WO2015022856A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2015022856A1
WO2015022856A1 PCT/JP2014/069905 JP2014069905W WO2015022856A1 WO 2015022856 A1 WO2015022856 A1 WO 2015022856A1 JP 2014069905 W JP2014069905 W JP 2014069905W WO 2015022856 A1 WO2015022856 A1 WO 2015022856A1
Authority
WO
WIPO (PCT)
Prior art keywords
support layer
acoustic wave
elastic wave
hollow
wave device
Prior art date
Application number
PCT/JP2014/069905
Other languages
English (en)
French (fr)
Inventor
比良 光善
誠二 甲斐
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014559978A priority Critical patent/JP5729526B1/ja
Priority to KR1020167003605A priority patent/KR101825499B1/ko
Priority to CN201480042253.3A priority patent/CN105409120B/zh
Publication of WO2015022856A1 publication Critical patent/WO2015022856A1/ja
Priority to US15/011,864 priority patent/US9876484B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1071Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the SAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1092Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the surface acoustic wave [SAW] device on the side of the IDT's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0047Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks
    • H03H9/0052Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically cascaded
    • H03H9/0057Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks being electrically cascaded the balanced terminals being on the same side of the tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1042Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a housing formed by a cavity in a resin

Definitions

  • the present invention relates to an acoustic wave device in which a plurality of IDT electrodes are formed on a piezoelectric substrate. More specifically, the present invention relates to an acoustic wave device in which a plurality of IDT electrodes are sealed with a support layer and a cover member.
  • Patent Document 1 discloses an example of this type of acoustic wave device.
  • a plurality of surface acoustic wave element portions are formed on one piezoelectric substrate.
  • Each surface acoustic wave element has at least a part of an IDT electrode.
  • a support layer is formed on the piezoelectric substrate so as to surround the surface acoustic wave element portion.
  • the cover member is joined on the support layer. Thereby, a hollow portion where the surface acoustic wave element portion faces is formed.
  • An object of the present invention is to provide an elastic wave device that is unlikely to cause the above-described leakage failure.
  • the acoustic wave device includes a piezoelectric substrate, a plurality of acoustic wave element portions, a support layer, and a cover member.
  • the plurality of acoustic wave element portions are provided on the piezoelectric substrate and have at least one IDT electrode.
  • the support layer is disposed on the piezoelectric substrate outside the region where the elastic wave element portion is provided in order to form a hollow portion in each portion where the elastic wave element portion is provided.
  • the cover member is laminated on the support layer in order to seal each portion where the acoustic wave element portion is provided and form the hollow portion.
  • the support layer includes a first support layer disposed along the outer peripheral edge of the piezoelectric substrate, and a second support layer disposed in a region surrounded by the first support layer. And a support layer.
  • the second support layer is provided so as to surround a portion where the acoustic wave element portion is provided in a region surrounded by the first support layer.
  • a hollow path is provided between the first support layer and the second support layer, and the hollow path is disposed so as to communicate at least two of the hollow portions.
  • an opening is provided in the second support layer so as to reduce the plane area of the second support layer.
  • the first support layer has a closed loop shape.
  • the plurality of hollow portions are liquid-tightly sealed.
  • the outer peripheral edge of the cover member when viewed in plan, the outer peripheral edge of the cover member reaches the outer peripheral edge of the piezoelectric substrate, thereby forming a wafer level package.
  • the support layer has the first and second support layers, and the hollow path is provided between the first support layer and the second support layer. It becomes possible to effectively suppress the leakage failure due to the generation of voids. That is, even if a void is generated in the second support layer, only the hollow path and the hollow portion communicate with each other, and a leak failure between the outside and the hollow portion hardly occurs. In addition, since it is divided into the first support layer and the second support layer, the area of the second support layer can be reduced, and the generation of voids can also be suppressed. Therefore, a leak failure due to the generation of voids hardly occurs. Therefore, it is possible to effectively suppress a leak failure due to the generation of voids.
  • FIG. 1 is a schematic plan view showing a structure in which the cover member of the acoustic wave device according to the first embodiment of the present invention is removed.
  • FIG. 2 is a partially cutaway cross-sectional view showing a main part of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 3A is a diagram illustrating a circuit configuration of the acoustic wave device according to the first embodiment
  • FIG. 3B is a plan view illustrating an example of an electrode structure of a 1-port acoustic wave resonator.
  • FIG. 4 is a schematic plan view showing a structure in which the cover member is removed in the acoustic wave device according to the second embodiment.
  • FIG. 5 is a schematic plan view showing a structure in which the cover member is removed in the elastic wave device of the comparative example.
  • FIG. 1 is a schematic plan view showing a structure in which a cover member is removed in an elastic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a partially cutaway cross-sectional view showing a main part of the elastic wave device according to the first embodiment of the present invention, and
  • FIG. 3A is a circuit diagram of the elastic wave device according to the first embodiment.
  • the acoustic wave device 1 includes a piezoelectric substrate 2.
  • the piezoelectric substrate 2 is formed of a piezoelectric single crystal substrate or a piezoelectric ceramic plate such as LiTaO 3 or LiNbO 3 .
  • the piezoelectric substrate 2 is a rectangular plate-shaped piezoelectric single crystal substrate.
  • a duplexer is configured by configuring a plurality of acoustic wave element portions on the piezoelectric substrate 2. More specifically, a duplexer having the circuit configuration shown in FIG.
  • the acoustic wave device 1 has an antenna terminal 3.
  • a common terminal 4 is connected to the antenna terminal 3.
  • a transmission filter 7 is configured between the common terminal 4 and the transmission terminal 5.
  • a reception filter 8 is configured between the common terminal 4 and the pair of balanced terminals 6a and 6b.
  • the transmission filter 7 has a ladder type circuit configuration. That is, it has series arm resonators S1, S2, S3a, S3b, and S4 each made of an elastic wave resonator, and parallel arm resonators P1 to P4.
  • the series arm resonators S1 to S4 and the parallel arm resonators P1 to P4 are formed of a one-port elastic wave resonator.
  • the 1-port acoustic wave resonator has an electrode structure shown in FIG. An IDT electrode 11 and reflectors 12 and 13 disposed on both sides of the IDT electrode 11 in the elastic wave propagation direction are formed on the piezoelectric substrate 2. Thereby, a 1-port elastic wave resonator is configured.
  • a portion in which the series arm resonators S1 to S4 and the parallel arm resonators P1 to P4 are configured is schematically shown by a symbol in which X is surrounded by a rectangular frame. That is, the portions where the series arm resonators S1 to S4 and the parallel arm resonators P1 to P4 are configured are elastic wave element portions, respectively.
  • a 1-port elastic wave resonator 9 as a trap filter is connected to the common terminal 4.
  • 3IDT type longitudinally coupled resonator type acoustic wave filter sections 14 and 15 are provided between the 1-port type acoustic wave resonator 9 and the balanced terminals 6a and 6b.
  • the longitudinally coupled resonator type acoustic wave filter units 14 and 15 are connected in cascade.
  • the reception filter 8 is a balanced filter having a pair of balanced terminals 6a and 6b.
  • the reception filter may be an unbalanced filter.
  • the longitudinally coupled resonator type acoustic wave filter unit is formed with a plurality of IDTs arranged side by side in the propagation direction of the surface acoustic wave propagating on the surface of the piezoelectric substrate 2, and reflectors are provided on both sides of the plurality of IDT groups. Just do it. For example, as a configuration having an odd number of IDT groups of 3 or more, a configuration in which the longitudinally coupled resonator type acoustic wave filter section has five IDTs may be used.
  • each part of the 1-port type acoustic wave resonator 9 and the longitudinally coupled resonator type acoustic wave filter units 14 and 15 is schematically illustrated in a shape in which X is surrounded by a frame. Will be shown.
  • the portions where the 1-port type acoustic wave resonator 9 and the longitudinally coupled resonator type acoustic wave filter units 14 and 15 are configured are the acoustic wave element units in the present invention.
  • the IDT electrode, the reflector, and the connection wiring in each of the acoustic wave element portions can be formed of an appropriate metal or alloy such as Ag, Cu, Pt, or W.
  • the acoustic wave device 1 it is necessary to provide a space for preventing the vibration of the acoustic wave element portion from being hindered. However, it is necessary to seal the space in order to suppress frequency fluctuations and improve moisture resistance.
  • the support layer 16 is provided around the acoustic wave element portion so that each of the acoustic wave element portions faces the hollow portion.
  • the support layer 16 includes a first support layer 17 and a second support layer 18.
  • the support layer 16 can be formed of an appropriate insulating material.
  • a synthetic resin is preferably used because it can be reduced in weight and cost and can be manufactured more easily.
  • a photosensitive resin is used because patterning is easy. By using a photosensitive resin, patterning can be easily performed by a photolithography method or the like. Thereby, the first and second support layers 17 and 18 and the hollow path 19 described later can be easily formed.
  • photosensitive resin a conventionally known appropriate photosensitive resin can be used.
  • a photosensitive resin a photosensitive polyimide, a photosensitive epoxy resin, a photosensitive silicone resin, or the like can be used.
  • Photosensitive polyimide is more desirable because it has moderate rigidity and elasticity and can perform patterning with high accuracy.
  • the support layer 16 is disposed in a first support layer 17 provided along the outer peripheral edge of the piezoelectric substrate 2 and a region surrounded by the first support layer 17.
  • the 2nd support layer 18 is provided so that the circumference
  • a hollow path 19 in which no support layer exists is provided between the second support layer 18 and the first support layer 17, a hollow path 19 in which no support layer exists.
  • a hollow support layer having a height lower than the height of the second support layer 18 and the height of the first support layer 17 is partially provided.
  • a path 19 may be formed.
  • FIG. 2 is a partially cutaway sectional view schematically showing a portion where the parallel arm resonator P3 is formed.
  • a parallel arm resonator P3 is formed as the elastic wave element portion.
  • a hollow portion A is formed so that the IDT electrode 31 faces. That is, the hollow portion A is surrounded and formed by the second support layer 18 and the cover member 20.
  • the first support layer 17 is located outside the second support layer 18 through the hollow path 19.
  • the hollow path 19 is provided so as to communicate at least two hollow portions facing the acoustic wave element portion.
  • the support layer 16 is divided into the first support layer 17 and the second support layer 18, the area of the second support layer 18 can be reduced.
  • FIG. 5 shows an elastic wave device 101 of a comparative example in which a support layer 102 having no hollow path 19 is provided in place of the support layer 16.
  • the elastic wave device 101 is the same as the above embodiment except that the support layer 102 is provided.
  • the area of the support layer 102 is large.
  • the support layer 16 is divided into a first support layer 17 and a second support layer 18.
  • the rectangular frame-shaped main body portion 17a of the first support layer 17 is connected to the via conductor forming portion 17b.
  • the width of the main body portion 17a of the first support layer 17 is preferably 50 ⁇ m or less in order to prevent air from entering the bonding surface, and preferably 10 ⁇ m or more in order to ensure the bonding strength between the support layer 16 and the cover member 20. .
  • the width of the main body portion 17a is 20 ⁇ m.
  • the area of the first support layer 17 and the area of the second support layer 18 are smaller than the area of the support layer 102 of the elastic wave device 101 of the comparative example.
  • the width of the hollow path 19 is preferably in the range of 10 ⁇ m or more and 100 ⁇ m or less.
  • the cover member is not shown, but in the acoustic wave device 1, the cover member 20 is laminated so as to cover the entire upper surface of the support layer 16, as shown in FIG.
  • the cover member 20 can be formed of an appropriate insulating material.
  • the cover member 20 is made of a synthetic resin. In that case, the manufacturing process can be simplified and the cost can be reduced.
  • Such a synthetic resin is not particularly limited, and for example, an epoxy resin or polyimide can be used.
  • an epoxy resin When an epoxy resin is used, it can be cured at a temperature of about 170 ° C. to 220 ° C., for example. Therefore, the cover member 20 can be formed by heat curing and bonded onto the support layer 16 by a relatively low temperature curing process.
  • joining of the cover member 20 which consists of the above synthetic resins is joined by press-contacting on the support layer 16 toward the other side from the one side of the sheet-like cover member 20 using a roller, for example. It is performed using the process to do. In this case, air may enter the joint surface between the cover member 20 and the support layer 16 to generate voids.
  • the support layer 16 is divided into the first and second support layers 17 and 18, the generation of voids is suppressed. For this reason, the leak defect of the hollow part by a void can also be suppressed effectively.
  • the elastic wave device 1 may be sealed with a mold resin using a transfer mode method.
  • a large pressure is applied to the cover member 20 from the cover member 20 side to the piezoelectric substrate 2 side, and a large pressure is also applied to the joint portion between the cover portion 20 and the support layer 16. Therefore, a part of the cover member may be deformed to interfere with the IDT electrode in the hollow portion.
  • this deformation is suppressed by the tension of the cover member 20 generated by the deformation of the hollow path 19. Therefore, the hollow portion having a desired shape can be surely liquid-tightly sealed, more preferably hermetically sealed.
  • the first support layer 17 is formed to have a closed shape along the outer peripheral edge of the piezoelectric substrate 2. Therefore, in the second support layer 18, the dimension in the thickness direction connecting the inner wall and the outer wall is relatively small.
  • the second support layer 18 is provided on the inner side of the first support layer 17 through the hollow path 19, but has a relatively large area. But the 2nd support layer 18 has an area smaller than the support layer 102 of the elastic wave apparatus 101 of the comparative example shown in FIG.
  • voids are more likely to occur as the area of the bonded portion increases. Therefore, in the acoustic wave device 101 shown in FIG. 5, a void as shown by an arrow B may occur so as to connect between the hollow portion and the outside. For this reason, a leak failure tends to occur.
  • the elastic wave device 1 of the present embodiment even if a void reaching the hollow portion occurs in the second support layer 18, the other end of this void does not communicate with the outside air, It will remain in the part leading to the path 19. Therefore, a leak failure between the hollow portion and the outside can be reliably suppressed.
  • the voids of the support layer 18 do not pose a problem because of the hollow path 19.
  • the acoustic wave device 1 of the present embodiment it is possible to reliably suppress fluctuations in frequency characteristics and a decrease in moisture resistance due to a leak failure.
  • FIG. 4 is a schematic plan view of an acoustic wave device according to a second embodiment of the present invention. Also in FIG. 4, illustration of the cover member is omitted. That is, the elastic wave device 21 with the cover member removed is shown.
  • the support layer 24 includes the first support layer 17 and the second support layer 26.
  • the elastic wave device 21 is configured in the same manner as the elastic wave device 1 except that the second support layer 26 is different from the second support layer 18. Therefore, the same reference numerals are assigned to the same parts, and the description of the first embodiment is incorporated.
  • the second support layer 26 is formed of the same material as the first support layer 17, but the second support layer 26 further includes a plurality of openings 26 a and 26 b.
  • the openings 26 a and 26 b are provided in the second support layer 26. Accordingly, the area of the second support layer 26 is smaller than the area of the second support layer 18 of the first embodiment.
  • voids are less likely to occur between the second support layer 26 and the cover member. Even if a void reaching the openings 26a and 26b is formed, that is, even if a void extending from the inner hollow portion to the second hollow portion is generated, the void does not reach the outside. That is, since the air mass mixed in the joint surface between the support layer 16 and the cover member 20 can be discharged to the hollow path 19 disposed in the vicinity of the peripheral edge of the support layer 16, generation of voids is suppressed. can do. Therefore, the occurrence of a leak failure can be more effectively prevented.
  • one or more openings may be appropriately formed in the second support layer.
  • the first support layer 17 is along the outer peripheral edge of the piezoelectric substrate 2 and has a closed loop shape.
  • the first support layer 17 has a closed loop shape, thereby further improving the sealing performance in the acoustic wave device.
  • the first support layer may be partially cut away.
  • one hollow passage 19 is provided so as to communicate a plurality of hollow portions, but the hollow passage 19 is disposed so as to communicate at least two hollow portions. There is no particular limitation.
  • a plurality of hollow paths may be provided.
  • the configuration of the plurality of acoustic wave element portions in the acoustic wave device of the present invention is not limited to the configuration of the above embodiment.
  • the present invention can be applied to an appropriate acoustic wave device in which a plurality of acoustic wave element portions including acoustic wave resonators and acoustic wave filters are configured on a piezoelectric substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 弾性波素子部が臨む中空部のリーク不良が生じ難い、弾性波装置を提供する。 圧電基板2上に、IDT電極を有する複数の弾性波素子部が構成されており、各弾性波素子部が臨む中空部を形成するように圧電基板2上に弾性波素子部を囲む支持層16が設けられており、該支持層16上にカバー部材が積層されて弾性波素子部が臨む各中空部が構成されており、支持層16が、第1の支持層17と、第2の支持層18とを有し、第1の支持層17が圧電基板2の外周縁に沿っており、第2の支持層18が第1の支持層17で囲まれた領域内に位置しており、各弾性波素子部が存在する中空部を有するように弾性波素子部の周りに設けられており、中空経路19が第1の支持層17と第2の支持層18との間に設けられており、かつ中空経路19が少なくとも2個の中空部を連通するように設けられている、弾性波装置1。

Description

弾性波装置
 本発明は、圧電基板上に複数のIDT電極が形成されている弾性波装置に関する。本発明は、より詳細には、複数のIDT電極が、支持層及びカバー部材により封止されている弾性波装置に関する。
 従来、ウェハレベルパッケージ(WLP)と称されている弾性波装置が種々提案されている。下記の特許文献1には、この種の弾性波装置の一例が開示されている。1枚の圧電基板上に、複数の弾性表面波素子部分が構成されている。各弾性表面波素子部分は、少なくとも一部にIDT電極を有する。この弾性表面波素子部分を封止するために、特許文献1では、圧電基板上に弾性表面波素子部分を囲むように支持層が形成されている。そして、支持層上に、カバー部材が接合されている。それによって、弾性表面波素子部分が臨む中空部分が構成されている。
WO2009/116222
 上記特許文献1に記載の弾性波装置では、支持層の上にカバー部材を積層し、接合している。この接合部分に、ボイドが生じることがあった。そのため、ボイドを通じて、中空部と外部とが連通し、中空部の密閉性が低下し、リーク不良が生じることがあった。
 本発明の目的は、上記リーク不良が生じがたい、弾性波装置を提供することにある。
 本発明に係る弾性波装置は、圧電基板と、複数の弾性波素子部と、支持層と、カバー部材とを備える。上記複数の弾性波素子部は、上記圧電基板上に設けられており、少なくとも1つのIDT電極を有する。上記支持層は、上記弾性波素子部が設けられているそれぞれの部分に中空部を構成するために、該弾性波素子部が設けられている領域の外側の上記圧電基板上に配置されている。上記カバー部材は、上記弾性波素子部が設けられているそれぞれの部分を封止し、上記中空部を形成するために、上記支持層上に積層されている。本発明では、上記支持層が、上記圧電基板の外周縁に沿うように配置されている第1の支持層と、第1の支持層に囲まれている領域内に配置されている第2の支持層とを有する。第2の支持層は、第1の支持層に囲まれている領域内において、上記弾性波素子部が設けられている部分を囲むように設けられている。本発明では、第1の支持層と第2の支持層との間に、中空経路が設けられており、該中空経路が少なくとも2個の上記中空部を連通するように配置されている。
 本発明に係る弾性波装置のある特定の局面では、前記第2の支持層の平面積を小さくするように、前記第2の支持層内に、開口部が設けられている。
 本発明に係る弾性波装置の他の特定の局面では、上記第1の支持層は、閉じたループ状の形状とされている。
 本発明に係る弾性波装置のさらに他の特定の局面では、上記複数の中空部は液密封止されている。
 本発明に係る弾性波装置のさらに他の特定の局面では、平面視した場合、前記カバー部材の外周縁が前記圧電基板の外周縁に至っており、ウェハレベルパッケージが構成されている。
 本発明に係る弾性波装置によれば、支持層が第1及び第2の支持層を有し、第1の支持層と第2の支持層との間に中空経路が設けられているため、ボイドの発生によるリーク不良を効果的に抑制することが可能となる。すなわち、第2の支持層においてボイドが生じたとしても、中空経路と中空部が連通するだけであり、外部と中空部との間のリーク不良が生じ難い。加えて、第1の支持層と第2の支持層とに分割されているため、第2の支持層の面積を小さくすることができ、ボイドの発生も抑制することができる。従って、ボイドの発生によるリーク不良が生じ難い。よって、ボイドの発生によるリーク不良を効果的に抑制することが可能となる。
図1は、本発明の第1の実施形態に係る弾性波装置のカバー部材を除去した構造を示す略図的平面図である。 図2は、本発明の第1の実施形態に係る弾性波装置の要部を示す部分切欠断面図である。 図3(a)は第1の実施形態の弾性波装置の回路構成を示す図であり、図3(b)は1ポート型弾性波共振子の電極構造の一例を示す平面図である。 図4は、第2の実施形態に係る弾性波装置において、カバー部材を除去した構造を示す模式的平面図である。 図5は、比較例の弾性波装置においてカバー部材を除去した構造を示す模式的平面図である。
 以下、図面を参照しつつ本発明の具体的な実施形態を説明することにより本発明を明らかにする。
 図1は、本発明の第1の実施形態に係る弾性波装置において、カバー部材を除去した構造を示す略図的平面図である。図2は、本発明の第1の実施形態の弾性波装置の要部を示す部分切欠断面図であり、図3(a)は第1の実施形態の弾性波装置の回路図である。
 図1及び図2の示すように、弾性波装置1は、圧電基板2を有する。圧電基板2は、LiTaOやLiNbOのような圧電単結晶基板または圧電セラミック板により形成される。本実施形態では、圧電基板2は矩形板状の圧電単結晶基板からなる。
 圧電基板2上に複数の弾性波素子部を構成することにより、本実施形態では、デュプレクサが構成されている。より具体的には、図3(a)に示す回路構成のデュプレクサが構成されている。
 図3(a)に示すように、弾性波装置1は、アンテナ端子3を有する。アンテナ端子3に共通端子4が接続されている。この共通端子4と送信端子5との間に送信フィルタ7が構成されている。また、共通端子4と、一対の平衡端子6a,6bとの間に受信フィルタ8が構成されている。
 送信フィルタ7は、ラダー型回路構成を有する。すなわち、それぞれが弾性波共振子からなる直列腕共振子S1,S2,S3a,S3b及びS4と、並列腕共振子P1~P4とを有する。直列腕共振子S1~S4及び並列腕共振子P1~P4は、1ポート型弾性波共振子からなる。
 1ポート型弾性波共振子は、図3(b)に示す電極構造を有する。IDT電極11と、IDT電極11の弾性波伝搬方向両側に配置された反射器12,13とが、圧電基板2上に形成されている。それによって、1ポート型弾性波共振子が構成されている。
 図1に戻り、圧電基板2上において、Xを矩形の枠で囲んだ記号により、上記直列腕共振子S1~S4及び並列腕共振子P1~P4が構成されている部分を略図的に示す。すなわち、これらの直列腕共振子S1~S4及び並列腕共振子P1~P4が構成されている部分が、それぞれ弾性波素子部である。
 図3(a)に戻り、受信フィルタ8においては、共通端子4にトラップフィルタとしての1ポート型弾性波共振子9が接続されている。そして、1ポート型弾性波共振子9と、平衡端子6a,6bとの間に、3IDT型の縦結合共振子型弾性波フィルタ部14,15が設けられている。縦結合共振子型弾性波フィルタ部14,15は、互いに縦続接続されている。なお、本実施形態では、受信フィルタ8は、一対の平衡端子6a,6bを有するバランス型のフィルタである。もっとも、受信フィルタは、不平衡型のフィルタであってもよい。縦結合共振子型弾性波フィルタ部は、圧電基板2の表面を伝搬する弾性表面波の伝搬方向において、複数のIDTが並んで形成され、この複数のIDT群の両側に反射器が設けられていればよい。例えば、3以上の奇数個のIDT群を有する構成として、縦結合共振子型弾性波フィルタ部が5つのIDTを有する構成であってもよい。
 図1に戻り、圧電基板2上において、上記1ポート型弾性波共振子9及び縦結合共振子型弾性波フィルタ部14,15が構成される各部分を、Xを枠で囲んだ形状で模式的に示すこととする。受信フィルタ8においても、上記1ポート型弾性波共振子9及び縦結合共振子型弾性波フィルタ部14,15が構成される部分が、それぞれ、本発明における弾性波素子部である。
 なお、上記各弾性波素子部におけるIDT電極や反射器並びに接続配線は、Ag、Cu、Pt、Wなどの適宜の金属もしくは合金により形成することができる。
 弾性波装置1においては、弾性波素子部の振動を妨げないための空間を設ける必要がある。もっとも、周波数変動を抑制したり、耐湿性を高めるためには、空間を封止することが必要である。
 本実施形態では、上記各弾性波素子部が中空部に臨むように、弾性波素子部の周囲に支持層16が設けられている。支持層16は、第1の支持層17と、第2の支持層18とを有する。
 支持層16は、適宜の絶縁性材料により形成することができる。好ましくは、軽量化及び低コスト化を果たし得るため、さらに製造容易であるため、合成樹脂が好適に用いられる。より好ましくは、パターニングが容易であるため、感光性樹脂が用いられる。感光性樹脂を用いることにより、フォトリソグラフィー法などにより容易にパターニングすることができる。それによって、後述する第1,第2の支持層17,18及び中空経路19を容易に形成することができる。
 上記感光性樹脂としては、従来より周知の適宜の感光性樹脂を用いることができる。このような感光性樹脂としては、感光性ポリイミド、感光性エポキシ樹脂、感光性シリコーン樹脂などを使用できる。適度な剛性及び弾力性を有し、パターニングを高精度に行い得るため、感光性ポリイミドがより一層望ましい。
 図1に示すように、支持層16は、圧電基板2の外周縁に沿って設けられている第1の支持層17と、第1の支持層17に囲まれた領域に配置されている第2の支持層18とを有する。第2の支持層18は、それぞれの弾性波素子部が臨む中空部を構成するように、該弾性波素子部の周囲を囲むように設けられている。
 そして、第2の支持層18と第1の支持層17との間には、支持層が存在しない中空経路19が設けられている。変形例として、圧電基板2の表面の法線方向において、第2の支持層18の高さ及び第1の支持層17の高さよりも、高さの低い支持層を部分的に設けることで中空経路19が形成されてもよい。
 図2は並列腕共振子P3が構成されている部分を模式的に示す部分切欠断面図である。ここでは、弾性波素子部として並列腕共振子P3が形成されている。IDT電極31が臨むように中空部Aが形成されている。すなわち、中空部Aが第2の支持層18と、カバー部材20とにより囲まれ、形成されている。そして、圧電基板2の一方側面側では、中空経路19を介して第2の支持層18の外側に第1の支持層17が位置している。上記中空経路19は、弾性波素子部を臨む少なくとも2個の中空部を連通するように設けられている。
 支持層16は、第1の支持層17と第2の支持層18とに分割されているため、第2の支持層18の面積を小さくすることができる。
 これを、図5を対比して説明する。図5は上記支持層16に代えて、中空経路19を有しない支持層102が設けられている比較例の弾性波装置101を示す。弾性波装置101は、支持層102が設けられていることを除いては、上記実施形態と同様である。
 図5に示した比較例の弾性波装置101では、支持層102の面積は大きくなる。
 これに対して、本実施形態では、図1に示したように、支持層16が、第1の支持層17と第2の支持層18とに分割されている。第1の支持層17の矩形枠状の本体部17aは、ビア導体形成部17bとを接続している。第1の支持層17の本体部17aの幅は、接合面での空気の混入を抑制するため50μm以下が好ましく、支持層16とカバー部材20との接合強度を確保するため、10μm以上が好ましい。本実施形態では、本体部17aの幅は、20μmである。すなわち、中空経路19により分割されているため、第1の支持層17の面積及び第2の支持層18の面積は、比較例の弾性波装置101の支持層102の面積よりも小さい。また、中空経路19の幅は、10μm以上、100μm以下の範囲が好ましい。
 図1では、カバー部材が図示されていないが、弾性波装置1では、図2に示すように、カバー部材20が支持層16の上面の全面を覆うように、積層されている。このカバー部材20は、適宜の絶縁性材料により形成することができる。好ましくは、カバー部材20は、合成樹脂からなる。その場合には、製造工程の簡略化及び低コスト化を図ることができる。
 このような合成樹脂としては、特に限定されないが、例えばエポキシ樹脂やポリイミドなどを用いることができる。エポキシ樹脂を用いた場合、例えば170℃~220℃程度の温度で硬化させることができる。従って、比較的低温の硬化プロセスにより、カバー部材20を熱硬化により形成するとともに、支持層16上に接合することができる。
 ところで、上記のような合成樹脂からなるカバー部材20の接合は、例えば、ローラーを用いてシート状であるカバー部材20の一方側から他方側に向かって、支持層16上に圧接することで接合する工程などを用いて行われる。この場合、カバー部材20と支持層16との接合面に空気が混入しボイドが発生することがある。しかしながら、本実施形態では、支持層16が第1,第2の支持層17,18に分割されているため、ボイドの発生が抑制される。このため、ボイドによる中空部のリーク不良も効果的に抑制することができる。
 しかも、弾性波装置1がモジュール基板上に実装した後、トランスファーモード工法を用いて弾性波装置1がモールド樹脂で封止される場合がある。この場合、カバー部材20側から圧電基板2側に向って、カバー部材20に大きな圧力が加わり、カバー部20と支持層16との接合部にも大きな圧力が加わる。そのため、上記中空部においてカバー部材の一部がIDT電極側に変形して干渉するおそれがある。しかしながら、本実施形態では、第1の支持層17及び第2の支持層18が設けられることによって、中空経路19の変形によって発生するカバー部材20の張力によって、この変形が抑制される。従って、所望通りの形状の中空部を確実に液密封止、より好ましくは気密封止することができる。
 本実施形態では、前述したように第1の支持層17は、圧電基板2の外周縁に沿う閉じた形状を有するように形成されている。従って、第2の支持層18においては、その内壁と外壁とを結ぶ厚み方向寸法は比較的小さい。他方、第2の支持層18は、中空経路19を介して第1の支持層17よりも内側に設けられているが、比較的面積は大きい。もっとも、第2の支持層18は、図5に示した比較例の弾性波装置101の支持層102よりも小さな面積を有する。
 カバー部材20をローラー圧着により支持層16上に貼り合わせる工程においては、貼り合わせる部分の面積が大きいほどボイドが生じやすい。従って、図5に示した弾性波装置101では、矢印Bで示すようなボイドが中空部と外側との間をつなぐように発生することがあった。そのため、リーク不良が生じがちであった。
 これに対して、本実施形態の弾性波装置1では、第2の支持層18において、中空部に至るボイドがたとえ生じたとしたとしても、このボイドの他端は外気には連通せず、中空経路19に至る部分に留まることとなる。従って、中空部と外部との間のリーク不良を確実に抑制することができる。
 第2の支持層18の支持層面積は大きく、ボイドが生じやすいが、中空経路19を有すことから支持層18のボイドは問題とならない。
 以上のように、本実施形態の弾性波装置1では、リーク不良による周波数特性の変動や耐湿性の低下を確実に抑制することが可能となる。
 図4は、本発明の第2の実施形態に係る弾性波装置の模式的平面図である。図4においても、カバー部材の図示は省略してある。すなわち、カバー部材を取り去った弾性波装置21が、示されている。弾性波装置21は、支持層24が、第1の支持層17と、第2の支持層26とを有する。この第2の支持層26が、第2の支持層18と異なることを除いては、弾性波装置21は、弾性波装置1と同様に構成されている。従って、同一部分については同一の参照番号を付することにより、第1の実施形態の説明を援用することとする。
 弾性波装置21においては、第2の支持層26は、第1の支持層17と同じ材料で形成されるが、第2の支持層26は、さらに、複数の開口部26a,26bを有する。開口部26a,26bは、第2の支持層26内に設けられている。従って、第2の支持層26の面積は、第1の実施形態の第2の支持層18の面積よりも小さくされている。
 よって、カバー部材20(図2)を第1,第2の支持層17,26上に積層する工程において、第2の支持層26とカバー部材との間でボイドがより一層生じ難い。また、上記開口部26a,26bに至るボイドが形成されたとしても、すなわち内側の中空部から第2の中空部に至るボイドが生じたとしても、該ボイドは外部に至らない。すなわち、支持層16とカバー部材20との接合面に混入した空気の塊が、支持層16の周縁近傍に配置された中空経路19に放出することができる構造を備えるため、ボイドの発生を抑制することができる。よって、リーク不良の発生をより一層効果的に防止することができる。
 このように、本発明においては、第2の支持層内に、1以上の開口部が適宜形成されていてもよい。
 なお、第1,第2の実施形態では、第1の支持層17は、圧電基板2の外周縁に沿っており、閉じたループ状の形状とされていた。このように、第1の支持層17は閉じたループ形状とされていることが望ましく、それによって、弾性波装置内の密閉性をより一層高めることができる。もっとも、第1の支持層は、一部においても切欠かれていても良い。
 また、第1の実施形態では、1つの中空経路19が複数の中空部を連通するように設けられていたが、中空経路19は、少なくとも2個の中空部を連通するように配置されている限り特に限定されない。
 さらに、複数の中空経路が設けられていても良い。
 また、本発明の弾性波装置における複数の弾性波素子部の構成についても上記実施形態の構成に限定されるものではない。すなわち、弾性波共振子や弾性波フィルタからなる弾性波素子部が圧電基板上に複数構成されている適宜の弾性波装置に、本発明を適用することができる。
1…弾性波装置
2…圧電基板
3…アンテナ端子
4…共通端子
5…送信端子
6a,6b…平衡端子
7…送信フィルタ
8…受信フィルタ
9…1ポート型弾性波共振子
11…IDT電極
12,13…反射器
14,15…弾性波フィルタ部
16…支持層
17…第1の支持層
17a…本体部
17b…ビア導体形成部
18…第2の支持層
19…中空経路
20…カバー部材
21…弾性波装置
24…支持層
26…第2の支持層
26a,26b…開口部
31…IDT電極
P1~P4…並列腕共振子
S1~S4…直列腕共振子

Claims (5)

  1.  圧電基板と、
     前記圧電基板上に設けられており、少なくとも1つのIDT電極を有する、複数の弾性波素子部と、
     前記弾性波素子部が設けられているそれぞれの部分に中空部を構成するために、前記弾性波素子部が設けられている領域の外側の前記圧電基板上に配置されている支持層と、
     前記弾性波素子部が設けられているそれぞれの部分を封止し、前記中空部を形成するために、前記支持層上に積層されたカバー部材とを備え、
     前記支持層が、前記圧電基板の外周縁に沿うように配置されている第1の支持層と、
     前記第1の支持層に囲まれている領域内に配置されており、該領域内において、前記弾性波素子部が設けられている部分を囲むように設けられている第2の支持層とを有し、
     前記第1の支持層と前記第2の支持層との間に、中空経路が設けられており、該中空経路が少なくとも2個の前記中空部を連通するように配置されている、弾性波装置。
  2.  前記第2の支持層の平面積を小さくするように、前記第2の支持層内に開口部が設けられている、請求項1に記載の弾性波装置。
  3.  前記第1の支持層が閉じたループ状の形状とされている、請求項1または2に記載の弾性波装置。
  4.  前記複数の中空部が液密封止されている、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  平面視した場合、前記カバー部材の外周縁が前記圧電基板の外周縁に至っており、ウェハレベルパッケージが構成されている、請求項1または2に記載の弾性波装置。
PCT/JP2014/069905 2013-08-13 2014-07-29 弾性波装置 WO2015022856A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014559978A JP5729526B1 (ja) 2013-08-13 2014-07-29 弾性波装置
KR1020167003605A KR101825499B1 (ko) 2013-08-13 2014-07-29 탄성파 장치
CN201480042253.3A CN105409120B (zh) 2013-08-13 2014-07-29 弹性波装置
US15/011,864 US9876484B2 (en) 2013-08-13 2016-02-01 Elastic wave device with first and second support layers providing a hollow path

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013168080 2013-08-13
JP2013-168080 2013-08-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/011,864 Continuation US9876484B2 (en) 2013-08-13 2016-02-01 Elastic wave device with first and second support layers providing a hollow path

Publications (1)

Publication Number Publication Date
WO2015022856A1 true WO2015022856A1 (ja) 2015-02-19

Family

ID=52468243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069905 WO2015022856A1 (ja) 2013-08-13 2014-07-29 弾性波装置

Country Status (5)

Country Link
US (1) US9876484B2 (ja)
JP (1) JP5729526B1 (ja)
KR (1) KR101825499B1 (ja)
CN (1) CN105409120B (ja)
WO (1) WO2015022856A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158050A1 (ja) * 2015-03-27 2016-10-06 株式会社村田製作所 弾性波装置、通信モジュール機器及び弾性波装置の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104798302B (zh) * 2012-12-05 2017-07-07 株式会社村田制作所 弹性波装置的制造方法以及弹性波装置
JP6020519B2 (ja) * 2014-06-20 2016-11-02 株式会社村田製作所 弾性波装置
CN110663178B (zh) * 2017-05-26 2023-01-17 株式会社村田制作所 电子部件以及具备该电子部件的模块
CN110707964B (zh) * 2019-10-10 2021-09-21 内蒙古工业大学 一种压电法电炉炼钢噪音发电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283289A (ja) * 2002-03-25 2003-10-03 Kyocera Corp 弾性表面波装置
WO2006006343A1 (ja) * 2004-07-14 2006-01-19 Murata Manufacturing Co., Ltd. 圧電デバイス
JP2008235432A (ja) * 2007-03-19 2008-10-02 Fujitsu Media Device Kk 電子部品およびその製造方法
JP2010278972A (ja) * 2009-06-01 2010-12-09 Murata Mfg Co Ltd 弾性波装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094390A (ja) 1999-09-20 2001-04-06 Toshiba Corp 弾性表面波デバイスおよびその製造方法
US6710682B2 (en) * 2000-10-04 2004-03-23 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device, method for producing the same, and circuit module using the same
JP2002261582A (ja) * 2000-10-04 2002-09-13 Matsushita Electric Ind Co Ltd 弾性表面波デバイスおよびその製造方法ならびにそれを用いた回路モジュール
JP2007081613A (ja) * 2005-09-13 2007-03-29 Seiko Epson Corp 弾性表面波デバイス及びその製造方法
JP2007158212A (ja) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd 電子部品とその切断方法
JP4712632B2 (ja) * 2006-07-24 2011-06-29 太陽誘電株式会社 弾性波デバイス及びその製造方法
JP5024388B2 (ja) 2007-12-11 2012-09-12 株式会社村田製作所 表面波装置及びデュプレクサ
CN101965683B (zh) 2008-03-19 2014-01-29 株式会社村田制作所 表面声波装置
JP5815365B2 (ja) * 2011-10-20 2015-11-17 京セラ株式会社 弾性波装置、電子部品および弾性波装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283289A (ja) * 2002-03-25 2003-10-03 Kyocera Corp 弾性表面波装置
WO2006006343A1 (ja) * 2004-07-14 2006-01-19 Murata Manufacturing Co., Ltd. 圧電デバイス
JP2008235432A (ja) * 2007-03-19 2008-10-02 Fujitsu Media Device Kk 電子部品およびその製造方法
JP2010278972A (ja) * 2009-06-01 2010-12-09 Murata Mfg Co Ltd 弾性波装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158050A1 (ja) * 2015-03-27 2016-10-06 株式会社村田製作所 弾性波装置、通信モジュール機器及び弾性波装置の製造方法
JPWO2016158050A1 (ja) * 2015-03-27 2017-10-26 株式会社村田製作所 弾性波装置、通信モジュール機器及び弾性波装置の製造方法
US10164603B2 (en) 2015-03-27 2018-12-25 Murata Manufacturing Co., Ltd. Elastic wave device, communication module apparatus, and method for manufacturing elastic wave device

Also Published As

Publication number Publication date
JP5729526B1 (ja) 2015-06-03
CN105409120A (zh) 2016-03-16
US9876484B2 (en) 2018-01-23
US20160149557A1 (en) 2016-05-26
KR101825499B1 (ko) 2018-02-05
CN105409120B (zh) 2018-04-10
KR20160030991A (ko) 2016-03-21
JPWO2015022856A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6652062B2 (ja) 弾性波装置及びその製造方法
US7583161B2 (en) Surface acoustic wave device and boundary acoustic wave device
JP5729526B1 (ja) 弾性波装置
US9751109B2 (en) Acoustic wave device and method of fabricating the same
US8072118B2 (en) Surface acoustic wave device
JP6427075B2 (ja) 弾性波デバイス、分波器、及びモジュール
JP2019193304A (ja) 圧電振動デバイス
JPWO2012132147A1 (ja) 電子部品及びその製造方法
JP2013058911A (ja) 電子部品
JP6311836B2 (ja) 電子部品
JP6042689B2 (ja) 弾性波デバイス及びその設計方法
WO2018042994A1 (ja) 水晶振動板、及び水晶振動デバイス
KR101598939B1 (ko) 탄성표면파 장치
US10411672B2 (en) Elastic wave device
JP6558445B2 (ja) 弾性波フィルタ、デュプレクサ及び弾性波フィルタモジュール
WO2019004205A1 (ja) 弾性波装置
WO2016042972A1 (ja) 電子部品及び樹脂モールド型電子部品装置
JP6653647B2 (ja) 弾性波デバイス
US8536958B2 (en) Elastic wave duplexer having a sealing member including two dielectric materials
JP6166545B2 (ja) 弾性波デバイス及び弾性波デバイスの製造方法
CN114128144A (zh) 弹性波装置以及弹性波装置的制造方法
JP2013115486A (ja) バランス型弾性波フィルタ装置およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042253.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014559978

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167003605

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836217

Country of ref document: EP

Kind code of ref document: A1