WO2022211087A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2022211087A1
WO2022211087A1 PCT/JP2022/016845 JP2022016845W WO2022211087A1 WO 2022211087 A1 WO2022211087 A1 WO 2022211087A1 JP 2022016845 W JP2022016845 W JP 2022016845W WO 2022211087 A1 WO2022211087 A1 WO 2022211087A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode fingers
wave device
elastic wave
hole
bus bar
Prior art date
Application number
PCT/JP2022/016845
Other languages
English (en)
French (fr)
Inventor
哲也 木村
勝己 鈴木
和則 井上
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022211087A1 publication Critical patent/WO2022211087A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present disclosure relates to an acoustic wave device having a piezoelectric layer.
  • Patent Document 1 discloses an elastic wave device that uses plate waves.
  • An acoustic wave device described in Patent Document 1 includes a support, a piezoelectric substrate, and an IDT electrode.
  • the support is provided with a cavity.
  • a piezoelectric substrate is provided on the support so as to overlap the cavity.
  • the IDT electrode is provided on the piezoelectric substrate so as to overlap the cavity.
  • plate waves are excited by IDT electrodes.
  • the edge of the cavity does not include a straight portion extending parallel to the propagation direction of the Lamb waves excited by the IDT electrodes.
  • An object of the present disclosure is to provide an elastic wave device capable of suppressing deterioration of characteristics.
  • An elastic wave device includes: a support member including a support substrate having a thickness direction; a piezoelectric layer provided on the support member in the thickness direction; an IDT electrode provided on the piezoelectric layer in the thickness direction; with The support member is provided with a hollow portion at a position overlapping at least a part of the IDT electrode when viewed in plan in the thickness direction, The piezoelectric layer is provided with a through hole reaching the cavity,
  • the IDT electrode includes a first bus bar, a second bus bar facing the first bus bar, a plurality of first electrode fingers provided on the first bus bar and extending toward the second bus bar, and the second bus bar.
  • the plurality of first electrode fingers and the plurality of second electrode fingers are arranged adjacent to each other to face each other;
  • the plurality of first electrode fingers and the plurality of second electrode fingers are arranged to overlap each other when viewed from the facing direction in which the plurality of adjacent first electrode fingers and the plurality of second electrode fingers face each other.
  • the through-hole is between a first imaginary line passing through the tips of the plurality of first electrode fingers and a second imaginary line passing through the tips of the plurality of second electrode fingers in plan view in the thickness direction. are provided in positions other than
  • an elastic wave device capable of suppressing deterioration of characteristics.
  • FIG. 1 is a schematic perspective view showing the appearance of elastic wave devices according to first and second aspects;
  • FIG. Plan view showing the electrode structure on the piezoelectric layer Sectional view of the part along the AA line in FIG. 1A Schematic front sectional view for explaining a Lamb wave propagating through a piezoelectric film of a conventional elastic wave device.
  • Schematic front cross-sectional view for explaining waves of the elastic wave device of the present disclosure Schematic diagram showing a bulk wave when a voltage is applied between the first electrode and the second electrode so that the potential of the second electrode is higher than that of the first electrode.
  • FIG. 4 is a diagram showing resonance characteristics of the elastic wave device according to the first embodiment of the present disclosure;
  • FIG. 4 is a diagram showing the relationship between d/2p and the fractional bandwidth as a resonator of an elastic wave device;
  • FIG. 2 is a reference diagram showing an example of resonance characteristics of an elastic wave device;
  • FIG. 10 is a diagram showing the relationship between the fractional bandwidth when a large number of elastic wave resonators are configured and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious;
  • a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth A diagram showing a map of the fractional bandwidth with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO3 when d/p is infinitely close to 0.
  • FIG. 1 is a partially cutaway perspective view for explaining an elastic wave device according to a first embodiment of the present disclosure
  • FIG. Schematic plan view of an elastic wave device according to a second embodiment of the present disclosure
  • Elastic wave devices include a piezoelectric layer made of lithium niobate or lithium tantalate, and a first electrode and a second electrode facing each other in a direction intersecting the thickness direction of the piezoelectric layer. and an electrode.
  • a thickness shear mode bulk wave is used.
  • the first electrode and the second electrode are adjacent electrodes, the thickness of the piezoelectric layer is d, and the distance between the centers of the first electrode and the second electrode is p.
  • d/p is 0.5 or less.
  • Lamb waves are used as plate waves. Then, resonance characteristics due to the Lamb wave can be obtained.
  • An acoustic wave device includes a piezoelectric layer made of lithium niobate or lithium tantalate, and an upper electrode and a lower electrode facing each other in the thickness direction of the piezoelectric layer with the piezoelectric layer interposed therebetween.
  • FIG. 1A is a schematic perspective view showing the appearance of an acoustic wave device according to a first embodiment with respect to first and second aspects
  • FIG. 1B is a plan view showing an electrode structure on a piezoelectric layer
  • 2 is a cross-sectional view of a portion taken along line AA in FIG. 1A.
  • the acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may consist of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is Z-cut in this embodiment, but may be rotational Y-cut or X-cut.
  • the Y-propagation and X-propagation ⁇ 30° propagation orientations are preferred.
  • the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness-shear mode.
  • the piezoelectric layer 2 has first and second main surfaces 2a and 2b facing each other. Electrodes 3 and 4 are provided on the first main surface 2a.
  • the electrode 3 is an example of the "first electrode” and the electrode 4 is an example of the "second electrode”.
  • the multiple electrodes 3 are multiple first electrode fingers connected to a first busbar 5 .
  • the multiple electrodes 4 are multiple second electrode fingers connected to the second bus bar 6 .
  • the plurality of electrodes 3 and the plurality of electrodes 4 are interleaved with each other.
  • the electrodes 3 and 4 have a rectangular shape and a length direction.
  • the electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to the length direction.
  • These electrodes 3 and 4, the first bus bar 5 and the second bus bar 6 constitute an IDT (Interdigital Transducer) electrode.
  • IDT Interdigital Transducer
  • Both the length direction of the electrodes 3 and 4 and the direction orthogonal to the length direction of the electrodes 3 and 4 are directions crossing the thickness direction of the piezoelectric layer 2 . Therefore, it can be said that the electrode 3 and the adjacent electrode 4 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2 .
  • the length direction of the electrodes 3 and 4 may be interchanged with the direction orthogonal to the length direction of the electrodes 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrodes 3 and 4 may extend in the direction in which the first busbar 5 and the second busbar 6 extend. In that case, the first busbar 5 and the second busbar 6 extend in the direction in which the electrodes 3 and 4 extend in FIGS. 1A and 1B.
  • a plurality of pairs of structures in which an electrode 3 connected to one potential and an electrode 4 connected to the other potential are adjacent to each other are provided in a direction perpendicular to the length direction of the electrodes 3 and 4.
  • the electrodes 3 and 4 are adjacent to each other, it does not mean that the electrodes 3 and 4 are arranged so as to be in direct contact with each other, but that the electrodes 3 and 4 are arranged with a gap therebetween.
  • the electrode 3 and the electrode 4 are adjacent to each other, no electrode connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4, is arranged between the electrode 3 and the electrode 4.
  • the logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, or the like.
  • the center-to-center distance or pitch between the electrodes 3 and 4 is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less. Further, the center-to-center distance between the electrodes 3 and 4 means the center of the width dimension of the electrode 3 in the direction perpendicular to the length direction of the electrode 3 and the width dimension of the electrode 4 in the direction perpendicular to the length direction of the electrode 4.
  • the center-to-center distance between the electrodes 3 and 4 is 1. .
  • the width of the electrodes 3 and 4, that is, the dimension in the facing direction of the electrodes 3 and 4 is preferably in the range of 150 nm or more and 1000 nm or less.
  • center-to-center distance between the electrodes 3 and 4 means the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the distance between the center of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. It is the distance connecting the center of the dimension (width dimension) of
  • the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2 .
  • “perpendicular” is not limited to being strictly perpendicular, but substantially perpendicular (the angle formed by the direction perpendicular to the length direction of the electrodes 3 and 4 and the polarization direction is, for example, 90° ⁇ 10°). It's okay.
  • a supporting member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 interposed therebetween.
  • the insulating layer 7 and the support member 8 have a frame shape and, as shown in FIG. 2, have openings 7a and 8a.
  • a cavity 9 is thereby formed.
  • the cavity 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the support member 8 is laminated on the second main surface 2b with the insulating layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support member 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
  • the insulating layer 7 is made of silicon oxide. However, in addition to silicon oxide, suitable insulating materials such as silicon oxynitride and alumina can be used.
  • the support member 8 is made of Si. The plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111). Preferably, high-resistance Si having a resistivity of 4 k ⁇ or more is desirable. However, the support member 8 can also be constructed using an appropriate insulating material or semiconductor material.
  • Materials for the support member 8 include, for example, aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and steer.
  • Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
  • the plurality of electrodes 3, 4 and the first and second bus bars 5, 6 are made of appropriate metals or alloys such as Al, AlCu alloys.
  • the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesion layer other than the Ti film may be used.
  • an AC voltage is applied between the multiple electrodes 3 and the multiple electrodes 4 . More specifically, an AC voltage is applied between the first busbar 5 and the second busbar 6 . As a result, it is possible to obtain resonance characteristics using bulk waves in the thickness-shear mode excited in the piezoelectric layer 2 .
  • d/p is 0.0, where d is the thickness of the piezoelectric layer 2 and p is the center-to-center distance between any one of the pairs of electrodes 3 and 4 adjacent to each other. 5 or less. Therefore, the thickness-shear mode bulk wave is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the center-to-center distance p of the electrodes 3 and 4 is the average distance between the center-to-center distances of each adjacent electrode 3 and 4 .
  • the elastic wave device 1 of the present embodiment has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in order to reduce the size, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides, and the propagation loss is small. Moreover, the fact that the reflector is not required is due to the fact that the thickness shear mode bulk wave is used.
  • FIG. 3A is a schematic front cross-sectional view for explaining Lamb waves propagating through a piezoelectric film of a conventional elastic wave device.
  • a conventional elastic wave device is described, for example, in Japanese Unexamined Patent Publication No. 2012-257019.
  • waves propagate through the piezoelectric film 201 as indicated by arrows.
  • the first main surface 201a and the second main surface 201b face each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. is.
  • the X direction is the direction in which the electrode fingers of the IDT electrodes are arranged. As shown in FIG.
  • the wave propagates in the X direction as shown. Since it is a plate wave, although the piezoelectric film 201 as a whole vibrates, since the wave propagates in the X direction, reflectors are arranged on both sides to obtain resonance characteristics. Therefore, a wave propagation loss occurs, and the Q value decreases when miniaturization is attempted, that is, when the logarithm of the electrode fingers is decreased.
  • the wave is generated between the first main surface 2a and the second main surface 2a of the piezoelectric layer 2. It propagates almost in the direction connecting the surface 2b, that is, in the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, no reflector is required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of electrode pairs consisting of the electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
  • FIG. 4 schematically shows bulk waves when a voltage is applied between the electrodes 3 and 4 so that the potential of the electrode 4 is higher than that of the electrode 3 .
  • the first region 451 is a region of the excitation region C between the first main surface 2a and a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 .
  • the second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
  • At least one pair of electrodes consisting of the electrodes 3 and 4 is arranged. It is not always necessary to have a plurality of pairs of electrode pairs. That is, it is sufficient that at least one pair of electrodes is provided.
  • the electrode 3 is an electrode connected to a hot potential
  • the electrode 4 is an electrode connected to a ground potential.
  • electrode 3 may also be connected to ground potential and electrode 4 to hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrodes are provided.
  • FIG. 5 is a diagram showing resonance characteristics of the elastic wave device according to the first embodiment of the present disclosure.
  • the design parameters of the elastic wave device 1 with this resonance characteristic are as follows.
  • the number of pairs of electrodes 3 and 4 21 pairs
  • center distance between electrodes 3 ⁇ m
  • width of electrodes 3 and 4 500 nm
  • d/p 0.133.
  • Insulating layer 7 Silicon oxide film with a thickness of 1 ⁇ m.
  • Support member 8 Si.
  • the length of the excitation region C is the dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
  • the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 are all the same in a plurality of pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
  • FIG. 6 is a diagram showing the relationship between this d/2p and the fractional bandwidth of the acoustic wave device as a resonator.
  • a resonator with a wider specific band can be obtained, and a resonator with a higher coupling coefficient can be realized. Therefore, like the elastic wave device of the second aspect of the present disclosure, by setting d/p to 0.5 or less, a resonator having a high coupling coefficient using the thickness shear mode bulk wave is configured. you know you can.
  • At least one pair of electrodes may be one pair, and p is the center-to-center distance between adjacent electrodes 3 and 4 in the case of one pair of electrodes. In the case of 1.5 pairs or more of electrodes, the average distance between the centers of adjacent electrodes 3 and 4 should be p.
  • the thickness d of the piezoelectric layer if the piezoelectric layer 2 has variations in thickness, a value obtained by averaging the thickness may be adopted.
  • FIG. 7 is a plan view of another elastic wave device according to the first embodiment of the present disclosure.
  • elastic wave device 31 a pair of electrodes having electrode 3 and electrode 4 is provided on first main surface 2 a of piezoelectric layer 2 .
  • K in FIG. 7 is the intersection width.
  • the number of pairs of electrodes may be one. Even in this case, if d/p is 0.5 or less, bulk waves in the thickness-shear mode can be effectively excited.
  • the adjacent electrodes 3 and 4 with respect to the excitation region, which is an overlapping region when viewed in the direction in which any of the adjacent electrodes 3 and 4 face each other. It is desirable that the metallization ratio MR of the electrodes 3 and 4 satisfy MR ⁇ 1.75(d/p)+0.075. That is, when viewed in the direction in which the plurality of adjacent first electrode fingers and the plurality of second electrode fingers face each other, the region where the plurality of first electrode fingers and the plurality of second electrode fingers overlap is excited.
  • MR is the metallization ratio of the plurality of first electrode fingers and the plurality of second electrode fingers to the excitation region. MR ⁇ 1.75(d/p)+0.075. preferably fulfilled. In that case, spurious can be effectively reduced.
  • FIG. 8 is a reference diagram showing an example of resonance characteristics of the acoustic wave device 1.
  • a spurious signal indicated by an arrow B appears between the resonance frequency and the anti-resonance frequency.
  • d/p 0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°).
  • the metallization ratio MR was set to 0.35.
  • the metallization ratio MR will be explained with reference to FIG. 1B.
  • the excitation region means a region where the electrode 3 and the electrode 4 overlap each other when the electrodes 3 and 4 are viewed in a direction orthogonal to the length direction of the electrodes 3 and 4, that is, in a facing direction. and a region where the electrodes 3 and 4 in the region between the electrodes 3 and 4 overlap.
  • the area of the electrodes 3 and 4 in the excitation region C with respect to the area of this excitation region is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the drive region.
  • MR may be the ratio of the metallization portion included in the entire excitation region to the total area of the excitation region.
  • FIG. 9 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious when a large number of acoustic wave resonators are configured according to this embodiment. be.
  • the ratio band was adjusted by changing the film thickness of the piezoelectric layer and the dimensions of the electrodes.
  • FIG. 9 shows the results when a Z-cut LiNbO 3 piezoelectric layer is used, but the same tendency is obtained when piezoelectric layers with other cut angles are used.
  • the spurious is as large as 1.0.
  • the fractional band exceeds 0.17, that is, exceeds 17%, a large spurious with a spurious level of 1 or more changes the parameters constituting the fractional band, even if the passband appear within. That is, as in the resonance characteristics shown in FIG. 8, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrodes 3 and 4, the spurious response can be reduced.
  • FIG. 10 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth.
  • various elastic wave devices having different d/2p and MR were constructed, and the fractional bandwidth was measured.
  • the hatched portion on the right side of the dashed line D in FIG. 10 is the area where the fractional bandwidth is 17% or less.
  • FIG. 11 is a diagram showing a map of the fractional bandwidth with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0.
  • the hatched portion in FIG. 11 is a region where a fractional bandwidth of at least 5% or more is obtained, and when the range of the region is approximated, the following formulas (1), (2) and (3) ).
  • the fractional band can be sufficiently widened, which is preferable.
  • FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to the first embodiment of the present disclosure.
  • the elastic wave device 81 has a support substrate 82 .
  • the support substrate 82 is provided with a concave portion that is open on the upper surface.
  • a piezoelectric layer 83 is laminated on the support substrate 82 .
  • a hollow portion 9 is thereby formed.
  • An IDT electrode 84 is provided on the piezoelectric layer 83 above the cavity 9 .
  • Reflectors 85 and 86 are provided on both sides of the IDT electrode 84 in the elastic wave propagation direction.
  • the outer periphery of the hollow portion 9 is indicated by broken lines.
  • the IDT electrode 84 has first and second bus bars 84a and 84b, an electrode 84c as a plurality of first electrode fingers, and an electrode 84d as a plurality of second electrode fingers.
  • the multiple electrodes 84c are connected to the first bus bar 84a.
  • the multiple electrodes 84d are connected to the second bus bar 84b.
  • the multiple electrodes 84c and the multiple electrodes 84d are interposed.
  • a Lamb wave as a plate wave is excited by applying an AC electric field to the IDT electrodes 84 on the cavity 9. Since the reflectors 85 and 86 are provided on both sides, the resonance characteristics due to the Lamb wave can be obtained.
  • the elastic wave device of the present disclosure may utilize plate waves.
  • FIG. 13 is a schematic plan view of an elastic wave device according to the second embodiment of the present disclosure.
  • FIG. 14 is a schematic enlarged view of the vicinity of the electrodes.
  • FIG. 15 is a schematic cross-sectional view of the elastic wave device of FIG. 14 taken along line AA.
  • the elastic wave device 100 includes a supporting member 101, a piezoelectric layer 110 and a resonator 120.
  • FIG. A hollow portion 130 is provided in the support member 101 , and a wiring electrode 140 is connected to the resonator 120 .
  • the support member 101 has a support substrate 102 and an intermediate layer 103 .
  • the support member 101 is composed of a laminate of a support substrate 102 made of Si and an intermediate layer 103 laminated on the support substrate 102 and made of SiOx. Note that the support member 101 only needs to have the support substrate 102 and does not have to have the intermediate layer 103 .
  • Intermediate layer 103 may be referred to herein as bonding layer 103 .
  • the support substrate 102 is a substrate having a thickness in the first direction D11.
  • the “first direction” is the thickness direction of the support substrate 102 and means the lamination direction in which the support member 101 and the piezoelectric layer 110 are laminated.
  • a hollow portion 130 is provided in the support member 101 .
  • the "cavity” may also be referred to as a "space”.
  • the hollow portion 130 is provided between the support member 101 and the piezoelectric layer 110 . That is, the cavity 130 is a space defined by the support member 101 and the piezoelectric layer 110 . In this embodiment, the cavity 130 is provided in the intermediate layer 103 . Specifically, the intermediate layer 103 is provided with a recess opening on the surface opposite to the surface in contact with the support substrate 102 . A hollow portion 130 is formed by covering the recess with the piezoelectric layer 110 .
  • hollow portion 130 may be provided in a part of the support member 101 and may be provided in the intermediate layer 103 instead of the support substrate 102 .
  • cavity 130 may be provided in support substrate 102 .
  • the piezoelectric layer 110 is provided on the support member 101 .
  • the piezoelectric layer 110 is laminated on the support member 101 in the first direction D11.
  • the piezoelectric layer 110 is provided on the intermediate layer 103 .
  • the piezoelectric layer 110 is provided on the surface of the intermediate layer 103 opposite to the surface in contact with the support substrate 102 .
  • the portion of the piezoelectric layer 110 located in the region overlapping the cavity portion 130 when viewed in plan in the first direction D11 is referred to as the membrane portion 111.
  • “planarly viewed in the first direction D11” means viewing from the lamination direction of the support member 101 and the piezoelectric layer 110 .
  • the hollow portion 130 may be provided in the support member 101 at a position overlapping at least a portion of the resonator 120 in plan view in the first direction D11.
  • the piezoelectric layer 110 is made of LiNbOx or LiTaOx, for example.
  • the piezoelectric layer 110 consists of lithium niobate or lithium tantalate.
  • the thickness of the piezoelectric layer 110 is thinner than the thickness of the intermediate layer 103 .
  • the resonator 120 has functional electrodes provided on the piezoelectric layer 110 .
  • the functional electrode may also be referred to as an electrode portion.
  • the functional electrodes are IDT electrodes.
  • the IDT electrodes include a first bus bar 121 and a second bus bar 122 facing each other, a plurality of first electrode fingers 123 connected to the first bus bar 121, and a plurality of second electrode fingers 124 connected to the second bus bar 122.
  • the plurality of first electrode fingers 123 and the plurality of second electrode fingers 124 are interposed with each other, and adjacent first electrode fingers 123 and second electrode fingers 124 form a pair of electrode sets.
  • the plurality of first electrode fingers 123 and the plurality of second electrode fingers 124 extend in a second direction D12 intersecting the first direction D11 and overlap each other when viewed from a third direction D13 orthogonal to the second direction D12. are placed.
  • the second direction D ⁇ b>12 is the plane direction of the piezoelectric layer 110 , which intersects the stacking direction in which the support member 101 and the piezoelectric layer 110 are stacked.
  • the plane direction of the piezoelectric layer 110 is the direction in which the surface of the piezoelectric layer 110 extends when viewed from above in the first direction D11.
  • a third direction D13 is a direction orthogonal to the second direction D12 in a plan view of the first direction D11, and is a direction in which the plurality of first electrode fingers 123 and the plurality of second electrode fingers 124 are arranged. That is, the third direction D13 is the facing direction in which the plurality of adjacent first electrode fingers 123 and the plurality of second electrode fingers 124 face each other.
  • the plurality of first electrode fingers 123 and the plurality of second electrode fingers 124 are arranged to face each other adjacent to each other.
  • the plurality of first electrode fingers 123 and the plurality of second electrode fingers 124 are arranged to overlap each other. That is, the plurality of first electrode fingers 123 and the plurality of second electrode fingers 124 are alternately arranged in the third direction D13. Specifically, adjacent first electrode fingers 123 and second electrode fingers 124 are arranged to face each other to form a pair of electrode sets. In the resonator 120, multiple electrode sets are arranged in the third direction D13.
  • the plurality of first electrode fingers 123 extend in a second direction D12 intersecting the first direction D11. Base ends of the plurality of first electrode fingers 123 are connected to the first bus bar 121 .
  • the plurality of second electrode fingers 124 face any one of the plurality of first electrode fingers 123 in a third direction D13 orthogonal to the second direction D12 and extend in the second direction D12. Base ends of the plurality of second electrode fingers 124 are connected to the second bus bar 122 .
  • a region where the plurality of first electrode fingers 123 and the plurality of second electrode fingers 124 are arranged to overlap in the third direction D13 is the excitation region C1. That is, the excitation region C1 includes the plurality of first electrode fingers 123 and the plurality of second electrode fingers 123 when viewed in the direction in which the adjacent first electrode fingers 123 and the second electrode fingers 124 face each other, ie, the third direction D13. This is the area where the electrode fingers 124 overlap.
  • the excitation region C1 may be referred to herein as the intersection region C1.
  • the IDT electrode is provided on the piezoelectric layer 110 at a position overlapping with the cavity 130 when viewed in plan in the first direction D11.
  • the hollow portion 130 includes a portion of a first bus bar 121, a portion of a second bus bar 122, a plurality of first electrode fingers 123, and a plurality of second bus bars 122, which will be described later. It is provided at a position overlapping with the electrode finger 124 .
  • the IDT electrodes are provided on the membrane portion 111 .
  • the IDT electrode may be provided on at least a portion of the membrane portion 111 when viewed in plan in the first direction D11.
  • the IDT electrodes are connected to wiring electrodes 140 .
  • wiring electrode 140 is provided on first bus bar 121 and second bus bar 122 .
  • the wiring electrodes 140 are electrically connected to the first bus bar 121 and the second bus bar 122 respectively.
  • the wiring electrodes 140 are arranged so as to overlap the first bus bar 121 and the second bus bar 122 when viewed in plan in the first direction D11.
  • the wiring electrode 140 may be arranged on at least one of the first bus bar 121 and the second bus bar 122 .
  • a dielectric film may be provided on the piezoelectric layer 110 so as to cover the IDT electrodes. Note that the dielectric film may not necessarily be provided.
  • the piezoelectric layer 110 is provided with a plurality of through-holes 112 reaching the hollow portion 130 .
  • the plurality of through holes 112 are provided on both outer sides of the IDT electrodes in the third direction D13 when viewed in plan in the first direction D11.
  • the plurality of through-holes 112 communicate with the hollow portion 130 via the drawer portion 131 .
  • the lead-out portion 131 is a path that communicates the through-hole 112 and the hollow portion 130 .
  • the lead-out portion 131 is provided at a position overlapping the through-hole 112 in plan view in the first direction D11.
  • the width of the lead-out portion 131 is smaller than the width of the hollow portion 130 .
  • the width of the lead-out portion 131 means the dimension of the lead-out portion 131 in the second direction D12 when viewed from above in the first direction D11.
  • the width of the hollow portion 130 means the dimension of the hollow portion 130 in the second direction D12 when viewed from above in the first direction D11.
  • the plurality of through-holes 112 are provided outside the intersecting region C1 and at positions other than between the first imaginary line L1 and the second imaginary line L2 when viewed in plan in the first direction D11. .
  • the first imaginary line L1 is an imaginary straight line extending in the third direction D13 through the tips 123a of the plurality of first electrode fingers 123 when viewed in plan in the first direction D11.
  • the second imaginary line L2 is an imaginary straight line extending in the third direction D13 through the distal ends 124a of the plurality of second electrode fingers 124 in plan view in the first direction D11.
  • the plurality of through holes 112 are provided at positions that do not overlap with the intersection region C1 when viewed from the third direction D13.
  • the multiple through holes 112 include a first through hole 112A and a second through hole 112B arranged with the IDT electrodes therebetween when viewed in plan in the first direction D11.
  • the first through hole 112A is provided closer to the first busbar 121 than the second imaginary line L2 in plan view in the first direction D11. Specifically, the first through hole 112A is provided between the second imaginary line L2 and the extension line of the first bus bar 121 in the second direction D12. Further, the first through hole 112A is provided inside the extension line of the first bus bar 121 outside the intersection region C1.
  • the extension line of the first busbar 121 is a line extending in the longitudinal direction (third direction D13) of the first busbar 121 in plan view in the first direction D11.
  • the second through hole 112B is provided closer to the second bus bar 122 than the first imaginary line L1 in plan view in the first direction D11. Specifically, the second through hole 112B is provided between the first imaginary line L1 and the extension line of the second bus bar 122 in the second direction D12. Further, the second through hole 112B is provided inside the extension line of the second bus bar 122 outside the intersection region C1.
  • the extension line of the second bus bar 122 is a line extending in the longitudinal direction (the third direction D13) of the second bus bar 122 in plan view in the first direction D11.
  • the first through-hole 112A and the second through-hole 112B are provided in regions close to the first bus bar 121 and the second bus bar 122, which have a larger metallized area than the first electrode fingers 123 and the second electrode fingers 124, respectively. It is The vicinity of the first bus bar 121 and the second bus bar 122 is a region where the supporting force is relatively stronger than the first electrode finger 123 and the second electrode finger 124 so that the piezoelectric layer 110 does not bend.
  • the piezoelectric layer 110 is bent by the first through holes 112A and the second through holes 112B. can be suppressed. This can prevent the piezoelectric layer 110 from sticking to the bottom surface of the cavity 130 .
  • the opening area of the first through-hole 112A is equal to the opening area of the second through-hole 112B.
  • 112 A of 1st through-holes and the 2nd through-hole 112B have circular shape, for example, planarly viewed in the 1st direction D11.
  • the opening area of the first through-hole 112A may differ from the opening area of the second through-hole 112B.
  • first through-hole 112A and the second through-hole 112B communicate with the hollow portion 130 via the drawer portion 131, respectively.
  • the first through-hole 112A and the second through-hole 112B are provided at positions that do not overlap when viewed from the third direction D13. That is, the first through hole 112A and the second through hole 112B are provided at positions that do not face each other with the resonator 120 interposed therebetween.
  • the straight line L10 connecting the plurality of through holes 112 sandwiching the functional electrode (IDT electrode) does not have to be orthogonal to the second direction D12 in which the electrode fingers extend.
  • the plurality of through holes 112 are likely to be arranged symmetrically with respect to the line L10 passing through the center of the functional electrode, the piezoelectric layer is more likely to flex evenly, and deterioration of characteristics is likely to be suppressed.
  • the support member 101 including the support substrate 102 having the thickness direction in the first direction D11, the piezoelectric layer 110 provided on the support member 101 in the first direction D11, the first and an IDT electrode provided on the piezoelectric layer 110 in the direction D11.
  • the support member 101 is provided with a hollow portion 130 at a position that overlaps at least a portion of the IDT electrode when viewed in plan in the first direction D11.
  • the piezoelectric layer 110 is provided with a through hole 112 that reaches the hollow portion 130 .
  • the IDT electrodes include a first bus bar 121 , a second bus bar 122 facing the first bus bar 121 , a plurality of first electrode fingers 123 provided on the first bus bar 121 and extending toward the second bus bar 122 , and a second bus bar 122 . and a plurality of second electrode fingers 124 provided on the busbar 122 and extending toward the first busbar 121 .
  • the plurality of first electrode fingers 123 and the plurality of second electrode fingers 124 are arranged to face each other adjacent to each other.
  • the through-hole 112 has a first imaginary line L1 passing through the tips 123a of the plurality of first electrode fingers 123 and a second imaginary line L1 passing through the tips 124a of the plurality of second electrode fingers 124 in plan view in the first direction D11. It is provided at a position other than between L2 and .
  • through hole 112 is provided at a position other than between first imaginary line L1 and second imaginary line L2 in plan view in first direction D11. Thereby, the through hole 112 can be provided at a position where the piezoelectric layer 110 is difficult to bend.
  • the through hole 112 can be provided near the first busbar 121 or the second busbar 122 .
  • the vicinity of the first bus bar 121 and the second bus bar 122 is a region where a force supporting the piezoelectric layer 110 is likely to be applied and the piezoelectric layer 110 is less likely to bend.
  • the through-hole 112 can be provided in a region where the piezoelectric layer 110 is difficult to bend, bending of the piezoelectric layer 110 due to the provision of the through-hole 112 can be suppressed. As a result, it is possible to prevent the piezoelectric layer 110 from bending and sticking to the bottom surface of the cavity 130 , thereby suppressing deterioration of the characteristics of the elastic wave device 100 .
  • unnecessary waves generated from the IDT electrodes can be reduced. Specifically, the unnecessary waves generated from the IDT electrodes collide with the through holes 112 and are scattered, so that the leakage of the unnecessary waves can be suppressed.
  • the through-hole 112 includes a first through-hole 112A and a second through-hole 11B arranged with the IDT electrode interposed therebetween when viewed in plan in the first direction D11.
  • unnecessary waves generated from the IDT electrodes can collide with the first through holes 112A and the second through holes 112B and be scattered. Thereby, it is possible to further suppress the leakage of unnecessary waves, and suppress deterioration of the characteristics of the acoustic wave device 100 .
  • the first through-hole 112A and the second through-hole 112B are provided at positions that do not overlap when viewed from the third direction D13.
  • the piezoelectric layer 110 tends to be flexed uniformly, and deterioration of characteristics can be easily suppressed.
  • unwanted waves that are excited by the IDT electrodes and propagate in the third direction D13 in which the plurality of first electrode fingers 123 and the plurality of second electrode fingers 124 are arranged collide with the first through holes 112A and the second through holes 112B. It scatters, making it easier to suppress deterioration of characteristics due to unwanted waves.
  • the elastic wave device 100 includes wiring electrodes 140 provided on at least one of the first busbar 121 and the second busbar 122 . With such a configuration, the force supporting the piezoelectric layer 110 by the wiring electrode 140 is increased, and the bending of the piezoelectric layer 110 in the vicinity of the first bus bar 121 or the second bus bar 122 can be suppressed. Thereby, deterioration of the characteristics of the acoustic wave device 100 can be further suppressed.
  • the support member 101 is provided with a lead-out portion 131 that communicates the hollow portion 130 and the through hole 112 .
  • the hollow portion 130 and the through-hole 112 can be communicated with each other by the lead-out portion 131, so that the degree of freedom of the position where the through-hole 112 is provided can be improved.
  • the through hole 112 can be provided away from the excitation region C1 (intersection region C1) in plan view in the first direction D11. As a result, the piezoelectric layer 110 can be prevented from bending due to the through holes 112 .
  • first through-hole 112A and the second through-hole 112B are provided on both outer sides of the resonator 120 , but the present invention is not limited to this.
  • one or more through holes 112 may be provided outside at least one of the resonators 120 .
  • the hollow portion 130 is provided at a position overlapping the first busbar 121 and the second busbar 122 in plan view in the first direction D11, but the present invention is not limited to this.
  • the hollow portion 130 may be provided at a position that does not overlap the first busbar 121 and the second busbar 122 when viewed in plan in the first direction D11.
  • the through-hole 112 can also be used as an etching hole for introducing an etching solution, for example.
  • the IDT electrodes may be provided on the piezoelectric layer 110 in the first direction D11.
  • the IDT electrode may be provided on the side of the piezoelectric layer 110 on which the cavity 130 is provided.
  • ⁇ Modification 1> 16 is a schematic enlarged view of the vicinity of the electrodes of the acoustic wave device of Modification 1.
  • FIG. 16 the elastic wave device 100A differs from the elastic wave device 100 of the second embodiment in that the shape of the through hole 112C is different.
  • the through-hole 112C has a rectangular shape when viewed in plan in the first direction D11. Further, the through hole 112C is larger than the width of the lead portion 131 when viewed in plan in the first direction D11.
  • the bending of the piezoelectric layer 110 can be suppressed, and the deterioration of the characteristics of the elastic wave device 100 can be suppressed.
  • the through hole 112C may have, for example, a triangular shape, an arc shape, a polygonal shape, an elliptical shape, or the like when viewed in plan in the first direction D11.
  • a part of the through hole 112C may straddle the first virtual line L1 and/or the second virtual line L2.
  • FIG. 17 is a schematic enlarged view of the vicinity of the electrodes of the elastic wave device of Modification 2.
  • FIG. 17 an elastic wave device 100B is different from the elastic wave device 100 of the second embodiment in that the lead-out portion 131 is not provided.
  • the through-hole 112 is provided at a position overlapping the hollow portion 130 in plan view in the first direction D11.
  • the through hole 112 is provided between the first bus bar 121 and the second bus bar 122 outside the intersection region C1 when viewed in plan in the first direction D11. That is, the through holes 112 are provided inside the first busbar 121 and inside the second busbar 122 outside the crossing region C1. No through hole 112 is provided in the region between the electrode fingers 123 and 124 .
  • the first through hole 112A is provided between the first imaginary line L1 and the second bus bar 122 in a plan view in the first direction D11.
  • Second through hole 112 ⁇ /b>B is provided between second imaginary line L ⁇ b>2 and first bus bar 121 .
  • the plurality of through holes 112A and 112B are formed in gap regions between the tips 123a of the first electrode fingers 123 and the second bus bar 122, and between the tips 124a of the second electrode fingers 124 and the first bus bar 121, respectively. is provided in the gap region between the tips 123a of the first electrode fingers 123 and the second bus bar 122, and between the tips 124a of the second electrode fingers 124 and the first bus bar 121, respectively. is provided in the gap region between the tips 123a of the first electrode fingers 123 and the second bus bar 122, and between the tips 124a of the second electrode fingers 124 and the first bus bar 121, respectively. is provided in the gap region between
  • the through hole 112 can be easily provided in the vicinity of the crossing area C1, so there is no need to provide the lead-out portion 131 leading to the through hole 112, thereby further saving space.
  • the piezoelectric layer 110 can be restrained from bending, and the through holes 112 can scatter unnecessary waves generated from the intersection region C1. As a result, deterioration of the characteristics of the acoustic wave device 100B can be suppressed while reducing the manufacturing cost.
  • At least one of the through hole 112 is positioned between the first virtual line L1 and the second bus bar 122 or between the second virtual line L2 and the first bus bar 121 in plan view in the first direction D11.
  • FIG. 18 is a schematic enlarged view of the vicinity of the electrodes of the elastic wave device of Modification 3.
  • FIG. 18 As shown in FIG. 18, in the elastic wave device 100C, the first through-hole 112A and the second through-hole 112B overlap with each other when viewed from the third direction D13. different.
  • the first through-hole 112A overlaps the second through-hole 112B when viewed from the third direction D13. That is, the first through hole 112A and the second through hole 112B face each other with the resonator 120 interposed therebetween. Specifically, the first through hole 112A and the second through hole 112B are provided between the first imaginary line L1 and the second bus bar 122 in plan view in the first direction D11.
  • first through hole 112A and the second through hole 112B may be provided between the second imaginary line L2 and the first bus bar 121 in plan view in the first direction D11.
  • At least a portion of the first through-hole 112A may overlap the second through-hole 112B when viewed from the third direction D13.
  • ⁇ Modification 4> 19 is a schematic enlarged view of the vicinity of the electrodes of the elastic wave device of Modification 4.
  • FIG. 19 the elastic wave device 100D differs from the elastic wave device 100 of the second embodiment in that the second through holes 112B are provided outside the first busbar 121 in the second direction D12. different.
  • the second through-hole 112B is provided outside the first bus bar 121 in the second direction D12 when viewed in plan in the first direction D11.
  • the first bus bar 121 is arranged between the second through-hole 112B and the hollow portion 130 in plan view in the first direction D11.
  • the lead-out portion 131 communicating between the second through-hole 112B and the hollow portion 130 is provided at a position overlapping the first bus bar 121 when viewed in plan in the first direction D11. extends to the outside of the
  • the bending of the piezoelectric layer 110 due to the second through holes 112B can be further suppressed, so that deterioration of the characteristics of the acoustic wave device 100D can be further suppressed.
  • first through hole 112A may be provided outside the second bus bar 122 in the second direction D12 when viewed in plan in the first direction D11. That is, the second bus bar 122 may be provided between the first through hole 112A and the hollow portion 130 when viewed in plan in the first direction D11.
  • FIG. 20 is a schematic enlarged view of the vicinity of the electrodes of the elastic wave device of Modification 5.
  • FIG. 20 in the elastic wave device 100E, the second through-hole 112B is provided at a position overlapping the first bus bar 121 when viewed from the third direction D13. It differs from the wave device 100 .
  • the second through-hole 112B is provided at a position overlapping the first busbar 121 when viewed from the third direction D13.
  • a lead-out portion 131 connecting the second through-hole 112B and the hollow portion 130 is bent.
  • the second through hole 112B can be provided in the vicinity of the first bus bar 121, so that bending of the piezoelectric layer 110 can be further suppressed.
  • the second through hole 112B may overlap the first bus bar 121 when viewed from the third direction D13.
  • the first through hole 112A may be provided at a position overlapping the second bus bar 122 when viewed from the third direction D13.
  • FIG. 21 is a schematic plan view of an elastic wave device according to the third embodiment of the present disclosure.
  • FIG. 22 is a schematic enlarged view of the vicinity of the electrodes of the acoustic wave device according to the third embodiment of the present disclosure.
  • FIG. 23 is a schematic cross-sectional view of the elastic wave device of FIG. 22 taken along line BB.
  • the thickness of first electrode fingers 123 and the thickness of second electrode fingers 124 are 0.5 times or more the thickness of piezoelectric layer 110.
  • the plurality of through holes 112 are provided at positions overlapping the crossing region C1 when viewed from the third direction D13.
  • the thickness of the plurality of first electrode fingers 123 and the thickness of the plurality of second electrode fingers 124 are 0.5 times or more the thickness of the piezoelectric layer 110 . That is, the film thickness of the plurality of first electrode fingers 123 and the plurality of second electrode fingers 124 is at least half the film thickness of the region of the piezoelectric layer 110 that overlaps with the hollow portion 130 in plan view in the first direction D11. .
  • the force supporting the piezoelectric layer 110 by the plurality of first electrode fingers 123 and the plurality of second electrode fingers 124 in the intersecting region C1 increases, and the elastic wave device 100 of the second embodiment In comparison, bending of the piezoelectric layer 110 in the crossing region C1 can be suppressed. Therefore, even when a plurality of through-holes 112 are provided in the vicinity of the intersection region C1, the bending of the piezoelectric layer 110 due to the through-holes 112 can be suppressed.
  • the plurality of through holes 112 are located outside the intersection region C1 and between the first virtual line L1 and the second virtual line L2. is provided.
  • the first through holes 112A and the second through holes 112B are provided at overlapping positions when viewed from the third direction D13. That is, the first through hole 112A and the second through hole 112B are provided so as to face each other with the resonator 120, that is, the IDT electrode interposed therebetween when viewed in plan in the first direction D11.
  • the through-hole 112 is provided between the first virtual line L1 and the second virtual line L2 in plan view in the first direction D11.
  • unnecessary waves generated from the intersection region C1 collide with the plurality of through holes 112 and are easily scattered.
  • the intersection area C1 is an area where unwanted waves are likely to occur, the unwanted waves generated from the intersection area C1 propagate more slowly in the area between the first virtual line L1 and the second virtual line L2 than in other areas. Cheap. Therefore, by providing the through hole 112 in the region between the first virtual line L1 and the second virtual line L2, it is possible to further suppress the propagation of unnecessary waves.
  • the thickness of the plurality of first electrode fingers 123 and the thickness of the plurality of second electrode fingers 124 are 0.5 times or more the thickness of the piezoelectric layer 110 .
  • the thickness of the plurality of first electrode fingers 123 and the thickness of the plurality of second electrode fingers 124 is 0.5 times or more the thickness of the piezoelectric layer 110
  • the present invention is limited to this. not.
  • the thickness of the plurality of first electrode fingers 123 and the plurality of second electrode fingers 124 can support the piezoelectric layer 110 to such an extent that the piezoelectric layer 110 does not bend
  • the thickness of the plurality of first electrode fingers 123 and the plurality of second electrode fingers 124 The thickness of the two-electrode fingers 124 does not have to be limited to the thickness of the piezoelectric layer 110 .
  • ⁇ Modification 6> 24 is a schematic enlarged view of the vicinity of the electrodes of the elastic wave device of Modification 6.
  • FIG. 24 the elastic wave device 100G differs from the elastic wave device 100F of the third embodiment in that the shape of the through hole 112D is different.
  • the through-hole 112D has a rectangular shape when viewed in plan in the first direction D11. Further, the through hole 112D is larger than the width of the lead portion 131 when viewed in plan in the first direction D11.
  • the through hole 112D may have, for example, a triangular shape, an arc shape, a polygonal shape, an elliptical shape, or the like when viewed in plan in the first direction D11.
  • FIG. 25 is a schematic enlarged view of the vicinity of the electrodes of another elastic wave device of Modification 6.
  • FIG. 25 in the elastic wave device 100H, a part of the through hole 112D may straddle the first imaginary line L1 and the second imaginary line L2 in plan view in the first direction D11. By increasing the opening area of the through hole 112D in this way, it is possible to further suppress the propagation of unnecessary waves.
  • FIG. 26 is a schematic enlarged view of the vicinity of the electrodes of the elastic wave device of Modification 7.
  • FIG. 26 the elastic wave device 100I is different from the elastic wave device 100F of the third embodiment in that the lead-out portion 131 is not provided.
  • the through-hole 112 is provided at a position overlapping the hollow portion 130 in plan view in the first direction D11.
  • the through hole 112 is provided between the first bus bar 121 and the second bus bar 122 outside the intersection region C1 when viewed in plan in the first direction D11. That is, the through hole 112 is provided inside the first busbar 121 and inside the second busbar 122 .
  • ⁇ Modification 8> 27 is a schematic enlarged view of the vicinity of the electrodes of the elastic wave device of Modification 8.
  • FIG. 27 As shown in FIG. 27, in the elastic wave device 100J, the second through-hole 112B is not provided between the first imaginary line L1 and the second imaginary line L2 in plan view in the first direction D11. , and is different from the elastic wave device 100F of the third embodiment.
  • first through hole 112A is provided between first imaginary line L1 and second imaginary line L2. It is provided in the gap region between the second virtual line L2 and the first bus bar 121 .
  • ⁇ Modification 9> 28 is a schematic enlarged view of the vicinity of the electrodes of the elastic wave device of Modification 9.
  • FIG. 28 in the elastic wave device 100K, the first through-hole 112A and the second through-hole 112B are provided at positions that do not overlap when viewed from the third direction D13. It differs from the acoustic wave device 100F in terms of shape.
  • the straight line connecting the plurality of through holes 112 sandwiching the IDT electrodes is not orthogonal to the second direction D12 in which the plurality of first electrode fingers 123 and the plurality of second electrode fingers 124 extend. .
  • the plurality of through holes 112 are likely to be arranged symmetrically with respect to the line L11 passing through the center of the IDT electrode, the piezoelectric layer 110 is more likely to bend uniformly, and deterioration of characteristics can be suppressed.
  • An acoustic wave device of the present disclosure includes a support member including a support substrate having a thickness direction, a piezoelectric layer provided on the support member in the thickness direction, and an IDT electrode provided on the piezoelectric layer in the thickness direction.
  • the support member is provided with a cavity at a position overlapping at least a part of the IDT electrode when viewed in plan in the thickness direction, and the piezoelectric layer is provided with a through hole reaching the cavity, and the IDT electrode is a first bus bar; a second bus bar facing the first bus bar; a plurality of first electrode fingers provided on the first bus bar and extending toward the second bus bar; and a plurality of second electrode fingers extending toward each other, wherein the plurality of first electrode fingers and the plurality of second electrode fingers are arranged adjacent to each other to face each other, and the plurality of adjacent first electrode fingers are arranged to face each other.
  • the plurality of first electrode fingers and the plurality of second electrode fingers are opposed to each other, the plurality of first electrode fingers and the plurality of second electrode fingers are arranged to overlap each other, and the through holes are arranged in the thickness direction in plan view It is provided at a position other than between a first virtual line passing through the tips of the plurality of first electrode fingers and a second virtual line passing through the tips of the plurality of second electrode fingers.
  • the through-hole may include a first through-hole and a second through-hole arranged with the IDT electrode interposed therebetween in plan view in the thickness direction.
  • the first through hole and the second through hole may be provided at positions that do not overlap when viewed from the opposing direction.
  • the elastic wave device may include wiring electrodes provided on at least one of the first bus bar and the second bus bar.
  • the through-hole may be provided outside the IDT electrode when viewed in plan in the thickness direction.
  • the support member may be provided with a lead-out portion that communicates the hollow portion and the through hole.
  • the through hole is located between the extension line of the first virtual line and the extension line of the second busbar, or between the second virtual line and the first busbar. may be provided in at least one of between and
  • the region where the plurality of first electrode fingers and the plurality of second electrode fingers overlap when viewed from the opposing direction is the intersection region, and the through hole is outside the intersection region. and may be provided inside the extension line of the first bus bar and inside the extension line of the second bus bar.
  • At least one of the first bus bar and the second bus bar is arranged between the through hole and the hollow portion when viewed in plan in the thickness direction.
  • the piezoelectric layer may be made of lithium niobate or lithium tantalate.
  • the film thickness of the piezoelectric layer is d, and the distance between the centers of adjacent electrode fingers among the plurality of first electrode fingers and the plurality of second electrode fingers.
  • d/p may be 0.5 or less.
  • d/p may be 0.24 or less.
  • the support member may have an intermediate layer provided on the support substrate, and the cavity may be provided in the intermediate layer.
  • the cavity may be provided in the support substrate.
  • the elastic wave device may be configured to be able to use a thickness-shear mode bulk wave as the main wave.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of lithium niobate or lithium tantalate are within the range of the following formula (1), formula (2) or formula (3) There may be. (0° ⁇ 10°, 0° to 20°, arbitrary ⁇ ) Equation (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2 /900) 1/2 ) or (0° ⁇ 10°, 20° to 80°, [180 °-60° (1-( ⁇ -50) 2 /900) 1/2 ] ⁇ 180°) Equation (2) (0° ⁇ 10°, [180°-30°(1-( ⁇ -90) 2 /8100) 1/2 ] ⁇ 180°, arbitrary ⁇ ) Equation (3)
  • An elastic wave device includes a support member having a support substrate, a piezoelectric layer provided on the support member, and an IDT electrode provided on the piezoelectric layer.
  • a cavity opening toward the piezoelectric layer is provided at a position overlapping with a part of the electrode, and the piezoelectric layer is provided with a through hole leading to the cavity.
  • a second bus bar facing each other; a plurality of first electrode fingers provided on the first bus bar and extending toward the second bus bar; and a plurality of second electrode fingers provided on the second bus bar and extending toward the first bus bar.
  • the through-holes are defined by a first imaginary line passing through the tips of the plurality of first electrode fingers and a second imaginary line passing through the tips of the plurality of second electrode fingers. It is provided between the line and
  • the thickness of the plurality of first electrode fingers and the thickness of the plurality of second electrode fingers may be 0.5 times or more the thickness of the piezoelectric layer.
  • the through-hole may be provided outside the IDT electrode in plan view.
  • the support member may be provided with a lead-out portion that communicates the hollow portion and the through hole.
  • the through-hole may include a first through-hole and a second through-hole arranged with the IDT electrode therebetween in plan view.
  • the first through holes and the second through holes are positioned so as not to overlap when viewed from a direction perpendicular to the direction in which the plurality of first electrode fingers and the plurality of second electrode fingers extend. may be provided.
  • the piezoelectric layer may be lithium niobate or lithium tantalate.
  • the film thickness of the piezoelectric layer is d, and the distance between the centers of adjacent electrode fingers among the plurality of first electrode fingers and the plurality of second electrode fingers.
  • d/p may be 0.5 or less.
  • the support member may have an intermediate layer provided on the support substrate, and the cavity may be provided in the intermediate layer.
  • the cavity may be provided in the support substrate.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of lithium niobate or lithium tantalate are within the range of the following formula (1), formula (2) or formula (3) There may be. (0° ⁇ 10°, 0° to 20°, arbitrary ⁇ ) Equation (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2 /900) 1/2 ) or (0° ⁇ 10°, 20° to 80°, [180 °-60° (1-( ⁇ -50) 2 /900) 1/2 ] ⁇ 180°) Equation (2) (0° ⁇ 10°, [180°-30°(1-( ⁇ -90) 2 /8100) 1/2 ] ⁇ 180°, arbitrary ⁇ ) Equation (3)

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

本開示の弾性波装置は、厚み方向を有する支持基板を含む支持部材と、支持部材上に設けられる圧電層と、圧電層に設けられるIDT電極と、を備え、支持部材には、厚み方向に平面視して、IDT電極の少なくとも一部と重なる位置で空洞部が設けられ、圧電層には、空洞部に至る貫通孔が設けられており、IDT電極は、第1バスバーと、第1バスバーに対向する第2バスバーと、第1バスバーに設けられ、第2バスバーに向かって延びる複数の第1電極指と、第2バスバーに設けられ、第1バスバーに向かって延びる複数の第2電極指と、を有し、隣り合う複数の第1電極指と複数の第2電極指とが対向している対向方向から見て、複数の第1電極指及び複数の第2電極指は互いに重なって配置されており、貫通孔は、厚み方向に平面視して、複数の第1電極指の先端を通る第1仮想ラインと、複数の第2電極指の先端を通る第2仮想ラインと、の間を除く位置に設けられている。

Description

弾性波装置
 本開示は、圧電層を有する弾性波装置に関する。
 例えば、特許文献1には、板波を利用する弾性波装置が開示されている。特許文献1に記載の弾性波装置は、支持体と、圧電基板と、IDT電極とを備えている。支持体には、空洞部が設けられている。圧電基板は、支持体の上に空洞部と重なるように設けられている。IDT電極は、圧電基板の上に空洞部と重なるように設けられている。弾性波装置では、IDT電極により板波が励振される。空洞部の端縁部は、IDT電極により励振される板波の伝搬方向と平行に延びる直線部を含まない。
特開2012-257019号公報
 近年、特性の劣化を抑制できる弾性波装置が求められている。
 本開示は、特性の劣化を抑制できる弾性波装置を提供することを目的とする。
 本開示の一態様の弾性波装置は、
 厚み方向を有する支持基板を含む支持部材と、
 前記厚み方向において前記支持部材上に設けられる圧電層と、
 前記厚み方向において前記圧電層に設けられるIDT電極と、
を備え、
 前記支持部材には、前記厚み方向に平面視して、前記IDT電極の少なくとも一部と重なる位置で空洞部が設けられ、
 前記圧電層には、前記空洞部に至る貫通孔が設けられており、
 前記IDT電極は、第1バスバーと、前記第1バスバーに対向する第2バスバーと、前記第1バスバーに設けられ、前記第2バスバーに向かって延びる複数の第1電極指と、前記第2バスバーに設けられ、前記第1バスバーに向かって延びる複数の第2電極指と、を有し、
 前記複数の第1電極指及び前記複数の第2電極指は、互いに隣り合って対向して配置されており、
 隣り合う前記複数の第1電極指と前記複数の第2電極指とが対向している対向方向から見て、前記複数の第1電極指及び前記複数の第2電極指は互いに重なって配置されており、
 前記貫通孔は、前記厚み方向に平面視して、前記複数の第1電極指の先端を通る第1仮想ラインと、前記複数の第2電極指の先端を通る第2仮想ラインと、の間を除く位置に設けられている。
 本開示によれば、特性の劣化を抑制できる弾性波装置を提供することができる。
第1,第2の態様の弾性波装置の外観を示す略図的斜視図 圧電層上の電極構造を示す平面図 図1A中のA-A線に沿う部分の断面図 従来の弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図 本開示の弾性波装置の波を説明するための模式的正面断面図 第1の電極と第2の電極との間に、第2の電極が第1の電極よりも高電位となる電圧が印加された場合のバルク波を示す模式図 本開示の第1の実施形態に係る弾性波装置の共振特性を示す図 d/2pと、弾性波装置の共振子としての比帯域との関係を示す図 本開示の第1の実施形態に係る別の弾性波装置の平面図 弾性波装置の共振特性の一例を示す参考図。 多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図 d/2pと、メタライゼーション比MRと、比帯域との関係を示す図 d/pを限りなく0に近づけた場合のLiNbO3のオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図 本開示の第1の実施形態に係る弾性波装置を説明するための部分切り欠き斜視図 本開示の第2の実施形態に係る弾性波装置の概略平面図 本開示の第2の実施形態に係る弾性波装置の電極付近の概略拡大図 図14の弾性波装置をA-A線で切断した概略断面図 変形例1の弾性波装置の電極付近の概略拡大図 変形例2の弾性波装置の電極付近の概略拡大図 変形例3の弾性波装置の電極付近の概略拡大図 変形例4の弾性波装置の電極付近の概略拡大図 変形例5の弾性波装置の電極付近の概略拡大図 本開示の第3の実施形態に係る弾性波装置の概略平面図 本開示の第3の実施形態に係る弾性波装置の電極付近の概略拡大図 図22の弾性波装置をB-B線で切断した概略断面図 変形例6の弾性波装置の電極付近の概略拡大図 変形例6の別の弾性波装置の電極付近の概略拡大図 変形例7の弾性波装置の電極付近の概略拡大図 変形例8の弾性波装置の電極付近の概略拡大図 変形例9の弾性波装置の電極付近の概略拡大図
 本開示における第1,第2,第3の態様の弾性波装置は、ニオブ酸リチウムまたはタンタル酸リチウムからなる圧電層と、圧電層の厚み方向に交差する方向において対向する第1電極及び第2電極とを備える。
 第1の態様の弾性波装置では、厚み滑りモードのバルク波が利用されている。
 また、第2の態様の弾性波装置では、第1電極及び前記第2電極は隣り合う電極同士であり、圧電層の厚みをd、第1電極及び第2電極の中心間距離をpとした場合、d/pが0.5以下とされている。それによって、第1,第2の態様では、小型化を進めた場合であっても、Q値を高めることができる。
 また、第3の態様の弾性波装置では、板波としてのラム波が利用される。そして、上記ラム波による共振特性を得ることができる。
 本開示における第4の態様の弾性波装置は、ニオブ酸リチウムまたはタンタル酸リチウムからなる圧電層と、圧電層を挟んで圧電層の厚み方向に対向する上部電極及び下部電極とを備え、バルク波を利用する。
 以下、図面を参照しつつ、第1~第4の態様の弾性波装置の具体的な実施形態を説明することにより、本開示を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
(第1の実施形態)
 図1Aは、第1,第2の態様についての第1の実施形態に係る弾性波装置の外観を示す略図的斜視図であり、図1Bは、圧電層上の電極構造を示す平面図であり、図2は、図1A中のA-A線に沿う部分の断面図である。
 弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、本実施形態では、Zカットであるが、回転YカットやXカットであってもよい。好ましくは、Y伝搬及びX伝搬±30°の伝搬方位が好ましい。圧電層2の厚みは、特に限定されないが、厚み滑りモードを効果的に励振するには、50nm以上、1000nm以下が好ましい。
 圧電層2は、対向し合う第1,第2の主面2a,2bを有する。第1の主面2a上に、電極3及び電極4が設けられている。ここで電極3が「第1電極」の一例であり、電極4が「第2電極」の一例である。図1A及び図1Bでは、複数の電極3が、第1のバスバー5に接続されている複数の第1の電極指である。複数の電極4は、第2のバスバー6に接続されている複数の第2の電極指である。複数の電極3及び複数の電極4は、互いに間挿し合っている。
 電極3及び電極4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極3と、隣りの電極4とが対向している。これら複数の電極3,4、及び第1のバスバー5,第2のバスバー6によりIDT(Interdigital Transuducer)電極が構成されている。電極3,4の長さ方向、及び、電極3,4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交差する方向である。このため、電極3と、隣りの電極4とは、圧電層2の厚み方向に交差する方向において対向しているともいえる。
 また、電極3,4の長さ方向が図1A及び図1Bに示す電極3,4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図1A及び図1Bにおいて、第1のバスバー5及び第2のバスバー6が延びている方向に電極3,4を延ばしてもよい。その場合、第1のバスバー5及び第2のバスバー6は、図1A及び図1Bにおいて電極3,4が延びている方向に延びることとなる。
 そして、一方電位に接続される電極3と、他方電位に接続される電極4とが隣り合う1対の構造が、上記電極3,4の長さ方向と直交する方向に、複数対設けられている。ここで電極3と電極4とが隣り合うとは、電極3と電極4とが直接接触するように配置されている場合ではなく、電極3と電極4とが間隔を介して配置されている場合を指す。
 また、電極3と電極4とが隣り合う場合、電極3と電極4との間には、他の電極3,4を含む、ホット電極やグランド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対や2.5対などであってもよい。電極3,4間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の幅寸法の中心と、電極4の長さ方向と直交する方向における電極4の幅寸法の中心とを結んだ距離となる。さらに、電極3,4の少なくとも一方が複数本ある場合(電極3,4を一対の電極組とし、1.5対以上の電極組がある場合)、電極3,4の中心間距離は、1.5対以上の電極3,4のうち隣り合う電極3,4それぞれの中心間距離の平均値を指す。また、電極3,4の幅、すなわち電極3,4の対向方向の寸法は、150nm以上、1000nm以下の範囲が好ましい。なお、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の寸法(幅寸法)の中心と、電極4の長さ方向と直交する方向における電極4の寸法(幅寸法)の中心とを結んだ距離となる。
 また、本実施形態では、Zカットの圧電層を用いているため、電極3,4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極3,4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°)でもよい。
 圧電層2の第2の主面2b側には、絶縁層7を介して支持部材8が積層されている。絶縁層7及び支持部材8は、枠状の形状を有し、図2に示すように、開口部7a,8aを有する。それによって、空洞部9が形成されている。空洞部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持部材8は、少なくとも1対の電極3,4が設けられている部分と重ならない位置において、第2の主面2bに絶縁層7を介して積層されている。なお、絶縁層7は設けられずともよい。従って、支持部材8は、圧電層2の第2の主面2bに直接または間接に積層され得る。
 絶縁層7は、酸化ケイ素からなる。もっとも、酸化ケイ素の他、酸窒化ケイ素、アルミナなどの適宜の絶縁性材料を用いることができる。支持部材8は、Siからなる。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。好ましくは、抵抗率4kΩ以上の高抵抗のSiが望ましい。もっとも、支持部材8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。支持部材8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。
 上記複数の電極3,4及び第1,第2のバスバー5,6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。本実施形態では、電極3,4及び第1,第2のバスバー5,6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。
 駆動に際しては、複数の電極3と、複数の電極4との間に交流電圧を印加する。より具体的には、第1のバスバー5と第2のバスバー6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑りモードのバルク波を利用した、共振特性を得ることが可能とされている。
 また、弾性波装置1では、圧電層2の厚みをd、複数対の電極3,4のうちいずれかの隣り合う電極3,4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑りモードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。
 なお、本実施形態のように電極3,4の少なくとも一方が複数本ある場合、すなわち、電極3,4を1対の電極組とし、電極3,4が1.5対以上ある場合、隣り合う電極3,4の中心間距離pは、各隣り合う電極3,4の中心間距離の平均距離となる。
 本実施形態の弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極3,4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側に反射器を必要としない共振器であり、伝搬ロスが少ないためである。また、上記反射器を必要としないのは、厚み滑りモードのバルク波を利用していることによる。
 従来の弾性波装置で利用したラム波と、上記厚み滑りモードのバルク波の相違を、図3A及び図3Bを参照して説明する。
 図3Aは、従来の弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図である。従来の弾性波装置については、例えば、日本公開特許公報 特開2012-257019号公報に記載されている。図3Aに示すように、従来の弾性波装置においては、圧電膜201中を矢印で示すように波が伝搬する。ここで、圧電膜201では、第1の主面201aと、第2の主面201bとが対向しており、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指が並んでいる方向である。図3Aに示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電膜201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指の対数を少なくした場合、Q値が低下する。
 これに対して、図3Bに示すように、本実施形態の弾性波装置1では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器を必要としない。よって、反射器に伝搬する際の伝搬損失は生じない。従って、小型化を進めようとして、電極3,4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。
 なお、厚み滑りモードのバルク波の振幅方向は、図4に示すように、圧電層2の励振領域Cに含まれる第1領域451と、励振領域Cに含まれる第2領域452とで逆になる。図4は、電極3と電極4との間に、電極4が電極3よりも高電位となる電圧が印加された場合のバルク波を模式的に示している。第1領域451は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。
 上記のように、弾性波装置1では、電極3と電極4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極3,4からなる電極対の対数は複数対ある必要は必ずしもない。すなわち、少なくとも1対の電極が設けられてさえおればよい。
 例えば、上記電極3がホット電位に接続される電極であり、電極4がグラウンド電位に接続される電極である。もっとも、電極3がグラウンド電位に、電極4がホット電位に接続されてもよい。本実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグラウンド電位に接続される電極であり、浮き電極は設けられていない。
 図5は、本開示の第1の実施形態に係る弾性波装置の共振特性を示す図である。なお、この共振特性を得た弾性波装置1の設計パラメータは以下の通りである。
 圧電層2:オイラー角(0°,0°,90°)のLiNbO、厚み=400nm。 電極3と電極4の長さ方向と直交する方向に視たときに、電極3と電極4とが重なっている領域、すなわち励振領域Cの長さ=40μm、電極3,4からなる電極の対数=21対、電極間中心距離=3μm、電極3,4の幅=500nm、d/p=0.133。
 絶縁層7:1μmの厚みの酸化ケイ素膜。
 支持部材8:Si。
 なお、励振領域Cの長さとは、励振領域Cの電極3,4の長さ方向に沿う寸法である。
 本実施形態では、電極3,4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極3と電極4とを等ピッチで配置した。
 図5から明らかなように、反射器を有しないにもかかわらず、比帯域が12.5%である良好な共振特性が得られている。
 ところで、上記圧電層2の厚みをd、電極3と電極4との電極の中心間距離をpとした場合、前述したように、本実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図6を参照して説明する。
 図5に示した共振特性を得た弾性波装置と同様に、但しd/2pを変化させ、複数の弾性波装置を得た。図6は、このd/2pと、弾性波装置の共振子としての比帯域との関係を示す図である。
 図6から明らかなように、d/2pが0.25を超えると、すなわちd/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/2p≦0.25、すなわちd/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/2pが0.12以下の場合、すなわちd/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、本開示の第2の態様の弾性波装置のように、d/pを0.5以下とすることにより、上記厚み滑りモードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。
 なお、前述したように、少なくとも1対の電極は、1対でもよく、上記pは、1対の電極の場合、隣り合う電極3,4の中心間距離とする。また、1.5対以上の電極の場合には、隣り合う電極3,4の中心間距離の平均距離をpとすればよい。
 また、圧電層の厚みdについても、圧電層2が厚みばらつきを有する場合、その厚みを平均化した値を採用すればよい。
 図7は、本開示の第1の実施形態に係る別の弾性波装置の平面図である。弾性波装置31では、圧電層2の第1の主面2a上において、電極3と電極4とを有する1対の電極が設けられている。なお、図7中のKが交差幅となる。前述したように、本開示の弾性波装置31では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑りモードのバルク波を効果的に励振することができる。
 弾性波装置1では、好ましくは、複数の電極3,4において、いずれかの隣り合う電極3,4が対向している方向に視たときに重なっている領域である励振領域に対する、上記隣り合う電極3,4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。即ち、隣り合う複数の第1電極指と複数の第2電極指とが対向している方向に視たときに複数の第1電極指と複数の第2電極指とが重なっている領域が励振領域(交差領域)であり、励振領域に対する、複数の第1電極指及び複数の第2電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たすことが好ましい。その場合には、スプリアスを効果的に小さくすることができる。
 これを、図8及び図9を参照して説明する。図8は、上記弾性波装置1の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と反共振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°,0°,90°)とした。また、上記メタライゼーション比MR=0.35とした。
 メタライゼーション比MRを、図1Bを参照して説明する。図1Bの電極構造において、1対の電極3,4に着目した場合、この1対の電極3,4のみが設けられるとする。この場合、一点鎖線Cで囲まれた部分が励振領域となる。この励振領域とは、電極3と電極4とを、電極3,4の長さ方向と直交する方向すなわち対向方向に視たときに電極3における電極4と重なり合っている領域、電極4における電極3と重なり合っている領域、及び、電極3と電極4との間の領域における電極3と電極4とが重なり合っている領域である。そして、この励振領域の面積に対する、励振領域C内の電極3,4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の励振領域の面積に対する比である。
 なお、複数対の電極が設けられている場合、励振領域の面積の合計に対する全励振領域に含まれているメタライゼーション部分の割合をMRとすればよい。
 図9は本実施形態に従って、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。なお、比帯域については、圧電層の膜厚や電極の寸法を種々変更し、調整した。また、図9は、ZカットのLiNbOからなる圧電層を用いた場合の結果であるが、他のカット角の圧電層を用いた場合においても、同様の傾向となる。
 図9中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図9から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図8に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極3,4の寸法などを調整することにより、スプリアスを小さくすることができる。
 図10は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す図である。上記弾性波装置において、d/2pと、MRが異なる様々な弾性波装置を構成し、比帯域を測定した。図10の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図10中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。
 図11は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。図11のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域であり、当該領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
 従って、上記式(1)、式(2)または式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。
 図12は、本開示の第1の実施形態に係る弾性波装置を説明するための部分切り欠き斜視図である。弾性波装置81は、支持基板82を有する。支持基板82には、上面に開いた凹部が設けられている。支持基板82上に圧電層83が積層されている。それによって、空洞部9が構成されている。この空洞部9の上方において圧電層83上に、IDT電極84が設けられている。IDT電極84の弾性波伝搬方向両側に、反射器85,86が設けられている。図12において、空洞部9の外周縁を破線で示す。ここでは、IDT電極84は、第1,第2のバスバー84a,84bと、複数本の第1の電極指としての電極84c及び複数本の第2の電極指としての電極84dとを有する。複数本の電極84cは、第1のバスバー84aに接続されている。複数本の電極84dは、第2のバスバー84bに接続されている。複数本の電極84cと、複数本の電極84dとは間挿し合っている。
 弾性波装置81では、上記空洞部9上のIDT電極84に、交流電界を印加することにより、板波としてのラム波が励振される。そして、反射器85,86が両側に設けられているため、上記ラム波による共振特性を得ることができる。
 このように、本開示の弾性波装置は、板波を利用するものであってもよい。
(第2の実施形態)
 第2の実施形態の弾性波装置について説明する。第2の実施形態においては、第1の実施形態と重複する内容については適宜、説明を省略する。第2の実施形態においては、第1の実施形態で説明した内容を適用することができる。
 図13は、本開示の第2の実施形態に係る弾性波装置の概略平面図である。図14は、電極付近の概略拡大図である。図15は、図14の弾性波装置をA-A線で切断した概略断面図である。図13~図15に示すように、弾性波装置100は、支持部材101、圧電層110及び共振子120を備える。支持部材101には、空洞部130が設けられており、共振子120には配線電極140が接続されている。
 支持部材101は、支持基板102及び中間層103を有する。例えば、支持部材101は、Siから成る支持基板102と、支持基板102に積層され、SiOxから成る中間層103との積層体から構成されている。なお、支持部材101は、支持基板102を有していればよく、中間層103を有していなくてもよい。本明細書では、中間層103は接合層103と称してもよい。
 支持基板102は、第1方向D11に厚みを有する基板である。本明細書では、「第1方向」とは、支持基板102の厚み方向であり、支持部材101と圧電層110とが積層する積層方向を意味する。
 支持部材101には、空洞部130が設けられている。本明細書では、「空洞部」を「空間部」と称してもよい。
 空洞部130は、支持部材101と圧電層110との間に設けられている。即ち、空洞部130は、支持部材101と圧電層110とによって画定される空間である。本実施形態では、空洞部130は、中間層103に設けられている。具体的には、中間層103において支持基板102と接する面と反対側の面に開口する凹部が設けられている。当該凹部が圧電層110で覆われることによって、空洞部130が形成されている。
 なお、空洞部130は、支持部材101の一部に設けられていればよく、支持基板102に設けられず、中間層103に設けられていてもよい。あるいは、支持部材101が中間層103を有していない場合、空洞部130は支持基板102に設けられていてもよい。
 圧電層110は、支持部材101上に設けられている。圧電層110は、支持部材101の第1方向D11に積層されている。本実施形態では、圧電層110は、中間層103上に設けられている。具体的には、中間層103において支持基板102と接する面と反対側の面に圧電層110が設けられている。
 本明細書では、第1方向D11に平面視して、空洞部130と重なる領域に位置する圧電層110の部分をメンブレン部111と称する。なお、「第1方向D11に平面視して」とは、支持部材101と圧電層110との積層方向から見ることを意味する。
 空洞部130は、第1方向D11に平面視して共振子120の少なくとも一部と重なる位置で支持部材101に設けられていればよい。
 圧電層110は、例えば、LiNbOx又はLiTaOxからなる。言い換えると、圧電層110は、ニオブ酸リチウム又はタンタル酸リチウムからなる。圧電層110の厚みは中間層103の厚みよりも薄い。
 共振子120は、圧電層110上に設けられる機能電極を有する。本明細書では、機能電極を電極部と称してもよい。本実施形態では、機能電極は、IDT電極である。IDT電極は、対向する第1バスバー121及び第2バスバー122と、第1バスバー121に接続される複数の第1電極指123と、第2バスバー122に接続される複数の第2電極指124と、を有する。複数の第1電極指123と複数の第2電極指124とは互いに間挿し合っており、隣り合う第1電極指123と第2電極指124とは一対の電極組を構成している。
 複数の第1電極指123及び複数の第2電極指124は、第1方向D11に交差する第2方向D12に延びており、且つ、第2方向D12と直交する第3方向D13から見て重なり合って配置されている。第2方向D12は、圧電層110の面方向において、支持部材101と圧電層110とが積層する積層方向と交差する方向である。圧電層110の面方向とは、第1方向D11に平面視して、圧電層110の表面の延びる方向である。第3方向D13は、第1方向D11に平面視して、第2方向D12と直交する方向であり、複数の第1電極指123と複数の第2電極指124とが並ぶ方向である。即ち、第3方向D13は、隣り合う複数の第1電極指123と複数の第2電極指124とが対向している対向方向である。
 第1方向D11から見て、複数の第1電極指123及び複数の第2電極指124は、互いに隣り合って対向して配置されている。また、第3方向D13から見て、複数の第1電極指123及び複数の第2電極指124は、互いに重なって配置されている。即ち、複数の第1電極指123及び複数の第2電極指124は、第3方向D13において互い違いに配置されている。具体的には、隣り合う第1電極指123と第2電極指124とが対向して配置され、一対の電極組を構成している。共振子120においては、複数の電極組が第3方向D13に配置されている。
 複数の第1電極指123は、第1方向D11に交差する第2方向D12に延びる。複数の第1電極指123の基端は、第1バスバー121に接続される。複数の第2電極指124は、第2方向D12に直交する第3方向D13に複数の第1電極指123のいずれかと対向し、第2方向D12に延びる。複数の第2電極指124の基端は、第2バスバー122に接続される。
 複数の第1電極指123及び複数の第2電極指124が第3方向D13に重なり合って配置される領域は、励振領域C1となっている。即ち、励振領域C1は、隣り合う第1電極指123と第2電極指124とが対向する方向、即ち、第3方向D13に見たときに、複数の第1電極指123及び複数の第2電極指124が重なっている領域である。本明細書では、励振領域C1を交差領域C1と称してもよい。
 IDT電極は、第1方向D11に平面視して、空洞部130と重なる位置で圧電層110上に設けられている。具体的には、空洞部130は、第1方向D11に平面視して、後述する第1バスバー121の一部、第2バスバー122の一部、複数の第1電極指123及び複数の第2電極指124と重なる位置に設けられている。言い換えると、IDT電極は、メンブレン部111に設けられている。なお、IDT電極は、第1方向D11に平面視して、メンブレン部111の少なくとも一部に設けられていればよい。
 図13に示すように、IDT電極は、配線電極140に接続されている。具体的には、配線電極140は、第1バスバー121と第2バスバー122とに設けられている。配線電極140は、第1バスバー121と第2バスバー122とにそれぞれ電気的に接続されている。
 第1方向D11に平面視して、配線電極140は、第1バスバー121と第2バスバー122とにそれぞれ重なるように配置されている。
 なお、配線電極140は、第1バスバー121又は第2バスバー122のうち少なくとも一方に配置されていればよい。
 また、圧電層110上には、IDT電極を覆うように誘電体膜が設けられていてもよい。なお、誘電体膜は必ずしも設けられていなくてもよい。
 圧電層110には、空洞部130に至る複数の貫通孔112が設けられている。複数の貫通孔112は、第1方向D11に平面視して、第3方向D13においてIDT電極の両外側に設けられている。複数の貫通孔112は、引き出し部131を介して空洞部130と連通している。
 引き出し部131は、貫通孔112と空洞部130とを連通する経路である。引き出し部131は、第1方向D11に平面視して、貫通孔112と重なる位置に設けられている。また、引き出し部131の幅は、空洞部130の幅よりも小さい。ここで、引き出し部131の幅とは、第1方向D11に平面視して、第2方向D12における引き出し部131の寸法を意味する。また、空洞部130の幅とは、第1方向D11に平面視して、第2方向D12における空洞部130の寸法を意味する。
 複数の貫通孔112は、第1方向D11に平面視して、交差領域C1の外であって、第1仮想ラインL1と、第2仮想ラインL2と、の間を除く位置に設けられている。第1仮想ラインL1は、第1方向D11に平面視して、複数の第1電極指123の先端123aを通って第3方向D13に延びる仮想直線である。第2仮想ラインL2は、第1方向D11に平面視して、複数の第2電極指124の先端124aを通って第3方向D13に延びる仮想直線である。これにより、第3方向D13から見て、複数の貫通孔112が交差領域C1と重ならない位置に設けられる。
 本実施形態では、複数の貫通孔112は、第1方向D11に平面視して、IDT電極を挟んで配置される第1貫通孔112Aおよび第2貫通孔112Bを含む。
 第1貫通孔112Aは、第1方向D11に平面視して、第2仮想ラインL2よりも第1バスバー121側に設けられている。具体的には、第1貫通孔112Aは、第2方向D12において第2仮想ラインL2と第1バスバー121の延長ラインとの間に設けられている。また、第1貫通孔112Aは、交差領域C1の外であって、第1バスバー121の延長ラインの内側に設けられる。第1バスバー121の延長ラインとは、第1方向D11に平面視して、第1バスバー121の長手方向(第3方向D13)に延長したラインである。
 第2貫通孔112Bは、第1方向D11に平面視して、第1仮想ラインL1よりも第2バスバー122側に設けられている。具体的には、第2貫通孔112Bは、第2方向D12において第1仮想ラインL1と第2バスバー122の延長ラインとの間に設けられている。また、第2貫通孔112Bは、交差領域C1の外であって、第2バスバー122の延長ラインの内側に設けられる。第2バスバー122の延長ラインとは、第1方向D11に平面視して、第2バスバー122の長手方向(第3方向D13)に延長したラインである。
 第1貫通孔112A及び第2貫通孔112Bは、それぞれ、第1電極指123及び第2電極指124に比べてメタライズされている面積が広い第1バスバー121及び第2バスバー122に近い領域に設けられている。第1バスバー121及び第2バスバー122の近傍は、圧電層110が撓まないように支え力が第1電極指123及び第2電極指124に比べて相対的に強い領域である。このように、第1貫通孔112A及び第2貫通孔112Bを第1バスバー121及び第2バスバー122の近傍に設けることによって、第1貫通孔112A及び第2貫通孔112Bにより圧電層110が撓むことを抑制できる。これにより、圧電層110が空洞部130の底面にスティッキングすることを抑制できる。
 第1方向D11に平面視して、第1貫通孔112Aの開口面積は、第2貫通孔112Bの開口面積と等しい。第1貫通孔112A及び第2貫通孔112Bは、第1方向D11に平面視して、例えば、円形状を有する。
 なお、第1貫通孔112Aの開口面積は、第2貫通孔112Bの開口面積と異なっていてもよい。
 また、第1貫通孔112A及び第2貫通孔112Bは、それぞれ、引き出し部131を介して空洞部130と連通している。
 第3方向D13から見て、第1貫通孔112Aと第2貫通孔112Bとは、重ならない位置に設けられている。即ち、第1貫通孔112Aと第2貫通孔112Bとは、共振子120を間に挟んで対向しない位置に設けられている。言い換えれば、機能電極(IDT電極)を挟む複数の貫通孔112同士を結ぶ直線L10が、電極指の延びる第2方向D12に対して直交していなくてもよい。この場合、機能電極の中心を通る線L10に対して複数の貫通孔112が対称に配置されやすくなるため、より圧電層が均一にたわみやすくなり、特性劣化を抑制しやすくなる。また、機能電極により励振され、電極指の並ぶ第3方向D13に伝搬する不要波が複数の貫通孔112に衝突して散乱しやすくなるため、不要波による特性劣化を抑制しやすくなる。
 本実施形態の弾性波装置100によれば、第1方向D11に厚み方向を有する支持基板102を含む支持部材101と、第1方向D11において支持部材101上に設けられる圧電層110と、第1方向D11において圧電層110に設けられるIDT電極と、を備える。支持部材101には、第1方向D11に平面視して、IDT電極の少なくとも一部と重なる位置で空洞部130が設けられている。圧電層110には、空洞部130に至る貫通孔112が設けられている。IDT電極は、第1バスバー121と、第1バスバー121に対向する第2バスバー122と、第1バスバー121に設けられ、第2バスバー122に向かって延びる複数の第1電極指123と、第2バスバー122に設けられ、第1バスバー121に向かって延びる複数の第2電極指124と、を有する。第1方向D11から見て、複数の第1電極指123及び複数の第2電極指124は、互いに隣り合って対向して配置されている。隣り合う複数の第1電極指123及び複数の第2電極指124の対向している第3方向D13から見て、複数の第1電極指123及び複数の第2電極指124は、重なって配置されている。貫通孔112は、第1方向D11に平面視して、複数の第1電極指123の先端123aを通る第1仮想ラインL1と、複数の第2電極指124の先端124aを通る第2仮想ラインL2と、の間を除く位置に設けられている。
 このような構成により、弾性波装置100の特性の劣化を抑制できる。弾性波装置100では、第1方向D11に平面視して、貫通孔112が第1仮想ラインL1と第2仮想ラインL2との間を除く位置に設けられている。これにより、圧電層110が撓みにくい位置に貫通孔112を設けることができる。例えば、第1バスバー121又は第2バスバー122の近くに貫通孔112を設けることができる。第1バスバー121及び第2バスバー122の近傍は、圧電層110を支える力がかかりやすく、圧電層110が撓みにくい領域である。弾性波装置100によれば、圧電層110が撓みにくい領域に貫通孔112を設けることができるため、貫通孔112を設けたことによる圧電層110の撓みを抑制できる。その結果、圧電層110が撓んで空洞部130の底面にスティッキングすることを抑制でき、弾性波装置100の特性の劣化を抑制できる。
 また、貫通孔112を設けることによって、IDT電極から発生する不要波を低減することができる。具体的には、IDT電極から発生する不要波は、貫通孔112に衝突して散乱するため、不要波が漏洩することを抑制できる。
 貫通孔112は、第1方向D11に平面視して、IDT電極を挟んで配置される第1貫通孔112Aおよび第2貫通孔11Bを含む。このような構成により、IDT電極から発生する不要波を第1貫通孔112A及び第2貫通孔112Bに衝突させて散乱させることができる。これにより、不要波が漏洩することをより抑制でき、弾性波装置100の特性の劣化を抑制できる。
 第3方向D13から見て、第1貫通孔112Aと第2貫通孔112Bは重ならない位置に設けられている。このような構成により、圧電層110の撓みが均一となりやすく、特性劣化を抑制しやすくなる。また、IDT電極により励振され、複数の第1電極指123及び複数の第2電極指124の並ぶ第3方向D13に伝搬する不要波が第1貫通孔112A及び第2貫通孔112Bに衝突して散乱し、不要波による特性劣化を抑制しやすくなる。
 弾性波装置100は、第1バスバー121又は第2バスバー122のうち少なくとも一方に設けられる配線電極140を備える。このような構成により、配線電極140によって圧電層110を支える力が増え、第1バスバー121又は第2バスバー122の近傍における圧電層110の撓みを抑制できる。これにより、弾性波装置100の特性の劣化をより抑制できる。
 支持部材101には、空洞部130と貫通孔112とを連通する引き出し部131が設けられている。このような構成により、引き出し部131により空洞部130と貫通孔112とを連通できるため、貫通孔112を設ける位置の自由度を向上させることができる。例えば、第1方向D11に平面視して、励振領域C1(交差領域C1)から離れて貫通孔112を設けることができる。これにより、貫通孔112による圧電層110の撓みの発生を抑制できる。
 なお、本実施形態では、共振子120の両外側にそれぞれ、第1貫通孔112Aと第2貫通孔112Bが設けられる例について説明したが、これに限定されない。例えば、共振子120の少なくともいずれか一方の外側に1つ以上の貫通孔112が設けられていてもよい。
 また、本実施形態では、第1方向D11に平面視して、空洞部130が第1バスバー121及び第2バスバー122と重なる位置に設けられている例について説明したが、これに限定されない。例えば、第1方向D11に平面視して、空洞部130は、第1バスバー121及び第2バスバー122と重ならない位置に設けられていてもよい。
 また、貫通孔112は、例えば、エッチング液を導入するエッチングホールとしても使用できる。
 なお、本実施形態では、圧電層110上にIDT電極が設けられている例について説明したが、これに限定されない。IDT電極は、第1方向D11において圧電層110に設けられていればよい。例えば、IDT電極は、圧電層110において空洞部130が設けられている側に設けられていてもよい。
 以下、第2の実施形態の変形例について説明する。
<変形例1>
 図16は、変形例1の弾性波装置の電極付近の概略拡大図である。図16に示すように、弾性波装置100Aにおいては、貫通孔112Cの形状が異なる点で、第2の実施形態の弾性波装置100と異なる。
 弾性波装置100Aにおいて、貫通孔112Cは、第1方向D11に平面視して、矩形状を有している。また、第1方向D11に平面視して、貫通孔112Cは、引き出し部131の幅よりも大きい。
 このような構成においても、圧電層110の撓みを抑制でき、弾性波装置100の特性の劣化を抑制できる。
 なお、貫通孔112Cは、第1方向D11に平面視して、例えば、三角形状、円弧状、多角形状又は楕円形状等を有していてもよい。
 また、貫通孔112Cの一部は、第1仮想ラインL1及び/又は第2仮想ラインL2に跨っていてもよい。
<変形例2>
 図17は、変形例2の弾性波装置の電極付近の概略拡大図である。図17に示すように、弾性波装置100Bにおいては、引き出し部131が設けられていない点で、第2の実施形態の弾性波装置100と異なる。
 弾性波装置100Bにおいて、貫通孔112は、第1方向D11に平面視して、空洞部130と重なる位置に設けられている。貫通孔112は、第1方向D11に平面視して、交差領域C1の外であって、第1バスバー121と第2バスバー122との間に設けられている。即ち、貫通孔112は、交差領域C1の外であって、第1バスバー121の内側、且つ第2バスバー122の内側に設けられている。貫通孔112は、複数の電極指123,124の間の領域に設けられていない。具体的には、第1貫通孔112Aは、第1方向D11に平面視して、第1仮想ラインL1と第2バスバー122との間に設けられている。第2貫通孔112Bは、第2仮想ラインL2と第1バスバー121との間に設けられている。言い換えると、複数の貫通孔112A,112Bは、それぞれ、第1電極指123の先端123aと第2バスバー122との間のギャップ領域、及び、第2電極指124の先端124aと第1バスバー121との間のギャップ領域に設けられている。
 このような構成により、貫通孔112を交差領域C1の近傍に設けやすくなるため、貫通孔112まで引き回す引き出し部131を設けなくてもよく、より省スペース化できる。また、簡素な構成で、圧電層110の撓みを抑制できると共に、交差領域C1から発生する不要波を貫通孔112によって散乱することができる。これにより、製造コストを低減しつつ、弾性波装置100Bの特性の劣化を抑制できる。
 なお、貫通孔112は、第1方向D11に平面視して、第1仮想ラインL1と第2バスバー122との間、又は第2仮想ラインL2と第1バスバー121との間、のうち少なくとも一方に設けられてればよい。
<変形例3>
 図18は、変形例3の弾性波装置の電極付近の概略拡大図である。図18に示すように、弾性波装置100Cにおいては、第3方向D13から見て、第1貫通孔112Aと第2貫通孔112Bとが重なっている点で、変形例2の弾性波装置100Bと異なる。
 弾性波装置100Cにおいて、第3方向D13から見て、第1貫通孔112Aは、第2貫通孔112Bと重なっている。即ち、第1貫通孔112Aと第2貫通孔112Bとは、共振子120を挟んで対向している。具体的には、第1貫通孔112A及び第2貫通孔112Bは、第1方向D11に平面視して、第1仮想ラインL1と第2バスバー122との間に設けられている。
 このような構成においても、圧電層110の撓みを抑制しつつ、不要波の伝播を抑制できる。これにより、弾性波装置100Cの特性の劣化を抑制できる。
 なお、第1貫通孔112A及び第2貫通孔112Bは、第1方向D11に平面視して、第2仮想ラインL2と第1バスバー121との間に設けられていてもよい。
 また、第3方向D13から見て、第1貫通孔112Aの少なくとも一部が、第2貫通孔112Bと重なっていてもよい。
<変形例4>
 図19は、変形例4の弾性波装置の電極付近の概略拡大図である。図19に示すように、弾性波装置100Dにおいては、第2方向D12において第2貫通孔112Bが第1バスバー121の外側に設けられている点で、第2の実施形態の弾性波装置100と異なる。
 弾性波装置100Dにおいて、第2貫通孔112Bは、第1方向D11に平面視して、第2方向D12において第1バスバー121の外側に設けられている。具体的には、第1バスバー121は、第1方向D11に平面視して、第2貫通孔112Bと空洞部130との間に配置されている。第2貫通孔112Bと空洞部130とを連通する引き出し部131は、第1方向D11に平面視して、第1バスバー121と重なる位置に設けられており、第2方向D12において第1バスバー121の外側に向かって延びている。
 このような構成により、第2貫通孔112Bによる圧電層110の撓みをより抑制できるため、弾性波装置100Dの特性の劣化をより抑制できる。
 なお、第1貫通孔112Aが、第1方向D11に平面視して、第2方向D12において第2バスバー122の外側に設けられてもよい。即ち、第2バスバー122は、第1方向D11に平面視して、第1貫通孔112Aと空洞部130との間に設けられてもよい。
<変形例5>
 図20は、変形例5の弾性波装置の電極付近の概略拡大図である。図20に示すように、弾性波装置100Eにおいては、第3方向D13から見て、第2貫通孔112Bが第1バスバー121と重なる位置に設けられている点で、第2の実施形態の弾性波装置100と異なる。
 弾性波装置100Eにおいて、第2貫通孔112Bは、第3方向D13から見て、第1バスバー121と重なる位置に設けられている。第2貫通孔112Bと空洞部130とを連通する引き出し部131は、屈曲して設けられている。
 このような構成により、第2貫通孔112Bを第1バスバー121の近傍に設けることができるため、圧電層110の撓みをより抑制できる。
 なお、第3方向D13から見て、第2貫通孔112Bの少なくとも一部が第1バスバー121と重なっていてもよい。
 また、第3方向D13から見て、第1貫通孔112Aが第2バスバー122と重なる位置に設けられてもよい。
(第3の実施形態)
 第3の実施形態の弾性波装置について説明する。第3の実施形態においては、第1,2の実施形態と重複する内容については適宜、説明を省略する。第3の実施形態においては、第1,2の実施形態で説明した内容を適用することができる。
 図21は、本開示の第3の実施形態に係る弾性波装置の概略平面図である。図22は、本開示の第3の実施形態に係る弾性波装置の電極付近の概略拡大図である。図23は、図22の弾性波装置をB-B線で切断した概略断面図である。図21~図23に示すように、弾性波装置100Fにおいては、複数の第1電極指123の厚みおよび複数の第2電極指124の厚みが圧電層110の厚みの0.5倍以上であり、又、第3方向D13から見て、複数の貫通孔112が交差領域C1と重なる位置に設けられている点で、第2の実施形態の弾性波装置100と異なる。
 弾性波装置100Fにおいては、複数の第1電極指123の厚みおよび複数の第2電極指124の厚みは、圧電層110の厚みの0.5倍以上である。即ち、複数の第1電極指123及び複数の第2電極指124の膜厚は、圧電層110のうち第1方向D11に平面視して空洞部130と重なる領域の膜厚の半分以上である。
 これにより、弾性波装置100Fでは、交差領域C1において複数の第1電極指123及び複数の第2電極指124によって圧電層110を支える力が大きくなり、第2の実施形態の弾性波装置100に比べて、交差領域C1において圧電層110が撓むことを抑制できる。このため、交差領域C1の近傍に複数の貫通孔112を設けた場合であっても、貫通孔112による圧電層110の撓みを抑制できる。
 また、弾性波装置100Fにおいては、第1方向D11に平面視して、複数の貫通孔112は、交差領域C1の外であって、第1仮想ラインL1と第2仮想ラインL2との間に設けられている。
 複数の貫通孔112において、第3方向D13から見て、第1貫通孔112Aと第2貫通孔112Bとは重なる位置に設けられている。即ち、第1貫通孔112Aと第2貫通孔112Bとは、第1方向D11に平面視して、共振子120、即ち、IDT電極を挟んで対向するように設けられている。
 本実施形態の弾性波装置100Fによれば、貫通孔112は、第1方向D11に平面視して、第1仮想ラインL1と第2仮想ラインL2との間に設けられている。このような構成により、交差領域C1から発生した不要波が複数の貫通孔112に衝突して散乱しやすくなる。交差領域C1は不要波が発生しやすい領域であるため、第1仮想ラインL1と第2仮想ラインL2との間の領域では、交差領域C1から発生した不要波が他の領域と比べて伝播しやすい。このため、第1仮想ラインL1と第2仮想ラインL2との間の領域に貫通孔112を設けることによって、不要波の伝播をより抑制することができる。
 また、複数の第1電極指123の厚みおよび複数の第2電極指124の厚みは、圧電層110の厚みの0.5倍以上である。このような構成により、交差領域C1において複数の第1電極指123及び複数の第2電極指124によって圧電層110を支える力が大きくなり、圧電層110が撓むことをより抑制できる。
 なお、本実施形態では、複数の第1電極指123の厚みおよび複数の第2電極指124の厚みは、圧電層110の厚みの0.5倍以上である例について説明したが、これに限定されない。例えば、複数の第1電極指123および複数の第2電極指124が圧電層110が撓まない程度に圧電層110を支えることができる場合、複数の第1電極指123の厚みおよび複数の第2電極指124の厚みは、圧電層110の厚みに制限されなくてもよい。
 以下、第3の実施形態の変形例について説明する。
<変形例6>
 図24は、変形例6の弾性波装置の電極付近の概略拡大図である。図24に示すように、弾性波装置100Gにおいては、貫通孔112Dの形状が異なる点で、第3の実施形態の弾性波装置100Fと異なる。
 弾性波装置100Gにおいて、貫通孔112Dは、第1方向D11に平面視して、矩形状を有している。また、第1方向D11に平面視して、貫通孔112Dは、引き出し部131の幅よりも大きい。
 このような構成においても、圧電層110の撓みを抑制しつつ、不要波の伝播を抑制できる。
 なお、貫通孔112Dは、第1方向D11に平面視して、例えば、三角形状、円弧状、多角形状又は楕円形状等を有していてもよい。
 図25は、変形例6の別の弾性波装置の電極付近の概略拡大図である。図25に示すように、弾性波装置100Hでは、第1方向D11に平面視して、貫通孔112Dの一部は、第1仮想ラインL1及び第2仮想ラインL2に跨っていてもよい。このように、貫通孔112Dの開口面積を大きくすることによって、不要波の伝播をより抑制できる。
<変形例7>
 図26は、変形例7の弾性波装置の電極付近の概略拡大図である。図26に示すように、弾性波装置100Iにおいては、引き出し部131が設けられていない点で、第3の実施形態の弾性波装置100Fと異なる。
 弾性波装置100Iにおいて、貫通孔112は、第1方向D11に平面視して、空洞部130と重なる位置に設けられている。貫通孔112は、第1方向D11に平面視して、交差領域C1の外であって、第1バスバー121と第2バスバー122との間に設けられている。即ち、貫通孔112は、第1バスバー121の内側、且つ第2バスバー122の内側に設けられている。
 このような構成により、貫通孔112まで引き回す引き出し部131を設けなくてもよく、より省スペース化できる。また、貫通孔112を交差領域C1に近づけて設けているため、交差領域C1から発生する不要波を貫通孔112によってより散乱しやすくなる。
<変形例8>
 図27は、変形例8の弾性波装置の電極付近の概略拡大図である。図27に示すように、弾性波装置100Jにおいては、第1方向D11に平面視して、第2貫通孔112Bが第1仮想ラインL1と第2仮想ラインL2との間に設けられていない点で、第3の実施形態の弾性波装置100Fと異なる。
 弾性波装置100Jにおいて、第1方向D11に平面視して、第1貫通孔112Aが第1仮想ラインL1と第2仮想ラインL2との間に設けられている一方、第2貫通孔112Bは第2仮想ラインL2と第1バスバー121との間のギャップ領域に設けられている。
 このように、第1方向D11に平面視して少なくとも1つの貫通孔112が、第1仮想ラインL1と第2仮想ラインL2との間に設けられていれば、不要波の伝播を抑制できる。
<変形例9>
 図28は、変形例9の弾性波装置の電極付近の概略拡大図である。図28に示すように、弾性波装置100Kにおいては、第3方向D13から見て、第1貫通孔112Aと第2貫通孔112Bとが重ならない位置に設けられている点で、第3の実施形態の弾性波装置100Fと異なる。
 弾性波装置100Kにおいては、IDT電極を挟む複数の貫通孔112同士を結ぶ直線が、複数の第1電極指123及び複数の第2電極指124の延びる第2方向D12に対して直交していない。この場合、IDT電極の中心を通る線L11に対して複数の貫通孔112が対称に配置されやすくなるため、より圧電層110が均一にたわみやすくなり、特性劣化を抑制しやすくなる。また、IDT電極により励振され、複数の第1電極指123及び複数の第2電極指124の並ぶ第3方向D13に伝搬する不要波が貫通孔112に衝突して散乱しやすくなるため、不要波による特性劣化を抑制しやすくなる。
(他の実施形態)
 以上のように、本出願において開示する技術の例示として、上記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施形態にも適用可能である。
(実施形態の概要)
 (1)本開示の弾性波装置は、厚み方向を有する支持基板を含む支持部材と、厚み方向において支持部材上に設けられる圧電層と、厚み方向において圧電層に設けられるIDT電極と、を備え、支持部材には、厚み方向に平面視して、IDT電極の少なくとも一部と重なる位置で空洞部が設けられ、圧電層には、空洞部に至る貫通孔が設けられており、IDT電極は、第1バスバーと、第1バスバーに対向する第2バスバーと、第1バスバーに設けられ、第2バスバーに向かって延びる複数の第1電極指と、第2バスバーに設けられ、第1バスバーに向かって延びる複数の第2電極指と、を有し、複数の第1電極指及び複数の第2電極指は、互いに隣り合って対向して配置されており、隣り合う複数の第1電極指と複数の第2電極指とが対向している対向方向から見て、複数の第1電極指及び複数の第2電極指は互いに重なって配置されており、貫通孔は、厚み方向に平面視して、複数の第1電極指の先端を通る第1仮想ラインと、複数の第2電極指の先端を通る第2仮想ラインと、の間を除く位置に設けられている。
 (2)(1)の弾性波装置において、貫通孔は、厚み方向に平面視して、IDT電極を挟んで配置される第1貫通孔および第2貫通孔を含んでいてもよい。
 (3)(2)の弾性波装置は、対向方向から見て、第1貫通孔と第2貫通孔は重ならない位置に設けられていてもよい。
 (4)(1)~(3)のいずれかの弾性波装置において、第1バスバーと第2バスバーとのうち少なくとも一方に設けられる配線電極を備えてもよい。
 (5)(1)~(4)のいずれかの弾性波装置において、貫通孔は、厚み方向に平面視して、IDT電極の外側に設けられていてもよい。
 (6)(5)の弾性波装置において、支持部材には、空洞部と貫通孔とを連通する引き出し部が設けられていてもよい。
 (7)(1)~(6)のいずれかの弾性波装置において、貫通孔は、第1仮想ラインの延長ラインと第2バスバーの延長ラインとの間、又は第2仮想ラインと第1バスバーとの間、のうち少なくとも一方に設けられていてもよい。
 (8)(7)の弾性波装置において、対向方向から見て、複数の第1電極指と複数の第2電極指とが重なっている領域が交差領域であり、貫通孔は、交差領域外であって、第1バスバーの延長ラインの内側、且つ第2バスバーの延長ラインの内側に設けられてもよい。
 (9)(1)~(6)のいずれかの弾性波装置において、第1バスバー又は第2バスバーのうち少なくとも一方は、厚み方向に平面視して貫通孔と空洞部との間に配置されていてもよい。
 (10)(1)~(9)のいずれかの弾性波装置において、圧電層は、ニオブ酸リチウムまたはタンタル酸リチウムから成っていてもよい。
 (11)(1)~(10)のいずれかの弾性波装置において、圧電層の膜厚をd、複数の第1電極指及び複数の第2電極指のうち隣り合う電極指どうしの中心間距離をpとする場合、d/pが0.5以下であってもよい。
 (12)(11)の弾性波装置において、d/pが0.24以下であってもよい。
 (13)(1)~(12)のいずれかの弾性波装置において、隣り合う複数の第1電極指と複数の第2電極指とが対向している対向方向に視たときに複数の第1電極指と複数の第2電極指とが重なっている領域が交差領域であり、交差領域に対する、複数の第1電極指及び複数の第2電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たしていてもよい。
 (14)(1)~(13)のいずれかの弾性波装置において、支持部材は、支持基板上に設けられる中間層を有し、空洞部は、中間層に設けられていてもよい。
 (15)(1)~(14)のいずれかの弾性波装置において、空洞部は、支持基板に設けられていてもよい。
 (16)(1)~(15)のいずれかの弾性波装置において、主要波として、厚み滑りモードのバルク波を利用可能な構成となっていてもよい。
 (17)(10)の弾性波装置において、ニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にあってもよい。
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
 (18)本開示の弾性波装置は、支持基板を有する支持部材と、支持部材上に設けられる圧電層と、圧電層に設けられるIDT電極と、を備え、支持部材には、平面視においてIDT電極の一部と重なる位置で圧電層側に開口する空洞部が設けられ、圧電層には、空洞部に至る貫通孔が設けられており、IDT電極は、第1バスバーと、第1バスバーに対向する第2バスバーと、第1バスバーに設けられ、第2バスバーに向かって延びる複数の第1電極指と、第2バスバーに設けられ、第1バスバーに向かって延びる複数の第2電極指と、を有し、複数の第1電極指及び複数の第2電極指が延びる方向と直交する方向から見て、複数の第1電極指と複数の第2電極指とは交互に重なり合って配置されており、貫通孔は、支持部材と圧電層との積層方向の平面視で、複数の第1電極指の先端を通る第1仮想ラインと、複数の第2電極指の先端を通る第2仮想ラインと、の間に設けられている。
 (19)(18)の弾性波装置において、複数の第1電極指の厚みおよび複数の第2電極指の厚みは、圧電層の厚みの0.5倍以上であってもよい。
 (20)(18)又は(19)の弾性波装置において、貫通孔は、平面視で、IDT電極の外側に設けられていてもよい。
 (21)(20)の弾性波装置において、支持部材には、空洞部と貫通孔とを連通する引き出し部が設けられていてもよい。
 (22)(18)~(21)のいずれかの弾性波装置において、貫通孔は、平面視で、IDT電極を挟んで配置される第1貫通孔および第2貫通孔を含んでいてもよい。
 (23)(22)の弾性波装置において、複数の第1電極指及び複数の第2電極指が延びる方向と直交する方向から見て、第1貫通孔と第2貫通孔は重ならない位置に設けられていてもよい。
 (24)(18)~(23)のいずれかの弾性波装置において、圧電層は、ニオブ酸リチウムまたはタンタル酸リチウムであってもよい。
 (25)(18)~(24)のいずれかの弾性波装置において、圧電層の膜厚をd、複数の第1電極指及び複数の第2電極指のうち隣り合う電極指どうしの中心間距離をpとする場合、d/pが0.5以下であってもよい。
 (26)(18)~(25)のいずれかの弾性波装置において、支持部材は、支持基板上に設けられる中間層を有し、空洞部は、中間層に設けられていてもよい。
 (26)(18)~(25)のいずれかの弾性波装置において、空洞部は、支持基板に設けられていてもよい。
 (27)(24)の弾性波装置において、ニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にあってもよい。
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)

Claims (17)

  1.  厚み方向を有する支持基板を含む支持部材と、
     前記厚み方向において前記支持部材上に設けられる圧電層と、
     前記厚み方向において前記圧電層に設けられるIDT電極と、
    を備え、
     前記支持部材には、前記厚み方向に平面視して、前記IDT電極の少なくとも一部と重なる位置で空洞部が設けられ、
     前記圧電層には、前記空洞部に至る貫通孔が設けられており、
     前記IDT電極は、第1バスバーと、前記第1バスバーに対向する第2バスバーと、前記第1バスバーに設けられ、前記第2バスバーに向かって延びる複数の第1電極指と、前記第2バスバーに設けられ、前記第1バスバーに向かって延びる複数の第2電極指と、を有し、
     前記複数の第1電極指及び前記複数の第2電極指は、互いに隣り合って対向して配置されており、隣り合う前記複数の第1電極指と前記複数の第2電極指とが対向している対向方向から見て、前記複数の第1電極指及び前記複数の第2電極指は互いに重なって配置されており、
     前記貫通孔は、前記厚み方向に平面視して、前記複数の第1電極指の先端を通る第1仮想ラインと、前記複数の第2電極指の先端を通る第2仮想ラインと、の間を除く位置に設けられている、
    弾性波装置。
  2.  前記貫通孔は、前記厚み方向に平面視して、前記IDT電極を挟んで配置される第1貫通孔および第2貫通孔を含む、
    請求項1に記載の弾性波装置。
  3.  前記対向方向から見て、前記第1貫通孔と前記第2貫通孔は重ならない位置に設けられている、
    請求項2に記載の弾性波装置。
  4.  前記第1バスバーと前記第2バスバーとのうち少なくとも一方に設けられる配線電極を備える、
    請求項1~3のいずれか一項に記載の弾性波装置。
  5.  前記貫通孔は、前記厚み方向に平面視して、前記IDT電極の外側に設けられている、
    請求項1~4のいずれか一項に記載の弾性波装置。
  6.  前記支持部材には、前記空洞部と前記貫通孔とを連通する引き出し部が設けられている、
    請求項5に記載の弾性波装置。
  7.  前記貫通孔は、前記第1仮想ラインと前記第2バスバーの延長ラインとの間、又は前記第2仮想ラインと前記第1バスバーの延長ラインとの間、のうち少なくとも一方に設けられている、
    請求項1~6のいずれか一項に記載の弾性波装置。
  8.  前記対向方向から見て、前記複数の第1電極指と前記複数の第2電極指とが重なっている領域が交差領域であり、
     前記貫通孔は、前記交差領域外であって、前記第1バスバーの延長ラインの内側、且つ前記第2バスバーの延長ラインの内側に設けられる、
    請求項7に記載の弾性波装置。
  9.  前記第1バスバー又は前記第2バスバーとのうち少なくとも一方は、前記厚み方向に平面視して前記貫通孔と前記空洞部との間に配置されている、
    請求項1~6のいずれか一項に記載の弾性波装置。
  10.  前記圧電層は、ニオブ酸リチウムまたはタンタル酸リチウムから成る、
    請求項1~9のいずれか一項に記載の弾性波装置。
  11.  前記圧電層の膜厚をd、前記複数の第1電極指及び前記複数の第2電極指のうち隣り合う電極指どうしの中心間距離をpとする場合、d/pが0.5以下である、
    請求項1~10のいずれか一項に記載の弾性波装置。
  12.  d/pが0.24以下である、請求項11に記載の弾性波装置。
  13.  隣り合う前記複数の第1電極指と前記複数の第2電極指とが対向している対向方向に視たときに前記複数の第1電極指と前記複数の第2電極指とが重なっている領域が交差領域であり、前記交差領域に対する、前記複数の第1電極指及び前記複数の第2電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす、
    請求項1~12のいずれか一項に記載の弾性波装置。
  14.  前記支持部材は、前記支持基板上に設けられる中間層を有し、
     前記空洞部は、前記中間層に設けられている、
    請求項1~13のいずれか一項に記載の弾性波装置。
  15.  前記空洞部は、前記支持基板に設けられている、
    請求項1~14のいずれか一項に記載の弾性波装置。
  16.  主要波として、厚み滑りモードのバルク波を利用可能な構成となっている、
    請求項1~15のいずれか一項に記載の弾性波装置。
  17.  前記ニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、請求項10に記載の弾性波装置。
     (0°±10°,0°~20°,任意のψ)  …式(1)
     (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
PCT/JP2022/016845 2021-03-31 2022-03-31 弾性波装置 WO2022211087A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163168302P 2021-03-31 2021-03-31
US63/168,302 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022211087A1 true WO2022211087A1 (ja) 2022-10-06

Family

ID=83459653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016845 WO2022211087A1 (ja) 2021-03-31 2022-03-31 弾性波装置

Country Status (1)

Country Link
WO (1) WO2022211087A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147875A (ja) * 2008-12-19 2010-07-01 Panasonic Electric Works Co Ltd Baw共振装置およびその製造方法
JP2010233210A (ja) * 2009-03-03 2010-10-14 Nippon Dempa Kogyo Co Ltd 弾性波デバイス及び電子部品
JP2012257019A (ja) * 2011-06-08 2012-12-27 Murata Mfg Co Ltd 弾性波装置
JP2013528996A (ja) * 2010-04-23 2013-07-11 テクノロジアン テュトキムスケスクス ヴェーテーテー 広帯域音響結合薄膜bawフィルタ
JP2014013991A (ja) * 2012-07-04 2014-01-23 Taiyo Yuden Co Ltd ラム波デバイスおよびその製造方法
JP2016086308A (ja) * 2014-10-27 2016-05-19 株式会社村田製作所 圧電共振器、及び圧電共振器の製造方法
WO2016098526A1 (ja) * 2014-12-18 2016-06-23 株式会社村田製作所 弾性波装置及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147875A (ja) * 2008-12-19 2010-07-01 Panasonic Electric Works Co Ltd Baw共振装置およびその製造方法
JP2010233210A (ja) * 2009-03-03 2010-10-14 Nippon Dempa Kogyo Co Ltd 弾性波デバイス及び電子部品
JP2013528996A (ja) * 2010-04-23 2013-07-11 テクノロジアン テュトキムスケスクス ヴェーテーテー 広帯域音響結合薄膜bawフィルタ
JP2012257019A (ja) * 2011-06-08 2012-12-27 Murata Mfg Co Ltd 弾性波装置
JP2014013991A (ja) * 2012-07-04 2014-01-23 Taiyo Yuden Co Ltd ラム波デバイスおよびその製造方法
JP2016086308A (ja) * 2014-10-27 2016-05-19 株式会社村田製作所 圧電共振器、及び圧電共振器の製造方法
WO2016098526A1 (ja) * 2014-12-18 2016-06-23 株式会社村田製作所 弾性波装置及びその製造方法

Similar Documents

Publication Publication Date Title
WO2021060523A1 (ja) 弾性波装置及びフィルタ装置
WO2023002858A1 (ja) 弾性波装置及びフィルタ装置
WO2022044869A1 (ja) 弾性波装置
US20240154595A1 (en) Acoustic wave device
WO2023223906A1 (ja) 弾性波素子
WO2023013742A1 (ja) 弾性波装置
WO2023002790A1 (ja) 弾性波装置
WO2022138328A1 (ja) 弾性波装置
WO2022211087A1 (ja) 弾性波装置
WO2022210378A1 (ja) 弾性波装置
WO2023210762A1 (ja) 弾性波素子
WO2023145878A1 (ja) 弾性波装置
WO2023191089A1 (ja) 弾性波装置
WO2023140362A1 (ja) 弾性波装置および弾性波装置の製造方法
WO2023191070A1 (ja) 弾性波装置
WO2023167316A1 (ja) 弾性波装置
WO2023204272A1 (ja) 弾性波装置
WO2023210764A1 (ja) 弾性波素子および弾性波装置
WO2023058755A1 (ja) 弾性波装置および弾性波装置の製造方法
WO2023140327A1 (ja) 弾性波装置
WO2022211055A1 (ja) 弾性波装置
WO2023054703A1 (ja) 弾性波装置
WO2023140272A1 (ja) 弾性波装置
WO2022264914A1 (ja) 弾性波装置
WO2022211104A1 (ja) 弾性波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781296

Country of ref document: EP

Kind code of ref document: A1