WO2016152710A1 - 熱可塑性エラストマー組成物およびその製造方法 - Google Patents

熱可塑性エラストマー組成物およびその製造方法 Download PDF

Info

Publication number
WO2016152710A1
WO2016152710A1 PCT/JP2016/058468 JP2016058468W WO2016152710A1 WO 2016152710 A1 WO2016152710 A1 WO 2016152710A1 JP 2016058468 W JP2016058468 W JP 2016058468W WO 2016152710 A1 WO2016152710 A1 WO 2016152710A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
copolymer
ethylene
olefin
thermoplastic elastomer
Prior art date
Application number
PCT/JP2016/058468
Other languages
English (en)
French (fr)
Inventor
隼人 栗田
瑞貴 若菜
隆博 近藤
英樹 望月
裕司 野口
達弥 坂井
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to KR1020177024639A priority Critical patent/KR101902139B1/ko
Priority to CN201680015237.4A priority patent/CN107429011B/zh
Priority to JP2017508283A priority patent/JP6426829B2/ja
Priority to EP16768613.8A priority patent/EP3272805B1/en
Priority to US15/559,273 priority patent/US10280293B2/en
Publication of WO2016152710A1 publication Critical patent/WO2016152710A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/083Copolymers of ethene with aliphatic polyenes, i.e. containing more than one unsaturated bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/02Crosslinking with dienes

Definitions

  • the present invention relates to a thermoplastic elastomer composition that can provide a molded article having excellent low-temperature impact resistance.
  • a thermoplastic elastomer composition capable of providing a molded article excellent in low temperature impact resistance and mechanical properties
  • a thermoplastic elastomer composition capable of providing a molded article excellent in low temperature impact resistance and low temperature breaking elongation and production thereof Regarding the method.
  • Olefin-based thermoplastic elastomers are lightweight and easy to recycle, so they are energy- and resource-saving thermoplastic elastomers, especially for automotive parts, industrial machine parts, electronic / electric equipment parts, building materials, etc. as an alternative to vulcanized rubber. Widely used.
  • thermoplastic elastomers have the disadvantages of being inferior in tensile strength, elongation at break, and compression set as compared with vulcanized rubber, and their improvement has been strongly demanded.
  • Patent Document 1 discloses that a crystalline polyolefin resin and an ethylene / propylene / non-conjugated polyene copolymer rubber are dynamically crosslinked under specific conditions. Thermoplastic elastomers have been proposed.
  • thermoplastic elastomer obtained by performing only dynamic heat treatment (dynamic kneading) without intentionally crosslinking may be used (see Patent Document 2).
  • thermoplastic elastomer described in Patent Document 1 has a problem because it is inferior in low-temperature impact resistance as compared with vulcanized rubber. There has also been a demand for improvement in mechanical properties such as tensile properties of the thermoplastic elastomer.
  • the olefinic thermoplastic elastomer that does not undergo dynamic crosslinking in Patent Document 2 has a problem because it is inferior in low-temperature impact resistance as compared with vulcanized rubber. There was also a problem with elongation at break at low temperatures.
  • An object of the present invention is to provide a thermoplastic elastomer composition that can be a molded article having excellent low-temperature impact resistance.
  • An object of the present invention is to provide a thermoplastic elastomer composition that is excellent in low-temperature impact resistance and can be a molded article having excellent mechanical properties such as tensile strength and tensile elongation.
  • An object of the present invention is to provide a thermoplastic elastomer composition that can be a molded article excellent in impact resistance at low temperature and elongation at break.
  • the present inventors have intensively studied to solve the above problems.
  • thermoplastic elastomer composition containing a crystalline olefin polymer and a specific ethylene / ⁇ -olefin / non-conjugated polyene copolymer can be a molded product particularly excellent in low-temperature impact resistance,
  • the present invention has been completed.
  • thermoplastic elastomer composition obtained by dynamically crosslinking a crystalline olefin polymer, a specific ethylene / ⁇ -olefin / non-conjugated polyene copolymer, and a peroxide crosslinking agent has a low temperature impact resistance.
  • the present invention has been completed by finding that it can be a molded article having excellent properties and mechanical properties such as tensile properties.
  • thermoplastic elastomer composition containing a crystalline olefin polymer, a specific ethylene / ⁇ -olefin / non-conjugated polyene copolymer, and an ethylene / ⁇ -olefin copolymer in a specific ratio has a low temperature impact resistance. And the present invention has been completed.
  • thermoplastic elastomer composition according to the present invention is an ethylene- ⁇ that satisfies the crystalline olefin polymer (A) and the following requirements (1) and (2): -Olefin (4 to 20 carbon atoms) / non-conjugated polyene copolymer (B)).
  • the B value represented by the following formula (i) is 1.20 or more.
  • [E], [X] and [Y] are, respectively, the mole fraction of structural units derived from ethylene, the mole fraction of structural units derived from ⁇ -olefins having 4 to 20 carbon atoms, and those derived from non-conjugated polyenes.
  • the molar fraction of the structural unit is indicated, and [EX] indicates the dyad chain fraction of the structural unit derived from ethylene-the structural unit derived from ⁇ -olefin having 4 to 20 carbon atoms.
  • the molar ratio of the structural unit derived from ethylene and the structural unit derived from ⁇ -olefin (having 4 to 20 carbon atoms) in the copolymer (B) is 40/60 to 90/10.
  • thermoplastic elastomer composition according to the present invention (also referred to as composition (II) in the present invention) comprises the polymer (A), the copolymer (B), and the peroxide-based crosslinking agent (D). It is obtained by dynamic crosslinking.
  • the cross-linking agent (D) is preferably an organic peroxide.
  • the polymer (A) is preferably a propylene-based (co) polymer.
  • thermoplastic elastomer composition according to the present invention (also referred to as composition (III) in the present invention) comprises 30 to 70 parts by weight of the polymer (A) and 1 to 30 parts by weight of the copolymer (B). 1 to 60 parts by weight of an ethylene / ⁇ -olefin (C3 or more) copolymer (C) (provided that the total of the polymer (A), the copolymer (B) and the copolymer (C)) Is 100 parts by weight).
  • an ethylene / ⁇ -olefin (C3 or more) copolymer (C) (provided that the total of the polymer (A), the copolymer (B) and the copolymer (C)) Is 100 parts by weight).
  • composition (III) is preferably obtained by dynamic heat treatment in the absence of a crosslinking agent.
  • the polymer (A) is preferably a block copolymer of propylene and an ⁇ -olefin other than propylene.
  • the copolymer (C) preferably has a melt flow rate (ASTM D1238, 2.16 kg load) measured at 190 ° C. of 0.01 to 50 (g / 10 min).
  • the method for producing the thermoplastic elastomer composition (II) includes a crystalline olefin polymer (A) and an ethylene / ⁇ -olefin (carbon) having a B value represented by the above formula (i) of 1.20 or more. (4) to (20). Dynamic cross-linking of the non-conjugated polyene copolymer (B) and the peroxide-based cross-linking agent (D).
  • the copolymer (B) further satisfies at least one of the following requirements (3) and (4).
  • the copolymer (B) has a Mooney viscosity ML (1 + 4) (125 ° C.) of 5 to 100.
  • Structural units derived from non-conjugated polyene with respect to a total of 100 mol% of structural units derived from ethylene, structural units derived from ⁇ -olefin (having 4 to 20 carbon atoms) and structural units derived from non-conjugated polyene The content is 0.1 to 6.0 mol%.
  • the ⁇ -olefin of the copolymer (B) is preferably 1-butene.
  • thermoplastic elastomer composition (I) From the thermoplastic elastomer composition (I), a molded article having excellent low-temperature impact resistance can be obtained, and automobile parts such as an automobile airbag cover can be suitably obtained.
  • thermoplastic elastomer composition (II) From the thermoplastic elastomer composition (II), a molded article having excellent low-temperature impact resistance and excellent mechanical properties such as tensile strength and tensile elongation can be obtained, and automobile parts such as automobile airbag covers can be suitably obtained. Can do.
  • thermoplastic elastomer composition (III) From the thermoplastic elastomer composition (III), a molded article excellent in impact resistance at low temperature and elongation at break can be obtained.
  • the thermoplastic elastomer is an automotive part used in the interior or exterior of an automobile, for example, an automobile interior skin material, particularly from the viewpoint that it can improve impact resistance at low temperatures and elongation at break.
  • a mud guard, a spoiler lip, or a fender liner can be suitably obtained as an automobile airbag cover and an automobile exterior part.
  • thermoplastic elastomer composition that can be a molded article excellent in low-temperature impact resistance can be obtained.
  • thermoplastic elastomer composition that is excellent in low-temperature impact resistance and can be a molded article having excellent mechanical properties such as tensile strength and tensile elongation.
  • thermoplastic elastomer composition that can be a molded article having excellent impact resistance at low temperatures and elongation at break can be obtained.
  • thermoplastic elastomer composition (I) comprises a crystalline olefin polymer (A) and a specific ethylene / ⁇ -olefin (having 4 to 20 carbon atoms) / non-conjugated polyene copolymer (B)). Including.
  • thermoplastic elastomer composition (II) of the present invention comprises a crystalline olefin polymer (A), a specific ethylene / ⁇ -olefin (4 to 20 carbon atoms) / non-conjugated polyene copolymer (B), and It is obtained by dynamically crosslinking the oxide-based crosslinking agent (D).
  • the composition (II) is obtained by dynamically crosslinking at least the polymer (A) and the copolymer (B).
  • thermoplastic elastomer composition (III) of the present invention comprises a crystalline olefin polymer (A), a specific ethylene / ⁇ -olefin (4 to 20 carbon atoms) / non-conjugated polyene copolymer (B), and ethylene.
  • a specific ethylene / ⁇ -olefin (4 to 20 carbon atoms) / non-conjugated polyene copolymer (B) and ethylene.
  • the ⁇ -olefin (C3 or more) copolymer (C) is contained in a specific ratio.
  • the crystalline olefin-based polymer (A) (also referred to as polymer (A) in the present invention) is not particularly limited as long as it is a crystalline polymer obtained from olefin, but one or more monoolefins, A polymer comprising a crystalline high molecular weight solid product obtained by polymerization by either a high pressure method or a low pressure method is preferred. Examples of such a polymer include an isotactic monoolefin polymer and a syndiotactic monoolefin polymer.
  • the polymer (A) may be obtained by synthesis by a conventionally known method, or a commercially available product may be used.
  • a polymer (A) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Monoolefins used as starting materials for the polymer (A) include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 2-methyl-1-propene, 3-methyl- 1-pentene, 4-methyl-1-pentene, 5-methyl-1-hexene and the like can be mentioned. These olefins may be used alone or in combination of two or more.
  • a propylene homopolymer or a propylene-based (co) polymer obtained from a monoolefin mainly composed of propylene is preferable from the viewpoint of moldability and heat resistance.
  • the content of the structural unit derived from propylene is preferably 40 mol% or more, more preferably 50 mol% or more, and as a monoolefin that becomes a structural unit derived from a monomer other than propylene.
  • the above monoolefin other than propylene more preferably ethylene or butene.
  • the polymerization mode may be random type or block type, and any polymerization mode can be adopted as long as a crystalline resinous material can be obtained.
  • the polymer (A) has an MFR (ASTM D1238-65T, 230 ° C., 2.16 kg load), usually 0.01 to 150 (g / 10 min), preferably 0.05 to 100 g / 10 min, more preferably Is 0.05 to 50 g / 10 min.
  • the polymer (A) when a propylene copolymer of propylene and an ⁇ -olefin other than propylene is used as the polymer (A), either a random copolymer or a block copolymer may be used. From the viewpoint of impact resistance at low temperatures, block copolymers are preferred.
  • the polymer (A) has an MFR (ASTM D1238-65T, 230 ° C., 2.16 kg load), usually 0.01 to 150 (g / 10 minutes), preferably 0.05 to 100 g / 10 minutes. It is.
  • the polymer (A) has a melting point (Tm) obtained by differential scanning calorimetry (DSC) of usually 100 ° C. or higher, preferably 105 ° C. or higher.
  • the differential scanning calorimetry is performed, for example, as follows. About 5 mg of a sample is packed in a special aluminum pan, heated to 30 ° C. to 200 ° C. at 320 ° C./min using DSCPyris 1 or DSC 7 manufactured by Perkin Elmer, Inc., held at 200 ° C. for 5 minutes, and then 200 ° C.
  • the melting point is determined from the endothermic curve when the temperature is lowered from 10 to 30 ° C. at 10 ° C./min, held at 30 ° C. for 5 minutes, and then heated at 10 ° C./min.
  • Tm melting point
  • the polymer (A) plays a role of improving the fluidity and heat resistance of the thermoplastic elastomer composition. It is preferable that a specific amount of the polymer (A) is contained in the composition.
  • [EX] represents the dyad chain fraction of the structural unit derived from ethylene-the structural unit derived from ⁇ -olefin having 4 to 20 carbon atoms), (2) The molar ratio of the structural unit derived from ethylene and the structural unit derived from ⁇ -olefin (having 4 to 20 carbon atoms) in the copolymer (B) is 40/60 to 90/10.
  • Examples of the ⁇ -olefin having 4 to 20 carbon atoms include 1-butene (4 carbon atoms), 1-nonene (9 carbon atoms), 1-decene (10 carbon atoms), 1-nonadecene (19 carbon atoms), 1- Linear ⁇ -olefin having no side chain such as eicosene (carbon number 20); 4-methyl-1-pentene, 9-methyl-1-decene, 11-methyl-1-dodecene having a side chain, 12- And ⁇ -olefins having a side chain such as ethyl-1-tetradecene. These ⁇ -olefins may be used alone or in combination of two or more.
  • ⁇ -olefins having 4 to 10 carbon atoms are preferable, 1-butene, 1-hexene, and 1-octene are more preferable, and 1-butene has low temperature impact resistance, tensile strength, tensile elongation, and the like. It is more preferable because it is excellent in mechanical properties and can particularly improve impact resistance at low temperatures and elongation at break.
  • the ethylene / propylene / non-conjugated polyene copolymer in which the ⁇ -olefin is propylene has limited rubber elasticity at low temperatures, and therefore has limited applications.
  • Non-conjugated polyenes include chains such as 1,4-hexadiene, 1,6-octadiene, 2-methyl-1,5-hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene, etc.
  • non-conjugated polyenes may be used alone or in combination of two or more.
  • mixtures of cyclic non-conjugated dienes such as 1,4-hexadiene, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene, 5-ethylidene-2-norbornene and 5-vinyl-2-norbornene are included.
  • 5-Ethylidene-2-norbornene and 5-vinyl-2-norbornene are more preferable.
  • Examples of the copolymer (B) include ethylene / 1-butene / 1,4-hexadiene copolymer, ethylene / 1-pentene / 1,4-hexadiene copolymer, ethylene / 1-hexene / 1,4-hexadiene.
  • Copolymer ethylene / 1-heptene / 1,4-hexadiene copolymer, ethylene / 1-octene / 1,4-hexadiene copolymer, ethylene / 1-nonene / 1,4-hexadiene copolymer, Ethylene / 1-decene / 1,4-hexadiene copolymer, ethylene / 1-butene / 1-octene / 1,4-hexadiene copolymer, ethylene / 1-butene / 1-octene / 1,4-hexadiene copolymer, ethylene / 1-butene / 5-ethylidene-2-norbornene copolymer Ethylene / 1-pentene / 5-ethylidene-2-norbornene copolymer, ethylene / 1-hexene / 5-ethylidene-2-norbornene copolymer, ethylene ⁇
  • the copolymer (B) may be used alone or in combination of two or more.
  • the B value represented by the above formula (i) is 1.20 or more, preferably 1.20 to 1.80, particularly preferably 1.22 to 1.40. It is in.
  • the copolymer (B) having a B value of less than 1.20 has a large compression set at low temperature, and a thermoplastic elastomer composition excellent in the balance between rubber elasticity at low temperature and tensile strength at normal temperature is obtained. There is a risk of not being able to.
  • the B value is larger than 1.8, the alternation of monomers is too high, and the crystallinity of the copolymer (B) is lowered, and the mechanical properties at normal temperature may be lowered.
  • the B value is an index indicating the randomness of the copolymer monomer chain distribution in the copolymer (B), and [E], [X], [Y], [EX] in the above formula (i). measures the 13 C-NMR spectrum, J. C.Randall [Macromolecules, 15 , 353 (1982)], J. Ray [Macromolecules, 10, 773 (1977)] can be determined based on these reports.
  • the copolymer (B) has a molar ratio [[A] / [B]] of (2) a structural unit [A] derived from ethylene and a structural unit [B] derived from an ⁇ -olefin of 40 / It is in the range of 60 to 90/10.
  • the lower limit of the molar ratio [A] / [B] is preferably 45/55, more preferably 50/50, and particularly preferably 55/45.
  • the upper limit of the molar ratio [A] / [B] is preferably 80/20, more preferably 75/25, still more preferably 70/30, and particularly preferably 65/35.
  • composition (III) contains a specific amount of the copolymer (B), impact resistance at low temperatures and elongation at break are improved, which is preferable.
  • copolymer (B) satisfies at least one of the following requirements (3) and (4).
  • the copolymer (B) is obtained as long as the Mooney viscosity ML (1 + 4) (125 ° C.) at 125 ° C. obtained according to (3) JIS K6300 (1994) exhibits the effects of the present invention. Although not particularly limited, it is preferably in the range of 5 to 100, more preferably 20 to 95, and still more preferably 50 to 90.
  • the content of the structural unit [C] derived from the non-conjugated polyene is 100 mol% with respect to the total of the structural units of [A], [B] and [C].
  • the preferred range is 0.1 to 6.0 mol%.
  • the lower limit of the content of the structural unit derived from [C] is preferably 0.5 mol%.
  • the upper limit of the content of the structural unit derived from [C] is preferably 4.0 mol%, more preferably 3.5 mol%, still more preferably 3.0 mol%.
  • the copolymer (B) can be obtained, for example, by the following production method.
  • (a-3) a transition metal compound represented by the following general formula [VII] (may be abbreviated as “bridged metallocene compound” in the following description), and (b) (b- 1) at least one selected from the group consisting of an organic metal compound, (b-2) an organoaluminum oxy compound, and (b-3) a compound that reacts with the transition metal compound (a-3) to form an ion pair.
  • an olefin polymerization catalyst containing a compound it can be produced by copolymerizing ethylene, an ⁇ -olefin having 4 to 20 carbon atoms and a non-conjugated polyene.
  • Y is an atom selected from the group consisting of a carbon atom, a silicon atom, a germanium atom, and a tin atom, and is preferably a carbon atom.
  • M is a titanium atom, a zirconium atom or a hafnium atom, preferably a hafnium atom.
  • R 5 and R 6 are substituted aryl groups obtained by substituting one or more hydrogen atoms of an aryl group with an electron donating substituent having a Hammett's rule substituent constant ⁇ of ⁇ 0.2 or less, In the case of having a plurality of electron-donating substituents, the electron-donating substituents may be the same or different.
  • a hydrocarbon group having 1 to 20 carbon atoms, silicon-containing May have a substituent selected from the group consisting of a group, a nitrogen-containing group, an oxygen-containing group, a halogen atom, and a halogen-containing group, and when there are a plurality of such substituents, each substituent may be the same or different.
  • a substituted aryl group hereinafter also referred to as “electron-donating group-containing substituted aryl group”).
  • aryl group phenyl group, 1-naphthyl group, 2-naphthyl group, anthracenyl group, phenanthrenyl group, tetracenyl group, chrysenyl group, pyrenyl group, indenyl group, azulenyl group, pyrrolyl group, pyridyl group, furanyl group, thiophenyl group
  • aryl group is preferably a phenyl group or a 2-naphthyl group.
  • aromatic compounds examples include aromatic hydrocarbons such as benzene, naphthalene, anthracene, phenanthrene, tetracene, chrysene, pyrene, pyrene, indene, azulene, pyrrole, pyridine, furan, thiophene, and heterocyclic aromatic compounds. Is mentioned.
  • Hammett's rule is an empirical rule proposed by L. P. Hammett in 1935 to quantitatively discuss the effect of substituents on the reaction or equilibrium of benzene derivatives, but this is widely accepted today.
  • Substituent constants obtained by Hammett's rule include ⁇ p when substituted at the para-position of the benzene ring and ⁇ m when substituted at the meta-position, and these values can be found in many general literatures. For example, the literature by Hansch and Taft [Chem.
  • an electron donating group having a Hammett's rule substituent constant ⁇ of ⁇ 0.2 or less means that ⁇ p is ⁇ 0 when the electron donating group is substituted at the para position (position 4) of the phenyl group. .2 or less electron-donating group, and when substituted at the meta position (3-position) of the phenyl group, ⁇ m is an electron-donating group of ⁇ 0.2 or less.
  • ⁇ p is ⁇ 0.2 or less. Electron donating group.
  • the electron donating substituents having Hammett's rule constant ⁇ p or ⁇ m of ⁇ 0.2 or less include p-amino group (4-amino group), p-dimethylamino group (4-dimethylamino group), p- Nitrogen-containing groups such as diethylamino group (4-diethylamino group) and m-diethylamino group (3-diethylamino group), oxygen-containing groups such as p-methoxy group (4-methoxy group) and p-ethoxy group (4-ethoxy group) Groups, tertiary hydrocarbon groups such as pt-butyl group (4-t-butyl group), silicon-containing groups such as p-trimethylsiloxy group (4-trimethylsiloxy group), and the like.
  • the electron donating substituents having Hammett's rule constant ⁇ p or ⁇ m defined in the present invention of ⁇ 0.2 or less are those described in the literature by Hansch and Taft [Chem. Rev., 91, 165 (1991)].
  • the substituents are not limited to those described in Table 1 (pages 168-175). Even if the substituent is not described in the document, the substituent constant ⁇ p or ⁇ m when measured based on Hammett's rule is within the range thereof is the Hammett's rule substituent defined in the present invention.
  • the constant ⁇ p or ⁇ m is included in the electron donating group having ⁇ 0.2 or less. Examples of such a substituent include a pN-morpholinyl group (4-N-morpholinyl group) and an mN-morpholinyl group (3-N-morpholinyl group).
  • each electron-donating substituent may be the same or different.
  • a substituent selected from the group consisting of 1 to 20 hydrocarbon groups, silicon-containing groups, nitrogen-containing groups, oxygen-containing groups, halogen atoms and halogen-containing groups may be substituted, and a plurality of the substituents may be substituted.
  • Each substituent may be the same or different, but the sum of the electron donating substituent contained in one substituted aryl group and the Hammett's rule substituent constant ⁇ of each substituent is ⁇ 0. .15 or less is preferable.
  • substituted aryl groups examples include m, p-dimethoxyphenyl group (3,4-dimethoxyphenyl group), p- (dimethylamino) -m-methoxyphenyl group (4- (dimethylamino) -3-methoxyphenyl. Group), p- (dimethylamino) -m-methylphenyl group (4- (dimethylamino) -3-methylphenyl group), p-methoxy-m-methylphenyl group (4-methoxy-3-methylphenyl group) And p-methoxy-m, m-dimethylphenyl group (4-methoxy-3,5-dimethylphenyl group) and the like.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms that the electron-donating group-containing substituted aryl group may have include an alkyl group having 1 to 20 carbon atoms, a cyclic saturated hydrocarbon group having 3 to 20 carbon atoms, and 2 carbon atoms. And a chain unsaturated hydrocarbon group having 20 to 20 and a cyclic unsaturated hydrocarbon group having 3 to 20 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms examples include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, and n-nonyl.
  • a straight-chain saturated hydrocarbon group such as n-decanyl group; isopropyl group, isobutyl group, s-butyl group, t-butyl group, t-amyl group, neopentyl group, 3-methylpentyl group, 1,1- Diethylpropyl group, 1,1-dimethylbutyl group, 1-methyl-1-propylbutyl group, 1,1-dipropylbutyl group, 1,1-dimethyl-2-methylpropyl group, 1-methyl-1-isopropyl Examples thereof include branched saturated hydrocarbon groups such as a -2-methylpropyl group and a cyclopropylmethyl group.
  • the alkyl group preferably has 1 to 6 carbon atoms.
  • Examples of the cyclic saturated hydrocarbon group having 3 to 20 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, norbornenyl group, 1-adamantyl group, and 2-adamantyl group.
  • the cyclic saturated hydrocarbon group preferably has 5 to 11 carbon atoms.
  • Examples of the chain unsaturated hydrocarbon group having 2 to 20 carbon atoms include alkenyl groups such as ethenyl group (vinyl group), 1-propenyl group, 2-propenyl group (allyl group), 1-methylethenyl group (isopropenyl group), etc. , An alkynyl group such as ethynyl group, 1-propynyl group, 2-propynyl group (propargyl group), and the like.
  • the chain unsaturated hydrocarbon group preferably has 2 to 4 carbon atoms.
  • cyclic unsaturated hydrocarbon group having 3 to 20 carbon atoms examples include unsubstituted cyclic unsaturated hydrocarbon groups such as cyclopentadienyl group, norbornyl group, phenyl group, naphthyl group, indenyl group, azulenyl group, phenanthryl group and anthracenyl group.
  • Hydrogen group 3-methylphenyl group (m-tolyl group), 4-methylphenyl group (p-tolyl group), 4-ethylphenyl group, 4-t-butylphenyl group, 4-cyclohexylphenyl group, biphenylyl group,
  • a hydrogen atom of an unsubstituted cyclic unsaturated hydrocarbon group such as 3,4-dimethylphenyl group, 3,5-dimethylphenyl group, 2,4,6-trimethylphenyl group (mesityl group),
  • a group substituted by a hydrocarbon group; a hydrogen atom of a linear hydrocarbon group such as a benzyl group or a cumyl group or a branched saturated hydrocarbon group has 3 carbon atoms
  • Such groups are replaced by cyclic saturated hydrocarbon group or a cyclic unsaturated hydrocarbon group et 19 thereof.
  • the number of carbon atoms of the cyclic unsaturated hydrocarbon group is preferably 6-10.
  • Examples of the silicon-containing group that the electron-donating group-containing substituted aryl group may have include an alkylsilyl group such as a trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, triisopropylsilyl group; dimethylphenylsilyl group, methyl Arylsilyl groups such as diphenylsilyl group and t-butyldiphenylsilyl group; groups having 1 to 20 carbon atoms such as pentamethyldisiranyl group and trimethylsilylmethyl group, wherein carbon atoms are replaced by silicon atoms, etc. Is mentioned.
  • the alkylsilyl group preferably has 1 to 10 carbon atoms
  • the arylsilyl group preferably has 6 to 18 carbon atoms.
  • Examples of the nitrogen-containing group that the electron-donating group-containing substituted aryl group may have include an amino group, a nitro group, an N-morpholinyl group, the above-described hydrocarbon group having 1 to 20 carbon atoms, or a silicon-containing group.
  • a group in which the CH— structural unit is replaced with a nitrogen atom a group in which the —CH 2 — structural unit is replaced with a nitrogen atom to which a hydrocarbon group having 1 to 20 carbon atoms is bonded, or a —CH 3 structural unit has 1 carbon atom Dimethylamino group, diethylamino group, dimethylaminomethyl group, cyano group, pyrrolidinyl group, piperidinyl group, pyridinyl group, and the like, which are groups substituted by nitrogen atoms or nitrile groups to which 20 to 20 hydrocarbon groups are bonded.
  • the nitrogen-containing group a dimethylamino group and an N-morpholinyl group are preferable.
  • the oxygen-containing group that the electron-donating group-containing substituted aryl group may have includes a hydroxyl group, a —CH 2 — structural unit in the above-described hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, or a nitrogen-containing group.
  • Phenoxy group trimethylsiloxy group, methoxyethoxy group, hydroxymethyl group, methoxymethyl group, ethoxymethyl group, t-butoxymethyl group, 1-hydroxyethyl group, 1-methoxyethyl group, 1-ethoxyethyl group, 2- Hydroxyethyl group, 2-methoxyethyl group, 2-ethoxyethyl group, n-2-oxabutylene group, n-2-oxapenthi Group, n-3-oxapentylene group, aldehyde group, acetyl group, propionyl group, benzoyl group, trimethylsilylcarbonyl group, carbamo
  • halogen atom that the electron-donating group-containing substituted aryl group may have include fluorine, chlorine, bromine and iodine which are Group 17 elements.
  • Examples of the halogen-containing group that the electron-donating group-containing substituted aryl group may have include a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a nitrogen-containing group, or an oxygen-containing group, in which a hydrogen atom is a halogen atom.
  • Examples thereof include a trifluoromethyl group, a tribromomethyl group, a pentafluoroethyl group, and a pentafluorophenyl group, which are groups substituted by atoms.
  • Q is an atom, substituent or ligand selected from the group consisting of a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an anionic ligand, and a neutral ligand capable of coordinating with a lone electron pair, When there are a plurality of Qs, they may be the same or different.
  • halogen atom to be Q and the hydrocarbon group having 1 to 20 carbon atoms are the same as the halogen atom and the hydrocarbon group having 1 to 20 carbon atoms that the electron-donating group-containing substituted aryl group may have. It is.
  • Q is a halogen atom
  • a chlorine atom is preferable.
  • Q is a hydrocarbon group having 1 to 20 carbon atoms
  • the hydrocarbon group preferably has 1 to 7 carbon atoms.
  • anionic ligand examples include alkoxy groups such as methoxy group, t-butoxy group and phenoxy group; carboxylate groups such as acetate and benzoate; sulfonate groups such as mesylate and tosylate.
  • Neutral ligands that can be coordinated by lone pairs include organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, diphenylmethylphosphine; tetrahydrofuran, diethyl ether, dioxane, 1,2-dimethoxyethane, etc. An ether compound etc. are mentioned.
  • J is an integer from 1 to 4, preferably 2.
  • the 2,3,6,7-tetramethylfluorenyl group contained in the bridged metallocene compound (a) represented by the general formula [VII] has four substituents at the 2, 3, 6 and 7 positions. Therefore, it is presumed that the electronic effect is large, and this produces a high polymerization activity and high molecular weight ethylene copolymer.
  • the polymerization catalyst for polymerizing the non-conjugated polyenes should not be bulky in the vicinity of the central metal of the metallocene compound that is the polymerization active site. Presumed to lead to performance improvement.
  • the crosslinked metallocene compound represented by the above general formula [VII] containing a 2,3,6,7-tetramethylfluorenyl group in particular has a high molecular weight and a high non-conjugation of the resulting ethylene copolymer. It is presumed that the polyene copolymerization performance and the high polymerization activity are simultaneously realized at a high level with a good balance.
  • the bridged metallocene compound (a-3) can be synthesized by a simple method such as the following formula [VIII].
  • R 5 and R 6 are as described above.
  • Various ketones satisfying such a condition represented by the general formula R 5 —C ( ⁇ O) —R 6 are generally used. Since it is commercially available from reagent manufacturers, it is easy to obtain the raw material for the bridged metallocene compound (a-3). Even if such a ketone is not commercially available, it can be easily synthesized, for example, by the method of Olah et al. [Heterocycles, 40, 79 (1995)].
  • the bridged metallocene compound (a-3) has a relatively simple and easy production process, and further reduces the production cost.
  • the production cost of the ethylenic copolymer can be reduced.
  • the advantage that is reduced is obtained.
  • ethylene, an ⁇ -olefin having 4 or more carbon atoms and a non-conjugated polyene are copolymerized in the presence of an olefin polymerization catalyst containing the bridged metallocene compound (a-3), the copolymer to be produced is further increased. An advantage that molecular weight can be obtained is also obtained.
  • R 5 and R 6 are preferably a group selected from the group consisting of an aryl group and a substituted aryl group.
  • R 5 and R 6 are preferably a group selected from the group consisting of an aryl group and a substituted aryl group.
  • the copolymerization performance of the nonconjugated polyene is improved (for example, the content of the nonconjugated polyene unit in the copolymer is increased, and the nonconjugated polyene unit is easily dispersed uniformly in the copolymer). can get.
  • R 5 and R 6 are more preferably the same group.
  • the synthesis process of the bridged metallocene compound is simplified, and the production cost is further reduced.
  • the production cost of the copolymer is reduced.
  • ethylene, an ⁇ -olefin having 4 or more carbon atoms and a non-conjugated polyene are copolymerized in the presence of an olefin polymerization catalyst containing the bridged metallocene compound, the resulting copolymer can have a higher molecular weight. There is an advantage of being.
  • the present applicant has found that the bridged metallocene compound (a-3) represented by the general formula [VII] has R 5 and R 6 as the above groups.
  • the molecular weight of the copolymer produced is I found for the first time that I could do it even higher.
  • the molecular chain of the olefin polymer produced by the repeated polymerization of olefins on the central metal of the catalyst It is known to grow (growth reaction) and increase the molecular weight of the olefin polymer.
  • a reaction called chain transfer the molecular chain of the olefin polymer is dissociated from the central metal of the catalyst, so that the growth reaction of the molecular chain is stopped, and therefore the increase in the molecular weight of the olefin polymer is also stopped.
  • the molecular weight of the olefin polymer is characterized by the ratio between the frequency of the growth reaction and the frequency of the chain transfer reaction inherent to the organometallic complex catalyst that produces it. That is, the larger the ratio between the frequency of the growth reaction and the frequency of the chain transfer reaction, the higher the molecular weight of the olefin polymer produced, and vice versa.
  • the frequency of each reaction can be estimated from the activation energy of each reaction. A reaction with a low activation energy is high in frequency, and conversely, a reaction with a high activation energy is low in frequency. It is thought that it can be done.
  • the frequency of the growth reaction in olefin polymerization is sufficiently high compared to the frequency of the chain transfer reaction, that is, the activation energy of the growth reaction is sufficiently low compared to the activation energy of the chain transfer reaction.
  • the value obtained by subtracting the activation energy of the growth reaction from the activation energy of the chain transfer reaction (hereinafter referred to as ⁇ Ec) is positive, and the larger the value, the greater the frequency of the growth reaction compared to the frequency of the chain transfer reaction. It is presumed that the molecular weight of the produced olefin polymer is high.
  • R 5 and R 6 are preferably one electron donating substituent having a Hammett's rule substituent constant ⁇ of ⁇ 0.2 or less.
  • ⁇ Ec increases, and in the presence of an olefin polymerization catalyst containing the bridged metallocene compound (a-3), ⁇ and ⁇ having 4 or more carbon atoms are present.
  • -It is presumed that when the olefin and the non-conjugated polyene are copolymerized, the molecular weight of the resulting copolymer increases.
  • the electron donating substituent contained in R 5 and R 6 is a group selected from the group consisting of a nitrogen-containing group and an oxygen-containing group. More preferably it is.
  • R 5 and R 6 are a group selected from the group consisting of a nitrogen-containing group and an oxygen-containing group as the electron-donating substituent. More preferably, it is a substituted phenyl group.
  • R 5 and R 6 are a group selected from the group consisting of a nitrogen-containing group and an oxygen-containing group as the electron-donating substituent. More preferably, it is a substituted phenyl group.
  • examples of the substituted phenyl group containing a group selected from the group consisting of a nitrogen-containing group and an oxygen-containing group as the electron-donating substituent include o-aminophenyl group (2-aminophenyl group), p-aminophenyl Group (4-aminophenyl group), o- (dimethylamino) phenyl group (2- (dimethylamino) phenyl group), p- (dimethylamino) phenyl group (4- (dimethylamino) phenyl group), o- ( Diethylamino) phenyl group (2- (diethylamino) phenyl group), p- (diethylamino) phenyl group (4- (diethylamino) phenyl group), m- (diethylamino) phenyl group (3- (diethylamino) phenyl group), o- Methoxyphenyl group (2-
  • R 5 and R 6 are substituted with the electron donating substituent at the meta position and / or the para position with respect to the bond with the carbon atom as Y. It is more preferably a substituted phenyl group containing a group selected from the group consisting of a nitrogen-containing group and an oxygen-containing group as a group.
  • a substituted phenyl group containing a group selected from the group consisting of a nitrogen-containing group and an oxygen-containing group as a group for example, when synthesizing according to a method such as the above formula [VIII], the synthesis is facilitated compared to the case where the group is substituted at the ortho position, the production process is simplified, the production cost is further reduced, and this bridged metallocene is eventually produced.
  • the advantage that the production cost of the ethylene copolymer is reduced is obtained by using the compound.
  • R 5 and R 6 are substituted with the electron donating substitution at the meta position and / or the para position with respect to the bond with the carbon atom as Y.
  • the nitrogen-containing group is more preferably a group represented by the following general formula [II].
  • R 7 and R 8 are an atom or a substituent selected from the group consisting of a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, an oxygen-containing group and a halogen-containing group; They may be the same or different, and may be bonded to each other to form a ring, and the line drawn to the right of N represents the bond with the phenyl group.
  • Specific examples and preferred examples of the hydrocarbon group having 1 to 20 carbon atoms, the silicon-containing group, the oxygen-containing group and the halogen-containing group as R 7 and R 8 are the same as those in the above formula [VII].
  • Such a bridged metallocene compound (a-4) is represented by the following general formula [IX].
  • R 7 , R 8 and R 10 are each a hydrogen atom having 1 to 20 carbon atoms.
  • a-3 represented by the bridged metallocene compound (a-3) represented by the
  • R 9 is an atom or substituent selected from the group consisting of a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a nitrogen-containing group and a halogen-containing group;
  • the line drawn in Fig. 1 represents the bond with the phenyl group.
  • Specific examples and preferred examples of the hydrocarbon group having 1 to 20 carbon atoms, the silicon-containing group, the nitrogen-containing group and the halogen-containing group as R 9 are the same as those in the formula [VII].
  • Such a bridged metallocene compound (a-5) is represented by the following general formula [X].
  • R 9 and R 10 are a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms. , a silicon-containing group, a nitrogen-containing group, an oxygen-containing group, an atom or a substituent selected from the group consisting of halogen atoms and halogen-containing groups, which may be the same as or different from each other, adjacent substituents of R 10 are each OR 9 may be bonded to form a ring, and OR 9 is an oxygen-containing group having a Hammett's rule substituent constant ⁇ of ⁇ 0.2 or less, and when there are a plurality of such oxygen-containing groups, The containing groups may be the same or different from each other, n is an integer of 1 to 3, and m is an integer of 0 to 4.)
  • the bridged metallocene compound (a-3) of the present invention represented by the above general formula [VII], the bridged metallocen
  • the bridged metallocene compound used for the production of the copolymer (B) can be produced by a known method, and the production method is not particularly limited.
  • a manufacturing method for example, J. et al. Organomet. Chem. , 63, 509 (1996), WO2006 / 123759, WO01 / 27124, JP2004-168744, JP2004-175759, and JP2000-, which are publications relating to applications by the present applicant. And the production method described in Japanese Patent No. 212194.
  • the catalyst is (A) a bridged metallocene compound represented by the above general formula [VII], (B) selected from the group consisting of (b-1) an organometallic compound, (b-2) an organoaluminum oxy compound, and (b-3) a compound that reacts with the bridged metallocene compound (a) to form an ion pair. At least one compound selected from If necessary, (C) It is comprised from a particulate support.
  • each component will be specifically described.
  • Examples of the compound represented by the general formula [X] include trialkylaluminum such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum, tricycloalkylaluminum, isobutylaluminum dichloride, diethylaluminum chloride, ethylaluminum dichloride, Examples include ethylaluminum sesquichloride, methylaluminum dichloride, dimethylaluminum chloride, and diisobutylaluminum hydride.
  • Examples of the compound represented by the general formula [XI] include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 .
  • R a and R b may be the same or different and each represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, and M 3 represents Mg, Zn or A dialkyl compound having a metal of Group 2 or Group 12 of the periodic table represented by Cd.
  • organoaluminum compounds such as triethylaluminum, triisobutylaluminum, and tri-n-octylaluminum are preferable.
  • organometallic compounds (b-1) may be used alone or in combination of two or more.
  • the (b-2) organoaluminum oxy compound used for the production of the copolymer (B) may be a conventionally known aluminoxane, or a benzene-insoluble compound as exemplified in JP-A-2-78687. It may be an organoaluminum oxy compound.
  • the organoaluminum oxy compound may be used alone or in combination of two or more.
  • ⁇ (B-3) Compound that reacts with transition metal compound (a) to form an ion pair>
  • a compound (b-3) (hereinafter referred to as “ionized ionic compound”) that forms an ion pair by reacting with the bridged metallocene compound (a) used in the production of the copolymer (B)
  • ionized ionic compound that forms an ion pair by reacting with the bridged metallocene compound (a) used in the production of the copolymer (B)
  • ionized ionic compound that forms an ion pair by reacting with the bridged metallocene compound (a) used in the production of the copolymer (B)
  • heteropoly compounds and isopoly compounds can also be mentioned.
  • triphenylcarbenium tetrakis (pentafluorophenyl) borate and N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate are preferable.
  • the ionized ionic compounds may be used singly or in combination of two or more.
  • transition metal compound (a) represented by the general formula [VII] is used as a catalyst, an organometallic compound (b-1) such as triisobutylaluminum, an organoaluminum oxy compound (b-2) such as methylaluminoxane, or the like
  • an ionized ionic compound (b-3) such as triphenylcarbenium tetrakis (pentafluorophenyl) borate is used in combination, it has a very high polymerization activity in the production of the ethylene / ⁇ -olefin / nonconjugated polyene copolymer (B). Show.
  • the olefin polymerization catalyst used for the production of the copolymer (B) includes the transition metal compound (a), (b-1) an organometallic compound, (b-2) an organoaluminum oxy compound, and ( b-3)
  • a carrier (c) can be used as necessary together with at least one compound (b) selected from the group consisting of ionized ionic compounds.
  • the carrier (c) is an inorganic compound or an organic compound and is a granular or particulate solid.
  • porous oxides, inorganic halides, clays, clay minerals or ion-exchangeable layered compounds are preferable.
  • porous oxide examples include inorganic oxides such as SiO 2 , Al 2 O 3 , MgO, ZrO, TiO 2 , B 2 O 3 , CaO, ZnO, BaO, and ThO 2 , or composites containing these inorganic oxides. Or, a porous material mainly composed of a mixture can be mentioned. Specific examples of the porous oxide include natural or synthetic zeolites; SiO 2 —MgO, SiO 2 —Al 2 O 3 , SiO 2 —TiO 2 , Examples thereof include porous oxides mainly composed of SiO 2 —V 2 O 5 , SiO 2 —Cr 2 O 3 , SiO 2 —TiO 2 —MgO.
  • porous oxides mainly composed of SiO 2 and / or Al 2 O 3 are preferred.
  • the carrier preferably used in the present invention has a particle size of 10 to 300 ⁇ m, preferably 20 to 200 ⁇ m, and a specific surface area of usually 50 to It is desirable that it is in the range of 1000 m 2 / g, preferably 100 to 700 m 2 / g, and the pore volume is in the range of 0.3 to 3.0 cm 3 / g.
  • Such a carrier is used after being calcined at 100 to 1000 ° C., preferably 150 to 700 ° C., if necessary.
  • the inorganic halide examples include MgCl 2 , MgBr 2 , MnCl 2 , and MnBr 2 .
  • the inorganic halide may be used as it is or after being pulverized by a ball mill or a vibration mill. Further, it is also possible to use a material in which an inorganic halide is dissolved in a solvent such as alcohol and then precipitated into fine particles with a precipitating agent.
  • the clay used as the carrier (c) is usually composed mainly of a clay mineral.
  • the ion-exchangeable layered compound used in the present invention is a compound having a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with each other with a weak binding force, and the contained ions can be exchanged. .
  • Most clay minerals are ion-exchangeable layered compounds.
  • these clays, clay minerals, and ion-exchange layered compounds are not limited to natural products, and artificial synthetic products can also be used.
  • clay, clay mineral, or ion-exchangeable layered compound clay, clay mineral, and ion crystalline compound having a layered crystal structure such as hexagonal close packing type, antimony type, CdCl 2 type, CdI 2 type, etc. Can be mentioned.
  • clays and clay minerals include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysinger gel, pyrophyllite, unmo group, montmorillonite group, vermiculite, ryokdeite group, palygorskite, kaolinite, nacrite, dickite, halloysite, etc. Is mentioned.
  • Examples of the ion-exchange layered compound include ⁇ -Zr (HAsO 4 ) 2 ⁇ H 2 O, ⁇ -Zr (HPO 4 ) 2 , ⁇ -Zr (KPO 4 ) 2 ⁇ 3H 2 O, ⁇ -Ti (HPO 4 ). 2 , ⁇ -Ti (HAsO 4 ) 2 .H 2 O, ⁇ -Sn (HPO 4 ) 2 .H 2 O, ⁇ -Zr (HPO 4 ) 2 , ⁇ -Ti (HPO 4 ) 2 , ⁇ -Ti ( Examples thereof include crystalline acidic salts of polyvalent metals such as NH 4 PO 4 ) 2 .H 2 O.
  • Such a clay, clay mineral or ion exchange layered compound preferably has a pore volume of not less than 0.1 cc / g having a radius of 20 mm or more as measured by a mercury intrusion method, and is preferably from 0.3 to 5 cc / g. Particularly preferred.
  • the pore volume is measured in a pore radius range of 20 to 30000 mm by a mercury intrusion method using a mercury porosimeter.
  • the clay and clay mineral used as the carrier (c) is also preferable to subject the clay and clay mineral used as the carrier (c) to chemical treatment.
  • the chemical treatment any of a surface treatment that removes impurities adhering to the surface and a treatment that affects the crystal structure of clay can be used.
  • Specific examples of the chemical treatment include acid treatment, alkali treatment, salt treatment, and organic matter treatment.
  • the acid treatment increases the surface area by eluting cations such as Al, Fe, and Mg in the crystal structure.
  • Alkali treatment destroys the crystal structure of the clay, resulting in a change in the structure of the clay.
  • an ion complex, a molecular complex, an organic derivative, and the like can be formed, and the surface area and interlayer distance can be changed.
  • the ion-exchangeable layered compound used as the carrier (c) is a layered compound in which the layers are expanded by exchanging the exchangeable ions between the layers with other large and bulky ions using the ion-exchange property. May be.
  • Such bulky ions play a role of supporting pillars to support the layered structure and are usually called pillars.
  • introducing another substance between the layers of the layered compound in this way is called intercalation.
  • guest compounds to be intercalated include cationic inorganic compounds such as TiCl 4 and ZrCl 4 ; metal alkoxides such as Ti (OR) 4 , Zr (OR) 4 , PO (OR) 3 , and B (OR) 3 ( R is a hydrocarbon group), metal hydroxides such as [Al 13 O 4 (OH) 24 ] 7+ , [Zr 4 (OH) 14 ] 2+ , and [Fe 3 O (OCOCH 3 ) 6 ] + And ions. These compounds can be used alone or in combination of two or more.
  • these compounds were intercalated, they were obtained by hydrolyzing metal alkoxides such as Si (OR) 4 , Al (OR) 3 , Ge (OR) 4 (R is a hydrocarbon group, etc.).
  • metal alkoxides such as Si (OR) 4 , Al (OR) 3 , Ge (OR) 4 (R is a hydrocarbon group, etc.
  • Polymers, colloidal inorganic compounds such as SiO 2, and the like can also coexist.
  • the pillar include oxides generated by heat dehydration after intercalation of the metal hydroxide ions between layers.
  • the above clay, clay mineral, and ion-exchange layered compound may be used as they are, or may be used after a treatment such as ball milling or sieving. Further, it may be used after newly adsorbing and adsorbing water or after heat dehydration treatment.
  • These substances to be the carrier (c) may be used alone or in combination of two or more.
  • clay or clay mineral is preferable, and montmorillonite, vermiculite, hectorite, teniolite, and synthetic mica are particularly preferable.
  • Examples of the organic compound include granular or particulate solids having a particle size in the range of 10 to 300 ⁇ m.
  • a (co) polymer produced mainly from an ⁇ -olefin having 2 to 14 carbon atoms such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, vinylcyclohexane, styrene (Co) polymers produced by the main component, and their modified products.
  • the olefin polymerization catalyst used in the production of the copolymer (B) includes a bridged metallocene compound (a), (b-1) an organometallic compound, (b-2) an organoaluminum oxy compound, and (b-3). ) At least one compound (b) selected from the group consisting of ionized ionic compounds and a carrier (c) used as necessary may be included.
  • At least two of the compound (a), the compound (b) and the carrier (c) may be contacted in advance.
  • the unsupported compound (b) may be added in any order as necessary.
  • the compound (b) may be the same as or different from the compound (b) supported on the carrier (c).
  • the solid catalyst component in which the compound (a) is supported on the carrier (c) and the solid catalyst component in which the compound (a) and the compound (b) are supported on the carrier (c) are prepolymerized with olefin.
  • a catalyst component may be further supported on the prepolymerized solid catalyst component.
  • the copolymer (B) can be produced by copolymerizing ethylene, ⁇ -olefin, and nonconjugated polyene in the presence of the ethylene / ⁇ -olefin / nonconjugated polyene copolymer catalyst as described above. .
  • the copolymer (B) can be produced by either a liquid phase polymerization method such as solution (dissolution) polymerization or suspension polymerization, or a gas phase polymerization method.
  • Examples of the inert hydrocarbon medium used in the liquid phase polymerization method include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; fats such as cyclopentane, cyclohexane, and methylcyclopentane. Cyclic hydrocarbons; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane.
  • the said inert hydrocarbon medium may be used individually by 1 type, and may be used in combination of 2 or more type.
  • olefin itself can also be used as a solvent.
  • the crosslinked metallocene compound (a) is usually 10 ⁇ 12 to 10 ⁇ 2 mol, preferably 10 ⁇ 10 mol per liter of reaction volume. It is used in an amount of ⁇ 10 ⁇ 8 mol.
  • the molar ratio [(b-1) / M] of the compound (b-1) to all transition metal atoms (M) in the bridged metallocene compound (a) is usually 0. It is used in an amount of 0.01 to 50000, preferably 0.05 to 10000.
  • the organoaluminum oxy compound (b-2) has a molar ratio [(b-2) / M] of the aluminum atoms in the compound (b-2) and the total transition metals (M) in the compound (a).
  • the amount is usually 10 to 50000, preferably 20 to 10000.
  • the molar ratio [(b-3) / M] of the compound (b-3) to the transition metal atom (M) in the compound (a) is usually 1-20.
  • the amount is preferably 1 to 15.
  • the polymerization temperature of the copolymer (B) is usually ⁇ 50 to + 200 ° C., preferably 0 to + 200 ° C., more preferably +80 to + 200 ° C.
  • the polymerization temperature is preferably higher (+ 80 ° C. or higher) from the viewpoint of productivity.
  • the polymerization pressure of the copolymer (B) is usually in the range of normal pressure to 10 MPa gauge pressure, preferably normal pressure to 5 MPa gauge pressure.
  • the polymerization reaction mode of the copolymer (B) may be any of batch type, semi-continuous type, and continuous type. Furthermore, the polymerization can be performed in two or more stages having different reaction conditions.
  • the molecular weight of the obtained copolymer (B) can be adjusted, for example, by allowing hydrogen to be present in the polymerization system or by changing the polymerization temperature.
  • the amount of hydrogen added is suitably about 0.001 to 100 NL per kg of olefin.
  • a compound (b) for example, triisobutylaluminum, methylaluminoxane, diethylzinc etc.
  • the molecular weight of a copolymer can be adjusted with the usage-amount of a compound (b).
  • the weight ratio (A) / (B) of the crystalline olefin polymer (A) to the ethylene / ⁇ -olefin / nonconjugated polyene copolymer (B) is preferably 90/10 to 10/90, more preferably 60/40 to 20/80.
  • the weight ratio (A) / (B) is in the above range, a molded article having excellent mechanical properties and moldability can be obtained.
  • thermoplastic elastomer composition (I) of the present invention an ethylene / ⁇ -olefin (having 3 or more carbon atoms) copolymer (C) (in the present invention, a copolymer (C ))) May be added.
  • the ethylene / ⁇ -olefin (C3 or more) copolymer (C) is a polymer obtained by copolymerizing ethylene and an ⁇ -olefin, and is a polymer having rubber elasticity at room temperature.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms used as a raw material for the copolymer (C) include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, and 2-methyl-1-propene. , 3-methyl-1-pentene, 4-methyl-1-pentene, 5-methyl-1-hexene and the like.
  • propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 2-methyl-1-propene, 3-methyl-1-pentene, 4-methyl-1 ⁇ -olefins having 3 to 20 carbon atoms such as pentene and 5-methyl-1-hexene are preferable, and propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 2-methyl- ⁇ -olefins having 3 to 8 carbon atoms such as 1-propene, 3-methyl-1-pentene, 4-methyl-1-pentene, 5-methyl-1-hexene and the like are preferable.
  • the content of the structural unit derived from ethylene in the copolymer (C) is preferably 30 to 95 mol%, more preferably 50 to 90 mol%, and the content of the structural unit derived from an ⁇ -olefin having 3 or more carbon atoms.
  • the amount is preferably 5 to 70 mol%, more preferably 10 to 50 mol%.
  • the total of the content of structural units derived from ethylene and the content of structural units derived from ⁇ -olefin is 100 mol%.
  • the melt flow rate (MFR, ASTM D1238, 2.16 kg load) measured at 190 ° C. of the copolymer (C) is preferably 0.01 to 50 (g / 10 min), more preferably 0.05 to 45. (G / 10 minutes), more preferably 0.1 to 40 (g / 10 minutes).
  • MFR melt flow rate
  • the MFR is in the above range, fluidity and impact resistance are improved, which is preferable. If the MFR is less than 0.01 g / 10 min, molding may be difficult. If it exceeds 50 g / 10 min, the molecular weight of the ethylene / ⁇ - olefin copolymer (C) will be low, resulting in impact resistance. Is not preferable because there is a risk that it may decrease significantly.
  • the melting point (Tm) obtained by differential scanning calorimetry is usually less than 100 ° C., or the melting point peak is not substantially observed by DSC, preferably 95
  • the melting point peak is substantially not observed by DSC, more preferably, the melting point peak is not substantially observed by DSC.
  • the differential scanning calorimetry can be measured, for example, by the same method as described above.
  • the fact that the melting point peak is not substantially observed by DSC means that the heat of fusion ⁇ H (Tm) (unit: J / g) measured by DSC is not substantially observed. Specifically, for example, in the range of ⁇ 150 to 200 ° C., a crystal melting peak having a heat of fusion of 1 J / g or more is not observed.
  • Examples of the copolymer (C) include an ethylene / 1-butene copolymer, an ethylene / 1-hexene copolymer, and an ethylene / 1-octene copolymer, and the ethylene / 1-butene copolymer and ethylene A 1-octene copolymer is more preferred because it can provide particularly low temperature impact resistance and elongation at break.
  • the copolymer (C) may be used alone or in combination of two or more.
  • the content of the polymer (A) is usually 30 to 70 parts by weight, preferably 32 to 65 parts by weight, more preferably 35 to 62 parts by weight.
  • the content of the copolymer (B) is usually 1 to 30 parts by weight, preferably 2 to 28 parts by weight, more preferably 5 to 25 parts by weight.
  • the content of the copolymer (C) is usually 1 to 60 parts by weight, preferably 3 to 58 parts by weight, more preferably 5 to 55 parts by weight (provided that the total of the polymer (A), the copolymer (B) and the copolymer (C) is 100 Parts by weight).
  • the content of the copolymer (C) is less than 1 part by weight, the impact resistance is lowered, and if it exceeds 60 parts by weight, the heat resistance is lowered.
  • a composition (III) that can be a molded article excellent in impact resistance at low temperature and elongation at break can be obtained even when crosslinking is not performed.
  • a peroxide-based crosslinking agent (D) (also referred to as a crosslinking agent (D) in the present invention) may be added as long as the effects of the present invention are exhibited. .
  • thermoplastic elastomer composition (II) of the present invention can be obtained by dynamically crosslinking the polymer (A) and the copolymer (B) with a crosslinking agent (D).
  • dynamic crosslinking refers to crosslinking while applying a shearing force to the composition.
  • the crosslinking agent (D) include inorganic peroxides and organic peroxides. Among these crosslinking agents (D), an organic peroxide is preferable from the viewpoint of rubber elasticity.
  • organic peroxide examples include dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di- (Tert-Butylperoxy) hexyne-3,1,3-bis (tert-butylperoxyisopropyl) benzene, 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane, n-butyl-4 , 4-bis (tert-butylperoxy) valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, tert-butylperoxybenzoate, tert-butylperoxyisopropyl carbonate, diacetyl peroxide, lauroyl peroxide, ert-
  • 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane 2,5-dimethyl-2,5-di-, in terms of odor and scorch stability.
  • (Tert-Butylperoxy) hexyne-3,1,3-bis (tert-butylperoxyisopropyl) benzene is preferred, and 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane is more preferred.
  • the crosslinking agent (D) is a total amount of 100 parts by weight of the polymer (A), the copolymer (B), other resin components added as necessary, other rubber components, and the softening agent (E).
  • the amount is usually 0.02 to 3 parts by weight, preferably 0.05 to 1 part by weight.
  • the blending amount of the organic peroxide in the above range, a composition excellent in moldability can be obtained, and the obtained molded article has an appropriate degree of crosslinking, sufficient heat resistance, tensile properties, elasticity. Has recovery and rebound resilience.
  • auxiliary agent Uniform and gentle crosslinking reaction can be expected by using the above auxiliary agent.
  • divinylbenzene is preferable. Divinylbenzene is easy to handle, has good compatibility with the polymer (A) and copolymer (B) contained as a main component in the thermoplastic elastomer composition (I) or (II), and has a crosslinking agent.
  • D) has a function of solubilizing (typically an organic peroxide) and acts as a dispersant for the cross-linking agent (D), so that the cross-linking effect by heat treatment is uniform and the balance between fluidity and physical properties is balanced.
  • a thermoplastic elastomer composition can be obtained.
  • the auxiliary agent is based on a total amount of 100 parts by weight of the polymer (A), the copolymer (B), other resin components added as necessary, other rubber components, and the softening agent (E).
  • the amount is usually 2 parts by weight or less, preferably 0.3 to 1 part by weight.
  • a dispersion accelerator may be used to accelerate the decomposition of the crosslinking agent (D) (typically an organic peroxide).
  • Decomposition accelerators include tertiary amines such as triethylamine, tributylamine, 2,4,6-tri (dimethylamino) phenol; aluminum, cobalt, vanadium, copper, calcium, zirconium, manganese, magnesium, lead, mercury, etc. Naphthenic acid salts and the like.
  • an additive may be appropriately added to the thermoplastic elastomer composition of the present invention as long as the effects of the present invention are not impaired.
  • a softener (E), an inorganic filler (F), etc. are mentioned.
  • the additive include rubbers other than the polymer (A), the copolymer (B) and the copolymer (C) (for example, polyisobutylene, butyl rubber, propylene / ethylene copolymer rubber, propylene / butene copolymer).
  • Propylene elastomers such as unit rubber and propylene / butene / ethylene copolymer rubber, ethylene elastomers such as ethylene / propylene copolymer rubber, styrene / butadiene / styrene block polymer, styrene / isoprene / styrene block polymer, styrene / isobutylene Styrene elastomers such as styrene block polymers and hydrogenated products thereof); resins other than crystalline olefin polymers (A) such as thermosetting resins and thermoplastic resins such as polyolefins; heat stabilizers; anti-aging agents Light stabilizer, weather stabilizer; Antistatic agents; metal soap, aliphatic amide; lubricants such as such as waxes, known additives used in the field of polyolefins.
  • resins other than crystalline olefin polymers (A) such
  • additives may be used alone or in combination of two or more. Further, the blending amount of additives other than those specifically mentioned in the present specification is not particularly limited as long as the effects of the present invention are exhibited, but the polymer (A), the copolymer (B) and the copolymer are not limited. The amount is usually about 0.0001 to 10 parts by weight, preferably about 0.01 to 5 parts by weight per 100 parts by weight of the total of (C).
  • softeners usually used for rubber can be used.
  • softener (E) petroleum-based softeners such as process oil, lubricating oil, paraffin oil, liquid paraffin, petroleum asphalt and petroleum jelly; coal tar-based softeners such as coal tar and coal tar pitch; castor oil and linseed oil
  • Oil oil softeners such as rapeseed oil, soybean oil, coconut oil; tall oil; sub (factis); waxes such as beeswax, carnauba wax, lanolin; ricinoleic acid, palmitic acid, stearic acid, barium stearate, stear
  • Fatty acids or fatty acid salts such as calcium phosphate and zinc laurate; naphthenic acid; pine oil, rosin or derivatives thereof; synthetic polymer substances such as terpene resin, petroleum resin, atactic polypropylene, coumarone indene resin; dioctyl phthalate, dioctyl adipate
  • softeners (E) are not limited in the compositions (I) and (II) as long as the effects of the present invention are exhibited, but with respect to 100 parts by weight of the total amount of the polymer (A) and the polymer (B).
  • the amount is usually 2 to 100 parts by weight, preferably 5 to 80 parts by weight.
  • the softening agent (E) is not limited as long as the effect of the present invention is exhibited, but the total amount of the polymer (A), the copolymer (B), and the copolymer (C) is 100% by weight. It is usually used in an amount of 1 to 100 parts by weight, preferably 1.5 to 80 parts by weight per part.
  • the softening agent (E) When the softening agent (E) is used in such an amount, the fluidity at the time of preparation and molding of the thermoplastic elastomer composition is excellent, and it is difficult to lower the mechanical properties of the resulting molded body. Is excellent in heat resistance and heat aging resistance.
  • inorganic filler (F) calcium carbonate, calcium silicate, clay, kaolin, talc, silica, diatomaceous earth, mica powder, asbestos, alumina, barium sulfate, aluminum sulfate, calcium sulfate, basic magnesium carbonate, disulfide
  • examples include molybdenum, graphite, glass fiber, glass sphere, shirasu balloon, basic magnesium sulfate whisker, calcium titanate whisker, and aluminum borate whisker.
  • inorganic fillers (F) are not limited in the compositions (I) and (II) as long as the effects of the present invention are exhibited, but the total amount of the polymer (A) and the copolymer (B) is 100 parts by weight. The amount is usually 2 to 100 parts by weight, preferably 2 to 50 parts by weight. In the composition (III), the inorganic filler (F) is not limited as long as the effects of the present invention are exhibited, but the total amount of the polymer (A), the copolymer (B) and the copolymer (C) is 100. The amount is usually 0.1 to 100 parts by weight, preferably 1 to 50 parts by weight, based on parts by weight.
  • the rubber when a rubber other than the copolymer (B) is used, the rubber is used in a total amount of 100 parts by weight of the polymer (A) and the copolymer (B). On the other hand, it is usually used in an amount of 2 to 200 parts by weight, preferably 5 to 150 parts by weight.
  • the rubber is composed of the polymer (A), the copolymer (B), and the copolymer ( C) is generally used in an amount of 1 to 200 parts by weight, preferably 3 to 150 parts by weight, based on 100 parts by weight of the total amount.
  • composition (I), (II), (III) Thermoplastic elastomer composition (I), (II), (III) >> The composition (I) of the present invention is heat-treated from a mixture containing the polymer (A) and the copolymer (B) and an additive blended as necessary, preferably dynamically. Can be obtained by:
  • composition (II) of the present invention a mixture containing a polymer (A), a copolymer (B), and an additive blended as necessary is dynamically heat-treated in the presence of a crosslinking agent (D). And obtained by crosslinking (dynamic crosslinking).
  • composition (III) of the present invention comprises a mixture containing the polymer (A), the copolymer (B) and the copolymer (C), and additives that are blended as necessary, in the absence of a crosslinking agent. In the presence of a crosslinking agent, preferably in the absence of a crosslinking agent.
  • dynamically heat-treating refers to kneading the composition in a molten state.
  • composition (II) may be a composition in which the polymer components including the polymer (A) and the copolymer (B) are partially crosslinked, and is a completely crosslinked composition. Also good.
  • the dynamic heat treatment is preferably performed in a non-open type apparatus, and is preferably performed in an inert gas atmosphere such as nitrogen or carbon dioxide.
  • the temperature of the heat treatment is usually in the range from the melting point of the polymer (A) to 300 ° C., preferably 150 to 280 ° C., more preferably 170 to 270 ° C.
  • the kneading time is usually 0.25 to 20 minutes, preferably 0.5 to 10 minutes, more preferably 1 to 10 minutes.
  • the applied shear force is usually 10 to 100,000 sec ⁇ 1 at the maximum shear rate, preferably 100 to 50,000 sec ⁇ 1 , more preferably 1,000 to 10,000 sec ⁇ 1 , and still more preferably 2,000. It is in the range of ⁇ 7,000 sec ⁇ 1 .
  • Examples of the kneading apparatus used for kneading include a mixing roll, an intensive mixer (for example, a Banbury mixer, a kneader), a single screw extruder, a twin screw extruder, and the like. These kneading devices are preferably non-open type devices.
  • Composition (I) and a molded article obtained by molding composition (I) by a conventionally known method are excellent in low-temperature impact resistance.
  • composition (II) and a molded product obtained by molding the composition (II) by a conventionally known method are excellent in both low temperature impact resistance and mechanical properties.
  • the composition (II) and the molded body are used as a sealing material used at low temperatures such as a packing of a refrigerator, an automobile interior skin material, an automobile airbag cover, an automobile part such as a mudguard, a spoiler lip, a fender liner, It can be suitably used for industrial machine parts, electronic / electric equipment parts, building materials and the like.
  • composition (III) and a molded product obtained by molding the composition (III) by a conventionally known method are excellent in impact resistance at low temperature and elongation at break.
  • composition (II) and a molded object can be used conveniently for the sealing materials used at low temperature, such as packing of a refrigerator, an automotive part, an industrial machine part, an electronic / electric equipment part, a building material.
  • automotive parts that require impact resistance at low temperatures and elongation at break such as automotive interior parts, automotive interior skin materials, automotive airbag covers, etc., automotive exterior parts such as mudguards, spoiler lips, and fender liners.
  • it can be suitably used.
  • ⁇ Crystalline olefin polymer> (A-1) Homopolypropylene Prime Polypro TM J105 (trade name, manufactured by Prime Polymer Co., Ltd.), melt flow rate (ASTM-D-1238-65T; 230 ° C., 2.16 kg load) is 9.0 g / 10 min. It is.
  • ⁇ Ethylene / ⁇ -olefin copolymer> (C-1) Ethylene / 1-butene copolymer Composed of ethylene and 1-butene, the ethylene content is 81 mol%, the melt flow rate (ASTM D1238, 190 ° C., 2.16 kg load) is 0.5 g / 10 min. A copolymer in which a melting point peak is not substantially observed by DSC.
  • ⁇ Ethylene / ⁇ -olefin / non-conjugated polyene copolymer [Molar amount of each structural unit]
  • the molar amounts of the structural unit derived from ethylene [A], the structural unit derived from ⁇ -olefin [B] and the structural unit derived from non-conjugated polyene [C] were determined by intensity measurement using a 1 H-NMR spectrometer. .
  • the ethylene / ⁇ -olefin / non-conjugated polyene copolymer before the oil extension was measured.
  • Mooney viscosity Mooney viscosity ML (1 + 4) (125 ° C.) was measured according to JIS K6300 (1994) using a Mooney viscometer (SMV202 type, manufactured by Shimadzu Corporation).
  • the iodine value of the copolymer is a value determined by a titration method. Specifically, the following method was used.
  • 0.5 g of the copolymer was dissolved in 60 ml of carbon tetrachloride, a small amount of a Wis reagent and a 20% potassium iodide solution were added, and the mixture was appropriately adjusted with a 0.1 mol / L sodium thiosulfate solution. In the vicinity of the end point, a starch indicator was added, and the mixture was well-stirred until the light purple color disappeared, and the number of g of iodine consumed was calculated as the amount of halogen consumed per 100 g of the sample.
  • B value ([EX] +2 [Y]) / [2 ⁇ [E] ⁇ ([X] + [Y])] (i)
  • [E], [X] and [Y] represent the molar fractions of ethylene [A], ⁇ -olefin [B] having 4 to 20 carbon atoms and non-conjugated polyene [C], respectively
  • [EX ] Represents ethylene [A] - ⁇ -olefin [B] dyad chain fraction having 4 to 20 carbon atoms.
  • the solid obtained by distilling off the solvent under reduced pressure was brought into a glove box, washed with hexane, and extracted with dichloromethane.
  • the solid obtained by distilling off the solvent under reduced pressure was dissolved in a small amount of dichloromethane, hexane was added, and recrystallization was performed at ⁇ 20 ° C.
  • the precipitated solid was collected, washed with hexane, and dried under reduced pressure to give [bis (4-methoxyphenyl) methylene ( ⁇ 5 -cyclopentadienyl) ( ⁇ 5 -2,3,6 , 7-tetramethylfluorenyl)] hafnium dichloride 275 mg (0.362 mmol, 70.8%).
  • ethylene feed amount is 3.2 kg / h
  • 1-butene feed amount is 12 kg / h
  • ENB feed amount is 520 g / h and hydrogen.
  • the polymerizer was continuously fed so that the feed amount was 0 NL (normal liter) / h.
  • the catalyst-a1 was used as the main catalyst, and continuously fed to the polymerization vessel so that the feed amount was 0.030 mmol / h. Further, (C 6 H 5 ) 3 CB (C 6 F 5 ) 4 (CB-3) is fed as a cocatalyst at a feed rate of 0.15 mmol / h, and triorganobutylaluminum (TIBA) is fed as an organoaluminum compound at a rate of 10 mmol / h. Then, each was continuously fed to the polymerization vessel.
  • TIBA triorganobutylaluminum
  • an ethylene / 1-butene / ENB copolymer (EBDM-1) formed from ethylene, 1-butene and ENB was obtained at a rate of 5.4 kg / hour.
  • ethylene feed amount is 4.0 kg / h
  • propylene feed amount is 5.2 kg / h
  • ENB feed amount is 1.2 kg continuously.
  • the hydrogen feed amount was 25 NL (normal liters) / h.
  • (C 6 H 5 ) 3 CB (C 6 F 5 ) 4 (CB-3) is fed as a cocatalyst at a feed rate of 0.28 mmol / h
  • triorganobutylaluminum (TIBA) is fed as an organoaluminum compound at a feed rate of 1.8 mmol. / H was continuously fed to the polymerization reactor.
  • an ethylene / propylene / ENB copolymer (EPDM-1) formed from ethylene, propylene and ENB was obtained at a rate of 5.4 kg / hour.
  • thermoplastic elastomer compositions and methods for evaluating the physical properties of molded articles in the following examples and comparative examples are as follows.
  • thermoplastic elastomer composition pellets were press-molded at 210 ° C. to prepare a press sheet having a thickness of 2 mm, and laminated in accordance with JIS K6253 with a thickness of 6 mm (three pieces each having a thickness of 2 mm). It measured with the Shore D hardness meter using the sheet
  • Example 2 In accordance with JIS K6253, an injection molded square plate having a thickness of 3 mm was used, and measurement was performed using a Shore D hardness meter using a laminated sheet having a thickness of 6 mm (two pieces of 3 mm thick pieces). About Shore D hardness, the value after measurement 5 second was calculated
  • Example 2 (Example 2 and Comparative Example 2) MFR was measured at 230 ° C. and a load of 2.16 kgf in accordance with ASTM D1238 (unit: g / 10 min).
  • Compression set (CS) (Example 1 and Comparative Example 1) A press sheet having a thickness of 2 mm produced as described above in accordance with JIS K6250 was laminated, and a compression set test was performed in accordance with JIS K6262.
  • test conditions were a 12 mm thick (6 mm stack of 2 mm pieces) layered sheet, compressed at 25% compression, -30 ° C, 23 ° C, 70 ° C, 24 hours to remove strain (compression) ) Measurements were made after 30 minutes.
  • Example 1 [Low temperature embrittlement temperature] (Example 1 and Comparative Example 1)
  • JIS K6261 an A-shaped test piece was produced from a press sheet having a thickness of 2 mm produced as described above, and measurement was performed by the BTC method using this test piece.
  • Example 1 [Izod impact strength] (Example 1 and Comparative Example 1)
  • a test piece with a notch (63.5 mm ⁇ 12.5 mm ⁇ 3 mm) was prepared from a pellet of the obtained thermoplastic elastomer composition using a 100 t injection molding machine, Impact tests were conducted at ⁇ 30 ° C., ⁇ 40 ° C., ⁇ 45 ° C., and ⁇ 50 ° C.
  • the test of each temperature is performed with respect to five test pieces, and the average value of the result is shown in the measurement result.
  • Example 2 In accordance with ASTM D256, a test piece (thickness 3.2 mm) with a notch for IZOD impact strength was prepared by injection molding, and the test piece was destroyed at a temperature of -45 ° C (NB: non-destructive) , B: fracture) and impact strength (unit: J / m).
  • Example 1 Master batch pellets were obtained by thoroughly mixing 110 parts by weight of EBDM-2 obtained in Production Example 2 and 40 parts by weight of polypropylene (A-1) with a Banbury mixer.
  • Organic peroxide as a crosslinking agent (trade name: Perhexa 25B, compound name: 2,5-dimethyl-2,5-di (t-butylperoxy) hexane single product, NOF Corporation)) 0.17 part by weight, 0.17 part by weight of divinylbenzene as a crosslinking aid, 0.2 part by weight of a phenolic antioxidant (Irganox 1010, manufactured by BASF Japan Ltd.) as an antioxidant, carbon black 2.5 parts by weight of the master batch (F-32387MM, manufactured by Maeda Kasei Co., Ltd.) and 0.17 parts by weight of the softening agent (Diana Process PW-100) were sufficiently mixed with a Henschel mixer, and an extruder (product number KTX-46).
  • Cylinder temperature C1 120 ° C, C2 to C3 130 ° C, C4 140 ° C, C5 180 ° C, C6 200 ° C, C7 to C14 230 ° C, die temperature
  • the obtained mixture was dynamically crosslinked at a degree of 220 ° C., a screw speed of 400 rpm, and an extrusion rate of 60 kg / h to obtain pellets of a thermoplastic elastomer composition.
  • the physical properties of the obtained thermoplastic elastomer composition were measured by the method described above. The results are shown in Table 2.
  • thermoplastic elastomer composition A pellet of a thermoplastic elastomer composition was obtained in the same manner as in Example 1 except that EPDM-2 obtained in Production Example 4 was used instead of EBDM-2.
  • the physical properties of the obtained thermoplastic elastomer composition were measured by the method described above. The results are shown in Table 2.
  • the low temperature embrittlement temperature was below the lower limit of measurement (below ⁇ 70 ° C.).
  • the measurement result of the Izod impact strength at ⁇ 45 ° C. means that, among the five test pieces that were measured, four test pieces were partially broken and one test piece was completely broken. The four average values in the case of partial destruction are shown separately from the values in the case of complete destruction.
  • Example 2 27 parts by weight of block polypropylene (A-2), 66 parts by weight of EBDM-1 obtained in Production Example 1, softener (D) (Diana Process PW-100, paraffinic process oil, manufactured by Idemitsu Kosan Co., Ltd. ) 7 parts in advance were mixed with a closed mixer [Kobe Steel Co., Ltd. MIXTRON BB16] and passed through a sheeting roll to form a sheet, and then a square pellet masterbatch was produced with a pelletizer manufactured by Horai Tekko Co., Ltd.
  • D Diana Process PW-100, paraffinic process oil, manufactured by Idemitsu Kosan Co., Ltd.
  • thermoplastic elastomer 27.3 parts by weight of the obtained master batch pellet, 47.7 parts by weight of block polypropylene (A-1), 25 parts by weight of ethylene / 1-butene copolymer (C-1), and a heat stabilizer 0.1 parts by weight of a phenolic antioxidant (Irganox (registered trademark) 1010, manufactured by BASF Corp.) and a diazo weathering stabilizer (tinuvin (registered trademark) 326, BASF Corp.) as a weather stabilizer. Thoroughly mix 0.1 parts by weight with a Henschel mixer and knead with an extruder (Part No. KTX-46, manufactured by Kobe Steel Co., Ltd.) at 220 ° C. at a processing rate of 60 kg per hour to produce a thermoplastic elastomer. A pellet of the composition was obtained. Table 3 shows the physical property measurement results of the obtained thermoplastic elastomer.
  • thermoplastic elastomer composition A pellet of a thermoplastic elastomer composition was obtained in the same manner as in Example 1, except that EPDM-1 obtained in Production Example 3 was used instead of EBDM-1 obtained in Production Example 1.
  • Table 3 shows the physical property measurement results of the obtained thermoplastic elastomer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 低温耐衝撃性に優れる成形体となり得る熱可塑性エラストマー組成物を提供する。結晶性オレフィン系重合体(A)と、下記要件(1)および(2)を満たすエチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(B)とを含む熱可塑性エラストマー組成物を作製する。(1)式:([EX]+2[Y])/〔2×[E]×([X]+[Y])〕で表されるB値が1.20以上である。ここで[E]、[X]および[Y]は、それぞれ、エチレン由来の構造単位のモル分率、炭素数4~20のα-オレフィン由来の構造単位のモル分率、非共役ポリエン由来の構造単位のモル分率を示し、[EX]はエチレン由来の構造単位-炭素数4~20のα-オレフィン由来の構造単位のダイアッド連鎖分率を示す。(2)共重合体(B)の、エチレンに由来する構造単位とα-オレフィン(炭素数4~20)に由来する構造単位とのモル比、40/60~90/10である。

Description

熱可塑性エラストマー組成物およびその製造方法
 本発明は低温耐衝撃性に優れる成形体を提供し得る熱可塑性エラストマー組成物に関する。詳しくは、低温耐衝撃性および機械物性に優れる成形体を提供し得る熱可塑性エラストマー組成物、低温耐衝撃性および低温破断伸びに優れる成形体を提供し得る熱可塑性エラストマー組成物、およびこれらの製造方法に関する。
 オレフィン系熱可塑性エラストマーは、軽量でリサイクルが容易なことから、省エネルギー、省資源タイプの熱可塑性エラストマーとして、特に加硫ゴムの代替として自動車部品、工業機械部品、電子・電気機器部品、建材等に広く使用されている。
 しかしながら、従来のオレフィン系熱可塑性エラストマーは、加硫ゴムに比べて、引張強度、破断伸度、圧縮永久歪が劣るという欠点があり、その改良が強く求められていた。
 これらの特性を改良したオレフィン系熱可塑性エラストマーとして、特許文献1には、結晶性ポリオレフィン樹脂とエチレン・プロピレン・非共役ポリエン共重合体ゴムとを特定の条件下で動的架橋することで得られる熱可塑性エラストマーが提案されている。
 また、用途によっては(例えば自動車部品用途)、あえて架橋することなく、動的熱処理(動的混練)のみ行うことにより得られる熱可塑性エラストマーが用いられることがある(特許文献2参照)。
特開平09-012797号公報 特開2002-146105号公報
 しかしながら、上記特許文献1に記載の動的架橋された熱可塑性エラストマーは、加硫ゴムと比較すると低温耐衝撃性に劣っているため問題であった。また、該熱可塑性エラストマーの引張物性などの機械物性改良も求められていた。
 また、特許文献2の動的架橋をしないオレフィン系熱可塑性エラストマーでは、加硫ゴムと比較すると低温耐衝撃性に劣っているため問題であった。低温での破断伸びにも問題がある場合があった。
 本発明は、低温耐衝撃性に優れる成形体となり得る熱可塑性エラストマー組成物を提供することを目的とする。
 本発明は、低温耐衝撃性に優れ、引張強度および引張伸度などの機械物性に優れる成形体となり得る熱可塑性エラストマー組成物を提供することを目的とする。
 本発明は、低温での耐衝撃性および破断伸びに優れる成形体となり得る熱可塑性エラストマー組成物を提供することを目的とする。
 本発明者らは上記課題を解決すべく鋭意検討を行った。
 その結果、結晶性オレフィン系重合体と、特定のエチレン・α-オレフィン・非共役ポリエン共重合体とを含む熱可塑性エラストマー組成物が、特に低温耐衝撃性に優れる成形体となり得ることを見出し、本発明を完成するに至った。
 結晶性オレフィン系重合体と、特定のエチレン・α-オレフィン・非共役ポリエン共重合体と、過酸化物系架橋剤とを動的架橋することにより得られる熱可塑性エラストマー組成物が、低温耐衝撃性と、引張物性などの機械物性に優れる成形体となり得ることを見出し、本発明を完成するに至った。
 結晶性オレフィン系重合体と、特定のエチレン・α-オレフィン・非共役ポリエン共重合体と、エチレン・α-オレフィン共重合体とを特定の割合で含有する熱可塑性エラストマー組成物が、低温耐衝撃性と、破断伸びに優れる成形体となり得ることを見出し、本発明を完成するに至った。
 本発明に係る熱可塑性エラストマー組成物(本発明では、組成物(I)とも称す)は、結晶性オレフィン系重合体(A)と、下記要件(1)と(2)とを満たすエチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(B))とを含むことを特徴とする。
 (1)下記式(i)で表されるB値が1.20以上である。
 B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
 ここで[E]、[X]および[Y]は、それぞれ、エチレン由来の構造単位のモル分率、炭素数4~20のα-オレフィン由来の構造単位のモル分率、非共役ポリエン由来の構造単位のモル分率を示し、[EX]はエチレン由来の構造単位-炭素数4~20のα-オレフィン由来の構造単位のダイアッド連鎖分率を示す。
 (2)共重合体(B)の、エチレンに由来する構造単位とα-オレフィン(炭素数4~20)に由来する構造単位とのモル比が、40/60~90/10である。
 本発明に係る熱可塑性エラストマー組成物(本発明では、組成物(II)とも称す)は、前記重合体(A)、前記共重合体(B)、および過酸化物系架橋剤(D)を動的架橋して得られることを特徴とする。
 前記架橋剤(D)は有機過酸化物であることが好ましい。組成物(II)おいて、前記重合体(A)はプロピレン系(共)重合体であることが好ましい。
 前記組成物(I)および(II)において、前記重合体(A)と前記共重合体(B)とを、(A)/(B)=90/10~10/90の重量比で含有することが好ましい。
 本発明に係る熱可塑性エラストマー組成物(本発明では、組成物(III)とも称す)は、前記重合体(A)30~70重量部と、前記共重合体(B)1~30重量部と、エチレン・α-オレフィン(炭素数3以上)共重合体(C)1~60重量部(ただし、該重合体(A)、該共重合体(B)および該共重合体(C)の合計を100重量部とする)とを含むことを特徴とする。
 前記組成物(III)は、架橋剤の非存在下で動的に熱処理して得られるものであることが好ましい。
 前記組成物(III)において、前記重合体(A)は、プロピレンとプロピレン以外のα-オレフィンとのブロック共重合体であることが好ましい。前記共重合体(C)の190℃で測定したメルトフローレート(ASTM D1238、2.16kg荷重)は0.01~50(g/10分)であることが好ましい。
 前記熱可塑性エラストマー組成物(II)の製造方法は、結晶性オレフィン系重合体(A)と、上記式(i)で表されるB値が1.20以上であるエチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(B)と、過酸化物系架橋剤(D)とを動的架橋することを特徴とする。
 前記共重合体(B)がさらに以下の要件(3)および(4)の少なくとも1つを満たすことが好ましい。
 (3)前記共重合体(B)のムーニー粘度ML(1+4)(125℃)が5~100である。
 (4)エチレンに由来する構造単位、α-オレフィン(炭素数4~20)に由来する構造単位および非共役ポリエンに由来する構造単位の合計100モル%に対する、非共役ポリエンに由来する構造単位の含有量が、0.1~6.0モル%である。
 前記共重合体(B)のα-オレフィンが1-ブテンであることが好ましい。
 前記熱可塑性エラストマー組成物(I)から、低温耐衝撃性に優れる成形体が得られ、自動車用エアバッグカバーなどの自動車部品を好適に得ることができる。
 前記熱可塑性エラストマー組成物(II)から、低温耐衝撃性に優れ、引張強度および引張伸度などの機械物性に優れる成形体が得られ、自動車用エアバッグカバーなどの自動車部品を好適に得ることができる。
 前記熱可塑性エラストマー組成物(III)からは、低温での耐衝撃性および破断伸びに優れる成形体が得られる。前記熱可塑性エラストマーは、特に、低温での耐衝撃性および破断伸びを向上させることができるという観点から、自動車の内装または外装に用いられる自動車部品、例えば、自動車内装部品としては、自動車内装表皮材、自動車用エアバッグカバーが、自動車外装部品としては、マッドガードやスポイラーリップ、フェンダーライナーが好適に得られる。
 本発明によれば、低温耐衝撃性に優れる成形体となり得る熱可塑性エラストマー組成物が得られる。
 本発明によれば、低温耐衝撃性に優れ、引張強度および引張伸度などの機械物性に優れる成形体となり得る熱可塑性エラストマー組成物が得られる。
 本発明によれば、低温での耐衝撃性および破断伸びに優れる成形体となり得る熱可塑性エラストマー組成物が得られる。
 <熱可塑性エラストマー組成物>
 本発明に係る熱可塑性エラストマー組成物(I)は、結晶性オレフィン系重合体(A)と、特定のエチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(B))とを含む。
 本発明の熱可塑性エラストマー組成物(II)は、結晶性オレフィン系重合体(A)、特定のエチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(B)、および過酸化物系架橋剤(D)を動的架橋することによって得られる。該組成物(II)は、少なくとも重合体(A)と共重合体(B)が動的架橋されてなる。
 このような重合体(A)と共重合体(B)とを架橋剤(D)により動的架橋することにより初めて、低温耐衝撃性、機械物性がともに優れた組成物(II)が得られる。
 本発明の熱可塑性エラストマー組成物(III)は、結晶性オレフィン系重合体(A)、特定のエチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(B)、およびエチレン・α-オレフィン(炭素数3以上)共重合体(C)を特定の割合で含む。
 <結晶性オレフィン系重合体(A)>
 結晶性オレフィン系重合体(A)(本発明においては、重合体(A)とも称す)は、オレフィンから得られる結晶性の重合体であれば特に制限されないが、1種以上のモノオレフィンを、高圧法または低圧法の何れかにより重合して得られる結晶性の高分子量固体生成物からなる重合体であることが好ましい。このような重合体としては、アイソタクチックモノオレフィン重合体、シンジオタクチックモノオレフィン重合体等が挙げられる。
 重合体(A)は、従来公知の方法で合成して得てもよく、市販品を用いてもよい。
 重合体(A)は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。
 重合体(A)の原料となるモノオレフィンとしては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、2-メチル-1-プロペン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、5-メチル-1-ヘキセン等が挙げられる。これらのオレフィンは、1種単独で用いてもよいし、2種以上混合して用いてもよい。
 重合体(A)の中でも、成形性、耐熱性の点からは、プロピレンを主とするモノオレフィンから得られるプロピレン単独重合体またはプロピレン共重合体であるプロピレン系(共)重合体が好ましい。なお、プロピレン共重合体の場合、プロピレン由来の構造単位の含有量は好ましくは40モル%以上、より好ましくは50モル%以上であり、プロピレン以外の単量体由来の構造単位となるモノオレフィンとしては、好ましくはプロピレン以外の上記モノオレフィン、より好ましくはエチレン、ブテンである。
 重合様式はランダム型でもブロック型でも、結晶性の樹脂状物が得られればどのような重合様式を採用しても差支えない。
 重合体(A)は、MFR(ASTM D1238-65T、230℃、2.16kg荷重)が、通常0.01~150(g/10分)、好ましくは0.05~100g/10分、より好ましくは0.05~50g/10分である。
 組成物(III)において、重合体(A)としてプロピレンとプロピレン以外のα-オレフィンとのプロピレン共重合体が用いられる場合、ランダム共重合体、ブロック共重合体のいずれであってもよいが、低温での耐衝撃性の点からは、ブロック共重合体が好ましい。この場合、重合体(A)は、MFR(ASTM D1238-65T、230℃、2.16kg荷重)が、通常0.01~150(g/10分)、好ましくは0.05~100g/10分である。
 重合体(A)は、示差走査熱量分析(DSC)で得られる融点(Tm)が、通常100℃以上、好ましくは105℃以上である。示差走査熱量測定は、たとえば次のようにして行われる。試料5mg程度を専用アルミパンに詰め、(株)パーキンエルマー社製DSCPyris1またはDSC7を用い、30℃から200℃までを320℃/minで昇温し、200℃で5分間保持したのち、200℃から30℃までを10℃/minで降温し、30℃でさらに5分間保持し、次いで10℃/minで昇温する際の吸熱曲線より融点を求める。なお、DSC測定時に、複数のピークが検出される場合は、最も高温側で検出されるピーク温度を融点(Tm)と定義する。
 重合体(A)は、熱可塑性エラストマー組成物の流動性および耐熱性を向上させる役割を果たす。該組成物には、特定量の重合体(A)が含まれることが好ましい。
 <エチレン・α-オレフィン・非共役ポリエン共重合体(B)>
 本発明で用いるエチレン・α-オレフィン・非共役ポリエン共重合体(B)(本発明においては、共重合体(B)とも称す)は、エチレンに由来する構造単位、少なくとも1種の炭素数4~20のα-オレフィンに由来する構造単位、および少なくとも一種の非共役ポリエンに由来する構造単位を含み、
 (1)下記式(i)で表されるB値が1.20以上であり、
   B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
 (ここで[E]、[X]および[Y]は、それぞれ、エチレン由来の構造単位のモル分率、炭素数4~20のα-オレフィン由来の構造単位のモル分率、非共役ポリエン由来の構造単位のモル分率を示し、[EX]はエチレン由来の構造単位-炭素数4~20のα-オレフィン由来の構造単位のダイアッド連鎖分率を示す)、
 (2)共重合体(B)の、エチレンに由来する構造単位とα-オレフィン(炭素数4~20)に由来する構造単位とのモル比が、40/60~90/10である。
 炭素数4~20のα-オレフィンとしては、1-ブテン(炭素数4)、1-ノネン(炭素数9)、1-デセン(炭素数10)、1-ノナデセン(炭素数19)、1-エイコセン(炭素数20)等の側鎖の無い直鎖状のα-オレフィン;側鎖を有する4-メチル-1-ペンテン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセン等の側鎖を有するα-オレフィンなどが挙げられる。これらα-オレフィンは1種単独で用いてもよいし2種以上組み合わせて用いてもよい。これらの中では、炭素数4~10のα-オレフィンが好ましく、1-ブテン、1-ヘキセン、1-オクテンがより好ましく、1-ブテンが、低温耐衝撃性、引張強度および引張伸度などの機械物性に優れに優れ、特に、低温での耐衝撃性および破断伸びを向上させることができるため、さらに好ましい。なお、α‐オレフィンがプロピレンであるエチレン・プロピレン・非共役ポリエン共重合体は、低温でのゴム弾性が不十分であるので、用途が限定される。
 非共役ポリエンとしては、1,4-ヘキサジエン、1,6-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン等の鎖状非共役ジエン;シクロヘキサジエン、ジシクロペンタジエン、メチルテトラヒドロインデン、5-ビニル-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン等の環状非共役ジエン;2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,5-ノルボルナジエン、1,3,7-オクタトリエン、1,4,9-デカトリエン、4,8-ジメチル-1,4,8-デカトリエン、4-エチリデン-8-メチル-1,7-ノナジエン等のトリエンなどが挙げられる。これら非共役ポリエンは、1種単独で用いてもよいし2種以上を組み合わせて用いてもよい。これらの中でも、1,4-ヘキサジエンなどの環状非共役ジエン、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、5-エチリデン-2-ノルボルネンおよび5-ビニル-2-ノルボルネンの混合物が好ましく、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネンがより好ましい。
 共重合体(B)としては、エチレン・1-ブテン・1,4-ヘキサジエン共重合体、エチレン・1-ペンテン・1,4-ヘキサジエン共重合体、エチレン・1-ヘキセン・1,4-ヘキサジエン共重合体、エチレン・1-へプテン・1,4-ヘキサジエン共重合体、エチレン・1-オクテン・1,4-ヘキサジエン共重合体、エチレン・1-ノネン・1,4-ヘキサジエン共重合体、エチレン・1-デセン・1,4-ヘキサジエン共重合体、エチレン・1-ブテン・1-オクテン・1,4-ヘキサジエン共重合体、エチレン・1-ブテン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-ペンテン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-ヘキセン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-へプテン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-オクテン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-ノネン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-デセン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-ブテン・1-オクテン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-ブテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、エチレン・1-ペンテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、エチレン・1-ヘキセン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、エチレン・1-へプテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、エチレン・1-オクテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、エチレン・1-ノネン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、エチレン・1-デセン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、エチレン・1-ブテン・1-オクテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体などが挙げられる。
 共重合体(B)は、1種単独で用いてもよいし、2種類以上組み合わせて用いてもよい。
 共重合体(B)は、(1)上記式(i)で表されるB値が1.20以上、好ましくは1.20~1.80、特に好ましくは1.22~1.40の範囲にある。
 B値が1.20未満の共重合体(B)は、低温での圧縮永久ひずみが大きくなり、低温でのゴム弾性と常温での引張強度とのバランスに優れた熱可塑性エラストマー組成物が得られないおそれがある。B値が1.8より大きくなると、モノマーの交互性が高すぎ、共重合体(B)の結晶性が低下して常温での機械物性が低下するおそれがある。
 なお、B値は、共重合体(B)中における共重合モノマー連鎖分布のランダム性を示す指標であり、上記式(i)中の[E]、[X]、[Y]、[EX]は、13C-NMRスペクトルを測定し、J. C.Randall [Macromolecules, 15, 353 (1982)]、J. Ray [Macromolecules, 10, 773 (1977)]らの報告に基づいて求めることができる。
 共重合体(B)は、(2)エチレンに由来する構造単位[A]と、α-オレフィンに由来する構造単位[B]とのモル比〔[A]/[B]〕が、40/60~90/10の範囲にある。モル比[A]/[B]の下限としては、好ましくは45/55、より好ましくは50/50、特に好ましくは55/45である。また、モル比[A]/[B]の上限としては、好ましくは80/20、より好ましくは75/25、さらに好ましくは70/30、特に好ましくは65/35である。
 エチレンに由来する構造単位[A]と、α-オレフィンに由来する構造単位[B]とのモル比が上記範囲にあると、低温でのゴム弾性と常温での引張強度とのバランスに優れる熱可塑性エラストマー組成物が得られる。
 本発明では、組成物(III)に、特定量の共重合体(B)が含まれることにより、低温での耐衝撃性および破断伸びが向上するため、好ましい。
 共重合体(B)は、以下の要件(3)および(4)の少なくとも1つを満たすことが望ましい。
 共重合体(B)は、(3)JIS K6300(1994)に準じて測定して得られた、125℃におけるムーニー粘度ML(1+4)(125℃)が、本発明の効果を奏する限り特に限定されないが、好ましくは5~100、より好ましくは20~95、さらに好ましくは50~90の範囲にある。
 ムーニー粘度が上記範囲にあると、良好な後処理性(リボンハンドリング性)を示すと共に優れたゴム物性を有する傾向にある。
 共重合体(B)は、(4)非共役ポリエンに由来する構造単位[C]の含有量が、[A]、[B]および[C]の構造単位の合計を100モル%に対して、好ましくは0.1~6.0モル%の範囲である。[C]に由来する構造単位の含有量の下限としては、好ましくは0.5モル%である。[C]に由来する構造単位の含有量の上限としては、好ましくは4.0モル%、より好ましくは3.5モル%、さらに好ましくは3.0モル%である。非共役ポリエンに由来する構造単位[C]の含有量が上記範囲にあると、十分な架橋性、低温での耐衝撃性および破断伸びを有するエチレン系共重合体が得られる傾向にある。
 共重合体(B)は、例えば、以下の製造方法により得ることができる。
 具体的には、(a-3)下記一般式[VII]で表される遷移金属化合物(以下の説明では、「架橋メタロセン化合物」と略称する場合がある。)ならびに、(b)(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物、および(b-3)遷移金属化合物(a-3)と反応してイオン対を形成する化合物からなる群より選ばれる少なくとも1種の化合物、を含むオレフィン重合触媒の存在下において、エチレン、炭素原子数4~20のα-オレフィンおよび非共役ポリエンとを共重合することにより製造し得る。該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能であるという利点が得られる。
Figure JPOXMLDOC01-appb-C000001
 式[VII]中の、M、R5、R6、Qおよびjを以下に説明する。
 上記Yは、炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子からなる群より選ばれる原子であるが、好ましくは炭素原子である。
 上記Mは、チタン原子、ジルコニウム原子またはハフニウム原子であるが、好ましくはハフニウム原子である。
 上記R5およびR6は、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基(以下「電子供与性基含有置換アリール基」ともいう。)である。
 アリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、アントラセニル基、フェナントレニル基、テトラセニル基、クリセニル基、ピレニル基、インデニル基、アズレニル基、ピロリル基、ピリジル基、フラニル基、チオフェニル基などの芳香族化合物から誘導された置換基等が挙げられる。上記アリール基としては、フェニル基または2-ナフチル基が好ましい。なお、上記芳香族化合物としては、ベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、ピレン、インデン、アズレン、ピロール、ピリジン、フラン、チオフェンなどの芳香族炭化水素および複素環式芳香族化合物等が挙げられる。
 ハメット則の置換基定数σが-0.2以下の電子供与性基は、以下のように定義および例示される。ハメット則はベンゼン誘導体の反応または平衡に及ぼす置換基の影響を定量的に論ずるために1935年L. P. Hammettにより提唱された経験則であるが、これは今日広く妥当性が認められている。ハメット則で求められた置換基定数にはベンゼン環のパラ位に置換した際のσpおよびメタ位に置換した際のσmがあり、これらの値は多くの一般的な文献に見出すことができる。例えば、HanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]には非常に広範な置換基について詳細な記載がなされている。ただし、これらの文献に記載されているσpおよびσmは、同じ置換基であっても文献によって値が僅かに異なる場合がある。本発明ではこのような状況によって生じる混乱を回避するために、記載のある限りの置換基においてはHanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]のTable 1(168-175頁)に記載された値をハメット則の置換基定数σpおよびσmと定義する。本発明においてハメット則の置換基定数σが-0.2以下の電子供与性基とは、該電子供与性基がフェニル基のパラ位(4位)に置換している場合はσpが-0.2以下の電子供与性基であり、フェニル基のメタ位(3位)に置換している場合はσmが-0.2以下の電子供与性基である。また、該電子供与性基がフェニル基のオルト位(2位)に置換している場合、またはフェニル基以外のアリール基の任意の位置に置換している場合は、σpが-0.2以下の電子供与性基である。
 ハメット則の置換基定数σpまたはσmが-0.2以下の電子供与性置換基としては、p-アミノ基(4-アミノ基)、p-ジメチルアミノ基(4-ジメチルアミノ基)、p-ジエチルアミノ基(4-ジエチルアミノ基)、m-ジエチルアミノ基(3-ジエチルアミノ基)などの窒素含有基、p-メトキシ基(4-メトキシ基)、p-エトキシ基(4-エトキシ基)などの酸素含有基、p-t-ブチル基(4-t-ブチル基)などの三級炭化水素基、p-トリメチルシロキシ基(4-トリメチルシロキシ基)などのケイ素含有基などが挙げられる。尚、本発明で定義されるハメット則の置換基定数σpまたはσmが-0.2以下の電子供与性置換基は、HanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]のTable 1(168-175頁)に記載された置換基に限定されない。該文献に記載のない置換基であっても、ハメット則に基づいて測定した場合の置換基定数σpまたはσmがその範囲となるであろう置換基は、本発明で定義するハメット則の置換基定数σpまたはσmが-0.2以下の電子供与性基に含まれる。このような置換基としては、p-N-モルフォリニル基(4-N-モルフォリニル基)、m-N-モルフォリニル基(3-N-モルフォリニル基)などが挙げられる。
 電子供与性基含有置換アリール基において、該電子供与性置換基が複数個置換している場合それぞれの電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外に炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる置換基が置換していてもよく、該置換基が複数個置換している場合それぞれの置換基は同一でも異なっていてもよいが、一つの置換アリール基に含まれる該電子供与性置換基および該置換基の各々のハメット則の置換基定数σの総和は-0.15以下であることが好ましい。このような置換アリール基としては、m,p-ジメトキシフェニル基(3,4-ジメトキシフェニル基)、p-(ジメチルアミノ)-m-メトキシフェニル基(4-(ジメチルアミノ)-3-メトキシフェニル基)、p-(ジメチルアミノ)-m-メチルフェニル基(4-(ジメチルアミノ)-3-メチルフェニル基)、p-メトキシ-m-メチルフェニル基(4-メトキシ-3-メチルフェニル基)、p-メトキシ-m,m-ジメチルフェニル基(4-メトキシ-3,5-ジメチルフェニル基)等が挙げられる。
 電子供与性基含有置換アリール基が有してもよい炭素数1から20の炭化水素基としては、炭素数1~20のアルキル基、炭素数3~20の環状飽和炭化水素基、炭素数2~20の鎖状不飽和炭化水素基、炭素数3~20の環状不飽和炭化水素基等が挙げられる。
 炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカニル基などの直鎖状飽和炭化水素基;イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、t-アミル基、ネオペンチル基、3-メチルペンチル基、1,1-ジエチルプロピル基、1,1-ジメチルブチル基、1-メチル-1-プロピルブチル基、1,1-ジプロピルブチル基、1,1-ジメチル-2-メチルプロピル基、1-メチル-1-イソプロピル-2-メチルプロピル基、シクロプロピルメチル基などの分岐状飽和炭化水素基等が挙げられる。上記アルキル基の炭素数は好ましくは1~6である。
 炭素数3~20の環状飽和炭化水素基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルネニル基、1-アダマンチル基、2-アダマンチル基などの無置換の環状飽和炭化水素基; 3-メチルシクロペンチル基、3-メチルシクロヘキシル基、4-メチルシクロヘキシル基、4-シクロヘキシルシクロヘキシル基、4-フェニルシクロヘキシル基などの無置換の環状飽和炭化水素基の水素原子が炭素数1から17の炭化水素基で置き換えられた基等が挙げられる。上記環状飽和炭化水素基の炭素数は好ましくは5~11である。
 炭素数2~20の鎖状不飽和炭化水素基としては、エテニル基(ビニル基)、1-プロペニル基、2-プロペニル基(アリル基)、1-メチルエテニル基(イソプロペニル基)などのアルケニル基;、アルキニル基であるエチニル基、1-プロピニル基、2-プロピニル基(プロパルギル基)等が挙げられる。上記鎖状不飽和炭化水素基の炭素数は好ましくは2~4である。
 炭素数3~20の環状不飽和炭化水素基としては、シクロペンタジエニル基、ノルボルニル基、フェニル基、ナフチル基、インデニル基、アズレニル基、フェナントリル基、アントラセニル基などの無置換の環状不飽和炭化水素基;3-メチルフェニル基(m-トリル基)、4-メチルフェニル基(p-トリル基)、4-エチルフェニル基、4-t-ブチルフェニル基、4-シクロヘキシルフェニル基、ビフェニリル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2,4,6-トリメチルフェニル基(メシチル基)などの無置換の環状不飽和炭化水素基の水素原子が炭素数1から15の炭化水素基で置き換えられた基;ベンジル基、クミル基などの直鎖状炭化水素基または分岐状飽和炭化水素基の水素原子が、炭素数3から19の環状飽和炭化水素基または環状不飽和炭化水素基で置き換えられた基等が挙げられる。環状不飽和炭化水素基の炭素数は好ましくは6~10である。
 電子供与性基含有置換アリール基が有してもよいケイ素含有基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基などのアルキルシリル基;ジメチルフェニルシリル基、メチルジフェニルシリル基、t-ブチルジフェニルシリル基などのアリールシリル基;ペンタメチルジシラニル基、トリメチルシリルメチル基などの炭素数1から20の炭化水素基において、炭素原子がケイ素原子で置き換えられた基等が挙げられる。アルキルシリル基の炭素数は1~10が好ましく、アリールシリル基の炭素数は6~18が好ましい。
 電子供与性基含有置換アリール基が有してもよい窒素含有基としては、アミノ基、ニトロ基、N-モルフォリニル基や、上述した炭素数1から20の炭化水素基またはケイ素含有基において、=CH-構造単位が窒素原子で置き換えられた基、-CH2-構造単位が炭素数1から20の炭化水素基が結合した窒素原子で置き換えられた基、または-CH3構造単位が炭素数1から20の炭化水素基が結合した窒素原子またはニトリル基で置き換えられた基であるジメチルアミノ基、ジエチルアミノ基、ジメチルアミノメチル基、シアノ基、ピロリジニル基、ピペリジニル基、ピリジニル基等が挙げられる。窒素含有基としては、ジメチルアミノ基、N-モルフォリニル基が好ましい。
 電子供与性基含有置換アリール基が有してもよい酸素含有基としては、水酸基や、上述した炭素数1から20の炭化水素基、ケイ素含有基または窒素含有基において、-CH2-構造単位が酸素原子またはカルボニル基で置き換えられた基、または-CH3構造単位が炭素数1から20の炭化水素基が結合した酸素原子で置き換えられた基であるメトキシ基、エトキシ基、t-ブトキシ基、フェノキシ基、トリメチルシロキシ基、メトキシエトキシ基、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、t-ブトキシメチル基、1-ヒドロキシエチル基、1-メトキシエチル基、1-エトキシエチル基、2-ヒドロキシエチル基、2-メトキシエチル基、2-エトキシエチル基、n-2-オキサブチレン基、n-2-オキサペンチレン基、n-3-オキサペンチレン基、アルデヒド基、アセチル基、プロピオニル基、ベンゾイル基、トリメチルシリルカルボニル基、カルバモイル基、メチルアミノカルボニル基、カルボキシ基、メトキシカルボニル基、カルボキシメチル基、エトカルボキシメチル基、カルバモイルメチル基、フラニル基、ピラニル基等が挙げられる。酸素含有基としては、メトキシ基が好ましい。
 電子供与性基含有置換アリール基が有していてもよいハロゲン原子としては、第17族元素であるフッ素、塩素、臭素、ヨウ素等が挙げられる。
 電子供与性基含有置換アリール基が有していてもよいハロゲン含有基としては、上述した炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基または酸素含有基において、水素原子がハロゲン原子によって置換された基であるトリフルオロメチル基、トリブロモメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等が挙げられる。
 Qは、ハロゲン原子、炭素数1から20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子なる群より選ばれる原子、置換基または配位子であり、Qが複数ある場合には同一でも異なっていてもよい。
 Qとなるハロゲン原子および炭素数1から20の炭化水素基の具体例は、上記電子供与性基含有置換アリール基が有していてもよいハロゲン原子および炭素数1~20の炭化水素基と同様である。Qがハロゲン原子である場合は、塩素原子が好ましい。Qが炭素数1から20の炭化水素基である場合は、該炭化水素基の炭素数は1から7であることが好ましい。
 アニオン配位子としては、メトキシ基、t-ブトキシ基、フェノキシ基などのアルコキシ基;アセテート、ベンゾエートなどのカルボキシレート基;メシレート、トシレートなどのスルホネート基等が挙げられる。
 孤立電子対で配位可能な中性配位子としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物;テトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタンなどのエーテル化合物等が挙げられる。
 jは1から4の整数であり、好ましくは2である。
 上記一般式[VII]で表される架橋メタロセン化合物(a)に含まれる2,3,6,7-テトラメチルフルオレニル基は、2、3、6および7位に四つの置換基を有するために電子的な効果が大きく、これにより高い重合活性で、かつ高分子量のエチレン系共重合体を生成するものと推測される。一方、概して非共役ポリエンはα-オレフィンに比して嵩高くなるため、これを重合する重合触媒、特に重合活性点となるメタロセン化合物の中心金属近傍は嵩高くない方が非共役ポリエンの共重合性能向上に繋がると推測される。2,3,6,7-テトラメチルフルオレニル基に含まれる四つのメチル基は、他の炭化水素基等に比べて嵩高くないため、このことが高い非共役ポリエン共重合性能に寄与しているものと考えられる。以上より、特に2,3,6,7-テトラメチルフルオレニル基を含む上記一般式[VII]で表される架橋メタロセン化合物が、生成するエチレン系共重合体の高い分子量と、高い非共役ポリエン共重合性能と、高い重合活性とを同時に高いレベルでバランス良く実現するものと推測される。
 架橋メタロセン化合物(a-3)は、例えば下式[VIII]のような簡便な方法で合成することが可能である。
Figure JPOXMLDOC01-appb-C000002
 (式[VIII]において、M、R5、R6の定義具体例および好適例は式[VII]の場合と同様である。)
 上記式[VIII]において、R5およびR6は上記のとおりであるが、一般式R5-C(=O)-R6で表される、このような条件を満たす種々のケトンが一般の試薬メーカーより市販されているため、該架橋メタロセン化合物(a-3)の原料の入手が容易である。また、仮にこのようなケトンが市販されていない場合でも、例えばOlahらによる方法[Heterocycles, 40, 79 (1995)]などにより、該ケトンは容易に合成することが可能である。このように、該架橋メタロセン化合物(a-3)は、比較的製造工程が簡素かつ容易であり、製造コストがさらに低減され、ひいてはこの架橋メタロセン化合物を用いることでエチレ系共重合体の製造コストが低減されるという利点が得られる。さらに、該架橋メタロセン化合物(a-3)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能であるという利点も得られる。
 上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6はアリール基および置換アリール基からなる群より選ばれる基であることが好ましい。該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、重合活性のさらなる向上および生成する共重合体のさらなる高分子量化が可能であるという利点が得られる。また同時に、非共役ポリエンの共重合性能の向上(例えば、共重合体中の非共役ポリエン単位の含有量を高める、共重合体中に非共役ポリエン単位が均一に分散されやすくなる)という利点も得られる。
 上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6は同一の基であることがさらに好ましい。R5およびR6をこのように選択することにより、該架橋メタロセン化合物の合成工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることで共重合体の製造コストが低減されるという利点が得られる。また、該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能であるという利点が得られる。
 本出願人は、種々の架橋メタロセン化合物(a)について鋭意検討した結果、上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6を上記基とした場合に、該架橋メタロセン化合物(a-3)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する際、生成する共重合体の分子量がさらに高くできることを初めて見出した。
 本発明の架橋メタロセン化合物(a-3)のような有機金属錯体触媒によるオレフィンの配位重合においては、触媒の中心金属上でオレフィンが繰り返し重合することにより、生成するオレフィン重合体の分子鎖が生長し(生長反応)、該オレフィン重合体の分子量が増大することが知られている。一方、連鎖移動と呼ばれる反応において、オレフィン重合体の分子鎖が触媒の中心金属から解離することにより、該分子鎖の生長反応が停止し、従って該オレフィン重合体の分子量の増大も停止することも知られている。以上より、オレフィン重合体の分子量は、それを生成する有機金属錯体触媒に固有の、生長反応の頻度と連鎖移動反応の頻度との比率によって特徴づけられる。即ち、生長反応の頻度と連鎖移動反応の頻度との比が大きいほど生成するオレフィン重合体の分子量は高くなり、逆に小さいほど分子量は低くなるという関係である。ここで、それぞれの反応の頻度はそれぞれの反応の活性化エネルギーから見積もることができ、活性化エネルギーが低い反応はその頻度が高く、逆に活性化エネルギーが高い反応はその頻度が低いと見做すことができると考えられる。一般に、オレフィン重合における生長反応の頻度は連鎖移動反応の頻度に比して十分に高い、即ち生長反応の活性化エネルギーは連鎖移動反応の活性化エネルギーに比して十分に低いことが知られている。従って、連鎖移動反応の活性化エネルギーから生長反応の活性化エネルギーを減じた値(以下、ΔEc)は正となり、この値が大きいほど連鎖移動反応の頻度に比して生長反応の頻度が大きくなり、生成するオレフィン重合体の分子量が高くなることが推定される。このようにして行うオレフィン重合体の分子量の推定の妥当性は、例えばLaineらの計算結果によっても裏付けられている[Organometallics, 30, 1350 (2011)]。上記一般式[VII]で表される架橋メタロセン化合物(a-3)においては、R5およびR6を、特にハメット則の置換基定数σが-0.2以下の電子供与性置換基が一つ以上置換した電子供与性基含有置換アリール基とした場合に、上記ΔEcが増大し、該架橋メタロセン化合物(a-3)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する際に、生成する共重合体の分子量が高くなるものと推測される。
 上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6に含まれる電子供与性置換基は、窒素含有基および酸素含有基からなる群より選ばれる基であることがさらに好ましい。
 上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6は、上記電子供与性置換基としての窒素含有基および酸素含有基からなる群より選ばれる基を含む置換フェニル基であることがさらに好ましい。例えば上記式[VIII]のような方法に従って合成する場合、原料となる種々のベンゾフェノンが一般の試薬メーカーより市販されているため原料の入手が容易となり、製造工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることで共重合体(B)の製造コストが低減されるという利点が得られる。
 ここで、上記電子供与性置換基としての窒素含有基および酸素含有基からなる群より選ばれる基を含む置換フェニル基としては、o-アミノフェニル基(2-アミノフェニル基)、p-アミノフェニル基(4-アミノフェニル基)、o-(ジメチルアミノ)フェニル基(2-(ジメチルアミノ)フェニル基)、p-(ジメチルアミノ)フェニル基(4-(ジメチルアミノ)フェニル基)、o-(ジエチルアミノ)フェニル基(2-(ジエチルアミノ)フェニル基)、p-(ジエチルアミノ)フェニル基(4-(ジエチルアミノ)フェニル基)、m-(ジエチルアミノ)フェニル基(3-(ジエチルアミノ)フェニル基)、o-メトキシフェニル基(2-メトキシフェニル基)、p-メトキシフェニル基(4-メトキシフェニル基)、o-エトキシフェニル基(2-エトキシフェニル基)、p-エトキシフェニル基(4-エトキシフェニル基)、o-N-モルフォリニルフェニル基(2-N-モルフォリニルフェニル基)、p-N-モルフォリニルフェニル基(4-N-モルフォリニルフェニル基)、m-N-モルフォリニルフェニル基(3-N-モルフォリニルフェニル基)、o,p-ジメトキシフェニル基(2,4-ジメトキシフェニル基)、m,p-ジメトキシフェニル基(3,4-ジメトキシフェニル基)、p-(ジメチルアミノ)-m-メトキシフェニル基(4-(ジメチルアミノ)-3-メトキシフェニル基)、p-(ジメチルアミノ)-m-メチルフェニル基(4-(ジメチルアミノ)-3-メチルフェニル基)、p-メトキシ-m-メチルフェニル基(4-メトキシ-3-メチルフェニル基)、p-メトキシ-m,m-ジメチルフェニル基(4-メトキシ-3,5-ジメチルフェニル基)等が挙げられる。
 上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6は、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての窒素含有基および酸素含有基からなる群より選ばれる基を含む置換フェニル基であることがさらに好ましい。例えば上記式[VIII]のような方法に従って合成する場合、該基がオルト位に置換した場合に比べて合成が容易となり、製造工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることでエチレン系共重合体の製造コストが低減されるという利点が得られる。
 上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6が、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての窒素含有基を含む置換フェニル基である場合、該窒素含有基は下記一般式[II]で表される基であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000003
 (式[II]において、R7およびR8は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基からなる群より選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、互いに結合して環を形成していてもよく、Nの右に描かれた線はフェニル基との結合を表す。)
 R7およびR8としての炭素数1から20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基の具体例および好適例は、上記式[VII]の場合と同様である。
 このような架橋メタロセン化合物(a-4)は、下記一般式[IX]で表される。
Figure JPOXMLDOC01-appb-C000004
 (式[IX]において、M、Qおよびjの定義、具体例および好適例は式[VII]の場合と同様である。R7、R8およびR10は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる置換基であり、それぞれ同一でも異なっていてもよく、R7、R8およびR10のうちの隣接した置換基は互いに結合して環を形成していてもよく、NR78はハメット則の置換基定数σが-0.2以下の窒素含有基であり、該窒素含有基が複数個存在する場合にはそれぞれの窒素含有基は互いに同一でも異なっていてもよく、nは1から3の整数であり、mは0から4の整数である。)
 上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6が、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての酸素含有基を含む置換フェニル基である場合、該酸素含有基は下記一般式[III]で表される基であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000005
 (式[III]において、R9は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基およびハロゲン含有基からなる群より選ばれる原子または置換基であり、Oの右に描かれた線はフェニル基との結合を表す。)
 R9としての炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基およびハロゲン含有基の具体例および好適例は、式[VII]の場合と同様である。このような架橋メタロセン化合物(a-5)は、下記一般式[X]で表される。
Figure JPOXMLDOC01-appb-C000006
 (式[X]において、M、Qおよびjの定義、具体例および好適例は式[VII]の場合と同様である。R9およびR10は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、R10の隣接した置換基は互いに結合して環を形成していてもよく、OR9はハメット則の置換基定数σが-0.2以下の酸素含有基であり、該酸素含有基が複数個存在する場合にはそれぞれの酸素含有基は互いに同一でも異なっていてもよく、nは1から3の整数であり、mは0から4の整数である。)
 上記一般式[VII]で表される本発明の架橋メタロセン化合物(a-3)、上記一般式[IX]で表される本発明の架橋メタロセン化合物(a-4)または上記一般式[X]で表される本発明の架橋メタロセン化合物(a-5)において、Mはハフニウム原子であることがさらに好ましい。Mがハフニウム原子である上記架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能となり、非共役ポリエンの共重合性能の向上という利点が得られる。
 このような架橋メタロセン化合物(a)としては、
 [ジメチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジエチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-n-ブチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、 [ジシクロペンチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジシクロヘキシルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [シクロペンチリデン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[シクロヘキシリデン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ジフェニルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-1-ナフチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-2-ナフチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ビス(3-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3,4-ジメチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-n-ヘキシルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-シクロヘキシルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-t-ブチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ビス(3-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3,4-ジメトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシ-3-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシ-3,4-ジメチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-エトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-フェノキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(トリメチルシロキシ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ビス{3-(ジメチルアミノ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(ジメチルアミノ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-N-モルフォリニルフェニル)(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ビス{4-(トリメチルシリル)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ビス(3-クロロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-クロロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3-フルオロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-フルオロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{3-(トリフルオロメチル)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(トリフルオロメチル)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [メチルフェニルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル{4-(ジメチルアミノ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-N-モルフォリニルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ジメチルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジエチルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジシクロヘキシルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジフェニルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ(4-メチルフェニル)シリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ジメチルゲルミレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジフェニルゲルミレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)エチレン]ハフニウムジクロリド、[1-(η5-シクロペンタジエニル)-3-(η5-2,3,6,7-テトラメチルフルオレニル)プロピレン]ハフニウムジクロリド、[1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)-1,1,2,2-テトラメチルシリレン]ハフニウムジクロリド、[1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)フェニレン]ハフニウムジクロリド、および、これらの化合物のハフニウム原子をジルコニウム原子に置き換えた化合物またはクロロ配位子をメチル基に置き換えた化合物等が挙げられる。これら触媒の中でも、[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドが好ましい。
 共重合体(B)の製造に使用される架橋メタロセン化合物は公知の方法によって製造可能であり、特に製造方法が限定されるわけではない。製造方法としては、例えば、J.Organomet.Chem.,63,509(1996)、本出願人による出願に係る公報であるWO2006/123759号公報、WO01/27124号公報、特開2004-168744号公報、特開2004-175759号公報、特開2000-212194号公報等記載の製造方法等が挙げられる。
 次に上記架橋メタロセン化合物を、エチレン・α―オレフィン・非共役ポリエン共重合体(B)の製造用触媒(オレフィン重合触媒)として用いる場合の好ましい形態について説明する。
 架橋メタロセン化合物をオレフィン重合触媒成分として用いる場合、触媒は、
(a)上記一般式[VII]で表される架橋メタロセン化合物と、
(b)(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物、および(b-3)架橋メタロセン化合物(a)と反応してイオン対を形成する化合物、からなる群より選ばれる少なくとも1種の化合物と、
さらに必要に応じて、
(c)粒子状担体とから構成される。
以下、各成分について具体的に説明する。
 〈(b-1)有機金属化合物〉
 共重合体(B)の製造に用いられる(b-1)有機金属化合物として、具体的には下記一般式[X]~[XII]のような周期律表第1、2族および第12、13族の有機金属化合物が用いられる。
 (b-1a)一般式 Ra mAl(ORbnpq・・・[X]
 (式[X]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物。
 一般式[X]で表される化合物として、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-オクチルアルミニウムなどのトリアルキルアルミニウム、トリシクロアルキルアルミニウム、イソブチルアルミニウムジクロリド、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド、エチルアルミニウムセスキクロリド、メチルアルミニウムジクロリド、ジメチルアルミニウムクロリド、ジイソブチルアルミニウムハイドライド等が挙げられる。
 (b-1b)一般式 M2AlRa 4・・・[XI]
 (式[XI]中、M2はLi、NaまたはKを示し、Raは炭素原子数が1~15、好ましくは1~4の炭化水素基である。)で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
 一般式[XI]で表される化合物として、LiAl(C254、LiAl(C7154等が挙げられる。
 (b-1c)一般式 Rab3・・・[XII]
 (式[XII]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、M3はMg、ZnまたはCdである。)で表される周期律表第2族または第12族金属を有するジアルキル化合物。
 上記の有機金属化合物(b-1)の中では、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-オクチルアルミニウムなどの有機アルミニウム化合物が好ましい。また、これら有機金属化合物(b-1)は、1種単独で用いてもよいし2種以上組み合わせて用いてもよい。
 〈(b-2)有機アルミニウムオキシ化合物〉
 共重合体(B)の製造に用いられる(b-2)有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。(b-2)有機アルミニウムオキシ化合物は、1種単独で用いてもよいし2種以上組み合せて用いてもよい。
 〈(b-3)遷移金属化合物(a)と反応してイオン対を形成する化合物〉
 共重合体(B)の製造に用いられる架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b-3)(以下、「イオン化イオン性化合物」という。)としては、特開平1-501950号公報、特開平1-502036号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、USP-5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。
 上記(b-3)イオン化イオン性化合物の中では、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートが好ましい。(b-3)イオン化イオン性化合物は、1種単独で用いてもよいし2種以上組み合せて用いてもよい。
 上記一般式[VII]で表される遷移金属化合物(a)を触媒とする場合、トリイソブチルアルミニウムなどの有機金属化合物(b-1)、メチルアルミノキサンなどの有機アルミニウムオキシ化合物(b-2)またはトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどのイオン化イオン性化合物(b-3)を併用すると、エチレン・α―オレフィン・非共役ポリエン共重合体(B)の製造に際して非常に高い重合活性を示す。
 また、共重合体(B)の製造に使用されるオレフィン重合用触媒は、上記遷移金属化合物(a)と、(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物、および(b-3)イオン化イオン性化合物からなる群より選ばれる少なくとも1種の化合物(b)とともに、必要に応じて担体(c)を用いることもできる。
 上記担体(c)は、無機化合物または有機化合物であって、顆粒状ないしは微粒子状の固体である。
 上記無機化合物の中でも、多孔質酸化物、無機ハロゲン化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
 多孔質酸化物としては、SiO2、Al23、MgO、ZrO、TiO2、B23、CaO、ZnO、BaO、ThO2などの無機酸化物、またはこれら無機酸化物を含む複合物または混合物を主成分とする多孔質材が挙げられ、多孔質酸化物としては、具体的には、天然または合成ゼオライト;SiO2-MgO、SiO2-Al23、SiO2-TiO2、SiO2-V25、SiO2-Cr23、SiO2-TiO2-MgOなどを主成分とする多孔質酸化物が挙げられる。これらのうち、SiO2および/またはAl23を主成分とする多孔質酸化物が好ましい。このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、粒径が10~300μm、好ましくは20~200μmであって、比表面積が通常50~1000m2/g、好ましくは100~700m2/gの範囲にあり、細孔容積が0.3~3.0cm3/gの範囲にあることが望ましい。このような担体は、必要に応じて100~1000℃、好ましくは150~700℃で焼成してから使用される。
 無機ハロゲン化物としては、MgCl2、MgBr2、MnCl2、MnBr2等が挙げられる。無機ハロゲン化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機ハロゲン化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いることもできる。
 上記担体(c)として用いられる粘土は、通常粘土鉱物を主成分として構成される。また、本発明で用いられるイオン交換性層状化合物は、イオン結合などによって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有するイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。
 また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物等が挙げられる。
 粘土および粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイト等が挙げられる。
 イオン交換性層状化合物としては、α-Zr(HAsO42・H2O、α-Zr(HPO42、α-Zr(KPO42・3H2O、α-Ti(HPO42、α-Ti(HAsO42・H2O、α-Sn(HPO42・H2O、γ-Zr(HPO42、γ-Ti(HPO42、γ-Ti(NH4PO42・H2Oなどの多価金属の結晶性酸性塩等が挙げられる。
 このような粘土、粘土鉱物またはイオン交換性層状化合物は、水銀圧入法で測定した半径20Å以上の細孔容積が0.1cc/g以上のものが好ましく、0.3~5cc/gのものが特に好ましい。ここで、細孔容積は、水銀ポロシメーターを用いた水銀圧入法により、細孔半径20~30000Åの範囲について測定される。
 半径20Å以上の細孔容積が0.1cc/gより小さいものを担体として用いた場合には、高い重合活性が得られにくい傾向がある。
 上記担体(c)として用いられる粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理としては、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。酸処理は、表面の不純物を取り除くほか、結晶構造中のAl、Fe、Mgなどの陽イオンを溶出させることによって表面積を増大させる。アルカリ処理では粘土の結晶構造が破壊され、粘土の構造の変化をもたらす。また、塩類処理、有機物処理では、イオン複合体、分子複合体、有機誘導体などを形成し、表面積や層間距離を変えることができる。
 上記担体(c)として用いられるイオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質を導入することをインターカレーションという。インターカレーションするゲスト化合物としては、TiCl4、ZrCl4などの陽イオン性無機化合物;Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3などの金属アルコキシド(Rは炭化水素基など);、[Al134(OH)247+、[Zr4(OH)142+、[Fe3O(OCOCH36+などの金属水酸化物イオン等が挙げられる。これらの化合物は1種単独で用いることもできるし2種以上組み合わせて用いることもできる。また、これらの化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4などの金属アルコキシド(Rは炭化水素基など)などを加水分解して得た重合物、SiO2などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。
 上記粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分けなどの処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。これら担体(c)となる物質は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ヘクトライト、テニオライトおよび合成雲母である。
 有機化合物としては、粒径が10~300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどの炭素原子数が2~14のα-オレフィンを主成分として生成される(共)重合体、ビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体が挙げられる。
 共重合体(B)の製造に使用されるオレフィン重合用触媒は、架橋メタロセン化合物(a)と、(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物、および(b-3)イオン化イオン性化合物からなる群より選ばれる少なくとも1種の化合物(b)と、必要に応じて用いられる担体(c)を含むこともできる。
 エチレン、α-オレフィン、及び非共役ポリエンを共重合させる際、重合触媒を構成する各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。
 (1)前記化合物(a)を単独で重合器に添加する方法。
 (2)前記化合物(a)および前記化合物(b)を任意の順序で重合器に添加する方法。
 (3)前記化合物(a)を前記担体(c)に担持した触媒成分、前記化合物(b)を任意の順序で重合器に添加する方法。
 (4)前記化合物(b)を前記担体(c)に担持した触媒成分、前記化合物(a)を任意の順序で重合器に添加する方法。
 (5)前記化合物(a)と前記化合物(b)とを前記担体(c)に担持した触媒成分を重合器に添加する方法。
 上記(2)~(5)の各方法においては、化合物(a)、化合物(b)、担体(c)の少なくとも2つは予め接触されていてもよい。
 化合物(b)が担持されている上記(4)、(5)の各方法においては、必要に応じて担持されていない化合物(b)を、任意の順序で添加してもよい。この場合化合物(b)は、担体(c)に担持されている化合物(b)と同一でも異なっていてもよい。
 また、上記の担体(c)に化合物(a)が担持された固体触媒成分、担体(c)に化合物(a)および化合物(b)が担持された固体触媒成分は、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに、触媒成分が担持されていてもよい。
 共重合体(B)は、上記のようなエチレン・α-オレフィン・非共役ポリエン共重合体用触媒の存在下に、エチレン、α-オレフィン、および非共役ポリエンを共重合することにより製造し得る。
 共重合体(B)の製造は、溶液(溶解)重合、懸濁重合などの液相重合法または気相重合法のいずれによっても可能である。
 液相重合法において用いられる不活性炭化水素媒体としては、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素等が挙げられる。上記不活性炭化水素媒体は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。また、オレフィン自身を溶媒として用いることもできる。
 上記のような共重合体用触媒を用いて、エチレンなどの重合を行うに際して、架橋メタロセン化合物(a)は、反応容積1リットル当り、通常10-12~10-2モル、好ましくは10-10~10-8モルになるような量で用いられる。
 有機金属化合物(b-1)は、該化合物(b-1)と、架橋メタロセン化合物(a)中の全遷移金属原子(M)とのモル比〔(b-1)/M〕が通常0.01~50000、好ましくは0.05~10000となるような量で用いられる。有機アルミニウムオキシ化合物(b-2)は、該化合物(b-2)中のアルミニウム原子と、化合物(a)中の全遷移金属(M)とのモル比〔(b-2)/M〕が、通常10~50000、好ましくは20~10000となるような量で用いられる。イオン化イオン性化合物(b-3)は、化合物(b-3)と、化合物(a)中の遷移金属原子(M)とのモル比〔(b-3)/M〕が、通常1~20、好ましくは1~15となるような量で用いられる。
 共重合体(B)の重合温度は、通常-50~+200℃、好ましくは0~+200℃の範囲、より好ましくは、+80~+200℃の範囲である。
 目標とする到達分子量、用いる触媒の重合活性によるが、生産性の観点から、重合温度は、より高温(+80℃以上)であることが望ましい。
 共重合体(B)の重合圧力は、通常常圧~10MPaゲージ圧、好ましくは常圧~5MPaゲージ圧の範囲である。共重合体(B)の重合反応形式は、回分式、半連続式、連続式のいずれであってもよい。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。
 得られ共重合体(B)の分子量は、例えば重合系内に水素を存在させることにより、あるいは重合温度を変化させることにより調整できる。水素を重合系内に存在させることに分子量を調整する場合には、水素の添加量はオレフィン1kgあたり0.001~100NL程度が適当である。また、化合物(b)(例えば、トリイソブチルアルミニウム、メチルアルミノキサン、ジエチル亜鉛等)を触媒成分と使用する場合には、共重合体の分子量は、化合物(b)の使用量により調節できる。
 本発明の熱可塑性エラストマー組成物では、結晶性オレフィン系重合体(A)とエチレン・α-オレフィン・非共役ポリエン共重合体(B)との重量比(A)/(B)は、好ましくは90/10~10/90、より好ましくは60/40~20/80である。重量比(A)/(B)が上記範囲にあると、機械物性、成形性に優れた成形体が得られる。
 <エチレン・α-オレフィン共重合体(C)>
 本発明の熱可塑性エラストマー組成物(I)には、本発明の効果を奏する限り、エチレン・α-オレフィン(炭素数3以上)共重合体(C)(本発明においては、共重合体(C)とも称す)を加えてもよい。
 エチレン・α-オレフィン(炭素数3以上)共重合体(C)は、エチレンとα-オレフィンとを共重合することにより得られる重合体であり、室温においてゴム弾性を有する重合体である。本発明の熱可塑性エラストマー組成物(III)に、特定量の共重合体(C)が含まれることにより、低温での耐衝撃性および破断伸びが向上する。
 共重合体(C)の原料となる炭素数3以上のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、2-メチル-1-プロペン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、5-メチル-1-ヘキセン等が挙げられる。これらα-オレフィンの中でも、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、2-メチル-1-プロペン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、5-メチル-1-ヘキセン等の炭素数3~20のα-オレフィンが好ましく、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、2-メチル-1-プロペン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、5-メチル-1-ヘキセン等の炭素数3~8のα-オレフィンが好ましい。
 共重合体(C)におけるエチレン由来の構造単位の含有量は、好ましくは30~95モル%、より好ましくは50~90モル%であり、炭素数3以上のα-オレフィン由来の構造単位の含有量は、好ましくは5~70モル%、より好ましくは10~50モル%である。ただし、エチレン由来の構造単位の含有量とα-オレフィン由来の構造単位の含有量の合計を100モル%とする。
 共重合体(C)の190℃で測定したメルトフローレート(MFR、ASTM D1238、2.16kg荷重)は、好ましくは0.01~50(g/10分)、より好ましくは0.05~45(g/10分)、さらに好ましくは0.1~40(g/10分)である。MFRが上記範囲にあることにより、流動性と耐衝撃性が良好となるため、好ましい。MFRが0.01g/10分未満であると成形が困難になるおそれがあり、50g/10分を超えるとエチレン・α- オレフィン系共重合体(C)の分子量が低いこととなり、耐衝撃性が著しく低下する恐れがあるため、好ましくない。
 共重合体(C)は、示差走査熱量分析(DSC)で得られる融点(Tm)が、通常100℃未満であるか、または、DSCにて融点ピークが実質的に観測されず、好ましくは95℃以下であるか、または、DSCにて融点ピークが実質的に観測されないことであり、より好ましくは、DSCにて融点ピークが実質的に観測されないことである。なお、示差走査熱量測定は、たとえば、上記と同様の方法で測定できる。また、DSCにて融点ピークが実質的に観測されないとは、DSCで測定される融解熱量ΔH(Tm)(単位:J/g)が、実質的に観測されないことを言い、具体的には、たとえば、-150~200℃の範囲において、融解熱量が1J/g以上の結晶融解ピークが観測されないことをいう。
 共重合体(C)としては、エチレン・1-ブテン共重合体、エチレン・1-ヘキセン共重合体およびエチレン・1-オクテン共重合体などが挙げられ、エチレン・1-ブテン共重合体およびエチレン・1-オクテン共重合体が、特に優れた低温での耐衝撃性および破断伸びを得られるため、より好ましい。
 共重合体(C)は、1種単独で用いてもよいし、2種類以上組み合わせて用いてもよい。
 本発明の組成物、好ましくは組成物(III)では、重合体(A)の含有量は、通常30~70重量部、好ましくは32~65重量部、より好ましくは35~62重量部であり、共重合体(B)の含有量は、通常1~30重量部、好ましくは2~28重量部、より好ましくは5~25重量部であり、共重合体(C)の含有量は、通常1~60重量部、好ましくは3~58重量部、より好ましくは5~55重量部である(ただし、重合体(A)、共重合体(B)および共重合体(C)の合計を100重量部とする)。共重合体(C)の含有量が、1重量部未満であると耐衝撃性が低下し、60重量部を超えると耐熱性が低下するため、好ましくない。このような特徴を有することにより、架橋をしない場合であっても、低温での耐衝撃性および破断伸びに優れる成形体となり得る組成物(III)が得られる。
 <過酸化物系架橋剤(D)>
 本発明の熱可塑性エラストマー組成物(I)には、本発明の効果を奏する限り、過酸化物系架橋剤(D)(本発明においては、架橋剤(D)とも称す)を加えてもよい。
 本発明の熱可塑性エラストマー組成物(II)は、重合体(A)および共重合体(B)を架橋剤(D)により動的架橋することにより得られる。なお、本発明において、「動的架橋」とは、前記組成物にせん断力を加えながら架橋することをいう。架橋剤(D)は、無機過酸化物、有機過酸化物が挙げられる。これら架橋剤(D)の中でも、ゴム弾性の点からは、有機過酸化物が好ましい。
 有機過酸化物としては、ジクミルペルオキシド、ジ-tert-ブチルペルオキシド、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3、1,3-ビス(tert-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルペルオキシ)バレレート、ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド、tert-ブチルペルオキシベンゾエート、tert-ブチルペルオキシイソプロピルカーボネート、ジアセチルペ
ルオキシド、ラウロイルペルオキシド、tert-ブチルクミルペルオキシド等が挙げられる。
 これら有機過酸化物のうち、臭気性、スコーチ安定性の点で、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3、1,3-ビス(tert-ブチルペルオキシイソプロピル)ベンゼンが好ましく、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサンがより好ましい。
 架橋剤(D)は、重合体(A)、共重合体(B)、必要に応じて添加されるその他の樹脂成分、その他のゴム成分、および軟化剤(E)の合計量100重量部に対して、通常0.02~3重量部、好ましくは0.05~1重量部となるような量で用いられる。
 有機過酸化物の配合量を上記範囲にすることにより、成形性に優れる組成物が得られ、また、得られる成形体は、適度な架橋度を有し、十分な耐熱性、引張特性、弾性回復、反発弾性を有する。
 本発明においては、架橋剤(D)による動的架橋に際し、硫黄、p-キノンジオキシム、p,p'-ジベンゾイルキノンジオキシム、N-メチル-N-4-ジニトロソアニリン、ニトロソベンゼン、ジフェニルグアニジン、トリメチロールプロパン-N,N'-m-フェニレンジマレイミドのようなペルオキシ架橋助剤、ジビニルベンゼン、トリアリルシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、アリルメタクリレートなどの多官能性メタクリレートモノマー、ビニルブチラート、ビニルステアレートなどの多官能性ビニルモノマー等の助剤を配合することができる。
 上記助剤を用いることにより、均一かつ穏やかな架橋反応が期待できる。上記助剤としては、ジビニルベンゼンが好ましい。ジビニルベンゼンは、取扱い易く、熱可塑性エラストマー組成物(I)または(II)に主成分として含まれる重合体(A)および共重合体(B)との相溶性が良好であり、かつ、架橋剤(D)(典型的には有機過酸化物)を可溶化する作用を有し、架橋剤(D)の分散剤として働くため、熱処理による架橋効果が均質で、流動性と物性とのバランスのとれた熱可塑性エラストマー組成物が得られる。
 上記助剤は、重合体(A)、共重合体(B)、必要に応じて添加されるその他の樹脂成分、その他のゴム成分、および軟化剤(E)の合計量100重量部に対して、通常2重量部以下、好ましくは0.3~1重量部となるような量で用いられる。
 また、架橋剤(D)(典型的には有機過酸化物)の分解を促進するために、分散促進剤を用いてもよい。分解促進剤としては、トリエチルアミン、トリブチルアミン、2,4,6-トリ(ジメチルアミノ)フェノールなどの三級アミン;、アルミニウム、コバルト、バナジウム、銅、カルシウム、ジルコニウム、マンガン、マグネシウム、鉛、水銀等のナフテン酸塩等が挙げられる。
 <その他の成分>
 本発明の熱可塑性エラストマー組成物には、前記の(共)重合体以外に、本発明の効果を損なわない範囲において、適宜、添加剤を配合してもよい。添加剤としては、特に限定されないが、軟化剤(E)、無機充填剤(F)等が挙げられる。また、添加剤としては、重合体(A)、共重合体(B)および共重合体(C)以外のゴム(たとえば、ポリイソブチレン、ブチルゴム、プロピレン・エチレン共重合体ゴム、プロピレン・ブテン共重合体ゴムおよびプロピレン・ブテン・エチレン共重合体ゴムなどのプロピレン系エラストマー、エチレン・プロピレン共重合体ゴムなどのエチレン系エラストマー、スチレン・ブタジエン・スチレンブロックポリマー、スチレン・イソプレン・スチレンブロックポリマー、スチレン・イソブチレン・スチレンブロックポリマーおよびこれらの水素添加物などのスチレン系エラストマー);熱硬化性樹脂、ポリオレフィンなどの熱可塑性樹脂等の結晶性オレフィン系重合体(A)以外の樹脂;耐熱安定剤;老化防止剤;耐光安定剤、耐候安定剤;帯電防止剤;金属セッケン;脂肪族アミド;ワックスなどの滑剤等、ポリオレフィンの分野で用いられている公知の添加剤が挙げられる。
 これら添加剤は、それぞれ1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、本明細書において特に言及している添加剤以外の添加剤の配合量は、本発明の効果を奏する限り特に限定されないが、重合体(A)、共重合体(B)および共重合体(C)の合計100重量部に対して、それぞれ通常0.0001~10重量部、好ましくは0.01~5重量部程度である。
 軟化剤(E)としては、通常ゴムに使用される軟化剤を用いることができる。軟化剤(E)としては、プロセスオイル、潤滑油、パラフィン油、流動パラフィン、石油アスファルト、ワセリンなどの石油系軟化剤;コールタール、コールタールピッチなどのコールタール系軟化剤;ヒマシ油、アマニ油、ナタネ油、大豆油、ヤシ油などの脂肪油系軟化剤;トール油;サブ(ファクチス);蜜ロウ、カルナウバロウ、ラノリン等のロウ類;リシノール酸、パルミチン酸、ステアリン酸、ステアリン酸バリウム、ステアリン酸カルシウム、ラウリン酸亜鉛等の脂肪酸または脂肪酸塩;ナフテン酸;パイン油、ロジンまたはその誘導体;テルペン樹脂、石油樹脂、アタクチックポリプロピレン、クマロンインデン樹脂等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート、ジオクチルセバケート等のエステル系軟化剤;マイクロクリスタリンワックス、液状ポリブタジエン、変性液状ポリブタジエン、液状チオコール、炭化水素系合成潤滑油などが挙げられる。
 これら軟化剤(E)は、組成物(I)および(II)においては、本発明の効果を奏する限り限定されないが、重合体(A)および重合体(B)の合計量100重量部に対し、通常2~100重量部、好ましくは5~80重量部の量で用いられる。組成物(III)においては、軟化剤(E)は、本発明の効果を奏する限り限定されないが、重合体(A)、共重合体(B)および共重合体(C)の合計量100重量部に対し、通常1~100重量部、好ましくは1.5~80重量部の量で用いられる。軟化剤(E)をこのような量で用いると、熱可塑性エラストマー組成物の作製時および成形時の流動性に優れ、得られる成形体の機械的物性を低下させ難く、また、得られる成形体は、耐熱性、耐熱老化性に優れる。
 無機充填剤(F)としては、炭酸カルシウム、ケイ酸カルシウム、クレー、カオリン、タルク、シリカ、ケイソウ土、雲母粉、アスベスト、アルミナ、硫酸バリウム、硫酸アルミニウム、硫酸カルシウム、塩基性炭酸マグネシウム、二硫化モリブデン、グラファイト、ガラス繊維、ガラス球、シラスバルーン、塩基性硫酸マグネシウムウィスカー、チタン酸カルシウムウィスカー、ホウ酸アルミニウムウィスカー等が挙げられる。
 これら無機充填剤(F)は、組成物(I)および(II)においては、本発明の効果を奏する限り限定されないが、重合体(A)および共重合体(B)の合計量100重量部に対して、通常2~100重量部、好ましくは2~50重量部の量で用いられる。組成物(III)においては、無機充填剤(F)は、本発明の効果を奏する限り限定されないが、重合体(A)、共重合体(B)および共重合体(C)の合計量100重量部に対して、通常0.1~100重量部、好ましくは1~50重量部の量で用いられる。
 組成物(I)および(II)においては、共重合体(B)以外のゴムを用いる場合には、該ゴムは、重合体(A)および共重合体(B)の合計量100重量部に対して、通常2~200重量部、好ましくは5~150重量部の量で用いる。組成物(III)において、共重合体(B)および共重合体(C)以外のゴムを用いる場合には、該ゴムは、重合体(A)、共重合体(B)および共重合体(C)の合計量100重量部に対して、通常1~200重量部、好ましくは3~150重量部の量で用いる。
 ≪熱可塑性エラストマー組成物(I)、(II)、(III)≫
 本発明の組成物(I)は、重合体(A)および共重合体(B)と、必要に応じて配合される添加剤を含む混合物から、公知の製造方法、好ましくは動的に熱処理するによって得ることができる。
 本発明の組成物(II)は、重合体(A)、共重合体(B)、必要に応じて配合される添加剤を含む混合物を架橋剤(D)の存在下に、動的に熱処理して架橋(動的架橋)することによって得られる。
 本発明の組成物(III)は、重合体(A)、共重合体(B)および共重合体(C)、必要に応じて配合される添加剤を含む混合物を、架橋剤の非存在下で混合、好ましくは架橋剤の非存在下で、動的に熱処理することによって得られる。
 なお、本発明において、「動的に熱処理する」とは、前記組成物を溶融状態で混練することをいう。
 なお、組成物(II)は、重合体(A)、共重合体(B)を含む重合体成分が部分的架橋された組成物であってもよく、完全に架橋された組成物であってもよい。
 動的な熱処理は、非開放型の装置中で行なうことが好ましく、また窒素、炭酸ガス等の不活性ガス雰囲気下で行うことが好ましい。熱処理の温度は、通常重合体(A)の融点から300℃の範囲であり、好ましくは150~280℃、より好ましくは170~270℃である。混練時間は、通常0.25~20分間、好ましくは0.5~10分間、より好ましくは1~10分間である。また、加えられる剪断力は、最高剪断速度で通常10~100,000sec-1、好ましくは100~50,000sec-1、より好ましくは1,000~10,000sec-1、さらに好ましくは2,000~7,000sec-1の範囲である。
 混練の際の混練装置としては、ミキシングロール、インテンシブミキサー(例えばバンバリーミキサー、ニーダー)、一軸押出機、二軸押出機等が挙げられる。なお、これら混練装置としては、非開放型の装置が好ましい。
 組成物(I)、および組成物(I)を従来公知の方法で成形して得られる成形体は、低温耐衝撃性に優れる。
 組成物(II)、および該組成物(II)を従来公知の方法で成形して得られる成形体は、低温耐衝撃性、機械物性がともに優れる。このため、組成物(II)および成形体は、冷蔵庫のパッキンなどの低温下で使用されるシール材、自動車内装表皮材、自動車用エアバッグカバー、マッドガードやスポイラーリップ、フェンダーライナーなどの自動車部品、工業機械部品、電子・電気機器部品、建材等に好適に使用することができる。
 組成物(III)、および組成物(III)を従来公知の方法で成形して得られる成形体は、低温での耐衝撃性および破断伸びに優れる。このため、組成物(II)および成形体は、冷蔵庫のパッキンなどの低温下で使用されるシール材、自動車部品、工業機械部品、電子・電気機器部品、建材などに好適に使用することができる。特に、低温での耐衝撃性および破断伸びが必要な自動車部品用途、例えば、自動車内装部品として、自動車内装表皮材、自動車用エアバッグカバーなどに、自動車外装部品として、マッドガードやスポイラーリップ、フェンダーライナーなどに好適に使用することができる。
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。以下の実施例等の記載において、特に言及しない限り「部」は「重量部」を示す。
 <結晶性オレフィン系重合体>
 (A-1)ホモポリプロピレン
 プライムポリプロ(商標) J105(商品名、プライムポリマー社製)、メルトフローレート(ASTM-D-1238-65T;230℃、2.16kg荷重)が9.0g/10分である。
 (A-2)ブロックポリプロピレン
 メルトフローレート(ASTM D1238-65T、230℃、2.16kg荷重)が55g/10分であり、DSCで得られる融点(Tm)が161.8℃であるブロックタイプのポリプロピレン(エチレン単位含量9モル%)。
 <エチレン・α-オレフィン共重合体>
 (C-1)エチレン・1-ブテン共重合体
 エチレンと1-ブテンからなり、エチレン含量81モル%、メルトフローレート(ASTM D1238、190℃、2.16kg荷重)が0.5g/10分であり、DSCにて融点ピークが実質的に観測されない共重合体。
 <エチレン・α-オレフィン・非共役ポリエン共重合体>
 〔各構造単位のモル量〕
 エチレン[A]に由来する構造単位、α-オレフィン[B]に由来する構造単位および非共役ポリエン[C]に由来する構造単位のモル量は、1H-NMRスペクトルメーターによる強度測定によって求めた。なお、油展されたエチレン・α-オレフィン・非共役ポリエン共重合体については、油展前のエチレン・α-オレフィン・非共役ポリエン共重合体について測定を行った。
 〔ムーニー粘度〕
 ムーニー粘度ML(1+4)(125℃)は、ムーニー粘度計((株)島津製作所製SMV202型)を用いて、JIS K6300(1994)に準じて測定した。
 〔ヨウ素価〕
 共重合体のヨウ素価は、滴定法により求めた値である。具体的には、以下の方法で行った。
 共重合体0.5gを四塩化炭素60mlに溶解し、少量のウィス試薬および20%ヨウ化カリウム溶液を加え、0.1mol/Lチオ硫酸ナトリウム溶液で適定した。終点付近では澱粉指示薬を加え、よく攪拌しながら薄紫色が消えるところまで適定し、試料100gに対する消費されるハロゲンの量としてヨウ素のg数を算出した。なお、油展されたエチレン・α-オレフィン・非共役ポリエン共重合体については、油展前のエチレン・α-オレフィン・非共役ポリエン共重合体について測定を行った。
 〔B値〕
 o-ジクロロベンゼン-d4/ベンゼン-d6(4/1[v/v])を測定溶媒とし、測定温度120℃にて、13C-NMRスペクトル(100MHz、日本電子製ECX400P)を測定し、下記式(i)に基づき、B値を算出した。なお、油展されたエチレン・α-オレフィン・非共役ポリエン共重合体については、油展前のエチレン・α-オレフィン・非共役ポリエン共重合体について測定を行った。
 B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
 ここで[E]、[X]および[Y]は、それぞれ、エチレン[A]、炭素数4~20のα-オレフィン[B]および非共役ポリエン[C]のモル分率を示し、[EX]はエチレン[A]-炭素数4~20のα-オレフィン[B]ダイアッド連鎖分率を示す。
 〔遷移金属化合物の合成〕
 [ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド(触媒-a1)の合成
 (i)6,6-ビス(4-メトキシフェニル)フルベンの合成
 窒素雰囲気下、500ml三口フラスコにリチウムシクロペンタジエニド8.28g(115mmol)および脱水THF(テトラヒドロフラン)200 mlを加えた。氷浴で冷却しながらDMI(1,3-ジメチル-2-イミダゾリジノン)13.6 g (119 mmol)を添加し、室温で30分間攪拌した。その後4,4'-ジメトキシベンゾフェノン 25.3 g (105 mol)を加え、加熱還流下で1週間攪拌した。氷浴で冷却しながら水 100 mlを徐々に添加し、更にジクロロメタン 200 mlを加えて室温で30分間攪拌した。得られた二層の溶液を500 ml分液漏斗に移し、有機層を水 200 mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去して橙褐色固体を得た。シリカゲルクロマトグラフ(700 g、ヘキサン:酢酸エチル = 4:1)による分離を行い、赤色溶液を得た。減圧下で溶媒を留去し、橙色固体として6,6-ビス(4-メトキシフェニル)フルベン 9.32 g (32.1 mmol、30.7%)を得た。6,6-ビス(4-メトキシフェニル)フルベンの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
 1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.28-7.23 (m, 4H), 6.92-6.87 (m, 4H), 6.59-6.57 (m, 2H), 6.30-6.28 (m, 2H), 3.84 (s, 6H)
 (ii)ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの合成
 窒素雰囲気下、100 ml三口フラスコに2,3,6,7-テトラメチルフルオレン 500 mg (2.25 mmol)および脱水t-ブチルメチルエーテル 40 mlを添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 1.45 ml (2.36 mmol)を徐々に添加し、室温で18時間攪拌した。6,6-ビス(4-メトキシフェニル)フルベン 591 mg (2.03 mmol)を添加した後、3日間加熱還流を行った。氷浴で冷却しながら水 50 mlを徐々に添加し、得られた溶液を300 ml分液漏斗に移した。ジクロロメタン 50 mlを加えて数回振った後水層を分離し、有機層を水 50 mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去した。得られた固体を少量のジエチルエーテルで洗浄し、白色固体を得た。更に、洗浄液の溶媒を減圧下で留去し、得られた固体を少量のジエチルエーテルで洗浄して白色固体を採取し、先に得た白色固体と合わせた。この固体を減圧下で乾燥し、ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 793 mg (1.55 mmol、76.0%)を得た。ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの同定はFD-MSスペクトルにて行った。以下にその測定値を示す。
 FD-MSスペクトル: M/z 512 (M+)
 (iii)[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成
 窒素雰囲気下、100 mlシュレンク管にビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 272 mg (0.531 mmol)、脱水トルエン 20 mlおよびTHF90μl (1.1 mmol)を順次添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 0.68 ml (1.1 mmol)を徐々に添加し、45℃で5時間攪拌したところ赤色溶液が得られた。減圧下で溶媒を留去し、脱水ジエチルエーテル 20 mlを添加して再び赤色溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム 164 mg (0.511 mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌したところ、黄色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後ジクロロメタンで抽出した。減圧下で溶媒を留去して得られた固体を少量のジクロロメタンに溶解し、ヘキサンを加えて-20℃で再結晶した。析出した固体を採取し、ヘキサンで洗浄した後減圧下で乾燥することにより、黄色固体として[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド 275 mg (0.362 mmol、70.8%)を得た。[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.87 (s, 2H), 7.80-7.66 (m, 4H), 6.94-6.83 (m, 4H), 6.24 (t, J = 2.6 Hz, 2H), 6.15 (s, 2H), 5.65 (t, J = 2.6 Hz, 2H), 3.80 (s, 6H), 2.47 (s, 6H), 2.05 (s, 6H)
FD-MSスペクトル: M/z 760 (M+)
 得られた触媒-a1の化学式を以下に示す。
Figure JPOXMLDOC01-appb-C000007
 〔製造例1〕
 (B-1)エチレン・1-ブテン・5-エチリデン-2-ノルボルネン共重合体(EBDM-1)
 攪拌翼を備えた容積300Lの重合器を用いて、連続的に、エチレン、1-ブテン、5-エチリデン-2-ノルボルネン(ENB)の重合反応を95℃にて行った。
 重合溶媒としてはヘキサン(フィード量:32L/h)を用いて、連続的に、エチレンフィード量が3.2kg/h、1-ブテンフィード量が12kg/h、ENBフィード量が520g/hおよび水素フィード量が0NL(ノルマルリットル)/hとなるように、重合器に連続供給した。
 重合圧力を1.6MPaG、重合温度を95℃に保ちながら、主触媒として、前記触媒-a1を用いて、フィード量0.030mmol/hとなるよう、重合器に連続的に供給した。また、共触媒として(C65)3CB(C65)4(CB-3)をフィード量0.15mmol/h、有機アルミニウム化合物としてトリイソブチルアルミニウム(TIBA)をフィード量10mmol/hとなるように、それぞれ重合器に連続的に供給した。
 このようにして、エチレン、1-ブテンおよびENBから形成されたエチレン・1-ブテン・ENB共重合体を15重量%含む溶液が得られた。重合器下部から抜き出した重合反応液中に少量のメタノールを添加して重合反応を停止させ、スチームストリッピング処理にてエチレン・1-ブテン・ENB共重合体を溶媒から分離した後、80℃で一昼夜減圧乾燥した。
 以上の操作によって、エチレン、1-ブテンおよびENBから形成されたエチレン・1-ブテン・ENB共重合体(EBDM-1)が、毎時5.4kgの速度で得られた。
 得られたEBDM-1の物性を前記記載の方法で測定した。結果を表1に示す。
 〔製造例2〕
 (B-2)エチレン・1-ブテン・5-エチリデン-2-ノルボルネン共重合体(EBDM-2)
 製造例1で得たEBDM-1 100重量部に、更にダイアナプロセスPW-100を10重量部油展して、エチレン・1-ブテン・ENB共重合体(EBDM-2)を得た。得られたEBDM-2の物性を前記記載の方法で測定した。結果を表1に示す。
 〔製造例3〕
 (b-1)エチレン・プロピレン・5-エチリデン-2-ノルボルネン共重合体(EPDM-1)
 攪拌翼を備えた容積300Lの重合器を用いて、連続的に、エチレン、プロピレン、5-エチリデン-2-ノルボルネン(ENB)の重合反応を80℃にて行った。
 重合溶媒としてはヘキサン(フィード量:26.8L/h)を用いて、連続的に、エチレンフィード量が4.0kg/h、プロピレンフィード量が5.2kg/h、ENBフィード量が1.2kg/h、水素フィード量が25NL(ノルマルリットル)/hとなるように、重合器に連続供給した。
 重合圧力を2.1MPaG、重合温度を80℃に保ちながら、主触媒として[N-(1,1-ジメチルエチル)-1,1-ジメチル-1-[(1,2,3,3A,8A-η)-1,5,6,7-テトラヒドロ-2-メチル-S-インダセン-1-yl]シランアミネート(2-)-κN][(1,2,3,4-η)-1,3-ペンタジエン]-チタニウムを用いて、フィード量0.070mmol/hとなるよう、重合器に連続的に供給した。また、共触媒として(C65)3CB(C65)4(CB-3)をフィード量0.28mmol/h、有機アルミニウム化合物としてトリイソブチルアルミニウム(TIBA)をフィード量1.8mmol/hとなるように、それぞれ重合器に連続的に供給した。
 このようにして、エチレン、プロピレンおよびENBから形成されたエチレン・プロピレン・ENB共重合体を15重量%含む溶液が得られた。重合器下部から抜き出した重合反応液中に少量のメタノールを添加して重合反応を停止させ、スチームストリッピング処理にてエチレン・プロピレン・ENB共重合体を溶媒から分離した後、80℃で一昼夜減圧乾燥した。
 以上の操作によって、エチレン、プロピレンおよびENBから形成されたエチレン・プロピレン・ENB共重合体(EPDM-1)が、毎時5.4kgの速度で得られた。
 得られたEPDM-1の物性を前記記載の方法で測定した。結果を表1に示す。
 [製造例4]
 (b-2)エチレン・プロピレン・5-エチリデン-2-ノルボルネン共重合体(EPDM-2)
 製造例3で得たEPDM-1 100重量部に、更に、ダイアナプロセスPW-100を10重量部油展して、エチレン・プロピレン・ENB共重合体(EPDM-2)を得た。得られたEPDM-2の物性を前記記載の方法で測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
 <熱可塑性エラストマー組成物および成形体の物性>
 下記実施例および比較例における熱可塑性エラストマー組成物および成形体の物性の評価方法は次の通りである。
 [ショアーD硬度]
 (実施例1および比較例1)
 得られた熱可塑性エラストマー組成物のペレットを210℃でプレス成形して厚さ2mmのプレスシートを作製し、JIS K6253に準拠して、厚み6mm(厚み2mm片の3枚重ね)の積層されたシートを用い、ショアーD硬度計により測定した。
 (実施例2および比較例2)
 JIS K6253に準拠して、厚さ3mmの射出成形角板を用い、厚み6mm(厚み3mm片の2枚重ね)の積層されたシートを用いてショアーD硬度計により測定した。ショアーD硬度については、測定5秒後の値を求めた。
 [MFR(g/10分)]
 (実施例1および比較例1)
 JIS K7210に準拠して、230℃で2.16kgfの荷重にて測定した。
 (実施例2および比較例2)
 MFRは、ASTM D1238に準拠して、230℃で2.16kgfの荷重にて測定した(単位:g/10min)。
 [圧縮永久歪(CS)]
 (実施例1および比較例1)
 JIS K6250に準拠して上述のようにして作製された厚さ2mmのプレスシートを積層し、JIS K6262に準拠して圧縮永久ひずみ試験を行った。
 試験条件は、厚み12mm(厚み2mm片の6枚重ね)の積層されたシートを用い、25%圧縮、-30℃、23℃、70℃、24時間の条件で圧縮を行い、歪み除去(圧縮)後30分経過後に測定した。
 [引張特性]
 (実施例1および比較例1)
 JIS K6251(2010)に準拠して、上述のようにして作製された厚さ2mmのプレスシートから、ダンベル状のJIS-3号形試験片を作製し、この試験片を用いて引張速度500mm/minで測定した。
 測定温度:23℃、
 M100:100%伸び時の応力
 TB:引張強さ
 EB:引張破断点伸び
 [引張強さ、破断伸び]
 (実施例2および比較例2)
 JIS K6251に準拠して、射出成形にて試験片(JIS 3号ダンベル、厚み2mm)を作成し、引張強さ(単位:MPa)と破断伸び(単位:%)を23℃と-35℃雰囲気下にて引張速度500mm/minにて測定した。
 [低温脆化温度]
 (実施例1および比較例1)
 JIS K6261に準拠して、上述のようにして作製された厚さ2mmのプレスシートから、A形試験片を作製し、この試験片を用いてBTC法にて測定した。
 [引裂き強度]
 (実施例1および比較例1)
 JIS K6252に準拠して、上述のようにして作製された厚さ2mmのプレスシートから、アングル形試験片を作製し、この試験片を用いて測定した。
 [成形体の外観]
 (実施例1および比較例1)
 得られた熱可塑性エラストマー組成物のペレットから、100tの射出成形機を用いて、150mm×120mm×3mmの角板を作製し、目視により、得られた角板の外観を目視により評価した。
 [アイゾット衝撃強度]
 (実施例1および比較例1)
 ASTM D256に準拠して、得られた熱可塑性エラストマー組成物のペレットから、100tの射出成形機を用いて、ノッチ付試験片(63.5mm×12.5mm×3mm)を作製し、23℃、-30℃、-40℃、-45℃、-50℃で衝撃試験を行った。なお、各温度の試験は5つの試験片に対して行い、測定結果にはその結果の平均値を示している。
 (実施例2および比較例2)
 ASTM D256に準拠して、射出成形にてIZOD衝撃強さ用のノッチの付いた試験片(厚み3.2mm)を作成し、温度-45℃にて、試験片の破壊状態(NB:非破壊、B:破壊)と衝撃強度(単位:J/m)を測定した。
 [実施例1]
 製造例2で得られたEBDM-2を110重量部と、ポリプロピレン(A-1)40重量部を、バンバリーミキサーで十分に混合したマスターバッチペレットを得た。これに架橋剤として有機過酸化物(商品名:パーヘキサ25B、化合物名:2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン単一製品、日油(株)製))0.17重量部と、架橋助剤としてジビニルベンゼン0.17重量部と、酸化防止剤としてフェノール系酸化防止剤(イルガノックス1010、BASFジャパン(株)製)0.2重量部と、カーボンブラックマスターバッチ(F-32387MM、マエダ化成社製)2.5重量部と、軟化剤(ダイアナプロセスPW-100)0.17重量部とをヘンシェルミキサーで充分に混合し、押出機(品番 KTX-46、神戸製鋼(株)製、シリンダー温度:C1 120℃、C2~C3 130℃、C4 140℃、C5 180℃、C6 200℃、C7~C14 230℃、ダイス温度:220℃、スクリュー回転数:400rpm、押出量:60kg/h)にて、得られた混合物の動的架橋を行い、熱可塑性エラストマー組成物のペレットを得た。得られた熱可塑性エラストマー組成物の物性を前記記載の方法で測定した。結果を表2に示す。
 [比較例1]
 EBDM-2の代わりに、製造例4で得られたEPDM-2を使用した以外は、実施例1と同様にして、熱可塑性エラストマー組成物のペレットを得た。得られた熱可塑性エラストマー組成物の物性を前記記載の方法で測定した。結果を表2に示す。なお、低温脆化温度は測定下限値以下(-70℃未満)であった。また、-45℃のIzod衝撃強度の測定結果は、測定を行った5つの試験片のうち、4つの試験片が部分的な破壊、1つの試験片が完全破壊であったという意味であり、部分的な破壊の場合の4つの平均値と、完全破壊の場合の値とを分けて記載している。
Figure JPOXMLDOC01-appb-T000009
 [実施例2]
 ブロックポリプロピレン(A-2)を27重量部と、製造例1で得られたEBDM-1を66重量部と、軟化剤(D)(ダイアナプロセスPW-100、パラフィン系プロセスオイル、出光興産社製)7部を、予め、密閉式混合機[神戸製鋼(株)ミクストロンBB16]で混合し、シーティングロールに通しシート状にした後、朋来鉄工社製ペレタイザーにより角ペレットマスターバッチを製造した。
 次いで、得られたマスターバッチペレット27.3重量部と、ブロックポリプロピレン(A-1)47.7重量部と、エチレン・1-ブテン共重合体(C-1)25重量部と、耐熱安定剤としてフェノール系酸化防止剤(イルガノックス(登録商標)1010、BASF(株)製)0.1重量部と、耐候安定剤としてジアゾ系耐候安定剤(チヌビン(登録商標)326、BASF(株))0.1重量部とをヘンシェルミキサーで充分に混合し、押出機(品番 KTX-46、神戸製鋼(株)製)にて220℃で1時間当たり60kgの処理速度で混練を行い、熱可塑性エラストマー組成物のペレットを得た。得られた熱可塑性エラストマーの物性測定結果を表3に示す。
 [比較例2]
 製造例1で得られたEBDM-1の代わりに、製造例3で得られたEPDM-1を用いた以外は、実施例1と同様にして、熱可塑性エラストマー組成物のペレットを得た。得られた熱可塑性エラストマーの物性測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000010
 EPDMと比較して、EBDMが柔軟性や低温特性に優れることは一般に知られている。しかしながら、低温での破断伸びについては、柔軟な重合体ではむしろ破断しやすくなる場合もあるため、EPDMとEBDMのどちらが優れた値を示すかを温度特性(Tg)等から予想することは、困難であった。それゆえ、本願実施例の低温破断伸びが、比較例より優れた結果を示すのは予想外の効果であった。

Claims (15)

  1.  結晶性オレフィン系重合体(A)と、
     下記要件(1)と(2)とを満たすエチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(B)とを含む、熱可塑性エラストマー組成物。
     (1)下記式(i)で表されるB値が1.20以上である。
     B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
     ここで[E]、[X]および[Y]は、それぞれ、エチレン由来の構造単位のモル分率、炭素数4~20のα-オレフィン由来の構造単位のモル分率、非共役ポリエン由来の構造単位のモル分率を示し、[EX]はエチレン由来の構造単位-炭素数4~20のα-オレフィン由来の構造単位のダイアッド連鎖分率を示す。
     (2)共重合体(B)の、エチレンに由来する構造単位とα-オレフィン(炭素数4~20)に由来する構造単位とのモル比が、40/60~90/10である。
  2.  前記共重合体(B)がさらに以下の要件(3)および(4)の少なくとも1つを満たす、請求項1に記載の熱可塑性エラストマー組成物。
     (3)前記共重合体(B)のムーニー粘度ML(1+4)(125℃)が5~100である。
     (4)エチレンに由来する構造単位、α-オレフィン(炭素数4~20)に由来する構造単位および非共役ポリエンに由来する構造単位の合計100モル%に対する、非共役ポリエンに由来する構造単位の含有量が、0.1~6.0モル%である。
  3.  前記共重合体(B)のα-オレフィンが1-ブテンである、請求項1または2に記載の熱可塑性エラストマー組成物。
  4.  前記重合体(A)と、
     前記共重合体(B)と、過酸化物系架橋剤(D)とを動的架橋して得られる、請求項1~3のいずれか一項に記載の熱可塑性エラストマー組成物。
  5.  過酸化物系架橋剤(D)が有機過酸化物である、請求項4に記載の熱可塑性エラストマー組成物。
  6.  前記重合体(A)がプロピレン系(共)重合体である、請求項4または5に記載の熱可塑性エラストマー組成物。
  7.  前記重合体(A)と前記共重合体(B)とを、(A)/(B)=90/10~10/90の重量比で含有する、請求項1~6のいずれか一項に記載の熱可塑性エラストマー組成物。
  8.  前記重合体(A)30~70重量部と、
     前記共重合体(B)1~30重量部と、
     エチレン・α-オレフィン(炭素数3以上)共重合体(C)1~60重量部(ただし、該重合体(A)、該共重合体(B)および該共重合体(C)の合計を100重量部とする)とを含む、請求項1~3のいずれか一項に記載の熱可塑性エラストマー組成物。
  9.  架橋剤の非存在下で動的熱処理されることにより得られる、請求項8に記載の熱可塑性エラストマー組成物。
  10.  前記重合体(A)がプロピレンとプロピレン以外のα-オレフィンとのブロック共重合体である、請求項8または9に記載の熱可塑性エラストマー組成物。
  11.  前記共重合体(C)の190℃で測定したメルトフローレート(ASTM D1238、2.16kg荷重)が0.01~50(g/10分)である、請求項8~10のいずれか一項に記載の熱可塑性エラストマー組成物。
  12.  請求項1~11のいずれか一項に記載の熱可塑性エラストマー組成物から得られる、成形体。
  13.  請求項1~11のいずれか一項に記載の熱可塑性エラストマー組成物を用いて得られる、自動車部品。
  14.  請求項1~11のいずれか一項に記載の熱可塑性エラストマー組成物を用いて得られる、自動車用エアバッグカバー。
  15.  結晶性オレフィン系重合体(A)と、下記式(i)で表されるB値が1.20以上であるエチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(B)と、過酸化物系架橋剤(D)とを動的架橋することを特徴とする、熱可塑性エラストマー組成物の製造方法。
     B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
     (ここで[E]、[X]および[Y]は、それぞれ、エチレン由来の構造単位のモル分率、炭素数4~20のα-オレフィン由来の構造単位のモル分率、非共役ポリエン由来の構造単位のモル分率を示し、[EX]はエチレン由来の構造単位-炭素数4~20のα-オレフィン由来の構造単位のダイアッド連鎖分率を示す。)。
PCT/JP2016/058468 2015-03-20 2016-03-17 熱可塑性エラストマー組成物およびその製造方法 WO2016152710A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177024639A KR101902139B1 (ko) 2015-03-20 2016-03-17 열가소성 엘라스토머 조성물 및 그의 제조 방법
CN201680015237.4A CN107429011B (zh) 2015-03-20 2016-03-17 热塑性弹性体组合物及其制造方法
JP2017508283A JP6426829B2 (ja) 2015-03-20 2016-03-17 熱可塑性エラストマー組成物およびその製造方法
EP16768613.8A EP3272805B1 (en) 2015-03-20 2016-03-17 Thermoplastic elastomer composition and method for producing same
US15/559,273 US10280293B2 (en) 2015-03-20 2016-03-17 Thermoplastic elastomer composition and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015057726 2015-03-20
JP2015-057726 2015-03-20
JP2015057727 2015-03-20
JP2015-057727 2015-03-20

Publications (1)

Publication Number Publication Date
WO2016152710A1 true WO2016152710A1 (ja) 2016-09-29

Family

ID=56977964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058468 WO2016152710A1 (ja) 2015-03-20 2016-03-17 熱可塑性エラストマー組成物およびその製造方法

Country Status (6)

Country Link
US (1) US10280293B2 (ja)
EP (1) EP3272805B1 (ja)
JP (1) JP6426829B2 (ja)
KR (1) KR101902139B1 (ja)
CN (1) CN107429011B (ja)
WO (1) WO2016152710A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137305A (ja) * 2014-01-22 2015-07-30 三井化学株式会社 重合体組成物および熱可塑性エラストマー組成物
JP2018135475A (ja) * 2017-02-23 2018-08-30 三井化学株式会社 エチレン・α−オレフィン・非共役ポリエン共重合体の処理方法
WO2018181106A1 (ja) * 2017-03-27 2018-10-04 三井化学株式会社 熱可塑性エラストマー組成物、並びにその成形体及びその製造方法
JPWO2020256000A1 (ja) * 2019-06-21 2020-12-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512184B2 (en) * 2019-07-19 2022-11-29 Celanese International Corporation Thermoplastic vulcanizate composition with bi-continuous nanostructured morphology

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175759A (ja) * 2002-11-28 2004-06-24 Mitsui Chemicals Inc オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
JP2011001489A (ja) * 2009-06-19 2011-01-06 Mitsui Chemicals Inc ゴム組成物およびその用途
JP2011001497A (ja) * 2009-06-19 2011-01-06 Mitsui Chemicals Inc ゴム組成物およびその用途
JP2011219777A (ja) * 2005-03-18 2011-11-04 Mitsui Chemicals Inc プロピレン系重合体組成物からなるペレット、熱可塑性重合体用改質剤、熱可塑性重合体組成物の製造方法
WO2015122414A1 (ja) * 2014-02-13 2015-08-20 三井化学株式会社 エチレン/α-オレフィン共重合体の製造方法
WO2015122415A1 (ja) * 2014-02-13 2015-08-20 三井化学株式会社 エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL276385A1 (en) 1987-01-30 1989-07-24 Exxon Chemical Patents Inc Method for polymerization of olefines,diolefins and acetylene unsaturated compounds
IL85097A (en) 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
US5155080A (en) 1988-07-15 1992-10-13 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
CA2027145C (en) 1989-10-10 2002-12-10 Michael J. Elder Metallocene catalysts with lewis acids and aluminum alkyls
ES2071086T5 (es) 1989-10-30 2002-01-16 Fina Technology Preparacion de catalizadores metalocenicos para polimerizacion de olefina.
US5387568A (en) 1989-10-30 1995-02-07 Fina Technology, Inc. Preparation of metallocene catalysts for polymerization of olefins
ES2086397T5 (es) 1989-10-30 2005-07-16 Fina Technology, Inc. Adicion de alkiloaluminio para un catalizador metaloceno mejorado.
JP2545006B2 (ja) 1990-07-03 1996-10-16 ザ ダウ ケミカル カンパニー 付加重合触媒
JPH0912797A (ja) 1995-06-23 1997-01-14 Sumitomo Chem Co Ltd 遮音材
BE1010449A3 (fr) 1996-08-01 1998-08-04 Raffinerie Tirlemontoise Sa Procede de preparation d'une composition polydipersee de saccharides, composition polydispersee de saccharides, produit alimentaire, pharmaceutique et/ou cosmetique comprenant ladite composition polydispersee.
US5874535A (en) 1996-08-01 1999-02-23 Incyte Pharmaceuticals, Inc. Human leptin receptor gene-related protein
JPH11349716A (ja) * 1998-06-09 1999-12-21 Mitsui Chem Inc 注入スポンジ用ゴム組成物及びその加硫ゴム発泡成形体
JP2000212194A (ja) 1999-01-25 2000-08-02 Mitsui Chemicals Inc メタロセン化合物、オレフィン重合用触媒およびオレフィンの重合方法
JP2001011246A (ja) * 1999-06-28 2001-01-16 Mitsui Chemicals Inc 自動車内装表皮材
JP2001011249A (ja) * 1999-06-28 2001-01-16 Mitsui Chemicals Inc オレフィン系熱可塑性エラストマー組成物
JP2001011120A (ja) * 1999-06-28 2001-01-16 Mitsui Chemicals Inc オレフィン系熱可塑性エラストマー組成物の製造方法
KR100575121B1 (ko) 1999-06-28 2006-05-03 미쓰이 가가쿠 가부시키가이샤 올레핀계 열가소성 엘라스토머 조성물의 제조 방법 및 그 제조 방법에 의해 얻을 수 있는 조성물
JP2001011248A (ja) * 1999-06-28 2001-01-16 Mitsui Chemicals Inc オレフィン系熱可塑性エラストマー組成物
JP4554133B2 (ja) 1999-10-08 2010-09-29 三井化学株式会社 メタロセン化合物、メタロセン化合物の製造方法、オレフィン重合触媒、ポリオレフィンの製造方法およびポリオレフィン
JP2002146105A (ja) 2000-11-09 2002-05-22 Sumitomo Chem Co Ltd 熱可塑性エラストマー組成物
EP2465879B1 (en) 2002-09-27 2019-04-24 Mitsui Chemicals, Inc. Bridged metallocene compound for olefin polymerization and method of polymerizing olefin using the same
JP4367686B2 (ja) 2002-11-22 2009-11-18 三井化学株式会社 オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
US7754815B2 (en) * 2005-03-07 2010-07-13 Sumitomo Chemical Company, Limited Process for producing thermoplastic elastomer composition, and air-bag cover
WO2006098452A1 (ja) 2005-03-18 2006-09-21 Mitsui Chemicals, Inc. プロピレン系重合体組成物、その用途、および熱可塑性重合体組成物の製造方法
KR101044214B1 (ko) 2005-05-18 2011-06-29 미쓰이 가가쿠 가부시키가이샤 올레핀 중합용 촉매, 올레핀 중합체의 제조방법, 프로필렌계 공중합체의 제조방법, 프로필렌 중합체, 프로필렌계 중합체 조성물 및 이들의 용도
WO2009072553A1 (ja) * 2007-12-05 2009-06-11 Mitsui Chemicals, Inc. ゴム組成物、該組成物の架橋体および発泡体、該組成物からなるゴム成形体ならびにそれらの用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175759A (ja) * 2002-11-28 2004-06-24 Mitsui Chemicals Inc オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
JP2011219777A (ja) * 2005-03-18 2011-11-04 Mitsui Chemicals Inc プロピレン系重合体組成物からなるペレット、熱可塑性重合体用改質剤、熱可塑性重合体組成物の製造方法
JP2011001489A (ja) * 2009-06-19 2011-01-06 Mitsui Chemicals Inc ゴム組成物およびその用途
JP2011001497A (ja) * 2009-06-19 2011-01-06 Mitsui Chemicals Inc ゴム組成物およびその用途
WO2015122414A1 (ja) * 2014-02-13 2015-08-20 三井化学株式会社 エチレン/α-オレフィン共重合体の製造方法
WO2015122415A1 (ja) * 2014-02-13 2015-08-20 三井化学株式会社 エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3272805A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137305A (ja) * 2014-01-22 2015-07-30 三井化学株式会社 重合体組成物および熱可塑性エラストマー組成物
JP2018135475A (ja) * 2017-02-23 2018-08-30 三井化学株式会社 エチレン・α−オレフィン・非共役ポリエン共重合体の処理方法
WO2018181106A1 (ja) * 2017-03-27 2018-10-04 三井化学株式会社 熱可塑性エラストマー組成物、並びにその成形体及びその製造方法
JPWO2020256000A1 (ja) * 2019-06-21 2020-12-24
WO2020256000A1 (ja) * 2019-06-21 2020-12-24 三井化学株式会社 熱可塑性エラストマー組成物および熱可塑性エラストマー成形体
JP7361773B2 (ja) 2019-06-21 2023-10-16 三井化学株式会社 熱可塑性エラストマー組成物および熱可塑性エラストマー成形体

Also Published As

Publication number Publication date
JP6426829B2 (ja) 2018-11-21
CN107429011B (zh) 2020-06-19
KR20170109668A (ko) 2017-09-29
US10280293B2 (en) 2019-05-07
EP3272805B1 (en) 2021-08-11
CN107429011A (zh) 2017-12-01
EP3272805A4 (en) 2018-10-24
EP3272805A1 (en) 2018-01-24
KR101902139B1 (ko) 2018-09-28
JPWO2016152710A1 (ja) 2017-12-21
US20180086904A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6439039B2 (ja) 熱可塑性エラストマー組成物、その用途、その製造方法、エチレン・α−オレフィン・非共役ポリエン共重合体およびその用途
JP5414971B2 (ja) エチレン系樹脂組成物によるフィルム
JP6426829B2 (ja) 熱可塑性エラストマー組成物およびその製造方法
KR20160103042A (ko) 에틸렌·α-올레핀·비공액 폴리엔 공중합체 및 그의 용도, 및 그의 제조 방법
JP5357635B2 (ja) ゴム組成物およびその用途
JP5204727B2 (ja) ゴム組成物およびその用途
JP6859153B2 (ja) パッキン用エチレン共重合体組成物及びパッキン用途
JP2007197724A (ja) ポリオレフィン系組成物
JP6806881B2 (ja) 熱可塑性エラストマー組成物、並びにその成形体及びその製造方法
JP4907170B2 (ja) ヒートシール性積層体
JP6426514B2 (ja) 重合体組成物
JP6709641B2 (ja) シールパッキン
JP6859032B2 (ja) 防振ゴム用組成物およびその用途
JP6938000B2 (ja) 熱可塑性エラストマー組成物
JP6930931B2 (ja) 熱可塑性エラストマー組成物からなる蛇腹状成形体
JP6426513B2 (ja) ゴム組成物
JP2018127550A (ja) 組成物および架橋体
JP7033457B2 (ja) 熱可塑性エラストマー組成物からなる蛇腹状成形体
JP2018129210A (ja) 燃料電池シール材用組成物、燃料電池用シール材および燃料電池
JP2016183337A (ja) 熱可塑性エラストマー組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768613

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016768613

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177024639

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017508283

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15559273

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE