WO2022210923A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2022210923A1
WO2022210923A1 PCT/JP2022/016146 JP2022016146W WO2022210923A1 WO 2022210923 A1 WO2022210923 A1 WO 2022210923A1 JP 2022016146 W JP2022016146 W JP 2022016146W WO 2022210923 A1 WO2022210923 A1 WO 2022210923A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
support
elastic wave
wave device
electrodes
Prior art date
Application number
PCT/JP2022/016146
Other languages
English (en)
French (fr)
Inventor
武志 中尾
誠二 甲斐
央 山崎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202280025668.4A priority Critical patent/CN117099309A/zh
Priority to KR1020237032580A priority patent/KR20230148243A/ko
Publication of WO2022210923A1 publication Critical patent/WO2022210923A1/ja
Priority to US18/369,895 priority patent/US20240014799A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02062Details relating to the vibration mode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/133Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials for electromechanical delay lines or filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/205Constructional features of resonators consisting of piezoelectric or electrostrictive material having multiple resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/60Electric coupling means therefor
    • H03H9/605Electric coupling means therefor consisting of a ladder configuration

Definitions

  • the present invention relates to elastic wave devices.
  • Patent Literature 1 discloses an elastic wave device using Lamb waves as plate waves.
  • a piezoelectric substrate is provided on a support.
  • the piezoelectric substrate is made of LiNbO3 or LiTaO3 .
  • An IDT (Interdigital Transducer) electrode is provided on the upper surface of the piezoelectric substrate.
  • a voltage is applied between a plurality of electrode fingers connected to one potential of the IDT electrode and a plurality of electrode fingers connected to the other potential. This excites Lamb waves.
  • Reflectors are provided on both sides of the IDT electrode. Thereby, an elastic wave resonator using Lamb waves is constructed.
  • An object of the present invention is to provide an elastic wave device capable of suppressing deterioration of electrical characteristics due to unwanted waves.
  • An elastic wave device includes a piezoelectric layer including a support member including a support substrate and a piezoelectric layer provided on the front support member and having a first main surface and a second main surface facing each other. at least one functional electrode provided on the first main surface or the second main surface of the piezoelectric layer and having at least one pair of electrodes; a first support provided so as to surround the functional electrode; and at least one first support provided on the piezoelectric substrate and arranged in a portion surrounded by the first support. 2 supports, and cover portions provided on the first support and the second support, and the direction in which the adjacent electrodes face each other is defined as the electrode facing direction.
  • a region where the adjacent electrodes overlap is an intersection region, and when the direction in which the at least one pair of electrodes extends is defined as the electrode extension direction, when viewed from the electrode extension direction, and
  • the second support is arranged so as not to overlap the intersecting region on both sides when viewed from the electrode facing direction.
  • an elastic wave device capable of suppressing deterioration of electrical characteristics due to unwanted waves.
  • FIG. 1 is a schematic plan view of an elastic wave device according to a first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view along line II in FIG.
  • FIG. 3 is a schematic cross-sectional view along line II-II in FIG.
  • FIG. 4 is a schematic plan view showing positions that do not overlap with the intersecting regions when viewed from the electrode extending direction and from the electrode facing direction.
  • FIG. 5 is a schematic cross-sectional view showing a portion corresponding to FIG. 2 of an elastic wave device according to a modification of the first embodiment of the invention.
  • FIG. 6 is a schematic plan view of an elastic wave device according to a second embodiment of the invention.
  • FIG. 7 is a circuit diagram of an elastic wave device according to a second embodiment of the invention.
  • FIG. 8 is a schematic plan view of an elastic wave device according to a third embodiment of the invention.
  • FIG. 9 is a schematic plan view of an elastic wave device according to a fourth embodiment of the invention.
  • FIG. 10 is a circuit diagram of an elastic wave device according to a fourth embodiment of the invention.
  • FIG. 11(a) is a schematic perspective view showing the external appearance of an elastic wave device that utilizes a thickness shear mode bulk wave
  • FIG. 11(b) is a plan view showing an electrode structure on a piezoelectric layer.
  • FIG. 12 is a cross-sectional view of a portion taken along line AA in FIG. 11(a).
  • FIG. 13(a) is a schematic front cross-sectional view for explaining a Lamb wave propagating through a piezoelectric film of an acoustic wave device, and FIG. 13(b) is a thickness shear propagating
  • FIG. 2 is a schematic front cross-sectional view for explaining bulk waves in a mode
  • FIG. 14 is a diagram showing amplitude directions of bulk waves in the thickness shear mode.
  • FIG. 15 is a diagram showing resonance characteristics of an elastic wave device that utilizes bulk waves in a thickness-shear mode.
  • FIG. 16 is a diagram showing the relationship between d/p and the fractional bandwidth of the resonator, where p is the center-to-center distance between adjacent electrodes and d is the thickness of the piezoelectric layer.
  • FIG. 17 is a plan view of an elastic wave device that utilizes thickness-shear mode bulk waves.
  • FIG. 18 is a diagram showing the resonance characteristics of the elastic wave device of the reference example in which spurious appears.
  • FIG. 19 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious.
  • FIG. 20 is a diagram showing the relationship between d/2p and metallization ratio MR.
  • FIG. 21 is a diagram showing a map of the fractional bandwidth with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0.
  • FIG. 22 is a partially cutaway perspective view for explaining an elastic wave device that utilizes Lamb waves.
  • FIG. 1 is a schematic plan view of an elastic wave device according to the first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view along line II in FIG.
  • FIG. 3 is a schematic cross-sectional view along line II-II in FIG.
  • a dielectric film which will be described later, is omitted.
  • an IDT electrode which will be described later, is shown by a schematic diagram in which two diagonal lines are added to a rectangle. The same applies to other schematic cross-sectional views.
  • the elastic wave device 10 has a piezoelectric substrate 12 and an IDT electrode 11 as a functional electrode.
  • the piezoelectric substrate 12 has a support member 13 and a piezoelectric layer 14 .
  • support member 13 includes support substrate 16 and intermediate layer 15 .
  • An intermediate layer 15 is provided on the support substrate 16 .
  • a piezoelectric layer 14 is provided on the intermediate layer 15 .
  • the support member 13 may be composed of only the support substrate 16 .
  • the material of the support substrate 16 for example, semiconductors such as silicon, ceramics such as aluminum oxide, and the like can be used.
  • the material of intermediate layer 15 may be any suitable dielectric such as silicon oxide or tantalum pentoxide.
  • the piezoelectric layer 14 is, for example, a lithium tantalate layer, such as a LiTaO3 layer, or a lithium niobate layer , such as a LiNbO3 layer.
  • the piezoelectric layer 14 has a first main surface 14a and a second main surface 14b.
  • the first main surface 14a and the second main surface 14b face each other.
  • the second principal surface 14b is located on the support member 13 side.
  • the support member 13 is provided with a first hollow portion 10a. More specifically, intermediate layer 15 is provided with a recess. A piezoelectric layer 14 is provided on the intermediate layer 15 so as to close the recess. This constitutes the first hollow portion 10a.
  • the first hollow portion 10a may be provided in the intermediate layer 15 and the support substrate 16, or may be provided in the support substrate 16 only.
  • the support member 13 may be provided with at least one first cavity 10a.
  • a plurality of IDT electrodes 11 are provided on the first main surface 14a of the piezoelectric layer 14.
  • a plurality of elastic wave resonators are configured.
  • the multiple elastic wave resonators include a first resonator 10A and a second resonator 10B.
  • the elastic wave device 10 in this embodiment is a filter device.
  • the elastic wave device 10 only needs to have at least one IDT electrode 11 .
  • An elastic wave device according to the present invention may include at least one elastic wave resonator.
  • the IDT electrode 11 overlaps the first cavity 10a in plan view. More specifically, in plan view, the IDT electrodes 11 of each acoustic wave resonator may overlap separate first cavities 10a, or may overlap the same first cavities 10a.
  • plan view means viewing from a direction corresponding to the upper direction in FIG.
  • a plan view means viewing along the direction in which the later-described first support 18 and the lid portion 25 are stacked. In FIG. 1, for example, between the support substrate 16 and the piezoelectric layer 14, the piezoelectric layer 14 side is the upper side.
  • the IDT electrode 11 has a first busbar 28A and a second busbar 28B, and a plurality of first electrode fingers 29A and a plurality of second electrode fingers 29B.
  • the first busbar 28A and the second busbar 28B face each other.
  • One ends of the plurality of first electrode fingers 29A are each connected to the first bus bar 28A.
  • One end of each of the plurality of second electrode fingers 29B is connected to the second bus bar 28B.
  • the plurality of first electrode fingers 29A and the plurality of second electrode fingers 29B are interdigitated with each other.
  • the first electrode finger 29A and the second electrode finger 29B are electrodes in the present invention.
  • the IDT electrode 11 may be composed of a single-layer metal film, or may be composed of a laminated metal film.
  • the direction in which the adjacent first electrode fingers 29A and second electrode fingers 29B face each other is defined as the electrode facing direction.
  • the direction in which the plurality of first electrode fingers 29A and the plurality of second electrode fingers 29B extend is defined as the electrode extending direction.
  • the electrode facing direction and the electrode extending direction are orthogonal to each other.
  • the intersecting region E is a region where the adjacent first electrode fingers 29A and second electrode fingers 29B overlap when viewed from the electrode facing direction.
  • a first support 18 and a plurality of second supports 19 are provided on the first main surface 14 a of the piezoelectric layer 14 .
  • the first support 18 and the second support 19 are each a laminate of multiple metal layers.
  • the first support 18 has a frame-like shape.
  • the second support 19 has a columnar shape.
  • the first support 18 is provided so as to surround the multiple IDT electrodes 11 and the multiple second supports 19 . More specifically, the first support 18 has an opening 18c.
  • the plurality of IDT electrodes 11 and the plurality of second supports 19 are positioned within the opening 18c.
  • one of the plurality of second supports 19 is positioned near the first resonator 10A.
  • the second support 19 is located in the hatched area in FIG.
  • the area sandwiched by the dashed lines and not hatched is the area that overlaps the intersecting area E when viewed from the electrode extending direction or from the electrode facing direction.
  • the hatched area is an area that does not overlap with the intersecting area E both when viewed from the electrode extending direction and when viewed from the electrode facing direction.
  • a frame-shaped electrode layer 17A is provided between the piezoelectric layer 14 and the first support 18.
  • the electrode layer 17A surrounds the multiple IDT electrodes 11 and the multiple second supports 19 in plan view, similarly to the first support 18 .
  • the electrode layer 17A may not be provided.
  • Lids 25 are provided on the first support 18 and the plurality of second supports 19 so as to close the openings 18c.
  • a second cavity 10b surrounded by the piezoelectric substrate 12, the electrode layer 17A, the first support 18 and the lid 25 is provided.
  • a plurality of IDT electrodes 11 and a plurality of second supports 19 are arranged in the second cavity 10b.
  • the feature of this embodiment is that the second support 19 does not overlap the intersecting region E both when viewed from the electrode extending direction and when viewed from the electrode facing direction. It is located. Thereby, it is possible to suppress deterioration of electrical characteristics due to unnecessary waves.
  • the first busbar 28A and the second busbar 28B may be simply referred to as busbars.
  • the first electrode finger 29A and the second electrode finger 29B may be simply referred to as electrode fingers.
  • the IDT electrode 11 has a plurality of excitation regions C. Elastic waves are excited in a plurality of excitation regions C by applying an AC voltage to the IDT electrodes 11 .
  • each acoustic wave resonator is configured to be able to use bulk waves in a thickness-shear mode such as a first-order thickness-shear mode.
  • the excitation region C like the intersecting region E, is a region where adjacent electrode fingers overlap each other when viewed from the electrode facing direction.
  • Each excitation region C is a region between a pair of electrode fingers. More specifically, the excitation region C is a region from the center of one electrode finger in the electrode facing direction to the center of the other electrode finger in the electrode facing direction. Therefore, the intersection region E includes a plurality of excitation regions C.
  • unwanted waves may be excited along with the excitation of the main mode.
  • Unwanted waves include waves propagating on the surface of the piezoelectric substrate. This unnecessary wave mainly propagates in the electrode extending direction or the electrode facing direction.
  • the second support 19 is arranged so as not to overlap the intersecting region E both when viewed from the electrode extending direction and when viewed from the electrode facing direction. . Therefore, unwanted waves propagating on the surface of the piezoelectric substrate 12 are less likely to collide with the second support 19 . As a result, it is possible to suppress unwanted waves from being reflected by the second support 19 and reaching the acoustic wave resonator that generated the unwanted waves. Therefore, deterioration of the electrical characteristics of the acoustic wave device 10 due to unwanted waves can be suppressed. At least part of the second support 19 does not overlap the intersecting region E with respect to any one elastic wave resonator when viewed from the electrode extending direction and from the electrode facing direction. should be arranged as
  • the second support 19 overlaps the intersecting region E of the elastic wave resonator having the shortest distance from the second support 19 both when viewed in the electrode extending direction and when viewed in the electrode facing direction. It is preferable that it is provided so that it does not occur. Thereby, reflection of unnecessary waves by the second support 19 can be effectively suppressed.
  • the positional relationship between the intersection region E and the second support 19 in all acoustic wave resonators including the first resonator 10A and the second resonator 10B is as described above. That is, it is more preferable that all the second supports 19 are arranged so as not to overlap with any of the intersecting regions E both when viewed from the electrode extending direction and when viewed from the electrode facing direction. . Thereby, the deterioration of the electrical characteristics of the acoustic wave device 10 due to unwanted waves can be suppressed more reliably.
  • a dielectric film 24 is provided on the piezoelectric substrate 12 so as to cover the IDT electrodes 11 .
  • the IDT electrode 11 is less likely to be damaged.
  • Silicon oxide, silicon nitride, or silicon oxynitride, for example, can be used for the dielectric film 24 . If the dielectric film 24 is made of silicon oxide, the frequency temperature characteristics can be improved. On the other hand, if the dielectric film 24 is made of silicon nitride or the like, the dielectric film 24 can be used as a frequency adjustment film. Note that the dielectric film 24 may not be provided.
  • a through hole 20 is continuously provided in the piezoelectric layer 14 and the dielectric film 24 .
  • the through hole 20 is provided so as to reach the first hollow portion 10a.
  • the through-hole 20 is used for removing the sacrificial layer in the intermediate layer 15 when manufacturing the elastic wave device 10 .
  • the through hole 20 may not necessarily be provided.
  • the lid portion 25 has a lid portion main body 26, and an insulator layer 27A and an insulator layer 27B.
  • the lid body 26 has a first major surface 26a and a second major surface 26b.
  • the first main surface 26a and the second main surface 26b face each other.
  • the second main surface 26b is located on the piezoelectric substrate 12 side.
  • An insulator layer 27A is provided on the first main surface 26a.
  • An insulator layer 27B is provided on the second main surface 26b.
  • the main component of the lid body 26 is silicon.
  • the material of the lid main body 26 is not limited to the above, it is preferable that the main component is a semiconductor such as silicon.
  • the term "main component" refers to a component that accounts for more than 50% by weight.
  • the insulator layers 27A and 27B are, for example, silicon oxide layers.
  • the lid portion 25 is provided with an under bump metal 21A. More specifically, a through hole is provided in the lid portion 25 . The through hole is provided to reach the second support 19 .
  • An under bump metal 21A is provided in the through hole. One end of the under bump metal 21 A is connected to the second support 19 .
  • An electrode pad 21B is provided so as to be connected to the other end of the under bump metal 21A.
  • the under bump metal 21A and the electrode pad 21B are integrally provided. However, the under bump metal 21A and the electrode pad 21B may be provided separately.
  • a bump 22 is joined to the electrode pad 21B.
  • an insulator layer 27A is provided so as to cover the vicinity of the outer periphery of the electrode pad 21B.
  • a bump 22 is joined to a portion of the electrode pad 21B that is not covered with the insulator layer 27A.
  • the insulator layer 27A may extend between the electrode pad 21B and the lid body 26 .
  • the insulator layer 27A may extend between the under bump metal 21A and the lid main body 26 .
  • the insulator layer 27A and the insulator layer 27B may be integrally provided through a through hole of the lid main body 26 .
  • each of the first support 18 and the second support 19 is a laminate of multiple metal layers. More specifically, the first support 18 has a first portion 18a and a second portion 18b. Of the first portion 18a and the second portion 18b, the first portion 18a is located on the lid portion 25 side, and the second portion 18b is located on the piezoelectric substrate 12 side. Similarly, the second support 19 also has a first portion 19a and a second portion 19b. Of the first portion 19a and the second portion 19b, the first portion 19a is located on the lid portion 25 side, and the second portion 19b is located on the piezoelectric substrate 12 side. Each of the first portions 18a and 19a is made of Au, for example.
  • Each of the second portions 18b and 19b is made of Al, for example.
  • the phrase "a certain member is made of a certain material" includes the case where a minute amount of impurity is included to such an extent that the electrical characteristics of the elastic wave device are not deteriorated.
  • elastic wave resonators adjacent in the electrode extending direction share a busbar.
  • the shared busbar is the first busbar in one acoustic wave resonator and the second busbar in the other acoustic wave resonator.
  • a plurality of wiring electrodes 23 are provided on the piezoelectric substrate 12 . Some of the wiring electrodes 23 connect the IDT electrodes 11 to each other. Some of the plurality of wiring electrodes 23 electrically connect the IDT electrodes 11 and the second support 19 . More specifically, a conductive film 17B is provided on the piezoelectric substrate 12 as shown in FIG. A second support 19 is provided on the conductive film 17B. Therefore, the wiring electrode 23 is electrically connected to the second support 19 via the conductive film 17B. The plurality of IDT electrodes 11 are electrically connected to the outside via wiring electrodes 23 , conductive films 17 B, second supports 19 , under bump metals 21 A, electrode pads 21 B and bumps 22 .
  • the plurality of second supports 19 may include second supports 19 that are not connected to the under bump metal 21A.
  • the functional electrode in this embodiment is the IDT electrode 11 .
  • the functional electrode may have at least one pair of electrode fingers. In this case, thickness shear mode bulk waves can be used.
  • the plurality of elastic wave resonators of the elastic wave device 10 may be configured to be able to use Lamb waves, for example.
  • the intersection region E of the IDT electrode 11 is the excitation region.
  • the material of the piezoelectric layer 14 for example, lithium niobate, lithium tantalate, zinc oxide, aluminum nitride, crystal, PZT (lead zirconate titanate), or the like can be used.
  • At least one second support 19 is provided between the acoustic wave resonator and the first support 18 and is not provided between a plurality of acoustic wave resonators. In this case, it is easy to suppress the reflection of unnecessary waves due to the provision of the second support 19 .
  • the conductive film 17B and the wiring electrode 23 are preferably made of the same material.
  • the conductive film 17B and the wiring electrode 23 are integrally provided. Thereby, productivity can be improved. It should be noted that the conductive film 17B does not necessarily have to be connected to the wiring electrode 23 .
  • the height of the second cavity portion 10b is equal to the height of the first cavity. It is preferably higher than the height of the portion 10a. In this case, the piezoelectric layer 14 is less likely to stick to the lid portion 25 even when the piezoelectric layer 14 is deformed into a convex shape from the first cavity portion 10a side to the second cavity portion 10b side.
  • the height relationship between the first cavity 10a and the second cavity 10b is not limited to the above.
  • the height of the first cavity 10a is higher than the height of the second cavity 10b.
  • the piezoelectric layer 14 is less likely to stick to the support member 13 even when the piezoelectric layer 14 deforms convexly from the second cavity portion 10b side to the first cavity portion 10a side.
  • unnecessary waves can be scattered, and deterioration of electrical characteristics due to unnecessary waves can be suppressed.
  • the first support 18 and the plurality of second supports 19 are provided on the piezoelectric layer 14 of the piezoelectric substrate 12 .
  • the first support 18 may be provided on a portion of the piezoelectric substrate 12 where the piezoelectric layer 14 is not provided.
  • at least part of the second support 19 may be provided on a portion of the piezoelectric substrate 12 where the piezoelectric layer 14 is not provided.
  • at least part of the first support 18 or the second support 19 may be provided on the intermediate layer 15 or on the support substrate 16 .
  • the first support 18 and the plurality of second supports 19 are laminates of metal layers.
  • the first support 18 and the second support 19 may be made of resin. Also in this case, reflection of unwanted waves by the second support 19 can be suppressed. Therefore, deterioration of electrical characteristics due to unnecessary waves can be suppressed.
  • the under bump metal 21A may be provided so as to penetrate the second support 19 .
  • the main component of the lid body 26 is a semiconductor.
  • the lid portion 25 may be made of resin.
  • the first support 18, the second support 19 and the lid portion 25 are integrally provided with the same resin material. preferably. Thereby, productivity can be improved.
  • the IDT electrode 11 is provided on the first main surface 14a of the piezoelectric layer 14.
  • the IDT electrode 11 may be provided on the second principal surface 14 b of the piezoelectric layer 14 .
  • the IDT electrode 11 is positioned, for example, inside the first cavity 10a.
  • FIG. 6 is a schematic plan view of an elastic wave device according to the second embodiment.
  • FIG. 7 is a circuit diagram of an elastic wave device according to a second embodiment.
  • this embodiment differs from the first embodiment in the arrangement of the multiple elastic wave resonators and the arrangement of the multiple second supports 19 .
  • This embodiment also differs from the first embodiment in circuit configuration. Except for the above points, the elastic wave device 30 of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • the elastic wave device 30 is a ladder filter.
  • the acoustic wave device 30 has an input terminal 32 and an output terminal 33, a plurality of series arm resonators, and a plurality of parallel arm resonators.
  • the input terminal 32 and the output terminal 33 may be configured as electrode pads, or may be configured as wiring, for example.
  • a signal is input from the input terminal 32 of the elastic wave device 30 .
  • Each of the multiple series arm resonators and the multiple parallel arm resonators of the elastic wave device 30 is a split type elastic wave resonator.
  • the plurality of series arm resonators are specifically a series arm resonator S1a, a series arm resonator S1b, a series arm resonator S2a, and a series arm resonator S2b.
  • the series arm resonator S1a and the series arm resonator S1b are resonators obtained by parallel dividing one series arm resonator.
  • the series arm resonator S2a and the series arm resonator S2b are resonators obtained by dividing one series arm resonator in parallel.
  • the series arm resonator S1a, the series arm resonator S1b and the series arm resonator S2a are connected in series with each other.
  • the plurality of parallel arm resonators are specifically a parallel arm resonator P1a, a parallel arm resonator P1b, a parallel arm resonator P2a and a parallel arm resonator P2b.
  • the parallel arm resonator P1a and the parallel arm resonator P1b are resonators obtained by dividing one parallel arm resonator in parallel.
  • the parallel arm resonator P2a and the parallel arm resonator P2b are resonators obtained by parallel dividing one parallel arm resonator.
  • a parallel arm resonator P1a and a parallel arm resonator P1b are connected in parallel between the input terminal 32 and the ground potential.
  • a parallel arm resonator P2a and a parallel arm resonator P2b are connected in parallel between a connection point between the series arm resonator S1a and the series arm resonator S2a and the ground potential.
  • each series arm resonator and each parallel arm resonator may be series-divided resonators. Alternatively, each series arm resonator and each parallel arm resonator may not be a split type resonator.
  • the plurality of resonators may include at least one series arm resonator and at least one parallel arm resonator.
  • a plurality of parallel arm resonators are connected to the second support 19 respectively.
  • the multiple parallel arm resonators are connected to ground potential via the second support 19 .
  • the series arm resonator S1b and the parallel arm resonator P1b are adjacent to each other in the electrode extending direction.
  • the series arm resonator S1b, the parallel arm resonator P1b, and the parallel arm resonator P1a are adjacent to each other in the electrode facing direction.
  • a second support 19 is provided between the series arm resonator S1b and the parallel arm resonator P1b and the parallel arm resonator P1a.
  • a line F1 connecting the series arm resonator S1b and the parallel arm resonator P1a extends in a direction crossing both the electrode extension direction and the electrode facing direction.
  • a second support 19 is located on the line F1.
  • a line F2 connecting the parallel arm resonator P1b and the parallel arm resonator P1a extends in a direction crossing both the electrode extension direction and the electrode facing direction.
  • Said second support 19 lies on line F2.
  • the second support 19 is separated from the intersecting region E of each of the series arm resonator S1b and the parallel arm resonator P1b. not overlapped.
  • the second support 19 overlaps the intersecting region E of the parallel arm resonator P1a when viewed from the electrode facing direction.
  • wiring electrodes 23 are provided between the second support 19 and the series arm resonator S1b and the parallel arm resonator P1b. In this case, heat dissipation can be enhanced.
  • FIG. 8 is a schematic plan view of an elastic wave device according to the third embodiment.
  • This embodiment differs from the second embodiment in the arrangement of the plurality of elastic wave resonators and the arrangement of the plurality of second supports 19 . Except for the above points, the elastic wave device 40 of this embodiment has the same configuration as the elastic wave device 30 of the second embodiment.
  • the second support 19 is the IDT electrode 11 of each acoustic wave resonator. are arranged so as not to overlap with the intersecting region E of . As a result, as in the second embodiment, it is possible to suppress reflection of unnecessary waves by the second support 19, and to suppress deterioration of electrical characteristics due to unnecessary waves.
  • a plurality of second supports 19 are arranged so as to sandwich the parallel arm resonator P1a in the electrode facing direction. Thereby, heat dissipation can be effectively improved.
  • Each of the plurality of second supports 19 is arranged so as not to overlap the intersecting region E of the parallel arm resonator P1a both when viewed from the electrode extending direction and when viewed from the electrode facing direction. preferably. Thereby, reflection of unwanted waves can be suppressed more reliably.
  • Second supports 19 There are 1.5 pairs of second supports 19 arranged to sandwich the parallel arm resonator P1a. Being sandwiched between 1.5 pairs of second supports 19 in the electrode facing direction means that two second supports 19 are arranged on one side in the electrode facing direction and one second support 19 is arranged on the other side. is sandwiched by the arrangement of the support 19.
  • the number of the second supports 19 arranged so as to sandwich the acoustic wave resonator is not limited to 1.5 pairs, and may be one pair or two or more pairs.
  • the arrangement of the plurality of second supports 19 sandwiching the parallel arm resonator P1a is asymmetrical.
  • the above-mentioned asymmetry means that the arrangement of the plurality of second supports 19 is line symmetric when the axis G passing through the center of the intersecting region E in the electrode facing direction and extending in the electrode extending direction is defined as the axis of symmetry G.
  • one pair of the second supports 19 crosses the intersecting region E of the parallel arm resonator P1a in the electrode extension direction. not sandwiched.
  • One of the second supports 19 is closer to the intersecting region E than the other of the second supports 19 in the electrode extending direction. Thus, it is asymmetrical in the electrode facing direction.
  • the pair of second supports 19 is asymmetrical also in the electrode facing direction. More specifically, the distance L1 is the distance between one of the second supports 19 sandwiching the parallel arm resonator P1a and the straight line H1 in FIG. A straight line H1 is an extension line in the electrode extending direction of an electrode finger positioned at one end of the intersecting region E in the parallel arm resonator P1a in the electrode facing direction. Let the distance L2 be the distance between the other second support 19 and the straight line H2 in FIG. A straight line H2 is an extension line of the electrode finger positioned at the other end of the intersecting region E in the electrode extending direction. As shown in FIG. 8, L1 ⁇ L2.
  • the arrangement of the pair of second supports 19 sandwiching the parallel arm resonator P1a is asymmetric in both the electrode facing direction and the electrode extending direction.
  • the arrangement of the pair of second supports 19 is asymmetric, the arrangement may be asymmetric in at least one of the electrode facing direction and the electrode extending direction. In this case, even if some of the unwanted waves reach the second supports 19, the phases of the unwanted waves can be shifted from each other. Therefore, the influence of unwanted waves on electrical characteristics can be suppressed.
  • the center-to-center arrangement of the pair of second supports 19 is preferably asymmetric in at least one of the electrode facing direction and the electrode extending direction. In this case, the influence of unwanted waves on electrical characteristics can be suppressed.
  • the arrangement of the other pair of second supports 19 also depends on the electrode facing direction and the electrode extension direction. Asymmetric in both directions. Therefore, it is possible to further improve heat dissipation while suppressing the influence of unwanted waves on electrical characteristics.
  • one pair of the second supports 19 sandwiches the parallel arm resonator P1a in the electrode facing direction.
  • the other pair of second supports 19 out of the 1.5 pairs of second supports 19 have parallel arm resonators P1a in the direction crossing both the electrode facing direction and the electrode extending direction. sandwiched between The pair of second supports 19 sandwiching the parallel arm resonator P1a may sandwich the parallel arm resonator P1a in the electrode extending direction.
  • a second support 19 is provided on one side of the series arm resonator S1a in the electrode facing direction.
  • the series arm resonator S1a is not sandwiched between the plurality of second supports 19.
  • the area where the second support 19 is arranged can be reduced, and the area of the piezoelectric substrate 12 can be reduced.
  • Such a configuration is particularly suitable for a circuit configuration in which the parallel arm resonator P1a is required to withstand more power than the series arm resonator S1a.
  • the power resistance of the elastic wave device 40 as a whole can be improved, and the elastic wave device 30 can be made smaller.
  • the parallel arm resonator P1a is one of the elastic wave resonators closest to the input terminal 32 among the plurality of elastic wave resonators on the circuit. In this case, the parallel arm resonator P1a is particularly likely to be required to withstand power.
  • FIG. 9 is a schematic plan view of an elastic wave device according to the fourth embodiment.
  • FIG. 10 is a circuit diagram of an elastic wave device according to a fourth embodiment.
  • this embodiment differs from the second embodiment in the arrangement of the multiple elastic wave resonators and the arrangement of the multiple second supports 19 .
  • this embodiment differs from the second embodiment in the arrangement of a plurality of parallel arm resonators as a circuit configuration. Except for the above points, the elastic wave device 50 of this embodiment has the same configuration as the elastic wave device 30 of the second embodiment.
  • parallel arm resonator P1a and parallel arm resonator P1b are connected in parallel between a connection point between series arm resonator S1a and series arm resonator S2a and the ground potential.
  • a parallel arm resonator P2a and a parallel arm resonator P2b are connected in parallel between the output terminal 33 and the ground potential.
  • the second support 19 is positioned between the IDT electrodes 11 of the plurality of acoustic wave resonators. It is arranged so as not to overlap with the intersection area E. As a result, as in the second embodiment, it is possible to suppress reflection of unnecessary waves by the second support 19, and to suppress deterioration of electrical characteristics due to unnecessary waves.
  • a plurality of second supports 19 are provided so as to sandwich the series arm resonator S1a. Thereby, the heat generated in the series arm resonator S1a can be effectively radiated.
  • a second support 19 is provided on one side of the parallel arm resonator P1a in the electrode facing direction. The parallel arm resonator P1a is not sandwiched between the plurality of second supports 19. As shown in FIG. As a result, the area where the second support 19 is arranged can be reduced, and the area of the piezoelectric substrate 12 can be reduced.
  • Such a configuration is particularly suitable for a circuit configuration in which the series arm resonator S1a is required to withstand more power than the parallel arm resonator P1a.
  • the power resistance of the elastic wave device 50 as a whole can be improved, and the elastic wave device 50 can be made smaller.
  • the series arm resonator S1a is one of the elastic wave resonators closest to the input terminal 32 among the plurality of elastic wave resonators on the circuit. In this case, the series arm resonator S1a is particularly likely to be required to have power resistance.
  • the details of the thickness slip mode and Lamb waves are described below.
  • the electrodes in the following examples correspond to the electrode fingers described above.
  • the supporting member in the following examples corresponds to the supporting substrate in the present invention.
  • FIG. 11(a) is a schematic perspective view showing the external appearance of an elastic wave device that utilizes a thickness shear mode bulk wave
  • FIG. 11(b) is a plan view showing an electrode structure on a piezoelectric layer
  • FIG. 12 is a cross-sectional view of a portion taken along line AA in FIG. 11(a).
  • the acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may consist of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is Z-cut, but may be rotational Y-cut or X-cut.
  • the thickness of the piezoelectric layer 2 is not particularly limited, it is preferably 40 nm or more and 1000 nm or less, more preferably 50 nm or more and 1000 nm or less, in order to effectively excite the thickness-shear mode.
  • the piezoelectric layer 2 has first and second major surfaces 2a and 2b facing each other. Electrodes 3 and 4 are provided on the first main surface 2a.
  • the electrode 3 is an example of the "first electrode” and the electrode 4 is an example of the "second electrode”.
  • multiple electrodes 3 are connected to the first busbar 5 .
  • a plurality of electrodes 4 are connected to a second bus bar 6 .
  • the plurality of electrodes 3 and the plurality of electrodes 4 are interleaved with each other.
  • the electrodes 3 and 4 have a rectangular shape and have a length direction.
  • the electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to the length direction. Both the length direction of the electrodes 3 and 4 and the direction orthogonal to the length direction of the electrodes 3 and 4 are directions crossing the thickness direction of the piezoelectric layer 2 .
  • the electrode 3 and the adjacent electrode 4 face each other in the direction crossing the thickness direction of the piezoelectric layer 2 .
  • the length direction of the electrodes 3 and 4 may be interchanged with the direction orthogonal to the length direction of the electrodes 3 and 4 shown in FIGS. 11(a) and 11(b). That is, in FIGS. 11A and 11B, the electrodes 3 and 4 may extend in the direction in which the first busbar 5 and the second busbar 6 extend. In that case, the first busbar 5 and the second busbar 6 extend in the direction in which the electrodes 3 and 4 extend in FIGS. 11(a) and 11(b).
  • a plurality of pairs of structures in which an electrode 3 connected to one potential and an electrode 4 connected to the other potential are adjacent to each other are provided in a direction perpendicular to the length direction of the electrodes 3 and 4.
  • the electrodes 3 and 4 are adjacent to each other, it does not mean that the electrodes 3 and 4 are arranged so as to be in direct contact with each other, but that the electrodes 3 and 4 are arranged with a gap therebetween. point to When the electrodes 3 and 4 are adjacent to each other, no electrodes connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4, are arranged between the electrodes 3 and 4.
  • the logarithms need not be integer pairs, but may be 1.5 pairs, 2.5 pairs, or the like.
  • the center-to-center distance or pitch between the electrodes 3 and 4 is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less.
  • the width of the electrodes 3 and 4, that is, the dimension in the facing direction of the electrodes 3 and 4 is preferably in the range of 50 nm or more and 1000 nm or less, more preferably in the range of 150 nm or more and 1000 nm or less.
  • the center-to-center distance between the electrodes 3 and 4 means the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the distance between the center of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. It is the distance connecting the center of the dimension (width dimension) of
  • the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2 .
  • “perpendicular” is not limited to being strictly perpendicular, but is substantially perpendicular (the angle formed by the direction perpendicular to the length direction of the electrodes 3 and 4 and the polarization direction is, for example, 90° ⁇ 10°). within the range).
  • a supporting member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 interposed therebetween.
  • the insulating layer 7 and the support member 8 have a frame shape and, as shown in FIG. 12, have through holes 7a and 8a.
  • a cavity 9 is thereby formed.
  • the cavity 9 is provided so as not to disturb the vibration of the excitation region C of the piezoelectric layer 2 . Therefore, the support member 8 is laminated on the second main surface 2b with the insulating layer 7 interposed therebetween at a position not overlapping the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support member 8 can be directly or indirectly laminated to the second main surface 2b of the piezoelectric layer 2 .
  • the insulating layer 7 is made of silicon oxide. However, in addition to silicon oxide, suitable insulating materials such as silicon oxynitride and alumina can be used.
  • the support member 8 is made of Si. The plane orientation of the surface of Si on the piezoelectric layer 2 side may be (100), (110), or (111). It is desirable that the Si constituting the support member 8 has a high resistivity of 4 k ⁇ cm or more. However, the support member 8 can also be constructed using an appropriate insulating material or semiconductor material.
  • Materials for the support member 8 include, for example, aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and steer.
  • Various ceramics such as tight and forsterite, dielectrics such as diamond and glass, and semiconductors such as gallium nitride can be used.
  • the plurality of electrodes 3, 4 and the first and second bus bars 5, 6 are made of appropriate metals or alloys such as Al, AlCu alloys.
  • the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesion layer other than the Ti film may be used.
  • d/p is 0.0, where d is the thickness of the piezoelectric layer 2 and p is the center-to-center distance between any one of the pairs of electrodes 3 and 4 adjacent to each other. 5 or less. Therefore, the thickness-shear mode bulk wave is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the elastic wave device 1 Since the elastic wave device 1 has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in an attempt to reduce the size, the Q value is unlikely to decrease. This is because the propagation loss is small even if the number of electrode fingers in the reflectors on both sides is reduced. Moreover, the fact that the number of electrode fingers can be reduced is due to the fact that bulk waves in the thickness-shear mode are used. The difference between the Lamb wave used in the elastic wave device and the bulk wave in the thickness shear mode will be described with reference to FIGS. 13(a) and 13(b).
  • FIG. 13(a) is a schematic front cross-sectional view for explaining a Lamb wave propagating through a piezoelectric film of an acoustic wave device as described in Japanese Unexamined Patent Publication No. 2012-257019.
  • waves propagate through the piezoelectric film 201 as indicated by arrows.
  • the first main surface 201a and the second main surface 201b face each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. is.
  • the X direction is the direction in which the electrode fingers of the IDT electrodes are arranged.
  • the Lamb wave propagates in the X direction as shown.
  • the wave is generated on the first principal surface 2a and the second principal surface of the piezoelectric layer 2. 2b, ie, the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Further, since resonance characteristics are obtained by propagating waves in the Z direction, propagation loss is unlikely to occur even if the number of electrode fingers of the reflector is reduced. Furthermore, even if the number of electrode pairs consisting of the electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
  • FIG. 14 schematically shows bulk waves when a voltage is applied between the electrodes 3 and 4 so that the potential of the electrode 4 is higher than that of the electrode 3 .
  • the first region 451 is a region of the excitation region C between the first main surface 2a and a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2 .
  • the second region 452 is a region of the excitation region C between the virtual plane VP1 and the second main surface 2b.
  • the acoustic wave device 1 at least one pair of electrodes consisting of the electrodes 3 and 4 is arranged.
  • the number of electrode pairs need not be plural. That is, it is sufficient that at least one pair of electrodes is provided.
  • the electrode 3 is an electrode connected to a hot potential
  • the electrode 4 is an electrode connected to a ground potential.
  • electrode 3 may also be connected to ground potential and electrode 4 to hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrodes are provided.
  • FIG. 15 is a diagram showing resonance characteristics of the elastic wave device shown in FIG.
  • the design parameters of the elastic wave device 1 with this resonance characteristic are as follows.
  • Insulating layer 7 Silicon oxide film with a thickness of 1 ⁇ m.
  • Support member 8 Si.
  • the length of the excitation region C is the dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
  • the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 are all the same in a plurality of pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
  • d/p is more preferably 0.5 or less, as described above. is 0.24 or less. This will be explained with reference to FIG.
  • FIG. 16 is a diagram showing the relationship between this d/p and the fractional bandwidth of the acoustic wave device as a resonator.
  • the specific bandwidth when d/p>0.5, even if d/p is adjusted, the specific bandwidth is less than 5%.
  • the specific bandwidth when d/p ⁇ 0.5, the specific bandwidth can be increased to 5% or more by changing d/p within that range. can be configured. Further, when d/p is 0.24 or less, the specific bandwidth can be increased to 7% or more.
  • d/p when adjusting d/p within this range, a resonator with a wider specific band can be obtained, and a resonator with a higher coupling coefficient can be realized. Therefore, by setting d/p to 0.5 or less, it is possible to construct a resonator having a high coupling coefficient using the thickness-shear mode bulk wave.
  • FIG. 17 is a plan view of an elastic wave device that utilizes thickness-shear mode bulk waves.
  • elastic wave device 80 a pair of electrodes having electrode 3 and electrode 4 is provided on first main surface 2 a of piezoelectric layer 2 .
  • K in FIG. 17 is the crossing width.
  • the number of pairs of electrodes may be one. Even in this case, if d/p is 0.5 or less, bulk waves in the thickness-shear mode can be effectively excited.
  • the adjacent excitation region C is an overlapping region when viewed in the direction in which any adjacent electrodes 3 and 4 are facing each other. It is desirable that the metallization ratio MR of the mating electrodes 3, 4 satisfy MR ⁇ 1.75(d/p)+0.075. In that case, spurious can be effectively reduced. This will be described with reference to FIGS. 18 and 19.
  • the metallization ratio MR will be explained with reference to FIG. 11(b).
  • the excitation region C is the portion surrounded by the dashed-dotted line.
  • the excitation region C is a region where the electrode 3 and the electrode 4 overlap each other when the electrodes 3 and 4 are viewed in a direction perpendicular to the length direction of the electrodes 3 and 4, i.e., in a facing direction. 3 and an overlapping area between the electrodes 3 and 4 in the area between the electrodes 3 and 4 .
  • the area of the electrodes 3 and 4 in the excitation region C with respect to the area of the excitation region C is the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallization portion to the area of the excitation region C.
  • MR may be the ratio of the metallization portion included in the entire excitation region to the total area of the excitation region.
  • FIG. 19 is a diagram showing the relationship between the fractional bandwidth and the amount of phase rotation of the spurious impedance normalized by 180 degrees as the magnitude of the spurious when a large number of acoustic wave resonators are configured according to this embodiment. be.
  • the ratio band was adjusted by changing the film thickness of the piezoelectric layer and the dimensions of the electrodes.
  • FIG. 19 shows the results when a Z-cut LiNbO 3 piezoelectric layer is used, but the same tendency is obtained when piezoelectric layers with other cut angles are used.
  • the spurious is as large as 1.0.
  • the fractional band exceeds 0.17, that is, when it exceeds 17%, even if a large spurious with a spurious level of 1 or more changes the parameters constituting the fractional band, the passband appear within. That is, like the resonance characteristic shown in FIG. 18, a large spurious component indicated by arrow B appears within the band. Therefore, the specific bandwidth is preferably 17% or less. In this case, by adjusting the film thickness of the piezoelectric layer 2 and the dimensions of the electrodes 3 and 4, the spurious response can be reduced.
  • FIG. 20 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional bandwidth.
  • various elastic wave devices having different d/2p and MR were constructed, and the fractional bandwidth was measured.
  • the hatched portion on the right side of the dashed line D in FIG. 20 is the area where the fractional bandwidth is 17% or less.
  • FIG. 21 is a diagram showing a map of the fractional bandwidth with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is infinitely close to 0.
  • FIG. The hatched portion in FIG. 21 is a region where a fractional bandwidth of at least 5% or more is obtained, and when the range of the region is approximated, the following formulas (1), (2) and (3) ).
  • Equation (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2 /900) 1/2 ) or (0° ⁇ 10°, 20° to 80°, [180 °-60° (1-( ⁇ -50) 2 /900) 1/2 ] ⁇ 180°) Equation (2) (0° ⁇ 10°, [180°-30°(1-( ⁇ -90) 2 /8100) 1/2 ] ⁇ 180°, arbitrary ⁇ ) Equation (3)
  • the fractional band can be sufficiently widened, which is preferable.
  • the piezoelectric layer 2 is a lithium tantalate layer.
  • FIG. 22 is a partially cutaway perspective view for explaining an elastic wave device that utilizes Lamb waves.
  • the elastic wave device 81 has a support substrate 82 .
  • the support substrate 82 is provided with a concave portion that is open on the upper surface.
  • a piezoelectric layer 83 is laminated on the support substrate 82 .
  • a hollow portion 9 is thereby formed.
  • An IDT electrode 84 is provided on the piezoelectric layer 83 above the cavity 9 .
  • Reflectors 85 and 86 are provided on both sides of the IDT electrode 84 in the elastic wave propagation direction.
  • the outer periphery of the hollow portion 9 is indicated by broken lines.
  • the IDT electrode 84 has first and second bus bars 84a, 84b, a plurality of first electrode fingers 84c and a plurality of second electrode fingers 84d.
  • the plurality of first electrode fingers 84c are connected to the first busbar 84a.
  • the plurality of second electrode fingers 84d are connected to the second bus bar 84b.
  • the plurality of first electrode fingers 84c and the plurality of second electrode fingers 84d are interposed.
  • a Lamb wave as a plate wave is excited by applying an AC electric field to the IDT electrodes 84 on the cavity 9. Since the reflectors 85 and 86 are provided on both sides, the resonance characteristics due to the Lamb wave can be obtained.
  • the elastic wave device of the present invention may use plate waves.
  • the IDT electrodes 84, the reflectors 85, and the reflectors 86 shown in FIG. 22 may be provided on the piezoelectric layer in the first to fourth embodiments or modifications.
  • d/p is 0.5 or less as described above. It is preferably 0.24 or less, and more preferably 0.24 or less. Thereby, even better resonance characteristics can be obtained. Furthermore, in the elastic wave devices of the first to fourth embodiments or modifications having elastic wave resonators that utilize thickness-shear mode bulk waves, as described above, MR ⁇ 1.75 (d/p) +0.075 is preferably satisfied. In this case, spurious can be suppressed more reliably.
  • the piezoelectric layer in the elastic wave devices of the first to fourth embodiments or modifications having an elastic wave resonator that utilizes thickness shear mode bulk waves is preferably a lithium niobate layer or a lithium tantalate layer.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of lithium niobate or lithium tantalate constituting the piezoelectric layer are within the range of the above formula (1), formula (2), or formula (3). is preferred. In this case, the fractional bandwidth can be widened sufficiently.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

不要波による電気的特性の劣化を抑制することができる、弾性波装置を提供する。 本発明に係る弾性波装置10は、支持基板を含む支持部材と、支持部材上に設けられており、対向し合う第1の主面14a及び第2の主面を有する圧電層14と、を含む圧電性基板12と、圧電層14の第1の主面14aまたは第2の主面に設けられており、少なくとも1対の電極を有する、少なくとも1つの機能電極と、圧電性基板12上に、機能電極を囲むように設けられている第1の支持体18と、圧電性基板12上に設けられており、第1の支持体18に囲まれている部分に配置されている、少なくとも1つの第2の支持体19と、第1の支持体18上及び第2の支持体19上に設けられている蓋部とを備える。隣り合う電極同士が対向する方向を電極対向方向とし、電極対向方向から見たときに、隣り合う電極同士が重なり合う領域が交叉領域Eであり、少なくとも1対の電極が延びる方向を電極延伸方向としたときに、電極延伸方向から見たとき、及び電極対向方向から見たときの双方において、第2の支持体19が、交叉領域Eと重ならないように配置されている。

Description

弾性波装置
 本発明は、弾性波装置に関する。
 従来、弾性波装置は、携帯電話器のフィルタなどに広く用いられている。例えば、下記の特許文献1では、板波としてのラム波を利用した弾性波装置が開示されている。この弾性波装置においては、支持体上に圧電基板が設けられている。圧電基板はLiNbOまたはLiTaOからなる。圧電基板の上面にIDT(Interdigital Transducer)電極が設けられている。IDT電極の一方電位に接続される複数の電極指と、他方電位に接続される複数の電極指との間に電圧が印加される。これにより、ラム波が励振される。このIDT電極の両側には反射器が設けられている。それによって、ラム波を利用した弾性波共振子が構成されている。
特開2012-257019号公報
 特許文献1に記載のような弾性波装置においては、圧電基板の表面を伝搬する不要波が生じることがある。該不要波の影響により、弾性波装置の電気的特性が劣化するおそれがある。
 本発明の目的は、不要波による電気的特性の劣化を抑制することができる、弾性波装置を提供することにある。
 本発明に係る弾性波装置は、支持基板を含む支持部材と、前前記支持部材上に設けられており、対向し合う第1の主面及び第2の主面を有する圧電層とを含む圧電性基板と、前記圧電層の前記第1の主面または前記第2の主面に設けられており、少なくとも1対の電極を有する、少なくとも1つの機能電極と、前記圧電性基板上に、前記機能電極を囲むように設けられている第1の支持体と、前記圧電性基板上に設けられており、前記第1の支持体に囲まれている部分に配置されている、少なくとも1つの第2の支持体と、前記第1の支持体上及び前記第2の支持体上に設けられている蓋部とを備え、隣り合う前記電極同士が対向する方向を電極対向方向とし、前記電極対向方向から見たときに、隣り合う前記電極同士が重なり合う領域が交叉領域であり、前記少なくとも1対の電極が延びる方向を電極延伸方向としたときに、前記電極延伸方向から見たとき、及び前記電極対向方向から見たときの双方において、前記第2の支持体が、前記交叉領域と重ならないように配置されている。
 本発明によれば、不要波による電気的特性の劣化を抑制することができる、弾性波装置を提供することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の模式的平面図である。 図2は、図1中のI-I線に沿う略図的断面図である。 図3は、図1中のII-II線に沿う略図的断面図である。 図4は、電極延伸方向から見たとき、及び電極対向方向から見たときに、交叉領域と重ならない位置を示す模式的平面図である。 図5は、本発明の第1の実施形態の変形例に係る弾性波装置の、図2に相当する部分を示す略図的断面図である。 図6は、本発明の第2の実施形態に係る弾性波装置の模式的平面図である。 図7は、本発明の第2の実施形態に係る弾性波装置の回路図である。 図8は、本発明の第3の実施形態に係る弾性波装置の模式的平面図である。 図9は、本発明の第4の実施形態に係る弾性波装置の模式的平面図である。 図10は、本発明の第4の実施形態に係る弾性波装置の回路図である。 図11(a)は、厚み滑りモードのバルク波を利用する弾性波装置の外観を示す略図的斜視図であり、図11(b)は、圧電層上の電極構造を示す平面図である。 図12は、図11(a)中のA-A線に沿う部分の断面図である。 図13(a)は、弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図であり、図13(b)は、弾性波装置における、圧電膜を伝搬する厚み滑りモードのバルク波を説明するための模式的正面断面図である。 図14は、厚み滑りモードのバルク波の振幅方向を示す図である。 図15は、厚み滑りモードのバルク波を利用する弾性波装置の共振特性を示す図である。 図16は、隣り合う電極の中心間距離をp、圧電層の厚みをdとした場合のd/pと共振子としての比帯域との関係を示す図である。 図17は、厚み滑りモードのバルク波を利用する弾性波装置の平面図である。 図18は、スプリアスが現れている参考例の弾性波装置の共振特性を示す図である。 図19は、比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。 図20は、d/2pと、メタライゼーション比MRとの関係を示す図である。 図21は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。 図22は、ラム波を利用する弾性波装置を説明するための部分切り欠き斜視図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の模式的平面図である。図2は、図1中のI-I線に沿う略図的断面図である。図3は、図1中のII-II線に沿う略図的断面図である。図1においては、後述する誘電体膜を省略している。図2においては、後述するIDT電極を、矩形に2本の対角線を加えた略図により示す。他の略図的断面図においても同様である。
 図1及び図2に示すように、弾性波装置10は、圧電性基板12と、機能電極としてのIDT電極11とを有する。図2に示すように、圧電性基板12は、支持部材13と、圧電層14とを有する。本実施形態では、支持部材13は支持基板16と、中間層15とを含む。支持基板16上に中間層15が設けられている。中間層15上に圧電層14が設けられている。もっとも、支持部材13は支持基板16のみにより構成されていてもよい。
 支持基板16の材料としては、例えば、シリコンなどの半導体や、酸化アルミニウムなどのセラミックスなどを用いることができる。中間層15の材料としては、酸化ケイ素または五酸化タンタルなどの、適宜の誘電体を用いることができる。圧電層14は、例えば、LiTaO層などのタンタル酸リチウム層、またはLiNbO層などのニオブ酸リチウム層である。
 圧電層14は第1の主面14a及び第2の主面14bを有する。第1の主面14a及び第2の主面14bは互いに対向している。第1の主面14a及び第2の主面14bのうち、第2の主面14bが支持部材13側に位置している。
 支持部材13には、第1空洞部10aが設けられている。より具体的には、中間層15に凹部が設けられている。中間層15上に、凹部を塞ぐように、圧電層14が設けられている。これにより、第1空洞部10aが構成されている。なお第1空洞部10aは、中間層15及び支持基板16に設けられていてもよく、あるいは、支持基板16のみに設けられていてもよい。支持部材13には、少なくとも1つの第1空洞部10aが設けられていればよい。
 図1に示すように、圧電層14の第1の主面14aには、複数のIDT電極11が設けられている。これにより、複数の弾性波共振子が構成されている。具体的には、本実施形態では、6つの弾性波共振子が構成されている。複数の弾性波共振子は、第1共振子10A及び第2共振子10Bを含む。本実施形態における弾性波装置10はフィルタ装置である。なお、弾性波装置10は、少なくとも1つのIDT電極11を有していればよい。本発明に係る弾性波装置は、少なくとも1つの弾性波共振子を含んでいればよい。
 図2に示すように、平面視において、IDT電極11の少なくとも一部が第1空洞部10aと重なっている。より具体的には、平面視において、各弾性波共振子のIDT電極11が、別個の第1空洞部10aと重なっていてもよく、同じ第1空洞部10aと重なっていてもよい。本明細書において平面視とは、図2における上方に相当する方向から見ることをいう。さらに、平面視とは、後述する第1の支持体18及び蓋部25が積層されている方向に沿って見ることをいう。なお、図1において、例えば、支持基板16及び圧電層14のうち、圧電層14側が上方である。
 図1に戻り、IDT電極11は、第1のバスバー28A及び第2のバスバー28Bと、複数の第1の電極指29A及び複数の第2の電極指29Bとを有する。第1のバスバー28A及び第2のバスバー28Bは互いに対向している。複数の第1の電極指29Aの一端はそれぞれ、第1のバスバー28Aに接続されている。複数の第2の電極指29Bの一端はそれぞれ、第2のバスバー28Bに接続されている。複数の第1の電極指29A及び複数の第2の電極指29Bは互いに間挿し合っている。第1の電極指29A及び第2の電極指29Bは、本発明における電極である。IDT電極11は、単層の金属膜からなっていてもよく、積層金属膜からなっていてもよい。
 以下においては、隣り合う第1の電極指29A及び第2の電極指29Bが互いに対向する方向を電極対向方向とする。複数の第1の電極指29A及び複数の第2の電極指29Bが延びる方向を電極延伸方向とする。本実施形態においては、電極対向方向及び電極延伸方向は互いに直交している。電極対向方向から見たときに、隣り合う第1の電極指29A及び第2の電極指29Bが重なり合う領域が交叉領域Eである。
 圧電層14の第1の主面14aには、第1の支持体18及び複数の第2の支持体19が設けられている。本実施形態では、第1の支持体18及び第2の支持体19はそれぞれ、複数の金属層の積層体である。第1の支持体18は枠状の形状を有する。他方、第2の支持体19は柱状の形状を有する。第1の支持体18は、複数のIDT電極11及び複数の第2の支持体19を囲むように設けられている。より具体的には、第1の支持体18は開口部18cを有する。複数のIDT電極11及び複数の第2の支持体19は、開口部18c内に位置している。
 例えば、複数の第2の支持体19のうち1つの第2の支持体19は、第1共振子10A付近に位置している。具体的には、該第2の支持体19は、図4におけるハッチングに示す領域に位置している。図4中において、破線に挟まれており、かつハッチングが付されていない領域は、電極延伸方向から見たとき、または電極対向方向から見たときに、交叉領域Eと重なる領域である。他方、ハッチングにより示された領域は、電極延伸方向から見たとき、及び電極対向方向から見たときの双方において、交叉領域Eと重ならない領域である。
 図3に示すように、圧電層14及び第1の支持体18の間には、枠状の電極層17Aが設けられている。電極層17Aは、第1の支持体18と同様に、平面視において、複数のIDT電極11及び複数の第2の支持体19を囲んでいる。もっとも、電極層17Aは設けられていなくともよい。第1の支持体18上及び複数の第2の支持体19上に、開口部18cを塞ぐように、蓋部25が設けられている。それによって、圧電性基板12、電極層17A、第1の支持体18及び蓋部25により囲まれた第2空洞部10bが設けられている。複数のIDT電極11及び複数の第2の支持体19は、第2空洞部10b内に配置されている。
 図1に示すように、本実施形態の特徴は、電極延伸方向から見たとき、及び電極対向方向から見たときの双方において、第2の支持体19が、交叉領域Eと重ならないように配置されていることにある。それによって、不要波による電気的特性の劣化を抑制することができる。これを以下において説明する。なお、以下においては、第1のバスバー28A及び第2のバスバー28Bを単にバスバーと記載することがある。同様に、第1の電極指29A及び第2の電極指29Bを単に電極指と記載することがある。
 IDT電極11は複数の励振領域Cを有する。IDT電極11に交流電圧を印加することにより、複数の励振領域Cにおいて弾性波が励振される。本実施形態においては、例えば厚み滑り1次モードなどの、厚み滑りモードのバルク波を利用可能に、各弾性波共振子が構成されている。励振領域Cは、交叉領域Eと同様に、電極対向方向から見たときに、隣り合う電極指同士が重なり合う領域である。なお、各励振領域Cはそれぞれ、1対の電極指間の領域である。より詳細には、励振領域Cは、一方の電極指の電極対向方向における中心から、他方の電極指の電極対向方向における中心までの領域である。よって、交叉領域Eは複数の励振領域Cを含む。
 弾性波共振子においては、メインモードが励振されるとともに、不要波が励振されることがある。不要波には、圧電性基板の表面を伝搬する波が含まれる。この不要波は、主に電極延伸方向または電極対向方向に伝搬する。
 これに対して、本実施形態では、電極延伸方向から見たとき、及び電極対向方向から見たときの双方において、第2の支持体19が、交叉領域Eと重ならないように配置されている。そのため、圧電性基板12の表面を伝搬する不要波が、第2の支持体19に衝突し難い。それによって、不要波が第2の支持体19において反射され、不要波を生じさせた弾性波共振子に到達することを抑制できる。従って、不要波による弾性波装置10の電気的特性の劣化を抑制することができる。なお、第2の支持体19の少なくとも一部が、電極延伸方向から見たとき、及び電極対向方向から見たときにおいて、いずれか1つの弾性波共振子に対して、交叉領域Eと重ならないように配置されていればよい。
 電極延伸方向から見たとき、及び電極対向方向から見たときの双方において、第2の支持体19が、該第2の支持体19と最も距離が短い弾性波共振子の交叉領域Eと重ならないように設けられていることが好ましい。それによって、第2の支持体19による不要波の反射を、効果的に抑制することができる。
 もっとも、第1共振子10A及び第2共振子10Bを含む全ての弾性波共振子における交叉領域Eと、第2の支持体19との位置関係が上記の通りであることがより好ましい。すなわち、電極延伸方向から見たとき、及び電極対向方向から見たときの双方において、全ての第2の支持体19が、全ての交叉領域Eと重ならないように配置されていることがより好ましい。それによって、不要波による弾性波装置10の電気的特性の劣化をより確実に抑制することができる。
 以下において、本実施形態の構成のさらなる詳細を説明する。
 図2に示すように、圧電性基板12上には、IDT電極11を覆うように、誘電体膜24が設けられている。これにより、IDT電極11が破損し難い。誘電体膜24には、例えば、酸化ケイ素、窒化ケイ素または酸窒化ケイ素などを用いることができる。誘電体膜24が酸化ケイ素からなる場合には、周波数温度特性を改善することができる。他方、誘電体膜24が窒化ケイ素などからなる場合には、誘電体膜24を周波数調整膜として用いることができる。なお、誘電体膜24は設けられていなくともよい。
 圧電層14及び誘電体膜24には、連続して貫通孔20が設けられている。貫通孔20は、第1空洞部10aに至るように設けられている。貫通孔20は、弾性波装置10の製造に際し、中間層15内の犠牲層を除去するために用いられる。もっとも、貫通孔20は必ずしも設けられていなくともよい。
 蓋部25は、蓋部本体26と、絶縁体層27A及び絶縁体層27Bとを有する。蓋部本体26は第1の主面26a及び第2の主面26bを有する。第1の主面26a及び第2の主面26bは互いに対向している。第1の主面26a及び第2の主面26bのうち第2の主面26bが圧電性基板12側に位置している。第1の主面26aに絶縁体層27Aが設けられている。第2の主面26bに絶縁体層27Bが設けられている。本実施形態においては、蓋部本体26はシリコンを主成分とする。蓋部本体26の材料は上記に限定されないが、シリコンなどの半導体を主成分とすることが好ましい。本明細書において主成分とは、占める割合が50重量%を超える成分をいう。他方、絶縁体層27A及び絶縁体層27Bは、例えば、酸化ケイ素層である。
 図3に示すように、蓋部25にはアンダーバンプメタル21Aが設けられている。より具体的には、蓋部25に貫通孔が設けられている。該貫通孔は第2の支持体19に至るように設けられている。該貫通孔内に、アンダーバンプメタル21Aが設けられている。アンダーバンプメタル21Aの一端は第2の支持体19に接続されている。アンダーバンプメタル21Aの他端に接続されるように、電極パッド21Bが設けられている。なお、本実施形態では、アンダーバンプメタル21A及び電極パッド21Bは一体として設けられている。もっとも、アンダーバンプメタル21A及び電極パッド21Bは別体として設けられていてもよい。電極パッド21Bにはバンプ22が接合されている。
 より詳細には、電極パッド21Bの外周縁付近を覆うように、絶縁体層27Aが設けられている。電極パッド21Bにおける、絶縁体層27Aに覆われていない部分に、バンプ22が接合されている。なお、絶縁体層27Aは、電極パッド21B及び蓋部本体26の間に至っていてもよい。さらに、絶縁体層27Aは、アンダーバンプメタル21A及び蓋部本体26の間に至っていてもよい。絶縁体層27A及び絶縁体層27Bは、蓋部本体26の貫通孔を介して、一体として設けられていても構わない。
 上記のように、本実施形態では、第1の支持体18及び第2の支持体19はそれぞれ、複数の金属層の積層体である。より具体的には、第1の支持体18は、第1部分18aと、第2部分18bとを有する。第1部分18a及び第2部分18bのうち、第1部分18aが蓋部25側に位置し、第2部分18bが圧電性基板12側に位置している。同様に、第2の支持体19も、第1部分19aと、第2部分19bとを有する。第1部分19a及び第2部分19bのうち、第1部分19aが蓋部25側に位置し、第2部分19bが圧電性基板12側に位置している。それぞれの第1部分18a及び第1部分19aは、例えばAuなどからなる。それぞれの第2部分18b及び第2部分19bは、例えばAlなどからなる。本明細書において、ある部材がある材料からなるとは、弾性波装置の電気的特性が劣化しない程度の微量な不純物が含まれる場合を含む。
 図1に示すように、本実施形態においては、電極延伸方向において隣り合う弾性波共振子は、バスバーを共有している。共有されているバスバーは、一方の弾性波共振子においては、第1のバスバーとなり、他方の弾性波共振子においては、第2のバスバーとなる。
 圧電性基板12上には、複数の配線電極23が設けられている。複数の配線電極23のうち一部は、IDT電極11同士を接続している。複数の配線電極23のうち他の一部は、IDT電極11及び第2の支持体19を電気的に接続している。より具体的には、図3に示すように圧電性基板12上に、導電膜17Bが設けられている。導電膜17B上に第2の支持体19が設けられている。よって、配線電極23は、導電膜17Bを介して、第2の支持体19に電気的に接続されている。そして、複数のIDT電極11は、配線電極23、導電膜17B、第2の支持体19、アンダーバンプメタル21A、電極パッド21B及びバンプ22を介して、外部に電気的に接続される。
 なお、複数の第2の支持体19は、アンダーバンプメタル21Aに接続されていない第2の支持体19を含んでいてもよい。
 本実施形態における機能電極はIDT電極11である。なお、機能電極は少なくとも1対の電極指を有していればよい。この場合には、厚み滑りモードのバルク波を利用可能である。
 他方、弾性波装置10の複数の弾性波共振子は、例えば、板波を利用可能に構成されていてもよい。各弾性波共振子が板波を利用する場合には、IDT電極11の交叉領域Eが励振領域である。この場合、圧電層14の材料として、例えば、ニオブ酸リチウム、タンタル酸リチウム、酸化亜鉛、窒化アルミニウム、水晶、またはPZT(チタン酸ジルコン酸鉛)などを用いることができる。
 以下において、本実施形態における好ましい構成を示す。
 少なくとも1つの第2の支持体19が、弾性波共振子と、第1の支持体18との間に設けられており、かつ複数の弾性波共振子の間に設けられていないことが好ましい。この場合には、第2の支持体19が設けられていることによる不要波の反射を抑制し易い。
 上記導電膜17B及び配線電極23は、同じ材料からなることが好ましい。導電膜17Bに配線電極23が接続されている場合、導電膜17B及び配線電極23が一体として設けられていることが好ましい。それによって、生産性を高めることができる。なお、導電膜17Bは、配線電極23に必ずしも接続されていなくともよい。
 図2に示すように、圧電性基板12、第1の支持体18及び蓋部25が積層されている方向に沿う寸法を高さとしたときに、第2空洞部10bの高さが第1空洞部10aの高さよりも高いことが好ましい。この場合には、圧電層14が第1空洞部10a側から第2空洞部10b側に凸状に変形した際においても、蓋部25に圧電層14が張り付き難い。
 もっとも、第1空洞部10a及び第2空洞部10bの高さの関係は上記に限定されない。図5に示す第1の実施形態の変形例においては、第1空洞部10aの高さが第2空洞部10bの高さよりも高い。この場合には、圧電層14が第2空洞部10b側から第1空洞部10a側に凸状に変形した際においても、支持部材13に圧電層14が張り付き難い。加えて、第1の実施形態と同様に、不要波を散乱させることができ、不要波による電気的特性の劣化を抑制することができる。
 ところで、図3に示すように、第1の実施形態においては、第1の支持体18及び複数の第2の支持体19は、圧電性基板12における圧電層14上に設けられている。もっとも、第1の支持体18の少なくとも一部が、圧電性基板12における、圧電層14が設けられていない部分に設けられていてもよい。同様に、第2の支持体19の少なくとも一部が、圧電性基板12における、圧電層14が設けられていない部分に設けられていてもよい。例えば、第1の支持体18または第2の支持体19の少なくとも一部が、中間層15上または支持基板16上に設けられていてもよい。
 第1の実施形態においては、第1の支持体18及び複数の第2の支持体19は、金属層の積層体である。なお、第1の支持体18及び第2の支持体19は樹脂からなっていてもよい。この場合においても、第2の支持体19による不要波の反射を抑制することができる。よって、不要波による電気的特性の劣化を抑制することができる。第2の支持体19が樹脂からなる場合には、第2の支持体19を貫通するように、アンダーバンプメタル21Aが設けられていればよい。
 蓋部本体26は半導体を主成分とする。なお、蓋部25は樹脂からなっていてもよい。さらに、第1の支持体18及び第2の支持体19が樹脂からなる場合には、第1の支持体18、第2の支持体19及び蓋部25は、同じ樹脂材料により一体として設けられていることが好ましい。それによって、生産性を高めることができる。
 第1の実施形態においては、IDT電極11は、圧電層14の第1の主面14aに設けられている。もっとも、IDT電極11は、圧電層14の第2の主面14bに設けられていてもよい。この場合、IDT電極11は、例えば、第1空洞部10a内に位置している。
 図6は、第2の実施形態に係る弾性波装置の模式的平面図である。図7は、第2の実施形態に係る弾性波装置の回路図である。
 図6に示すように、本実施形態は、複数の弾性波共振子の配置及び複数の第2の支持体19の配置において第1の実施形態と異なる。なお、本実施形態は、回路構成においても第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置30は第1の実施形態の弾性波装置10と同様の構成を有する。
 本実施形態においても、電極延伸方向から見たとき、及び電極対向方向から見たときの双方において、第2の支持体19が、各弾性波共振子のIDT電極11の交叉領域Eと重ならないように配置されている。よって、第1の実施形態と同様に、不要波の反射を抑制することができ、不要波による電気的特性の劣化を抑制することができる。
 図7に示すように、弾性波装置30はラダー型フィルタである。弾性波装置30は、入力端子32及び出力端子33と、複数の直列腕共振子と、複数の並列腕共振子とを有する。入力端子32及び出力端子33は、例えば、電極パッドとして構成されていてもよく、配線として構成されていてもよい。弾性波装置30においては、入力端子32から信号が入力される。
 弾性波装置30の複数の直列腕共振子及び複数の並列腕共振子はそれぞれ、分割型の弾性波共振子である。複数の直列腕共振子は、具体的には、直列腕共振子S1a、直列腕共振子S1b、直列腕共振子S2a及び直列腕共振子S2bである。直列腕共振子S1a及び直列腕共振子S1bは、1つの直列腕共振子が並列分割された共振子である。同様に、直列腕共振子S2a及び直列腕共振子S2bは、1つの直列腕共振子が並列分割された共振子である。入力端子32及び出力端子33の間に、直列腕共振子S1a及び直列腕共振子S1b並びに直列腕共振子S2a及び直列腕共振子S2bが互いに直列に接続されている。
 複数の並列腕共振子は、具体的には、並列腕共振子P1a、並列腕共振子P1b、並列腕共振子P2a及び並列腕共振子P2bである。並列腕共振子P1a及び並列腕共振子P1bは、1つの並列腕共振子が並列分割された共振子である。同様に、並列腕共振子P2a及び並列腕共振子P2bは、1つの並列腕共振子が並列分割された共振子である。入力端子32とグラウンド電位との間に、並列腕共振子P1a及び並列腕共振子P1bが互いに並列に接続されている。直列腕共振子S1a及び直列腕共振子S2aの間の接続点とグラウンド電位との間に、並列腕共振子P2a及び並列腕共振子P2bが互いに並列に接続されている。
 なお、弾性波装置30の回路構成は上記に限定されない。各直列腕共振子及び各並列腕共振子は直列分割された共振子であってもよい。あるいは、各直列腕共振子及び各並列腕共振子は分割型の共振子ではなくともよい。弾性波装置30がラダー型フィルタである場合、複数の共振子が、少なくとも1つの直列腕共振子及び少なくとも1つの並列腕共振子を含んでいればよい。
 図6に示すように、複数の並列腕共振子がそれぞれ第2の支持体19に接続されている。本実施形態においては、複数の並列腕共振子は、第2の支持体19を介してグラウンド電位に接続される。
 ところで、直列腕共振子S1bと並列腕共振子P1bとは、電極延伸方向において互いに隣接している。直列腕共振子S1b及び並列腕共振子P1bと、並列腕共振子P1aとは、電極対向方向において互いに隣接している。そして、直列腕共振子S1b及び並列腕共振子P1bと、並列腕共振子P1aとの間には、第2の支持体19が設けられている。それによって、直列腕共振子S1b、並列腕共振子P1b及び並列腕共振子P1aのそれぞれのIDT電極11から生じた熱を、第2の支持体19を介して外部に放出することができる。よって、放熱性を高めることができる。なお、少なくとも2つの弾性波共振子の間に第2の支持体19が配置されていることにより、放熱性を高めることができる。
 直列腕共振子S1bと並列腕共振子P1aとを結ぶ線F1は、電極延伸方向及び電極対向方向の双方と交叉する方向に延びている。線F1上に、第2の支持体19が位置している。同様に、並列腕共振子P1bと並列腕共振子P1aとを結ぶ線F2は、電極延伸方向及び電極対向方向の双方と交叉する方向に延びている。線F2上に、該第2の支持体19が位置している。そして、該第2の支持体19は、電極延伸方向から見たとき、及び電極対向方向から見たときの双方において、直列腕共振子S1b及び並列腕共振子P1bのそれぞれの交叉領域Eとは重なっていない。他方、該第2の支持体19は、電極対向方向から見たときに、並列腕共振子P1aの交叉領域Eと重なっている。
 この場合においても、直列腕共振子S1b及び並列腕共振子P1bにおいて生じた不要波が第2の支持体19によって反射されることを抑制できる。よって、不要波による電気的特性の劣化を抑制することができる。
 さらに、本実施形態においては、第2の支持体19と、直列腕共振子S1b及び並列腕共振子P1bとの間に配線電極23が設けられている。この場合には、放熱性を高めることができる。
 図8は、第3の実施形態に係る弾性波装置の模式的平面図である。
 本実施形態は、複数の弾性波共振子の配置及び複数の第2の支持体19の配置において、第2の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置40は第2の実施形態の弾性波装置30と同様の構成を有する。
 図8に示すように、本実施形態においても、電極延伸方向から見たとき、及び電極対向方向から見たときの双方において、第2の支持体19が、各弾性波共振子のIDT電極11の交叉領域Eと重ならないように配置されている。それによって、第2の実施形態と同様に、第2の支持体19による不要波の反射を抑制することができ、不要波による電気的特性の劣化を抑制することができる。
 本実施形態では、複数の第2の支持体19が、電極対向方向において、並列腕共振子P1aを挟むように配置されている。これにより、放熱性を効果的に高めることができる。該複数の第2の支持体19のそれぞれが、電極延伸方向から見たとき、及び電極対向方向から見たときの双方において、並列腕共振子P1aの交叉領域Eと重ならないように配置されていることが好ましい。それによって、不要波の反射をより確実に抑制することができる。
 並列腕共振子P1aを挟むように配置されている第2の支持体19は、1.5対である。電極対向方向において1.5対の第2の支持体19に挟まれているとは、電極対向方向における一方に、2つの第2の支持体19が配置されており、他方に1つの第2の支持体19が配置されていることによって、挟まれていることをいう。なお、弾性波共振子を挟むように配置された第2の支持体19は、1.5対に限定されず、1対であってもよく、2対以上であってもよい。
 本実施形態においては、並列腕共振子P1aを挟む複数の第2の支持体19の配置は非対称である。上記非対称とは、平面視において、交叉領域Eの電極対向方向における中央を通り、電極延伸方向に延びる軸を対称軸Gとしたときに、複数の第2の支持体19の配置が線対称ではないことをいう。
 具体的には、並列腕共振子P1aを挟む1.5対の第2の支持体19のうち1対の第2の支持体19は、電極延伸方向において並列腕共振子P1aの交叉領域Eを挟んでいない。そして、一方の第2の支持体19が、他方の第2の支持体19よりも、電極延伸方向において、交叉領域Eに近い。このように、電極対向方向において非対称である。
 これに加えて、上記1対の第2の支持体19は、電極対向方向においても非対称である。より具体的には、距離L1を、並列腕共振子P1aを挟む第2の支持体19のうち一方の第2の支持体19と、図8中の直線H1との間の距離とする。直線H1は、並列腕共振子P1aにおける交叉領域Eの電極対向方向の一方端に位置する電極指の、電極延伸方向の延長線である。距離L2を、他方の第2の支持体19と、図8中の直線H2との間の距離とする。直線H2は、上記交叉領域Eの他方端に位置する電極指の、電極延伸方向の延長線である。図8に示すように、L1≠L2である。
 すなわち、本実施形態では、並列腕共振子P1aを挟む上記1対の第2の支持体19の配置は、電極対向方向及び電極延伸方向の双方において非対称である。なお、上記1対の第2の支持体19の配置が非対称である場合、該配置は、電極対向方向及び電極延伸方向のうち少なくとも一方において非対称であればよい。この場合には、不要波の一部が各第2の支持体19に到達したとしても、不要波の位相を互いにずらすことができる。従って、不要波の電気的特性に対する影響を抑制することができる。
 上記1対の第2の支持体19の中心同士の配置が、電極対向方向及び電極延伸方向のうち少なくとも一方において非対称であることが好ましい。この場合には、不要波の電気的特性に対する影響を抑制することができる。
 なお、本実施形態では、並列腕共振子P1aを挟む上記1.5対の第2の支持体19のうち、他の1対の第2の支持体19の配置も、電極対向方向及び電極延伸方向の双方において非対称である。よって、不要波の電気的特性に対する影響を抑制しつつ、放熱性をより一層高めることができる。
 図8に示すように、並列腕共振子P1aを挟む1.5対の第2の支持体19のうち1対の第2の支持体19は、電極対向方向において並列腕共振子P1aを挟んでいる。一方で、該1.5対の第2の支持体19のうち他の1対の第2の支持体19は、電極対向方向及び電極延伸方向のいずれとも交叉する方向において並列腕共振子P1aを挟んでいる。なお、並列腕共振子P1aを挟む1対の第2の支持体19は、電極延伸方向において並列腕共振子P1aを挟んでいてもよい。
 他方、図8に示すように、直列腕共振子S1aの、電極対向方向における片側に、第2の支持体19が設けられている。直列腕共振子S1aは、複数の第2の支持体19によって挟まれていない。それによって、第2の支持体19が配置される部分を減らすことができ、圧電性基板12の面積を小さくすることができる。このような構成は、並列腕共振子P1aが、直列腕共振子S1aに比べて耐電力性を求められる回路構成において、特に好適である。具体的には、弾性波装置40の全体としての耐電力性を高めることができ、かつ弾性波装置30を小型にすることができる。
 なお、回路上において、並列腕共振子P1aは、複数の弾性波共振子のうち入力端子32に最も近い弾性波共振子の1つである。この場合には、並列腕共振子P1aは、耐電力性を特に求められ易い。
 図9は、第4の実施形態に係る弾性波装置の模式的平面図である。図10は、第4の実施形態に係る弾性波装置の回路図である。
 図9に示すように、本実施形態は、複数の弾性波共振子の配置及び複数の第2の支持体19の配置において、第2の実施形態と異なる。なお、図10に示すように、本実施形態は、回路構成としては、複数の並列腕共振子の配置が第2の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置50は第2の実施形態の弾性波装置30と同様の構成を有する。
 弾性波装置50においては、直列腕共振子S1a及び直列腕共振子S2aの間の接続点とグラウンド電位との間に、並列腕共振子P1a及び並列腕共振子P1bが互いに並列に接続されている。出力端子33とグラウンド電位との間に、並列腕共振子P2a及び並列腕共振子P2bが互いに並列に接続されている。
 図9に戻り、本実施形態においては、電極延伸方向から見たとき、及び電極対向方向から見たときの双方において、第2の支持体19が、複数の弾性波共振子のIDT電極11の交叉領域Eと重ならないように配置されている。それによって、第2の実施形態と同様に、第2の支持体19による不要波の反射を抑制することができ、不要波による電気的特性の劣化を抑制することができる。
 弾性波装置50では、直列腕共振子S1aを挟むように、複数の第2の支持体19が設けられている。それによって、直列腕共振子S1aにおいて生じる熱を効果的に放熱することができる。一方で、並列腕共振子P1aの、電極対向方向における片側に、第2の支持体19が設けられている。並列腕共振子P1aは、複数の第2の支持体19によって挟まれていない。それによって、第2の支持体19が配置される部分を減らすことができ、圧電性基板12の面積を小さくすることができる。このような構成は、直列腕共振子S1aが、並列腕共振子P1aに比べて耐電力性を求められる回路構成において、特に好適である。具体的には、弾性波装置50の全体としての耐電力性を高めることができ、かつ弾性波装置50を小型にすることができる。
 なお、回路上において、直列腕共振子S1aは、複数の弾性波共振子のうち入力端子32に最も近い弾性波共振子の1つである。この場合には、直列腕共振子S1aは、耐電力性を特に求められ易い。
 本実施形態においても、直列腕共振子S1aを挟む複数の第2の支持体19のうち1対の第2の支持体19において、L1≠L2である。すなわち、該1対の第2の支持体19は、少なくとも電極対向方向において非対称である。よって、不要波の一部が各第2の支持体19に到達したとしても、不要波の位相を互いにずらすことができる。従って、不要波の電気的特性に対する影響を抑制することができる。
 以下において、厚み滑りモード及び板波の詳細を説明する。なお、以下の例における電極は、上記電極指に相当する。以下の例における支持部材は、本発明における支持基板に相当する。
 図11(a)は、厚み滑りモードのバルク波を利用する弾性波装置の外観を示す略図的斜視図であり、図11(b)は、圧電層上の電極構造を示す平面図であり、図12は、図11(a)中のA-A線に沿う部分の断面図である。
 弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、Zカットであるが、回転YカットやXカットであってもよい。圧電層2の厚みは、特に限定されないが、厚み滑りモードを効果的に励振するには、40nm以上、1000nm以下であることが好ましく、50nm以上、1000nm以下であることがより好ましい。圧電層2は、対向し合う第1,第2の主面2a,2bを有する。第1の主面2a上に、電極3及び電極4が設けられている。ここで電極3が「第1電極」の一例であり、電極4が「第2電極」の一例である。図11(a)及び図11(b)では、複数の電極3が、第1のバスバー5に接続されている。複数の電極4は、第2のバスバー6に接続されている。複数の電極3及び複数の電極4は、互いに間挿し合っている。電極3及び電極4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極3と、隣りの電極4とが対向している。電極3,4の長さ方向、及び、電極3,4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交叉する方向である。このため、電極3と、隣りの電極4とは、圧電層2の厚み方向に交叉する方向において対向しているともいえる。また、電極3,4の長さ方向が図11(a)及び図11(b)に示す電極3,4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図11(a)及び図11(b)において、第1のバスバー5及び第2のバスバー6が延びている方向に電極3,4を延ばしてもよい。その場合、第1のバスバー5及び第2のバスバー6は、図11(a)及び図11(b)において電極3,4が延びている方向に延びることとなる。そして、一方電位に接続される電極3と、他方電位に接続される電極4とが隣り合う1対の構造が、上記電極3,4の長さ方向と直交する方向に、複数対設けられている。ここで電極3と電極4とが隣り合うとは、電極3と電極4とが直接接触するように配置されている場合ではなく、電極3と電極4とが間隔を介して配置されている場合を指す。また、電極3と電極4とが隣り合う場合、電極3と電極4との間には、他の電極3,4を含む、ホット電極やグラウンド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対や2.5対などであってもよい。電極3,4間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極3,4の幅、すなわち電極3,4の対向方向の寸法は、50nm以上、1000nm以下の範囲であることが好ましく、150nm以上、1000nm以下の範囲であることがより好ましい。なお、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の寸法(幅寸法)の中心と、電極4の長さ方向と直交する方向における電極4の寸法(幅寸法)の中心とを結んだ距離となる。
 また、弾性波装置1では、Zカットの圧電層を用いているため、電極3,4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極3,4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°の範囲内)でもよい。
 圧電層2の第2の主面2b側には、絶縁層7を介して支持部材8が積層されている。絶縁層7及び支持部材8は、枠状の形状を有し、図12に示すように、貫通孔7a,8aを有する。それによって、空洞部9が形成されている。空洞部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持部材8は、少なくとも1対の電極3,4が設けられている部分と重ならない位置において、第2の主面2bに絶縁層7を介して積層されている。なお、絶縁層7は設けられずともよい。従って、支持部材8は、圧電層2の第2の主面2bに直接または間接に積層され得る。
 絶縁層7は、酸化ケイ素からなる。もっとも、酸化ケイ素の他、酸窒化ケイ素、アルミナなどの適宜の絶縁性材料を用いることができる。支持部材8は、Siからなる。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。支持部材8を構成するSiは、抵抗率4kΩcm以上の高抵抗であることが望ましい。もっとも、支持部材8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。
 支持部材8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。
 上記複数の電極3,4及び第1,第2のバスバー5,6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。本実施形態では、電極3,4及び第1,第2のバスバー5,6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。
 駆動に際しては、複数の電極3と、複数の電極4との間に交流電圧を印加する。より具体的には、第1のバスバー5と第2のバスバー6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑りモードのバルク波を利用した、共振特性を得ることが可能とされている。また、弾性波装置1では、圧電層2の厚みをd、複数対の電極3,4のうちいずれかの隣り合う電極3,4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑りモードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。
 弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極3,4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側の反射器における電極指の本数を少なくしても、伝搬ロスが少ないためである。また、上記電極指の本数を少なくできるのは、厚み滑りモードのバルク波を利用していることによる。弾性波装置で利用したラム波と、上記厚み滑りモードのバルク波の相違を、図13(a)及び図13(b)を参照して説明する。
 図13(a)は、日本公開特許公報 特開2012-257019号公報に記載のような弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図である。ここでは、圧電膜201中を矢印で示すように波が伝搬する。ここで、圧電膜201では、第1の主面201aと、第2の主面201bとが対向しており、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指が並んでいる方向である。図13(a)に示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電膜201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指の対数を少なくした場合、Q値が低下する。
 これに対して、図13(b)に示すように、弾性波装置1では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器の電極指の本数を少なくしても、伝搬損失は生じ難い。さらに、小型化を進めようとして、電極3,4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。
 なお、厚み滑りモードのバルク波の振幅方向は、図14に示すように、圧電層2の励振領域Cに含まれる第1領域451と、励振領域Cに含まれる第2領域452とで逆になる。図14では、電極3と電極4との間に、電極4が電極3よりも高電位となる電圧が印加された場合のバルク波を模式的に示してある。第1領域451は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。
 上記のように、弾性波装置1では、電極3と電極4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極3,4からなる電極対の対数は複数対ある必要はない。すなわち、少なくとも1対の電極が設けられてさえおればよい。
 例えば、上記電極3がホット電位に接続される電極であり、電極4がグラウンド電位に接続される電極である。もっとも、電極3がグラウンド電位に、電極4がホット電位に接続されてもよい。本実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグラウンド電位に接続される電極であり、浮き電極は設けられていない。
 図15は、図12に示す弾性波装置の共振特性を示す図である。なお、この共振特性を得た弾性波装置1の設計パラメータは以下の通りである。
 圧電層2:オイラー角(0°,0°,90°)のLiNbO、厚み=400nm。
 電極3と電極4の長さ方向と直交する方向に見たときに、電極3と電極4とが重なっている領域、すなわち励振領域Cの長さ=40μm、電極3,4からなる電極の対数=21対、電極間中心距離=3μm、電極3,4の幅=500nm、d/p=0.133。
 絶縁層7:1μmの厚みの酸化ケイ素膜。
 支持部材8:Si。
 なお、励振領域Cの長さとは、励振領域Cの電極3,4の長さ方向に沿う寸法である。
 本実施形態では、電極3,4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極3と電極4とを等ピッチで配置した。
 図15から明らかなように、反射器を有しないにも関わらず、比帯域が12.5%である良好な共振特性が得られている。
 ところで、上記圧電層2の厚みをd、電極3と電極4との電極の中心間距離をpとした場合、前述したように、本実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図16を参照して説明する。
 図15に示した共振特性を得た弾性波装置と同様に、但しd/pを変化させ、複数の弾性波装置を得た。図16は、このd/pと、弾性波装置の共振子としての比帯域との関係を示す図である。
 図16から明らかなように、d/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、d/pを0.5以下とすることにより、上記厚み滑りモードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。
 図17は、厚み滑りモードのバルク波を利用する弾性波装置の平面図である。弾性波装置80では、圧電層2の第1の主面2a上において、電極3と電極4とを有する1対の電極が設けられている。なお、図17中のKが交叉幅となる。前述したように、本発明の弾性波装置では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑りモードのバルク波を効果的に励振することができる。
 弾性波装置1では、好ましくは、複数の電極3,4において、いずれかの隣り合う電極3,4が対向している方向に見たときに重なっている領域である励振領域Cに対する、上記隣り合う電極3,4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。その場合には、スプリアスを効果的に小さくすることができる。これを、図18及び図19を参照して説明する。図18は、上記弾性波装置1の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と反共振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°,0°,90°)とした。また、上記メタライゼーション比MR=0.35とした。
 メタライゼーション比MRを、図11(b)を参照して説明する。図11(b)の電極構造において、1対の電極3,4に着目した場合、この1対の電極3,4のみが設けられるとする。この場合、一点鎖線で囲まれた部分が励振領域Cとなる。この励振領域Cとは、電極3と電極4とを、電極3,4の長さ方向と直交する方向すなわち対向方向に見たときに電極3における電極4と重なり合っている領域、電極4における電極3と重なり合っている領域、及び、電極3と電極4との間の領域における電極3と電極4とが重なり合っている領域である。そして、この励振領域Cの面積に対する、励振領域C内の電極3,4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の励振領域Cの面積に対する比である。
 なお、複数対の電極が設けられている場合、励振領域の面積の合計に対する全励振領域に含まれているメタライゼーション部分の割合をMRとすればよい。
 図19は本実施形態に従って、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。なお、比帯域については、圧電層の膜厚や電極の寸法を種々変更し、調整した。また、図19は、ZカットのLiNbOからなる圧電層を用いた場合の結果であるが、他のカット角の圧電層を用いた場合においても、同様の傾向となる。
 図19中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図19から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図18に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極3,4の寸法などを調整することにより、スプリアスを小さくすることができる。
 図20は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す図である。上記弾性波装置において、d/2pと、MRが異なる様々な弾性波装置を構成し、比帯域を測定した。図20の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図20中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。
 図21は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。図21のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域であり、当該領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
 従って、上記式(1)、式(2)または式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。圧電層2がタンタル酸リチウム層である場合も同様である。
 図22は、ラム波を利用する弾性波装置を説明するための部分切り欠き斜視図である。
 弾性波装置81は、支持基板82を有する。支持基板82には、上面に開いた凹部が設けられている。支持基板82上に圧電層83が積層されている。それによって、空洞部9が構成されている。この空洞部9の上方において圧電層83上に、IDT電極84が設けられている。IDT電極84の弾性波伝搬方向両側に、反射器85,86が設けられている。図22において、空洞部9の外周縁を破線で示す。ここでは、IDT電極84は、第1,第2のバスバー84a,84bと、複数本の第1の電極指84c及び複数本の第2の電極指84dとを有する。複数本の第1の電極指84cは、第1のバスバー84aに接続されている。複数本の第2の電極指84dは、第2のバスバー84bに接続されている。複数本の第1の電極指84cと、複数本の第2の電極指84dとは間挿し合っている。
 弾性波装置81では、上記空洞部9上のIDT電極84に、交流電界を印加することにより、板波としてのラム波が励振される。そして、反射器85,86が両側に設けられているため、上記ラム波による共振特性を得ることができる。
 このように、本発明の弾性波装置は、板波を利用するものであってもよい。この場合、上記第1~第4の実施形態または変形例における圧電層上に、図22に示すIDT電極84、反射器85及び反射器86が設けられていればよい。
 厚み滑りモードのバルク波を利用する弾性波共振子を有する第1~第4の実施形態または変形例の弾性波装置においては、上記のように、d/pが0.5以下であることが好ましく、0.24以下であることがより好ましい。それによって、より一層良好な共振特性を得ることができる。さらに、厚み滑りモードのバルク波を利用する弾性波共振子を有する第1~第4の実施形態または変形例の弾性波装置においては、上記のように、MR≦1.75(d/p)+0.075を満たすことが好ましい。この場合には、スプリアスをより確実に抑制することができる。
 厚み滑りモードのバルク波を利用する弾性波共振子を有する第1~第4の実施形態または変形例の弾性波装置における圧電層は、ニオブ酸リチウム層またはタンタル酸リチウム層であることが好ましい。そして、該圧電層を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、上記の式(1)、式(2)または式(3)の範囲にあることが好ましい。この場合、比帯域を十分に広くすることができる。
1…弾性波装置
2…圧電層
2a,2b…第1,第2の主面
3,4…電極
5,6…第1,第2のバスバー
7…絶縁層
7a…貫通孔
8…支持部材
8a…貫通孔
9…空洞部
10…弾性波装置
10A,10B…第1,第2共振子
10a,10b…第1,第2空洞部
11…IDT電極
12…圧電性基板
13…支持部材
14…圧電層
14a,14b…第1,第2の主面
15…中間層
16…支持基板
17A…電極層
17B…導電膜
18…第1の支持体
18a,18b…第1,第2部分
18c…開口部
19…第2の支持体
19a,19b…第1,第2部分
20…貫通孔
21A…アンダーバンプメタル
21B…電極パッド
22…バンプ
23…配線電極
24…誘電体膜
25…蓋部
26…蓋部本体
26a,26b…第1,第2の主面
27A,27B…絶縁体層
28A,28B…第1,第2のバスバー
29A,29B…第1,第2の電極指
30…弾性波装置
32…入力端子
33…出力端子
40,50,80,81…弾性波装置
82…支持基板
83…圧電層
84…IDT電極
84a,84b…第1,第2のバスバー
84c,84d…第1,第2の電極指
85,86…反射器
201…圧電膜
201a,201b…第1,第2の主面
451,452…第1,第2領域
C…励振領域
E…交叉領域
P1a,P1b,P2a,P2b…並列腕共振子
S1a,S1b,S2a,S2b…直列腕共振子
VP1…仮想平面

Claims (24)

  1.  支持基板を含む支持部材と、前記支持部材上に設けられており、対向し合う第1の主面及び第2の主面を有する圧電層と、を含む圧電性基板と、
     前記圧電層の前記第1の主面または前記第2の主面に設けられており、少なくとも1対の電極を有する、少なくとも1つの機能電極と、
     前記圧電性基板上に、前記機能電極を囲むように設けられている第1の支持体と、
     前記圧電性基板上に設けられており、前記第1の支持体に囲まれている部分に配置されている、少なくとも1つの第2の支持体と、
     前記第1の支持体上及び前記第2の支持体上に設けられている蓋部と、
    を備え、
     隣り合う前記電極同士が対向する方向を電極対向方向とし、前記電極対向方向から見たときに、隣り合う前記電極同士が重なり合う領域が交叉領域であり、
     前記少なくとも1対の電極が延びる方向を電極延伸方向としたときに、前記電極延伸方向から見たとき、及び前記電極対向方向から見たときの双方において、前記第2の支持体が、前記交叉領域と重ならないように配置されている、弾性波装置。
  2.  複数の前記機能電極を備え、
     前記機能電極をそれぞれ有する複数の共振子が構成されており、
     2つの前記共振子の間に少なくとも1つの前記第2の支持体が配置されている、請求項1に記載の弾性波装置。
  3.  前記複数の共振子が、分割型の複数の共振子を含み、
     分割型の2つの前記共振子の間に少なくとも1つの前記第2の支持体が配置されている、請求項2に記載の弾性波装置。
  4.  複数の前記機能電極を備え、
     前記機能電極をそれぞれ有する複数の共振子が構成されており、
     前記圧電性基板上における、2つの前記共振子の間以外の部分に少なくとも1つの前記第2の支持体が配置されている、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  少なくとも1つの前記第2の支持体が、前記機能電極に電気的に接続されている、請求項1~4のいずれか1項に記載の弾性波装置。
  6.  複数の前記機能電極と、
     複数の前記第2の支持体と、
    を備え、
     前記機能電極をそれぞれ有する複数の共振子が構成されており、
     1つの前記共振子を挟むように、少なくとも1対の前記第2の支持体が配置されている、請求項1~5のいずれか1項に記載の弾性波装置。
  7.  前記複数の共振子が、少なくとも1つの直列腕共振子及び少なくとも1つの並列腕共振子を含み、
     1つの前記直列腕共振子を挟むように、少なくとも1対の前記第2の支持体が配置されている、請求項6に記載の弾性波装置。
  8.  前記複数の共振子が、少なくとも1つの直列腕共振子及び少なくとも1つの並列腕共振子を含み、
     1つの前記並列腕共振子を挟むように、少なくとも1対の前記第2の支持体が配置されている、請求項6に記載の弾性波装置。
  9.  信号が入力される入力端に最も近い前記共振子を挟むように、少なくとも1対の前記第2の支持体が配置されている、請求項6~8のいずれか1項に記載の弾性波装置。
  10.  前記共振子の前記交叉領域の前記電極対向方向における中央を通り、かつ前記電極対向方向と直交する方向に延びる軸を対称軸としたときに、前記共振子を挟むように設けられている前記少なくとも1対の第2の支持体が、線対称とならないように配置されている、請求項6~9のいずれか1項に記載の弾性波装置。
  11.  前記支持部材に、少なくとも1つの第1空洞部が設けられており、前記第1空洞部が、平面視において、前記機能電極の少なくとも一部と重なっており、
     前記圧電性基板、前記第1の支持体及び前記蓋部により囲まれた第2空洞部が設けられており、
     前記圧電性基板、前記第1の支持体及び前記蓋部が積層されている方向に沿う寸法を高さとしたときに、前記第1空洞部の高さが前記第2空洞部の高さよりも高い、請求項1~10のいずれか1項に記載の弾性波装置。
  12.  前記支持部材に、少なくとも1つの第1空洞部が設けられており、前記第1空洞部が、平面視において、前記機能電極の少なくとも一部と重なっており、
     前記圧電性基板、前記第1の支持体及び前記蓋部により囲まれた第2空洞部が設けられており、
     前記圧電性基板、前記第1の支持体及び前記蓋部が積層されている方向に沿う寸法を高さとしたときに、前記第2空洞部の高さが前記第1空洞部の高さよりも高い、請求項1~10のいずれか1項に記載の弾性波装置。
  13.  前記支持部材が、前記支持基板及び前記圧電層の間に設けられている中間層を含む、請求項1~12のいずれか1項に記載の弾性波装置。
  14.  前記支持部材が、前記支持基板及び前記圧電層の間に設けられている中間層を含み、前記第1空洞部の少なくとも一部が前記中間層に設けられている、請求項11または12に記載の弾性波装置。
  15.  前記蓋部が半導体を主成分とする蓋部本体を含む、請求項1~14のいずれか1項に記載の弾性波装置。
  16.  前記圧電層が、タンタル酸リチウム層またはニオブ酸リチウム層である、請求項1~15のいずれか1項に記載の弾性波装置。
  17.  前記機能電極が、互いに対向する第1,第2バスバーと、前記第1バスバーに接続された1以上の第1の電極指と、前記第2バスバーに接続され、前記第1の電極指と対向する1以上の第2の電極指と、を有する、請求項1~16のいずれか1項に記載の弾性波装置。
  18.  前記機能電極が、前記第1の電極指及び前記第2の電極指をそれぞれ複数有するIDT電極である、請求項17に記載の弾性波装置。
  19.  板波を利用可能に構成されている、請求項18に記載の弾性波装置。
  20.  厚み滑りモードのバルク波を利用可能に構成されている、請求項17または18に記載の弾性波装置。
  21.  前記圧電層の厚みをd、隣り合う前記第1の電極指及び前記第2の電極指の中心間距離をpとした場合、d/pが0.5以下である、請求項17または18に記載の弾性波装置。
  22.  d/pが0.24以下である、請求項21に記載の弾性波装置。
  23.  前記電極対向方向から見たときに、隣り合う前記第1の電極指及び前記第2の電極指が重なり合っている領域が励振領域であり、
     前記励振領域に対する、前記1以上の第1の電極指及び前記1以上の第2の電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たす、請求項20~22のいずれか1項に記載の弾性波装置。
  24.  前記圧電層が、タンタル酸リチウム層またはニオブ酸リチウム層であり、
     前記圧電層を構成しているニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、請求項20~23のいずれか1項に記載の弾性波装置。
     (0°±10°,0°~20°,任意のψ)  …式(1)
     (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
PCT/JP2022/016146 2021-03-31 2022-03-30 弾性波装置 WO2022210923A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280025668.4A CN117099309A (zh) 2021-03-31 2022-03-30 弹性波装置
KR1020237032580A KR20230148243A (ko) 2021-03-31 2022-03-30 탄성파 장치
US18/369,895 US20240014799A1 (en) 2021-03-31 2023-09-19 Acoustic wave device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163168321P 2021-03-31 2021-03-31
US63/168,321 2021-03-31
US202163195801P 2021-06-02 2021-06-02
US63/195,801 2021-06-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/369,895 Continuation US20240014799A1 (en) 2021-03-31 2023-09-19 Acoustic wave device

Publications (1)

Publication Number Publication Date
WO2022210923A1 true WO2022210923A1 (ja) 2022-10-06

Family

ID=83459535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016146 WO2022210923A1 (ja) 2021-03-31 2022-03-30 弾性波装置

Country Status (3)

Country Link
US (1) US20240014799A1 (ja)
KR (1) KR20230148243A (ja)
WO (1) WO2022210923A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012331A1 (ja) * 2002-07-31 2004-02-05 Murata Manufacturing Co., Ltd. 圧電部品およびその製造方法
JP2006180247A (ja) * 2004-12-22 2006-07-06 Seiko Epson Corp 弾性表面波素子、電子機器、及び弾性表面波素子の励振空間形成方法
JP2013528996A (ja) * 2010-04-23 2013-07-11 テクノロジアン テュトキムスケスクス ヴェーテーテー 広帯域音響結合薄膜bawフィルタ
JP2014143640A (ja) * 2013-01-25 2014-08-07 Taiyo Yuden Co Ltd 弾性波デバイス及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772256B2 (ja) 2011-06-08 2015-09-02 株式会社村田製作所 弾性波装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012331A1 (ja) * 2002-07-31 2004-02-05 Murata Manufacturing Co., Ltd. 圧電部品およびその製造方法
JP2006180247A (ja) * 2004-12-22 2006-07-06 Seiko Epson Corp 弾性表面波素子、電子機器、及び弾性表面波素子の励振空間形成方法
JP2013528996A (ja) * 2010-04-23 2013-07-11 テクノロジアン テュトキムスケスクス ヴェーテーテー 広帯域音響結合薄膜bawフィルタ
JP2014143640A (ja) * 2013-01-25 2014-08-07 Taiyo Yuden Co Ltd 弾性波デバイス及びその製造方法

Also Published As

Publication number Publication date
KR20230148243A (ko) 2023-10-24
US20240014799A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
WO2023002858A1 (ja) 弾性波装置及びフィルタ装置
WO2022044869A1 (ja) 弾性波装置
WO2022085581A1 (ja) 弾性波装置
WO2022239630A1 (ja) 圧電バルク波装置
WO2023223906A1 (ja) 弾性波素子
WO2022120025A1 (en) Acoustic wave device
WO2022210923A1 (ja) 弾性波装置
WO2022211029A1 (ja) 弾性波装置
WO2022210941A1 (ja) 弾性波装置
WO2022209860A1 (ja) 弾性波装置
WO2023136293A1 (ja) 弾性波装置
WO2023136294A1 (ja) 弾性波装置
WO2022209525A1 (ja) 弾性波装置
WO2023145878A1 (ja) 弾性波装置
WO2022255304A1 (ja) 圧電バルク波装置及びその製造方法
WO2022210942A1 (ja) 弾性波装置
WO2022209862A1 (ja) 弾性波装置
WO2023136291A1 (ja) 弾性波装置
WO2023219167A1 (ja) 弾性波装置
WO2023204272A1 (ja) 弾性波装置
WO2022210689A1 (ja) 弾性波装置
WO2023210762A1 (ja) 弾性波素子
WO2022211087A1 (ja) 弾性波装置
WO2023085347A1 (ja) 弾性波装置
US20220321097A1 (en) Acoustic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237032580

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237032580

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280025668.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781133

Country of ref document: EP

Kind code of ref document: A1