WO2019004205A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2019004205A1
WO2019004205A1 PCT/JP2018/024180 JP2018024180W WO2019004205A1 WO 2019004205 A1 WO2019004205 A1 WO 2019004205A1 JP 2018024180 W JP2018024180 W JP 2018024180W WO 2019004205 A1 WO2019004205 A1 WO 2019004205A1
Authority
WO
WIPO (PCT)
Prior art keywords
support substrate
elastic wave
wave device
sound velocity
piezoelectric film
Prior art date
Application number
PCT/JP2018/024180
Other languages
English (en)
French (fr)
Inventor
岡田 真一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018559908A priority Critical patent/JP6702438B2/ja
Priority to CN201880002840.8A priority patent/CN109478877B/zh
Priority to US16/234,660 priority patent/US10666221B2/en
Publication of WO2019004205A1 publication Critical patent/WO2019004205A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02921Measures for preventing electric discharge due to pyroelectricity
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02866Means for compensation or elimination of undesirable effects of bulk wave excitation and reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/059Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1092Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the surface acoustic wave [SAW] device on the side of the IDT's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects

Definitions

  • the present invention relates to an elastic wave device.
  • Patent Document 1 discloses an elastic wave device in which a laminated body in which a high sound velocity film, a low sound velocity film, and a piezoelectric film are stacked on a supporting substrate is provided. Furthermore, in this elastic wave device, the insulating layer is provided on the support substrate so as to surround the above-mentioned laminate in plan view, and all the under bump metal layers electrically connected to the outside are the insulating layers. It is provided on top.
  • Patent Document 2 discloses an elastic wave device in which a laminated body in which a high sound velocity film, a low sound velocity film, and a piezoelectric film are stacked on a supporting substrate is provided.
  • the under bump metal layer is connected to the wiring directly provided on the support substrate.
  • the under bump metal layer is connected to the wiring directly provided on the support substrate, but on the other hand, the space between the support substrate and the under bump metal layer is Low electrical resistance. Therefore, when the elastic wave device is connected to another electronic component through the under bump metal layer and the bumps, the electrical resistance between the electronic component and the support substrate is low. Therefore, when the leak current from the elastic wave device leaks to the electronic component, there is a possibility that the electronic component may malfunction.
  • An object of the present invention is to suppress electrostatic capacitance between a support substrate and a piezoelectric film, to suppress deterioration of the characteristics, and when the electronic component is connected to another electronic component.
  • An object of the present invention is to provide an elastic wave device in which malfunction does not easily occur.
  • An elastic wave device is a laminate having a support substrate, a piezoelectric film provided on the support substrate, and an antenna terminal provided on the support substrate and connected to an antenna.
  • a ground terminal provided on the support substrate and connected to a ground potential
  • a signal terminal provided on the support substrate and connected to a signal potential
  • an IDT provided on the piezoelectric film
  • a first insulating film provided between the support substrate and the signal terminal, wherein the laminated body has a velocity of sound of bulk waves propagating more than a velocity of sound of elastic waves propagating through the piezoelectric film.
  • One of the layer made of a high sound velocity material and the acoustic reflection layer having a relatively low acoustic impedance, a low acoustic impedance layer, and a relatively high acoustic impedance, a high acoustic impedance layer To.
  • a second insulating film provided between the support substrate and the antenna terminal is further provided.
  • the electrical resistance between the antenna terminal and the support substrate can be increased. Therefore, a leak current which leaks from the antenna terminal to the signal terminal through the support substrate is unlikely to occur.
  • the antenna terminal is provided directly on the support substrate.
  • the laminate is provided between the layer made of the high sound velocity material, the support substrate, and the piezoelectric film, and the piezoelectric film is And a low sound velocity film made of a low sound velocity material in which the sound velocity of the bulk wave propagating is lower than the sound velocity of the propagating elastic wave.
  • the energy of the elastic wave can be effectively confined.
  • the layer made of the high sound velocity material is the support substrate.
  • the layer made of the high sound velocity material is provided directly on the support substrate.
  • the support substrate is made of Si.
  • a support member provided on the support substrate so as to have an opening and surrounding the IDT electrode by the opening, and the support member And a plurality of cover members provided to cover the opening and passing through the cover member and the support member and being connected to the antenna terminal, the signal terminal, and the ground terminal, respectively. And a plurality of bumps respectively joined to the plurality of under bump metal layers.
  • a support member provided on the support substrate so as to surround the IDT electrode by the opening and the opening, and the support A cover member provided on the member so as to cover the opening, the antenna terminal, the signal terminal, and the ground terminal are respectively connected to the cover member through the side surface of the support member. And a plurality of wiring electrodes are further provided.
  • the electrostatic capacitance between the support substrate and the piezoelectric film can be suppressed, the deterioration of the characteristics can be suppressed, and when the electronic component is connected to another electronic component, It is possible to provide an elastic wave device in which malfunction does not easily occur.
  • FIG. 1 is a circuit diagram of an elastic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan cross-sectional view for explaining an electrode configuration of the elastic wave device according to the first embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view along the line II in FIG.
  • FIG. 4 is a schematic cross-sectional view along the line II-II in FIG.
  • FIG. 5 is a schematic plan view showing the vicinity of a series arm resonator located closest to the signal terminal in the first embodiment of the present invention.
  • FIG. 6 is a schematic partial enlarged front cross-sectional view showing the vicinity of the support member in a portion where the antenna terminal, the signal terminal, the ground terminal and the floating electrode are not provided in the elastic wave device according to the first embodiment of the present invention It is.
  • FIG. 7 is a schematic front sectional view of an elastic wave device according to a modification of the first embodiment of the present invention.
  • FIG. 8 is a schematic front cross-sectional view of an elastic wave device according to a second embodiment of the present invention.
  • FIG. 9 is a schematic front cross-sectional view of an elastic wave device according to a third embodiment of the present invention.
  • FIG. 10 is a cross-sectional view for explaining a modification of the laminate used in the elastic wave device according to the present invention.
  • FIG. 1 is a circuit diagram of an elastic wave device according to a first embodiment of the present invention.
  • the elastic wave device 1 of this embodiment includes a series arm resonator S1, a series arm resonator S2, a series arm resonator S3, a series arm resonator S4, a series arm resonator S5, a series arm resonator S6, and a parallel arm resonator. It is a ladder type filter which has P1, parallel arm resonator P2, parallel arm resonator P3 and parallel arm resonator P4.
  • the elastic wave device 1 has an antenna terminal 2 connected to an antenna and a signal terminal 3 connected to a signal potential.
  • FIG. 2 is a schematic plan cross-sectional view for explaining an electrode configuration of the elastic wave device according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view along the line II in FIG.
  • the series arm resonator and the parallel arm resonator are schematically shown by adding two diagonal lines to a rectangle.
  • the wiring is schematically shown as a series arm resonator and a parallel arm resonator, including a portion connected to a bus bar of the series arm resonator and the parallel arm resonator. The same applies to FIG. 4 described later.
  • the elastic wave device 1 has a plurality of ground terminals 4A connected to the ground potential.
  • the parallel arm resonator P1, the parallel arm resonator P2, the parallel arm resonator P3 and the parallel arm resonator P4 are connected to the ground terminal 4A.
  • the elastic wave device 1 includes a series arm resonator S1, a series arm resonator S2, a series arm resonator S3, a series arm resonator S4, a series arm resonator S5, a series arm resonator S6, a parallel arm resonator P1, a parallel arm It has a floating electrode 4B which is not connected to the resonator P2, the parallel arm resonator P3 and the parallel arm resonator P4, and is connected to the ground potential.
  • the elastic wave device 1 may not have the floating electrode 4B.
  • the elastic wave device 1 has a laminated body 8 in which a support substrate 5, a low sound velocity film 6 and a piezoelectric film 7 are laminated.
  • the support substrate 5 is a layer made of a high sound velocity material in the present embodiment.
  • the high sound velocity material is a material in which the sound velocity of the bulk wave propagating is higher than the sound velocity of the elastic wave propagating in the piezoelectric film 7.
  • the high sound velocity material constituting the support substrate 5 is Si.
  • the material which comprises the support substrate 5 is not limited above.
  • the low sound velocity film 6 is a film made of a low sound velocity material in which the sound velocity of the bulk wave propagating is lower than the sound velocity of the elastic wave propagating in the piezoelectric film 7.
  • the low sound velocity material forming the low sound velocity film 6 is SiO 2 .
  • the low sound velocity material constituting the low sound velocity film 6 may be, for example, a material containing glass, silicon oxynitride, tantalum oxide or a compound obtained by adding fluorine or carbon or boron to silicon oxide as a main component. .
  • the piezoelectric film 7 is made of a piezoelectric single crystal such as LiNbO 3 or LiTaO 3 or an appropriate piezoelectric ceramic. On the piezoelectric film 7, a plurality of series arm resonators including a series arm resonator S1 and a plurality of parallel arm resonators including a parallel arm resonator P1 are formed.
  • the support substrate 5 has a portion exposed from the low sound velocity film 6 and the piezoelectric film 7 on the outer peripheral edge side.
  • the ground terminal 4A is provided on the portion exposed on the support substrate 5 as described above.
  • a plurality of ground terminals and floating electrodes other than the ground terminal 4A shown in FIG. 3 are similarly provided directly on the support substrate 5.
  • the first insulating film 9A is directly provided on a portion of the support substrate 5 overlapping the signal terminal 3 in a plan view.
  • the first insulating film 9A is provided to extend from above the support substrate 5 to above the piezoelectric film 7.
  • the first insulating film 9A is made of polyimide.
  • the first insulating film 9A may be an organic insulating film other than polyimide, or may be an inorganic insulating film.
  • the first insulating film 9A may not extend on the piezoelectric film 7.
  • FIG. 4 is a schematic cross-sectional view along the line II-II in FIG.
  • a second insulating film 9 B is provided between the support substrate 5 and the antenna terminal 2.
  • the second insulating film 9B is made of the same material as the first insulating film.
  • the antenna terminal 2 and the signal terminal are indirectly provided on the support substrate 5 via the second insulating film 9B and the first insulating film, respectively, and the plurality of ground terminals 4A are the support substrate. It is provided directly on 5
  • the antenna terminal 2 may be provided directly on the support substrate 5.
  • a support member 16 is provided having an opening 16a surrounding the parallel arm resonator P1, the parallel arm resonator P2, the parallel arm resonator P3 and the parallel arm resonator P4.
  • the support member 16 covers the antenna terminal 2, the signal terminal 3, the floating electrode 4 ⁇ / b> B and the plurality of ground terminals 4 ⁇ / b> A.
  • the support member 16 is made of an appropriate resin.
  • a cover member 17 is provided on the support member 16 so as to cover the opening 16 a.
  • a plurality of parallel arm resonators including a plurality of series arm resonators including a series arm resonator S1 and a parallel arm resonator P1 are provided. It is done.
  • a plurality of under bump metal layers 18 are provided to penetrate the cover member 17 and the support member 16. Each under bump metal layer 18 is connected to the antenna terminal, the signal terminal 3, the plurality of ground terminals 4A and the floating electrode, respectively.
  • a plurality of bumps 19 are bonded to portions of the plurality of under bump metal layers 18 exposed from the cover member 17.
  • a plurality of series arm resonators including series arm resonator S1 and a plurality of parallel arm resonators including parallel arm resonator P1 are connected via antenna terminal, signal terminal 3 or ground terminal 4A, under bump metal layer 18 and bump 19 Electrically connected to the outside.
  • the elastic wave device 1 of the present embodiment has a WLP (Wafer Level Package) structure.
  • the plurality of series arm resonators including the series arm resonator S1 and the plurality of parallel arm resonators including the parallel arm resonator P1 are elastic wave resonators. This configuration is described below.
  • FIG. 5 is a schematic plan view showing the vicinity of the series arm resonator located closest to the signal terminal in the first embodiment.
  • the wiring connected to the series arm resonator is omitted.
  • the series arm resonator S 1 has an IDT electrode 12 provided on the piezoelectric film 7.
  • the IDT electrode 12 has a first bus bar 13a and a second bus bar 13b facing each other.
  • the IDT electrode 12 has a plurality of first electrode fingers 14 a whose one end is connected to the first bus bar 13 a.
  • the IDT electrode 12 has a plurality of second electrode fingers 14 b whose one end is connected to the second bus bar 13 b.
  • the plurality of first electrode fingers 14 a and the plurality of second electrode fingers 14 b are mutually inserted.
  • the reflector 15 a and the reflector 15 b are disposed on both sides of the IDT electrode 12 in the elastic wave propagation direction.
  • the IDT electrode 12, the reflector 15a, and the reflector 15b may be formed of a laminated metal film in which a plurality of metal layers are laminated, or may be formed of a single layer metal film.
  • the series arm resonator S1 is an elastic wave resonator having an IDT electrode 12, a reflector 15a and a reflector 15b.
  • the plurality of other series arm resonators and the plurality of parallel arm resonators are also elastic wave resonators each having an IDT electrode and a reflector.
  • the elastic wave device 1 since the elastic wave device 1 has the laminated body 8 in which the support substrate 5 made of a high sound velocity material, the low sound velocity film 6 and the piezoelectric film 7 are stacked, energy of elastic waves is effectively confined. be able to.
  • the laminate 8 may not have the low sound velocity film 6. Also in this case, the energy of the elastic wave can be confined.
  • the series arm resonator S1, the series arm resonator S2, the series arm resonator S3, the series arm resonator S4, the series arm resonator S5 and the series arm resonator S6 have the signal terminal 3 and the antenna terminal.
  • the two are connected in series with each other.
  • a parallel arm resonator P1 is connected between a connection point between the signal terminal 3 and the series arm resonator S1 and the ground potential.
  • a parallel arm resonator P2 is connected between the connection point between the series arm resonator S2 and the series arm resonator S3 and the ground potential.
  • a parallel arm resonator P3 is connected between a connection point between the series arm resonator S3 and the series arm resonator S4 and the ground potential.
  • a parallel arm resonator P4 is connected between the connection point between the series arm resonator S4 and the series arm resonator S5 and the ground potential.
  • the parallel arm resonator P2 and the parallel arm resonator P3 are commonly connected to the ground potential.
  • the circuit configuration of the elastic wave device 1 is not limited to the above.
  • the elastic wave device 1 is not limited to the ladder type filter, and may be, for example, a filter device including a longitudinally coupled resonator type elastic wave filter.
  • the feature of the present embodiment is that, as shown in FIG. 3, the signal terminal 3 is indirectly provided on the support substrate 5 via the first insulating film 9A, and a plurality of ground terminals 4A and floating electrodes are provided. It is provided directly on the support substrate 5. Thereby, the electrostatic capacitance between the support substrate 5 and the piezoelectric film 7 can be suppressed, the deterioration of the characteristics can be suppressed, and the operation of the electronic component when connected to another electronic component Defects are unlikely to occur. This is explained below.
  • the plurality of ground terminals 4A are directly provided on the support substrate 5.
  • the charge transferred to the support substrate 5 is quickly transferred to the outside. Therefore, the capacitance between the support substrate 5 and the piezoelectric film 7 can be suppressed, and deterioration of characteristics such as insertion loss hardly occurs.
  • floating electrodes not connected to the plurality of parallel arm resonators including the parallel arm resonator P1 are directly provided on the support substrate 5, and the floating electrodes are connected to the ground potential. Therefore, the charge generated by the pyroelectric effect can be more easily moved to the outside through the floating electrode.
  • the signal terminal 3 is provided indirectly on the support substrate 5 via the first insulating film 9A.
  • the electrical resistance between the support substrate 5 and the signal terminal 3 connected to the outside is high. Therefore, when the elastic wave device 1 is connected to another electronic component through the signal terminal 3, the under bump metal layer 18 and the bump 19, the electronic component and the supporting substrate 5 are separated by the first insulating film 9A. The electrical resistance between them can be increased. Therefore, even when another electronic component is connected to the elastic wave device 1, the leak current from the elastic wave device 1 does not easily leak to the electronic component. Therefore, the operation failure of the electronic component hardly occurs.
  • the support substrate 5 is made of a semiconductor such as Si as in the present embodiment
  • the electrical resistance of the support substrate 5 is low, and thus a leak current is likely to occur. Therefore, the leak current from the elastic wave device 1 tends to leak particularly to the electronic component. Therefore, the present invention is particularly suitable when the support substrate 5 is made of a semiconductor such as Si.
  • the signal terminal 3 is directly provided on the first insulating film 9A, and the connection wiring 10A is provided so as to be continuous with the signal terminal 3.
  • the connection wiring 10A is connected to the series arm resonator S1 and provided so as to extend from the top of the first insulating film 9A to the top of the piezoelectric film 7. Since the first insulating film 9A extends on the piezoelectric film 7, the step in the portion where the connection wiring 10A is provided can be reduced, and disconnection of the connection wiring 10A is unlikely to occur.
  • connection wiring 10A extends obliquely to the thickness direction of the piezoelectric film 7 from the support member 16 side to the piezoelectric film 7 side.
  • the bending of the connection wiring 10A can be alleviated, so that the disconnection of the connection wiring 10A is further less likely to occur.
  • a plurality of wall members 16 ⁇ / b> A are provided on the support substrate 5 at a portion located inside the opening 16 a of the support member 16. More specifically, one of the plurality of wall members 16A is provided to separate the series arm resonator S2 from the series arm resonator S3 and the parallel arm resonator P2. The other one of the plurality of wall members 16A is provided to separate the series arm resonator S4 and the parallel arm resonator P3. Still another one of the plurality of wall members 16A is provided to partition the series arm resonator S5 and the parallel arm resonator P4. The plurality of wall members 16A are made of the same material as the support member 16.
  • the plurality of wall members 16A are joined to the cover member and support the cover member. Therefore, when an external force is applied to the cover member, the hollow space is not easily crushed, and the strength of the elastic wave device 1 can be increased.
  • FIG. 6 is a schematic partial enlarged front cross-sectional view showing the vicinity of the support member in a portion where the antenna terminal, the signal terminal, the ground terminal, and the floating electrode are not provided in the elastic wave device according to the first embodiment.
  • the support member 16 is indirectly provided on the support substrate 5 via the insulating film 9 in portions other than the portions where the ground terminal and the floating electrode are provided.
  • the insulating film 9 is an insulating film provided other than the portion where the antenna terminal and the signal terminal are provided.
  • the insulating film 9 is made of the same material as the first insulating film and the second insulating film.
  • the insulating film 9 is provided so as to be continuous with the first insulating film and the second insulating film. Thereby, the uniformity of the distance between the support substrate 5 and the cover member 17 can be enhanced. Accordingly, the adhesion and bonding strength between the support member 16 and the cover member 17 can be enhanced, and the hermeticity of the hollow space A can be further reliably enhanced.
  • the insulating film 9 may not be provided.
  • FIG. 7 is a schematic front cross-sectional view of an elastic wave device according to a modification of the first embodiment.
  • the antenna terminal 2 is provided directly on the support substrate 5.
  • the signal terminals are indirectly provided on the support substrate 5 via the first insulating film, and the plurality of ground terminals 4 A are on the support substrate 5.
  • the electrostatic capacitance between the support substrate 5 and the piezoelectric film 7 can be suppressed, the deterioration of the characteristics can be suppressed, and the operation of the electronic component when connected to another electronic component Defects are unlikely to occur.
  • the third insulating film 109B is provided so as to overlap with part of the connection wiring 10B in plan view.
  • the third insulating film 109 B extends from above the support substrate 5 onto the piezoelectric film 7.
  • the third insulating film 109B is located between a part of the connection wiring 10B and the support substrate 5 and the piezoelectric film 7.
  • the surface of the third insulating film 109B in contact with the connection wiring 10B extends obliquely to the thickness direction of the piezoelectric film 7 from the support substrate 5 side to the piezoelectric film 7 side.
  • the third insulating film 109 ⁇ / b> B may be provided between the connection wiring connected to the ground terminal and the support substrate 5 and the piezoelectric film 7.
  • FIG. 8 is a schematic front cross-sectional view of an elastic wave device according to a second embodiment.
  • the present embodiment is different from the first embodiment in that the layer made of a high sound velocity material in the stacked body 28 is a high sound velocity film 25 provided between the support substrate 5 and the low sound velocity film 6.
  • the elastic wave device of the second embodiment has the same configuration as that of the elastic wave device 1 of the first embodiment except the points described above.
  • the support substrate 5 may be made of a material other than the high sound velocity material.
  • the signal terminal 3 is indirectly provided on the support substrate 5 via the first insulating film 9A, and a plurality of ground terminals 4A and floating electrodes are directly provided on the support substrate 5. ing. Therefore, the electrostatic capacitance between the support substrate 5 and the piezoelectric film 7 can be suppressed, the deterioration of the characteristics can be suppressed, and the operation failure of the electronic component when connected to another electronic component Is less likely to occur.
  • FIG. 9 is a schematic front cross-sectional view of an elastic wave device according to a third embodiment of the present invention.
  • a laminate 8 composed of a low sound velocity film 6 and a piezoelectric film 7 is provided on a support substrate 5. Similar to the elastic wave device 1 of the first embodiment, the first insulating film 9A is provided on the support substrate 5. Then, a connection wiring 10A is provided so as to reach on the first insulating film 9A. Moreover, in the cross section shown in FIG. 9, the part in which series arm resonator S1 and parallel arm resonator P1 are provided is illustrated similarly to the cross section shown in FIG.
  • the elastic wave device 1A is different from the elastic wave device 1 in that a wiring electrode 18A is provided in place of the under bump metal layer 18 and the bump 19.
  • the wiring electrode 18A is electrically connected to the signal terminal 3.
  • a support layer 31 is provided on the support substrate 5. The support layer 31 is provided so as to surround the portion where the IDT electrode is provided. Therefore, the hollow space A is formed also in the present embodiment.
  • Wiring electrodes 18A extend on the outer side surface of the support layer 31. Further, in the elastic wave device 1A, the cover member 34 having the first cover layer 32 and the second cover layer 33 is provided. The first cover layer 32 is laminated on the support layer 31. The outer side surface of the first cover layer 32 is located inside the outer side surface of the support layer 31.
  • the wiring electrode 18A reaches the cover member 34. That is, the wiring electrode 18A passes through the side surface of the first cover layer 32, and reaches the upper surface of the first cover layer 32.
  • the second cover layer 33 is stacked on the support substrate 5 so as to cover the first cover layer 32 and also to cover the outside of the wiring electrode 18A.
  • the wiring electrode 18B is also provided on the ground terminal 4A side.
  • the wiring electrode 18 B extends from the side surface of the first cover layer 32 to the upper surface through the outer side surface of the support layer 31.
  • a plurality of wiring electrodes including the wiring electrodes 18A and 18B are provided.
  • FIG. 9 shows the cross section of the portion in which the series arm resonator S1 and the parallel arm resonator P1 are configured, the remaining cross sections also pass through the outer side surface of the support layer 31 as described above. Wiring electrodes are provided up to the cover layer 32.
  • the present invention can be applied to an elastic wave device having package structures of various forms, not limited to those having the under bump metal layer penetrating the support member and the bumps.
  • FIG. 10 is a cross-sectional view for explaining a modification of the laminate used in the elastic wave device according to the present invention.
  • a laminate in which an acoustic reflection layer 43 is laminated between the support substrate 5 and the piezoelectric film 7 may be used.
  • the acoustic reflection layer 43 has low acoustic impedance layers 44a to 44d with relatively low acoustic impedance, and high acoustic impedance layers 45a to 45c with relatively high acoustic impedance.
  • the low acoustic impedance layers 44a, 44b, 44c and 44d and the high acoustic impedance layers 45a, 45b and 45c are alternately arranged in the stacking direction.
  • a structure having such an acoustic reflection layer 43 may be used as a laminate of the elastic wave device in the present invention. Even in that case, the energy of the elastic wave can be effectively confined.
  • 1st, 2nd cover Layers 34 Cover members 43: Acoustic reflection layers 44a to 44d: Low acoustic impedance layers 45a to 45c: High acoustic impedance layers 109B: Third insulating films P1 to P4: Parallel arm resonators S1 to S6: Series arm resonance

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

支持基板と圧電膜との間の静電容量を抑制することができ、特性の劣化を抑制することができ、かつ他の電子部品に接続された場合に該電子部品の動作不良が生じ難い、弾性波装置を提供する。 弾性波装置1は、支持基板5と、支持基板5上に設けられている圧電膜7とを有する積層体8と、支持基板5上に設けられているアンテナ端子と、支持基板5上に設けられているグラウンド端子4Aと、支持基板5上に設けられている信号端子3と、圧電膜7上に設けられているIDT電極と、支持基板5と信号端子3との間に設けられた第1の絶縁膜9Aとを備える。積層体8が、圧電膜7を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高い高音速材料からなる層と、相対的に音響インピーダンスが低い、低音響インピーダンス層及び相対的に音響インピーダンスが高い、高音響インピーダンス層を有する音響反射層とのうちの一方を有する。

Description

弾性波装置
 本発明は、弾性波装置に関する。
 従来、弾性波装置が携帯電話機のフィルタなどに広く用いられている。下記の特許文献1には、支持基板上に高音速膜、低音速膜及び圧電膜が積層された積層体が設けられた弾性波装置が開示されている。さらに、この弾性波装置においては、平面視において、上記積層体を囲むように、支持基板上に絶縁層が設けられており、外部に電気的に接続されるアンダーバンプメタル層は、全て絶縁層上に設けられている。
 下記の特許文献2には、支持基板上に高音速膜、低音速膜及び圧電膜が積層された積層体が設けられた弾性波装置が開示されている。この弾性波装置においては、支持基板上に直接設けられた配線に、アンダーバンプメタル層が接続されている。
国際公開第2015/098678号 国際公開第2015/098679号
 弾性波装置の実装時や使用時などにおいて、圧電膜が加熱または冷却されると、焦電効果により電荷が発生する。ここで、特許文献1に記載の弾性波装置においては、アンダーバンプメタル層が絶縁層上に設けられている。よって、発生した電荷は圧電膜からグラウンド電極に逃がすことができるが、グラウンド電極と接続していない支持基板に移動した電荷については逃がすことができず、支持基板は帯電する。このため、支持基板と圧電膜との間に電位差が生じ、静電容量が生じる。この静電容量の影響により、弾性波装置において、比帯域やQ値などの特性の劣化が生じることがあった。
 この点、特許文献2に記載の弾性波装置においては、アンダーバンプメタル層が支持基板上に直接設けられた配線に接続されているが、一方で、支持基板とアンダーバンプメタル層との間の電気抵抗が低い。そのため、弾性波装置が、アンダーバンプメタル層及びバンプを介して他の電子部品に接続された場合、該電子部品と支持基板との間の電気抵抗は低い。従って、弾性波装置からのリーク電流が上記電子部品に漏洩することにより、上記電子部品において動作不良が生じるおそれがあった。
 本発明の目的は、支持基板と圧電膜との間の静電容量を抑制することができ、特性の劣化を抑制することができ、かつ他の電子部品に接続された場合に該電子部品の動作不良が生じ難い、弾性波装置を提供することにある。
 本発明に係る弾性波装置は、支持基板と、前記支持基板上に設けられている圧電膜とを有する積層体と、前記支持基板上に設けられており、アンテナに接続されるアンテナ端子と、前記支持基板上に設けられており、グラウンド電位に接続されるグラウンド端子と、前記支持基板上に設けられており、信号電位に接続される信号端子と、前記圧電膜上に設けられているIDT電極と、前記支持基板と前記信号端子との間に設けられた第1の絶縁膜とを備え、前記積層体が、前記圧電膜を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高い高音速材料からなる層と、相対的に音響インピーダンスが低い、低音響インピーダンス層及び相対的に音響インピーダンスが高い、高音響インピーダンス層を有する音響反射層とのうちの一方を有する。
 本発明に係る弾性波装置のある特定の局面では、前記支持基板と前記アンテナ端子との間に設けられている第2の絶縁膜がさらに備えられている。この場合には、アンテナ端子と支持基板との間の電気抵抗を高くすることができる。従って、アンテナ端子から支持基板を介して信号端子に漏洩するリーク電流が生じ難い。
 本発明に係る弾性波装置の他の特定の局面では、前記支持基板上に直接前記アンテナ端子が設けられている。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記積層体が、前記高音速材料からなる層と、前記支持基板と前記圧電膜との間に設けられており、前記圧電膜を伝搬する弾性波の音速よりも伝搬するバルク波の音速が低い低音速材料からなる低音速膜とを有する。この場合には、弾性波のエネルギーを効果的に閉じ込めることができる。
 本発明に係る弾性波装置の別の特定の局面では、前記高音速材料からなる層が前記支持基板である。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記高音速材料からなる層が前記支持基板上に直接設けられている。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記支持基板がSiからなる。
 本発明に係る弾性波装置のさらに別の特定の局面では、開口部を有し、前記開口部により前記IDT電極を囲むように、前記支持基板上に設けられている支持部材と、前記支持部材上に、前記開口部を覆うように設けられているカバー部材と、前記カバー部材及び前記支持部材を貫通しており、かつ前記アンテナ端子、前記信号端子及び前記グラウンド端子にそれぞれ接続されている複数のアンダーバンプメタル層と、前記複数のアンダーバンプメタル層にそれぞれ接合されている複数のバンプとがさらに備えられている。
 本発明に係る弾性波装置のさらに他の特定の局面では、開口部を有し、前記開口部により、前記IDT電極を囲むように、前記支持基板上に設けられている支持部材と、前記支持部材上に、前記開口部を覆うように設けられているカバー部材と、前記アンテナ端子、前記信号端子及び前記グラウンド端子にそれぞれ接続されており、かつ前記支持部材の側面を経て前記カバー部材に至っている、複数の配線電極とがさらに備えられている。
 本発明によれば、支持基板と圧電膜との間の静電容量を抑制することができ、特性の劣化を抑制することができ、かつ他の電子部品に接続された場合に該電子部品の動作不良が生じ難い、弾性波装置を提供ことができる。
図1は、本発明の第1の実施形態に係る弾性波装置の回路図である。 図2は、本発明の第1の実施形態に係る弾性波装置の電極構成を説明するための略図的平面断面図である。 図3は、図2中のI-I線に沿う略図的断面図である。 図4は、図2中のII-II線に沿う略図的断面図である。 図5は、本発明の第1の実施形態における最も信号端子側に位置する直列腕共振子付近を示す模式的平面図である。 図6は、本発明の第1の実施形態に係る弾性波装置の、アンテナ端子、信号端子、グラウンド端子及び浮き電極が設けられていない部分における、支持部材付近を示す略図的部分拡大正面断面図である。 図7は、本発明の第1の実施形態の変形例に係る弾性波装置の略図的正面断面図である。 図8は、本発明の第2の実施形態に係る弾性波装置の略図的正面断面図である。 図9は、本発明の第3の実施形態に係る弾性波装置の略図的正面断面図である。 図10は、本発明に係る弾性波装置で用いられる積層体の変形例を説明するための断面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の回路図である。
 本実施形態の弾性波装置1は、直列腕共振子S1、直列腕共振子S2、直列腕共振子S3、直列腕共振子S4、直列腕共振子S5、直列腕共振子S6、並列腕共振子P1、並列腕共振子P2、並列腕共振子P3及び並列腕共振子P4を有するラダー型フィルタである。弾性波装置1は、アンテナに接続されるアンテナ端子2及び信号電位に接続される信号端子3を有する。
 図2は、第1の実施形態に係る弾性波装置の電極構成を説明するための略図的平面断面図である。図3は、図2中のI-I線に沿う略図的断面図である。なお、図2及び図3においては、直列腕共振子及び並列腕共振子を、矩形に2本の対角線を加えた略図により示す。図3においては、配線が直列腕共振子及び並列腕共振子のバスバーに接続されている部分を含めて、直列腕共振子及び並列腕共振子として模式的に示している。後述する図4においても同様である。
 図2に示すように、弾性波装置1は、グラウンド電位に接続される複数のグラウンド端子4Aを有する。並列腕共振子P1、並列腕共振子P2、並列腕共振子P3及び並列腕共振子P4は、それぞれグラウンド端子4Aに接続されている。弾性波装置1は、直列腕共振子S1、直列腕共振子S2、直列腕共振子S3、直列腕共振子S4、直列腕共振子S5、直列腕共振子S6、並列腕共振子P1、並列腕共振子P2、並列腕共振子P3及び並列腕共振子P4に接続されておらず、かつグラウンド電位に接続される浮き電極4Bを有する。なお、弾性波装置1は浮き電極4Bを有しなくともよい。
 図3に示すように、弾性波装置1は、支持基板5、低音速膜6及び圧電膜7が積層されている積層体8を有する。支持基板5は、本実施形態では、高音速材料からなる層である。ここで、高音速材料とは、圧電膜7を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高い材料である。支持基板5を構成する高音速材料はSiである。なお、支持基板5を構成する材料は上記に限定されない。
 低音速膜6は、圧電膜7を伝搬する弾性波の音速よりも伝搬するバルク波の音速が低い低音速材料からなる膜である。本実施形態では、低音速膜6を構成する低音速材料はSiOである。なお、低音速膜6を構成する低音速材料は、例えば、ガラス、酸窒化ケイ素、酸化タンタルまたは酸化ケイ素にフッ素、炭素やホウ素を加えた化合物を主成分とする材料などであっていてもよい。
 圧電膜7は、LiNbOやLiTaOなどの圧電単結晶や、適宜の圧電セラミックスからなる。圧電膜7上において、直列腕共振子S1を含む複数の直列腕共振子及び並列腕共振子P1を含む複数の並列腕共振子が構成されている。
 支持基板5は、外周縁側において、低音速膜6及び圧電膜7から露出した部分を有する。上記グラウンド端子4Aは、支持基板5上において上記のように露出した部分に設けられている。図3に示すグラウンド端子4A以外の複数のグラウンド端子及び浮き電極も同様に、支持基板5上に直接設けられている。
 他方、支持基板5上における、平面視において信号端子3に重なる部分には、第1の絶縁膜9Aが直接設けられている。第1の絶縁膜9Aは、支持基板5上から圧電膜7上に至るように設けられている。本実施形態では、第1の絶縁膜9Aはポリイミドからなる。なお、第1の絶縁膜9Aはポリイミド以外の有機絶縁膜であってもよく、無機絶縁膜であってもよい。第1の絶縁膜9Aは圧電膜7上に至っていなくともよい。
 図4は、図2中のII-II線に沿う略図的断面図である。
 支持基板5とアンテナ端子2との間に、第2の絶縁膜9Bが設けられている。第2の絶縁膜9Bは第1の絶縁膜と同様の材料からなる。このように、アンテナ端子2及び信号端子は、それぞれ第2の絶縁膜9B及び第1の絶縁膜を介して支持基板5上に間接的に設けられており、かつ複数のグラウンド端子4Aは支持基板5上に直接設けられている。なお、アンテナ端子2は、支持基板5上に直接設けられていてもよい。
 図2に示すように、支持基板5上には、直列腕共振子S1、直列腕共振子S2、直列腕共振子S3、直列腕共振子S4、直列腕共振子S5、直列腕共振子S6、並列腕共振子P1、並列腕共振子P2、並列腕共振子P3及び並列腕共振子P4を囲む開口部16aを有する、支持部材16が設けられている。支持部材16は、アンテナ端子2、信号端子3、浮き電極4B及び複数のグラウンド端子4Aを覆っている。支持部材16は適宜の樹脂からなる。
 図3に示すように、支持部材16上には、開口部16aを覆うようにカバー部材17が設けられている。支持基板5、支持部材16及びカバー部材17により囲まれた中空空間A内に、直列腕共振子S1を含む複数の直列腕共振子及び並列腕共振子P1を含む複数の並列腕共振子が設けられている。
 カバー部材17及び支持部材16を貫通するように、複数のアンダーバンプメタル層18が設けられている。各アンダーバンプメタル層18はアンテナ端子、信号端子3、複数のグラウンド端子4A及び浮き電極にそれぞれ接続されている。複数のアンダーバンプメタル層18におけるカバー部材17から露出している部分には、複数のバンプ19がそれぞれ接合されている。直列腕共振子S1を含む複数の直列腕共振子及び並列腕共振子P1を含む複数の並列腕共振子は、アンテナ端子、信号端子3またはグラウンド端子4A並びにアンダーバンプメタル層18及びバンプ19を介して外部に電気的に接続される。本実施形態の弾性波装置1はWLP(Wafer Level Package)構造である。
 ところで、直列腕共振子S1を含む複数の直列腕共振子及び並列腕共振子P1を含む複数の並列腕共振子は、弾性波共振子である。この構成を以下において説明する。
 図5は、第1の実施形態における最も信号端子側に位置する直列腕共振子付近を示す模式的平面図である。なお、図5においては、直列腕共振子に接続された配線は省略している。
 直列腕共振子S1は、圧電膜7上に設けられているIDT電極12を有する。IDT電極12は、互いに対向し合う第1のバスバー13a及び第2のバスバー13bを有する。IDT電極12は、第1のバスバー13aに一端が接続されている複数の第1の電極指14aを有する。さらに、IDT電極12は、第2のバスバー13bに一端が接続されている複数の第2の電極指14bを有する。複数の第1の電極指14aと複数の第2の電極指14bとは互いに間挿し合っている。
 IDT電極12に交流電圧を印加することにより、弾性波が励振される。IDT電極12の弾性波伝搬方向両側には、反射器15a及び反射器15bが配置されている。IDT電極12、反射器15a及び反射器15bは、複数の金属層が積層された積層金属膜からなっていてもよく、あるいは、単層の金属膜からなっていてもよい。
 直列腕共振子S1は、IDT電極12、反射器15a及び反射器15bを有する弾性波共振子である。他の複数の直列腕共振子及び複数の並列腕共振子も同様に、それぞれIDT電極及び反射器を有する弾性波共振子である。
 図3に示すように、弾性波装置1は、高音速材料からなる支持基板5、低音速膜6及び圧電膜7が積層された積層体8を有するため、弾性波のエネルギーを効果的に閉じ込めることができる。なお、積層体8は低音速膜6を有しなくともよい。この場合においても、弾性波のエネルギーを閉じ込めることができる。
 ここで、弾性波装置1の回路構成を説明する。図1に示すように、直列腕共振子S1、直列腕共振子S2、直列腕共振子S3、直列腕共振子S4、直列腕共振子S5及び直列腕共振子S6は、信号端子3とアンテナ端子2との間に互いに直列に接続されている。信号端子3と直列腕共振子S1との間の接続点とグラウンド電位との間には、並列腕共振子P1が接続されている。直列腕共振子S2と直列腕共振子S3との間の接続点とグラウンド電位との間には、並列腕共振子P2が接続されている。直列腕共振子S3と直列腕共振子S4との間の接続点とグラウンド電位との間には、並列腕共振子P3が接続されている。直列腕共振子S4と直列腕共振子S5との間の接続点とグラウンド電位との間には、並列腕共振子P4が接続されている。並列腕共振子P2及び並列腕共振子P3はグラウンド電位に共通接続されている。
 なお、弾性波装置1の回路構成は上記に限定されない。弾性波装置1は、ラダー型フィルタには限定されず、例えば、縦結合共振子型弾性波フィルタを含むフィルタ装置などであってもよい。
 本実施形態の特徴は、図3に示すように、信号端子3が第1の絶縁膜9Aを介して支持基板5上に間接的に設けられており、かつ複数のグラウンド端子4A及び浮き電極が支持基板5上に直接設けられていることにある。それによって、支持基板5と圧電膜7との間の静電容量を抑制することができ、特性の劣化を抑制することができ、かつ他の電子部品に接続された場合に該電子部品の動作不良が生じ難い。これを以下において説明する。
 弾性波装置1の使用時に圧電膜7が加熱されることなどにより、圧電膜7が温度変化すると、焦電効果によって電荷が発生する。電荷が支持基板5に移動し、支持基板5が帯電した場合には、上述したように、支持基板5と圧電膜7との間の静電容量が生じ、該静電容量の影響により特性が劣化し易い。
 これに対して、本実施形態においては、支持基板5上に複数のグラウンド端子4Aが直接設けられている。これにより、支持基板5に移動した電荷は、速やかに外部に移動することとなる。よって、支持基板5と圧電膜7との間における静電容量を抑制することができ、挿入損失などの特性の劣化が生じ難い。
 さらに、支持基板5上には、並列腕共振子P1を含む複数の並列腕共振子に接続されていない浮き電極が直接設けられており、浮き電極はグラウンド電位に接続される。よって、焦電効果により生じた電荷を浮き電極を介して外部に、より一層移動させ易い。
 加えて、本実施形態においては、信号端子3は第1の絶縁膜9Aを介して間接的に支持基板5上に設けられている。これにより、支持基板5と、外部に接続される信号端子3との間の電気抵抗は高い。そのため、弾性波装置1が信号端子3、アンダーバンプメタル層18及びバンプ19を介して他の電子部品に接続された場合において、第1の絶縁膜9Aにより、該電子部品と支持基板5との間の電気抵抗を高くすることができる。よって、弾性波装置1に他の電子部品が接続された場合においても、弾性波装置1からのリーク電流が該電子部品に漏洩し難い。従って、該電子部品の動作不良が生じ難い。
 なお、本実施形態のように支持基板5がSiなどの半導体からなる場合、支持基板5の電気抵抗は低いため、リーク電流が生じ易い。そのため、弾性波装置1からのリーク電流が上記電子部品に特に漏洩し易い傾向がある。よって、支持基板5がSiなどの半導体からなる場合に本発明は特に好適である。
 図3に示すように、本実施形態では、第1の絶縁膜9A上に信号端子3が直接設けられており、信号端子3に連なるように接続配線10Aが設けられている。接続配線10Aは直列腕共振子S1に接続されており、かつ第1の絶縁膜9A上から圧電膜7上に至るように設けられている。第1の絶縁膜9Aが圧電膜7上に至っているため、接続配線10Aが設けられる部分の段差を小さくすることができ、接続配線10Aの断線が生じ難い。加えて、第1の絶縁膜9Aの接続配線10Aに接している面は、支持部材16側から圧電膜7側に、圧電膜7の厚み方向に対して傾斜して延びている。それによって、接続配線10Aの屈曲を緩和することができるため、接続配線10Aの断線がより一層生じ難い。図4に示す、アンテナ端子2に接続されている接続配線10B及び第2の絶縁膜9Bにおいても同様である。
 図2に示すように、支持基板5上には、支持部材16の開口部16a内に位置する部分に、複数の壁部材16Aが設けられている。より具体的には、複数の壁部材16Aのうち1つは、直列腕共振子S2と直列腕共振子S3及び並列腕共振子P2とを仕切るように設けられている。複数の壁部材16Aのうち他の1つは、直列腕共振子S4と並列腕共振子P3とを仕切るように設けられている。複数の壁部材16Aのうちさらに他の1つは、直列腕共振子S5と並列腕共振子P4とを仕切るように設けられている。複数の壁部材16Aは、支持部材16と同様の材料からなる。
 複数の壁部材16Aはカバー部材に接合されており、カバー部材を支持している。よって、カバー部材に外力が加えられた場合において上記中空空間が潰れ難く、弾性波装置1の強度を高めることができる。
 図6は、第1の実施形態に係る弾性波装置の、アンテナ端子、信号端子、グラウンド端子及び浮き電極が設けられていない部分における、支持部材付近を示す略図的部分拡大正面断面図である。
 本実施形態においては、支持部材16は、グラウンド端子及び浮き電極が設けられている部分以外の部分においては、絶縁膜9を介して支持基板5上に間接的に設けられている。絶縁膜9は、アンテナ端子及び信号端子が設けられている部分以外に設けられた絶縁膜である。絶縁膜9は、第1の絶縁膜及び第2の絶縁膜と同様の材料からなる。絶縁膜9は、第1の絶縁膜及び第2の絶縁膜に連なるように設けられている。これにより、支持基板5とカバー部材17との距離の均一性を高めることができる。よって、支持部材16とカバー部材17との密着性及び接合力を高めることができ、上記中空空間Aの密閉性をより一層確実に高めることができる。なお、絶縁膜9は設けられていなくともよい。
 図7は、第1の実施形態の変形例に係る弾性波装置の略図的正面断面図である。
 本変形例においては、アンテナ端子2が支持基板5上に直接設けられている。本変形例においても、第1の実施形態と同様に、信号端子は第1の絶縁膜を介して支持基板5上に間接的に設けられており、かつ複数のグラウンド端子4Aは支持基板5上に直接設けられている。それによって、支持基板5と圧電膜7との間の静電容量を抑制することができ、特性の劣化を抑制することができ、かつ他の電子部品に接続された場合に該電子部品の動作不良が生じ難い。
 本変形例においては、平面視において、接続配線10Bの一部と重なるように、第3の絶縁膜109Bが設けられている。第3の絶縁膜109Bは、支持基板5上から圧電膜7上に至っている。接続配線10Bの一部と、支持基板5及び圧電膜7との間に、第3の絶縁膜109Bが位置している。第3の絶縁膜109Bが接続配線10Bに接している面は、支持基板5側から圧電膜7側に、圧電膜7の厚み方向に対して傾斜して延びている。これにより、接続配線10Bにおける支持基板5上から圧電膜7上に至る部分における屈曲を緩和させることができる。よって、接続配線10Bが断線し難い。なお、第3の絶縁膜109Bは、グラウンド端子に接続されている接続配線と、支持基板5及び圧電膜7との間に設けられていてもよい。
 図8は、第2の実施形態に係る弾性波装置の略図的正面断面図である。
 本実施形態は、積層体28における高音速材料からなる層が、支持基板5と低音速膜6との間に設けられている高音速膜25である点において、第1の実施形態と異なる。上記以外の点においては、第2の実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。本実施形態においては、支持基板5は高音速材料以外の材料からなっていてもよい。
 本実施形態においても、信号端子3が第1の絶縁膜9Aを介して支持基板5上に間接的に設けられており、かつ複数のグラウンド端子4A及び浮き電極が支持基板5上に直接設けられている。よって、支持基板5と圧電膜7との間の静電容量を抑制することができ、特性の劣化を抑制することができ、かつ他の電子部品に接続された場合に該電子部品の動作不良が生じ難い。
 図9は、本発明の第3の実施形態に係る弾性波装置の略図的正面断面図である。
 第3の実施形態の弾性波装置1Aでは、支持基板5上に、低音速膜6、及び圧電膜7からなる積層体8が設けられている。第1の実施形態の弾性波装置1と同様に、支持基板5上に、第1の絶縁膜9Aが設けられている。そして、第1の絶縁膜9A上に至るよう接続配線10Aが設けられている。また、図9に示す断面では、図3に示す断面と同様に、直列腕共振子S1及び並列腕共振子P1が設けられている部分が図示されている。
 弾性波装置1Aが、弾性波装置1と異なる点は、アンダーバンプメタル層18及びバンプ19に代えて、配線電極18Aが設けられていることにある。配線電極18Aは、信号端子3に電気的に接続されている。支持基板5上には、支持層31が設けられている。支持層31は、IDT電極が設けられている部分を囲むように設けられている。従って、本実施形態においても、中空空間Aが形成されている。
 支持層31の外側側面上に配線電極18Aが至っている。また、弾性波装置1Aでは、第1のカバー層32及び第2のカバー層33を有するカバー部材34が設けられている。第1のカバー層32は、支持層31上に積層されている。そして、第1のカバー層32の外側側面は、支持層31の外側側面よりも内側に位置している。
 上記配線電極18Aは、カバー部材34に至っている。すなわち、配線電極18Aは、第1のカバー層32の側面を経て、第1のカバー層32の上面に至っている。第2のカバー層33は、上記第1のカバー層32を覆うように、かつ配線電極18Aの外側も覆うように、支持基板5上に積層されている。
 なお、図9において、グラウンド端子4A側にも、配線電極18Bが設けられている。配線電極18Bは支持層31の外側側面を経て、第1のカバー層32の側面から上面に至っている。なお、第1のカバー層32の上面においては、配線電極18A,18Bを含む複数の配線電極が設けられている。
 図9では、直列腕共振子S1及び並列腕共振子P1が構成されている部分の断面を示したが、残りの断面においても、上記のように、支持層31の外側側面を経て第1のカバー層32上に至る配線電極が設けられている。このように、本発明は、支持部材を貫通するアンダーバンプメタル層、及びバンプを有するものに限らず様々な形態のパッケージ構造を有する弾性波装置に適用することができる。
 図10は、本発明に係る弾性波装置で用いられる積層体の変形例を説明するための断面図である。図10に示すように、支持基板5と圧電膜7との間に音響反射層43が積層されている積層体を用いてもよい。音響反射層43は、相対的に音響インピーダンスが低い低音響インピーダンス層44a~44dと、相対的に音響インピーダンスが高い高音響インピーダンス層45a~45cとを有する。低音響インピーダンス層44a,44b,44c,44dと、高音響インピーダンス層45a,45b,45cは積層方向において交互に配置されている。本発明における弾性波装置の積層体としては、このような音響反射層43を有する構造を用いてもよい。その場合においても、弾性波のエネルギーを効果的に閉じ込めることができる。
1,1A…弾性波装置
2…アンテナ端子
3…信号端子
4A…グラウンド端子
4B…浮き電極
5…支持基板
6…低音速膜
7…圧電膜
8…積層体
9…絶縁膜
9A,9B…第1,第2の絶縁膜
10A,10B…接続配線
12…IDT電極
13a,13b…第1,第2のバスバー
14a,14b…第1,第2の電極指
15a,15b…反射器
16…支持部材
16A…壁部材
16a…開口部
17…カバー部材
18…アンダーバンプメタル層
18A,18B…配線電極
19…バンプ
25…高音速膜
28…積層体
31…支持層
32,33…第1,第2のカバー層
34…カバー部材
43…音響反射層
44a~44d…低音響インピーダンス層
45a~45c…高音響インピーダンス層
109B…第3の絶縁膜
P1~P4…並列腕共振子
S1~S6…直列腕共振子

Claims (9)

  1.  支持基板と、前記支持基板上に設けられている圧電膜と、を有する積層体と、
     前記支持基板上に設けられており、アンテナに接続されるアンテナ端子と、
     前記支持基板上に設けられており、グラウンド電位に接続されるグラウンド端子と、
     前記支持基板上に設けられており、信号電位に接続される信号端子と、
     前記圧電膜上に設けられているIDT電極と、
     前記支持基板と前記信号端子との間に設けられた第1の絶縁膜と、
    を備え、
     前記積層体が、前記圧電膜を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高い高音速材料からなる層と、相対的に音響インピーダンスが低い、低音響インピーダンス層及び相対的に音響インピーダンスが高い、高音響インピーダンス層を有する音響反射層とのうちの一方を有する、弾性波装置。
  2.  前記支持基板と前記アンテナ端子との間に設けられている第2の絶縁膜をさらに備える、請求項1に記載の弾性波装置。
  3.  前記支持基板上に直接前記アンテナ端子が設けられている、請求項1に記載の弾性波装置。
  4.  前記積層体が、前記高音速材料からなる層と、前記支持基板と前記圧電膜との間に設けられており、前記圧電膜を伝搬する弾性波の音速よりも伝搬するバルク波の音速が低い低音速材料からなる低音速膜とを有する、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記高音速材料からなる層が前記支持基板である、請求項1~4のいずれか1項に記載の弾性波装置。
  6.  前記高音速材料からなる層が前記支持基板上に直接設けられている、請求項1~4のいずれか1項に記載の弾性波装置。
  7.  前記支持基板がSiからなる、請求項1~6のいずれか1項に記載の弾性波装置。
  8.  開口部を有し、前記開口部により前記IDT電極を囲むように、前記支持基板上に設けられている支持部材と、
     前記支持部材上に、前記開口部を覆うように設けられているカバー部材と、
     前記カバー部材及び前記支持部材を貫通しており、かつ前記アンテナ端子、前記信号端子及び前記グラウンド端子にそれぞれ接続されている複数のアンダーバンプメタル層と、
     前記複数のアンダーバンプメタル層にそれぞれ接合されている複数のバンプと、
    をさらに備える、請求項1~7のいずれか1項に記載の弾性波装置。
  9.  開口部を有し、前記開口部により、前記IDT電極を囲むように、前記支持基板上に設けられている支持部材と、
     前記支持部材上に、前記開口部を覆うように設けられているカバー部材と、
     前記アンテナ端子、前記信号端子及び前記グラウンド端子にそれぞれ接続されており、かつ前記支持部材の側面を経て前記カバー部材に至っている、複数の配線電極と、
    をさらに備える、請求項1~7のいずれか1項に記載の弾性波装置。
PCT/JP2018/024180 2017-06-30 2018-06-26 弾性波装置 WO2019004205A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018559908A JP6702438B2 (ja) 2017-06-30 2018-06-26 弾性波装置
CN201880002840.8A CN109478877B (zh) 2017-06-30 2018-06-26 弹性波装置
US16/234,660 US10666221B2 (en) 2017-06-30 2018-12-28 Elastic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017128726 2017-06-30
JP2017-128726 2017-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/234,660 Continuation US10666221B2 (en) 2017-06-30 2018-12-28 Elastic wave device

Publications (1)

Publication Number Publication Date
WO2019004205A1 true WO2019004205A1 (ja) 2019-01-03

Family

ID=64741726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024180 WO2019004205A1 (ja) 2017-06-30 2018-06-26 弾性波装置

Country Status (4)

Country Link
US (1) US10666221B2 (ja)
JP (1) JP6702438B2 (ja)
CN (1) CN109478877B (ja)
WO (1) WO2019004205A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220974A1 (ja) * 2020-04-27 2021-11-04 株式会社村田製作所 弾性波装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041153A1 (ja) * 2013-09-20 2015-03-26 株式会社村田製作所 弾性波装置及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128823A1 (ja) * 2012-02-28 2013-09-06 パナソニック株式会社 弾性波装置およびその製造方法
WO2016013330A1 (ja) * 2014-07-22 2016-01-28 株式会社村田製作所 デュプレクサ
JP2016066989A (ja) * 2014-09-19 2016-04-28 日本電波工業株式会社 圧電デバイスとその製造方法
WO2016208427A1 (ja) * 2015-06-25 2016-12-29 株式会社村田製作所 弾性波装置
WO2016208670A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 マルチプレクサ、送信装置、受信装置、高周波フロントエンド回路、通信装置、およびマルチプレクサのインピーダンス整合方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321754B2 (ja) * 2003-07-31 2009-08-26 Tdk株式会社 圧電共振器およびそれを用いたフィルタ
EP1976118A4 (en) * 2006-01-18 2011-12-14 Murata Manufacturing Co ACOUSTIC SURFACE WAVE DEVICE AND LIMIT ACOUSTIC WAVE DEVICE
JP5258566B2 (ja) * 2006-08-07 2013-08-07 京セラ株式会社 弾性表面波装置の製造方法
EP2175556B1 (en) * 2007-07-30 2014-09-03 Murata Manufacturing Co. Ltd. Elastic wave device and method for manufacturing the same
CN102763328B (zh) * 2010-12-16 2015-12-02 天工松下滤波方案日本有限公司 弹性波装置
JP6116120B2 (ja) * 2012-01-24 2017-04-19 太陽誘電株式会社 弾性波デバイス及び弾性波デバイスの製造方法
JP6170349B2 (ja) * 2013-06-18 2017-07-26 太陽誘電株式会社 弾性波デバイス
WO2015098679A1 (ja) 2013-12-27 2015-07-02 株式会社村田製作所 弾性波装置及びその製造方法
CN105794108B (zh) 2013-12-27 2019-01-11 株式会社村田制作所 弹性波装置
US20170288123A1 (en) 2014-09-19 2017-10-05 Nihon Dempa Kogyo Co., Ltd. Piezoelectric device and method for manufacturing the same
CN108352825B (zh) * 2015-11-18 2021-07-13 株式会社村田制作所 弹性波滤波器、双工器以及弹性波滤波器模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128823A1 (ja) * 2012-02-28 2013-09-06 パナソニック株式会社 弾性波装置およびその製造方法
WO2016013330A1 (ja) * 2014-07-22 2016-01-28 株式会社村田製作所 デュプレクサ
JP2016066989A (ja) * 2014-09-19 2016-04-28 日本電波工業株式会社 圧電デバイスとその製造方法
WO2016208670A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 マルチプレクサ、送信装置、受信装置、高周波フロントエンド回路、通信装置、およびマルチプレクサのインピーダンス整合方法
WO2016208427A1 (ja) * 2015-06-25 2016-12-29 株式会社村田製作所 弾性波装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220974A1 (ja) * 2020-04-27 2021-11-04 株式会社村田製作所 弾性波装置
JPWO2021220974A1 (ja) * 2020-04-27 2021-11-04
JP7529018B2 (ja) 2020-04-27 2024-08-06 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
US20190140614A1 (en) 2019-05-09
JP6702438B2 (ja) 2020-06-03
CN109478877B (zh) 2023-06-09
JPWO2019004205A1 (ja) 2019-06-27
US10666221B2 (en) 2020-05-26
CN109478877A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
JP6710161B2 (ja) 弾性波装置
US8072118B2 (en) Surface acoustic wave device
US10256793B2 (en) Elastic wave detection
JP5516606B2 (ja) 弾性波装置
US10756698B2 (en) Elastic wave device
JP6702438B2 (ja) 弾性波装置
US11509289B2 (en) Composite component and mounting structure therefor
US10411672B2 (en) Elastic wave device
WO2021024993A1 (ja) 弾性波装置
WO2023100608A1 (ja) 弾性波装置
WO2023085368A1 (ja) 弾性波装置
WO2023112652A1 (ja) 弾性波装置
WO2023022157A1 (ja) 弾性波装置及び弾性波装置の製造方法
US20220247380A1 (en) Acoustic wave device
WO2024029609A1 (ja) 弾性波装置
WO2022209525A1 (ja) 弾性波装置
JPWO2018174064A1 (ja) 弾性波装置、分波器および通信装置
US20240243728A1 (en) Filter device
US20240097653A1 (en) Composite filter device
WO2023017825A1 (ja) 弾性波装置及びその製造方法
WO2023058713A1 (ja) 弾性波素子の製造方法および弾性波素子
WO2022102619A1 (ja) 弾性波装置
US20240313737A1 (en) Acoustic wave device
WO2022209860A1 (ja) 弾性波装置
WO2022014608A1 (ja) 弾性波装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018559908

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823748

Country of ref document: EP

Kind code of ref document: A1