WO2022211055A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2022211055A1
WO2022211055A1 PCT/JP2022/016660 JP2022016660W WO2022211055A1 WO 2022211055 A1 WO2022211055 A1 WO 2022211055A1 JP 2022016660 W JP2022016660 W JP 2022016660W WO 2022211055 A1 WO2022211055 A1 WO 2022211055A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave device
electrode
elastic wave
piezoelectric layer
intermediate layer
Prior art date
Application number
PCT/JP2022/016660
Other languages
English (en)
French (fr)
Inventor
勝己 鈴木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022211055A1 publication Critical patent/WO2022211055A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present disclosure relates to an acoustic wave device having a piezoelectric layer.
  • Patent Document 1 discloses an acoustic wave device including a support substrate, a thin film, a piezoelectric substrate, and an IDT electrode.
  • the support substrate has a recess on its top surface.
  • a thin film is disposed on a support substrate.
  • the piezoelectric substrate has a first main surface and a second main surface facing the first main surface, and the first main surface side is arranged on the thin film.
  • the IDT electrodes are provided on the second main surface of the piezoelectric substrate.
  • a cavity surrounded by the supporting substrate and at least the thin film out of the thin film and the piezoelectric substrate is formed.
  • a thin film is disposed in a region on the first main surface of the piezoelectric substrate, which is bonded to the support substrate via the thin film, and in at least a partial region of the region above the cavity.
  • the present disclosure provides an acoustic wave device with improved strength by preventing cracks in the piezoelectric layer.
  • An elastic wave device includes: a support substrate having a cavity formed therein; an intermediate layer laminated on the support substrate and having a first main surface on the side of the support substrate and a second main surface opposite to the first main surface; a piezoelectric layer laminated on the second main surface of the intermediate layer; a functional electrode formed in the piezoelectric layer at a position overlapping the hollow portion in a plan view in a lamination direction of the support substrate and the piezoelectric layer; with The intermediate layer communicates with the hollow portion at a position overlapping the hollow portion in a plan view in the lamination direction of the supporting substrate and the piezoelectric layer, and has an opening on the side of the supporting substrate located closer to the opening of the hollow portion.
  • a large communicating hole is formed, at least a part of the inner wall of the support substrate defining the cavity protrudes inwardly from the inner wall of the intermediate layer defining the communication hole; At least part of the inner wall of the intermediate layer that defines the communication hole is inclined in a direction in which the opening area of the communication hole increases from the support substrate toward the piezoelectric layer.
  • FIG. 1 is a schematic perspective view showing the appearance of elastic wave devices according to first and second aspects;
  • FIG. Plan view showing the electrode structure on the piezoelectric layer Sectional view of the part along the AA line in FIG. 1A Schematic front sectional view for explaining a Lamb wave propagating through a piezoelectric film of a conventional elastic wave device.
  • Schematic front cross-sectional view for explaining waves of the elastic wave device of the present disclosure Schematic diagram showing a bulk wave when a voltage is applied between the first electrode and the second electrode so that the potential of the second electrode is higher than that of the first electrode.
  • FIG. 4 is a diagram showing resonance characteristics of the elastic wave device according to the first embodiment of the present disclosure;
  • FIG. 4 is a diagram showing the relationship between d/2p and the fractional bandwidth as a resonator of an elastic wave device;
  • FIG. 2 is a reference diagram showing an example of resonance characteristics of an elastic wave device;
  • FIG. 10 is a diagram showing the relationship between the fractional bandwidth when a large number of elastic wave resonators are configured and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious;
  • a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth A diagram showing a map of the fractional bandwidth with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0.
  • FIG. 1 is a partially cutaway perspective view for explaining an elastic wave device according to a first embodiment of the present disclosure
  • FIG. Schematic cross-sectional view of an elastic wave device according to a second embodiment of the present disclosure Schematic plan view of the elastic wave device of FIG. 13
  • Flowchart showing a method for manufacturing an elastic wave device Schematic cross-sectional view showing the manufacturing process of the acoustic wave device
  • Schematic cross-sectional view showing the manufacturing process of the acoustic wave device Schematic cross-sectional view showing the manufacturing process of the acoustic wave device
  • Schematic cross-sectional view showing the manufacturing process of the acoustic wave device Schematic cross-sectional view showing the manufacturing process of the acoustic wave device
  • Schematic cross-sectional view showing the manufacturing process of the acoustic wave device Schematic cross-sectional view showing the manufacturing process of the acoustic wave device
  • Schematic cross-sectional view showing the manufacturing process of the acoustic wave device Schematic cross-
  • Elastic wave devices include a piezoelectric layer made of lithium niobate or lithium tantalate, and a first electrode and a second electrode facing each other in a direction intersecting the thickness direction of the piezoelectric layer. and an electrode.
  • the first electrode and the second electrode are adjacent electrodes, the thickness of the piezoelectric layer is d, and the distance between the centers of the first electrode and the second electrode is p.
  • d/p is 0.5 or less.
  • Lamb waves are used as plate waves. Then, resonance characteristics due to the Lamb wave can be obtained.
  • An acoustic wave device includes a piezoelectric layer made of lithium niobate or lithium tantalate, and an upper electrode and a lower electrode facing each other in the thickness direction of the piezoelectric layer with the piezoelectric layer interposed therebetween.
  • FIG. 1A is a schematic perspective view showing the appearance of an acoustic wave device according to a first embodiment with respect to first and second aspects
  • FIG. 1B is a plan view showing an electrode structure on a piezoelectric layer
  • 2 is a cross-sectional view of a portion taken along line AA in FIG. 1A.
  • the acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may consist of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is Z-cut in this embodiment, but may be rotational Y-cut or X-cut.
  • the Y-propagation and X-propagation ⁇ 30° propagation orientations are preferred.
  • the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness-shear primary mode.
  • the piezoelectric layer 2 has first and second main surfaces 2a and 2b facing each other. Electrodes 3 and 4 are provided on the first main surface 2a.
  • the electrode 3 is an example of the "first electrode” and the electrode 4 is an example of the "second electrode”.
  • the multiple electrodes 3 are multiple first electrode fingers connected to a first busbar 5 .
  • the multiple electrodes 4 are multiple second electrode fingers connected to the second bus bar 6 .
  • the plurality of electrodes 3 and the plurality of electrodes 4 are interleaved with each other.
  • the electrodes 3 and 4 have a rectangular shape and a length direction.
  • the electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to the length direction.
  • These electrodes 3 and 4, the first bus bar 5 and the second bus bar 6 constitute an IDT (Interdigital Transducer) electrode.
  • IDT Interdigital Transducer
  • Both the length direction of the electrodes 3 and 4 and the direction orthogonal to the length direction of the electrodes 3 and 4 are directions crossing the thickness direction of the piezoelectric layer 2 . Therefore, it can be said that the electrode 3 and the adjacent electrode 4 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2 .
  • the length direction of the electrodes 3 and 4 may be interchanged with the direction orthogonal to the length direction of the electrodes 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrodes 3 and 4 may extend in the direction in which the first busbar 5 and the second busbar 6 extend. In that case, the first busbar 5 and the second busbar 6 extend in the direction in which the electrodes 3 and 4 extend in FIGS. 1A and 1B.
  • a plurality of pairs of structures in which an electrode 3 connected to one potential and an electrode 4 connected to the other potential are adjacent to each other are provided in a direction perpendicular to the length direction of the electrodes 3 and 4.
  • the electrodes 3 and 4 are adjacent to each other, it does not mean that the electrodes 3 and 4 are arranged so as to be in direct contact with each other, but that the electrodes 3 and 4 are arranged with a gap therebetween.
  • the electrode 3 and the electrode 4 are adjacent to each other, no electrode connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4, is arranged between the electrode 3 and the electrode 4.
  • the logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, or the like.
  • the center-to-center distance or pitch between the electrodes 3 and 4 is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less. Further, the center-to-center distance between the electrodes 3 and 4 means the center of the width dimension of the electrode 3 in the direction perpendicular to the length direction of the electrode 3 and the width dimension of the electrode 4 in the direction perpendicular to the length direction of the electrode 4.
  • the center-to-center distance between the electrodes 3 and 4 is 1. .
  • the width of the electrodes 3 and 4, that is, the dimension in the facing direction of the electrodes 3 and 4 is preferably in the range of 150 nm or more and 1000 nm or less.
  • center-to-center distance between the electrodes 3 and 4 means the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the distance between the center of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. It is the distance connecting the center of the dimension (width dimension) of
  • the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2 .
  • “perpendicular” is not limited to being strictly perpendicular, but substantially perpendicular (the angle formed by the direction perpendicular to the length direction of the electrodes 3 and 4 and the polarization direction is, for example, 90° ⁇ 10°). It's okay.
  • a supporting member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 interposed therebetween.
  • the insulating layer 7 and the support member 8 have a frame shape and, as shown in FIG. 2, have openings 7a and 8a.
  • a cavity 9 is thereby formed.
  • the cavity 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the support member 8 is laminated on the second main surface 2b with the insulating layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support member 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
  • the insulating layer 7 is made of silicon oxide. However, in addition to silicon oxide, suitable insulating materials such as silicon oxynitride and alumina can be used.
  • the support member 8 is made of Si. The plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111). Preferably, high-resistance Si having a resistivity of 4 k ⁇ or more is desirable. However, the support member 8 can also be constructed using an appropriate insulating material or semiconductor material.
  • Materials for the support member 8 include, for example, aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and steer.
  • Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
  • the plurality of electrodes 3, 4 and the first and second bus bars 5, 6 are made of appropriate metals or alloys such as Al, AlCu alloys.
  • the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesion layer other than the Ti film may be used.
  • an AC voltage is applied between the multiple electrodes 3 and the multiple electrodes 4 . More specifically, an AC voltage is applied between the first busbar 5 and the second busbar 6 . As a result, it is possible to obtain resonance characteristics using a thickness-shear primary mode bulk wave excited in the piezoelectric layer 2 .
  • d/p is 0.0, where d is the thickness of the piezoelectric layer 2 and p is the center-to-center distance between any one of the pairs of electrodes 3 and 4 adjacent to each other. 5 or less.
  • d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the center-to-center distance p of the electrodes 3 and 4 is the average distance between the center-to-center distances of each adjacent electrode 3 and 4 .
  • the elastic wave device 1 of the present embodiment has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in order to reduce the size, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides, and the propagation loss is small. The reason why the above reflector is not required is that the bulk wave of the thickness-shlip primary mode is used.
  • FIG. 3A is a schematic front cross-sectional view for explaining Lamb waves propagating through a piezoelectric film of a conventional elastic wave device.
  • a conventional elastic wave device is described, for example, in Japanese Unexamined Patent Publication No. 2012-257019.
  • waves propagate through the piezoelectric film 201 as indicated by arrows.
  • the first main surface 201a and the second main surface 201b face each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. is.
  • the X direction is the direction in which the electrode fingers of the IDT electrodes are arranged. As shown in FIG.
  • the wave propagates in the X direction as shown. Since it is a plate wave, although the piezoelectric film 201 as a whole vibrates, since the wave propagates in the X direction, reflectors are arranged on both sides to obtain resonance characteristics. Therefore, a wave propagation loss occurs, and the Q value decreases when miniaturization is attempted, that is, when the logarithm of the electrode fingers is decreased.
  • the wave is generated between the first main surface 2a and the second main surface 2a of the piezoelectric layer 2. It propagates almost in the direction connecting the surface 2b, that is, in the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, no reflector is required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of electrode pairs consisting of the electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
  • the amplitude direction of the bulk wave of the primary thickness-shear mode is defined by the first region 451 included in the excitation region C of the piezoelectric layer 2 and the second region 452 included in the excitation region C.
  • FIG. 4 schematically shows bulk waves when a voltage is applied between the electrodes 3 and 4 so that the potential of the electrode 4 is higher than that of the electrode 3 .
  • the first region 451 is a region of the excitation region C between the first main surface 2a and a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 .
  • the second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
  • At least one pair of electrodes consisting of the electrodes 3 and 4 is arranged. It is not always necessary to have a plurality of pairs of electrode pairs. That is, it is sufficient that at least one pair of electrodes is provided.
  • the electrode 3 is an electrode connected to a hot potential
  • the electrode 4 is an electrode connected to a ground potential.
  • electrode 3 may also be connected to ground potential and electrode 4 to hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrodes are provided.
  • FIG. 5 is a diagram showing resonance characteristics of the elastic wave device according to the first embodiment of the present disclosure.
  • the design parameters of the elastic wave device 1 with this resonance characteristic are as follows.
  • the number of pairs of electrodes consisting of the electrodes 3 and 4 21 pairs
  • center distance between electrodes 3 ⁇ m
  • width of electrodes 3 and 4 500 nm
  • d/p 0.133.
  • Insulating layer 7 Silicon oxide film with a thickness of 1 ⁇ m.
  • Support member 8 Si.
  • the length of the excitation region C is the dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
  • the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 are all the same in a plurality of pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
  • d/p is more preferably 0.5 or less, as described above. is less than or equal to 0.24. This will be explained with reference to FIG.
  • FIG. 6 is a diagram showing the relationship between this d/2p and the fractional bandwidth of the acoustic wave device as a resonator.
  • a resonator with a wider specific band can be obtained, and a resonator with a higher coupling coefficient can be realized. Therefore, like the elastic wave device of the second aspect of the present disclosure, by setting d/p to 0.5 or less, a resonator having a high coupling coefficient using the bulk wave of the primary thickness shear mode can be constructed.
  • At least one pair of electrodes may be one pair, and p is the center-to-center distance between adjacent electrodes 3 and 4 in the case of one pair of electrodes. In the case of 1.5 pairs or more of electrodes, the average distance between the centers of adjacent electrodes 3 and 4 should be p.
  • the thickness d of the piezoelectric layer if the piezoelectric layer 2 has variations in thickness, a value obtained by averaging the thickness may be adopted.
  • FIG. 7 is a plan view of another elastic wave device according to the first embodiment of the present disclosure.
  • elastic wave device 31 a pair of electrodes having electrode 3 and electrode 4 is provided on first main surface 2 a of piezoelectric layer 2 .
  • K in FIG. 7 is the intersection width.
  • the number of pairs of electrodes may be one. Even in this case, if the above d/p is 0.5 or less, it is possible to effectively excite the bulk wave in the primary mode of thickness shear.
  • the adjacent electrodes 3 and 4 with respect to the excitation region, which is an overlapping region when viewed in the direction in which any of the adjacent electrodes 3 and 4 face each other.
  • the metallization ratio MR of the electrodes 3 and 4 satisfy MR ⁇ 1.75(d/p)+0.075. That is, the excitation region is a region where the one or more first electrode fingers and the one or more second electrode fingers overlap each other when viewed in the facing direction.
  • the metallization ratio of the electrode finger and the one or more second electrode fingers is MR, it is preferable to satisfy MR ⁇ 1.75(d/p)+0.075. In that case, spurious can be effectively reduced.
  • FIG. 8 is a reference diagram showing an example of resonance characteristics of the acoustic wave device 1.
  • a spurious signal indicated by an arrow B appears between the resonance frequency and the anti-resonance frequency.
  • d/p 0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°).
  • the metallization ratio MR was set to 0.35.
  • the metallization ratio MR will be explained with reference to FIG. 1B.
  • the excitation region means a region where the electrode 3 and the electrode 4 overlap each other when the electrodes 3 and 4 are viewed in a direction orthogonal to the length direction of the electrodes 3 and 4, that is, in a facing direction. and a region where the electrodes 3 and 4 in the region between the electrodes 3 and 4 overlap.
  • the area of the electrodes 3 and 4 in the excitation region C with respect to the area of this excitation region is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the drive region.
  • MR may be the ratio of the metallization portion included in the entire excitation region to the total area of the excitation region.
  • FIG. 9 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious when a large number of acoustic wave resonators are configured according to this embodiment. be.
  • the ratio band was adjusted by changing the film thickness of the piezoelectric layer and the dimensions of the electrodes.
  • FIG. 9 shows the results when a Z-cut LiNbO 3 piezoelectric layer is used, but the same tendency is obtained when piezoelectric layers with other cut angles are used.
  • the spurious is as large as 1.0.
  • the fractional band exceeds 0.17, that is, exceeds 17%, a large spurious with a spurious level of 1 or more changes the parameters constituting the fractional band, even if the passband appear within. That is, as in the resonance characteristics shown in FIG. 8, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrodes 3 and 4, the spurious response can be reduced.
  • FIG. 10 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth.
  • various elastic wave devices having different d/2p and MR were constructed, and the fractional bandwidth was measured.
  • the hatched portion on the right side of the dashed line D in FIG. 10 is the area where the fractional bandwidth is 17% or less.
  • FIG. 11 is a diagram showing a map of the fractional bandwidth with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0.
  • the hatched portion in FIG. 11 is a region where a fractional bandwidth of at least 5% or more is obtained, and when the range of the region is approximated, the following formulas (1), (2) and (3) ).
  • the fractional band can be sufficiently widened, which is preferable.
  • FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to the first embodiment of the present disclosure.
  • the elastic wave device 81 has a support substrate 82 .
  • the support substrate 82 is provided with a concave portion that is open on the upper surface.
  • a piezoelectric layer 83 is laminated on the support substrate 82 .
  • a hollow portion 9 is thereby formed.
  • An IDT electrode 84 is provided on the piezoelectric layer 83 above the cavity 9 .
  • Reflectors 85 and 86 are provided on both sides of the IDT electrode 84 in the elastic wave propagation direction.
  • the outer periphery of the hollow portion 9 is indicated by broken lines.
  • the IDT electrode 84 has first and second bus bars 84a and 84b, an electrode 84c as a plurality of first electrode fingers, and an electrode 84d as a plurality of second electrode fingers.
  • the multiple electrodes 84c are connected to the first bus bar 84a.
  • the multiple electrodes 84d are connected to the second bus bar 84b.
  • the multiple electrodes 84c and the multiple electrodes 84d are interposed.
  • a Lamb wave as a plate wave is excited by applying an AC electric field to the IDT electrodes 84 on the cavity 9. Since the reflectors 85 and 86 are provided on both sides, the resonance characteristics due to the Lamb wave can be obtained.
  • FIG. 13 is a schematic cross-sectional view of an elastic wave device according to the second embodiment of the present disclosure.
  • 14 is a schematic plan view of the elastic wave device of FIG. 13.
  • the elastic wave device 100 includes a support substrate 110, an intermediate layer 120, a piezoelectric layer 130, and functional electrodes 140.
  • FIG. 13 is a schematic cross-sectional view of an elastic wave device according to the second embodiment of the present disclosure.
  • 14 is a schematic plan view of the elastic wave device of FIG. 13.
  • the elastic wave device 100 includes a support substrate 110, an intermediate layer 120, a piezoelectric layer 130, and functional electrodes 140.
  • the support substrate 110 is a substrate made of Si, for example.
  • a hollow portion 111 is formed in the support substrate 110 .
  • An intermediate layer 120 is laminated on the surface of the support substrate 110 on which the hollow portion 111 is formed.
  • a piezoelectric layer 130 is laminated to the intermediate layer 120 .
  • the acoustic wave device 100 has a structure in which an intermediate layer 120 is laminated on a supporting substrate 110 and a piezoelectric layer 130 is laminated on the intermediate layer 120 .
  • a functional electrode 140 is formed on the piezoelectric layer 130 .
  • the intermediate layer 120 is made of SiOx, for example.
  • the intermediate layer 120 has a first major surface 120a on the support substrate 110 side and a second major surface 120b opposite to the first major surface 120a.
  • a communication hole 121 is formed in the intermediate layer 120 .
  • the communication hole 121 is formed at a position overlapping the cavity 111 in a plan view in the lamination direction of the support substrate 110 and the piezoelectric layer 130 and communicates with the cavity 111 .
  • the communication hole 121 is formed larger than the opening 111 a of the hollow portion 111 .
  • the communicating hole 121 is formed larger than the hollow portion 111 in plan view.
  • At least a portion of the inner wall 121a of the intermediate layer 120 that defines the communication hole 121 is inclined from the support substrate 110 toward the piezoelectric layer 130 in a direction in which the opening area of the communication hole 121 increases.
  • the opening area of the communication hole 121 is larger on the second main surface 120b side than on the first main surface 120a side.
  • the first angle ⁇ 1 between the second main surface 120b of the intermediate layer 120 and the inner wall 121a of the intermediate layer 120 defining the communicating hole 121 is formed on the side opposite to the side on which the communicating hole 121 is provided. is greater than 90 degrees.
  • the second angle ⁇ 2 formed between the first main surface 120a of the intermediate layer 120 and the inner wall 121a of the intermediate layer 120 defining the communicating hole 121 is on the side opposite to the side on which the communicating hole 121 is provided. is smaller than the first angle ⁇ 1.
  • the second angle ⁇ 2 may be smaller than 90 degrees. That is, the second angle ⁇ 2 may be an acute angle.
  • the acute second angle The area of one main surface 120a is increased.
  • the support substrate 110 and the intermediate layer 120 can be brought into contact with each other over a wider area to form a stronger structure, and the elastic wave device 100 can have a strength. contribute to the improvement of
  • the piezoelectric layer 130 is made of LiNbOx or LiTaOx, for example. In other words, the piezoelectric layer 130 consists of lithium niobate or lithium tantalate.
  • a functional electrode 140 is formed on the piezoelectric layer 130 .
  • a wiring electrode 141 electrically connected to the functional electrode 140 is formed on the piezoelectric layer 130 . Note that the wiring electrode 141 is not an essential component and may not be arranged on the piezoelectric layer 130 .
  • the piezoelectric layer 130 is provided with a through hole 131 that penetrates the piezoelectric layer 130 and reaches the communication hole 121 of the intermediate layer 120 .
  • the hollow portion 111 of the support substrate 110 communicates with the outside of the elastic wave device 100 via the communication hole 121 of the intermediate layer 120 and the through hole 131 of the piezoelectric layer 130 . is doing.
  • two through holes 131 are provided.
  • the number of through-holes 131 is not limited to two, and may be one or three or more.
  • the through holes 131 are arranged so as to sandwich the functional electrode 140 in plan view.
  • a dielectric film may be provided on the piezoelectric layer 130 so as to cover the functional electrode 140 . Note that the dielectric film may not necessarily be provided.
  • the functional electrode 140 is an IDT electrode composed of a plurality of first electrode fingers 142, a plurality of second electrode fingers 143, a first busbar 144 and a second busbar 145, as shown in FIG.
  • the functional electrode 140 includes a first bus bar 144 and a second bus bar 145 facing each other, a plurality of first electrode fingers 142 connected to the first bus bar 144, and a plurality of electrodes connected to the second bus bar 145. and a second electrode finger 143 .
  • the plurality of first electrode fingers 142 and the plurality of second electrode fingers 143 are interposed with each other, and adjacent first electrode fingers 142 and second electrode fingers 143 form a pair of electrode sets.
  • the communication hole 121 of the intermediate layer 120 is formed so that the opening area increases from the support substrate 110 toward the piezoelectric layer 130 .
  • the communication hole 121 is formed at a position at least partially overlapping the wiring electrode 141 in plan view. In other words, at least a portion of the wiring electrode 141 and the intermediate layer 120 can be prevented from overlapping in plan view.
  • generation of parasitic capacitance can be suppressed, and deterioration of the characteristics of the acoustic wave device 100 can be suppressed.
  • FIG. 15 is a flow chart showing a method for manufacturing an elastic wave device.
  • 16 to 24 are schematic cross-sectional views showing the manufacturing process of the elastic wave device. A method of manufacturing the acoustic wave device 100 will be described with reference to FIGS.
  • the method for manufacturing the elastic wave device 100 comprises a sacrificial layer forming step S11, an intermediate layer forming step S12, a piezoelectric layer forming step S13, an electrode forming step S14, a through hole forming step S15, and a communicating hole forming step. Including S16.
  • Each step S11 to S16 is executed by the manufacturing equipment.
  • a sacrificial layer 112 is formed. Specifically, in step S11, first, as shown in FIG. 16, a resist pattern is formed on the surface of a substrate made of, for example, Si, and after dry etching, the resist pattern is removed, and the cavity 111 is formed. forming a support substrate 110 having Next, as shown in FIG. 17, a sacrificial layer 112 is formed in the hollow portion of the supporting substrate 110, and the sacrificial layer 112 is embedded in the hollow portion 111 by polishing.
  • step S12 an intermediate layer 120 is formed on the supporting substrate 110 so as to cover the sacrificial layer 112, as shown in FIG.
  • step S13 the piezoelectric layer 130 is formed in step S13.
  • step S13 the piezoelectric layer 130 is bonded to the second main surface 120b of the intermediate layer 120, as shown in FIG.
  • step S20 the piezoelectric layer 130 is ground to make the piezoelectric layer 130 thinner.
  • electrodes 140 and 141 are formed in step S14.
  • step S14 as shown in FIG. 21, functional electrodes 140 and wiring electrodes 141 are formed by lift-off.
  • through holes 131 are formed in step S15.
  • through holes 131 are formed by forming a resist pattern, dry-etching the piezoelectric layer 130 and intermediate layer 120, and removing the resist pattern.
  • step S16 the communication holes 121 are formed in step S16.
  • step S16 as shown in FIG. 23, after forming a resist pattern to protect the surface, the communication hole 121 is formed by wet etching.
  • the acoustic wave device 100 is completed by removing the sacrificial layer 112 and removing the resist pattern for surface protection.
  • the support substrate 110, the intermediate layer 120, the piezoelectric layer 130, and the functional electrode 140 are provided.
  • a hollow portion 111 is formed in the support substrate 110 .
  • the intermediate layer 120 is laminated on the support substrate 110 and has a first main surface 120a on the support substrate 110 side and a second main surface 120b opposite to the first main surface 120a.
  • a piezoelectric layer 130 is laminated to the intermediate layer 120 .
  • the functional electrode 140 is formed on the piezoelectric layer 130 at a position overlapping the hollow portion 111 in plan view in the lamination direction of the support substrate 110 and the piezoelectric layer 130 .
  • a communication hole 121 that communicates with the cavity 111 and is larger than the opening of the cavity 111 is formed at a position that overlaps with the cavity 111 in a plan view in the lamination direction of the support substrate 110 and the piezoelectric layer 130. ing. At least a portion of inner wall 111 b of support substrate 110 defining cavity 111 protrudes inwardly from inner wall 121 a of intermediate layer 120 defining communication hole 121 . At least a portion of the inner wall 121a of the intermediate layer 120 defining the communication hole 121 is inclined from the support substrate 110 toward the piezoelectric layer 130 in a direction in which the opening area of the communication hole 121 increases.
  • the inner wall of the intermediate layer 120 that defines the communication hole 121 is inclined so that the opening area increases from the support substrate 110 toward the piezoelectric layer 130, cracks are generated in the intermediate layer 120 due to concentration of stress. can be suppressed. Therefore, the strength of the elastic wave device 100 can be improved.
  • the first angle ⁇ 1 formed between the second main surface 120b of the intermediate layer 120 and the inner wall 121a of the intermediate layer 120 defining the communicating hole 121 is greater than 90 degrees.
  • Such a configuration makes it difficult for stress to concentrate on the interface between the intermediate layer 120 and the piezoelectric layer 130, thereby suppressing the occurrence of cracks. Therefore, the strength of the elastic wave device 100 can be improved.
  • second angle ⁇ 2 formed between first main surface 120a of intermediate layer 120 and inner wall 121a of intermediate layer 120 defining communicating hole 121 is larger than first angle ⁇ 1. small.
  • the strength of the elastic wave device 100 can be further improved.
  • the second angle ⁇ 2 is smaller than 90 degrees.
  • the contact area between the support substrate 110 and the intermediate layer 120 can be increased, a robust structure can be obtained, and the strength of the elastic wave device 100 can be further improved.
  • a wiring electrode 141 electrically connected to the functional electrode 140 is provided, and the communicating hole 121 is positioned so that at least a portion thereof overlaps with the wiring electrode 141 in plan view in the lamination direction of the support substrate 110 and the piezoelectric layer 130. It is formed.
  • the wiring electrode 141 can be easily arranged so that the intermediate layer 120 does not overlap in a plan view, thereby suppressing the generation of parasitic capacitance and suppressing deterioration of the characteristics of the acoustic wave device 100. can.
  • the functional electrode 140 may be a bulk acoustic wave device including a BAW (Bulk Acoustic Wave) element having an upper electrode and a lower electrode that sandwich the piezoelectric layer 130 .
  • BAW Bulk Acoustic Wave
  • ⁇ Modification 1> 25 is a schematic cross-sectional view of an elastic wave device of Modification 1.
  • FIG. 1 is a schematic cross-sectional view of an elastic wave device of Modification 1.
  • the elastic wave device 200 differs from the elastic wave device 100 of the second embodiment in that the inclination angle of the inner wall of the intermediate layer 220 defining the communication hole 221 changes.
  • the inner wall of intermediate layer 220 defining communication hole 221 includes a first inner wall 221a and a second inner wall 221b.
  • the second inner wall 221b extends in a direction crossing the first inner wall 221a. A portion where the first inner wall 221a and the second inner wall 221b intersect is arranged on the innermost side.
  • the second angle ⁇ 4 formed between the second inner wall 221b and the second main surface 220b of the intermediate layer 220 may be an obtuse angle larger than 90°.
  • the second angle ⁇ 4 may be 90 degrees or an acute angle less than 90 degrees.
  • FIG. 26 is a schematic cross-sectional view of an elastic wave device of Modification 2.
  • the elastic wave device 300 differs from the elastic wave device 100 of the second embodiment in that the inner wall 311a of the cavity 311 provided in the support substrate 310 is inclined.
  • the inner wall 311a of the cavity 311 is inclined toward the intermediate layer 120 so that the opening area of the cavity 311 becomes smaller.
  • the inner wall 311a of the cavity 311 may be inclined toward the intermediate layer 120 so that the opening area of the cavity 311 increases.
  • FIG. 27 is a schematic cross-sectional view of an elastic wave device of Modification 3.
  • FIG. 28 is a schematic plan view of the elastic wave device of FIG. 27.
  • the hollow portion 411 is formed at a position where at least a portion thereof overlaps with the wiring electrode 141 in plan view in the lamination direction of the support substrate 410 and the piezoelectric layer 130. It differs from the elastic wave device 100 of the second embodiment in that
  • An elastic wave device includes a supporting substrate having a hollow portion formed thereon, a first principal surface laminated on the supporting substrate and facing the supporting substrate, and a second principal surface opposite to the first principal surface. a piezoelectric layer laminated on the second main surface of the intermediate layer; and a functional electrode formed in the piezoelectric layer at a position overlapping the hollow portion in a plan view in the lamination direction of the support substrate and the piezoelectric layer. , in the intermediate layer, at a position overlapping the cavity in plan view in the stacking direction of the support substrate and the piezoelectric layer, a communication element communicating with the cavity and having an opening on the side of the support substrate larger than the opening of the cavity.
  • At least a portion of the inner wall of the supporting substrate defining the cavity portion protrudes inwardly from the inner wall of the intermediate layer defining the communicating hole, and at least a portion of the inner wall of the intermediate layer defining the communicating hole , from the support substrate toward the piezoelectric layer in a direction in which the opening area of the communicating hole increases.
  • the first angle formed between the second main surface of the intermediate layer and the inner wall of the intermediate layer defining the communicating hole is 90 on the side opposite to the side on which the communicating hole is provided. It can be larger than degrees.
  • the second angle formed between the first main surface of the intermediate layer and the inner wall of the intermediate layer defining the communicating hole is the second angle on the side opposite to the side on which the communicating hole is provided. It may be smaller than one angle.
  • the second angle may be smaller than 90 degrees.
  • the acoustic wave device according to any one of (1) to (4), further comprising wiring electrodes electrically connected to the functional electrodes, and the communication holes are arranged in the lamination direction of the support substrate and the piezoelectric layer. may be formed at a position at least partially overlapping with the wiring electrode in plan view.
  • the hollow portion may be formed at a position where at least a portion of the hollow portion overlaps the wiring electrode in plan view in the lamination direction of the support substrate and the piezoelectric layer.
  • the functional electrodes include a first bus bar and a second bus bar, first electrode fingers connected to the first bus bar, and first electrode fingers connected to the second bus bar. and a two-electrode finger.
  • plate waves may be used.
  • d/p is 0.5 or less, where d is the film thickness of the piezoelectric layer and p is the center-to-center distance between the adjacent first and second electrode fingers.
  • d/p may be 0.24 or less.
  • the functional electrode may have an upper electrode and a lower electrode facing each other in the thickness direction of the piezoelectric layer with the piezoelectric layer interposed therebetween.
  • the thickness-shear mode bulk wave may be used.
  • the piezoelectric layer may be made of lithium niobate or lithium tantalate.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of lithium niobate or lithium tantalate are within the range of the following formula (1), formula (2) or formula (3) There may be. (0° ⁇ 10°, 0° to 20°, arbitrary ⁇ ) Equation (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2 /900) 1/2 ) or (0° ⁇ 10°, 20° to 80°, [180 °-60° (1-( ⁇ -50) 2 /900) 1/2 ] ⁇ 180°) Equation (2) (0° ⁇ 10°, [180°-30°(1-( ⁇ -90) 2 /8100) 1/2 ] ⁇ 180°, arbitrary ⁇ ) Equation (3)

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

弾性波装置は、空洞部が形成された支持基板と、支持基板に積層され、支持基板側の第1主面と、第1主面と反対側の第2主面とを有する中間層と、中間層に積層される圧電層と、圧電層に、支持基板と圧電層との積層方向における平面視において空洞部に重なる位置に形成された機能電極と、を備え、中間層には、支持基板と圧電層との積層方向における平面視において空洞部に重なる位置に、空洞部と連通し空洞部の開口よりも大きい連通穴が形成され、空洞部を画定する支持基板の内壁の少なくとも一部は、連通穴を画定する中間層の内壁より内側に突出しており、連通穴を画定する中間層の内壁の少なくとも一部は、支持基板から圧電層に向かって、連通穴の開口面積が大きくなる方向に傾斜している。

Description

弾性波装置
 本開示は、圧電層を有する弾性波装置に関する。
 例えば、特許文献1には、支持基板、薄膜、圧電基板及びIDT電極を備える弾性波装置が開示されている。支持基板は上面に凹部を有する。薄膜は支持基板上に配置されている。圧電基板は第1の主面と、第1の主面と対向している第2の主面と、を有し、第1の主面側が薄膜上に配置されている。IDT電極は圧電基板の第2の主面上に設けられている。支持基板と、薄膜及び圧電基板のうち少なくとも薄膜と、で囲まれた空洞が形成されている。圧電基板の第1の主面上の領域であって、支持基板と薄膜を介して接合される領域、並びに、空洞の上方の領域の少なくとも一部分の領域に、薄膜が配置されている。
国際公開第2016/147687号
 特許文献1に記載の弾性波装置では、圧電基板と薄膜との界面に応力が集中し、クラックが発生することがある。
 本開示は、圧電層のクラックを防止して、強度を向上させた弾性波装置を提供する。
 本開示の一態様の弾性波装置は、
 空洞部が形成された支持基板と、
 前記支持基板に積層され、前記支持基板側の第1主面と、前記第1主面と反対側の第2主面とを有する中間層と、
 前記中間層の前記第2主面に積層される圧電層と、
 前記圧電層に、前記支持基板と前記圧電層との積層方向における平面視において前記空洞部に重なる位置に形成された機能電極と、
を備え、
 前記中間層は、前記支持基板と前記圧電層との積層方向における平面視において前記空洞部に重なる位置に、前記空洞部と連通し、かつ前記支持基板側の開口が前記空洞部の開口よりも大きい連通穴が形成され、
 前記空洞部を画定する前記支持基板の内壁の少なくとも一部は、前記連通穴を画定する前記中間層の内壁より内側に突出しており、
 前記連通穴を画定する前記中間層の内壁の少なくとも一部は、前記支持基板から前記圧電層に向かって、前記連通穴の開口面積が大きくなる方向に傾斜している。
 本開示によれば、圧電層のクラックを防止して、強度を向上させた弾性波装置を提供することができる。
第1,第2の態様の弾性波装置の外観を示す略図的斜視図 圧電層上の電極構造を示す平面図 図1A中のA-A線に沿う部分の断面図 従来の弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図 本開示の弾性波装置の波を説明するための模式的正面断面図 第1の電極と第2の電極との間に、第2の電極が第1の電極よりも高電位となる電圧が印加された場合のバルク波を示す模式図 本開示の第1の実施形態に係る弾性波装置の共振特性を示す図 d/2pと、弾性波装置の共振子としての比帯域との関係を示す図 本開示の第1の実施形態に係る別の弾性波装置の平面図 弾性波装置の共振特性の一例を示す参考図。 多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図 d/2pと、メタライゼーション比MRと、比帯域との関係を示す図 d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図 本開示の第1の実施形態に係る弾性波装置を説明するための部分切り欠き斜視図 本開示の第2の実施形態に係る弾性波装置の概略断面図 図13の弾性波装置の概略平面図 弾性波装置の製造方法を示すフローチャート 弾性波装置の製造工程を示す概略断面図 弾性波装置の製造工程を示す概略断面図 弾性波装置の製造工程を示す概略断面図 弾性波装置の製造工程を示す概略断面図 弾性波装置の製造工程を示す概略断面図 弾性波装置の製造工程を示す概略断面図 弾性波装置の製造工程を示す概略断面図 弾性波装置の製造工程を示す概略断面図 弾性波装置の製造工程を示す概略断面図 変形例1の弾性波装置の概略断面図 変形例2の弾性波装置の概略断面図 変形例3の弾性波装置の概略断面図 図27の弾性波装置の概略平面図
 本開示における第1、第2、第3の態様の弾性波装置は、ニオブ酸リチウムまたはタンタル酸リチウムからなる圧電層と、圧電層の厚み方向に交差する方向において対向する第1電極及び第2電極とを備える。
 第1の態様の弾性波装置では、厚み滑り1次モードのバルク波が利用されている。
 また、第2の態様の弾性波装置では、第1電極及び前記第2電極は隣り合う電極同士であり、圧電層の厚みをd、第1電極及び第2電極の中心間距離をpとした場合、d/pが0.5以下とされている。それによって、第1,第2の態様では、小型化を進めた場合であっても、Q値を高めることができる。
 また、第3の態様の弾性波装置では、板波としてのラム波が利用される。そして、上記ラム波による共振特性を得ることができる。
 本開示における第4の態様の弾性波装置は、ニオブ酸リチウムまたはタンタル酸リチウムからなる圧電層と、圧電層を挟んで圧電層の厚み方向に対向する上部電極及び下部電極とを備え、バルク波を利用する。
 以下、図面を参照しつつ、第1~第4の態様の弾性波装置の具体的な実施形態を説明することにより、本開示を明らかにする。
(第1の実施形態)
 図1Aは、第1,第2の態様についての第1の実施形態に係る弾性波装置の外観を示す略図的斜視図であり、図1Bは、圧電層上の電極構造を示す平面図であり、図2は、図1A中のA-A線に沿う部分の断面図である。
 弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、本実施形態では、Zカットであるが、回転YカットやXカットであってもよい。好ましくは、Y伝搬及びX伝搬±30°の伝搬方位が好ましい。圧電層2の厚みは、特に限定されないが、厚み滑り1次モードを効果的に励振するには、50nm以上、1000nm以下が好ましい。
 圧電層2は、対向し合う第1,第2の主面2a,2bを有する。第1の主面2a上に、電極3及び電極4が設けられている。ここで電極3が「第1電極」の一例であり、電極4が「第2電極」の一例である。図1A及び図1Bでは、複数の電極3が、第1のバスバー5に接続されている複数の第1の電極指である。複数の電極4は、第2のバスバー6に接続されている複数の第2の電極指である。複数の電極3及び複数の電極4は、互いに間挿し合っている。
 電極3及び電極4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極3と、隣りの電極4とが対向している。これら複数の電極3,4、及び第1のバスバー5,第2のバスバー6によりIDT(Interdigital Transuducer)電極が構成されている。電極3,4の長さ方向、及び、電極3,4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交差する方向である。このため、電極3と、隣りの電極4とは、圧電層2の厚み方向に交差する方向において対向しているともいえる。
 また、電極3,4の長さ方向が図1A及び図1Bに示す電極3,4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図1A及び図1Bにおいて、第1のバスバー5及び第2のバスバー6が延びている方向に電極3,4を延ばしてもよい。その場合、第1のバスバー5及び第2のバスバー6は、図1A及び図1Bにおいて電極3,4が延びている方向に延びることとなる。
 そして、一方電位に接続される電極3と、他方電位に接続される電極4とが隣り合う1対の構造が、上記電極3,4の長さ方向と直交する方向に、複数対設けられている。ここで電極3と電極4とが隣り合うとは、電極3と電極4とが直接接触するように配置されている場合ではなく、電極3と電極4とが間隔を介して配置されている場合を指す。
 また、電極3と電極4とが隣り合う場合、電極3と電極4との間には、他の電極3,4を含む、ホット電極やグランド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対や2.5対などであってもよい。電極3,4間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の幅寸法の中心と、電極4の長さ方向と直交する方向における電極4の幅寸法の中心とを結んだ距離となる。さらに、電極3,4の少なくとも一方が複数本ある場合(電極3,4を一対の電極組とし、1.5対以上の電極組がある場合)、電極3,4の中心間距離は、1.5対以上の電極3,4のうち隣り合う電極3,4それぞれの中心間距離の平均値を指す。また、電極3,4の幅、すなわち電極3,4の対向方向の寸法は、150nm以上、1000nm以下の範囲が好ましい。なお、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の寸法(幅寸法)の中心と、電極4の長さ方向と直交する方向における電極4の寸法(幅寸法)の中心とを結んだ距離となる。
 また、本実施形態では、Zカットの圧電層を用いているため、電極3,4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極3,4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°)でもよい。
 圧電層2の第2の主面2b側には、絶縁層7を介して支持部材8が積層されている。絶縁層7及び支持部材8は、枠状の形状を有し、図2に示すように、開口部7a,8aを有する。それによって、空洞部9が形成されている。空洞部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持部材8は、少なくとも1対の電極3,4が設けられている部分と重ならない位置において、第2の主面2bに絶縁層7を介して積層されている。なお、絶縁層7は設けられずともよい。従って、支持部材8は、圧電層2の第2の主面2bに直接または間接に積層され得る。
 絶縁層7は、酸化ケイ素からなる。もっとも、酸化ケイ素の他、酸窒化ケイ素、アルミナなどの適宜の絶縁性材料を用いることができる。支持部材8は、Siからなる。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。好ましくは、抵抗率4kΩ以上の高抵抗のSiが望ましい。もっとも、支持部材8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。支持部材8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。
 上記複数の電極3,4及び第1,第2のバスバー5,6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。本実施形態では、電極3,4及び第1,第2のバスバー5,6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。
 駆動に際しては、複数の電極3と、複数の電極4との間に交流電圧を印加する。より具体的には、第1のバスバー5と第2のバスバー6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑り1次モードのバルク波を利用した、共振特性を得ることが可能とされている。
 また、弾性波装置1では、圧電層2の厚みをd、複数対の電極3,4のうちいずれかの隣り合う電極3,4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑り1次モードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。
 なお、本実施形態のように電極3,4の少なくとも一方が複数本ある場合、すなわち、電極3,4を1対の電極組とし、電極3,4が1.5対以上ある場合、隣り合う電極3,4の中心間距離pは、各隣り合う電極3,4の中心間距離の平均距離となる。
 本実施形態の弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極3,4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側に反射器を必要としない共振器であり、伝搬ロスが少ないためである。また、上記反射器を必要としないのは、厚み滑り1次モードのバルク波を利用していることによる。
 従来の弾性波装置で利用したラム波と、上記厚み滑り1次モードのバルク波の相違を、図3A及び図3Bを参照して説明する。
 図3Aは、従来の弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図である。従来の弾性波装置については、例えば、日本公開特許公報 特開2012-257019号公報に記載されている。図3Aに示すように、従来の弾性波装置においては、圧電膜201中を矢印で示すように波が伝搬する。ここで、圧電膜201では、第1の主面201aと、第2の主面201bとが対向しており、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指が並んでいる方向である。図3Aに示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電膜201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指の対数を少なくした場合、Q値が低下する。
 これに対して、図3Bに示すように、本実施形態の弾性波装置1では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器を必要としない。よって、反射器に伝搬する際の伝搬損失は生じない。従って、小型化を進めようとして、電極3,4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。
 なお、厚み滑り1次モードのバルク波の振幅方向は、図4に示すように、圧電層2の励振領域Cに含まれる第1領域451と、励振領域Cに含まれる第2領域452とで逆になる。図4は、電極3と電極4との間に、電極4が電極3よりも高電位となる電圧が印加された場合のバルク波を模式的に示している。第1領域451は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。
 上記のように、弾性波装置1では、電極3と電極4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極3,4からなる電極対の対数は複数対ある必要は必ずしもない。すなわち、少なくとも1対の電極が設けられてさえおればよい。
 例えば、上記電極3がホット電位に接続される電極であり、電極4がグラウンド電位に接続される電極である。もっとも、電極3がグラウンド電位に、電極4がホット電位に接続されてもよい。本実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグラウンド電位に接続される電極であり、浮き電極は設けられていない。
 図5は、本開示の第1の実施形態に係る弾性波装置の共振特性を示す図である。なお、この共振特性を得た弾性波装置1の設計パラメータは以下の通りである。
 圧電層2:オイラー角(0°,0°,90°)のLiNbO、厚み=400nm。 電極3と電極4の長さ方向と直交する方向に視たときに、電極3と電極4とが重なっている領域、すなわち励振領域Cの長さ=40μm、電極3,4からなる電極の対数=21対、電極間中心距離=3μm、電極3,4の幅=500nm、d/p=0.133。
 絶縁層7:1μmの厚みの酸化ケイ素膜。
 支持部材8:Si。
 なお、励振領域Cの長さとは、励振領域Cの電極3,4の長さ方向に沿う寸法である。
 本実施形態では、電極3,4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極3と電極4とを等ピッチで配置した。
 図5から明らかなように、反射器を有しないにもかかわらず、比帯域が12.5%である良好な共振特性が得られている。
 ところで、上記圧電層2の厚みをd、電極3と電極4との電極の中心間距離をpとした場合、前述したように、本実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図6を参照して説明する。
 図5に示した共振特性を得た弾性波装置と同様に、但しd/2pを変化させ、複数の弾性波装置を得た。図6は、このd/2pと、弾性波装置の共振子としての比帯域との関係を示す図である。
 図6から明らかなように、d/2pが0.25を超えると、すなわちd/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/2p≦0.25、すなわちd/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/2pが0.12以下の場合、すなわちd/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、本開示の第2の態様の弾性波装置のように、d/pを0.5以下とすることにより、上記厚み滑り1次モードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。
 なお、前述したように、少なくとも1対の電極は、1対でもよく、上記pは、1対の電極の場合、隣り合う電極3,4の中心間距離とする。また、1.5対以上の電極の場合には、隣り合う電極3,4の中心間距離の平均距離をpとすればよい。
 また、圧電層の厚みdについても、圧電層2が厚みばらつきを有する場合、その厚みを平均化した値を採用すればよい。
 図7は、本開示の第1の実施形態に係る別の弾性波装置の平面図である。弾性波装置31では、圧電層2の第1の主面2a上において、電極3と電極4とを有する1対の電極が設けられている。なお、図7中のKが交差幅となる。前述したように、本開示の弾性波装置31では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑り1次モードのバルク波を効果的に励振することができる。
 弾性波装置1では、好ましくは、複数の電極3,4において、いずれかの隣り合う電極3,4が対向している方向に視たときに重なっている領域である励振領域に対する、上記隣り合う電極3,4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。即ち、隣り合う1以上の第1電極指と1以上の第2電極指とが対向している方向に視たときに重なっている領域が励振領域であり、励振領域に対する、1以上の第1電極指及び1以上の第2電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たすことが好ましい。その場合には、スプリアスを効果的に小さくすることができる。
 これを、図8及び図9を参照して説明する。図8は、上記弾性波装置1の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と反共振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°,0°,90°)とした。また、上記メタライゼーション比MR=0.35とした。
 メタライゼーション比MRを、図1Bを参照して説明する。図1Bの電極構造において、1対の電極3,4に着目した場合、この1対の電極3,4のみが設けられるとする。この場合、一点鎖線Cで囲まれた部分が励振領域となる。この励振領域とは、電極3と電極4とを、電極3,4の長さ方向と直交する方向すなわち対向方向に視たときに電極3における電極4と重なり合っている領域、電極4における電極3と重なり合っている領域、及び、電極3と電極4との間の領域における電極3と電極4とが重なり合っている領域である。そして、この励振領域の面積に対する、励振領域C内の電極3,4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の励振領域の面積に対する比である。
 なお、複数対の電極が設けられている場合、励振領域の面積の合計に対する全励振領域に含まれているメタライゼーション部分の割合をMRとすればよい。
 図9は本実施形態に従って、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。なお、比帯域については、圧電層の膜厚や電極の寸法を種々変更し、調整した。また、図9は、ZカットのLiNbOからなる圧電層を用いた場合の結果であるが、他のカット角の圧電層を用いた場合においても、同様の傾向となる。
 図9中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図9から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図8に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極3,4の寸法などを調整することにより、スプリアスを小さくすることができる。
 図10は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す図である。上記弾性波装置において、d/2pと、MRが異なる様々な弾性波装置を構成し、比帯域を測定した。図10の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図10中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。
 図11は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。図11のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域であり、当該領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
 従って、上記式(1)、式(2)または式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。
 図12は、本開示の第1の実施形態に係る弾性波装置を説明するための部分切り欠き斜視図である。弾性波装置81は、支持基板82を有する。支持基板82には、上面に開いた凹部が設けられている。支持基板82上に圧電層83が積層されている。それによって、空洞部9が構成されている。この空洞部9の上方において圧電層83上に、IDT電極84が設けられている。IDT電極84の弾性波伝搬方向両側に、反射器85,86が設けられている。図12において、空洞部9の外周縁を破線で示す。ここでは、IDT電極84は、第1,第2のバスバー84a,84bと、複数本の第1の電極指としての電極84c及び複数本の第2の電極指としての電極84dとを有する。複数本の電極84cは、第1のバスバー84aに接続されている。複数本の電極84dは、第2のバスバー84bに接続されている。複数本の電極84cと、複数本の電極84dとは間挿し合っている。
 弾性波装置81では、上記空洞部9上のIDT電極84に、交流電界を印加することにより、板波としてのラム波が励振される。そして、反射器85,86が両側に設けられているため、上記ラム波による共振特性を得ることができる。
(第2の実施形態)
 第2の実施形態の弾性波装置について説明する。第2の実施形態においては、第1の実施形態と重複する内容については適宜、説明を省略する。第2の実施形態においては、第1の実施形態で説明した内容を適用することができる。
 図13は、本開示の第2の実施形態に係る弾性波装置の概略断面図である。図14は、図13の弾性波装置の概略平面図である。図13及び図14に示すように、弾性波装置100は、支持基板110と、中間層120と、圧電層130と、機能電極140と、を備える。
 支持基板110は、例えばSiにより構成される基板である。支持基板110には、空洞部111が形成されている。支持基板110の空洞部111が形成されている面には、中間層120が積層されている。圧電層130は、中間層120に積層される。弾性波装置100では、支持基板110に中間層120が積層され、中間層120に圧電層130が積層された構造となっている。圧電層130には、機能電極140が形成されている。
 中間層120は、例えばSiOxにより構成される。中間層120は、支持基板110側の第1主面120aと、第1主面120aと反対側の第2主面120bとを有する。中間層120には、連通穴121が形成されている。連通穴121は、支持基板110と圧電層130との積層方向における平面視において、空洞部111と重なる位置に形成され、空洞部111と連通している。また、連通穴121は、空洞部111の開口111aよりも大きく形成されている。言い換えると、平面視において、連通穴121は空洞部111よりも大きく形成される。
 支持基板110の空洞部111を画定する支持基板110の内壁111bの少なくとも一部は、中間層120の連通穴121の内壁121aよりも内側に突出している。
 連通穴121を画定する中間層120の内壁121aの少なくとも一部は、支持基板110から圧電層130に向かって、連通穴121の開口面積が大きくなる方向に傾斜している。言い換えると、連通穴121の開口面積は、第1主面120a側よりも第2主面120b側の方が大きくなっている。
 また、本実施形態では、連通穴121が設けられている側と反対側において、中間層120の第2主面120bと連通穴121を画定する中間層120の内壁121aとのなす第1角度θ1が、90度よりも大きい。第1角度を90度よりも大きい鈍角にすることで、中間層120と圧電層130との界面に応力が集中しにくくなり、クラックの発生を抑制して弾性波装置100の強度を向上させることができる。また、本実施形態では、連通穴121が設けられている側と反対側において、中間層120の第1主面120aと連通穴121を画定する中間層120の内壁121aとのなす第2角度θ2が第1角度θ1よりも小さい。第2角度θ2は、90度よりも小さくてもよい。すなわち、第2角度θ2が鋭角であってもよい。中間層120の第1主面120aと第2主面120bとの平面視における外形が同じ形状である場合、第2角度θ2が鋭角であることで、中間層120の第2主面120bより第1主面120aの面積が大きくなる。このため、第2角度θ2が鈍角である場合と比較して、支持基板110と中間層120とをより広い面積で接触させてより堅牢な構造体とすることができ、弾性波装置100の強度の向上に寄与する。
 圧電層130は、例えば、LiNbOxまたはLiTaOxからなる。言い換えると、圧電層130は、ニオブ酸リチウムまたはタンタル酸リチウムからなる。圧電層130には、機能電極140が形成されている。また、圧電層130には、機能電極140と電気的に接続される配線電極141が形成されている。なお、配線電極141は必須の構成ではなく、圧電層130に配置されていなくてもよい。
 また、圧電層130には、圧電層130を貫通して中間層120の連通穴121に至る貫通孔131が設けられている。圧電層130に貫通孔131が設けられていることで、支持基板110の空洞部111は、中間層120の連通穴121及び圧電層130の貫通孔131を介して弾性波装置100の外部と連通している。本実施形態では、2つの貫通孔131が設けられている。貫通孔131の数は2つに限定されず、1つまたは3つ以上であってもよい。貫通孔131は、平面視において、機能電極140を挟むように配置されている。
 また、圧電層130上には、機能電極140を覆うように誘電体膜が設けられていてもよい。なお、誘電体膜は必ずしも設けられていなくてもよい。
 機能電極140は、図14に示すように、複数の第1電極指142、複数の第2電極指143、第1バスバー144及び第2バスバー145によって構成されるIDT電極である。
 本実施形態では、機能電極140は、対向する第1バスバー144及び第2バスバー145と、第1バスバー144に接続される複数の第1電極指142と、第2バスバー145に接続される複数の第2電極指143と、を有する。複数の第1電極指142と複数の第2電極指143は互いに間挿し合っており、隣り合う第1電極指142と第2電極指143とは一対の電極組を構成している。
 上述したように、中間層120の連通穴121は、支持基板110から圧電層130に向かって開口面積が大きくなるよう形成されている。連通穴121をこのように形成することで、平面視において、連通穴121は、少なくとも一部が配線電極141と重なる位置に形成される。言い換えると、平面視において、配線電極141の少なくとも一部と中間層120とが重ならないようにすることができる。配線電極141と中間層120とが重ならないようにすることで、寄生容量の発生を抑制して弾性波装置100の特性劣化を抑制することができる。
 図15は、弾性波装置の製造方法を示すフローチャートである。図16~図24は、弾性波装置の製造工程を示す概略断面図である。図15~図24を参照して、弾性波装置100の製造方法について説明する。
 図15に示すように、弾性波装置100の製造方法は、犠牲層形成ステップS11、中間層形成ステップS12、圧電層形成ステップS13、電極形成ステップS14、貫通孔形成ステップS15、及び連通穴形成ステップS16を含む。それぞれのステップS11~S16は、製造装置により実行される。
 ステップS11では、犠牲層112を形成する。具体的には、ステップS11では、まず、図16に示すように、例えばSiにより形成される基板の表面にレジストパターンを形成し、ドライエッチングを施した後レジストパターンを除去して、空洞部111を有する支持基板110を形成する。次に、図17に示すように、支持基板110の空洞部に犠牲層112を成膜し、研磨により犠牲層112を空洞部111に埋め込む。
 次に、ステップS12で中間層120を形成する。ステップS12では、図18に示すように、犠牲層112を覆うように、支持基板110に中間層120を形成する。
 次に、ステップS13で圧電層130を形成する。ステップS13では、図19に示すように、中間層120の第2主面120bに圧電層130を接合する。次に、図20に示すように、圧電層130を研削して、圧電層130を薄型化する。
 次に、ステップS14で電極140、141を形成する。ステップS14では、図21に示すように、リフトオフにより機能電極140及び配線電極141を形成する。
 次に、ステップS15で貫通孔131を形成する。ステップS15では、図22に示すように、レジストパターンの形成、圧電層130及び中間層120のドライエッチング、及びレジストパターンの除去により、貫通孔131を形成する。
 次に、ステップS16で連通穴121を形成する。ステップS16では、図23に示すように、レジストパターンを形成して表面を保護した後、ウェットエッチングにより連通穴121を形成する。次に、図24に示すように、犠牲層112を除去し、表面保護のレジストパターンを除去することで、弾性波装置100が完成する。
 本実施形態の弾性波装置100によれば、支持基板110と、中間層120と、圧電層130と、機能電極140と、を備える。支持基板110には、空洞部111が形成されている。中間層120は、支持基板110に積層され、支持基板110側の第1主面120aと、第1主面120aと反対側の第2主面120bと、を有する。圧電層130は、中間層120に積層される。機能電極140は、圧電層130上に、支持基板110と圧電層130との積層方向における平面視において、空洞部111に重なる位置に形成される。中間層120には、支持基板110と圧電層130との積層方向における平面視において、空洞部111に重なる位置に、空洞部111と連通し空洞部111の開口よりも大きい連通穴121が形成されている。空洞部111を画定する支持基板110の内壁111bの少なくとも一部は、連通穴121を画定する中間層120の内壁121aより内側に突出している。連通穴121を画定する中間層120の内壁121aの少なくとも一部は、支持基板110から圧電層130に向かって、連通穴121の開口面積が大きくなる方向に傾斜している。
 このような構成により、圧電層のクラックを防止して、強度を向上させた弾性波装置を提供することができる。連通穴121を画定する中間層120の内壁が、支持基板110から圧電層130に向かって開口面積が大きくなるよう傾斜していることで、応力の集中により、中間層120にクラックが発生するのを抑制することができる。このため、弾性波装置100の強度を向上させることができる。
 連通穴121が設けられている側と反対側において、中間層120の第2主面120bと連通穴121を画定する中間層120の内壁121aとのなす第1角度θ1が90度よりも大きい。
 このような構成により、中間層120と圧電層130との界面に応力が集中しにくくなり、クラックの発生を抑制することができる。このため、弾性波装置100の強度を向上させることができる。
 連通穴121が設けられている側と反対側において、中間層120の第1主面120aと連通穴121を画定する中間層120の内壁121aとのなす第2角度θ2が第1角度θ1よりも小さい。
 このような構成により、弾性波装置100の強度をより向上させることができる。
 第2角度θ2が90度よりも小さい。
 このような構成により、支持基板110と中間層120との接触面積を増やすことができ、堅牢な構造体とすることができ、弾性波装置100の強度をさらに向上させることができる。
 さらに、機能電極140と電気的に接続される配線電極141を備え、連通穴121は、支持基板110と圧電層130との積層方向における平面視において、少なくとも一部が配線電極141と重なる位置に形成される。
 このような構成により、平面視において、中間層120が重ならないように配線電極141を配置しやすくなるため、寄生容量の発生を抑制して、弾性波装置100の特性の劣化を抑制することができる。
 なお、上述した実施形態では、圧電層130の上面に機能電極140が形成される例について説明したが、これに限定されない。機能電極140は、圧電層130を挟むように設けられる上部電極と下部電極とを有するBAW(Bulk Acoustic Wave)素子を備えたバルク波装置であってもよい。
 以下、第2の実施形態の変形例について説明する。
<変形例1>
 図25は、変形例1の弾性波装置の概略断面図である。
 図25に示すように、弾性波装置200において、連通穴221を画定する中間層220の内壁の傾斜角度が変化する点で第2の実施形態の弾性波装置100と異なる。弾性波装置200において、連通穴221を画定する中間層220の内壁は、第1の内壁221aと第2の内壁221bとを含む。第2の内壁221bは、第1の内壁221aと交差する方向に延びている。第1の内壁221aと第2の内壁221bとが交差する部分が、最も内側に配置されている。
 また、図25に示すように、第2の内壁221bと中間層220の第2主面220bとのなす第2角度θ4は、90°よりも大きい鈍角であってもよい。または、第2角度θ4は、90度または90度よりも小さい鋭角であってもよい。
 このような構成により、より強度を向上させた弾性波装置200を実現することができる。
<変形例2>
 図26は、変形例2の弾性波装置の概略断面図である。図26に示すように、弾性波装置300においては、支持基板310に設けられた空洞部311の内壁311aが傾斜している点で、第2の実施形態の弾性波装置100と異なる。
 図26に示すように、空洞部311の内壁311aは、中間層120に向かって空洞部311の開口面積が小さくなるよう傾斜している。空洞部311の内壁311aは、中間層120に向かって空洞部311の開口面積が大きくなるよう傾斜していてもよい。
 このような構成により、より強度を向上させた弾性波装置300を実現することができる。
<変形例3>
 図27は、変形例3の弾性波装置の概略断面図である。図28は、図27の弾性波装置の概略平面図である。図27及び図28に示すように、弾性波装置400においては、空洞部411は、支持基板410と圧電層130との積層方向における平面視において少なくとも一部が配線電極141と重なる位置に形成される点で第2の実施形態の弾性波装置100と異なる。
 平面視において、支持基板410に設けられた空洞部411の少なくとも一部と配線電極141とが重なることで、寄生容量の発生を抑制することができ、弾性波装置400の特性の劣化を抑制することができる。
(実施形態の概要)
 (1)本開示の弾性波装置は、空洞部が形成された支持基板と、支持基板に積層され、支持基板側の第1主面と、第1主面と反対側の第2主面とを有する中間層と、中間層の第2主面に積層される圧電層と、圧電層に、支持基板と圧電層との積層方向における平面視において空洞部に重なる位置に形成された機能電極と、を備え、中間層には、支持基板と圧電層との積層方向における平面視において空洞部に重なる位置に、空洞部と連通し、かつ支持基板側の開口が空洞部の開口よりも大きい連通穴が形成され、空洞部を画定する支持基板の内壁の少なくとも一部は、連通穴を画定する中間層の内壁より内側に突出しており、連通穴を画定する中間層の内壁の少なくとも一部は、支持基板から圧電層に向かって、連通穴の開口面積が大きくなる方向に傾斜している。
 (2)(1)の弾性波装置において、連通穴が設けられている側と反対側において、中間層の第2主面と連通穴を画定する中間層の内壁とのなす第1角度が90度よりも大きくてもよい。
 (3)(2)の弾性波装置において、連通穴が設けられている側と反対側において、中間層の第1主面と連通穴を画定する中間層の内壁とのなす第2角度が第1角度よりも小さくてもよい。
 (4)(3)の弾性波装置において、第2角度が90度よりも小さくてもよい。
 (5)(1)から(4)のいずれか1つの弾性波装置において、さらに、機能電極と電気的に接続される配線電極、を備え、連通穴は、支持基板と圧電層との積層方向における平面視において、少なくとも一部が配線電極と重なる位置に形成されていてもよい。
 (6)(5)の弾性波装置において、空洞部は、支持基板と圧電層との積層方向における平面視において少なくとも一部が配線電極と重なる位置に形成されていてもよい。
 (7)(1)から(6)の弾性波装置において、機能電極は、第1バスバー及び第2バスバーと、第1バスバーに接続された第1電極指と、第2バスバーに接続された第2電極指と、を有してもよい。
 (8)(7)の弾性波装置において、板波を利用可能に構成されていてもよい。
 (9)(7)の弾性波装置において、圧電層の膜厚をd、隣接する第1電極指及び第2電極指どうしの中心間距離をpとする場合、d/pが0.5以下であってもよい。
 (10)(9)の弾性波装置において、d/pが0.24以下であってもよい。
 (11)(9)または(10)の弾性波装置において、第1電極指及び第2電極指が並ぶ方向から見たときに、隣り合う第1電極指及び第2電極指どうしが重なり合う領域が励振領域であり、励振領域に対する、電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たしてもよい。
 (12)(1)から(6)のいずれか1つの弾性波装置において、機能電極は、圧電層を挟んで圧電層の厚み方向に対向する上部電極及び下部電極を有してもよい。
 (13)(7)の弾性波装置において、厚み滑りモードのバルク波を利用可能に構成されていてもよい。
 (14)(1)から(13)のいずれか1つの弾性波装置において、圧電層は、ニオブ酸リチウムまたはタンタル酸リチウムからなっていてもよい。
 (21)(20)の弾性波装置において、ニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にあってもよい。
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)

Claims (15)

  1.  空洞部が形成された支持基板と、
     前記支持基板に積層され、前記支持基板側の第1主面と、前記第1主面と反対側の第2主面とを有する中間層と、
     前記中間層の前記第2主面に積層される圧電層と、
     前記圧電層に、前記支持基板と前記圧電層との積層方向における平面視において前記空洞部に重なる位置に形成された機能電極と、
    を備え、
     前記中間層には、前記支持基板と前記圧電層との積層方向における平面視において前記空洞部に重なる位置に、前記空洞部と連通し、かつ前記支持基板側の開口が前記空洞部の開口よりも大きい連通穴が形成され、
     前記空洞部を画定する前記支持基板の内壁の少なくとも一部は、前記連通穴を画定する前記中間層の内壁より内側に突出しており、
     前記連通穴を画定する前記中間層の内壁の少なくとも一部は、前記支持基板から前記圧電層に向かって、前記連通穴の開口面積が大きくなる方向に傾斜している、
     弾性波装置。
  2.  前記連通穴が設けられている側と反対側において、前記中間層の前記第2主面と前記連通穴を画定する前記中間層の内壁とのなす第1角度が90度よりも大きい、
     請求項1に記載の弾性波装置。
  3.  前記連通穴が設けられている側と反対側において、前記中間層の前記第1主面と前記連通穴を画定する前記中間層の内壁とのなす第2角度が前記第1角度よりも小さい、
     請求項2に記載の弾性波装置。
  4.  前記第2角度が90度よりも小さい、
     請求項3に記載の弾性波装置。
  5.  さらに、前記機能電極と電気的に接続される配線電極、を備え、
     前記連通穴は、前記支持基板と前記圧電層との積層方向における平面視において、少なくとも一部が前記配線電極と重なる位置に形成される、
     請求項1から4のいずれか1項に記載の弾性波装置。
  6.  前記空洞部は、前記支持基板と前記圧電層との積層方向における平面視において少なくとも一部が前記配線電極と重なる位置に形成される、
     請求項5に記載の弾性波装置。
  7.  前記機能電極は、第1バスバー及び第2バスバーのバスバーと、第1バスバーに接続される第1電極指と、第2バスバーに接続される第2電極指と、を有する、
     請求項1から6のいずれか1項に記載の弾性波装置。
  8.  前記弾性波装置は、板波を利用可能に構成されている、
     請求項7に記載の弾性波装置。
  9.  前記圧電層の膜厚をd、隣接する前記第1電極指及び前記第2電極指どうしの中心間距離をpとする場合、d/pが0.5以下である、
     請求項7に記載の弾性波装置。
  10.  d/pが0.24以下である、
     請求項9に記載の弾性波装置。
  11.  前記第1電極指及び前記第2電極指が並ぶ方向から見たときに、隣り合う前記第1電極指及び前記第2電極指同士が重なり合う領域が励振領域であり、
    前記励振領域に対する、前記電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす、
     請求項9または10に記載の弾性波装置。
  12.  前記機能電極は、前記圧電層を挟んで前記圧電層の厚み方向に対向する上部電極及び下部電極を有する、
     請求項1から6のいずれか1項に記載の弾性波装置。
  13.  厚み滑りモードのバルク波を利用可能に構成されている、
     請求項7に記載の弾性波装置。
  14.  前記圧電層は、ニオブ酸リチウムまたはタンタル酸リチウムである、
     請求項1から13のいずれか1項に記載の弾性波装置。
  15.  前記ニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、
     請求項14に記載の弾性波装置。
     (0°±10°,0°~20°,任意のψ)  …式(1)
     (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
PCT/JP2022/016660 2021-03-31 2022-03-31 弾性波装置 WO2022211055A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163168298P 2021-03-31 2021-03-31
US63/168,298 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022211055A1 true WO2022211055A1 (ja) 2022-10-06

Family

ID=83456624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016660 WO2022211055A1 (ja) 2021-03-31 2022-03-31 弾性波装置

Country Status (1)

Country Link
WO (1) WO2022211055A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147875A (ja) * 2008-12-19 2010-07-01 Panasonic Electric Works Co Ltd Baw共振装置およびその製造方法
WO2012073871A1 (ja) * 2010-11-30 2012-06-07 株式会社村田製作所 弾性波装置及びその製造方法
WO2016147687A1 (ja) * 2015-03-13 2016-09-22 株式会社村田製作所 弾性波装置及びその製造方法
US20200321939A1 (en) * 2019-04-05 2020-10-08 Resonant Inc. Transversely-excited film bulk acoustic resonator package and method
WO2020209152A1 (ja) * 2019-04-08 2020-10-15 株式会社村田製作所 弾性波デバイスおよびそれを備えたフィルタ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147875A (ja) * 2008-12-19 2010-07-01 Panasonic Electric Works Co Ltd Baw共振装置およびその製造方法
WO2012073871A1 (ja) * 2010-11-30 2012-06-07 株式会社村田製作所 弾性波装置及びその製造方法
WO2016147687A1 (ja) * 2015-03-13 2016-09-22 株式会社村田製作所 弾性波装置及びその製造方法
US20200321939A1 (en) * 2019-04-05 2020-10-08 Resonant Inc. Transversely-excited film bulk acoustic resonator package and method
WO2020209152A1 (ja) * 2019-04-08 2020-10-15 株式会社村田製作所 弾性波デバイスおよびそれを備えたフィルタ装置

Similar Documents

Publication Publication Date Title
WO2021060523A1 (ja) 弾性波装置及びフィルタ装置
WO2022163865A1 (ja) 弾性波装置
WO2023002858A1 (ja) 弾性波装置及びフィルタ装置
WO2022085581A1 (ja) 弾性波装置
WO2022044869A1 (ja) 弾性波装置
WO2023223906A1 (ja) 弾性波素子
US20230308072A1 (en) Acoustic wave device
WO2023002823A1 (ja) 弾性波装置
WO2022210809A1 (ja) 弾性波装置
WO2023002790A1 (ja) 弾性波装置
WO2022138328A1 (ja) 弾性波装置
WO2022019170A1 (ja) 弾性波装置
WO2022014496A1 (ja) フィルタ
WO2022211055A1 (ja) 弾性波装置
WO2023140362A1 (ja) 弾性波装置および弾性波装置の製造方法
WO2022210694A1 (ja) 弾性波装置
WO2023145878A1 (ja) 弾性波装置
WO2023058755A1 (ja) 弾性波装置および弾性波装置の製造方法
WO2023191089A1 (ja) 弾性波装置
WO2023167316A1 (ja) 弾性波装置
WO2023054703A1 (ja) 弾性波装置
WO2022210942A1 (ja) 弾性波装置
WO2023140327A1 (ja) 弾性波装置
WO2022211103A1 (ja) 弾性波装置及び弾性波装置の製造方法
WO2023140272A1 (ja) 弾性波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781265

Country of ref document: EP

Kind code of ref document: A1