
 65A1,65A2…幅広部
 65a1,65a2…第1の支持層
 65a11,65a12,65a21,65a22…端部

Claims (8)

  1.  対向し合っている一対の主面を有する圧電基板と、前記圧電基板の一方主面上に設けられている励振電極と、前記圧電基板の前記一方主面上に設けられている少なくとも1個の第1の支持層と、平面視した場合において、前記励振電極及び前記第1の支持層を囲むように、前記圧電基板の前記一方主面上に設けられている第2の支持層と、前記第1,第2の支持層上に設けられており、前記第2の支持層及び前記圧電基板と共に前記励振電極を封止しているカバー部材と、を有する弾性波素子と、
     前記弾性波素子が実装されている実装基板と、
     前記実装基板上に設けられており、前記弾性波素子を封止しているモールド樹脂と、を備え、
     前記第2の支持層の厚みよりも前記第1の支持層の厚みが薄く、
     前記カバー部材が、前記実装基板から遠ざかるように前記圧電基板に向かって凸状に湾曲しており、
     前記実装基板と前記カバー部材との間に前記モールド樹脂が充填されている、弾性波装置。
  2.  前記第1の支持層が、前記第1の支持層を横断する方向としての幅方向を有し、
     前記第2の支持層が、前記第2の支持層を横断する方向としての幅方向を有し、
     少なくとも1個の前記第1の支持層の幅が、前記第2の支持層の幅よりも狭い、請求項1に記載の弾性波装置。
  3.  前記第1の支持層が複数存在し、
     前記複数の第1の支持層の内少なくとも1個の第1の支持層の幅が、他の第1の支持層の幅よりも狭く、かつ前記複数の第1の支持層の内少なくとも1個の第1の支持層の厚みが、他の第1の支持層の厚みよりも薄い、請求項2に記載の弾性波装置。
  4.  前記弾性波装置を平面視した場合に、前記第1の支持層が前記第2の支持層と両端で接している、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記第1の支持層が一方端部及び他方端部を有し、前記弾性波装置を平面視した場合に、前記第1の支持層の一方端部が前記第2の支持層と接しており、前記第1の支持層の他方端部の形状が、該他方端部以外の形状よりも大きい、請求項1~3のいずれか1項に記載の弾性波装置。
  6.  請求項1~5のいずれか1項に記載の弾性波装置を含むフロントエンド部と、
     前記フロントエンド部に接続されている能動素子と、
    を備える、通信モジュール機器。
  7.  対向し合っている一対の主面を有する圧電基板と、前記圧電基板の一方主面上に設けられている励振電極と、前記圧電基板の前記一方主面上に設けられている少なくとも1個の第1の支持層と、平面視した場合において、前記励振電極及び前記第1の支持層を囲むように、前記圧電基板の前記一方主面上に設けられている第2の支持層と、前記第1,第2の支持層上に設けられており、前記第2の支持層及び前記圧電基板と共に前記励振電極を封止しているカバー部材と、を有する弾性波素子を作製する工程と、
     前記弾性波素子を実装基板上に実装する工程と、
     前記実装基板上にモールド樹脂を設け、前記弾性波素子を封止する工程と、
    を備え、
     前記弾性波素子を作製する工程では、前記第2の支持層の厚みよりも前記第1の支持層の厚みが薄くなるように、前記第1,第2の支持層を設け、かつ前記カバー部材を、前記実装基板から遠ざかるように前記圧電基板に向かって凸状に湾曲させ、
     前記弾性波素子を封止する工程では、前記実装基板と前記カバー部材との間に前記モールド樹脂が充填されるように、前記モールド樹脂を設ける、弾性波装置の製造方法。
  8.  前記第1の支持層を複数設け、前記複数の第1の支持層の内少なくとも1個の第1の支持層の幅が、他の第1の支持層の幅よりも小さくなるように前記複数の第1の支持層を設ける、請求項7に記載の弾性波装置の製造方法。
PCT/JP2016/054465 2015-03-27 2016-02-16 弾性波装置、通信モジュール機器及び弾性波装置の製造方法 WO2016158050A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177021560A KR101931508B1 (ko) 2015-03-27 2016-02-16 탄성파 장치, 통신 모듈 기기 및 탄성파 장치의 제조 방법
JP2017509361A JP6521059B2 (ja) 2015-03-27 2016-02-16 弾性波装置、通信モジュール機器及び弾性波装置の製造方法
CN201680012366.8A CN107251428B (zh) 2015-03-27 2016-02-16 弹性波装置、通信模块设备以及弹性波装置的制造方法
US15/687,587 US10164603B2 (en) 2015-03-27 2017-08-28 Elastic wave device, communication module apparatus, and method for manufacturing elastic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015066206 2015-03-27
JP2015-066206 2015-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/687,587 Continuation US10164603B2 (en) 2015-03-27 2017-08-28 Elastic wave device, communication module apparatus, and method for manufacturing elastic wave device

Publications (1)

Publication Number Publication Date
WO2016158050A1 true WO2016158050A1 (ja) 2016-10-06

Family

ID=57005610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054465 WO2016158050A1 (ja) 2015-03-27 2016-02-16 弾性波装置、通信モジュール機器及び弾性波装置の製造方法

Country Status (5)

Country Link
US (1) US10164603B2 (ja)
JP (1) JP6521059B2 (ja)
KR (1) KR101931508B1 (ja)
CN (1) CN107251428B (ja)
WO (1) WO2016158050A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935700A (zh) * 2017-03-24 2017-07-07 苏州权素船舶电子有限公司 一种电子元器件
WO2019044310A1 (ja) * 2017-08-31 2019-03-07 株式会社村田製作所 弾性波装置およびそれを備えた弾性波モジュール
WO2021010164A1 (ja) * 2019-07-16 2021-01-21 株式会社村田製作所 電子部品および電子部品の製造方法
JP2023028625A (ja) * 2021-08-19 2023-03-03 三安ジャパンテクノロジー株式会社 モジュールの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105580273B (zh) * 2013-09-26 2018-06-12 京瓷株式会社 弹性波装置以及弹性波模块
US20200220513A1 (en) * 2016-03-11 2020-07-09 Akoustis, Inc. Wireless communication infrastructure system configured with a single crystal piezo resonator and filter structure using thin film transfer process
KR101953219B1 (ko) * 2016-11-24 2019-02-28 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261284A (ja) * 1999-03-05 2000-09-22 Kyocera Corp 弾性表面波装置及びその製造方法
JP2012199833A (ja) * 2011-03-22 2012-10-18 Taiyo Yuden Co Ltd 電子部品、電子デバイス、及び電子部品の製造方法
WO2012144370A1 (ja) * 2011-04-19 2012-10-26 京セラ株式会社 電子部品および弾性波装置
JP2014007722A (ja) * 2011-08-22 2014-01-16 Kyocera Corp 弾性波装置および電子部品
WO2015022856A1 (ja) * 2013-08-13 2015-02-19 株式会社村田製作所 弾性波装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7011134B2 (en) * 2000-10-13 2006-03-14 Chien-Min Sung Casting method for producing surface acoustic wave devices
EP1361657B1 (en) * 2001-02-06 2013-07-24 Panasonic Corporation Surface acoustic wave device
US6829691B2 (en) * 2002-06-28 2004-12-07 Hewlett-Packard Development, L.P. System for compressing/decompressing data
JP5269301B2 (ja) * 2006-07-21 2013-08-21 太陽誘電株式会社 弾性表面波装置
JP2008131152A (ja) * 2006-11-17 2008-06-05 Fujitsu Media Device Kk 弾性表面波デバイス
CN101946409B (zh) * 2008-02-18 2014-08-20 株式会社村田制作所 弹性波装置及其制造方法
CN102204094B (zh) * 2008-11-10 2014-01-15 松下电器产业株式会社 弹性波元件及使用了该弹性波元件的电子设备
CN103415995B (zh) * 2011-03-09 2016-08-17 株式会社村田制作所 电子元器件
WO2012132147A1 (ja) 2011-03-28 2012-10-04 株式会社村田製作所 電子部品及びその製造方法
JP2013038471A (ja) * 2011-08-03 2013-02-21 Taiyo Yuden Co Ltd 弾性波フィルタ
CN105471406B (zh) * 2012-02-28 2018-04-06 天工滤波方案日本有限公司 弹性波装置及其制造方法
JP5358724B1 (ja) * 2012-06-28 2013-12-04 太陽誘電株式会社 弾性波デバイス内蔵モジュール及び通信装置
WO2014077239A1 (ja) * 2012-11-13 2014-05-22 株式会社村田製作所 弾性波装置
CN202931260U (zh) * 2012-11-14 2013-05-08 日本碍子株式会社 用于弹性波装置的复合基板
CN103824932A (zh) * 2012-11-15 2014-05-28 日本电波工业株式会社 压电零件
WO2014171036A1 (ja) * 2013-04-18 2014-10-23 株式会社村田製作所 弾性表面波装置
JP2014212409A (ja) * 2013-04-18 2014-11-13 セイコーエプソン株式会社 Mems振動子、電子機器、及び移動体
JP5856592B2 (ja) 2013-08-30 2016-02-10 太陽誘電株式会社 弾性波デバイス内蔵モジュール及び通信装置
CN105580273B (zh) * 2013-09-26 2018-06-12 京瓷株式会社 弹性波装置以及弹性波模块
JP6355013B2 (ja) * 2014-01-28 2018-07-11 ナガセケムテックス株式会社 中空部を有する実装構造体およびその製造方法
US20170117874A1 (en) * 2014-03-31 2017-04-27 Nagase Chemtex Corporation Circuit member and mounting structure having hollow space, and method for producing the mounting structure
JP6070910B1 (ja) * 2015-03-16 2017-02-01 株式会社村田製作所 弾性波装置及びその製造方法
CN107210727B (zh) * 2015-03-27 2020-10-23 株式会社村田制作所 电子部件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261284A (ja) * 1999-03-05 2000-09-22 Kyocera Corp 弾性表面波装置及びその製造方法
JP2012199833A (ja) * 2011-03-22 2012-10-18 Taiyo Yuden Co Ltd 電子部品、電子デバイス、及び電子部品の製造方法
WO2012144370A1 (ja) * 2011-04-19 2012-10-26 京セラ株式会社 電子部品および弾性波装置
JP2014007722A (ja) * 2011-08-22 2014-01-16 Kyocera Corp 弾性波装置および電子部品
WO2015022856A1 (ja) * 2013-08-13 2015-02-19 株式会社村田製作所 弾性波装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935700A (zh) * 2017-03-24 2017-07-07 苏州权素船舶电子有限公司 一种电子元器件
WO2019044310A1 (ja) * 2017-08-31 2019-03-07 株式会社村田製作所 弾性波装置およびそれを備えた弾性波モジュール
US11134344B2 (en) 2017-08-31 2021-09-28 Murata Manufacturing Co., Ltd. Acoustic wave device and acoustic wave module including same
WO2021010164A1 (ja) * 2019-07-16 2021-01-21 株式会社村田製作所 電子部品および電子部品の製造方法
JP2023028625A (ja) * 2021-08-19 2023-03-03 三安ジャパンテクノロジー株式会社 モジュールの製造方法
JP7302897B2 (ja) 2021-08-19 2023-07-04 三安ジャパンテクノロジー株式会社 モジュールの製造方法

Also Published As

Publication number Publication date
JPWO2016158050A1 (ja) 2017-10-26
CN107251428A (zh) 2017-10-13
US10164603B2 (en) 2018-12-25
KR20170102925A (ko) 2017-09-12
JP6521059B2 (ja) 2019-05-29
US20170358728A1 (en) 2017-12-14
KR101931508B1 (ko) 2018-12-21
CN107251428B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2016158050A1 (ja) 弾性波装置、通信モジュール機器及び弾性波装置の製造方法
JP5141852B2 (ja) 電子部品及びその製造方法
US20120133248A1 (en) Piezoelectric vibrator element, piezoelectric module, and electronic device
US10812042B2 (en) Electronic component
US8981623B2 (en) Piezoelectric vibrating piece, piezoelectric device, and method for manufacturing piezoelectric device
JP2012070098A (ja) 電子部品およびその製造方法、並びに電子部品を備えた電子デバイス
JP6547914B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
US11764753B2 (en) Elastic wave device and electronic component
JP2007214942A (ja) 圧電振動片の製造方法、及び圧電振動片並びに圧電デバイス
JP2019021997A (ja) 弾性波素子、分波器および通信装置
US10958231B2 (en) Surface acoustic wave device, high-frequency module, and method of fabricating surface acoustic wave device
JP6042689B2 (ja) 弾性波デバイス及びその設計方法
JP6017250B2 (ja) 圧電デバイス
US9941461B2 (en) Electronic component element and composite module including the same
US10411672B2 (en) Elastic wave device
CN107636964B (zh) 弹性波装置
US20220158614A1 (en) Acoustic wave device
JP6612529B2 (ja) 弾性波装置および通信装置
JP6508217B2 (ja) 基板、基板の製造方法及び弾性波装置
CN114208032A (zh) 压电振动器件及其制造方法
JP2009272795A (ja) 圧電振動素子、圧電デバイス、及びその製造方法
WO2014148107A1 (ja) 水晶振動装置
JP6376794B2 (ja) 圧電振動片および圧電振動子
JP2018121265A (ja) 水晶素子および水晶デバイス
JP2024004311A (ja) 弾性波デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509361

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177021560

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771934

Country of ref document: EP

Kind code of ref document: A1