WO2016157708A1 - 免震化構造、鉄骨支持構造体及び既設鉄骨支持構造体の免震化工法 - Google Patents
免震化構造、鉄骨支持構造体及び既設鉄骨支持構造体の免震化工法 Download PDFInfo
- Publication number
- WO2016157708A1 WO2016157708A1 PCT/JP2016/001021 JP2016001021W WO2016157708A1 WO 2016157708 A1 WO2016157708 A1 WO 2016157708A1 JP 2016001021 W JP2016001021 W JP 2016001021W WO 2016157708 A1 WO2016157708 A1 WO 2016157708A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seismic isolation
- pair
- columns
- structure according
- isolation structure
- Prior art date
Links
- 238000002955 isolation Methods 0.000 title claims abstract description 162
- 229910000831 Steel Inorganic materials 0.000 title claims description 33
- 239000010959 steel Substances 0.000 title claims description 33
- 238000000034 method Methods 0.000 title claims description 20
- 238000010276 construction Methods 0.000 claims description 14
- 238000005452 bending Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- 239000003351 stiffener Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/24—Supporting, suspending or setting arrangements, e.g. heat shielding
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G23/00—Working measures on existing buildings
- E04G23/02—Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G23/00—Working measures on existing buildings
- E04G23/02—Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
- E04G23/0218—Increasing or restoring the load-bearing capacity of building construction elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
- E04H9/0215—Bearing, supporting or connecting constructions specially adapted for such buildings involving active or passive dynamic mass damping systems
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/024—Structures with steel columns and beams
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/027—Preventive constructional measures against earthquake damage in existing buildings
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B1/2403—Connection details of the elongated load-supporting parts
- E04B2001/2442—Connections with built-in weakness points
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B1/2403—Connection details of the elongated load-supporting parts
- E04B2001/2463—Connections to foundations
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B2001/2487—Portico type structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/36—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
- F16F1/40—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers consisting of a stack of similar elements separated by non-elastic intermediate layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/04—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
- F16F15/08—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
Definitions
- the present invention relates to a seismic isolation structure suitable for application to an existing steel support structure.
- seismic isolation retrofit methods for isolating existing structures themselves or isolating them in the middle layer of existing structures are widespread.
- the existing plant support structure is built with priority on function, and it is difficult to apply the seismic isolation retrofit method for the following reasons.
- For seismic isolation retrofit at the foundation large-scale construction at the foundation is required, and the plant function stoppage period becomes longer.
- the seismic isolation retrofit in the middle class the height of one floor is as high as about 10m compared with general buildings. Therefore, as shown in FIG.
- the upper and lower lengths are longer than the seismic isolation device 111.
- the horizontal bending rigidity (hereinafter referred to as horizontal rigidity) cannot be secured.
- the plant support structure is not a ramen structure but a brace structure in general, and if the brace is removed, the rigidity and strength of the seismic isolation layer cannot be secured.
- Patent Document 1 to Patent Document 3 have proposed proposals for seismic isolation, but are conscious of general buildings with a ramen structure, and are difficult to apply to existing plant support steel frames.
- Patent Document 1 cuts the existing pillar of the installation part of the seismic isolation device after placing the concrete around the pillar of the existing structure, leaving only the part where the seismic isolation device was installed, Propose to install seismic isolation devices.
- the cast-in RC column portion becomes long, and the rigidity of the seismic isolation layer cannot be secured.
- it is necessary to cast cast-in-place concrete over a height corresponding to one floor with respect to the outer periphery of the existing pillar it takes time and the plant stoppage period becomes longer.
- a support part (3) is fixed to the upper and lower outer peripheral portions of a place where a seismic isolation device for a column of an existing structure is to be inserted, and a seismic isolation device is provided between the support parts to provide an isolation in an intermediate layer.
- a seismic isolation device is provided between the support parts to provide an isolation in an intermediate layer.
- Patent Document 3 proposes to provide a viscous damper (8) that functions in accordance with the displacement generated in the seismic isolation device during an earthquake in the seismic isolation layer having the seismic isolation structure in the intermediate layer.
- the longitudinal reaction force (6) and lateral reaction force portion (7) provided in the seismic isolation layer bear the lateral reaction force generated in the viscoelastic damper (8) during an earthquake.
- Patent Document 3 bears only the reaction force of the viscous damper (8) by the compressive force and tensile force of the lateral reaction force portion (7), and the lateral reaction force portion (7) is a weak member. Therefore, it is difficult to ensure the horizontal rigidity of the seismic isolation layer.
- JP-A-9-273314 (FIG. 2) Japanese Patent Laid-Open No. 10-8738 (FIG. 3) JP 2008-274622 A (FIG. 4)
- the present invention was made based on such a technical problem, and when isolating an existing plant support structure having a high floor height, it ensures horizontal rigidity above and below the base isolation device,
- the purpose is to provide a seismic isolation structure that provides stable seismic isolation behavior.
- the present invention relates to a seismic isolation structure provided on a construction surface constituted by a pair of left and right columns arranged at intervals in the horizontal direction and at least one beam laid between the pair of columns.
- a seismic isolation device that is deviated on the beam side, and a side opposite to the beam with a part where the seismic isolation device is provided as a boundary,
- a horizontal rigid bearing element including a connecting beam connecting between the columns.
- the horizontal stiffness bearing element including the connecting beam is provided on the opposite side of the beam from the site where the seismic isolation device is provided, the horizontal stiffness of the seismic isolation layer including the structural surface is ensured. be able to. Therefore, the steel support structure to which the present invention is applied can obtain a stable seismic isolation behavior.
- the seismic isolation structure of the present invention can be provided below the beam located in the lowermost layer when a plurality of beams are arranged at intervals in the vertical direction, and between a pair of beams above and below It can also be provided.
- the seismic isolation device is provided in a deviated manner on the side of one of the beams, and the horizontal rigidity load element is provided between the portion where the seismic isolation device is provided and the other beam.
- the horizontal stiffness bearing element in the present invention includes at least two forms.
- the first form includes a connecting beam pin-coupled to a pair of columns and a vertical brace connected to the connecting beam.
- a seismic isolation device is provided between a pair of beams at the top and bottom
- a vertical brace is provided between the connecting beam and the other beam.
- the second form is that a pair of columns is provided with a connecting beam that is rigidly coupled directly or indirectly.
- the seismic isolation device in the present invention is preferably provided directly below or directly above the beam.
- the present invention is mainly assumed to be applied to an existing steel frame support structure.
- the beam is an existing beam
- the pair of columns is an existing column.
- the above-mentioned seismic isolation structure of the present invention describes one structural surface, but a supported body, a plurality of columns erected on a foundation via column bases, and a plurality of connecting adjacent columns. It is applicable to a steel frame support structure including a support steel frame that suspends and supports a supported body. In this case, the seismic isolation structure is provided in the intermediate layer of the supporting steel frame. Moreover, the seismic isolation structure can be continuously provided on a plurality of structural surfaces arranged in the horizontal direction.
- the present invention includes a supported body, a plurality of columns erected on a foundation via column bases, and a plurality of beams that connect adjacent columns, and a supporting steel frame that supports the suspended body by suspending it.
- the method of providing any of the above-described seismic isolation structures can be applied to an intermediate layer of an existing steel support structure including the above.
- This seismic isolation structure is provided on a construction surface constituted by a pair of left and right columns arranged at intervals in the horizontal direction and at least one beam installed between the pair of columns.
- the method of the present invention includes a step of connecting a pair of columns with a connecting beam, a step of providing a support member between the connecting beam and the beam, and then cutting the column between the connecting beam and the beam. And a step of providing a seismic isolation device at the excised site and a step of removing the support member.
- the seismic isolation structure of the present invention it is possible to secure the horizontal rigidity of the seismic isolation layer when isolating the existing steel support structure, thereby providing stable seismic isolation behavior. can get.
- the plant support structure which concerns on 1st Embodiment is shown, (a) shows the structure, (b) shows the behavior at the time of an earthquake.
- the plant support structure which concerns on 2nd Embodiment is shown, (a) shows the structure, (b) shows the behavior at the time of an earthquake. It is a figure which shows the example of a change of 2nd Embodiment. It is a figure which shows in order the seismic isolation procedure of the plant support structure which concerns on 3rd Embodiment. It is a figure which shows the procedure after FIG. It is a figure which shows the procedure after FIG. It is a figure explaining the subject of the conventional plant support structure.
- the boiler support structure 1 Prior to the description of the seismic isolation structure and the seismic isolation method, a configuration example of a boiler support structure to which the present embodiment is applied will be described.
- the boiler support structure 1 according to the present embodiment is provided on the foundation 2, and includes a boiler body 3 and a support steel frame 4 that supports the boiler body 3.
- the support steel frame 4 is configured by combining a plurality of columns 5 extending in the vertical direction, a plurality of beams 7 extending in the horizontal direction, and a plurality of vertical braces 8.
- the boiler support structure 1 is erected on the foundation 2 via a column base which is a terminal portion of the column 5 constituting the support steel frame 4.
- the pillar 5, the beam 7, and the vertical brace 8 mean the existing pillar, the beam, and the vertical brace.
- the boiler support structure 1 is configured such that the boiler body 3 is supported on the top of the support steel frame 4 via a plurality of suspension bars 9A fixed to the uppermost beam 7. It is suspended from.
- the boiler support structure 1 includes a support 9 ⁇ / b> B that is bridged in the horizontal direction between the boiler body 3 and the column 5 located on the outermost periphery of the support steel frame 4 in order to regulate the displacement of the boiler body 3 in the horizontal direction. Intervene.
- the seismic isolation structures 10 and 20 in this embodiment are applied to the intermediate layer of the support steel frame 4.
- base isolation structure 10 and base isolation structure 20 a preferable example of the base isolation structure will be described, and then in the third embodiment, the base isolation method will be described. A preferred example will be described.
- the seismic isolation structure 10 As shown in FIG. 1, the seismic isolation structure 10 according to the first embodiment is arranged with a pair of pillars 5 and 5 arranged at intervals in the horizontal direction and at intervals in the vertical direction. It is provided on a construction surface 17 constituted by a pair of beams 7A and 7B on the upper and lower sides.
- the seismic isolation structure 10 includes a seismic isolation device 11 provided in each of the columns 5 and 5, a connecting beam 13 connecting the columns 5 and 5 provided with the seismic isolation device 11, a connecting beam 13, and a beam 7 ⁇ / b> B. And a pair of vertical braces 15L and 15R provided therebetween.
- the connecting beam 13 and the vertical braces 15L and 15R constitute a horizontal stiffness bearing element in the present invention.
- the seismic isolation structure 10 will be described with respect to one structural surface 17, but the seismic isolation structure 10 is continuously formed on a plurality of structural surfaces 17 aligned horizontally with the structural surface 17 described here. Can be provided. Further, the existing vertical brace is provided on the construction surface 17 shown in FIG. 1, but it is assumed that the vertical brace has been removed prior to the construction of the seismic isolation structure 10.
- the seismic isolation device 11 is provided in the middle of the column 5, which is a part of the column 5 that was integrally connected before the seismic isolation, and is provided at this excised part. is there. Further, the seismic isolation device 11 is most deviated to the beam 7A side and is provided directly below the beam 7A. The position where the seismic isolation device 11 is provided is one of the features of the present embodiment as will be described later. One. As the seismic isolation device 11, a laminated rubber support type, a sliding support type, a rolling support type, or any other form of the seismic isolation device can be applied.
- the connecting beam 13 is provided on the lower side of the seismic isolation device 11, and is provided on the side opposite to the beam 7 ⁇ / b> A with the part where the seismic isolation device 11 is provided as a boundary.
- the connecting beam 13 is pin-coupled P to the column 5.
- the pin coupling P here is for bending in the vertical direction with the column 5.
- Vertical braces 15L and 15R are provided between the connecting beam 13 and the existing beam 7B.
- the pair of vertical braces 15L and 15R are newly provided for seismic isolation, and are inclined in directions opposite to each other.
- One end of each of the vertical braces 15L and 15R is rigidly coupled to the connecting beam 13, and the other end is rigidly coupled to an intersection between the column 5 and the beam 7B.
- a coupling member such as a gusset plate or a splice is used, but the description is omitted here.
- the seismic isolation device 11 provided on the column 5 functions as shown in FIG.
- the vibration is prevented from being directly transmitted to the support steel frame 4 above the seismic isolation structure 10. Since the seismic isolation device 11 is provided directly below the beam 7A, the bending rigidity of the portion between the seismic isolation device 11 and the beam 7A is large. Moreover, since the connecting beam 13 and the vertical braces 15L and 15R are provided in the part below the seismic isolation device 11, the bending rigidity of the column 5 can be ensured.
- the seismic isolation structure 10 is provided with the seismic isolation device 11 directly below the beam 7A, the elements for bearing the horizontal rigidity, that is, the connecting beam 13 and the vertical braces 15L and 15R are connected to the base isolation device 11 and the beam 7B. It is sufficient to provide it in between.
- the seismic isolation device 11 is provided between the beam 7A and the beam 7B, and includes a connecting beam 13 and vertical braces 15L and 15R between the seismic isolation device 11 and the beam 7A and between the seismic isolation device 11 and the beam 7B.
- a structure for ensuring horizontal rigidity can also be provided.
- the seismic isolation structure 10 according to the present embodiment can reduce the cost for securing predetermined horizontal rigidity and the burden of installation work.
- the seismic isolation structure 10 shows an example in which the seismic isolation device 11 is provided directly below the beam 7A. However, the seismic isolation device 11 is provided immediately above the beam 7B, the connecting beam 13 is provided above the seismic isolation device 11, and further connected. Vertical braces 15L and 15R may be provided between the beam 13 and the beam 7A. In the case of this form, the rigidity with respect to the bending of the column 5 between the seismic isolation device 11 and the beam 7B is large, and the connecting beam 13 and the vertical braces 15L and 15R are provided above the seismic isolation device 11. Therefore, the bending rigidity of the column 5 can be ensured.
- the part where the seismic isolation device 11 is provided is located below and below the upper floor adjacent in the vertical direction.
- the seismic isolation device 11 it is preferable to provide the seismic isolation device 11 directly below 3FL or directly above 2FL.
- part which provides the seismic isolation apparatus 11 although it was set as the example of the beam 7A which is the beam of one side, the beam 7A which is the most deviated to the side of the beam 7A, or just above the beam 7B, Since there is a connecting member at the connecting portion between the column 5 and the beam 7, the connecting member is directly below or directly above the region in which they are present. Moreover, if the horizontal rigidity of the part above the seismic isolation device 11 of the column 5 or the horizontal rigidity of the part below the seismic isolation device 11 of the column 5 can be secured, it is not necessary to be directly below or directly above. .
- the seismic isolation device 11 is deflected to either side of the beam 7A or the beam 7B, the bending rigidity between the seismic isolation device 11 and the beam 7A or between the seismic isolation device 11 and the beam 7B is increased.
- the horizontal stiffness bearing element is provided only on the upper side or the lower side of the seismic isolation device 11, it is included in the scope of the present invention.
- the seismic isolation device 11 can be provided in the range of 1 / 4L from the beams 7A and in the range of 1 / 4L from the beams 7B.
- the connecting beam 13 and the vertical braces 15L and 15R that are pin-coupled P are used as the horizontal stiffness bearing elements, but in this case, the horizontal force is transmitted by the axial force of the vertical braces 15L and 15R.
- the combination of relatively small members produces effects such as ensuring predetermined horizontal rigidity and horizontal strength.
- the connecting beam 23 has a rigid connection R with respect to the column 5 and bending in the vertical direction, and is provided in the seismic isolation structure 10.
- a structure in which the vertical braces 15L and 15R are not provided is employed.
- the seismic isolation structure 20 forms a ramen structure with the added connecting beam 23 and columns 5 and 5, even if the vertical braces 15L and 15R provided in the first embodiment are omitted, the seismic isolation layer Horizontal rigidity and horizontal strength can be ensured.
- the connection between the connecting beam 23 and the column 5 is a pin connection, and a stiffener 25 is added to connect the connecting beam 23 and the column 5 together. It is good also as a structure where 23 and the pillar 5 become the rigid coupling R indirectly indirectly as a whole.
- FIG. 4A An example of providing ⁇ Procedure 1 (FIG. 4A)>
- the vertical brace 8 of the floor in which the seismic isolation apparatus 11 is provided is removed, and then the connecting beam 13 is provided below the part into which the seismic isolation apparatus 11 is inserted.
- the vertical braces 15L and 15R and the stiffener 25 are provided between the connecting beam 13 and the existing beam 7B, they are provided in this procedure.
- the connecting beam 13 is provided above the position where the seismic isolation device 11 is inserted.
- ⁇ Procedure 2 (FIG. 4B)> A support member 27 that can be removed later, such as a hydraulic jack, is provided between the existing beam 7 and the connecting beam 13 provided in the procedure 1.
- the support member 27 supports between the beam 7 and the connecting beam 13.
- ⁇ Procedure 3 (FIG. 5C)> With the support member 27 supporting the axial force of the column 5, the column 5 at the site where the seismic isolation device 11 is inserted is excised. If the support member 27 is a hydraulic jack, for example, the axial force of the column 5 can be applied to the hydraulic jack as the support member 27 by jacking up the hydraulic jack.
- ⁇ Procedure 4 (FIG. 5 (d))> The seismic isolation device 11 is inserted into the cut portion cut out in the procedure 3, and the lower end of the excised column 5 and the upper surface of the seismic isolation device 11 are joined, and the upper end of the excised column 5 and the lower surface of the seismic isolation device 11 are joined.
- ⁇ Procedure 5 (FIG. 6E)> After the seismic isolation device 11 is inserted, the support member 27 is removed, the axial force of the pillar 5 is supported by the seismic isolation device 11, and the installation of the seismic isolation structure 10 is completed.
- the seismic isolation structure 10 can be easily installed in a short period of time compared to the conventional method (Patent Document 1).
- Patent Document 1 Since the increase in weight due to seismic isolation is slight compared to the conventional method, it is possible to prevent an increase in the normal load and seismic load acting on the column 5 and the beam 7 due to the increase in weight.
- the connecting beam 13 if the connecting beam 13 is not provided, the load of the support member 27 is transmitted to the beam 7 layer (or on the foundation 2) arranged on the lower side. 27 becomes a long member corresponding to the first floor. Then, when the axial force of the column 5 acts on the support member 27, the support member 27 may be buckled. However, if the connecting beam 13 is provided, the support member 27 need only have a length approximately equal to the distance between the existing beam 7 and the connecting beam 13, so that the support member 27 is not likely to buckle. In this way, the connecting beam 13 has a unique effect in the process of installing the seismic isolation structure 10.
- a pair of vertical braces 15L and 15R are provided on one construction surface 17, but the present invention is not limited to this.
- the seismic isolation structure 10 is most preferably provided on all the structural surfaces 17 arranged in the horizontal direction, but there is also an option that the seismic isolation structure 10 is not provided on some structural surfaces.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Working Measures On Existing Buildindgs (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
一方で、既設プラント支持構造体については、機能優先で建設されており、以下の理由により上記免震レトロフィット工法の適用が困難な状況である。
基礎での免震レトロフィットについては、基礎での大掛かりな工事が必要となり、プラント機能停止期間が長くなる。また、地下ピット及び配管等の基礎に設けられたプラント機能を損なう恐れある。
中間層での免震レトロフィットについては、一般建築物と比べ、ひとつの階の高さ階高が10m程度と高い。そのために、図7に示すように、柱105における梁107,107の中間位置に免震装置111を設けると、免震装置111よりも上方及び下方の長さが長くなるために、免震層の水平方向の曲げ剛性(以下、水平剛性)が確保できない。また、プラント支持構造体は、ラーメン構造では無く、ブレース構造が一般的であり、ブレースを外すと免震層の剛性及び強度が確保できなくなる。
本発明の免震化構造によれば、免震装置が梁の側に偏位して設けられるので、免震装置と当該梁の間の部分の柱の曲げ剛性を大きくできる。また、免震装置が設けられる部位を境にして当該梁とは逆の側には、つなぎ梁を含む水平剛性負担要素が設けられるので、当該構面を含む免震層の水平剛性を確保することができる。したがって、本発明が適用される鉄骨支持構造体は、安定した免震化挙動が得られる。
一つ目の形態は、一対の柱にピン結合されるつなぎ梁と、つなぎ梁に接続される鉛直ブレースと、を備えるというものである。上下で一対の梁の間に免震装置を設ける場合には、つなぎ梁と他方の梁の間に鉛直ブレースが設けられることになる。
二つ目の形態は、一対の柱に、直接的にまたは間接的に、剛結合されるつなぎ梁を備える、というものである。
また、本発明は既設の鉄骨支持構造体に適用されることを主に想定しており、この場合には、当該梁は既設の梁であり、一対の柱は既設の柱である。
この免震化構造は、水平方向に間隔をあけて配置される左右で一対の柱と、一対の前記柱の間に架設される少なくとも一つの梁と、により構成される構面に設けられる。
そして本発明の工法は、一対の柱の間をつなぎ梁でつなぐ工程と、つなぎ梁と当該梁の間に、支持部材を設けてから、つなぎ梁と当該梁の間の柱を切除する工程と、切除した部位に免震装置を設ける工程と、支持部材を取り除く工程と、を少なくとも備える。
本実施形態は、ボイラを支持する既存の鉄骨支持構造体を対象とする免震化構造及び免震化工法を提案するものである。免震化構造及び免震化工法の説明に先立って、本実施形態が適用されるボイラ支持構造体の構成例を説明する。
本実施形態に係るボイラ支持構造体1は、図4(a)に示すように、基礎2の上に設けられるものであり、ボイラ本体3と、ボイラ本体3を支持する支持鉄骨4と、を主たる要素として備える。
支持鉄骨4は、鉛直方向に延びる複数本の柱5と、水平方向に延びる複数本の梁7と、複数本の鉛直ブレース8と、を組み合わせて構成されている。ボイラ支持構造体1は、支持鉄骨4を構成する柱5の末端部分である柱脚を介して基礎2に立設されている。なお、柱5、梁7及び鉛直ブレース8は、既設の柱、梁及び鉛直ブレースを意味している。
以下、第1実施形態(免震化構造10)及び第2実施形態(免震化構造20)において、免震化構造の好ましい例について説明し、次いで、第3実施形態において、免震化工法の好ましい例を説明する。
第1実施形態に係る免震化構造10は、図1に示すように、水平方向に間隔をあけて配置される左右で一対の柱5,5と、鉛直方向に間隔をあけて配置される上下で一対の梁7A,7Bと、により構成される構面17に設けられる。
この免震化構造10は、柱5,5のそれぞれに設けられる免震装置11と、免震装置11が設けられる柱5,5の間をつなぐつなぎ梁13と、つなぎ梁13と梁7Bの間に設けられる一対の鉛直ブレース15L,15Rと、を備えている。このつなぎ梁13と鉛直ブレース15L,15Rが、本発明における水平剛性負担要素を構成する。
なお、ここでは免震化構造10を一つの構面17を対象にして説明するが、免震化構造10はここで説明する構面17と水平方向に並ぶ複数の構面17に連続的に設けることができる。
また、図1に示す構面17には既設の鉛直ブレースが設けられていたが、免震化構造10を構成するに先立って、鉛直ブレースは取り除かれているものとする。
また、免震装置11は、梁7Aの側に最も偏位し、梁7Aの直下に設けられており、この免震装置11を設ける位置は、後述するように、本実施形態の特徴の一つである。
免震装置11としては、積層ゴム支承型、すべり支承型、転がり支承型、あるいはその他のいずれの形態の免震装置を適用することができる。
免震装置11は、梁7Aの直下に設けられているので、免震装置11と梁7Aの間の部分の曲げ剛性が大きい。また、免震装置11よりも下の部分は、つなぎ梁13及び鉛直ブレース15L,15Rが設けられているので、柱5の曲げ剛性を確保することができる。
なお、一般的に、梁7(梁7A,梁7B)が設けられている位置にフロアが設けられるので、免震装置11を設ける部位は、鉛直方向に隣接する上側のフロアの下、下側のフロアの上となる。例えば、2階のフロア(2FL)と3階のフロア(3FL)の間に免震化構造を設ける場合には、3FLの直下または2FLの直上に免震装置11を設けるのが好ましい。
要は、免震装置11を梁7A又は梁7Bのいずれかの側に偏位させれば、免震装置11と梁7Aの間、又は、免震装置11と梁7Bの間の曲げ剛性を大きくできる一方で、水平剛性負担要素を免震装置11の上側又は下側だけに設ければ足りる、という本発明の主旨に則る限り、本発明の範囲に含まれる。一つの指針として、梁7A又は梁7Bの間のスパンをLとすると、免震装置11は、梁7Aから1/4Lの範囲、また、梁7Bから1/4Lの範囲に設けることができる。
次に、第2実施形態に係る免震化構造20は、図2に示すように、つなぎ梁23は柱5と鉛直方向の曲げに対し剛結合Rとし、免震化構造10では設けていた鉛直ブレース15L,15Rを設けない構造を採用する。
なお、図3に示すように、つなぎ梁23と柱5を直接的に剛結合とする代わりに、つなぎ梁23と柱5の結合はピン結合としつつ、補剛材25を追加し、つなぎ梁23と柱5が全体として間接的に剛結合Rとなる構造としてもよい。
次に、免震化構造10を得るための手順を、図4~図6を参照して説明する。なお、ここでは第1実施形態、第2実施形態とは異なり、鉛直方向に複数設けられる梁7の中で、最下層に位置する梁7の下側だけに水平剛性負担要素としてのつなぎ梁13を設ける例を示す。
<手順1(図4(a))>
はじめに、図4(a)に示すように、免震装置11を設ける階高の鉛直ブレース8を撤去し、次いで、免震装置11を挿入する部位よりも下方につなぎ梁13を設ける。つなぎ梁13と既設梁7Bの間に鉛直ブレース15L,15R、補剛材25を設ける場合には、この手順において設ける。
なお、図1で示した既設の梁7Bよりも上方に免震装置11を設ける場合には、免震装置11を挿入する位置より上方につなぎ梁13を設ける。
既設の梁7と手順1で設けたたつなぎ梁13の間に、後に取り外しが可能な支持部材27、例えば油圧ジャッキを設ける。この支持部材27は、梁7とつなぎ梁13の間を支持する。
<手順3(図5(c))>
支持部材27により、柱5の軸力を支持した状態で、免震装置11を挿入する部位の柱5を切除する。なお、支持部材27が油圧ジャッキであれば、例えば油圧ジャッキをジャッキアップすることにより、柱5の軸力を支持部材27である油圧ジャッキに作用させることができる。
手順3で切除した切断箇所に免震装置11を挿入し、切除した柱5の下端と免震装置11の上面を、また、切除した柱5の上端と免震装置11の下面を接合する。
<手順5(図6(e))>
免震装置11を挿入した後に、支持部材27を撤去し、柱5の軸力を免震装置11で支持し、免震化構造10の設置を完了する。
例えば、第1実施形態において、1つの構面17に一対の鉛直ブレース15L,15Rを設けたが、本発明はこれに限定されない。例えば、一つの構面17に鉛直ブレースを一つだけ設けるが、隣接する構面17,17に設けられる鉛直ブレースが傾斜する向きを逆にする、という形態を採用することができる。
また、本発明において、免震化構造10は、水平方向に並ぶ全ての構面17に設けることが最も好ましいが、一部の構面には免震化構造10を設けないという選択肢もある。
2 基礎
3 ボイラ本体
4 支持鉄骨
5 柱
7,7A,7B 梁
8 鉛直ブレース
9A 吊り下げバー
9B サポート
10,20 免震化構造
11 免震装置
13,23 つなぎ梁
15L,15R 鉛直ブレース
25 補剛材
27 支持部材
Claims (15)
- 水平方向に間隔をあけて配置される左右で一対の柱と、一対の前記柱の間に架設される少なくとも一つの梁と、により構成される構面に設けられる免震化構造であって、
それぞれの前記柱の途中であって、前記梁の側に偏位して設けられる免震装置と、
前記免震装置が設けられる部位を境にして前記梁とは逆の側に設けられ、一対の前記柱の間をつなぐつなぎ梁を含む水平剛性負担要素と、を備える、
ことを特徴とする免震化構造。 - 鉛直方向に間隔をあけて配置される上下で一対の前記梁を備え、
前記免震装置は、
いずれか一方の前記梁の側に偏位して設けられ、
前記水平剛性負担要素は、
前記免震装置が設けられる部位と他方の前記梁の間に設けられる、
請求項1に記載の免震化構造。 - 前記水平剛性負担要素は、
一対の前記柱にピン結合される前記つなぎ梁と、
前記つなぎ梁に接続される鉛直ブレースと、を備える、
請求項1に記載の免震化構造。 - 前記水平剛性負担要素は、
一対の前記柱にピン結合される前記つなぎ梁と、
前記つなぎ梁に接続される鉛直ブレースと、を備える、
請求項2に記載の免震化構造。 - 前記水平剛性負担要素は、
一対の前記柱に、直接的にまたは間接的に、剛結合される前記つなぎ梁を備える、
請求項1に記載の免震化構造。 - 前記免震装置は、
前記梁の直下または直上に設けられる、
請求項1に記載の免震化構造。 - 前記梁は、既設の梁であり、一対の柱は、既設の柱である、
請求項1に記載の免震化構造。 - 前記一対の梁は、既設の梁であり、一対の柱は、既設の柱である、
請求項2に記載の免震化構造。 - 前記一対の梁の間のスパンをLとすると、
前記免震装置は、いずれか一方の前記梁から1/4Lの範囲に設けられる、
請求項2に記載の免震化構造。 - 被支持体と、
基礎に柱脚を介して立設される複数の柱と、隣接する前記柱を繋ぐ複数の梁とを有し、
前記被支持体を吊下げて支持する支持鉄骨と、
前記支持鉄骨の中間層に設けられる、請求項1に記載の免震化構造と、を備える、
ことを特徴とする鉄骨支持構造体。 - 水平方向に間隔をあけて配置される左右で一対の柱と、一対の前記柱の間に架設される少なくとも一つの梁と、により構成される複数の構面を備え、
前記免震化構造は、
水平方向に並ぶ複数の前記構面に連続的に設けられる、
請求項10に記載の鉄骨支持構造体。 - 被支持体と、基礎に柱脚を介して立設される複数の柱と、隣接する前記柱を繋ぐ複数の梁とを有し、前記被支持体を吊下げて支持する支持鉄骨と、を備える既設の鉄骨支持構造体の中間層に、請求項1に記載の免震化構造を設ける工法であって、
前記免震化構造は、
水平方向に間隔をあけて配置される左右で一対の柱と、一対の前記柱の間に架設される少なくとも一つの梁と、により構成される構面に設けられ、
一対の前記柱をつなぎ梁でつなぐ工程と、
前記つなぎ梁と前記梁の間に、支持部材を設けてから、前記つなぎ梁と当該梁の間の前記柱を切除する工程と、
前記切除した部位に免震装置を設ける工程と、
前記支持部材を取り除く工程と、を少なくとも備える、
ことを特徴とする既設鉄骨支持構造体の免震化工法。 - 被支持体と、基礎に柱脚を介して立設される複数の柱と、隣接する前記柱を繋ぐ複数の梁とを有し、前記被支持体を吊下げて支持する支持鉄骨と、を備える既設の鉄骨支持構造体の中間層に、請求項2に記載の免震化構造を設ける工法であって、
前記免震化構造は、
水平方向に間隔をあけて配置される左右で一対の柱と、一対の前記柱の間に架設される、鉛直方向に間隔をあけて配置される上下で一対の梁と、により構成される構面に設けられ、
一対の前記柱をつなぎ梁でつなぐ工程と、
前記つなぎ梁と前記梁の間に、支持部材を設けてから、前記つなぎ梁と当該梁の間の前記柱を切除する工程と、
前記切除した部位に免震装置を設ける工程と、
前記支持部材を取り除く工程と、を少なくとも備える、
ことを特徴とする既設鉄骨支持構造体の免震化工法。 - 前記被支持体は、ボイラである、
ことを特徴とする請求項12に記載の既設鉄骨支持構造体の免震化工法。 - 前記被支持体は、ボイラである、
ことを特徴とする請求項13に記載の既設鉄骨支持構造体の免震化工法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/556,415 US10309643B2 (en) | 2015-03-27 | 2016-02-25 | Structure for seismic isolation, steel support structure, and method for seismic isolation of existing steel support structures |
MX2017012116A MX2017012116A (es) | 2015-03-27 | 2016-02-25 | Estructura para aislamiento sismico, estructura de soporte de acero y metodo para aislamiento sismico de estructuras existentes de soporte de acero. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-065398 | 2015-03-27 | ||
JP2015065398A JP6640459B2 (ja) | 2015-03-27 | 2015-03-27 | 免震化構造、鉄骨支持構造体及び既設鉄骨支持構造体の免震化工法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/556,415 Continuation US10309643B2 (en) | 2015-03-27 | 2016-02-25 | Structure for seismic isolation, steel support structure, and method for seismic isolation of existing steel support structures |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016157708A1 true WO2016157708A1 (ja) | 2016-10-06 |
Family
ID=57005834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/001021 WO2016157708A1 (ja) | 2015-03-27 | 2016-02-25 | 免震化構造、鉄骨支持構造体及び既設鉄骨支持構造体の免震化工法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10309643B2 (ja) |
JP (1) | JP6640459B2 (ja) |
MX (1) | MX2017012116A (ja) |
TW (1) | TWI617724B (ja) |
WO (1) | WO2016157708A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106382015A (zh) * | 2016-10-13 | 2017-02-08 | 浙江绿城建筑设计有限公司 | 用于既有结构大跨受力梁加固的抗震叠合结构及施工方法 |
CN109577508A (zh) * | 2018-11-27 | 2019-04-05 | 福建省永富建设集团有限公司 | 一种抗震防护支撑装置 |
WO2019138667A1 (ja) * | 2018-01-09 | 2019-07-18 | 三菱日立パワーシステムズ株式会社 | ボイラ構造 |
CN112127475A (zh) * | 2020-09-24 | 2020-12-25 | 山东天智信息科技有限公司 | 一种抗震型钢结构骨架 |
CN114856243B (zh) * | 2022-06-15 | 2024-01-30 | 江苏鸿基节能新技术股份有限公司 | 建筑增加隔震层的施工装置及方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IN2015MU02042A (ja) * | 2015-05-26 | 2015-06-05 | Yashraj Mahesh | |
FI127236B (en) * | 2016-01-19 | 2018-02-15 | Sumitomo SHI FW Energia Oy | Separator and heat exchange chamber assembly and method for mounting the assembly, as well as a circulating fluidized bed boiler with a separator and heat exchange chamber assembly |
CN106759859B (zh) * | 2017-01-04 | 2022-06-21 | 中国地震局工程力学研究所 | 一种功能分离型双重子系统协同减震结构体系 |
CN109930854A (zh) * | 2019-03-12 | 2019-06-25 | 北京筑福建筑科学研究院有限责任公司 | 一种既有框架结构采用隔震托换的韧性建筑结构及其施工方法 |
CN110924552A (zh) * | 2019-12-09 | 2020-03-27 | 上海市建筑科学研究院有限公司 | 一种预制双钢板混凝土组合耗能连梁 |
CN111441482B (zh) * | 2020-04-26 | 2024-10-01 | 山东华泰钢结构工程有限公司 | 一种用于钢结构装配厂房的可调节减震支撑骨架 |
US11719141B2 (en) | 2020-06-29 | 2023-08-08 | Lummus Technology Llc | Recuperative heat exchanger system |
US11821699B2 (en) * | 2020-06-29 | 2023-11-21 | Lummus Technology Llc | Heat exchanger hanger system |
CN111749489B (zh) * | 2020-07-08 | 2021-08-31 | 山东东珠新型房屋科技有限公司 | 一种钢结构房屋及其安装方法 |
CN112855848B (zh) * | 2021-01-28 | 2022-11-01 | 山东省科学院海洋仪器仪表研究所 | 一种船载设备用多层隔振装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57127075A (en) * | 1981-01-30 | 1982-08-07 | Okumura Corp | Earthquake-proof apparatus of building |
JP2002161648A (ja) * | 2000-11-22 | 2002-06-04 | Shimizu Corp | 制震構造建物 |
JP2007063941A (ja) * | 2005-09-02 | 2007-03-15 | Mitsubishi Heavy Ind Ltd | ボイラの制震支持構造 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS524095B2 (ja) * | 1973-02-08 | 1977-02-01 | ||
JPH02245540A (ja) * | 1989-03-16 | 1990-10-01 | Okumura Corp | 減衰装置 |
TW198739B (en) * | 1989-03-30 | 1993-01-21 | Chyuan-Jong Wu | Shock-proof construction and structure |
US6042094A (en) * | 1995-09-20 | 2000-03-28 | Tayco Developments, Inc. | Self-centering column assembly employing liquid spring and structures containing such columns |
JP3731682B2 (ja) | 1996-04-05 | 2006-01-05 | 大成建設株式会社 | 既存建物の免震化工法 |
JPH108738A (ja) | 1996-06-26 | 1998-01-13 | Taisei Corp | 既存建物の免震化工法および免震装置の支承部構造 |
US6598359B1 (en) * | 1998-06-08 | 2003-07-29 | Heinrich Wulfert | Earthquake-immune curtain wall system |
JP4035239B2 (ja) * | 1998-10-21 | 2008-01-16 | 株式会社安井建築設計事務所 | 耐震性を付与された柱状構造物 |
US6119413A (en) * | 1999-02-05 | 2000-09-19 | Shaw; Lee A. | Concrete deck and beam seismic retrofit system |
US6412237B1 (en) * | 1999-12-03 | 2002-07-02 | Structural Design Engineers | Framed structures with coupled girder system and method for dissipating seismic energy |
JP4024449B2 (ja) * | 2000-01-06 | 2007-12-19 | 株式会社奥村組 | 既存建物の免震化工法 |
US8082703B2 (en) * | 2002-02-11 | 2011-12-27 | Ei-Land Corporation | Force-resisting devices and methods for structures |
GB0212197D0 (en) * | 2002-05-27 | 2002-07-03 | Univ Cambridge Tech | Building collapse control system and method |
JP5059357B2 (ja) * | 2006-08-03 | 2012-10-24 | 株式会社日立プラントテクノロジー | ボイラケージ部フロアの構築方法 |
JP5010246B2 (ja) * | 2006-11-17 | 2012-08-29 | 三菱重工業株式会社 | 既設トラス鉄骨建屋の制震改修工法 |
JP4980782B2 (ja) | 2007-04-27 | 2012-07-18 | 株式会社奥村組 | 建築物の中間階免震機構 |
TWI429833B (zh) * | 2007-10-12 | 2014-03-11 | Takanori Sato | 免震裝置及具有該免震裝置構成之構造物 |
JP4746023B2 (ja) * | 2007-11-12 | 2011-08-10 | 三菱重工業株式会社 | 鉄骨構造物の耐震改修方法及び耐震鉄骨構造物 |
US8146322B2 (en) * | 2008-08-21 | 2012-04-03 | Mitek Holdings, Inc. | Building structure, method of making, and components |
JP5995466B2 (ja) * | 2012-03-12 | 2016-09-21 | 住友林業株式会社 | 木造建築構造躯体 |
JP6057579B2 (ja) | 2012-07-18 | 2017-01-11 | 三菱重工業株式会社 | 免震装置支持構造及び免震装置支持構造の施工方法 |
US8793961B2 (en) * | 2012-08-21 | 2014-08-05 | Bradford O. Russell | Load bearing structural assembly |
JP6076849B2 (ja) * | 2013-07-03 | 2017-02-08 | 株式会社ブリヂストン | 防振構造体 |
US9441360B2 (en) * | 2014-01-28 | 2016-09-13 | Thor Matteson | Yield link for providing increased ductility, redundancy, and hysteretic damping in structural bracing systems |
CA2951950C (en) * | 2014-06-18 | 2018-12-04 | Cast Connex Corporation | Structural yielding fuse |
-
2015
- 2015-03-27 JP JP2015065398A patent/JP6640459B2/ja active Active
-
2016
- 2016-02-25 US US15/556,415 patent/US10309643B2/en active Active
- 2016-02-25 MX MX2017012116A patent/MX2017012116A/es unknown
- 2016-02-25 WO PCT/JP2016/001021 patent/WO2016157708A1/ja active Application Filing
- 2016-02-26 TW TW105105968A patent/TWI617724B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57127075A (en) * | 1981-01-30 | 1982-08-07 | Okumura Corp | Earthquake-proof apparatus of building |
JP2002161648A (ja) * | 2000-11-22 | 2002-06-04 | Shimizu Corp | 制震構造建物 |
JP2007063941A (ja) * | 2005-09-02 | 2007-03-15 | Mitsubishi Heavy Ind Ltd | ボイラの制震支持構造 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106382015A (zh) * | 2016-10-13 | 2017-02-08 | 浙江绿城建筑设计有限公司 | 用于既有结构大跨受力梁加固的抗震叠合结构及施工方法 |
CN106382015B (zh) * | 2016-10-13 | 2018-10-26 | 上海杰地建筑设计有限公司 | 用于既有结构大跨受力梁加固的抗震叠合结构的施工方法 |
WO2019138667A1 (ja) * | 2018-01-09 | 2019-07-18 | 三菱日立パワーシステムズ株式会社 | ボイラ構造 |
JP2019120067A (ja) * | 2018-01-09 | 2019-07-22 | 三菱日立パワーシステムズ株式会社 | ボイラ構造 |
CN109577508A (zh) * | 2018-11-27 | 2019-04-05 | 福建省永富建设集团有限公司 | 一种抗震防护支撑装置 |
CN112127475A (zh) * | 2020-09-24 | 2020-12-25 | 山东天智信息科技有限公司 | 一种抗震型钢结构骨架 |
CN114856243B (zh) * | 2022-06-15 | 2024-01-30 | 江苏鸿基节能新技术股份有限公司 | 建筑增加隔震层的施工装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6640459B2 (ja) | 2020-02-05 |
US10309643B2 (en) | 2019-06-04 |
US20180106473A1 (en) | 2018-04-19 |
TW201700841A (zh) | 2017-01-01 |
TWI617724B (zh) | 2018-03-11 |
JP2016183539A (ja) | 2016-10-20 |
MX2017012116A (es) | 2018-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016157708A1 (ja) | 免震化構造、鉄骨支持構造体及び既設鉄骨支持構造体の免震化工法 | |
JP6920049B2 (ja) | 免震建物 | |
KR101891942B1 (ko) | 기존 구조물의 지진 보강공법 | |
JP6166560B2 (ja) | 免震建物の増築構造 | |
JP2016023476A (ja) | コンクリート構造物耐震及び制振補強用型枠およびそれを用いたコンクリート構造物耐震及び制振補強工法 | |
JP7009724B2 (ja) | 柱梁架構改修方法及び改修柱梁架構 | |
JP2016037761A (ja) | 免震化工事の仮設支持構造及び既存建築物の免震化工法 | |
JP4980782B2 (ja) | 建築物の中間階免震機構 | |
JP5059687B2 (ja) | 建物の連結制震構造 | |
JP5727690B2 (ja) | 長周期化建築物 | |
JP6247117B2 (ja) | 既存建物の免震化施工中の仮設構造 | |
JP5737578B2 (ja) | 吊構造の施工方法 | |
KR101288831B1 (ko) | 소구경말뚝 및 하중전이프레임을 이용한 벽체존치 건축물 리모델링 공법 | |
JP2016084701A (ja) | 制振建物 | |
JP6917720B2 (ja) | 複合吊り構造物の構築方法 | |
JP2009013579A (ja) | 建物建て替え工法 | |
JP6511727B2 (ja) | 免震建物、及び、免震装置の交換方法 | |
JP5456461B2 (ja) | 免震改修構造 | |
JP5989597B2 (ja) | 既設架構の免震化工事施工中の仮設耐震化構造及びその施工法 | |
JP6832053B2 (ja) | 耐震補強構造 | |
JP6877857B2 (ja) | 門柱耐震補強装置 | |
JP2019100040A (ja) | 免震建物、免震構造の構築方法 | |
JP2013136919A (ja) | 合成床システム | |
JP6906842B2 (ja) | 既存建物の制振改修方法 | |
JP2023083946A (ja) | 複数の柱を設けたキャピタルを有する建物構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2017/012116 Country of ref document: MX |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16771602 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15556415 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16771602 Country of ref document: EP Kind code of ref document: A1 |