WO2022209525A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2022209525A1
WO2022209525A1 PCT/JP2022/008535 JP2022008535W WO2022209525A1 WO 2022209525 A1 WO2022209525 A1 WO 2022209525A1 JP 2022008535 W JP2022008535 W JP 2022008535W WO 2022209525 A1 WO2022209525 A1 WO 2022209525A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
electrode
wave device
elastic wave
width
Prior art date
Application number
PCT/JP2022/008535
Other languages
English (en)
French (fr)
Inventor
誠二 甲斐
央 山崎
武志 中尾
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022209525A1 publication Critical patent/WO2022209525A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to elastic wave devices.
  • Patent Document 1 discloses an example of an elastic wave device using a piezoelectric substrate as a cover member.
  • a plurality of column members are provided between the piezoelectric substrate provided with the excitation electrodes and the piezoelectric substrate as the cover member.
  • Each of the plurality of pillar members is formed by stacking a plurality of wiring electrodes.
  • An object of the present invention is to provide an elastic wave device capable of suppressing variations in bonding area in a support and improving reliability.
  • An elastic wave device comprises: a support member including a support substrate; a piezoelectric substrate including a piezoelectric layer provided on the support member; a functional electrode provided on the piezoelectric layer; a first support provided on the piezoelectric substrate so as to surround the functional electrode; and a portion provided on the piezoelectric substrate and surrounded by the first support.
  • the second support comprising said lid and a second portion located on the side of the piezoelectric substrate, wherein the first portion and the second portion are laminated, the piezoelectric substrate and the second support;
  • an elastic wave device capable of suppressing variations in bonding area in the support and improving reliability.
  • FIG. 1 is a schematic front cross-sectional view of an elastic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the elastic wave device according to the first embodiment of the invention.
  • FIG. 3 is a diagram in which a conductive film, a second support and a via electrode are superimposed according to the first embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a portion corresponding to the portion shown in FIG. 1 of an elastic wave device according to a second embodiment of the invention.
  • FIG. 5 is a diagram in which a conductive film, a second support, and a via electrode are superimposed according to the second embodiment of the present invention.
  • FIG. 1 is a schematic front cross-sectional view of an elastic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the elastic wave device according to the first embodiment of the invention.
  • FIG. 3 is a diagram in which a conductive film, a second support and
  • FIG. 6 is a schematic cross-sectional view showing a portion corresponding to the portion shown in FIG. 1 of an elastic wave device according to a third embodiment of the invention.
  • FIG. 7 is a schematic cross-sectional view showing a portion corresponding to the portion shown in FIG. 1 of an elastic wave device according to a fourth embodiment of the invention.
  • FIG. 8(a) is a schematic perspective view showing the external appearance of an elastic wave device that utilizes a thickness-shear mode bulk wave
  • FIG. 8(b) is a plan view showing an electrode structure on a piezoelectric layer.
  • FIG. 9 is a cross-sectional view along line AA in FIG. 8(a).
  • FIG. 10(a) is a schematic front cross-sectional view for explaining a Lamb wave propagating through a piezoelectric film of an acoustic wave device, and FIG. 10(b) is a thickness shear propagating
  • FIG. 2 is a schematic front cross-sectional view for explaining bulk waves in a mode
  • FIG. 11 is a diagram showing amplitude directions of bulk waves in the thickness shear mode.
  • FIG. 12 is a diagram showing resonance characteristics of an elastic wave device that utilizes bulk waves in a thickness-shear mode.
  • FIG. 13 is a diagram showing the relationship between d/p and the fractional bandwidth of the resonator, where p is the center-to-center distance between adjacent electrodes and d is the thickness of the piezoelectric layer.
  • FIG. 14 is a plan view of an acoustic wave device that utilizes thickness-shear mode bulk waves.
  • FIG. 15 is a diagram showing the resonance characteristics of the elastic wave device of the reference example in which spurious appears.
  • FIG. 16 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious.
  • FIG. 17 is a diagram showing the relationship between d/2p and metallization ratio MR.
  • FIG. 18 is a diagram showing a map of the fractional bandwidth with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0.
  • FIG. FIG. 19 is a partially cutaway perspective view for explaining an elastic wave device that utilizes Lamb waves.
  • FIG. 1 is a schematic front cross-sectional view of an elastic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the elastic wave device according to the first embodiment.
  • an IDT electrode which will be described later, is shown by a schematic diagram in which two diagonal lines are added to a rectangle.
  • a dielectric film which will be described later, is omitted.
  • 1 is a cross-sectional view schematically showing a portion along line II in FIG.
  • the acoustic wave device 10 has a piezoelectric substrate 12 and an IDT electrode 11 as a functional electrode.
  • the piezoelectric substrate 12 has a support member 13 and a piezoelectric layer 14 .
  • support member 13 includes support substrate 16 and intermediate layer 15 .
  • An intermediate layer 15 is provided on the support substrate 16 .
  • a piezoelectric layer 14 is provided on the intermediate layer 15 .
  • the support member 13 may be composed of only the support substrate 16 .
  • the piezoelectric layer 14 has a first main surface 14a and a second main surface 14b.
  • the first main surface 14a and the second main surface 14b face each other.
  • the second principal surface 14b is located on the support member 13 side.
  • the material of the support substrate 16 for example, semiconductors such as silicon, ceramics such as aluminum oxide, and the like can be used.
  • the material of intermediate layer 15 may be any suitable dielectric such as silicon oxide or tantalum pentoxide.
  • materials for the piezoelectric layer 14 include lithium niobate, lithium tantalate, zinc oxide, aluminum nitride, crystal, and PZT (lead zirconate titanate). It should be noted that the piezoelectric layer 14 is preferably a lithium tantalate layer such as a LiTaO 3 layer or a lithium niobate layer such as a LiNbO 3 layer.
  • the support member 13 is provided with a first hollow portion 10a. More specifically, intermediate layer 15 is provided with a recess. A piezoelectric layer 14 is provided on the intermediate layer 15 so as to close the recess. This constitutes the first hollow portion 10a.
  • the first hollow portion 10a may be provided in the intermediate layer 15 and the support substrate 16, or may be provided in the support substrate 16 only.
  • the support member 13 may be provided with at least one first cavity 10a.
  • a plurality of IDT electrodes 11 are provided on the first main surface 14a of the piezoelectric layer 14. As shown in FIG. Thereby, a plurality of elastic wave resonators are configured.
  • the elastic wave device 10 in this embodiment is a filter device. In addition, the elastic wave device 10 only needs to have at least one IDT electrode 11 .
  • An elastic wave device according to the present invention may include at least one elastic wave resonator.
  • the IDT electrode 11 overlaps the first cavity 10a in plan view. More specifically, in plan view, the IDT electrodes 11 of each acoustic wave resonator may overlap separate first cavities 10a, or may overlap the same first cavities 10a.
  • planar view means viewing from a direction corresponding to the upper side in FIG.
  • a plan view means viewing along the direction in which the later-described first support 18 and the lid portion 25 are stacked. In FIG. 1, for example, between the support substrate 16 and the piezoelectric layer 14, the piezoelectric layer 14 side is the upper side.
  • a first support 18 and a plurality of second supports 19 are provided on the first main surface 14 a of the piezoelectric layer 14 .
  • the first support 18 and the second support 19 are each a laminate of multiple metal layers.
  • the first support 18 has a frame-like shape.
  • the second support 19 has a columnar shape.
  • the first support 18 is provided so as to surround the multiple IDT electrodes 11 and the multiple second supports 19 . More specifically, the first support 18 has an opening 18c.
  • the plurality of IDT electrodes 11 and the plurality of second supports 19 are positioned within the opening 18c. At least one second support 19 may be provided.
  • a frame-shaped electrode layer 17A is provided between the piezoelectric layer 14 and the first support 18.
  • the electrode layer 17A surrounds the multiple IDT electrodes 11 and the multiple second supports 19 in plan view, similarly to the first support 18 .
  • the electrode layer 17A may not be provided.
  • Lids 25 are provided on the first support 18 and the plurality of second supports 19 so as to close the openings 18c.
  • a second cavity 10b surrounded by the piezoelectric substrate 12, the electrode layer 17A, the first support 18 and the lid 25 is provided.
  • a plurality of IDT electrodes 11 and a plurality of second supports 19 are arranged in the second cavity 10b.
  • the first support 18 has a first portion 18a and a second portion 18b. Of the first portion 18a and the second portion 18b, the first portion 18a is located on the lid portion 25 side, and the second portion 18b is located on the piezoelectric substrate 12 side. The first portion 18a and the second portion 18b are laminated.
  • the second support 19 also has a first portion 19a and a second portion 19b. Of the first portion 19a and the second portion 19b, the first portion 19a is located on the lid portion 25 side, and the second portion 19b is located on the piezoelectric substrate 12 side. The first portion 19a and the second portion 19b are laminated.
  • the first portion 18a and the first portion 19a of the first support 18 and the second support 19 are made of Au, for example.
  • Each of the second portions 18b and 19b is made of Al, for example.
  • the phrase "a certain member is made of a certain material" includes the case where a minute amount of impurity is included to such an extent that the electrical characteristics of the elastic wave device are not deteriorated.
  • the width of the second support 19 is defined as the dimension of the second support 19 along the direction perpendicular to the direction in which the piezoelectric substrate 12, the second support 19, and the lid portion 25 are laminated. do.
  • a feature of this embodiment is that the width of the first portion 19a and the width of the second portion 19b of the second support 19 are different. As a result, variations in the bonding area of the second support 19 can be suppressed, and the reliability of the acoustic wave device 10 can be more reliably improved. Details of this are described below.
  • the first portion 18 a and the first portion 19 a of the first support 18 and the second support 19 are formed on the lid portion 25 .
  • a second portion 18b and a second portion 19b of the first support 18 and the second support 19 respectively are formed on the piezoelectric substrate 12 . After that, the first portion 18a and the second portion 18b are joined, and the first portion 19a and the second portion 19b are joined.
  • the width of the first portion 19a and the width of the second portion 19b are different from each other. Thereby, it is easy to make the bonding area of the first portion 19a and the second portion 19b constant. More specifically, if the wider portion of the first portion 19a and the second portion 19b is positioned inside the outer peripheral edge of the other portion, even if misalignment occurs, the bonding can be performed. The area can be made constant. Therefore, the strength of the acoustic wave device 10 can be made constant, and reliability can be improved.
  • a dielectric film 24 is provided on the piezoelectric substrate 12 so as to cover the IDT electrodes 11 .
  • the IDT electrode 11 is less likely to be damaged.
  • Silicon oxide, silicon nitride, or silicon oxynitride, for example, can be used for the dielectric film 24 . If the dielectric film 24 is made of silicon oxide, the frequency temperature characteristics can be improved. On the other hand, if the dielectric film 24 is made of silicon nitride or the like, the dielectric film 24 can be used as a frequency adjustment film. Note that the dielectric film 24 may not be provided.
  • a through hole 20 is continuously provided in the piezoelectric layer 14 and the dielectric film 24 .
  • the through hole 20 is provided so as to reach the first hollow portion 10a.
  • the through-hole 20 is used for removing the sacrificial layer in the intermediate layer 15 when manufacturing the elastic wave device 10 .
  • the through hole 20 may not necessarily be provided.
  • the lid portion 25 has a lid portion main body 26, and an insulator layer 27A and an insulator layer 27B.
  • the lid body 26 has a first major surface 26a and a second major surface 26b.
  • the first main surface 26a and the second main surface 26b face each other.
  • the second main surface 26b is located on the piezoelectric substrate 12 side.
  • An insulator layer 27A is provided on the first main surface 26a.
  • An insulator layer 27B is provided on the second main surface 26b.
  • the main component of the lid body 26 is silicon.
  • the material of the lid main body 26 is not limited to the above, it is preferable that the main component is a semiconductor such as silicon.
  • the term "main component" refers to a component that accounts for more than 50% by weight.
  • the insulator layers 27A and 27B are, for example, silicon oxide layers.
  • a via electrode 21A is provided on the lid portion 25 as an under bump metal. More specifically, a through hole is provided in the lid portion 25 . The through hole is provided to reach the second support 19 .
  • a via electrode 21A is provided in the through hole. One end of the via electrode 21A is connected to the second support 19 .
  • An electrode pad 21B is provided so as to be connected to the other end of the via electrode 21A.
  • the via electrode 21A and the electrode pad 21B are integrally provided. However, the via electrodes 21A and the electrode pads 21B may be provided separately.
  • a bump 22 is joined to the electrode pad 21B.
  • an insulator layer 27A is provided so as to cover the vicinity of the outer periphery of the electrode pad 21B.
  • a bump 22 is joined to a portion of the electrode pad 21B that is not covered with the insulator layer 27A.
  • the insulator layer 27A may extend between the electrode pad 21B and the lid body 26 .
  • the insulator layer 27A may extend between the via electrode 21A and the lid portion main body 26 .
  • the insulator layer 27A and the insulator layer 27B may be integrally provided through a through hole of the lid main body 26 .
  • a plurality of wiring electrodes 23 are provided on the piezoelectric substrate 12 . Some of the wiring electrodes 23 connect the IDT electrodes 11 to each other. Some of the plurality of wiring electrodes 23 electrically connect the IDT electrodes 11 and the second support 19 . More specifically, a conductive film 17B is provided on the piezoelectric substrate 12 as shown in FIG. A second support 19 is provided on the conductive film 17B. Therefore, the wiring electrode 23 is electrically connected to the second support 19 via the conductive film 17B.
  • the plurality of IDT electrodes 11 are electrically connected to the outside through wiring electrodes 23 , conductive films 17 B, second supports 19 , via electrodes 21 A, electrode pads 21 B and bumps 22 .
  • the second support 19 contributes to electrical connection of the plurality of IDT electrodes 11 with the outside.
  • the bonding area between the first portion 19a of the second support 19 and the second support 19b can be made constant more reliably. Therefore, the reliability of the elastic wave device 10 can be more reliably improved.
  • the plurality of second supports 19 may include second supports 19 that are not connected to via electrodes 21A.
  • the width of the conductive film 17B is preferably wider than the width of the second portion 19b of the second support 19, as shown in FIG. Thereby, the second support 19 can be easily formed.
  • the width of the conductive film 17B is the dimension of the conductive film 17B along the direction perpendicular to the direction in which the piezoelectric substrate 12, the second support 19 and the lid portion 25 are laminated.
  • the width of the first portion 19a of the second support 19 is preferably wider than the width of the second portion 19b. In this case, since the area of the second portion 19b is small, the area of the conductive film 17B can be reduced. Therefore, the space for arranging the IDT electrodes 11 and the wiring electrodes 23 can be widened, and the degree of freedom in design can be increased.
  • the width of the first portion 18a is narrower than the width of the second portion 18b.
  • the width of the first portion 18a may be wider than the width of the second portion 18b.
  • the width of the first portion 18a and the width of the second portion 18b may be the same.
  • the width of the first support 18 means the direction in which the piezoelectric substrate 12 , the first support 18 and the lid portion 25 are laminated, and the width of the first support 18 extending on the piezoelectric substrate 12 . is the dimension of the first support 18 along a direction orthogonal to both of the directions in which it extends.
  • FIG. 3 is a diagram in which the conductive film, second support and via electrodes in the first embodiment are superimposed.
  • the width of the first portion 19a and the width of the second portion 19b of the second support 19 are preferably wider than the width of the via electrode 21A. That is, the width of the narrowest portion of the second support 19 is preferably wider than the width of the via electrode 21A.
  • the width of the via electrode 21A is the dimension of the via electrode 21A along the direction perpendicular to the direction in which the piezoelectric substrate 12, the second support 19 and the lid portion 25 are laminated.
  • the width of the first portion 19a and the width of the second portion 19b are different from each other in any of the directions. Therefore, as shown in FIG. 3, in plan view, the area of the first portion 19a and the area of the second portion 19b are different from each other. As a result, even if positional deviation occurs when the first part 19a and the second part 19b are joined to form the second support 19, the joining area of the first part 19a and the second part 19b can be increased. can be reliably made constant.
  • the area in plan view is larger in the order of the first portion 19a of the second support 19, the conductive film 17B, the second portion 19b of the second support 19, and the via electrode 21A. .
  • the conductive film 17B and the wiring electrode 23 are preferably made of the same material.
  • the conductive film 17B and the wiring electrode 23 are integrally provided. Thereby, productivity can be improved. Note that the conductive film 17B does not have to be connected to the wiring electrode 23 .
  • the height of the second hollow portion 10b is higher than the height of the first hollow portion 10a when the dimension along the direction in which the piezoelectric substrate 12, the first support 18, and the lid portion 25 are laminated is taken as the height. is preferred.
  • the piezoelectric layer 14 is less likely to stick to the lid portion 25 even when the piezoelectric layer 14 is deformed into a convex shape from the first cavity portion 10a side to the second cavity portion 10b side.
  • the first support 18 and the plurality of second supports 19 are provided on the piezoelectric layer 14 of the piezoelectric substrate 12 .
  • at least part of the first support 18 may be provided on a portion of the piezoelectric substrate 12 where the piezoelectric layer 14 is not provided.
  • at least part of the second support 19 may be provided on a portion of the piezoelectric substrate 12 where the piezoelectric layer 14 is not provided.
  • at least part of the first support 18 or the second support 19 may be provided on the intermediate layer 15 or on the support substrate 16 .
  • the materials of the first portion 19a and the second portion 19b of the second support 19 are different from each other.
  • the material of the first portion 19a and the second portion 19b may be the same. In this case, the adhesion between the first portion 19a and the second portion 19b can be enhanced.
  • the material of the first portion 18a and the second portion 18b of the first support 18 may be the same. In this case, the adhesion between the first portion 18a and the second portion 18b can be enhanced.
  • the first support 18 and the plurality of second supports 19 are laminates of metal layers.
  • the first support 18 and the second support 19 may be made of resin.
  • the joint area of the first portion 19a and the second portion 19b can be made constant more reliably.
  • the via electrodes 21A may be provided so as to penetrate the second support 19 .
  • the main component of the lid body 26 is a semiconductor.
  • the lid portion 25 may be made of resin.
  • the first support 18, the second support 19 and the lid portion 25 are made of the same resin material. is preferred. Thereby, productivity can be improved.
  • FIG. 4 is a schematic cross-sectional view showing a portion corresponding to the portion shown in FIG. 1 of the elastic wave device according to the second embodiment.
  • This embodiment differs from the first embodiment in the width of the second support 39 . Except for the above points, the elastic wave device 30 of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • the width of the first portion 39a of the second support 39 is narrower than the width of the second portion 39b. Also in this case, as in the first embodiment, the bonding area between the first portion 39a and the second portion 39b can be made constant more reliably. Therefore, the reliability of the elastic wave device 30 can be enhanced.
  • the width of the first portion 39a and the width of the second portion 39b of the second support 39 are narrower than the width of the via electrode 21A. That is, the width of the widest portion of the second support 39 is narrower than the width of the via electrode 21A.
  • the elastic wave device 30 can be easily miniaturized.
  • FIG. 5 is a diagram in which the conductive film, the second support and the via electrode are superimposed in the second embodiment.
  • the area in plan view is larger in the order of the via electrode 21A, the conductive film 17B, the second portion 39b of the second support 19, and the first portion 39a of the second support 19.
  • FIG. 6 is a schematic cross-sectional view showing a portion corresponding to the portion shown in FIG. 1 of the elastic wave device according to the third embodiment.
  • This embodiment differs from the first embodiment in the configuration of the first support 48 and the second support 49, and the relationship between the heights of the first cavity 10a and the second cavity 10b. Except for the above points, the elastic wave device of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • the second support 49 has a third portion 49c in addition to the first portion 49a and the second portion 49b.
  • the third portion 49 c is located between the second portion 49 b and the piezoelectric substrate 12 .
  • the third portion 49c is joined to the second portion 49b.
  • the width of the third portion 49c is wider than the width of the second portion 49b.
  • the area of the third portion 49c is larger than the area of the second portion 49b. In this case, the second support 49 can be installed more reliably.
  • the width of the first portion 49a and the width of the second portion 49b are different from each other, as in the first embodiment. Therefore, the bonding area between the first portion 49a and the second portion 49b can be made constant more reliably, and the reliability of the acoustic wave device can be enhanced.
  • the width of the first portion 49a of the second support 49 is wider than the width of the third portion 49c.
  • the width of the first portion 49a may be narrower than the width of the third portion 49c.
  • the width of the first portion 49a may be the same as the width of the third portion 49c.
  • the first support 48 also has a third portion 48c in addition to the first portion 48a and the second portion 48b.
  • a third portion 48 c is located between the second portion 48 b and the piezoelectric substrate 12 .
  • the third portion 48c is joined to the second portion 48b.
  • the width of the third portion 48c is wider than the width of the second portion 48b.
  • the width of the first portion 48a is wider than the width of the third portion 48c.
  • the width of the first portion 48a may be narrower than the width of the third portion 48c.
  • the width of the first portion 48a may be the same as the width of the third portion 48c.
  • the third portion 48c of the first support 48 is made of, for example, the same material as the electrode layer 17A.
  • the third portion 49c of the second support 49 is made of, for example, the same material as the conductive film 17B.
  • the first portion 48a and the second portion 48b may be made of the same material, and the first portion 48a and the second portion 48b may be made of a material different from that of the third portion 48c.
  • the second support 49 even if the first portion 49a and the second portion 49b are made of the same material, and the first portion 49a and the second portion 49b are made of a material different from that of the third portion 49c, good.
  • the width of the conductive film 17B is preferably wider than the width of the third portion 49c of the second support 19, as shown in FIG. Thereby, the second support 49 can be easily formed.
  • the width of the conductive film 17B is preferably wider than the width of the portion of the second support 49 closest to the conductive film 17B.
  • another conductive film may be provided between the conductive film 17B and the second support 49.
  • the height of the first hollow portion 10a is higher than the height of the second hollow portion 10b.
  • the piezoelectric layer 14 is less likely to stick to the support member 13 even when the piezoelectric layer 14 deforms convexly from the second cavity portion 10b side to the first cavity portion 10a side.
  • Each elastic wave resonator in the first to third embodiments is configured to be able to use bulk waves in thickness-shlip modes such as first-order thickness-shlip modes, for example.
  • Each elastic wave resonator may be configured to be able to use Lamb waves, or may be configured to be able to use bulk waves other than bulk waves in the thickness-shear mode.
  • An example in which the elastic wave resonator is a BAW (Bulk Acoustic Wave) element is shown below.
  • FIG. 7 is a schematic cross-sectional view showing a portion corresponding to the portion shown in FIG. 1 of an elastic wave device according to a fourth embodiment.
  • This embodiment differs from the third embodiment in that the functional electrodes have an upper electrode 51A and a lower electrode 51B.
  • This embodiment also differs from the third embodiment in that the second cavity 10b is higher than the first cavity 10a and the dielectric film 24 is not provided.
  • the elastic wave device 50 of this embodiment has the same configuration as the elastic wave device of the third embodiment.
  • the upper electrode 51A is provided on the first main surface 14a of the piezoelectric layer 14.
  • the lower electrode 51B is provided on the second main surface 14b of the piezoelectric layer 14. As shown in FIG.
  • the upper electrode 51A and the lower electrode 51B face each other with the piezoelectric layer 14 interposed therebetween.
  • the upper electrode 51A and the lower electrode 51B are connected to potentials different from each other.
  • a region where the upper electrode 51A and the lower electrode 51B face each other is an excitation region. By applying an AC electric field between the upper electrode 51A and the lower electrode 51B, elastic waves are excited in the excitation region.
  • the conductive film 17B, the wiring electrode 23 and the upper electrode 51A are integrally provided.
  • the conductive film 17B, the wiring electrode 23 and the upper electrode 51A may be provided separately.
  • the dielectric film 24 shown in FIG. 6 may be provided so as to cover the upper electrode 51A or the lower electrode 51B as the excitation electrode. In this case, the upper electrode 51A or the lower electrode 51B is less likely to break.
  • the second support 49 is configured in the same manner as in the third embodiment. Therefore, the bonding area between the first portion 49a and the second portion 49b can be made constant more reliably, and the reliability of the acoustic wave device 50 can be enhanced.
  • the IDT electrode 11 has the structure of an IDT electrode, which will be described later.
  • the "electrode” in the IDT electrode corresponds to the electrode finger in the present invention.
  • the supporting member in the following examples corresponds to the supporting substrate in the present invention.
  • FIG. 8(a) is a schematic perspective view showing the external appearance of an elastic wave device that utilizes a thickness shear mode bulk wave
  • FIG. 8(b) is a plan view showing an electrode structure on a piezoelectric layer
  • FIG. 9 is a cross-sectional view along line AA in FIG. 8(a).
  • the acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may consist of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is Z-cut, but may be rotational Y-cut or X-cut.
  • the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 40 nm or more and 1000 nm or less, more preferably 50 nm or more and 1000 nm or less, in order to effectively excite the thickness-shear mode.
  • the piezoelectric layer 2 has first and second major surfaces 2a and 2b facing each other. Electrodes 3 and 4 are provided on the first main surface 2a.
  • the electrode 3 is an example of the "first electrode” and the electrode 4 is an example of the "second electrode”.
  • 8(a) and 8(b) a plurality of electrodes 3 are connected to a first busbar 5.
  • a plurality of electrodes 4 are connected to a second bus bar 6 .
  • the plurality of electrodes 3 and the plurality of electrodes 4 are interleaved with each other.
  • Electrodes 3 and 4 have a rectangular shape and a length direction.
  • the electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to the length direction. Both the length direction of the electrodes 3 and 4 and the direction orthogonal to the length direction of the electrodes 3 and 4 are directions crossing the thickness direction of the piezoelectric layer 2 .
  • the electrode 3 and the adjacent electrode 4 face each other in the direction crossing the thickness direction of the piezoelectric layer 2 .
  • the length direction of the electrodes 3 and 4 may be interchanged with the direction orthogonal to the length direction of the electrodes 3 and 4 shown in FIGS. 8(a) and 8(b). That is, in FIGS. 8A and 8B, the electrodes 3 and 4 may extend in the direction in which the first busbar 5 and the second busbar 6 extend. In that case, the first busbar 5 and the second busbar 6 extend in the direction in which the electrodes 3 and 4 extend in FIGS. 8(a) and 8(b).
  • a plurality of pairs of structures in which an electrode 3 connected to one potential and an electrode 4 connected to the other potential are adjacent to each other are provided in a direction perpendicular to the length direction of the electrodes 3 and 4.
  • the electrodes 3 and 4 are adjacent to each other, it does not mean that the electrodes 3 and 4 are arranged so as to be in direct contact with each other, but that the electrodes 3 and 4 are arranged with a gap therebetween. point to When the electrodes 3 and 4 are adjacent to each other, no electrodes connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4, are arranged between the electrodes 3 and 4.
  • the logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, or the like.
  • the center-to-center distance or pitch between the electrodes 3 and 4 is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less.
  • the width of the electrodes 3 and 4, that is, the dimension in the facing direction of the electrodes 3 and 4 is preferably in the range of 50 nm or more and 1000 nm or less, more preferably in the range of 150 nm or more and 1000 nm or less.
  • the center-to-center distance between the electrodes 3 and 4 means the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the distance between the center of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. It is the distance connecting the center of the dimension (width dimension) of
  • the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2 .
  • “perpendicular” is not limited to being strictly perpendicular, but is substantially perpendicular (the angle formed by the direction perpendicular to the length direction of the electrodes 3 and 4 and the polarization direction is, for example, 90° ⁇ 10°). within the range).
  • a supporting member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 interposed therebetween.
  • the insulating layer 7 and the support member 8 have a frame-like shape and, as shown in FIG. 9, have through holes 7a and 8a.
  • a cavity 9 is thereby formed.
  • the cavity 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the support member 8 is laminated on the second main surface 2b with the insulating layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support member 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
  • the insulating layer 7 is made of silicon oxide. However, in addition to silicon oxide, suitable insulating materials such as silicon oxynitride and alumina can be used.
  • the support member 8 is made of Si. The plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111). It is desirable that the Si constituting the support member 8 has a high resistivity of 4 k ⁇ cm or more. However, the support member 8 can also be constructed using an appropriate insulating material or semiconductor material.
  • Materials for the support member 8 include, for example, aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and steer.
  • Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
  • the plurality of electrodes 3, 4 and the first and second bus bars 5, 6 are made of appropriate metals or alloys such as Al, AlCu alloys.
  • the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesion layer other than the Ti film may be used.
  • d/p is 0.0, where d is the thickness of the piezoelectric layer 2 and p is the center-to-center distance between any one of the pairs of electrodes 3 and 4 adjacent to each other. 5 or less. Therefore, the thickness-shear mode bulk wave is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the elastic wave device 1 Since the elastic wave device 1 has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in an attempt to reduce the size, the Q value is unlikely to decrease. This is because the propagation loss is small even if the number of electrode fingers in the reflectors on both sides is reduced. Moreover, the fact that the number of electrode fingers can be reduced is due to the fact that bulk waves in the thickness-shear mode are used. The difference between the Lamb wave used in the acoustic wave device and the thickness shear mode bulk wave will be described with reference to FIGS. 10(a) and 10(b).
  • FIG. 10(a) is a schematic front cross-sectional view for explaining a Lamb wave propagating through a piezoelectric film of an elastic wave device as described in Japanese Unexamined Patent Publication No. 2012-257019.
  • waves propagate through the piezoelectric film 201 as indicated by arrows.
  • the first main surface 201a and the second main surface 201b face each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. is.
  • the X direction is the direction in which the electrode fingers of the IDT electrodes are arranged.
  • the Lamb wave propagates in the X direction as shown.
  • the wave is generated on the first principal surface 2a and the second principal surface of the piezoelectric layer 2. 2b, ie, the Z direction, and resonate. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, propagation loss is unlikely to occur even if the number of electrode fingers of the reflector is reduced. Furthermore, even if the number of electrode pairs consisting of the electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
  • FIG. 11 schematically shows a bulk wave when a voltage is applied between the electrodes 3 and 4 so that the potential of the electrode 4 is higher than that of the electrode 3 .
  • the first region 451 is a region of the excitation region C between the first main surface 2a and a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 .
  • the second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
  • the acoustic wave device 1 at least one pair of electrodes consisting of the electrodes 3 and 4 is arranged.
  • the number of electrode pairs need not be plural. That is, it is sufficient that at least one pair of electrodes is provided.
  • the electrode 3 is an electrode connected to a hot potential
  • the electrode 4 is an electrode connected to a ground potential.
  • electrode 3 may also be connected to ground potential and electrode 4 to hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrodes are provided.
  • FIG. 12 is a diagram showing resonance characteristics of the elastic wave device shown in FIG.
  • the design parameters of the elastic wave device 1 with this resonance characteristic are as follows.
  • Insulating layer 7 Silicon oxide film with a thickness of 1 ⁇ m.
  • Support member 8 Si.
  • the length of the excitation region C is the dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
  • the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 are all the same in a plurality of pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
  • d/p is more preferably 0.5 or less, as described above. is less than or equal to 0.24. This will be described with reference to FIG.
  • FIG. 13 is a diagram showing the relationship between this d/p and the fractional bandwidth of the acoustic wave device as a resonator.
  • the specific bandwidth when d/p>0.5, even if d/p is adjusted, the specific bandwidth is less than 5%.
  • the specific bandwidth when d/p ⁇ 0.5, the specific bandwidth can be increased to 5% or more by changing d/p within that range. can be configured. Further, when d/p is 0.24 or less, the specific bandwidth can be increased to 7% or more.
  • d/p when adjusting d/p within this range, a resonator with a wider specific band can be obtained, and a resonator with a higher coupling coefficient can be realized. Therefore, by setting d/p to 0.5 or less, it is possible to construct a resonator having a high coupling coefficient using the thickness-shear mode bulk wave.
  • FIG. 14 is a plan view of an elastic wave device that utilizes thickness-shear mode bulk waves.
  • elastic wave device 80 a pair of electrodes having electrode 3 and electrode 4 is provided on first main surface 2 a of piezoelectric layer 2 .
  • K in FIG. 14 is the crossing width.
  • the number of pairs of electrodes may be one. Even in this case, if d/p is 0.5 or less, bulk waves in the thickness-shear mode can be effectively excited.
  • the adjacent excitation region C is an overlapping region when viewed in the direction in which any adjacent electrodes 3 and 4 are facing each other. It is desirable that the metallization ratio MR of the mating electrodes 3, 4 satisfy MR ⁇ 1.75(d/p)+0.075. In that case, spurious can be effectively reduced. This will be described with reference to FIGS. 15 and 16.
  • the metallization ratio MR will be explained with reference to FIG. 8(b).
  • the excitation region C is the portion surrounded by the dashed-dotted line.
  • the excitation region C is a region where the electrode 3 and the electrode 4 overlap each other when the electrodes 3 and 4 are viewed in a direction perpendicular to the length direction of the electrodes 3 and 4, i.e., in a facing direction. 3 and an overlapping area between the electrodes 3 and 4 in the area between the electrodes 3 and 4 .
  • the area of the electrodes 3 and 4 in the excitation region C with respect to the area of the excitation region C is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the excitation region C.
  • MR may be the ratio of the metallization portion included in the entire excitation region to the total area of the excitation region.
  • FIG. 16 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious when a large number of acoustic wave resonators are configured according to this embodiment. be.
  • the ratio band was adjusted by changing the film thickness of the piezoelectric layer and the dimensions of the electrodes.
  • FIG. 16 shows the results when a Z-cut LiNbO 3 piezoelectric layer is used, but the same tendency is obtained when piezoelectric layers with other cut angles are used.
  • the spurious is as large as 1.0.
  • the passband appear within. That is, as in the resonance characteristics shown in FIG. 15, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrodes 3 and 4, the spurious response can be reduced.
  • FIG. 17 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth.
  • various elastic wave devices having different d/2p and MR were constructed, and the fractional bandwidth was measured.
  • the hatched portion on the right side of the dashed line D in FIG. 17 is the area where the fractional bandwidth is 17% or less.
  • FIG. 18 is a diagram showing a map of the fractional bandwidth with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0.
  • FIG. The hatched portion in FIG. 18 is a region where a fractional bandwidth of at least 5% or more is obtained, and when the range of the region is approximated, the following formulas (1), (2) and (3) ).
  • Equation (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2 /900) 1/2 ) or (0° ⁇ 10°, 20° to 80°, [180 °-60° (1-( ⁇ -50) 2 /900) 1/2 ] ⁇ 180°) Equation (2) (0° ⁇ 10°, [180°-30°(1-( ⁇ -90) 2 /8100) 1/2 ] ⁇ 180°, arbitrary ⁇ ) Equation (3)
  • the fractional band can be sufficiently widened, which is preferable.
  • the piezoelectric layer 2 is a lithium tantalate layer.
  • FIG. 19 is a partially cutaway perspective view for explaining an elastic wave device that utilizes Lamb waves.
  • the elastic wave device 81 has a support substrate 82 .
  • the support substrate 82 is provided with a concave portion that is open on the upper surface.
  • a piezoelectric layer 83 is laminated on the support substrate 82 .
  • a hollow portion 9 is thereby formed.
  • An IDT electrode 84 is provided on the piezoelectric layer 83 above the cavity 9 .
  • Reflectors 85 and 86 are provided on both sides of the IDT electrode 84 in the elastic wave propagation direction. In FIG. 19, the outer periphery of the hollow portion 9 is indicated by a dashed line.
  • the IDT electrode 84 has first and second bus bars 84a, 84b, a plurality of first electrode fingers 84c and a plurality of second electrode fingers 84d.
  • the plurality of first electrode fingers 84c are connected to the first busbar 84a.
  • the plurality of second electrode fingers 84d are connected to the second bus bar 84b.
  • the plurality of first electrode fingers 84c and the plurality of second electrode fingers 84d are interposed.
  • a Lamb wave as a plate wave is excited by applying an AC electric field to the IDT electrodes 84 on the cavity 9. Since the reflectors 85 and 86 are provided on both sides, the resonance characteristics due to the Lamb wave can be obtained.
  • the elastic wave device of the present invention may use plate waves.
  • the IDT electrodes 84, the reflectors 85, and the reflectors 86 shown in FIG. 19 may be provided on the piezoelectric layer in the first to third embodiments.
  • d/p is preferably 0.5 or less, and 0 0.24 or less is more preferable. Thereby, even better resonance characteristics can be obtained. Furthermore, in the elastic wave devices of the first to third embodiments having elastic wave resonators that utilize thickness-shear mode bulk waves, as described above, MR ⁇ 1.75(d/p)+0.075 is preferably satisfied. In this case, spurious can be suppressed more reliably.
  • the piezoelectric layer in the elastic wave devices of the first to third embodiments having elastic wave resonators that utilize thickness-shear mode bulk waves is preferably a lithium niobate layer or a lithium tantalate layer.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of lithium niobate or lithium tantalate constituting the piezoelectric layer are within the range of the above formula (1), formula (2), or formula (3). is preferred. In this case, the fractional bandwidth can be widened sufficiently.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

支持体における接合面積のばらつきを抑制することができ、信頼性を高めることができる、弾性波装置を提供する。 本発明に係る弾性波装置10は、支持基板16を含む支持部材13と、支持部材13上に設けられている圧電層14とを含む圧電性基板12と、圧電層14上に設けられている機能電極と、圧電性基板12上に、機能電極を囲むように設けられている第1の支持体18と、圧電性基板12上に設けられており、第1の支持体18に囲まれている部分に配置されている、少なくとも1つの第2の支持体19と、第1の支持体18上及び第2の支持体19上に設けられている蓋部25とを備える。第2の支持体19は、蓋部25側に位置する第1部分19aと、圧電性基板12側に位置する第2部分19bとを有する。第1部分19a及び第2部分19bは積層されている。圧電性基板12、第2の支持体19及び蓋部25が積層されている方向と直交する方向に沿う、第2の支持体19の寸法を第2の支持体19の幅としたときに、第1部分19aの幅と第2部分19bの幅とが異なる。

Description

弾性波装置
 本発明は、弾性波装置に関する。
 従来、弾性波装置は、携帯電話器のフィルタなどに広く用いられている。例えば、下記の特許文献1では、圧電基板を蓋部材として用いた弾性波装置の例が開示されている。この弾性波装置においては、励振電極が設けられた圧電基板と、蓋部材としての圧電基板との間に、複数の柱部材が設けられている。複数の柱部材はそれぞれ、複数の配線電極が積層されてなる。
国際公開第2017/212742号
 しかしながら、特許文献1に記載のような弾性波装置においては、柱部材における配線電極同士の接合面積にばらつきが生じるおそれがある。そのため、弾性波装置の信頼性の確保が困難となるおそれがある。
 本発明の目的は、支持体における接合面積のばらつきを抑制することができ、信頼性を高めることができる、弾性波装置を提供することにある。
 本発明に係る弾性波装置は、支持基板を含む支持部材と、前記支持部材上に設けられている圧電層とを含む圧電性基板と、前記圧電層上に設けられている機能電極と、前記圧電性基板上に、前記機能電極を囲むように設けられている第1の支持体と、前記圧電性基板上に設けられており、前記第1の支持体に囲まれている部分に配置されている、少なくとも1つの第2の支持体と、前記第1の支持体上及び前記第2の支持体上に設けられている蓋部とを備え、前記第2の支持体が、前記蓋部側に位置する第1部分と、前記圧電性基板側に位置する第2部分とを有し、前記第1部分及び前記第2部分が積層されており、前記圧電性基板、前記第2の支持体及び前記蓋部が積層されている方向と直交する方向に沿う、前記第2の支持体の寸法を前記第2の支持体の幅としたときに、前記第1部分の幅と前記第2部分の幅とが異なる。
 本発明によれば、支持体における接合面積のばらつきを抑制することができ、信頼性を高めることができる、弾性波装置を提供することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の略図的正面断面図である。 図2は、本発明の第1の実施形態に係る弾性波装置の模式的平面図である。 図3は、本発明の第1の実施形態における導電膜、第2の支持体及びビア電極を重ね合わせた図である。 図4は、本発明の第2の実施形態に係る弾性波装置の、図1に示す部分に相当する部分を示す略図的断面図である。 図5は、本発明の第2の実施形態における導電膜、第2の支持体及びビア電極を重ね合わせた図である。 図6は、本発明の第3の実施形態に係る弾性波装置の、図1に示す部分に相当する部分を示す略図的断面図である。 図7は、本発明の第4の実施形態に係る弾性波装置の、図1に示す部分に相当する部分を示す略図的断面図である。 図8(a)は、厚み滑りモードのバルク波を利用する弾性波装置の外観を示す略図的斜視図であり、図8(b)は、圧電層上の電極構造を示す平面図である。 図9は、図8(a)中のA-A線に沿う部分の断面図である。 図10(a)は、弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図であり、図10(b)は、弾性波装置における、圧電膜を伝搬する厚み滑りモードのバルク波を説明するための模式的正面断面図である。 図11は、厚み滑りモードのバルク波の振幅方向を示す図である。 図12は、厚み滑りモードのバルク波を利用する弾性波装置の共振特性を示す図である。 図13は、隣り合う電極の中心間距離をp、圧電層の厚みをdとした場合のd/pと共振子としての比帯域との関係を示す図である。 図14は、厚み滑りモードのバルク波を利用する弾性波装置の平面図である。 図15は、スプリアスが現れている参考例の弾性波装置の共振特性を示す図である。 図16は、比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。 図17は、d/2pと、メタライゼーション比MRとの関係を示す図である。 図18は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。 図19は、ラム波を利用する弾性波装置を説明するための部分切り欠き斜視図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の略図的正面断面図である。図2は、第1の実施形態に係る弾性波装置の模式的平面図である。図1においては、後述するIDT電極を、矩形に2本の対角線を加えた略図により示す。図2においては、後述する誘電体膜を省略している。なお、図1は、図2中のI-I線に沿う部分を略図的に示す断面図である。
 図1に示すように、弾性波装置10は、圧電性基板12と、機能電極としてのIDT電極11とを有する。圧電性基板12は、支持部材13と、圧電層14とを有する。本実施形態では、支持部材13は支持基板16と、中間層15とを含む。支持基板16上に中間層15が設けられている。中間層15上に圧電層14が設けられている。もっとも、支持部材13は支持基板16のみにより構成されていてもよい。
 圧電層14は第1の主面14a及び第2の主面14bを有する。第1の主面14a及び第2の主面14bは互いに対向している。第1の主面14a及び第2の主面14bのうち、第2の主面14bが支持部材13側に位置している。
 支持基板16の材料としては、例えば、シリコンなどの半導体や、酸化アルミニウムなどのセラミックスなどを用いることができる。中間層15の材料としては、酸化ケイ素または五酸化タンタルなどの、適宜の誘電体を用いることができる。圧電層14の材料としては、例えば、ニオブ酸リチウム、タンタル酸リチウム、酸化亜鉛、窒化アルミニウム、水晶、またはPZT(チタン酸ジルコン酸鉛)などを用いることができる。なお、圧電層14は、LiTaO層などのタンタル酸リチウム層、またはLiNbO層などのニオブ酸リチウム層であることが好ましい。
 支持部材13には、第1空洞部10aが設けられている。より具体的には、中間層15に凹部が設けられている。中間層15上に、凹部を塞ぐように、圧電層14が設けられている。これにより、第1空洞部10aが構成されている。なお第1空洞部10aは、中間層15及び支持基板16に設けられていてもよく、あるいは、支持基板16のみに設けられていてもよい。支持部材13には、少なくとも1つの第1空洞部10aが設けられていればよい。
 図2に示すように、圧電層14の第1の主面14aには、複数のIDT電極11が設けられている。これにより、複数の弾性波共振子が構成されている。本実施形態における弾性波装置10はフィルタ装置である。なお、弾性波装置10は、少なくとも1つのIDT電極11を有していればよい。本発明に係る弾性波装置は、少なくとも1つの弾性波共振子を含んでいればよい。
 図1に戻り、平面視において、IDT電極11の少なくとも一部が第1空洞部10aと重なっている。より具体的には、平面視において、各弾性波共振子のIDT電極11が、別個の第1空洞部10aと重なっていてもよく、同じ第1空洞部10aと重なっていてもよい。本明細書において平面視とは、図1における上方に相当する方向から見ることをいう。さらに、平面視とは、後述する第1の支持体18及び蓋部25が積層されている方向に沿って見ることをいう。なお、図1において、例えば、支持基板16及び圧電層14のうち、圧電層14側が上方である。
 圧電層14の第1の主面14aには、第1の支持体18及び複数の第2の支持体19が設けられている。本実施形態では、第1の支持体18及び第2の支持体19はそれぞれ、複数の金属層の積層体である。第1の支持体18は枠状の形状を有する。他方、第2の支持体19は柱状の形状を有する。第1の支持体18は、複数のIDT電極11及び複数の第2の支持体19を囲むように設けられている。より具体的には、第1の支持体18は開口部18cを有する。複数のIDT電極11及び複数の第2の支持体19は、開口部18c内に位置している。なお、少なくとも1つの第2の支持体19が設けられていればよい。
 図1に示すように、圧電層14及び第1の支持体18の間には、枠状の電極層17Aが設けられている。電極層17Aは、第1の支持体18と同様に、平面視において、複数のIDT電極11及び複数の第2の支持体19を囲んでいる。もっとも、電極層17Aは設けられていなくともよい。第1の支持体18上及び複数の第2の支持体19上に、開口部18cを塞ぐように、蓋部25が設けられている。それによって、圧電性基板12、電極層17A、第1の支持体18及び蓋部25により囲まれた第2空洞部10bが設けられている。複数のIDT電極11及び複数の第2の支持体19は、第2空洞部10b内に配置されている。
 第1の支持体18は、第1部分18aと、第2部分18bとを有する。第1部分18a及び第2部分18bのうち、第1部分18aが蓋部25側に位置し、第2部分18bが圧電性基板12側に位置している。第1部分18a及び第2部分18bは積層されている。同様に、第2の支持体19も、第1部分19aと、第2部分19bとを有する。第1部分19a及び第2部分19bのうち、第1部分19aが蓋部25側に位置し、第2部分19bが圧電性基板12側に位置している。第1部分19a及び第2部分19bは積層されている。
 第1の支持体18及び第2の支持体19のそれぞれの第1部分18a及び第1部分19aは、例えばAuなどからなる。それぞれの第2部分18b及び第2部分19bは、例えばAlなどからなる。本明細書において、ある部材がある材料からなるとは、弾性波装置の電気的特性が劣化しない程度の微量な不純物が含まれる場合を含む。
 以下においては、圧電性基板12、第2の支持体19及び蓋部25が積層されている方向と直交する方向に沿う、第2の支持体19の寸法を第2の支持体19の幅とする。
 本実施形態の特徴は、第2の支持体19において、第1部分19aの幅と第2部分19bの幅とが異なることにある。それによって、第2の支持体19における接合面積のばらつきを抑制することができ、弾性波装置10の信頼性をより確実に高めることができる。この詳細を以下において説明する。
 弾性波装置10の製造に際し、例えば、第1の支持体18及び第2の支持体19のそれぞれの第1部分18a及び第1部分19aが蓋部25上に形成される。他方、第1の支持体18及び第2の支持体19のそれぞれの第2部分18b及び第2部分19bが圧電性基板12上に形成される。その後、第1部分18a及び第2部分18bが接合され、第1部分19a及び第2部分19bが接合される。
 第2の支持体19の第1部分19a及び第2部分19bを接合する際には、実際には、位置ずれが生じることもある。これに対して、本実施形態では、第1部分19aの幅及び第2部分19bの幅が互いに異なる。それによって、第1部分19a及び第2部分19bの接合面積を一定にし易い。より具体的には、第1部分19a及び第2部分19bのうち、幅が広い方の部分における外周縁の内側に、他方の部分が位置していれば、位置ずれが生じたとしても、接合面積を一定にすることができる。従って、弾性波装置10の強度を一定にすることができ、信頼性を高めることができる。
 以下において、本実施形態の構成のさらなる詳細を説明する。
 図1に示すように、圧電性基板12上には、IDT電極11を覆うように、誘電体膜24が設けられている。これにより、IDT電極11が破損し難い。誘電体膜24には、例えば、酸化ケイ素、窒化ケイ素または酸窒化ケイ素などを用いることができる。誘電体膜24が酸化ケイ素からなる場合には、周波数温度特性を改善することができる。他方、誘電体膜24が窒化ケイ素などからなる場合には、誘電体膜24を周波数調整膜として用いることができる。なお、誘電体膜24は設けられていなくともよい。
 圧電層14及び誘電体膜24には、連続して貫通孔20が設けられている。貫通孔20は、第1空洞部10aに至るように設けられている。貫通孔20は、弾性波装置10の製造に際し、中間層15内の犠牲層を除去するために用いられる。もっとも、貫通孔20は必ずしも設けられていなくともよい。
 蓋部25は、蓋部本体26と、絶縁体層27A及び絶縁体層27Bとを有する。蓋部本体26は第1の主面26a及び第2の主面26bを有する。第1の主面26a及び第2の主面26bは互いに対向している。第1の主面26a及び第2の主面26bのうち第2の主面26bが圧電性基板12側に位置している。第1の主面26aに絶縁体層27Aが設けられている。第2の主面26bに絶縁体層27Bが設けられている。本実施形態においては、蓋部本体26はシリコンを主成分とする。蓋部本体26の材料は上記に限定されないが、シリコンなどの半導体を主成分とすることが好ましい。本明細書において主成分とは、占める割合が50重量%を超える成分をいう。他方、絶縁体層27A及び絶縁体層27Bは、例えば、酸化ケイ素層である。
 蓋部25には、アンダーバンプメタルとしての、ビア電極21Aが設けられている。より具体的には、蓋部25に貫通孔が設けられている。該貫通孔は第2の支持体19に至るように設けられている。該貫通孔内に、ビア電極21Aが設けられている。ビア電極21Aの一端は第2の支持体19に接続されている。ビア電極21Aの他端に接続されるように、電極パッド21Bが設けられている。なお、本実施形態では、ビア電極21A及び電極パッド21Bは一体として設けられている。もっとも、ビア電極21A及び電極パッド21Bは別体として設けられていてもよい。電極パッド21Bにはバンプ22が接合されている。
 より詳細には、電極パッド21Bの外周縁付近を覆うように、絶縁体層27Aが設けられている。電極パッド21Bにおける、絶縁体層27Aに覆われていない部分に、バンプ22が接合されている。なお、絶縁体層27Aは、電極パッド21B及び蓋部本体26の間に至っていてもよい。さらに、絶縁体層27Aは、ビア電極21A及び蓋部本体26の間に至っていてもよい。絶縁体層27A及び絶縁体層27Bは、蓋部本体26の貫通孔を介して、一体として設けられていても構わない。
 図2に示すように、圧電性基板12上には、複数の配線電極23が設けられている。複数の配線電極23のうち一部は、IDT電極11同士を接続している。複数の配線電極23のうち他の一部は、IDT電極11及び第2の支持体19を電気的に接続している。より具体的には、図1に示すように圧電性基板12上に、導電膜17Bが設けられている。導電膜17B上に第2の支持体19が設けられている。よって、配線電極23は、導電膜17Bを介して、第2の支持体19に電気的に接続されている。そして、複数のIDT電極11は、配線電極23、導電膜17B、第2の支持体19、ビア電極21A、電極パッド21B及びバンプ22を介して、外部に電気的に接続される。
 上記のように、第2の支持体19は、複数のIDT電極11の外部との電気的な接続に寄与する。そして、本実施形態では、第2の支持体19の第1部分19a及び第2の支持体19bの接合面積をより確実に一定とすることができる。よって、弾性波装置10の信頼性をより確実に高めることができる。もっとも、複数の第2の支持体19は、ビア電極21Aに接続されていない第2の支持体19を含んでいてもよい。
 以下において、本実施形態における好ましい構成を示す。
 図1に示すように、導電膜17Bの幅が、第2の支持体19の第2部分19bの幅よりも広いことが好ましい。それによって、第2の支持体19を容易に形成することができる。なお、導電膜17Bの幅とは、圧電性基板12、第2の支持体19及び蓋部25が積層されている方向と直交する方向に沿う、導電膜17Bの寸法である。
 第2の支持体19の第1部分19aの幅が、第2部分19bの幅よりも広いことが好ましい。この場合、第2部分19bの面積が小さいため、導電膜17Bの面積を小さくすることができる。よって、IDT電極11や配線電極23を配置する空間を広くすることができ、設計の自由度を高めることができる。
 一方で、第1の支持体18においては、第1部分18aの幅は、第2部分18bの幅よりも狭い。もっとも、第1部分18aの幅は、第2部分18bの幅よりも広くてもよい。あるいは、第1部分18aの幅及び第2部分18bの幅は同じであってもよい。なお、第1の支持体18の幅とは、圧電性基板12、第1の支持体18及び蓋部25が積層されている方向、及び第1の支持体18が圧電性基板12上において延びている方向の双方と直交する方向に沿う、第1の支持体18の寸法である。
 図3は、第1の実施形態における導電膜、第2の支持体及びビア電極を重ね合わせた図である。
 本実施形態のように、第2の支持体19の第1部分19aの幅及び第2部分19bの幅は、ビア電極21Aの幅よりも広いことが好ましい。すなわち、第2の支持体19における最も幅が狭い部分の幅が、ビア電極21Aの幅よりも広いことが好ましい。それによって、外部から弾性波装置10に力が加えられた際においても、第2の支持体19によって蓋部25を効果的に支持することができる。従って、弾性波装置10の強度を高めることができ、信頼性を効果的に高めることができる。なお、ビア電極21Aの幅とは、圧電性基板12、第2の支持体19及び蓋部25が積層されている方向と直交する方向に沿う、ビア電極21Aの寸法である。
 圧電性基板12、第2の支持体19及び蓋部25が積層されている方向と直交する方向は無数に存在する。本実施形態では、該方向のうちいずれの方向においても、第1部分19aの幅及び第2部分19bの幅が互いに異なる。よって、図3に示すように、平面視において、第1部分19aの面積及び第2部分19bの面積は互いに異なる。これにより、第1部分19a及び第2部分19bを接合し、第2の支持体19を形成する際において、位置ずれが生じたとしても、第1部分19a及び第2部分19bの接合面積をより確実に一定とすることができる。
 なお、弾性波装置10においては、平面視における面積は、第2の支持体19の第1部分19a、導電膜17B、第2の支持体19の第2部分19b及びビア電極21Aの順序で大きい。
 図1に戻り、導電膜17B及び配線電極23は、同じ材料からなることが好ましい。導電膜17Bに配線電極23が接続されている場合、導電膜17B及び配線電極23が一体として設けられていることが好ましい。それによって、生産性を高めることができる。なお、導電膜17Bは、配線電極23に接続されていなくともよい。
 圧電性基板12、第1の支持体18及び蓋部25が積層されている方向に沿う寸法を高さとしたときに、第2空洞部10bの高さが第1空洞部10aの高さよりも高いことが好ましい。この場合には、圧電層14が第1空洞部10a側から第2空洞部10b側に凸状に変形した際においても、蓋部25に圧電層14が張り付き難い。
 ところで、図1に示すように、第1の実施形態においては、第1の支持体18及び複数の第2の支持体19は、圧電性基板12における圧電層14上に設けられている。もっとも、第1の支持体18の少なくとも一部が、圧電性基板12における、圧電層14が設けられていない部分に設けられていてもよい。同様に、第2の支持体19の少なくとも一部が、圧電性基板12における、圧電層14が設けられていない部分に設けられていてもよい。例えば、第1の支持体18または第2の支持体19の少なくとも一部が、中間層15上または支持基板16上に設けられていてもよい。
 上記のように、第2の支持体19の第1部分19a及び第2部分19bの材料は互いに異なる。もっとも、第1部分19a及び第2部分19bの材料は同じであってもよい。この場合には、第1部分19a及び第2部分19bの密着性を高めることができる。同様に、第1の支持体18の第1部分18a及び第2部分18bの材料は同じであってもよい。この場合には、第1部分18a及び第2部分18bの密着性を高めることができる。
 第1の実施形態においては、第1の支持体18及び複数の第2の支持体19は、金属層の積層体である。なお、第1の支持体18及び第2の支持体19は樹脂からなっていてもよい。この場合においても、第2の支持体19の第1部分19a及び第2部分19bが接合される際において、第1部分19a及び第2部分19bの接合面積をより確実に一定にすることができる。第2の支持体19が樹脂からなる場合には、第2の支持体19を貫通するように、ビア電極21Aが設けられていればよい。
 蓋部本体26は半導体を主成分とする。なお、蓋部25は樹脂からなっていてもよい。さらに、第1の支持体18及び第2の支持体19が樹脂からなる場合には、第1の支持体18、第2の支持体19及び蓋部25は、同じ樹脂材料により設けられていることが好ましい。それによって、生産性を高めることができる。
 図4は、第2の実施形態に係る弾性波装置の、図1に示す部分に相当する部分を示す略図的断面図である。
 本実施形態は、第2の支持体39の幅において第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置30は第1の実施形態の弾性波装置10と同様の構成を有する。
 第2の支持体39の第1部分39aの幅は、第2部分39bの幅よりも狭い。この場合においても、第1の実施形態と同様に、第1部分39a及び第2部分39bの接合面積をより確実に一定にすることができる。従って、弾性波装置30の信頼性を高めることができる。
 本実施形態においては、第2の支持体39の第1部分39aの幅及び第2部分39bの幅は、ビア電極21Aの幅よりも狭い。すなわち、第2の支持体39における最も幅が広い部分の幅が、ビア電極21Aの幅よりも狭い。この場合には、弾性波装置30を容易に小型にすることができる。
 図5は、第2の実施形態における導電膜、第2の支持体及びビア電極を重ね合わせた図である。
 弾性波装置30においては、平面視における面積は、ビア電極21A、導電膜17B、第2の支持体19の第2部分39b及び第2の支持体19の第1部分39aの順序で大きい。
 図6は、第3の実施形態に係る弾性波装置の、図1に示す部分に相当する部分を示す略図的断面図である。
 本実施形態は、第1の支持体48及び第2の支持体49の構成、及び第1空洞部10a及び第2空洞部10bの高さの関係において第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置10と同様の構成を有する。
 第2の支持体49は、第1部分49a及び第2部分49bに加えて、第3部分49cを有する。第3部分49cは、第2部分49b及び圧電性基板12の間に位置している。第3部分49cは第2部分49bに接合されている。第3部分49cの幅は、第2部分49bの幅よりも広い。さらに、平面視において、第3部分49cの面積は第2部分49bの面積よりも大きい。この場合には、第2の支持体49をより確実に設置することができる。
 なお、第2の支持体49においては、第1の実施形態と同様に、第1部分49aの幅及び第2部分49bの幅が互いに異なる。従って、第1部分49a及び第2部分49bの接合面積をより確実に一定にすることができ、弾性波装置の信頼性を高めることができる。
 本実施形態では、第2の支持体49の第1部分49aの幅は、第3部分49cの幅よりも広い。もっとも、第1部分49aの幅は、第3部分49cの幅よりも狭くてもよい。あるいは、第1部分49aの幅は、第3部分49cの幅と同じであってもよい。
 第2の支持体49と同様に、第1の支持体48も、第1部分48a及び第2部分48bに加えて、第3部分48cを有する。第3部分48cは、第2部分48b及び圧電性基板12の間に位置している。第3部分48cは第2部分48bに接合されている。第3部分48cの幅は、第2部分48bの幅よりも広い。これにより、第1の支持体48を容易に形成することができる。
 第1の支持体48においては、第1部分48aの幅は、第3部分48cの幅よりも広い。もっとも、第1部分48aの幅は、第3部分48cの幅よりも狭くてもよい。あるいは、第1部分48aの幅は、第3部分48cの幅と同じであってもよい。
 第1の支持体48の第3部分48cは、例えば、電極層17Aと同じ材料からなる。第2の支持体49の第3部分49cは、例えば、導電膜17Bと同じ材料からなる。
 第1の支持体48においては、第1部分48a及び第2部分48bが同じ材料からなり、かつ第1部分48a及び第2部分48bが第3部分48cと異なる材料からなっていてもよい。同様に、第2の支持体49においては、第1部分49a及び第2部分49bが同じ材料からなり、かつ第1部分49a及び第2部分49bが第3部分49cと異なる材料からなっていてもよい。
 図6に示すように、導電膜17Bの幅が、第2の支持体19の第3部分49cの幅よりも広いことが好ましい。それによって、第2の支持体49を容易に形成することができる。このように、導電膜17Bの幅は、第2の支持体49における最も導電膜17B側に位置する部分の幅よりも広いことが好ましい。
 なお、導電膜17B及び第2の支持体49の間には、さらに他の導電膜が設けられていても構わない。
 本実施形態では、第1空洞部10aの高さが第2空洞部10bの高さよりも高い。この場合には、圧電層14が第2空洞部10b側から第1空洞部10a側に凸状に変形した際においても、支持部材13に圧電層14が張り付き難い。
 第1~第3の実施形態における各弾性波共振子は、例えば、厚み滑り1次モードなどの厚み滑りモードのバルク波を利用可能に構成されている。なお、各弾性波共振子は、板波を利用可能に構成されていてもよく、あるいは、厚み滑りモードのバルク波以外のバルク波を利用可能に構成されていてもよい。以下において、弾性波共振子がBAW(Bulk Acoustic Wave)素子である場合の例を示す。
 図7は、第4の実施形態に係る弾性波装置の、図1に示す部分に相当する部分を示す略図的断面図である。
 本実施形態は、機能電極が上部電極51A及び下部電極51Bを有する点において、第3の実施形態と異なる。本実施形態は、第2空洞部10bの高さが第1空洞部10aの高さよりも高い点、及び上記誘電体膜24が設けられていない点においても、第3の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置50は第3の実施形態の弾性波装置と同様の構成を有する。
 上部電極51Aは圧電層14の第1の主面14aに設けられている。下部電極51Bは圧電層14の第2の主面14bに設けられている。上部電極51A及び下部電極51Bは、圧電層14を挟み互いに対向している。上部電極51A及び下部電極51Bは互いに異なる電位に接続される。上部電極51A及び下部電極51Bが互いに対向している領域が、励振領域である。上部電極51A及び下部電極51B間に交流電界を印加することにより、励振領域において弾性波が励振される。
 本実施形態では、導電膜17B、配線電極23及び上部電極51Aは一体として設けられている。もっとも、導電膜17B、配線電極23及び上部電極51Aは、それぞれ別体として設けられていても構わない。
 励振電極としての上部電極51Aまたは下部電極51Bを覆うように、図6に示した誘電体膜24が設けられていてもよい。この場合には、上部電極51Aまたは下部電極51Bが破損し難い。
 本実施形態においても、第3の実施形態と同様に第2の支持体49が構成されている。従って、第1部分49a及び第2部分49bの接合面積をより確実に一定にすることができ、弾性波装置50の信頼性を高めることができる。
 以下において、厚み滑りモード及び板波の詳細を説明する。なお、上記IDT電極11は、後述するIDT電極の構成を有する。なお、IDT電極における「電極」は、本発明における電極指に相当する。以下の例における支持部材は、本発明における支持基板に相当する。
 図8(a)は、厚み滑りモードのバルク波を利用する弾性波装置の外観を示す略図的斜視図であり、図8(b)は、圧電層上の電極構造を示す平面図であり、図9は、図8(a)中のA-A線に沿う部分の断面図である。
 弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、Zカットであるが、回転YカットやXカットであってもよい。圧電層2の厚みは、特に限定されないが、厚み滑りモードを効果的に励振するには、40nm以上、1000nm以下であることが好ましく、50nm以上、1000nm以下であることがより好ましい。圧電層2は、対向し合う第1,第2の主面2a,2bを有する。第1の主面2a上に、電極3及び電極4が設けられている。ここで電極3が「第1電極」の一例であり、電極4が「第2電極」の一例である。図8(a)及び図8(b)では、複数の電極3が、第1のバスバー5に接続されている。複数の電極4は、第2のバスバー6に接続されている。複数の電極3及び複数の電極4は、互いに間挿し合っている。電極3及び電極4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極3と、隣りの電極4とが対向している。電極3,4の長さ方向、及び、電極3,4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交叉する方向である。このため、電極3と、隣りの電極4とは、圧電層2の厚み方向に交叉する方向において対向しているともいえる。また、電極3,4の長さ方向が図8(a)及び図8(b)に示す電極3,4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図8(a)及び図8(b)において、第1のバスバー5及び第2のバスバー6が延びている方向に電極3,4を延ばしてもよい。その場合、第1のバスバー5及び第2のバスバー6は、図8(a)及び図8(b)において電極3,4が延びている方向に延びることとなる。そして、一方電位に接続される電極3と、他方電位に接続される電極4とが隣り合う1対の構造が、上記電極3,4の長さ方向と直交する方向に、複数対設けられている。ここで電極3と電極4とが隣り合うとは、電極3と電極4とが直接接触するように配置されている場合ではなく、電極3と電極4とが間隔を介して配置されている場合を指す。また、電極3と電極4とが隣り合う場合、電極3と電極4との間には、他の電極3,4を含む、ホット電極やグラウンド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対や2.5対などであってもよい。電極3,4間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極3,4の幅、すなわち電極3,4の対向方向の寸法は、50nm以上、1000nm以下の範囲であることが好ましく、150nm以上、1000nm以下の範囲であることがより好ましい。なお、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の寸法(幅寸法)の中心と、電極4の長さ方向と直交する方向における電極4の寸法(幅寸法)の中心とを結んだ距離となる。
 また、弾性波装置1では、Zカットの圧電層を用いているため、電極3,4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極3,4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°の範囲内)でもよい。
 圧電層2の第2の主面2b側には、絶縁層7を介して支持部材8が積層されている。絶縁層7及び支持部材8は、枠状の形状を有し、図9に示すように、貫通孔7a,8aを有する。それによって、空洞部9が形成されている。空洞部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持部材8は、少なくとも1対の電極3,4が設けられている部分と重ならない位置において、第2の主面2bに絶縁層7を介して積層されている。なお、絶縁層7は設けられずともよい。従って、支持部材8は、圧電層2の第2の主面2bに直接または間接に積層され得る。
 絶縁層7は、酸化ケイ素からなる。もっとも、酸化ケイ素の他、酸窒化ケイ素、アルミナなどの適宜の絶縁性材料を用いることができる。支持部材8は、Siからなる。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。支持部材8を構成するSiは、抵抗率4kΩcm以上の高抵抗であることが望ましい。もっとも、支持部材8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。
 支持部材8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。
 上記複数の電極3,4及び第1,第2のバスバー5,6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。本実施形態では、電極3,4及び第1,第2のバスバー5,6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。
 駆動に際しては、複数の電極3と、複数の電極4との間に交流電圧を印加する。より具体的には、第1のバスバー5と第2のバスバー6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑りモードのバルク波を利用した、共振特性を得ることが可能とされている。また、弾性波装置1では、圧電層2の厚みをd、複数対の電極3,4のうちいずれかの隣り合う電極3,4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑りモードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。
 弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極3,4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側の反射器における電極指の本数を少なくしても、伝搬ロスが少ないためである。また、上記電極指の本数を少なくできるのは、厚み滑りモードのバルク波を利用していることによる。弾性波装置で利用したラム波と、上記厚み滑りモードのバルク波の相違を、図10(a)及び図10(b)を参照して説明する。
 図10(a)は、日本公開特許公報 特開2012-257019号公報に記載のような弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図である。ここでは、圧電膜201中を矢印で示すように波が伝搬する。ここで、圧電膜201では、第1の主面201aと、第2の主面201bとが対向しており、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指が並んでいる方向である。図10(a)に示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電膜201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指の対数を少なくした場合、Q値が低下する。
 これに対して、図10(b)に示すように、弾性波装置1では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器の電極指の本数を少なくしても、伝搬損失は生じ難い。さらに、小型化を進めようとして、電極3,4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。
 なお、厚み滑りモードのバルク波の振幅方向は、図11に示すように、圧電層2の励振領域Cに含まれる第1領域451と、励振領域Cに含まれる第2領域452とで逆になる。図11では、電極3と電極4との間に、電極4が電極3よりも高電位となる電圧が印加された場合のバルク波を模式的に示してある。第1領域451は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。
 上記のように、弾性波装置1では、電極3と電極4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極3,4からなる電極対の対数は複数対ある必要はない。すなわち、少なくとも1対の電極が設けられてさえおればよい。
 例えば、上記電極3がホット電位に接続される電極であり、電極4がグラウンド電位に接続される電極である。もっとも、電極3がグラウンド電位に、電極4がホット電位に接続されてもよい。本実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグラウンド電位に接続される電極であり、浮き電極は設けられていない。
 図12は、図9に示す弾性波装置の共振特性を示す図である。なお、この共振特性を得た弾性波装置1の設計パラメータは以下の通りである。
 圧電層2:オイラー角(0°,0°,90°)のLiNbO、厚み=400nm。
 電極3と電極4の長さ方向と直交する方向に見たときに、電極3と電極4とが重なっている領域、すなわち励振領域Cの長さ=40μm、電極3,4からなる電極の対数=21対、電極間中心距離=3μm、電極3,4の幅=500nm、d/p=0.133。
 絶縁層7:1μmの厚みの酸化ケイ素膜。
 支持部材8:Si。
 なお、励振領域Cの長さとは、励振領域Cの電極3,4の長さ方向に沿う寸法である。
 本実施形態では、電極3,4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極3と電極4とを等ピッチで配置した。
 図12から明らかなように、反射器を有しないにも関わらず、比帯域が12.5%である良好な共振特性が得られている。
 ところで、上記圧電層2の厚みをd、電極3と電極4との電極の中心間距離をpとした場合、前述したように、本実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図13を参照して説明する。
 図12に示した共振特性を得た弾性波装置と同様に、但しd/pを変化させ、複数の弾性波装置を得た。図13は、このd/pと、弾性波装置の共振子としての比帯域との関係を示す図である。
 図13から明らかなように、d/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、d/pを0.5以下とすることにより、上記厚み滑りモードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。
 図14は、厚み滑りモードのバルク波を利用する弾性波装置の平面図である。弾性波装置80では、圧電層2の第1の主面2a上において、電極3と電極4とを有する1対の電極が設けられている。なお、図14中のKが交叉幅となる。前述したように、本発明の弾性波装置では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑りモードのバルク波を効果的に励振することができる。
 弾性波装置1では、好ましくは、複数の電極3,4において、いずれかの隣り合う電極3,4が対向している方向に見たときに重なっている領域である励振領域Cに対する、上記隣り合う電極3,4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。その場合には、スプリアスを効果的に小さくすることができる。これを、図15及び図16を参照して説明する。図15は、上記弾性波装置1の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と反共振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°,0°,90°)とした。また、上記メタライゼーション比MR=0.35とした。
 メタライゼーション比MRを、図8(b)を参照して説明する。図8(b)の電極構造において、1対の電極3,4に着目した場合、この1対の電極3,4のみが設けられるとする。この場合、一点鎖線で囲まれた部分が励振領域Cとなる。この励振領域Cとは、電極3と電極4とを、電極3,4の長さ方向と直交する方向すなわち対向方向に見たときに電極3における電極4と重なり合っている領域、電極4における電極3と重なり合っている領域、及び、電極3と電極4との間の領域における電極3と電極4とが重なり合っている領域である。そして、この励振領域Cの面積に対する、励振領域C内の電極3,4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の励振領域Cの面積に対する比である。
 なお、複数対の電極が設けられている場合、励振領域の面積の合計に対する全励振領域に含まれているメタライゼーション部分の割合をMRとすればよい。
 図16は本実施形態に従って、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。なお、比帯域については、圧電層の膜厚や電極の寸法を種々変更し、調整した。また、図16は、ZカットのLiNbOからなる圧電層を用いた場合の結果であるが、他のカット角の圧電層を用いた場合においても、同様の傾向となる。
 図16中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図16から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図15に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極3,4の寸法などを調整することにより、スプリアスを小さくすることができる。
 図17は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す図である。上記弾性波装置において、d/2pと、MRが異なる様々な弾性波装置を構成し、比帯域を測定した。図17の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図17中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。
 図18は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。図18のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域であり、当該領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
 従って、上記式(1)、式(2)または式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。圧電層2がタンタル酸リチウム層である場合も同様である。
 図19は、ラム波を利用する弾性波装置を説明するための部分切り欠き斜視図である。
 弾性波装置81は、支持基板82を有する。支持基板82には、上面に開いた凹部が設けられている。支持基板82上に圧電層83が積層されている。それによって、空洞部9が構成されている。この空洞部9の上方において圧電層83上に、IDT電極84が設けられている。IDT電極84の弾性波伝搬方向両側に、反射器85,86が設けられている。図19において、空洞部9の外周縁を破線で示す。ここでは、IDT電極84は、第1,第2のバスバー84a,84bと、複数本の第1の電極指84c及び複数本の第2の電極指84dとを有する。複数本の第1の電極指84cは、第1のバスバー84aに接続されている。複数本の第2の電極指84dは、第2のバスバー84bに接続されている。複数本の第1の電極指84cと、複数本の第2の電極指84dとは間挿し合っている。
 弾性波装置81では、上記空洞部9上のIDT電極84に、交流電界を印加することにより、板波としてのラム波が励振される。そして、反射器85,86が両側に設けられているため、上記ラム波による共振特性を得ることができる。
 このように、本発明の弾性波装置は、板波を利用するものであってもよい。この場合、上記第1~第3の実施形態における圧電層上に、図19に示すIDT電極84、反射器85及び反射器86が設けられていればよい。
 厚み滑りモードのバルク波を利用する弾性波共振子を有する第1~第3の実施形態の弾性波装置においては、上記のように、d/pが0.5以下であることが好ましく、0.24以下であることがより好ましい。それによって、より一層良好な共振特性を得ることができる。さらに、厚み滑りモードのバルク波を利用する弾性波共振子を有する第1~第3の実施形態の弾性波装置においては、上記のように、MR≦1.75(d/p)+0.075を満たすことが好ましい。この場合には、スプリアスをより確実に抑制することができる。
 厚み滑りモードのバルク波を利用する弾性波共振子を有する第1~第3の実施形態の弾性波装置における圧電層は、ニオブ酸リチウム層またはタンタル酸リチウム層であることが好ましい。そして、該圧電層を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、上記の式(1)、式(2)または式(3)の範囲にあることが好ましい。この場合、比帯域を十分に広くすることができる。
1…弾性波装置
2…圧電層
2a,2b…第1,第2の主面
3,4…電極
5,6…第1,第2のバスバー
7…絶縁層
7a…貫通孔
8…支持部材
8a…貫通孔
9…空洞部
10…弾性波装置
10a,10b…第1,第2空洞部
11…IDT電極
12…圧電性基板
13…支持部材
14…圧電層
14a,14b…第1,第2の主面
15…中間層
16…支持基板
17A…電極層
17B…導電膜
18…第1の支持体
18a,18b…第1,第2部分
18c…開口部
19…第2の支持体
19a,19b…第1,第2部分
20…貫通孔
21A…ビア電極
21B…電極パッド
22…バンプ
23…配線電極
24…誘電体膜
25…蓋部
26…蓋部本体
26a,26b…第1,第2の主面
27A,27B…絶縁体層
30…弾性波装置
39…第2の支持体
39a,39b…第1,第2部分
48…第1の支持体
48a~48c…第1~第3部分
49…第2の支持体
49a~49c…第1~第3部分
50…弾性波装置
51A…上部電極
51B…下部電極
80,81…弾性波装置
82…支持基板
83…圧電層
84…IDT電極
84a,84b…第1,第2のバスバー
84c,84d…第1,第2の電極指
85,86…反射器
201…圧電膜
201a,201b…第1,第2の主面
451,452…第1,第2領域
C…励振領域
VP1…仮想平面

Claims (21)

  1.  支持基板を含む支持部材と、前記支持部材上に設けられている圧電層と、を含む圧電性基板と、
     前記圧電層上に設けられている機能電極と、
     前記圧電性基板上に、前記機能電極を囲むように設けられている第1の支持体と、
     前記圧電性基板上に設けられており、前記第1の支持体に囲まれている部分に配置されている、少なくとも1つの第2の支持体と、
     前記第1の支持体上及び前記第2の支持体上に設けられている蓋部と、
    を備え、
     前記第2の支持体が、前記蓋部側に位置する第1部分と、前記圧電性基板側に位置する第2部分と、を有し、前記第1部分及び前記第2部分が積層されており、
     前記圧電性基板、前記第2の支持体及び前記蓋部が積層されている方向と直交する方向に沿う、前記第2の支持体の寸法を前記第2の支持体の幅としたときに、前記第1部分の幅と前記第2部分の幅とが異なる、弾性波装置。
  2.  前記第1部分の幅が前記第2部分の幅よりも広い、請求項1に記載の弾性波装置。
  3.  前記第2の支持体が、前記第2部分及び前記圧電性基板の間に位置し、前記第2部分に接合されている第3部分を有し、
     前記第3部分の幅が前記第2部分の幅よりも広い、請求項1または2に記載の弾性波装置。
  4.  前記圧電性基板上に設けられている導電膜をさらに備え、
     前記導電膜上に前記第2の支持体が設けられており、
     前記圧電性基板、前記第2の支持体及び前記蓋部が積層されている方向と直交する方向に沿う、前記導電膜の寸法を前記導電膜の幅としたときに、前記導電膜の幅が、前記第2の支持体における最も前記導電膜側に位置する部分の幅よりも広い、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記第2の支持体が金属からなり、
     前記蓋部を貫通しており、前記第2の支持体に接続されているビア電極をさらに備え、
     前記圧電性基板、前記第2の支持体及び前記蓋部が積層されている方向と直交する方向に沿う、前記ビア電極の寸法を前記ビア電極の幅としたときに、前記第2の支持体における最も幅が狭い部分の幅が前記ビア電極の幅よりも広い、請求項1~4のいずれか1項に記載の弾性波装置。
  6.  前記第2の支持体が金属からなり、
     前記蓋部を貫通しており、前記第2の支持体に接続されているビア電極をさらに備え、
     前記圧電性基板、前記第2の支持体及び前記蓋部が積層されている方向と直交する方向に沿う、前記ビア電極の寸法を前記ビア電極の幅としたときに、前記第2の支持体における最も幅が広い部分の幅が前記ビア電極の幅よりも狭い、請求項1~4のいずれか1項に記載の弾性波装置。
  7.  前記支持部材に、少なくとも1つの第1空洞部が設けられており、前記第1空洞部が、前記第1の支持体及び前記蓋部が積層されている方向に沿う平面視において、前記機能電極の少なくとも一部と重なっており、
     前記圧電性基板、前記第1の支持体及び前記蓋部により囲まれた第2空洞部が設けられており、
     前記圧電性基板、前記第1の支持体及び前記蓋部が積層されている方向に沿う寸法を高さとしたときに、前記第1空洞部の高さが前記第2空洞部の高さよりも高い、請求項1~6のいずれか1項に記載の弾性波装置。
  8.  前記支持部材に、少なくとも1つの第1空洞部が設けられており、前記第1空洞部が、前記第1の支持体及び前記蓋部が積層されている方向に沿う平面視において、前記機能電極の少なくとも一部と重なっており、
     前記圧電性基板、前記第1の支持体及び前記蓋部により囲まれた第2空洞部が設けられており、
     前記圧電性基板、前記第1の支持体及び前記蓋部が積層されている方向に沿う寸法を高さとしたときに、前記第2空洞部の高さが前記第1空洞部の高さよりも高い、請求項1~6のいずれか1項に記載の弾性波装置。
  9.  前記蓋部が半導体を主成分とする蓋部本体を含む、請求項1~8のいずれか1項に記載の弾性波装置。
  10.  前記支持部材が、前記支持基板及び前記圧電層の間に設けられている中間層を含む、請求項1~9のいずれか1項に記載の弾性波装置。
  11.  前記支持部材が、前記支持基板及び前記圧電層の間に設けられている中間層を含み、前記第1空洞部の少なくとも一部が前記中間層に設けられている、請求項7または8に記載の弾性波装置。
  12.  前記圧電層が、タンタル酸リチウム層またはニオブ酸リチウム層である、請求項1~11のいずれか1項に記載の弾性波装置。
  13.  前記機能電極が、互いに対向する第1,第2のバスバーと、前記第1のバスバーに接続される1以上の第1の電極指と、前記第2のバスバーに接続される1以上の第2の電極指と、を有する、請求項1~12のいずれか1項に記載の弾性波装置。
  14.  前記機能電極が、前記第1,第2の電極指をそれぞれ複数有するIDT電極である、請求項13に記載の弾性波装置。
  15.  板波を利用可能に構成されている、請求項14に記載の弾性波装置。
  16.  厚み滑りモードのバルク波を利用可能に構成されている、請求項13または14に記載の弾性波装置。
  17.  前記圧電層の厚みをd、隣り合う前記第1の電極指及び前記第2の電極指の中心間距離をpとした場合、d/pが0.5以下である、請求項13または14に記載の弾性波装置。
  18.  d/pが0.24以下である、請求項17に記載の弾性波装置。
  19.  隣り合う前記第1の電極指及び前記第2の電極指が対向する方向から見たときに、隣り合う前記第1の電極指及び前記第2の電極指が重なり合っている領域が励振領域であり、
     前記励振領域に対する、前記1以上の第1の電極指と前記1以上の第2の電極指とのメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす、請求項16~18のいずれか1項に記載の弾性波装置。
  20.  前記圧電層が、タンタル酸リチウム層またはニオブ酸リチウム層であり、
     前記圧電層を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、請求項16~19のいずれか1項に記載の弾性波装置。
     (0°±10°,0°~20°,任意のψ)  …式(1)
     (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
  21.  前記圧電層が、対向し合う第1の主面及び第2の主面を有し、
     前記機能電極が、前記圧電層の前記第1の主面に設けられている上部電極と、前記第2の主面に設けられている下部電極と、を有し、前記上部電極及び前記下部電極が、前記圧電層を挟み互いに対向している、請求項1~12のいずれか1項に記載の弾性波装置。
PCT/JP2022/008535 2021-03-31 2022-03-01 弾性波装置 WO2022209525A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163168318P 2021-03-31 2021-03-31
US63/168,318 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209525A1 true WO2022209525A1 (ja) 2022-10-06

Family

ID=83458415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008535 WO2022209525A1 (ja) 2021-03-31 2022-03-01 弾性波装置

Country Status (1)

Country Link
WO (1) WO2022209525A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073871A1 (ja) * 2010-11-30 2012-06-07 株式会社村田製作所 弾性波装置及びその製造方法
JP2013528996A (ja) * 2010-04-23 2013-07-11 テクノロジアン テュトキムスケスクス ヴェーテーテー 広帯域音響結合薄膜bawフィルタ
JP2015156626A (ja) * 2014-01-16 2015-08-27 京セラ株式会社 弾性波素子、分波器および通信装置
WO2016147687A1 (ja) * 2015-03-13 2016-09-22 株式会社村田製作所 弾性波装置及びその製造方法
WO2018181932A1 (ja) * 2017-03-31 2018-10-04 京セラ株式会社 弾性波装置、分波器および通信装置
WO2019054364A1 (ja) * 2017-09-14 2019-03-21 京セラ株式会社 弾性波デバイスおよび通信装置
US20200321939A1 (en) * 2019-04-05 2020-10-08 Resonant Inc. Transversely-excited film bulk acoustic resonator package and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528996A (ja) * 2010-04-23 2013-07-11 テクノロジアン テュトキムスケスクス ヴェーテーテー 広帯域音響結合薄膜bawフィルタ
WO2012073871A1 (ja) * 2010-11-30 2012-06-07 株式会社村田製作所 弾性波装置及びその製造方法
JP2015156626A (ja) * 2014-01-16 2015-08-27 京セラ株式会社 弾性波素子、分波器および通信装置
WO2016147687A1 (ja) * 2015-03-13 2016-09-22 株式会社村田製作所 弾性波装置及びその製造方法
WO2018181932A1 (ja) * 2017-03-31 2018-10-04 京セラ株式会社 弾性波装置、分波器および通信装置
WO2019054364A1 (ja) * 2017-09-14 2019-03-21 京セラ株式会社 弾性波デバイスおよび通信装置
US20200321939A1 (en) * 2019-04-05 2020-10-08 Resonant Inc. Transversely-excited film bulk acoustic resonator package and method

Similar Documents

Publication Publication Date Title
WO2022085581A1 (ja) 弾性波装置
WO2022044869A1 (ja) 弾性波装置
WO2023223906A1 (ja) 弾性波素子
WO2022255304A1 (ja) 圧電バルク波装置及びその製造方法
WO2022138328A1 (ja) 弾性波装置
WO2022209525A1 (ja) 弾性波装置
WO2022120025A1 (en) Acoustic wave device
WO2022209860A1 (ja) 弾性波装置
WO2022210941A1 (ja) 弾性波装置
WO2022210923A1 (ja) 弾性波装置
WO2022211029A1 (ja) 弾性波装置
WO2023145878A1 (ja) 弾性波装置
WO2022209862A1 (ja) 弾性波装置
WO2022210689A1 (ja) 弾性波装置
WO2023054703A1 (ja) 弾性波装置
WO2022211055A1 (ja) 弾性波装置
WO2023085368A1 (ja) 弾性波装置
US20220321097A1 (en) Acoustic wave device
WO2022211097A1 (ja) 弾性波装置及び弾性波装置の製造方法
WO2022210942A1 (ja) 弾性波装置
WO2023058715A1 (ja) 弾性波装置
WO2022224973A1 (ja) 弾性波装置及び弾性波装置の製造方法
WO2022210683A1 (ja) 弾性波装置及びその製造方法
WO2022211087A1 (ja) 弾性波装置
WO2023140362A1 (ja) 弾性波装置および弾性波装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP