WO2014148107A1 - 水晶振動装置 - Google Patents

水晶振動装置 Download PDF

Info

Publication number
WO2014148107A1
WO2014148107A1 PCT/JP2014/051770 JP2014051770W WO2014148107A1 WO 2014148107 A1 WO2014148107 A1 WO 2014148107A1 JP 2014051770 W JP2014051770 W JP 2014051770W WO 2014148107 A1 WO2014148107 A1 WO 2014148107A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
metal
substrate
crystal
quartz substrate
Prior art date
Application number
PCT/JP2014/051770
Other languages
English (en)
French (fr)
Inventor
文太 岡本
基祥 坂井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2014148107A1 publication Critical patent/WO2014148107A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0509Holders; Supports for bulk acoustic wave devices consisting of adhesive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type

Definitions

  • the present invention relates to a crystal vibration device in which a crystal resonator is mounted on a case substrate. More specifically, the present invention relates to a quartz crystal vibration device having an improved bonding structure between a quartz crystal resonator and a conductive adhesive.
  • crystal vibrators have been widely used for oscillators and the like.
  • a crystal resonator is sealed in a package.
  • a conventional crystal vibration device includes a case main body having a recess opened upward, and a lid provided to close the opening of the case main body.
  • a crystal resonator element is accommodated in the case body. This crystal resonator element is bonded to the bottom surface of the case body with a conductive adhesive or the like. That is, the crystal resonator is bonded and electrically connected to the electrode land provided on the inner bottom surface of the package body by the conductive adhesive.
  • Patent Document 1 discloses a structure in which irregularities are provided on the surface of a crystal substrate of a crystal resonator.
  • the lead electrode of the crystal resonator reaches the portion where the irregularities are provided.
  • the lead electrode portion leading to the portion provided with the unevenness is joined to the package with a conductive adhesive.
  • An object of the present invention is to provide a crystal vibration device in which the bonding strength of a crystal resonator by a conductive adhesive is sufficiently increased without requiring an expensive manufacturing process.
  • the crystal resonator device includes a case substrate, a crystal resonator, and a conductive adhesive layer.
  • the crystal resonator is mounted on the case substrate.
  • the conductive adhesive layer joins and electrically connects the crystal resonator to the case substrate.
  • the crystal unit includes a quartz substrate having an upper surface and a lower surface, a first vibration electrode, a second vibration electrode, a first extraction electrode, and a second extraction electrode.
  • the first vibration electrode is provided on the upper surface of the quartz substrate.
  • the second vibration electrode is provided on the lower surface of the quartz substrate and faces the first vibration electrode.
  • the first extraction electrode is connected to the first vibration electrode on the upper surface of the quartz substrate and reaches the lower surface of the quartz substrate.
  • the second extraction electrode is connected to the second vibration electrode on the lower surface of the quartz substrate.
  • the portion of the first extraction electrode reaching the lower surface of the quartz substrate and the second extraction electrode are joined to the case substrate by the conductive adhesive layer. Then, in at least part of the region of the first extraction electrode and the second extraction electrode joined by the conductive adhesive layer, the metal on the surface of the first extraction electrode and the second extraction electrode is the first It is made of a metal having higher bonding strength to the conductive adhesive layer than the metal on the surface of the other part of the first and second lead electrodes.
  • the second crystal vibrating device includes a case substrate, a crystal resonator, and a conductive adhesive layer.
  • the crystal resonator is mounted on the case substrate.
  • the conductive adhesive layer joins and electrically connects the crystal resonator to the case substrate.
  • the crystal unit includes a quartz substrate having an upper surface and a lower surface, a first vibration electrode, a second vibration electrode, a first extraction electrode, and a second extraction electrode.
  • the first vibration electrode is provided on the upper surface of the quartz substrate.
  • the second vibration electrode is provided on the lower surface of the quartz substrate and faces the first vibration electrode.
  • the first extraction electrode is connected to the first vibration electrode on the upper surface of the quartz substrate and reaches the lower surface of the quartz substrate.
  • the second extraction electrode is connected to the second vibration electrode on the lower surface of the quartz substrate.
  • the portion of the first extraction electrode reaching the lower surface of the quartz substrate and the second extraction electrode are joined to the case substrate by the conductive adhesive layer.
  • the first and second lead electrodes are so exposed that at least a part of the region of the first lead electrode and the second lead electrode joined by the conductive adhesive layer is exposed. Is provided.
  • the first and second lead electrodes include a surface metal layer and a second metal layer positioned on the quartz substrate surface side of the surface metal layer,
  • the metal located on the surface of the first and second extraction electrodes in at least a part of the region is the same as the metal of the second metal layer.
  • the metal located on the surfaces of the first and second extraction electrodes in the at least a part of the region Is at least one metal selected from the group consisting of silver, nickel, chromium, aluminum, magnesium, manganese, tungsten and alloys based on these metals.
  • the crystal vibration device according to the present invention preferably further includes a cap material fixed to the upper surface of the case substrate so as to surround the crystal resonator.
  • the metal on the surface of the first extraction electrode and the second extraction electrode in at least a part of the region joined by the conductive adhesive layer of the first and second extraction electrodes is
  • the first and second lead electrodes are made of a metal having a higher bonding strength to the conductive adhesive layer than the metal on the surface of the other portion of the first and second lead electrodes, or the quartz substrate is exposed in at least a part of the region. Since the second lead electrode is provided, it is possible to effectively increase the bonding strength of the crystal resonator by the conductive adhesive layer. Therefore, it is possible to increase the bonding strength of the crystal resonator without requiring an expensive manufacturing process such as photolithography.
  • FIG. 1 is an exploded perspective view of the quartz crystal vibration device according to the first embodiment of the present invention.
  • 2A and 2B are a schematic plan view of a crystal resonator used in the crystal resonator device of the first embodiment of the present invention and a schematic plan view showing the electrode shape of the lower surface. is there.
  • FIG. 3 is a cross-sectional view of the second metal portion of the first extraction electrode in the first embodiment.
  • FIG. 4 is a partially enlarged front cross-sectional view showing a structure in which the crystal resonator in the crystal resonator device according to the first embodiment of the present invention is bonded onto the case substrate.
  • FIG. 5 is a plan view of a crystal resonator in a crystal vibration device according to a second embodiment of the present invention.
  • FIG. 6 is a plan view of a crystal resonator used in a crystal resonator device according to a third embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of a quartz crystal vibration device according to an embodiment of the present invention.
  • the crystal vibration device 1 has a case substrate 2.
  • the case substrate 2 is made of an appropriate insulating material. Examples of such an insulating material include insulating ceramics such as alumina and synthetic resins.
  • First and second mounting electrodes 3 and 4 are formed on the upper surface of the case substrate 2.
  • the first attachment electrode 3 is drawn out to one corner portion of the case substrate 2 by the wiring electrode 5.
  • a first external electrode 6 is formed at the corner portion.
  • the first external electrode 6 is provided on the inner peripheral surface of a recess provided by cutting out a corner portion.
  • the second attachment electrode 4 is electrically connected to the second external electrode 8 by the wiring electrode 7.
  • the second external electrode 8 is provided at a corner portion that is diagonal to the corner portion where the first external electrode 6 is formed.
  • Dummy electrodes 9 and 10 connected to the ground potential are formed at the remaining two corners.
  • the dummy electrodes 9 and 10 may be floating electrodes or may be used as input / output electrodes.
  • the first and second mounting electrodes 3 and 4, the wiring electrodes 5 and 7, the first and second external electrodes 6 and 8, and the dummy electrodes 9 and 10 are made of Al, Cr, Ag, Au, Ni, or the like. It is formed of an appropriate metal or alloy.
  • a crystal resonator 11 is joined by first and second conductive adhesive layers 12 and 13.
  • the conductive adhesive layers 12 and 13 are formed of an epoxy resin adhesive having an epoxy resin and a conductive material such as a metal powder dispersed in the epoxy resin.
  • the epoxy resin adhesive the hardness of the cured product is high. Therefore, the crystal unit 11 can be more firmly supported by the cantilever.
  • the material constituting the conductive adhesive layer is not limited to the epoxy resin adhesive, but may be one using other synthetic resin such as silicone resin or polyimide resin other than epoxy resin.
  • a thermosetting resin is preferable, but a resin other than the thermosetting resin may be used.
  • an appropriate conductive material such as carbon powder can be used in addition to the metal powder.
  • a cap material 21 opened downward is fixed to the upper surface of the case substrate 2 so as to surround the crystal resonator 11. This fixing can be performed using an appropriate adhesive such as an epoxy resin adhesive.
  • the cap material 21 is made of metal and has a shape opened downward. Therefore, in the crystal vibration device 1, since the package is configured using the cap material 21, it is possible to reduce the size.
  • the cap material 21 may be formed of a material other than metal.
  • the crystal resonator 11 may be sealed using another package material instead of the cap material 21.
  • the electrode structure of the crystal unit 11 will be described more specifically with reference to FIGS. 2 (a) and 2 (b).
  • a rectangular quartz substrate 14 is used in the quartz oscillator 11.
  • the upper surface of the rectangular shape has a pair of long sides 14a and 14b and a pair of short sides 14c and 14d.
  • a first vibration electrode 15 is provided on the upper surface of the quartz substrate 14.
  • a first extraction electrode 17 is connected to the first vibration electrode 15.
  • the first extraction electrode 17 has an extraction electrode portion 18 that reaches the lower surface through the side surface of the quartz substrate 14 on the short side 14c side.
  • the lead electrode portion 18 includes a first metal portion 18a and a second metal portion 18b having different metal layers on the surface.
  • the first metal portion 18 a and the second metal portion 18 b are connected in the surface direction on the lower surface of the crystal substrate 14.
  • the first metal portion 18a is located along the side surface of the quartz substrate 14 on the short side 14c side described above.
  • the second metal portion 18b is provided at a position separated from the side surface on which the short side 14c is located.
  • the first metal portion 18a is made of a metal having higher bonding strength due to the conductive adhesive layer than the second metal portion 18b. More specifically, in the present embodiment, the first metal portion 18a is made of a metal such as silver, nickel, chromium, aluminum, magnesium, manganese, tungsten, or an alloy mainly composed of these metals. On the other hand, the surface of the second metal portion 18b is made of Au or the like.
  • the first extraction electrode 17 also has a first metal portion 17a and a second metal portion 17b on the upper surface of the quartz substrate.
  • the metal on the surface of the first metal portion 17a is the same as the metal on the surface of the first metal portion 18a.
  • the metal on the surface of the second metal portion 18b is the same as the metal on the surface of the second metal portion 17b.
  • the first metal portion 17a is also provided on the upper surface of the quartz substrate 14, but the first metal portion 17a is not provided on the upper surface, and the first metal portion 17a is located.
  • the second metal portion 17b may reach the portion where it is present.
  • the first metal portion 17a so as to face the first metal portion 18a via the quartz substrate 14
  • the directionality between the upper surface and the lower surface of the quartz substrate 14 can be eliminated, which is preferable. That is, the crystal unit 11 can be bonded to the case substrate 2 from either the upper surface side or the lower surface side.
  • a second vibrating electrode 16 is provided on the lower surface of the quartz substrate 14.
  • the second vibration electrode 16 is opposed to the first vibration electrode 15 with the quartz substrate 14 interposed therebetween.
  • a second extraction electrode 19 is provided so as to be connected to the second vibration electrode 16.
  • the second extraction electrode 19 also has a first metal portion 19a and a second metal portion 19b.
  • the first metal portion 19a is configured in the same manner as the first metal portions 17a and 18a.
  • the second metal portion 19b is configured similarly to the second metal portions 17b and 18b.
  • the second extraction electrode 19 is not essential, but the side surface of the crystal substrate 14 is obtained and reaches the upper surface.
  • the lead electrode portion 20 reaching the upper surface also has a first metal portion 20a and a second metal portion 20b.
  • the first metal part 20a overlaps the first metal part 19a via the quartz substrate.
  • the 2nd metal part 20b is continued in the surface direction with respect to the 1st metal part 20a.
  • the first extraction electrode 17 and the second extraction electrode 19 and the extraction electrode portions 18 and 20 are such that the metal on the surface of the first and second metal portions 17a, 17b, 18a, and 18b satisfies the above conditions. It only has to be. Accordingly, there is no particular limitation except for the surface metal.
  • the lead electrode portions other than the first metal portions 17a, 18a, 19a, and 20a have a structure in which the first and second metal layers are laminated. That is, as shown in FIG. 3, the second metal portion 17b of the first extraction electrode 17 has a structure in which the second metal layer 17B is stacked on the first metal layer 17A.
  • the first metal layer 17A is made of Cr.
  • the second metal layer 17B is made of Au.
  • the first metal portion 17a is formed of a metal layer made of Cr.
  • the first metal portions 18a, 19a having relatively high bonding strength are at least part of the electrode portions located on the lower surface of the quartz substrate 14 of the first and second extraction electrodes 17, 19. What is necessary is just to be provided in the area
  • the first metal portions 17a and 20a are also provided on the upper surface side of the quartz substrate 14 as described above. Therefore, in the crystal resonator 11, even when the upper surface and the lower surface of the crystal substrate 14 are reversed and mounted on the case substrate 2, a high bonding force can be obtained by the first metal portions 17a and 20a.
  • the first metal portions 17a and 20a are not necessarily provided on the upper surface of the quartz substrate.
  • the second metal portions 17b and 19b of the first extraction electrode 17 and the second extraction electrode 19 have a structure in which an Au film is stacked on a Cr film.
  • the 1st and 2nd extraction electrodes 17 and 19 may be formed with the single metal, and may be formed with the laminated metal film formed by laminating
  • first metal portions 17a, 18a, 19a, and 20a may also be configured by a laminated metal film that is formed by laminating a plurality of metal films instead of a single metal film.
  • FIG. 4 is a partial enlarged front sectional view showing a mounting structure of the crystal unit 11 corresponding to a portion along the one-dot chain line AA in FIG.
  • the first metal portion 18 a and the second metal portion 18 b are electrically connected to the first attachment electrode 3 provided on the upper surface of the case substrate 2 by the conductive adhesive layer 12. And mechanically joined. Therefore, as described above, since the surface of the first metal portion 18a expresses a high bonding strength to the conductive adhesive layer 12, the bonding strength of the crystal resonator 11 to the case substrate 2 can be sufficiently increased. it can.
  • FIG. 5 is a schematic plan view showing the electrode shape on the lower surface of the crystal resonator used in the crystal vibration device according to the second embodiment of the present invention.
  • the crystal resonator 31 includes the crystal substrate 14 as in the first embodiment.
  • a second vibration electrode 16 is provided on the lower surface of the quartz substrate 14.
  • a second extraction electrode 19 is connected to the second vibrating electrode 16.
  • the difference between the present embodiment and the first embodiment is that the first metal portion 19a shown in FIG. 2B is not provided, and the electrode-unformed region 14e is formed of the first metal portion 19a. Instead, it is provided.
  • the electrode non-formed region 14e is in the same region as the first metal portion 19a of the first embodiment, but no electrode material is applied.
  • the electrode non-formation region 14e is also located at a portion joined by the conductive adhesive layer 13 (FIG. 1). Therefore, in the present embodiment, the conductive adhesive layer 13 is bonded not only to the second metal portion 19b but also to the quartz substrate 14 itself in the electrode non-formation region 14e.
  • the electrode non-formation region 14e is provided in at least a part of the region where the crystal substrate 14 is bonded to the case substrate 2 by the conductive adhesive layer 13.
  • the quartz substrate 14 is exposed in the electrode non-formed region 14e. Therefore, the conductive adhesive layer joins both the quartz substrate 14 and the second metal portion 19b to the case substrate 2.
  • the bonding force between the quartz substrate 14 and the conductive adhesive layer 13 is higher than the bonding force between the second metal portion 19b made of a metal such as Au and the conductive adhesive layer 13. Therefore, also in the present embodiment, as in the first embodiment, the bonding strength of the crystal substrate 14 to the case substrate 2 by the conductive adhesive layers 12 and 13 can be effectively increased.
  • the first lead electrode 17 on the upper surface side no electrode non-formation region is provided on the upper surface of the crystal substrate 14. That is, without providing the first metal portion 17a shown in FIG. 2A, the second metal portion 17b is provided so as to reach the short side 14c, the side surface is obtained, and the first metal portion 17b is provided so as to reach the lower surface. A lead electrode 17 is formed. As shown in FIG. 5, in the extraction electrode portion 18, the second metal portion 18b is provided on the side surface along the short side, and the second metal portion 18b shown in FIG. 2B is provided. The region that is present may be the electrode non-formed region 14f.
  • FIG. 6 is a schematic plan view showing the electrode structure on the lower surface of the crystal resonator used in the crystal vibration device according to the third embodiment of the present invention.
  • the electrode non-formation region 14e is provided along the side surface along the short side.
  • the electrode non-formed region 14 g is provided in a part of the second extraction electrode 19.
  • an electrode-unformed region 14g having a substantially deformed shape is provided, whereby the quartz substrate 14 is exposed in the electrode-unformed region 14g.
  • the electrode non-formed region 14g and the surrounding second metal portion 19b are joined to the case substrate 2 by the conductive adhesive layer 13 shown in FIG.
  • the electrode non-formed region 14g may have a shape surrounded by the extraction electrode.
  • an electrode non-formation region 14h is also provided in the extraction electrode portion 18 connected to the first extraction electrode on the upper surface side.
  • a case substrate 2 provided with the electrode structure shown in FIG. 1 is prepared.
  • a quartz wafer for preparing the quartz substrate 14 is prepared.
  • a Cr film is formed on the wafer by sputtering and patterned.
  • a Cr film having a predetermined pattern is formed using a mask.
  • the planar shape of the Cr film is a shape corresponding to the first vibrating electrode 15, the first extraction electrode 17, and the extraction electrode portion 20 on the quartz substrate 14.
  • an Au film is then laminated on the Cr film. .
  • the lamination of the Au film can be performed by a thin film forming method such as sputtering.
  • a Cr film is similarly formed on the lower surface of the quartz substrate 14.
  • the Cr film is formed in a region where the second vibration electrode 16, the second extraction electrode 19, and the extraction electrode portion 18 are provided.
  • an Au film is laminated only in a region where the second extraction electrode 19, the second metal portions 18b and 19b, and the second vibration electrode 16 are formed.
  • the first metal portions 17a, 18a, 19a, and 20a are made of a Cr film
  • the first and second vibrating electrodes 15 and 16 and the second metal portions 19b and 17b are made of a laminated metal film.
  • An electrode structure can be formed.
  • the wafer may be cut into individual crystal units 11. In this way, the crystal resonator 11 can be obtained.
  • each metal film which comprises the electrode of the upper surface of the quartz substrate 14, and the electrode of a lower surface is not limited to the said order. That is, after forming the Cr film on the upper surface and the lower surface, the Au film may be formed on the upper surface and the lower surface in the specific region.
  • the first metal portions 17a, 18a, 19a, and 20a may be formed with a laminated metal film in which a plurality of metal films are laminated. In that case, when forming the first metal portions 17a, 18a, 19a, and 20a, the metal film forming process may be repeated a plurality of times.
  • At least one metal layer of the second metal portions 17b, 18b, 19b, and 20b is not necessarily required to be the same as at least one metal layer of the first metal portions 17a, 18a, 19a, and 20a.
  • some metal layers of the second metal portions 17b, 18b, 19b, and 20b are made the same as some metal layers of the first metal portions 18a, 19a, 17a, and 20a. It is desirable. Thereby, the manufacturing process can be simplified.
  • the electrode non-formation regions 14e and 14g are provided in the electrode forming step that constitutes the second metal portion.
  • a metal film may be formed.
  • the crystal resonator 11 can be obtained as described above. Then, the crystal unit 11 is bonded to the case substrate 2 via the conductive adhesive layers 12 and 13. Thereafter, the cap material 21 is bonded to the case substrate 2. This bonding may be performed using an insulating adhesive. The quartz resonator 11 can be surrounded by the cap material 21. Therefore, the crystal unit 11 is accommodated in the space sealed by the case substrate 2 and the cap material 21. In this way, the crystal vibration device 1 can be obtained.
  • the crystal motion device of the present invention is not limited to a package structure using the case substrate 2 and the cap material 21.
  • a case main body may be used in which a side wall that extends integrally and upward from the upper surface of the case substrate is provided, and an opening that is open upward is formed by the side wall.
  • You may comprise a package by fixing a cover material to this case main body so that opening may be closed.
  • the crystal resonator may be bonded to the case substrate portion constituting the case body by a conductive adhesive layer.
  • the bonding strength of the crystal resonator 11 can be effectively increased. Therefore, for example, it can be suitably used for an application in which vibration is applied during actual use, such as an in-vehicle crystal vibration device. Even when vibration is applied from the outside, since the bonding strength is increased, the crystal resonator 11 is unlikely to be detached from the case substrate 2. Therefore, it is possible to effectively increase the reliability of the crystal vibration device.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 高価な製造設備を必要とすることなく、導電性接着剤により接合強度を高め得る構造を有する水晶振動装置を提供する。 水晶振動子11がケース基板2に導電性接着剤層により接合され、該水晶振動子11がケース基板2上に支持されている水晶振動装置1であって、水晶振動子11が、第1及び第2の振動電極15,16と第1及び第2の引き出し電極17,19を有し、第1の引き出し電極17及び第2の引き出し電極19の導電性接着剤層によって接合される水晶基板14の下面側の領域の少なくとも一部において、第1の引き出し電極17及び第2の引き出し電極19の表面の金属が、第1及び第2の引き出し電極17,19の他の部分の表面の金属よりも導電性接着剤層に対する接合強度が高い金属からなる、あるいは上記領域の少なくとも一部において、水晶基板14の一部が露出するように第1及び第2の引き出し電極17,19が設けられている、水晶振動装置1。

Description

水晶振動装置
 本発明は、ケース基板上に水晶振動子が実装されている水晶振動装置に関する。より詳細には、本発明は、水晶振動子と導電性接着剤との接合構造が改良されている水晶振動装置に関する。
 従来、発振子などに水晶振動装置が広く用いられている。水晶振動装置では、パッケージ内に水晶振動子が封止されている。従来の水晶振動装置では、上方に開いた凹部を有するケース本体と、ケース本体の開口を閉じるように設けられた蓋体とを有する。ケース本体内に水晶振動素子が収納されている。この水晶振動素子は、ケース本体の底面に、導電性接着剤などにより接合されている。すなわち、導電性接着剤により、水晶振動子が、パッケージ本体の内底面に設けられた電極ランドに接合されるとともに、電気的に接続されている。
 近年、水晶振動装置においても小型化が強く求められている。小型化を進めた場合、上記導電性接着剤による接合面積が小さくなり、接合強度が低下するという問題があった。
 他方、下記の特許文献1には水晶振動子の水晶基板表面に凹凸を設けた構造が開示されている。ここでは、水晶振動子の引き出し電極が上記凹凸が設けられている部分に至っている。この凹凸が設けられている部分に至っている引き出し電極部分を導電性接着剤によりパッケージに接合している。
特開2008-109538号公報
 しかしながら、特許文献1に記載の水晶振動装置では、水晶のウエハーの状態で、フォトリソグラフィーを用いたエッチングなどにより、上記凹凸を形成しなくてはならなかった。そのため、高価な製造プロセスを必要としていた。よって、水晶振動装置のコストが高くつくという問題があった。
 本発明の目的は、高価な製造プロセスを必要とすることなく、導電性接着剤による水晶振動子の接合強度が十分に高められている水晶振動装置を提供することにある。
 本願の第1の発明に係る水晶振動装置は、ケース基板と、水晶振動子と、導電性接着剤層とを備える。水晶振動子は上記ケース基板上に実装されている。導電性接着剤層は、水晶振動子を上記ケース基板に接合しかつ電気的に接続している。
 上記水晶振動子は、上面及び下面を有する水晶基板と、第1の振動電極と、第2の振動電極と、第1の引き出し電極と第2の引き出し電極とを有する。
 第1の振動電極は、水晶基板の上面に設けられている。第2の振動電極は、水晶基板の下面に設けられており、第1の振動電極と対向している。
 第1の引き出し電極は、上記水晶基板の上面において第1の振動電極に連ねられており、かつ該水晶基板の下面に至っている。第2の引き出し電極は、水晶基板の下面において第2の振動電極に連ねられている。
 本発明では、第1の引き出し電極の水晶基板の下面に至っている部分及び第2の引き出し電極とが、上記導電性接着剤層によりケース基板に接合されている。そして、第1の引き出し電極及び第2の引き出し電極の上記導電性接着剤層によって接合されている領域の少なくとも一部において、第1の引き出し電極及び第2の引き出し電極の表面の金属が、第1及び第2の引き出し電極の他の部分の表面の金属よりも導電性接着剤層に対する接合強度が高い金属からなる。
 本願の第2の発明によれば、下記の水晶振動装置が提供される。
 すなわち、第2の水晶振動装置は、ケース基板と、水晶振動子と、導電性接着剤層とを備える。水晶振動子は上記ケース基板上に実装されている。導電性接着剤層は、水晶振動子を上記ケース基板に接合しかつ電気的に接続している。
 上記水晶振動子は、上面及び下面を有する水晶基板と、第1の振動電極と、第2の振動電極と、第1の引き出し電極と第2の引き出し電極とを有する。
 第1の振動電極は、水晶基板の上面に設けられている。第2の振動電極は、水晶基板の下面に設けられており、第1の振動電極と対向している。
 第1の引き出し電極は、上記水晶基板の上面において第1の振動電極に連ねられており、かつ該水晶基板の下面に至っている。第2の引き出し電極は、水晶基板の下面において第2の振動電極に連ねられている。
 第2の発明では、第1の引き出し電極の水晶基板の下面に至っている部分及び第2の引き出し電極が、上記導電性接着剤層によりケース基板に接合されている。
 第2の発明では、第1の引き出し電極及び第2の引き出し電極の上記導電性接着剤層によって接合されている領域の少なくとも一部において水晶基板が露出するように第1及び第2の引き出し電極が設けられている。
 第1の発明では、好ましくは、前記第1及び第2の引き出し電極が、表面金属層と、表面金属層よりも水晶基板表面側に位置している第2の金属層とを有し、前記少なくとも一部の領域において第1及び第2の引き出し電極表面に位置している金属が前記第2の金属層の金属と同一とされている。
 本発明(以下、第1及び第2の発明を総称して本発明とする)では、好ましくは、前記少なくとも一部の領域において前記第1及び第2の引き出し電極の表面に位置している金属が、銀、ニッケル、クロム、アルミニウム、マグネシウム、マンガン、タングステン及びこれらの金属を主体とする合金からなる群から選択された少なくとも1種の金属である。
 本発明に係る水晶振動装置では、好ましくは、前記水晶振動子を囲繞するように前記ケース基板の上面に固定されているキャップ材がさらに備えられている。
 本発明によれば、第1及び第2の引き出し電極の導電性接着剤層によって接合されている領域の内少なくとも一部において第1の引き出し電極及び第2の引き出し電極の表面の金属が、該第1及び第2の引き出し電極の他の部分の表面の金属よりも導電性接着剤層に対する接合強度が高い金属からなり、あるいは上記領域の少なくとも一部において水晶基板が露出するように第1及び第2の引き出し電極が設けられているため、導電性接着剤層による水晶振動子の接合強度を効果的に高めることが可能となる。従って、フォトリソグラフィーのような高価な製造プロセスを必要とすることなく、水晶振動子の接合強度を高めることが可能となる。
図1は、本発明の第1の実施形態に係る水晶振動装置の分解斜視図である。 図2(a)及び図2(b)は、本発明の第1の実施形態の水晶振動装置において用いられている水晶振動子の模式的平面図及び下面の電極形状を示す模式的平面図である。 図3は、第1の実施形態における第1の引き出し電極の第2の金属部の断面図である。 図4は、本発明の第1の実施形態に係る水晶振動装置における水晶振動子がケース基板上に接合されている構造を示す部分拡大正面断面図である。 図5は、本発明の第2の実施形態に係る水晶振動装置における水晶振動子の平面図である。 図6は、本発明の第3の実施形態における水晶振動装置に用いられている水晶振動子の平面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 図1は、本発明の一実施形態に係る水晶振動装置の分解斜視図である。水晶振動装置1は、ケース基板2を有する。ケース基板2は、適宜の絶縁性材料からなる。このような絶縁性材料としては、アルミナなどの絶縁性セラミックスや合成樹脂などを挙げることができる。
 ケース基板2の上面には、第1,第2の取付電極3,4が形成されている。第1の取付電極3は、配線電極5によりケース基板2の一つのコーナー部に引き出されている。このコーナー部分には、第1の外部電極6が形成されている。第1の外部電極6は、コーナー部分を切欠いて設けられた凹部の内周面に付与されている。
 他方、第2の取付電極4は、配線電極7により、第2の外部電極8に電気的に接続されている。第2の外部電極8は、第1の外部電極6が形成されているコーナー部とは対角の位置にあるコーナー部に設けられている。
 残りの2つのコーナー部には、グラウンド電位に接続されるダミー電極9,10が形成されている。なお、ダミー電極9,10は浮き電極とされてもよく、あるいは入出力電極として用いられてもよい。
 上記第1,第2の取付電極3,4、配線電極5,7、第1,第2の外部電極6,8、及びダミー電極9,10は、Al、Cr、Ag、Au、Ni等の適宜の金属もしくは合金により形成されている。
 上記ケース基板2上に、水晶振動子11が第1及び第2の導電性接着剤層12,13により接合されている。
 導電性接着剤層12,13は、本実施形態では、エポキシ樹脂と、エポキシ樹脂に分散されている金属粉末などの導電性材料とを有するエポキシ樹脂系接着剤により形成されている。エポキシ樹脂系接着剤では、硬化物の硬度が高い。従って、水晶振動子11を、片持ち梁でより強固に支持することができる。
 もっとも、本発明において、導電性接着剤層を構成する材料は、エポキシ樹脂系接着剤に限らず、エポキシ樹脂以外のシリコーン樹脂、ポリイミド樹脂などの他の合成樹脂を用いたものであってもよい。さらに、合成樹脂としては、熱硬化性樹脂が好ましいが、熱硬化性樹脂以外の樹脂を用いてもよい。また、分散されている導電性材料についても、金属粉末の他、カーボン粉末などの適宜の導電性材料を用いることができる。
 なお、図1に示すように、水晶振動装置1では、水晶振動子11を囲繞するように、下方に開いたキャップ材21がケース基板2の上面に固定される。この固定は、エポキシ樹脂系接着剤などの適宜の接着剤を用いて行い得る。また、キャップ材21は、金属からなり、下方に開いた形状を有する。従って、水晶振動装置1では、キャップ材21を用いてパッケージが構成されているので、小型化を図ることができる。なお、キャップ材21は金属以外の材料で形成してもよい。
 また、本発明においては、キャップ材21に代えて、他のパッケージ材を用いて水晶振動子11を封止してもよい。
 水晶振動子11の電極構造を、図2(a)及び(b)を参照してより具体的に説明する。水晶振動子11では、矩形の水晶基板14が用いられる。この矩形の形状の上面は、一対の長辺14a,14bと一対の短辺14c,14dとを有する。水晶基板14の上面に、第1の振動電極15が設けられている。第1の振動電極15に、第1の引き出し電極17が連ねられている。
 第1の引き出し電極17は、水晶基板14の短辺14c側の側面を経て下面に至っている引き出し電極部分18を有する。引き出し電極部分18は、表面の金属層が異なる第1の金属部18aと、第2の金属部18bとを有する。第1の金属部18aと第2の金属部18bは、水晶基板14の下面において面方向に連ねられている。
 第1の金属部18aは、水晶基板14の前述した短辺14c側の側面に沿うように位置している。第2の金属部18bは、該短辺14cが位置している側面から隔てられた位置に設けられている。
 第1の金属部18aが、第2の金属部18bよりも導電性接着剤層による接合強度が高い金属からなる。より具体的には、本実施形態では、第1の金属部18aは、表面が銀、ニッケル、クロム、アルミニウム、マグネシウム、マンガン、タングステンなどの金属またはこれらの金属を主体とする合金からなる。他方、第2の金属部18bの表面は、Auなどからなる。
 同様に、第1の引き出し電極17は、水晶基板14の上面においても、第1の金属部17aと第2の金属部17bとを有する。第1の金属部17aの表面の金属は、第1の金属部18aの表面の金属と同一とされている。同様に、第2の金属部18bの表面の金属は、第2の金属部17bの表面の金属と同一とされている。
 本実施形態では、水晶基板14の上面においても、第1の金属部17aが設けられているが、上面においては第1の金属部17aは設けられず、第1の金属部17aが位置している部分に第2の金属部17bが至っていてもよい。
 もっとも、第1の金属部17aを第1の金属部18aと水晶基板14を介して対向するように設けることにより、水晶基板14の上面と下面との方向性をなくすことができ、好ましい。すなわちケース基板2に対して上面側から及び下面側からのいずれの側からも水晶振動子11を接合することができる。
 水晶基板14の下面には第2の振動電極16が設けられている。第2の振動電極16は、水晶基板14を介して第1の振動電極15に対向している。第2の振動電極16に連ねられて、第2の引き出し電極19が設けられている。第2の引き出し電極19もまた、第1の金属部19aと第2の金属部19bとを有する。第1の金属部19aは、第1の金属部17a,18aと同様に構成されている。第2の金属部19bは、第2の金属部17b,18bと同様に構成されている。
 さらに、第2の引き出し電極19もまた、必須ではないが、水晶基板14の側面を得て上面に至っている。この上面に至っている引き出し電極部分20もまた、第1の金属部20aと第2の金属部20bとを有する。第1の金属部20aは、水晶基板14を介して第1の金属部19aと重なり合っている。第2の金属部20bは、第1の金属部20aに対して面方向に連ねられている。
 なお、第1の引き出し電極17及び第2の引き出し電極19、上記引き出し電極部分18,20は上述した第1及び第2の金属部17a,17b,18a,18bの表面の金属が上記条件を満たしておればよい。従って、表面の金属以外は特に限定されるものではない。
 本実施形態では、第1の金属部17a,18a,19a,20a以外の引き出し電極部分は第1及び第2の金属層を積層した構造を有する。すなわち、図3に示すように、第1の引き出し電極17の第2の金属部17bは、第1の金属層17A上に第2の金属層17Bが積層された構造を有する。第1の金属層17Aは、Crからなる。第2の金属層17BはAuからなる。
 他方、第1の金属部17aは、Crからなる金属層により形成されている。
 Crは、上述した導電性接着剤に対する接合強度がAuよりも高い。従って、導電性接着剤層12,13により水晶振動子11をケース基板2に接合した場合、第1の金属部18a,19aにより接合強度を効果的に高めることができる。
 なお、上記接合強度が相対的に高い第1の金属部18a,19aは、上記第1及び第2の引き出し電極17,19の水晶基板14の下面に位置している電極部分の少なくとも一部の領域に設けられておればよい。すなわち、水晶基板14の下面に位置している引き出し電極部分の内、導電性接着剤層で接合される全領域にわたり、第1の金属部18a,19aが設けられている必要は必ずしもない。もっとも、好ましくは、導電性接着剤層12,13で接合される領域の全体にわたり、上記第1の金属部18a,19aが設けられていることが望ましい。
 また、本実施形態では、上記のように水晶基板14の上面側においても、第1の金属部17a,20aが設けられている。従って、水晶振動子11において、水晶基板14の上面と下面を逆転してケース基板2に実装した場合においても、第1の金属部17a,20aにより高い接合力を得ることができる。もっとも、水晶基板14の上面には第1の金属部17a,20aは必ずしも設けられずともよい。
 また、本実施形態では、上記第1の引き出し電極17及び第2の引き出し電極19の第2の金属部17b,19bは、Cr膜の上にAu膜を積層した構造を有していた。もっとも、第1及び第2の引き出し電極17,19は単一の金属により形成されていてもよく、3以上の金属を積層してなる積層金属膜により形成されていてもよい。
 また、第1の金属部17a,18a,19a,20aについても、単一の金属膜ではなく、複数の金属膜を積層してなる積層金属膜により構成されていてもよい。
 図4は、図2の一点鎖線A-Aに沿う部分に相当する水晶振動子11の実装構造を示す部分拡大正面断面図である。図4に示すように、導電性接着剤層12により、第1の金属部18a及び第2の金属部18bがケース基板2の上面に設けられている第1の取付電極3に電気的に接続されており、かつ機械的に接合されている。従って、上記のように、第1の金属部18aの表面が導電性接着剤層12に対し、高い接合力を発現するため、水晶振動子11のケース基板2に対する接合強度を十分に高めることができる。
 図5は、本発明の第2の実施形態に係る水晶振動装置に用いられる水晶振動子の下面の電極形状を示す模式的平面図である。
 本実施形態では、水晶振動子31は、第1の実施形態と同様に水晶基板14を有する。水晶基板14の下面に第2の振動電極16が設けられている。そして、第2の振動電極16に、第2の引き出し電極19が連ねられている。
 本実施形態が、第1の実施形態と異なるところは、上記図2(b)に示した第1の金属部19aが設けられておらず、電極未形成領域14eが第1の金属部19aの代わりに設けられていることにある。電極未形成領域14eは、第1の実施形態の第1の金属部19aと同じ領域にあるが、電極材料は付与されていない。電極未形成領域14eもまた、導電性接着剤層13(図1)により接合される部分に位置している。従って、本実施形態では、導電性接着剤層13は、第2の金属部19bだけでなく、電極未形成領域14eにおいて水晶基板14自体と接合されている。言い換えれば、導電性接着剤層13により水晶基板14がケース基板2に接合される領域の少なくとも一部において電極未形成領域14eが設けられている。そして、電極未形成領域14eでは水晶基板14が露出している。よって、導電性接着剤層は、水晶基板14と第2の金属部19bの双方をケース基板2に接合する。
 水晶基板14と導電性接着剤層13との接合力は、上記Auなどの金属からなる第2の金属部19bの導電性接着剤層13との接合力よりも高い。よって、本実施形態においても、第1の実施形態と同様に、水晶基板14のケース基板2への導電性接着剤層12,13による接合強度を効果的に高めることができる。
 なお、上面側の第1の引き出し電極17については、水晶基板14の上面には電極未形成領域は設けない。すなわち、図2(a)で示した第1の金属部17aを設けずに、第2の金属部17bを短辺14cに至るように設け、側面を得て、下面に至るように第1の引き出し電極17を形成する。そして、図5に示すように、引き出し電極部分18において、上記短辺に沿う側面側に第2の金属部18bを設け、図2(b)に示した第2の金属部18bが設けられている領域を電極未形成領域14fとすればよい。
 図6は本発明の第3の実施形態に係る水晶振動装置に用いられている水晶振動子の下面の電極構造を示す模式的平面図である。
 図5では、電極未形成領域14eは、短辺に沿う側面に沿うように設けられていた。これに対して、図6に示す水晶振動子33では、電極未形成領域14gは、第2の引き出し電極19の一部に設けられている。ここでは、略変形形状の電極未形成領域14gが設けられており、それによって、電極未形成領域14gにおいて水晶基板14が露出している。この電極未形成領域14gと、その周囲の第2の金属部19bが図1に示した導電性接着剤層13によりケース基板2に接合される。このように、電極未形成領域14gは、引き出し電極に周りを囲まれる形状であってもよい。
 なお、図6では、上面側の第1の引き出し電極に接続されている引き出し電極部分18にも電極未形成領域14hが設けられている。
 次に、第1の実施形態及び第2,第3の実施形態の水晶振動装置の製造方法を説明する。
 まず、図1に示した電極構造が設けられているケース基板2を用意する。
 他方、水晶基板14を形成するための水晶のウエハーを用意する。このウエハー上にCr膜をスパッタリングにより形成し、パターニングする。あるいはマスクを用いて所定のパターンのCr膜を成膜する。このCr膜の平面形状は、水晶基板14上の第1の振動電極15、第1の引き出し電極17及び引き出し電極部分20に相当する形状とする。そして、第1の引き出し電極17及び第2の金属部17b,20bが構成される部分と、第1の振動電極15が形成される領域においては、次に、Cr膜上にAu膜を積層する。Au膜の積層は、スパッタリングなどの薄膜形成方法により行い得る。
 他方、水晶基板14の下面においても、同様にして、Cr膜を形成する。Cr膜は、第2の振動電極16、第2の引き出し電極19及び引き出し電極部分18が設けられる領域に形成する。次に、第2の引き出し電極19、第2の金属部18b,19b及び第2の振動電極16が形成される領域にのみ、Au膜を積層する。
 上記のようにして、第1の金属部17a,18a,19a,20aがCr膜からなり、第1,第2の振動電極15,16及び第2の金属部19b,17bが積層金属膜からなる電極構造を形成するができる。
 なお、上記ウエハー状態の水晶において、上記電極構造を形成した後、個々の水晶振動子11にウエハーを切断すれば良い。このようにして、上記水晶振動子11を得ることができる。
 なお、水晶基板14の上面の電極及び下面の電極を構成する各金属膜の形成順序は上記順序に限定されない。すなわち、Cr膜を上面及び下面に形成した後に、上面及び下面に、それぞれ、Au膜を上記特定の領域に成膜してもよい。
 さらに、前述したように、第1の金属部17a,18a,19a,20aは複数の金属膜を積層した積層金属膜を形成されていてもよい。その場合には、第1の金属部17a,18a,19a,20aの形成に際し、金属膜の形成工程を複数回繰り返せばよい。
 さらに、第2の金属部17b,18b,19b,20bの少なくとも1つの金属層を、第1の金属部17a,18a,19a,20aの少なくとも1つの金属層と同一にする必要も必ずしもない。もっとも、本実施形態のように、第2の金属部17b,18b,19b,20bの一部の金属層を第1の金属部18a,19a,17a,20aの一部の金属層と同一とすることが望ましい。それによって製造工程の簡略化を図ることができる。
 なお、第2及び第3の実施形態に用いられる水晶振動子31,33の製造に際しては、上記第2の金属部を構成する電極形成工程に際し、電極未形成領域14e,14gが設けられるように金属膜を形成すればよい。
 上記のようにして、水晶振動子11を得ることができる。そして、この水晶振動子11を、導電性接着剤層12,13を介してケース基板2に接合する。しかる後、ケース基板2に、キャップ材21を接合する。この接合は、絶縁性接着剤を用いて行えばよい。キャップ材21により、水晶振動子11を囲繞することができる。従って、ケース基板2とキャップ材21とで封止された空間内に、水晶振動子11が収納される。このようにして、水晶振動装置1を得ることができる。
 もっとも、本発明の水晶動装置は、上記ケース基板2及びキャップ材21を用いたパッケージ構造のものに限定されない。例えば、ケース基板の上面からケース基板に一体にかつ上方に延びる側壁が設けられており、該側壁により上部に開いた開口が形成されているケース本体を用いてもよい。このケース本体に、開口を閉成するように蓋材を固定することによりパッケージを構成してもよい。このような構造においても、上記ケース本体を構成しているケース基板部分に、導電性接着剤層により、上記水晶振動子を接合すればよい。
 上記実施形態で得られる水晶振動装置では、水晶振動子11の接合強度を効果的に高めることができる。従って、例えば、車載用水晶振動装置のように、実使用時に振動が加わる用途に好適に用いることができる。振動が外部から加わったとしても、接合強度が高められているため、水晶振動子11のケース基板2からの離脱等が生じ難い。従って、水晶振動装置の信頼性を効果的に高めることができる。
1…水晶振動装置
2…ケース基板
3…第1の取付電極
4…第2の取付電極
5,7…配線電極
6…第1の外部電極
8…第2の外部電極
9,10…ダミー電極
11…水晶振動子
12…導電性接着剤層
13…導電性接着剤層
14…水晶基板
14a,14b…長辺
14c,14d…短辺
14e,14f,14g,14h…電極未形成領域
15…第1の振動電極
16…第2の振動電極
17…第1の引き出し電極
17A…第1の金属層
17B…第2の金属層
17a,18a,19a,20a…第1の金属部
17b,18b,19b,20b…第2の金属部
18…引き出し電極部分
19…第2の引き出し電極
20…引き出し電極部分
21…キャップ材
31,33…水晶振動子

Claims (5)

  1.  ケース基板と、
     前記ケース基板上に実装されている水晶振動子と、
     前記水晶振動子を前記ケース基板に接合しかつ電気的に接続している導電性接着剤層とを備え、
     前記水晶振動子が、上面及び下面を有する水晶基板と、
     前記水晶基板の上面に設けられている第1の振動電極と、前記水晶基板の下面に設けられており、前記第1の振動電極と対向している第2の振動電極と、
     前記水晶基板の上面において前記第1の振動電極に連ねられており、かつ前記水晶基板の下面に至っている第1の引き出し電極と、
     前記水晶基板の下面において前記第2の振動電極に連ねられている第2の引き出し電極とを有し、
     前記第1の引き出し電極の前記水晶基板の下面に至っている部分と前記第2の引き出し電極とが、前記導電性接着剤層により前記ケース基板に接合されており、
     前記第1の引き出し電極及び前記第2の引き出し電極の前記導電性接着剤層によって接合されている領域の少なくとも一部において、前記第1の引き出し電極及び前記第2の引き出し電極の表面の金属が、第1及び第2の引き出し電極の他の部分の表面の金属よりも導電性接着剤層に対する接合強度が高い金属からなる、水晶振動装置。
  2.  ケース基板と、
     前記ケース基板上に実装されている水晶振動子と、
     前記水晶振動子を前記ケース基板に接合しかつ電気的に接続している導電性接着剤層とを備え、
     前記水晶振動子が、上面及び下面を有する水晶基板と、
     前記水晶基板の上面に設けられている第1の振動電極と、前記水晶基板の下面に設けられており、前記第1の振動電極と対向している第2の振動電極と、
     前記水晶基板の上面において前記第1の振動電極に連ねられており、かつ前記水晶基板の下面に至っている第1の引き出し電極と、
     前記水晶基板の下面において前記第2の振動電極に連ねられている第2の引き出し電極とを有し、
     前記第1の引き出し電極の前記水晶基板の下面に至っている部分及び前記第2の引き出し電極が前記導電性接着剤層により前記ケース基板に接合されており、
     前記第1の引き出し電極及び前記第2の引き出し電極の前記導電性接着剤層によって接合されている領域の内の少なくとも一部において水晶基板が露出するように第1及び第2の引き出し電極が設けられている、水晶振動装置。
  3.  前記第1及び第2の引き出し電極が、表面金属層と、表面金属層よりも水晶基板表面側に位置している第2の金属層とを有し、前記少なくとも一部の領域において第1及び第2の引き出し電極表面に位置している金属が前記第2の金属層の金属と同一である、請求項1に記載の水晶振動装置。
  4.  前記少なくとも一部の領域において前記第1及び第2の引き出し電極の表面に位置している金属が、銀、ニッケル、クロム、アルミニウム、マグネシウム、マンガン、タングステン及びこれらの金属を主体とする合金からなる群から選択された少なくとも1種の金属である、請求項1~3のいずれか1項に記載の水晶振動装置。
  5.  前記水晶振動子を囲繞するように前記ケース基板の上面に固定されているキャップ材をさらに備える請求項1~4のいずれか1項に記載の水晶振動装置。
PCT/JP2014/051770 2013-03-21 2014-01-28 水晶振動装置 WO2014148107A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013058490 2013-03-21
JP2013-058490 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014148107A1 true WO2014148107A1 (ja) 2014-09-25

Family

ID=51579803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051770 WO2014148107A1 (ja) 2013-03-21 2014-01-28 水晶振動装置

Country Status (1)

Country Link
WO (1) WO2014148107A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127366A (ja) * 2014-12-26 2016-07-11 京セラクリスタルデバイス株式会社 圧電デバイスおよびその製造方法
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067600A1 (fr) * 2000-03-03 2001-09-13 Daishinku Corporation Dispositif de vibration a cristal
JP2003188677A (ja) * 2001-12-13 2003-07-04 Seiko Epson Corp 圧電デバイスとその製造方法及び圧電デバイスを利用した携帯電話装置及び圧電デバイスを利用した電子機器
JP2010161528A (ja) * 2009-01-07 2010-07-22 Epson Toyocom Corp 圧電振動片、圧電振動片を用いた圧電振動子、および圧電振動片を用いた圧電デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067600A1 (fr) * 2000-03-03 2001-09-13 Daishinku Corporation Dispositif de vibration a cristal
JP2003188677A (ja) * 2001-12-13 2003-07-04 Seiko Epson Corp 圧電デバイスとその製造方法及び圧電デバイスを利用した携帯電話装置及び圧電デバイスを利用した電子機器
JP2010161528A (ja) * 2009-01-07 2010-07-22 Epson Toyocom Corp 圧電振動片、圧電振動片を用いた圧電振動子、および圧電振動片を用いた圧電デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127366A (ja) * 2014-12-26 2016-07-11 京セラクリスタルデバイス株式会社 圧電デバイスおよびその製造方法
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith

Similar Documents

Publication Publication Date Title
US8564171B2 (en) Acoustic wave element and electronic device including the same
JP5141852B2 (ja) 電子部品及びその製造方法
US11677378B2 (en) Elastic wave device
JP6669429B2 (ja) 弾性波素子および通信装置
JP6288111B2 (ja) 弾性波フィルタデバイス
JP2008060382A (ja) 電子部品及びその製造方法
JP5277971B2 (ja) 弾性表面波デバイス
JP6521059B2 (ja) 弾性波装置、通信モジュール機器及び弾性波装置の製造方法
JP2011193109A (ja) 電子デバイス
JP2011160024A (ja) 弾性波装置およびその製造方法
JP5991452B2 (ja) 水晶振動装置及びその製造方法
JP5848079B2 (ja) 弾性波デバイス及びその製造方法
WO2014148107A1 (ja) 水晶振動装置
JP6385883B2 (ja) モジュールおよびモジュールの製造方法
WO2016185866A1 (ja) 弾性表面波装置、高周波モジュール及び弾性表面波装置の製造方法
JP4706399B2 (ja) 発振器及び電子機器
JP6015010B2 (ja) 振動素子、振動子、発振器および電子機器
JP2009165102A (ja) 圧電発振器および圧電発振器の製造方法
JP6612529B2 (ja) 弾性波装置および通信装置
WO2016042972A1 (ja) 電子部品及び樹脂モールド型電子部品装置
JP2018029140A (ja) 基板およびその製造方法並びにモジュール
JP2011023929A (ja) 弾性波素子とこれを用いた電子機器
JP5467375B2 (ja) 弾性表面波デバイス
JP2010177984A (ja) 圧電振動子および圧電デバイス
JP2016005162A (ja) 電子部品装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14769359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP