WO2016147923A1 - 光学フィルム及びその製造方法 - Google Patents

光学フィルム及びその製造方法 Download PDF

Info

Publication number
WO2016147923A1
WO2016147923A1 PCT/JP2016/056927 JP2016056927W WO2016147923A1 WO 2016147923 A1 WO2016147923 A1 WO 2016147923A1 JP 2016056927 W JP2016056927 W JP 2016056927W WO 2016147923 A1 WO2016147923 A1 WO 2016147923A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
optical
phase difference
retardation
thermoplastic resin
Prior art date
Application number
PCT/JP2016/056927
Other languages
English (en)
French (fr)
Inventor
福田 晋也
誠 稲永
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to CN201680014698.XA priority Critical patent/CN107430233B/zh
Priority to CN202011459740.3A priority patent/CN112526665B/zh
Priority to JP2017506458A priority patent/JP6760263B2/ja
Priority to KR1020177022707A priority patent/KR102511899B1/ko
Publication of WO2016147923A1 publication Critical patent/WO2016147923A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to an optical film having an optical phase difference, and preferably capable of modulating linearly polarized light into circularly polarized light. More specifically, in a liquid crystal display device or the like, when a liquid crystal display is viewed through an optical member having a polarizing action, such as polarized sunglasses, by disposing further on the viewing side of the polarizing plate disposed on the viewing side of the liquid crystal layer. Moreover, it is related with the optical film which can prevent the fall of visibility.
  • the light source, the back side polarizing plate, the liquid crystal layer, and the front side polarizing plate are often laminated in this order from the light source to the viewing side. Since light having amplitude components in various directions of 360 degrees is emitted from the light source, the back-side polarizing plate passes only light having amplitude components in a specific direction out of this light and supplies it to the liquid crystal layer.
  • the front-side polarizing plate allows only light having an amplitude component in a specific direction out of the outgoing light that has passed through the liquid crystal layer to pass as outgoing light.
  • the display light emitted from the surface-side polarizing plate is linearly polarized light
  • the polarization axis of the display light and the absorption axis of the optical member are Depending on the angle relationship, the display image may become dark or invisible.
  • many of the surface side polarizing plates are provided with a protective film such as a biaxially stretched PET film on the surface side (viewing side) in order to prevent scratches, and this type of biaxially stretched film has a retardation ( Since the phase difference is high, rainbow unevenness may occur.
  • Patent Documents 1 and 2 a method of modulating linearly polarized light into circularly polarized light by providing a retardation film further outside the polarizing plate on the viewing side
  • Patent Document 3 a method is known in which a retardation plate having a large retardation is provided on the outer side of the polarizing plate on the viewing side.
  • Patent Documents 4 and 5 a method of dispersing particles and fibers having a property of depolarizing polarized light is also known.
  • Patent Document 6 discloses a transparent composite as a surface protection panel in which a rainbow color does not appear in the display screen or light and shade does not appear even when the display screen is viewed through sunglasses equipped with a polarizing lens.
  • a gas barrier transparent resin film having a gas barrier layer is laminated on one or both sides of the resin plate, and both the transparent synthetic resin plate and the gas barrier transparent resin film are substantially stretched.
  • a surface protection panel characterized in that no.
  • the present invention relates to an optical film having an optical retardation, and provides a new optical film in which the retardation is not eliminated even when placed under a severe high temperature, and from the viewpoint of the production method, It is an object of the present invention to provide a new method for producing an optical film, which can use a soft material having a relatively low melting point and glass transition temperature and can lower the stretching temperature.
  • the present invention also provides an optical phase difference by aligning molecular chains by forming a thermoplastic resin composition into a sheet shape and then stretching it uniaxially or biaxially as an optical film having an optical retardation.
  • An optical film obtained by fixing the optical retardation by photo-crosslinking by light irradiation, and an in-plane retardation R0 at a room temperature at a wavelength of 586.4 nm is 50 nm or more and 350 nm or less,
  • the ratio (R0 (h) / R0) between the in-plane retardation R0 and the in-plane retardation R0 (h) at a wavelength of 586.4 nm after heating at 100 ° C. for 30 minutes is 0.80 or more.
  • the present invention further relates to an optical film having an optical phase difference, including a photo-crosslinking reaction product of a thermoplastic resin, and having an in-plane retardation R0 at a wavelength of 586.4 nm at room temperature of 50 nm to 350 nm.
  • an optical film having an optical phase difference including a photo-crosslinking reaction product of a thermoplastic resin, and having an in-plane retardation R0 at a wavelength of 586.4 nm at room temperature of 50 nm to 350 nm.
  • An optical film according to an example of this embodiment includes a photocrosslinking reaction product of a thermoplastic resin, and has an in-plane retardation R0 at a wavelength of 586.4 nm at room temperature of 50 nm to 350 nm. It is a film having an optical retardation characterized by being.
  • This optical film has a molecular chain oriented by forming a photocurable resin composition containing a thermoplastic resin (referred to as “the present resin composition”) into a sheet and then stretching it uniaxially or biaxially. An optical phase difference is generated, and then the optical phase difference is fixed by irradiating with light and photocrosslinking.
  • the thermoplastic resin is a soft material having a relatively low melting point and glass transition temperature, and has a melting point (Tm) or glass transition temperature (Tg) of less than 100 ° C. from the viewpoint that stretching can be performed at a low temperature.
  • Tm melting point
  • Tg glass transition temperature
  • a thermoplastic resin having a temperature of 20 ° C. or higher and 90 ° C. or lower, and a temperature of 30 ° C. or higher or 80 ° C. or lower is particularly preferable.
  • fusing point (Tm) or glass transition temperature (Tg) of this resin composition it is especially preferable that it is less than 100 degreeC, especially 20 degreeC or more or 90 degrees C or less, Among these, 30 degreeC or more or 80 degrees C or less.
  • the “melting point or glass transition temperature” in this case means a melting point (Tm) or glass transition temperature (Tg) that contributes to the heat resistance of the resin composition.
  • Tm melting point
  • Tg glass transition temperature
  • the melting point is indicated
  • the glass transition temperature is indicated.
  • the thermoplastic resin is preferably a resin having the highest content among the resin components constituting the resin composition, and the content ratio thereof is, for example, among the resin components constituting the resin composition. The thing which occupies 30 mass% or more, especially 50 mass% or more, and 80 mass% or more among them can be mentioned.
  • the thermoplastic resin has, for example, a copolymer having a crystalline part and an amorphous part, or a plurality of glass transition temperatures, from the viewpoint that the molecular chain is oriented by stretching to easily generate an optical phase difference. It is preferable to use one or more resins selected from the group consisting of such block copolymers and graft copolymers.
  • the thermoplastic resin is one or more selected from the group consisting of olefin copolymers, styrene copolymers, acrylic copolymers, urethane copolymers, and polyester copolymers. It is preferable to use a resin made of the above resin. Among them, from the viewpoint of high transparency, easy phase difference addition, and high photoelastic coefficient, it is possible to give a phase difference even at a low draw ratio, (i) an olefin copolymer, Or (ii) a styrene copolymer or a mixed resin thereof is particularly preferable.
  • Examples of the “(i) olefin copolymer” include ethylene- ⁇ -olefin copolymer, propylene- ⁇ olefin copolymer, polyisobutylene resin, polybutene copolymer, polybutadiene resin, polyisoprene resin, ethylene -A cyclic olefin copolymer etc. can be mentioned, Among these, it can use 1 type or in combination of 2 or more types. Among these, it is preferable to use an ethylene- ⁇ -olefin copolymer from the viewpoint of imparting electrical characteristics, water vapor barrier properties, transparency, flexibility, sheet processability, weather resistance reliability, and the like. At this time, it is also possible to use a combination of two or more olefin copolymers having different compositions and molecular weights.
  • the “ethylene- ⁇ -olefin copolymer” may be a copolymer of ethylene and ⁇ -olefin.
  • the type of ⁇ -olefin copolymerized with ethylene is not particularly limited.
  • ⁇ -olefins having 3 to 20 carbon atoms can be suitably used.
  • propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 3-methyl-butene-1, 4-methyl-pentene-1, etc. Can be mentioned.
  • a copolymer containing 1-butene, 1-hexene, or 1-octene as a copolymerization component is preferable as the ⁇ -olefin.
  • ethylene only one ⁇ -olefin copolymerized with ethylene may be used alone, or two or more types may be used in combination at any ratio.
  • the content of ⁇ -olefin copolymerized with ethylene is not particularly limited.
  • the content of ⁇ -olefin copolymerized with ethylene is 2 mol% to 40 mol%, particularly 3 mol% or more or 30 mol% or less, based on the whole monomer used for copolymerization.
  • the content is more preferably 5 mol% or more and 25 mol% or less. If the content of the ⁇ -olefin copolymerized with ethylene is within the above range, it is preferable because crystallinity is reduced by the copolymer component and transparency (for example, total light transmittance, haze, etc.) is improved.
  • the content of the ⁇ -olefin copolymerized with ethylene is in the above-mentioned range since the generation of blocking is suppressed when producing raw material pellets.
  • the type and content of ⁇ -olefin copolymerized with ethylene can be analyzed by a known method, for example, a nuclear magnetic resonance (NMR) measuring device or other instrumental analyzer.
  • the ethylene- ⁇ -olefin copolymer may contain monomer units based on monomers other than ⁇ -olefin.
  • the monomer unit include cyclic olefins and polyene compounds.
  • the content of the monomer units is preferably 20 mol% or less, more preferably 15 mol% or less, based on 100 mol% of all monomer units in the ethylene- ⁇ -olefin copolymer. is there.
  • the steric structure, branching, branching degree distribution, molecular weight distribution and copolymerization type (random, block, etc.) of the ethylene- ⁇ -olefin copolymer are not particularly limited.
  • a copolymer having a long chain branch that is, a copolymer having a branch in the main chain itself generally has good mechanical properties, and has a high melt tension when forming a film, There are advantages such as improved moldability.
  • the ethylene- ⁇ -olefin copolymer may or may not have a melting point.
  • the upper limit of the melting point is not particularly limited.
  • the temperature is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 65 ° C. or lower.
  • the lower limit of the crystal melting peak temperature is preferably 20 ° C. or higher, more preferably 30 ° C. or higher, further preferably 40 ° C. in consideration of blocking prevention of raw material pellets, handling property of the adhesive, shape retention performance at room temperature, and the like. It is above °C. There may be a plurality of melting points.
  • the heat of crystal melting of the ethylene- ⁇ -olefin copolymer is not particularly limited. It is preferably 0 to 100 J / g, more preferably 5 J / g or more or 80 J / g or less, and even more preferably 10 J / g or more or 65 J / g or less. If it is in the said range, since a softness
  • the melting point and the heat of crystal melting can be measured at a heating rate of 10 ° C./min according to JIS K-7121 using a differential scanning calorimeter (DSC).
  • the MFR of the above-mentioned ethylene- ⁇ -olefin copolymer in JIS K-7210 is preferably 0.5 to 80 g / 10 min, more preferably 0.8 g / 10 min or more or 60 g / 10 min or less, especially 1 g / 10 min. It is particularly preferable that the amount is 50 g / 10 min or less.
  • the ethylene- ⁇ -olefin copolymer is preferably an ethylene- ⁇ -olefin copolymer having a density of 0.850 to 0.900 g / cm 3 in order to impart excellent transparency and low temperature characteristics.
  • An ethylene- ⁇ -olefin copolymer (linear low density polyethylene) of 0.860 to 0.885 g / cm 3 is more preferred.
  • ethylene- ⁇ -olefin copolymers an ethylene- ⁇ -olefin random copolymer is more preferable from the viewpoint of low crystallinity and excellent light transmittance and flexibility. These may be used alone or in a combination of two or more.
  • the method for producing the ethylene- ⁇ -olefin copolymer is not particularly limited, and a known polymerization method using a known ethylene polymerization catalyst can be employed.
  • Known polymerization methods include, for example, a slurry polymerization method, a solution polymerization method, a gas polymerization method using a multi-site catalyst typified by a Ziegler-Natta type catalyst, or a single-site catalyst typified by a metallocene catalyst or a post metallocene catalyst. Examples thereof include a phase polymerization method and a bulk polymerization method using a radical initiator.
  • the olefin copolymer may have a functional group.
  • compatibility with additives such as a crosslinking agent and a crosslinking initiator can be enhanced.
  • additives such as a crosslinking agent and a crosslinking initiator can be enhanced.
  • These may be used alone or in combination with an olefin copolymer having no functional group. In view of molding processability, economic efficiency, etc. when forming into a sheet, it is preferable to use in combination with an olefin copolymer having no functional group.
  • olefin copolymer having a functional group examples include a silane-modified olefin copolymer, an acid-modified olefin copolymer, an ethylene-vinyl acetate copolymer (EVA), and an ethylene-vinyl alcohol copolymer (EVOH). , Ethylene-methyl methacrylate copolymer (E-MMA), ethylene-ethyl acrylate copolymer (E-EAA), ethylene-glycidyl methacrylate copolymer (E-GMA), and the like. It is preferably at least one resin selected from the group consisting of
  • the molecular weight of the olefin copolymer is not particularly limited.
  • the number is preferably 50,000 to 500,000, more preferably 60,000 or more and 400,000 or less, and particularly preferably 70,000 or more and 300,000 or less.
  • examples of the “(ii) styrene copolymer” include SBR (styrene-butadiene copolymer), SIB (styrene-isobutylene copolymer), SBS (styrene-butylene-styrene block copolymer), SIS (styrene-isobutylene-styrene block copolymer), SEBS (styrene-ethylene-butylene-styrene block copolymer), SEBC (styrene-ethylene-butylene-ethylene block copolymer), HSBR (hydrogenated styrene-butadiene copolymer) Polymer) and the like, and is preferably at least one resin selected from the group consisting of these.
  • SBR styrene-butadiene copolymer
  • SIB styrene-isobutylene copolymer
  • SBS styrene-buty
  • the styrene content in the styrene polymer is not particularly limited. For example, 20 mol% or less is preferable with respect to all monomer components constituting the styrene-based copolymer from the viewpoints of handling properties and weather resistance in the phase difference providing step.
  • the MFR (JIS K7210: temperature 190 ° C., load 21.18 N) of the styrene copolymer is not particularly limited. It is preferably 5 g / 10 min to 100 g / 10 min, particularly 8 g / 10 min or more or 80 g / 10 min or less, and more preferably 10 g / 10 min or more or 50 g / 10 min or less.
  • This resin composition does not necessarily require a crosslinking agent. However, since the resin composition contains a cross-linking agent, the optical retardation can be more firmly fixed when photocrosslinked, and the viscosity of the resin composition becomes low and easily processed. Will be able to.
  • crosslinking agent mix blended with this resin composition
  • various monofunctional and bifunctional or more polyfunctional crosslinking agents such as vinyl ester and (meth) acrylic acid ester which can carry out radical crosslinking reaction
  • a linear aliphatic, cycloaliphatic or aromatic crosslinking agent should be selected and used.
  • Preferred examples of the crosslinking agent include, for example, isobornyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,8-octanediol di (meth).
  • Acrylate 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, butylethylpropanediol diacrylate, tricyclodecane dimethanol
  • Examples include di (meth) acrylate.
  • cross-linking agents may be used alone or in combination.
  • the content of the crosslinking agent is 100 parts by mass or less, particularly 0.1 parts by mass or more and 50 parts by mass or less, and more preferably 0.5 parts by mass or more or 25 parts by mass or less. Particularly preferred. By blending such an amount, it becomes possible to increase the heat resistance of the thermoplastic resin by bonding the thermoplastic resin and the crosslinking agent or the crosslinking agents after light irradiation, and as a result, the heat resistance of the optical film. Can increase the sex.
  • Photocrosslinking initiator This resin composition does not necessarily require a photocrosslinking initiator.
  • the photocrosslinking initiator can be used as a role of a reaction initiator for curing the resin composition when irradiated with light.
  • Examples of photocrosslinking initiators include photoradical crosslinking initiators, photocationic crosslinking initiators, and photoanionic crosslinking initiators. Among them, photoradical crosslinking initiators can be used efficiently at a low temperature in a short time. Can be photocured well.
  • the photo-crosslinking initiator can be used alone or in combination of two or more of a cleavage type photo-crosslinking initiator and a hydrogen abstraction type photo-crosslinking initiator capable of initiating reaction with ultraviolet light or visible light. is there.
  • Examples of the cleavage type photocrosslinking initiator include benzoisobutyl ether, benzyl methyl ketal, 2-hydroxyacetophenone, and the like.
  • Examples of the hydrogen abstraction type photocrosslinking initiator include benzophenone, Michler's ketone, 2-ethylanthraquinone, thioxanthone and derivatives thereof.
  • the hydrogen drawing type is compatible with the olefin copolymer and can fix the phase difference when photocured. It is preferable to use a photoradical crosslinking initiator.
  • a photoradical crosslinking initiator By adding a hydrogen abstraction type photoradical crosslinking initiator to the olefin copolymer and photocrosslinking it, not only the bonding between the crosslinking agents, but also the olefin copolymer and the crosslinking agent, or between the olefin copolymers Since it becomes easy to couple
  • the content of the photocrosslinking initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the base resin, and more preferably 0.5 parts by mass or more and 8 parts by mass or less, and more preferably 1 part by mass or less. Or it is more preferable that it is 6 mass parts or less.
  • 0.1 mass part or more of a photocrosslinking initiator is contained, crosslinking by light irradiation proceeds and sufficient heat resistance can be obtained. Moreover, crosslinking can be advanced without an excessive light amount. By containing 10 parts by mass or less of the photocrosslinking initiator, it is possible to suppress a decrease in the compatibility between the thermoplastic resin and the photocrosslinking initiator and to secure a sufficiently low haze as an optical film.
  • dichroic dyes such as an iodine compound and an organic dye
  • a dichroic dye and dyeing it stretching and irradiating with light, the dichroic dye is fixed after being adsorbed and oriented in a state where it is aligned in a certain direction, thereby providing an optical shutter function.
  • the dichroic dye is fixed after being adsorbed and oriented in a state where it is aligned in a certain direction, thereby providing an optical shutter function.
  • a polarizing plate material When such a dichroic dye is added to the resin composition, it is preferable to add a polyolefin copolymer having a functional group to the resin composition.
  • a polyolefin copolymer having a hydroxyl group such as an ethylene-vinyl alcohol copolymer (EVOH).
  • EVOH ethylene-vinyl alcohol copolymer
  • This optical film can be manufactured by this manufacturing method described below.
  • the manufacturing object of the manufacturing method is not limited to the optical film.
  • This production method is a new production method of an optical film having an optical retardation, and is obtained by the molding step of molding the thermoplastic resin composition containing the thermoplastic resin into a sheet shape, the molding step.
  • the phase difference imparting step in which molecular chains are oriented to generate an optical phase difference
  • the sheet obtained in the phase difference imparting step are made of the thermoplastic resin.
  • It is a manufacturing method of an optical film provided with the phase difference fixing process which fixes the said optical phase difference by irradiating light, cooling below melting
  • thermoplastic resin composition As the thermoplastic resin composition, the above-described resin composition can be used. However, it is not limited to this resin composition.
  • the present resin composition can be prepared, for example, by mixing the thermoplastic resin, a crosslinking agent and a photocrosslinking initiator.
  • the resin composition may be heated and melted to form a sheet and cooled to near room temperature.
  • extrusion molding may be used.
  • the method of melt dissolving this resin composition using an extruder, extruding from a T die, and cooling and solidifying with a cast roll is mentioned.
  • the method of cutting open the film-like thing manufactured by the tubular method and making it planar is also applicable.
  • it can also be formed into a sheet by a coating method.
  • the molecular chain By stretching the sheet obtained in the molding step uniaxially or biaxially, the molecular chain can be oriented to generate an optical phase difference.
  • the stretching method include a roll stretching method, a rolling method, a tenter stretching method, and a simultaneous biaxial stretching method. These may be uniaxially or biaxially stretched singly or in combination of two or more. .
  • the stretching temperature is preferably equal to or lower than the melting point (Tm) or glass transition temperature (Tg) of the present resin composition or thermoplastic resin, and above all, the Tm or the Tg is 5 ° C. or more, and among them, the Tm or the Tg. It is preferable that the temperature is 10 ° C. or more. Specifically, it is not higher than the melting point (Tm) or glass transition temperature (Tg) of the present resin composition or thermoplastic resin, and is 0 to 100 ° C., particularly 5 ° C. or higher or 80 ° C. or lower, particularly 20 ° C. More preferably, the temperature is 60 ° C. or lower.
  • the draw ratio is, for example, 1.01 to 7, more preferably 1.05 or more or 5 or less, and more preferably 1.1 or more or 2 or less.
  • the in-plane retardation R0 of the optical film it is preferable to adjust the in-plane retardation R0 of the optical film at a wavelength of 586.4 nm at room temperature to 50 nm to 350 nm by adjusting the draw ratio. If the in-plane retardation R0 of the present optical film is 50 nm to 350 nm, the linearly polarized light that is transmitted can be modulated into circularly polarized light to cancel the polarized light, and the polarizing plate disposed on the viewing side of the liquid crystal layer is visually recognized. By laminating the present optical film on the side, it is possible to prevent a decrease in visibility even when a liquid crystal display is viewed through an optical member having a polarizing action such as polarized sunglasses.
  • the in-plane retardation R0 of the optical film obtained in the retardation imparting step is preferably 50 nm to 350 nm, especially 70 nm or more and 300 nm or less, and more preferably 100 nm or more and 250 nm or less. Is preferred.
  • phase difference fixing process the optical phase difference is obtained by irradiating the sheet obtained in the phase difference applying step while cooling to a temperature lower than the melting point or glass transition temperature of the resin composition or the thermoplastic resin. It can be fixed. Since the temperature of the sheet rises when irradiated with light, when the temperature reaches a temperature higher than the melting point or glass transition temperature of the present resin composition or thermoplastic resin, the phase difference imparted in the above-mentioned step is reduced or the phase difference is in-plane. Will cause unevenness. Therefore, in this step, it is preferable to irradiate with light while cooling so that at least the temperature of the sheet is lower than the melting point or glass transition temperature of the present resin composition or thermoplastic resin.
  • the light source for light irradiation for example, a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, a halogen lamp, an LED lamp, a fluorescent lamp, or the like can be used depending on the wavelength of irradiated light and the irradiation amount.
  • the amount of light irradiation depends on the photosensitivity of the present resin composition or thermoplastic resin, it is preferably relatively large. More specifically, if the ultraviolet irradiation, the integrated light quantity is 0.1 ⁇ 20J / cm 2, inter alia 0.5 J / cm 2 or more, or 15 J / cm 2 or less, even 1 J / cm 2 or more, or 12 J / cm 2 in which The following is even more preferable.
  • the integrated light amount within the above range, the bond (crosslinking) between the main chains becomes stronger and the heat resistance of the phase difference can be further increased.
  • phase difference fixing step By such a phase difference fixing step, the molecular chain orientation given in the phase difference applying step can be fixed, and the phase difference can be fixed. Therefore, the phase difference is hardly reduced by heat.
  • the in-plane retardation R0 at room temperature at a wavelength of 586.4 nm of the optical film obtained by this retardation fixing step is preferably 50 nm to 350 nm. If the in-plane retardation R0 of the present optical film is 50 nm to 350 nm, the linearly polarized light that is transmitted can be modulated into circularly polarized light to cancel the polarized light, and the polarizing plate disposed on the viewing side of the liquid crystal layer is visually recognized. By laminating the present optical film on the side, it is possible to prevent a decrease in visibility even when a liquid crystal display is viewed through an optical member having a polarizing action such as polarized sunglasses.
  • the in-plane retardation R0 of the optical film obtained in the retardation fixing step is preferably 50 nm to 350 nm, particularly 70 nm or more or 300 nm or less, particularly 100 nm or more or 250 nm or less, and particularly 120 nm or more. Or it is preferable to make it 170 nm or less.
  • the ratio (R0 (h) / R0) between the in-plane retardation R0 and the in-plane retardation R0 (h) at a wavelength of 586.4 nm after heating at 100 ° C. for 30 minutes is 0.80 or more, preferably It can be 0.90 or more, more preferably 0.95 or more (including 1.00).
  • a heat treatment may be performed in which the optical film is placed in an environment of 60 to 200 ° C. By performing the heat treatment step, it is possible to suppress a change in phase difference during use.
  • the produced optical film is heat-treated so as to be kept at a practical heat resistant temperature or higher, particularly 60 to 200 ° C., particularly 80 ° C. or higher or 150 ° C. or lower. Thereby, the phase difference change at the time of use can be suppressed.
  • the optical film includes a photocrosslinking reaction product of a thermoplastic resin, and has an in-plane retardation R0 at a wavelength of 586.4 nm at room temperature of 50 nm to 350 nm. Is a uniaxial or biaxially stretched film.
  • One of the characteristics of the present optical film is that it contains a photocrosslinking reaction product of a thermoplastic resin.
  • the optical retardation of the present optical film is not lowered by the temperature because the photocrosslinking reaction product fixes the optical retardation.
  • thermoplastic resin is one in which a monomer that becomes a structural unit of a thermoplastic resin is polymerized in a network by light irradiation, and a linear polymer thermoplastic resin is inter-molecularly cross-linked by light irradiation. It is meant to include both.
  • the photocrosslinking reaction product of a thermoplastic resin can be obtained, for example, by subjecting the above-described thermoplastic resin or the present resin composition to a photocrosslinking reaction.
  • This optical film contains a photocrosslinking reaction product of a thermoplastic resin means that the gel fraction of the photocrosslinking reaction product is measured, or a functional group capable of photocrosslinking in the resin composition or after photocrosslinking. It can be confirmed by analysis using NMR, IR, MS or the like that it contains a functional group or contains a photoinitiator (or a decomposition product thereof).
  • the photocrosslinking reaction product preferably has a gel fraction of 10% or more, more preferably 40% or more and 99% or less, and more preferably 50% or more and 90% or less.
  • the gel fraction of the photocrosslinking reaction product can be set to a predetermined range by adjusting the amount of light irradiation or adjusting the kind or addition amount of the crosslinking agent or initiator.
  • a gel fraction means the numerical value measured according to the method described in the Example.
  • the thickness of the optical film is preferably adjusted as appropriate according to the application. For example, it can be 10 ⁇ m to 500 ⁇ m, in particular, 20 ⁇ m or more or 300 ⁇ m or less, of which 25 ⁇ m or more or 250 ⁇ m or less.
  • the optical film preferably has an in-plane retardation R0 at a wavelength of 586.4 nm at room temperature of 50 nm to 350 nm.
  • the in-plane retardation R0 at a wavelength of 586.4 nm at room temperature within this range, the transmitted linearly polarized light can be modulated into circularly polarized light, and the polarized light can be eliminated, and the liquid crystal layer is arranged on the viewing side.
  • the in-plane retardation R0 of the present optical film is preferably 50 nm to 350 nm, particularly 70 nm or more or 300 nm or less, particularly 100 nm or more or 250 nm or less, and particularly preferably 120 nm or more or 170 nm or less. Is more preferable.
  • this optical film has a ratio (R0 (h) / R0) between the in-plane retardation R0 and the in-plane retardation R0 (h) at a wavelength of 586.4 nm after heating at 100 ° C. for 30 minutes. It is preferable that it is 80 or more.
  • R0 (h) / R0 is 0.80 or more, the phase difference is not lowered and eliminated by heat, so that practical heat resistance when incorporated in the apparatus can be obtained.
  • the ratio (R0 (h) / R0) between the in-plane retardation R0 and the in-plane retardation R0 (h) of the present optical film is preferably 0.80 or more, and more preferably 0.90 or more. Of these, 0.95 or more (including 1.00) is even more preferable.
  • the haze measured according to JIS K7136 is preferably 5% or less, particularly 3% or less, and more preferably 2% or less.
  • the optical film has an optical phase difference, and preferably linearly polarized light can be modulated into circularly polarized light. Therefore, in a liquid crystal display device or the like, even when a liquid crystal display is viewed through an optical member having a polarizing action such as polarized sunglasses, the polarizing plate disposed on the viewing side of the liquid crystal layer is further visible. It can prevent a decline in sex. For example, it may be bonded to the viewing side of the polarizing plate.
  • the present optical film can be used as it is, or it can be used as a structure in which a pressure-sensitive adhesive layer is laminated on the present optical film.
  • the pressure-sensitive adhesive sheet can be suitably bonded to an adherend such as a polarizing plate or glass by laminating an adhesive layer.
  • the present optical film can also be used as what was equipped with the structure formed by laminating a release film on this optical film.
  • laminating the release film on one side or both sides of the present optical film it can be used more easily, and the present optical film can be prevented from being stained or scratched.
  • this optical film can be used by laminating a plurality of sheets.
  • this optical film can be used by laminating a plurality of sheets.
  • the present optical film and another retardation film can be used in combination.
  • This optical film can also be used by being laminated with an image display constituent member.
  • it can be set as the laminated body for an image display apparatus structure by laminating
  • image display panel / present optical film As a more specific image display device configuration laminate, 1) an image display device configuration laminate having a configuration in which an optical film is laminated on an image display panel (referred to as “image display panel / present optical film”). 2) This optical film / touch panel, 3) This optical film / surface protection panel, 4) Image display panel / this optical film / surface protection panel, 5) Image display panel / this optical film / touch panel And 6) Touch panel / this optical film / surface protection panel and the like.
  • this optical film since this optical film has both functions of a retardation film and an adhesive sheet, the laminate for constituting an image display device and an image display device using the laminate can be thinned. it can.
  • the surface protection panel may have a touch panel function integrated therein, and may be, for example, a touch-on-lens (TOL) type or a one-glass solution (OGS) type.
  • TOL touch-on-lens
  • OGS one-glass solution
  • the surface protection panel may have a printing step portion printed in a frame shape on the peripheral portion thereof.
  • the touch panel may be any one of a resistance film method, a capacitance method, an electromagnetic induction method, and the like.
  • the image display panel is composed of a polarizing film, other optical films, a liquid crystal material, a backlight system, and the like, and there are an STN method, a VA method, an IPS method, and the like depending on a control method of the liquid crystal material. It may be. Further, the image display panel may be an in-cell type in which a touch panel function is incorporated in a TFT-LCD, or an on-cell type in which a touch panel function is incorporated between a glass substrate provided with a polarizing plate and a color filter.
  • the image display device only needs to have the above-described laminate for configuring an image display device, and specifically, a liquid crystal display device (LCD), an organic EL display device (OLED) including the laminate for configuring an image display device. ), Plasma display (PDP), and electroluminescence display (ELD).
  • LCD liquid crystal display device
  • OLED organic EL display device
  • PDP Plasma display
  • ELD electroluminescence display
  • sheet is a thin product as defined by JIS and generally has a thickness that is small and flat instead of length and width.
  • film refers to length and width.
  • a thin flat product whose thickness is extremely small in comparison with the maximum thickness is arbitrarily limited and is usually supplied in the form of a roll (Japanese Industrial Standard JIS K6900).
  • a film having a thickness of 100 ⁇ m or more is sometimes referred to as a sheet, and a film having a thickness of less than 100 ⁇ m is sometimes referred to as a film.
  • Example 1 As a base thermoplastic resin, an ethylene-butene random copolymer (density: 870 kg / m 3 , melting point: 55 ° C., MFR (190 ° C., 21.18 N): 35 g / 10 min) is 900 g, silane-modified ethylene-octene 100 g of random copolymer (density: 868 kg / m 3 , melting point: 54 ° C., MFR (190 ° C., 21.18 N): 1.7 g / 10 min), 30 g of isobornyl methacrylate as a crosslinking agent, 1,10 Resin composition 1 was prepared by mixing 20 g of decanediol dimethacrylate and 30 g of a mixture of 2,4,6-trimethylbenzophenone and 4-methylbenzophenone as a photocrosslinking initiator. The melting point of the resin composition 1 was 55 ° C.
  • the resin composition 1 has a thickness of 150 ⁇ m. It was shaped into a sheet shape to obtain a two-layer optical film laminate. Furthermore, the resin film 1 which laminated
  • the release PET film on both sides was peeled from this resin film 1 and then longitudinally stretched 1.4 times at 25 ° C. Further, 0.5 J / cm 2 of ultraviolet rays (UV) using a high-pressure mercury lamp The sample was irradiated with UV until the integrated light amount was 4 J / cm 2 when measured in a sensitivity wavelength range of 310 to 390 nm / center wavelength of 365 nm while repeating cooling in a constant temperature bath at 23 ° C. The PET film that had been subjected to the release treatment was coated on both sides. At this time, the temperature of the sheet immediately after UV irradiation was set to 40 ° C. or lower. This was cured at 23 ° C. and 50% RH for 12 hours, and then subjected to heat treatment at 80 ° C. for 30 minutes using a thermostatic bath to obtain the optical film 1.
  • Table 1 The composition and production conditions of the optical film 1 are shown in Table 1, and the physical property evaluation is shown in Table 2.
  • Example 2 After releasing the release PET films on both sides from the resin film 1 obtained in Example 1, the film was stretched longitudinally by 1.35 times, and further 10 J using a high-pressure mercury lamp in the same manner as in Example 1. / Cm 2 UV was irradiated while cooling, and the release PET film was again coated on both sides of the film. This was cured at 23 ° C. and 50% RH for 12 hours, and then subjected to heat treatment at 80 ° C. for 30 minutes using a thermostatic bath to obtain an optical film 2. The composition and production conditions of the optical film 2 are shown in Table 1, and the physical property evaluation is shown in Table 2.
  • Example 3 As a base thermoplastic resin, 900 g of ethylene-butene random copolymer, 100 g of silane-modified ethylene-octene random copolymer, 30 g of isobornyl methacrylate as a crosslinking agent, and 1,10-decanediol dimethacrylate 20 g of a resin composition 2 was prepared by mixing 60 g of a mixture of 2,4,6-trimethylbenzophenone and 4-methylbenzophenone as a photocrosslinking initiator. The melting point of the resin composition 2 was 55 ° C.
  • the resin composition 2 is shaped into a sheet shape so as to have a thickness of 150 ⁇ m on a release PET film (Mitsubishi Resin, Diafoil MRA100, thickness: 100 ⁇ m), and a two-layer optical film. A laminate was obtained. Furthermore, a resin film 2 in which a protective film was laminated on both sides was produced by coating a release PET film (Made by Mitsubishi Plastics, Diafoil MRF75, thickness: 75 ⁇ m) on the optical film laminate. .
  • Example 4 After peeling off the PET films on both sides from the resin film 2 obtained in Example 3, the film was stretched 1.25 times at 25 ° C., and in the same manner as in Example 1, using a high-pressure mercury lamp.
  • the optical film 4 was obtained by irradiating UV of 10 J / cm 2 while cooling and coating the release PET film on both sides of the film again. In addition, the heat processing after UV irradiation was not performed.
  • the composition and production conditions of the optical film 4 are shown in Table 1, and the physical properties are shown in Table 2.
  • the thickness of the resin composition 3 / resin composition 1 / resin composition 3 is 10 ⁇ m / 150 ⁇ m / 10 ⁇ m, respectively.
  • a resin film 3 was obtained by coating a peeled PET film (Mitsubishi Resin, Diafoil MRF75, thickness: 75 ⁇ m).
  • the release PET film on both sides was peeled from this resin film 3, and then longitudinally stretched 1.35 times at 25 ° C., and in the same manner as in Example 1, using a high-pressure mercury lamp, 10 J / cm 2. UV was irradiated while cooling, and the release PET film was again coated on both sides. This was cured at 23 ° C. and 50% RH for 12 hours, and then subjected to a heat treatment at 80 ° C. for 30 minutes using a thermostatic bath to obtain an optical film 5.
  • the composition and production conditions of the optical film 5 are shown in Table 1, and the physical property evaluation is shown in Table 2.
  • the optical film obtained in Examples / Comparative Examples was peeled off from both sides or one side of the release PET film, and the optical film was soda-lime glass (0.5 mm thickness) and a COP film (Zeon Corporation, Zeonor Film ZF14, 0.1 mm thickness), and hand roll bonding was performed to prepare a test sample.
  • the haze value of the optical film was measured based on JISK7136 using the haze meter (Nippon Denshoku Industries Co., Ltd. NDH5000).
  • In-plane phase difference Using a test sample (glass / optical film / COP film) prepared by haze measurement, a phase difference measuring device (manufactured by Oji Scientific Instruments, KOBRA-WR) was used to measure the optical film at a wavelength of 586.4 nm at room temperature. In-plane retardation R0 was measured.
  • R0 to R0 (h) (R0 (h) / R0) is 0.80 or more and less than 0.90.
  • X Ratio of R0 and R0 (h) (R0 (h) / R0) is less than 0.80.
  • the optical film sample after the heat resistance evaluation was arranged so that the angle formed with the polarization axis of the liquid crystal display was 45 °. Further, the polarizing plate was arranged so that the angle formed with the polarization axis of the liquid crystal display was 90 °. At that time, the appearance of the liquid crystal display seen from the polarizing plate side was evaluated according to the following criteria. ⁇ : The brightness is hardly lowered and the display can be seen clearly. X: The brightness is remarkably lowered, and the display is hardly visible.
  • Examples 1 to 5 although produced based on a soft thermoplastic resin having a low melting point, it is photocrosslinked by light irradiation while cooling to a temperature lower than the melting point or glass transition temperature of the thermoplastic resin composition. The phase difference is fixed.
  • the optical film obtained in this way is visible when a liquid crystal display is viewed through a polarizing member while maintaining flexibility and transparency derived from a thermoplastic resin, and in-plane at 100 ° C. It had sufficient heat resistance to withstand the phase difference heat resistance test.
  • the sheet produced in Comparative Example 1 was not irradiated with light after stretching orientation, the retardation due to stretching orientation was not fixed, and the stretching orientation was relaxed above the heat resistance temperature of the thermoplastic resin composition. Therefore, the visibility when the liquid crystal display is viewed through the polarizing member cannot be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 光学的位相差を有する光学フィルムの製法に関し、融点やガラス転移温度が比較的低い軟質な材料を用いることができ、且つ、延伸温度を低くすることができる製法を提供する。 熱可塑性樹脂組成物をシート状に成形する成形工程、前記成形工程で得られたシートを1軸又は2軸に延伸することにより、分子鎖を配向させて光学的位相差を生じさせる位相差付与工程、及び、前記位相差付与工程で得られたシートを、前記熱可塑性樹脂組成物の融点又はガラス転移温度より低温に冷却しながら光照射して光架橋させることにより、前記光学的位相差を固定化させる位相差固定工程を備えた、光学フィルムの製造方法を提案する。

Description

光学フィルム及びその製造方法
 本発明は、光学的位相差を有し、好ましくは直線偏光を円偏光に変調させることができる光学フィルムに関する。より具体的には、液晶表示装置などにおいて、液晶層の視認側に配置される偏光板のさらに視認側に配置することにより、偏光サングラスなどの偏光作用のある光学部材を通して液晶ディスプレイを見た場合にも、視認性の低下を防ぐことができる光学フィルムに関する。
 テレビ、パソコン、デジタルカメラ、携帯電話等の液晶表示装置においては、光源から視認側に向かって、光源、裏面側偏光板、液晶層、表面側偏光板の順に積層されることが多い。
 360度多様な方向に振幅成分を有する光が光源から放たれるため、裏面側偏光板では、この光のうちの特定の方向の振幅成分を持つ光だけを通過させて液晶層に供給する。他方、表面側偏光板は、液晶層を通過した出射光のうちの特定の方向の振幅成分を持つ光だけを出射光として通過させる。この際、該表面側偏光板から出射する表示光は直線偏光であるため、例えばサングラスのような偏光作用のある光学部材を通して表示画像を見ると、表示光の偏光軸と光学部材の吸収軸の角度の関係によっては、表示画像が暗くなったり、見えなくなったりする場合があった。
 また、前記表面側偏光板の多くは、傷付防止などのために、表面側(視認側)に2軸延伸PETフィルムなどの保護フィルムを備えており、この種の2軸延伸フィルムはレタデーション(位相差)が高いため、虹ムラが生じる場合もあった。
 このような問題を解決するために、例えば特許文献1,2に開示されているように、視認側の偏光板の更に外側に位相差フィルムを設けることにより、直線偏光を円偏光に変調させる方法や、特許文献3に開示されているように、視認側の偏光板の更に外側に、位相差の大きい位相差板を設ける方法が知られている。
 また、特許文献4,5に開示されているように、偏光を解消する性質を有する粒子や繊維を分散させる方法も知られている。
 また、特許文献6には、偏光レンズを備えたサングラスを通して表示画面を見た場合であっても、表示画面内に虹色が現れたり濃淡が生じたりすることのない表面保護パネルとして、透明合成樹脂板の片面側又は両面側に、ガスバリア層を有するガスバリア性透明樹脂フィルムを積層してなる構成を備え、前記透明合成樹脂板及び前記ガスバリア性透明樹脂フィルムのいずれもが実質的に延伸されてないことを特徴とする表面保護パネルが開示されている。
特開2000-137116号公報 特開2002-022944号公報 特開2004-170875号公報 国際公開2010-101140号パンフレット 特開2013-167672号公報 再公表2011-071075号公報
 上述のように、偏光解消や虹ムラ解消のための方法として、液晶層の視認側に配置される偏光板のさらに視認側に位相差フィルムを設けることにより、直線偏光を円偏光に変調させる方法が知られていた。
 この種の位相差フィルムは、高温環境下でもフィルムの位相差が変化しないように、融点やガラス転移温度が高いベース樹脂を用いて、当該融点やガラス転移温度の近傍温度(延伸温度)で延伸して位相差を付与して形成するものが一般的であった。
 ところが、延伸温度以上の過酷な高温環境下に置かれると、位相差が低下してしまうという問題点を抱えていた。また、製造方法に着目すると、融点やガラス転移温度が比較的低い軟質な材料を用いることができないばかりか、高温で延伸しなければならないという課題を抱えていた。
 そこで本発明は、光学的位相差を有する光学フィルムに関し、過酷な高温下に置かれても位相差が解消することがない新たな光学フィルムを提供せんとすると共に、製造方法の観点からは、融点やガラス転移温度が比較的低い軟質な材料を用いることができ、且つ、延伸温度を低くすることができる、新たな光学フィルムの製造方法を提供せんとするものである。
 本発明は、光学的位相差を有する光学フィルムの製造方法として、熱可塑性樹脂組成物をシート状に成形する成形工程、前記成形工程で得られたシートを1軸又は2軸に延伸することにより、分子鎖を配向させて光学的位相差を生じさせる位相差付与工程、及び、前記位相差付与工程で得られたシートを、前記熱可塑性樹脂組成物の融点又はガラス転移温度より低温に冷却しながら光照射して光架橋させることにより、前記光学的位相差を固定化させる位相差固定工程を備えた、光学フィルムの製造方法を提案する。
 本発明はまた、光学的位相差を有する光学フィルムとして、熱可塑性樹脂組成物をシート状に成形後、1軸又は2軸に延伸することにより、分子鎖を配向させて光学的位相差を生じさせ、光照射して光架橋することにより前記光学的位相差を固定化させて得られる光学フィルムであって、波長586.4nmにおける室温での面内位相差R0が50nm以上350nm以下であり、かつ、当該面内位相差R0と、100℃で30分間加熱後の波長586.4nmにおける面内位相差R0(h)との比(R0(h)/R0)が0.80以上であることを特徴とする光学フィルムを提案する。
 本発明はさらに、光学的位相差を有する光学フィルであって、熱可塑性樹脂の光架橋反応物を含み、波長586.4nmにおける室温での面内位相差R0が50nm以上350nm以下であることを特徴とする光学フィルムを提案する。
 本発明が提案する光学フィルム及びその製造方法によれば、光照射によって光学的位相差を固定化するため、温度によって光学的位相差が低下することがない。よって、たとえ過酷な高温環境下に置かれても位相差が低下することがない。
 また、製造方法の点においても、融点やガラス転移温度が比較的低い軟質な材料を用いることができるばかりか、延伸温度を低くすることができるから、より安価に製品を製造することができる。
 以下、本発明の実施形態の一例について詳細に説明する。但し、本発明が、下記実施形態に限定されるものではない。
<本光学フィルム>
 本実施形態の一例に係る光学フィルム(「本光学フィルム」と称する)は、熱可塑性樹脂の光架橋反応物を含み、波長586.4nmにおける室温での面内位相差R0が50nm以上350nm以下であることを特徴とする光学的位相差を有するフィルムである。
 本光学フィルムは、熱可塑性樹脂を含む光硬化可能な樹脂組成物(「本樹脂組成物」と称する)をシート状に成形後、1軸又は2軸に延伸することにより、分子鎖を配向させて光学的位相差を生じさせ、次いで光照射して光架橋することにより前記光学的位相差を固定化させて得ることができる。
<本樹脂組成物>
 本樹脂組成物は、熱可塑性樹脂を含む光硬化可能な樹脂組成物である。
 本樹脂組成物は、例えば熱可塑性樹脂、架橋剤及び光架橋開始剤を含有する樹脂組成物であればよい。但し、このような組成に限定されるものではない。必ずしも架橋剤や光架橋開始剤を含有しなければならない訳ではない。
(熱可塑性樹脂)
 上記熱可塑性樹脂としては、融点やガラス転移温度が比較的低い軟質な材料であって、延伸を低温で実施可能である観点から、融点(Tm)又はガラス転移温度(Tg)が100℃未満、中でも20℃以上或いは90℃以下、その中でも30℃以上或いは80℃以下である熱可塑性樹脂が特に好ましい。
 そして、本樹脂組成物の融点(Tm)又はガラス転移温度(Tg)として100℃未満、中でも20℃以上或いは90℃以下、その中でも30℃以上或いは80℃以下であるのが特に好ましい。
 この場合の「融点又はガラス転移温度」とは、樹脂組成物の耐熱性に寄与する融点(Tm)又はガラス転移温度(Tg)を意味する。例えば、結晶性を有する樹脂組成物の場合は融点を、非晶性の樹脂組成物の場合にはガラス転移温度を指すものとする。また、一般的には、ガラス転移温度を複数有する樹脂組成物の場合には、高温側のガラス転移温度を指すものとする。
 また、上記熱可塑性樹脂は、本樹脂組成物を構成する樹脂成分のうち最も含有量の多い樹脂であることが好ましく、その含有割合としては、例えば本樹脂組成物を構成する樹脂成分のうちの30質量%以上、中でも50質量%以上、その中でも80質量%以上を占めるものを挙げることができる。
 上記熱可塑性樹脂としては、延伸によって、分子鎖を配向させて光学的位相差を生じさせ易いという観点から、例えば、結晶部分と非晶部分を有する共重合体、又は、ガラス転移温度を複数有するようなブロック共重合体、グラフト共重合体からなる群より選ばれる1種又は2種以上の樹脂を用いるのが好ましい。
 また、上記熱可塑性樹脂としては、オレフィン系共重合体、スチレン系共重合体、アクリル系共重合体、ウレタン系共重合体、ポリエステル系共重合体からなる群より選ばれる1種又は2種以上の樹脂からなる樹脂を用いるのが好ましい。
 中でも、透明性が高く、位相差付与が容易であり、さらには光弾性係数が高いために低い延伸倍率でも位相差を付与することができるなどの観点から、(i)オレフィン系共重合体、又は、(ii)スチレン系共重合体、又はこれらの混合樹脂であるのが、特に好ましい。
 上記「(i)オレフィン系共重合体」としては、例えばエチレン-α-オレフィン共重合体、プロピレン-αオレフィン共重合体、ポリイソブチレン樹脂、ポリブテン系共重合体、ポリブタジエン樹脂、ポリイソプレン樹脂、エチレン-環状オレフィン共重合体などを挙げることができ、これらのうちの一種又は二種類以上を組み合わせて用いることができる。
 中でも、電気特性や水蒸気バリア性、透明性、柔軟性、シート加工性、耐候信頼性等を付与することができる観点から、エチレン-α-オレフィン共重合体を用いることが好ましい。
 この際、組成や分子量の異なる2種類以上のオレフィン系共重合体を組み合わせて用いることも可能である。
 上記の「エチレン-α-オレフィン共重合体」は、エチレンとα-オレフィンとの共重合体であればよい。
 エチレンと共重合するα-オレフィンの種類としては、特に限定されるものではない。通常、炭素数が3~20のα-オレフィンを好適に用いることができる。例えば、プロピレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン、3-メチル-ブテン-1、4-メチル-ペンテン-1等を挙げることができる。中でも、工業的な入手のしやすさ、経済性等の観点から、α-オレフィンとして、1-ブテン、1-ヘキセン、又は1-オクテンを共重合成分とする共重合体が好ましい。この際、エチレンと共重合するα-オレフィンは1種のみを単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、エチレンと共重合するα-オレフィンの含有量は、特に限定されるものではない。例えば、共重合に使用するモノマー全体に対して、エチレンと共重合するα-オレフィンの含有量が2モル%~40モル%であるのが好ましく、中でも3モル%以上或いは30モル%以下、その中でも5モル%以上或いは25モル%以下であるのがさらに好ましい。エチレンと共重合するα-オレフィンの含有量が前記範囲内であれば、共重合成分によって結晶性が低減され、透明性(例えば全光線透過率、ヘイズなど)が向上するために好ましい。また、エチレンと共重合するα-オレフィンの含有量が前記範囲内であれば、原料ペレットを作製する場合に、ブロッキングの発生等が抑制されるため好ましい。
 なお、エチレンと共重合するα-オレフィンの種類及び含有量は、周知の方法、例えば、核磁気共鳴(NMR:Nuclear Magnetic Resonance)測定装置、その他の機器分析装置で分析することができる。
 上記のエチレン-α-オレフィン共重合体は、α-オレフィン以外の単量体に基づく単量体単位を含有していてもよい。
 前記単量体単位としては、例えば、環状オレフィン、ポリエン化合物等を挙げることができる。
 前記単量体単位の含有量は、エチレン-α-オレフィン共重合体中の全単量体単位を100モル%とした場合、好ましくは20モル%以下であり、より好ましくは15モル%以下である。
 また、エチレン-α-オレフィン共重合体の立体構造、分岐、分岐度分布、分子量分布及び共重合形式(ランダム、ブロックなど)は、特に制限されるものではない。例えば、長鎖分岐を有する共重合体、すなわち主鎖自体に分岐を有する共重合体は、一般に機械物性が良好であり、また、フィルムを成形する際の溶融張力(メルトテンション)が高くなり、成形性が向上するなどの利点がある。
 上記エチレン-α-オレフィン共重合体は、融点を有していても有さなくてもよい。
 上記エチレン-α-オレフィン共重合体が融点を有している場合、当該融点の上限は、特に限定されるものではない。透明性や低温柔軟性を考慮すると、好ましくは100℃以下、より好ましくは80℃以下、さらに好ましくは65℃以下である。また、結晶融解ピーク温度の下限は、原料ペレットのブロッキング防止や粘着材のハンドリング性、室温での形状保持性能などを考慮すると、好ましくは20℃以上、より好ましくは30℃以上、さらに好ましくは40℃以上である。また、融点は複数あってもよい。
 上記エチレン-α-オレフィン共重合体の結晶融解熱量は、特に限定されるものではない。好ましくは0~100J/gであり、中でも5J/g以上或いは80J/g以下、その中でも10J/g以上或いは65J/g以下であるのがより一層好ましい。前記範囲内であれば、柔軟性や透明性などが確保されるため、好ましい。
 なお、前記融点及び結晶融解熱量は、示差走査熱量計(DSC)を用いて、JIS K-7121に準じて加熱速度10℃/分で測定することができる。
 上記のエチレン-α-オレフィン共重合体のJIS K-7210におけるMFRは、0.5~80g/10minであるのが好ましく、中でも0.8g/10min以上或いは60g/10min以下、その中でも1g/10min以上或いは50g/10min以下であるのが特に好ましい。
 エチレン-α-オレフィン共重合体としては、優れた透明性や低温特性等を付与するため、密度が0.850~0.900g/cmのエチレン-α-オレフィン共重合体が好ましく、密度が0.860~0.885g/cmのエチレン-α-オレフィン共重合体(線状低密度ポリエチレン)がより好ましい。
 エチレン-α-オレフィン共重合体の中でも、結晶性が低く、光の透過率及び柔軟性に優れる観点から、エチレン-α-オレフィンランダム共重合体が更に好ましい。これらは1種のみを単独で用いられてもよく、また2種類以上が混合されて使用されてもよい。
 上記のエチレン-α-オレフィン共重合体の製造方法は、特に限定されるものではなく、公知のエチレン重合用触媒を用いた公知の重合方法が採用できる。公知の重合方法として、例えば、チーグラー・ナッタ型触媒に代表されるマルチサイト触媒や、メタロセン系触媒やポストメタロセン系触媒に代表されるシングルサイト触媒を用いた、スラリー重合法、溶液重合法、気相重合法等、また、ラジカル開始剤を用いた塊状重合法等を挙げることができる。
 重合後の造粒(ペレタイズ)のし易さや原料ペレットのブロッキング防止等の観点から、低分子量の成分が少なく分子量分布の狭い原料が重合できるシングルサイト触媒を用いた重合方法を用いて製造することが好ましい。
 また、(i)オレフィン系共重合体は官能基を有していてもよい。官能基を有するオレフィン系共重合体を用いることによって、架橋剤や架橋開始剤などの添加剤との相容性を高めることができる。これらは単独で使用してもよいし、官能基を有さないオレフィン系共重合体と併用してもよい。シート化する際の成形加工性、経済性等を考慮すると、官能基を有さないオレフィン系共重合体と併用することが好ましい。
 官能基を有するオレフィン系共重合体としては、例えばシラン変性オレフィン系共重合体や酸変性オレフィン系共重合体、エチレン-酢酸ビニル共重合体(EVA)、エチレン-ビニルアルコール共重合体(EVOH)、エチレン-メチルメタアクリレート共重合体(E-MMA)、エチレン-エチルアクリレート共重合体(E-EAA)、エチレン-グリシジルメタアクリレート共重合体(E-GMA)などを挙げることができ、これらからなる群から選ばれる少なくとも1種の樹脂であることが好ましい。
 オレフィン系共重合体の分子量は特に限定されない。好ましくは5万~50万であり、中でも6万以上或いは40万以下、その中でも7万以上或いは30万以下であるのが特に好ましい。
 他方、上記「(ii)スチレン系共重合体」としては、例えばSBR(スチレン-ブタジエン共重合体)、SIB(スチレン-イソブチレン共重合体)、SBS(スチレン-ブチレン-スチレンブロック共重合体)、SIS(スチレン-イソブチレン-スチレンブロック共重合体)、SEBS(スチレン-エチレン-ブチレン-スチレンブロック共重合体)、SEBC(スチレン-エチレン-ブチレン-エチレンブロック共重合体)、HSBR(水添スチレンブタジエン共重合体)等を挙げることができ、これらからなる群から選ばれる少なくとも1種の樹脂であることが好ましい。
 上記スチレン系重合体におけるスチレン含有量は特に制限されるものではない。例えば位相差付与工程でのハンドリング性や耐候性の観点から、スチレン系共重合体を構成する全単量体成分に対して、20モル%以下が好ましい。
 また、上記スチレン系共重合体のMFR(JIS K7210:温度190℃、荷重21.18N)は、特に制限されるものではない。好ましくは5g/10min~100g/10min、中でも8g/10min以上或いは80g/10min以下、その中でも10g/10min以上或いは50g/10min以下であるのがさらに好ましい。
(架橋剤)
 本樹脂組成物は、必ずしも架橋剤を必要とするものではない。但し、本樹脂組成物が架橋剤を含有することにより、光架橋させた際に光学的位相差がより強固に固定化できるようになるとともに、本樹脂組成物の粘度が低くなって容易に加工することができるようになる。
 本樹脂組成物に配合する架橋剤としては、例えば、ラジカル架橋反応可能なビニルエステル及び(メタ)アクリル酸エステルなどの単官能及び2官能以上の多官能の各種の架橋剤を用いることができる。
 中でも、ベース樹脂、特にオレフィン系共重合体との相溶性、粘着材の透明性等を考慮すると、直鎖状脂肪族系、環状脂肪族系あるいは芳香族系の架橋剤を選択して用いることが好ましく、その中でも、炭素数が6以上の脂肪族系、あるいは環状脂肪族系の架橋剤を用いることがより好ましい。このような架橋剤を用いることで、オレフィン系共重合体と混ざりやすくなり、相分離、透明性の低下などの粘着材の変質を抑制することができる。
 架橋剤の好ましい具体例としては、例えばイソボルニル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、ブチルエチルプロパンジオールジアクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等を挙げることができる。これらの架橋剤は、単一で使用しても、複数種使用してもよい。架橋剤を複数種使用する場合、単官能(メタ)アクリレートと多官能(メタ)アクリレートを組み合わせて使用することが好ましい。これにより、光硬化時の収縮を抑えたり、熱可塑性樹脂との相溶性を調節したりすることが可能である。
 架橋剤の含有量は、ベース樹脂100質量部に対して100質量部以下、中でも0.1質量部以上或いは50質量部以下、その中でも0.5質量部以上或いは25質量部以下であるのが特に好ましい。このような量を配合することで、光照射後に、熱可塑性樹脂と架橋剤、あるいは架橋剤同士が結合することで、熱可塑性樹脂の耐熱性を高めることが可能となり、結果として光学フィルムの耐熱性を高めることができる。
(光架橋開始剤)
 本樹脂組成物は、必ずしも光架橋開始剤を必要とするものではない。
 光架橋開始剤は、光照射した際に樹脂組成物を硬化させるための反応開始剤の役割として用いることができる。光架橋開始剤としては、光ラジカル架橋開始剤、光カチオン架橋開始剤、光アニオン架橋開始剤などが挙げられるが、その中でも、光ラジカル架橋開始剤を用いることで、低温下で短時間に効率よく光硬化させることできる。
 前記光架橋開始剤は、紫外線光あるいは可視光で反応開始可能な開裂型光架橋開始剤や水素引抜型光架橋開始剤の中から何れか1種単独あるいは2種以上を混合して使用可能である。
 開裂型光架橋開始剤として、例えばベンゾイソブチルエーテル、ベンジルメチルケタール、2-ヒドロキシアセトフェノンなど挙げることができる。
 水素引抜型光架橋開始剤としては、例えばベンゾフェノン、ミヒラーケトン、2-エチルアントラキノン、チオキサンソンやその誘導体などを挙げることができる。
 中でも、上記の熱可塑性樹脂としてオレフィン系共重合体を用いた場合には、当該オレフィン系共重合体と相溶し、かつ、光硬化した際に、位相差を固定できる点で、水素引抜型の光ラジカル架橋開始剤を用いるのが好ましい。
 オレフィン系共重合体に水素引抜型の光ラジカル架橋開始剤を加えて光架橋させることで、架橋剤同士の結合のみならず、オレフィン系共重合体と架橋剤、あるいはオレフィン系共重合体同士も結合しやすくなるため、位相差をより強固に固定化することができる。
 前記光架橋開始剤の含有量は、ベース樹脂100質量部に対して0.1~10質量部であるのが好ましく、中でも0.5質量部以上或いは8質量部以下、その中でも1質量部以下或いは6質量部以下であるのがさらに好ましい。
 光架橋開始剤が0.1質量部以上含まれていることで、光照射による架橋が進行して、十分な耐熱性を得ることができる。また、過度な光量がなくても架橋を進行させることができる。光架橋開始剤が10質量部以下含まれていることで、熱可塑性樹脂と光架橋開始剤との相溶性の低下を抑制し、光学フィルムとして十分な低いヘーズを確保することができる。
(その他の成分)
 本樹脂組成物は、上記以外の成分として、通常の粘着組成物に配合されている公知の成分を含有してもよい。例えば、粘着付与樹脂や、加工助剤(オイル成分など)、シランカップリング剤、酸化防止剤、光安定化剤、金属不活性化剤、紫外線吸収剤(UVA)、光安定剤(HALS)、防錆剤、老化防止剤、吸湿剤、加水分解防止剤、造核剤などの各種の添加剤を適宜含有させることが可能である。無機系もしくは有機系のナノ微粒子などもこれに含まれる。
 また、必要に応じて反応触媒(三級アミン系化合物、四級アンモニウム系化合物、ラウリル酸スズ化合物など)を適宜含有してもよい。
 また、本樹脂組成物に、ヨウ素化合物や有機染料などの二色性色素を添加してもよい。
 二色性色素を添加して染色した後に延伸して光照射することで、延伸によって二色性色素が一定方向に揃った状態で吸着配向された後に固定化されるため、光シャッター機能を付与することが可能となり、偏光板用材料などに使用することができる。
 このような二色性色素を樹脂組成物に添加する際には、樹脂組成物に、官能基を有するポリオレフィン系共重合体を添加することが好ましい。中でも、エチレン-ビニルアルコール共重合体(EVOH)のように、ヒドロキシル基を有するポリオレフィン系共重合体を添加することがさらに好ましい。これにより、延伸する際に、樹脂組成物と二色性色素が、錯体形成したり、水素結合を形成したりして、吸着配向させることが容易となる。
<本光学フィルムの製造方法>
 本光学フィルムは、次に説明する本製造方法によって製造することができる。但し、当該本製造方法の製造対象は、本光学フィルムに限定されるものではない。
<本製造方法>
 本製造方法は、光学的位相差を有する光学フィルムの新たな製造方法であって、上記の熱可塑性樹脂を含む熱可塑性樹脂組成物をシート状に成形する成形工程、前記成形工程で得られたシートを1軸又は2軸に延伸することにより、分子鎖を配向させて光学的位相差を生じさせる位相差付与工程、及び、前記位相差付与工程で得られたシートを、前記熱可塑性樹脂の融点又はガラス転移温度より低温に冷却しながら光照射することにより、前記光学的位相差を固定化させる位相差固定工程を備えた、光学フィルムの製造方法である。
 なお、本製造方法では、上記工程のほかに、必要に応じて他の工程を追加することは可能である。
(熱可塑性樹脂組成物)
 上記熱可塑性樹脂組成物としては、前述の本樹脂組成物を用いることができる。但し、本樹脂組成物に限定されるものではない。
 本樹脂組成物は、例えば上記熱可塑性樹脂、架橋剤及び光架橋開始剤を混合して調製することができる。
(成形工程)
 成形工程では、本樹脂組成物を加熱溶融させてシート状に成形し、室温付近まで冷却すればよい。
 シート状に成形する方法としては、押出成形すればよい。例えば、押出機を用いて本樹脂組成物を溶融し、Tダイから押出し、キャストロールで冷却固化するという方法が挙げられる。また、チューブラー法により製造した膜状物を切り開いて平面状とする方法も適用できる。さらにまた、コート法によりシート状に製膜することもできる。
(位相差付与工程)
 前記成形工程で得られたシートを1軸又は2軸に延伸することにより、分子鎖を配向させて光学的位相差を生じさせることができる。
 延伸方法としては、ロール延伸法、圧延法、テンター延伸法、同時二軸延伸法などの手法を挙げることができ、これらを単独あるいは2つ以上組み合わせて1軸延伸あるいは2軸延伸を行えばよい。中でも、分子鎖を配向させて光学的位相差を生じさせる観点から、ロール延伸法で1軸延伸するのが好ましい。
 延伸温度は、本樹脂組成物又は熱可塑性樹脂の融点(Tm)又はガラス転移温度(Tg)以下であるのが好ましく、中でも該Tm又は該Tgよりも5℃以上低温、その中でもTm又は該Tgよりも10℃以上低温であるのが好ましい。
 具体的には、本樹脂組成物又は熱可塑性樹脂の融点(Tm)又はガラス転移温度(Tg)以下であって、且つ、0~100℃、中でも5℃以上或いは80℃以下、その中でも20℃以上或いは60℃以下の温度であるがより一層好ましい。
 延伸倍率は、例えば1.01~7倍、中でも1.05倍以上或いは5倍以下、その中でも1.1倍以上或いは2倍以下であるのがさらに好ましい。
 本工程では、延伸倍率を調整するなどして、光学フィルムの、波長586.4nmにおける室温での面内位相差R0を50nm~350nmに調整するのが好ましい。
 本光学フィルムの前記面内位相差R0が50nm~350nmであれば、透過する直線偏光を円偏光に変調させて偏光を解消することができ、液晶層の視認側に配置される偏光板の視認側に本光学フィルムを積層することにより、偏光サングラスなどの偏光作用のある光学部材を通して液晶ディスプレイを見た場合にも、視認性の低下を防ぐことができる。
 かかる観点から、位相差付与工程で得られる光学フィルムの前記面内位相差R0は50nm~350nmであるのが好ましく、中でも70nm以上或いは300nm以下、その中でも100nm以上或いは250nm以下となるようにするのが好ましい。
(位相差固定工程)
 位相差固定工程では、前記位相差付与工程で得られたシートを、本樹脂組成物若しくは熱可塑性樹脂の融点又はガラス転移温度より低温に冷却しながら光照射することにより、前記光学的位相差を固定化させることができる。
 光照射するとシートの温度は上昇するため、本樹脂組成物若しくは熱可塑性樹脂の融点又はガラス転移温度より高温に達すると、前記工程で付与した位相差が低下したり、シートの面内で位相差にムラが生じたりしてしまう。そこで、本工程では、少なくともシートの温度が本樹脂組成物若しくは熱可塑性樹脂の融点又はガラス転移温度より低温になるように冷却しながら光照射するのが好ましい。
 光照射する際の光源については、例えば高圧水銀ランプ、メタルハライドランプ、キセノンランプ、ハロゲンランプ、LEDランプ、蛍光ランプなどの中から、照射する光の波長や照射量に応じて使い分けることができる。
 光の照射量は、本樹脂組成物又は熱可塑性樹脂の感光性にもよるが、比較的多めが好ましい。具体的には、紫外線照射であれば、積算光量が0.1~20J/cm、中でも0.5J/cm以上或いは15J/cm以下、その中でも1J/cm以上或いは12J/cm以下であるのがより一層好ましい。積算光量を上記範囲内とすることで、主鎖間の結合(架橋)がより強固となり、位相差の耐熱性をより高めることができる。
 このような位相差固定工程によって、前記位相差付与工程で与えられた分子鎖配向を固定することができ、位相差を固定することができる。よって、熱によって位相差が低下することがほとんどない。
 本位相差固定工程で得られる光学フィルムの、波長586.4nmにおける室温での面内位相差R0は50nm~350nmであるのが好ましい。
 本光学フィルムの前記面内位相差R0が50nm~350nmであれば、透過する直線偏光を円偏光に変調させて偏光を解消することができ、液晶層の視認側に配置される偏光板の視認側に本光学フィルムを積層することにより、偏光サングラスなどの偏光作用のある光学部材を通して液晶ディスプレイを見た場合にも、視認性の低下を防ぐことができる。
 かかる観点から、位相差固定工程で得られる光学フィルムの前記面内位相差R0は50nm~350nmであるのが好ましく、中でも70nm以上或いは300nm以下、その中でも100nm以上或いは250nm以下、その中でも特に120nm以上或いは170nm以下となるようにするのが好ましい。
 また、前記面内位相差R0と、100℃で30分間加熱後の波長586.4nmにおける面内位相差R0(h)との比(R0(h)/R0)を0.80以上、好ましくは0.90以上、より好ましくは0.95以上(1.00を含む)とすることができる。
 光照射後は、室温で所定時間保管することにより、エージングするのが好ましい。このようなエージングによって、光照射による反応がより進行し、安定した位相差を有する製品を得ることができる。
(熱処理工程)
 また、前記位相差固定工程後に、光学フィルムを60~200℃の環境下に置く熱処理を実施してもよい。熱処理工程を実施することで、使用時の位相差変化を抑制することができる。
 熱処理方法としては、例えば恒温槽などを使用して、製造した光学フィルムを実用耐熱温度以上、中でも60~200℃、中でも80℃以上或いは150℃以下に保持するようにして熱処理するのが好ましい。これにより使用時における位相差変化を抑えることができる。
<本光学フィルム>
 本光学フィルムは、上述のように、熱可塑性樹脂の光架橋反応物を含み、波長586.4nmにおける室温での面内位相差R0が50nm以上350nm以下であることを特徴とする光学的位相差を有する1軸又は2軸延伸フィルムである。
 本光学フィルムは、熱可塑性樹脂の光架橋反応物を含んでいることが特徴の一つである。
 光架橋反応物が光学的位相差を固定化することで温度によって、本光学フィルムの光学的位相差が低下することがない。
 熱可塑性樹脂の光架橋反応物は、光照射によって熱可塑性樹脂の構成単位となる単量体を網目状に高分子化したもの及び光照射によって線状高分子の熱可塑性樹脂が分子間架橋されたものの両者を含む意である。
 熱可塑性樹脂の光架橋反応物は、例えば、上述した熱可塑性樹脂や本樹脂組成物を光架橋反応することにより得ることができる。
 本光学フィルムが、熱可塑性樹脂の光架橋反応物を含んでいることは、光架橋反応物のゲル分率を測定したり、本樹脂組成物中に光架橋可能な官能基あるいは光架橋後の官能基を含むこと、または光開始剤(またはその分解生成物)を含むことをNMRやIR、MS等を用いて分析したりすることによって確認することができる。
 当該光架橋反応物は、そのゲル分率が10%以上であることが好ましく、40%以上99%以下であることがより好ましく、50%以上90%以下であることがより好ましい。
 光架橋反応物のゲル分率は、光照射量を調整したり、架橋剤や開始剤の種類や添加量等を調整したりすることで所定の範囲とすることができる。なお、ゲル分率とは実施例に記載された方法に準じて測定される数値をいう。
(厚み)
 本光学フィルムの厚みは、用途に応じて適宜調整するのが好ましい。例えば10μm~500μm、中でも20μm以上或いは300μm以下、その中でも25μm以上或いは250μm以下とすることができる。
(面内位相差)
 本光学フィルムは、波長586.4nmにおける室温での面内位相差R0が50nm~350nmであるのが好ましい。波長586.4nmにおける室温での面内位相差R0を当該範囲内にすることで、透過する直線偏光を円偏光に変調させて偏光を解消することができ、液晶層の視認側に配置される偏光板の視認側に本光学フィルムを積層することにより、偏光サングラスなどの偏光作用のある光学部材を通して液晶ディスプレイを見た場合にも、視認性の低下を防ぐことができる。よって、例えばλ/4位相差フィルムあるいはλ/2位相差フィルムとして使用できる。
 かかる観点から、本光学フィルムの面内位相差R0は、50nm~350nmであるのが好ましく、中でも70nm以上或いは300nm以下、その中でも100nm以上或いは250nm以下、その中でも特に120nm以上或いは170nm以下であるのがさらに好ましい。
 また、本光学フィルムは、前記面内位相差R0と、100℃で30分間加熱後の波長586.4nmにおける面内位相差R0(h)との比(R0(h)/R0)が0.80以上であるのが好ましい。
 R0(h)/R0が0.80以上であれば、熱によって位相差が低下して解消することがないから、装置に組み込んだ際の実用的な耐熱性を得ることができる。
 かかる観点から、本光学フィルムの前記面内位相差R0と面内位相差R0(h)との比(R0(h)/R0)は0.80以上であるのが好ましく、中でも0.90以上、その中でも0.95以上(1.00を含む)であるのがより一層好ましい。
(ヘーズ)
 本光学フィルムは、JIS K7136に準じて測定したヘーズが5%以下、中でも3%以下、その中でも2%以下であることが好ましい。
<本光学フィルムの用途>
 本光学フィルムは、上述のように、光学的位相差を有しており、好ましくは直線偏光を円偏光に変調させることができる。よって、液晶表示装置などにおいて、液晶層の視認側に配置される偏光板のさらに視認側に配置することにより、偏光サングラスなどの偏光作用のある光学部材を通して液晶ディスプレイを見た場合にも、視認性の低下を防ぐことができる。例えば、偏光板の視認側に貼り合せるなどすればよい。
 この際、本光学フィルムは、そのままの形態で用いることもできるし、また、本光学フィルムに粘着剤層を積層してなる構成を備えたものとして用いることもできる。
 本光学フィルムの粘着性が不足している場合には、粘着剤層を積層することで、位相差付粘着シートとして、例えば偏光板やガラスなどの被着体に好適に貼り合せることができる。
 また、本光学フィルムに離型フィルムを積層してなる構成を備えたものとして用いることもできる。
 離型フィルムを本光学フィルムの片面又は両面に積層させることで、より簡便に使用することができるようになるばかりか、本光学フィルムが汚れたり、傷が付いたりするのを防ぐことができる。
 また、本光学フィルムは、複数枚積層して使用することができる。位相差を有する本光学フィルムを複数枚使用することで、位相差の波長依存性を小さくして、色調変化を抑えることも可能である。
 この際、本光学フィルムと他の位相差フィルムを組み合わせて使用することもできる。
(画像表示装置構成用積層体)
 本光学フィルムは、画像表示構成部材と積層させて使用することもできる。例えば、画像表示パネル、タッチパネル及び表面保護パネルからなる群のうちいずれか又はこれら2種類以上の組み合わせからなる積層体を本光学フィルムと積層することで画像表示装置構成用積層体とすることができる。
 より具体的な画像表示装置構成用積層体としては、1)光学フィルムを画像表示パネルに積層してなる構成を備えた画像表示装置構成用積層体(「画像表示パネル/本光学フィルム」と表記する。他も同様)、2)本光学フィルム/タッチパネル、3)本光学フィルム/表面保護パネル、4)画像表示パネル/本光学フィルム/表面保護パネル、5)画像表示パネル/本光学フィルム/タッチパネル、及び、6)タッチパネル/本光学フィルム/表面保護パネル等を挙げることができる。
 上記の画像表示装置構成用積層体によると、本光学フィルムが位相差フィルムと粘着シートの両方の機能を有するので画像表示装置構成用積層体及びこれを用いた画像表示装置を薄肉化することができる。
 表面保護パネルの材質としては、ガラスの他、アクリル樹脂、ポリカーボネート樹脂、シクロオレフィンポリマー等のプラスチックであってもよい。
 また、表面保護パネルは、タッチパネル機能が一体化したものであってもよく、例えば、タッチオンレンズ(TOL)型やワンガラスソリューション(OGS)型であってもよい。
 また、表面保護パネルは、その周縁部に枠状に印刷された印刷段差部を有するものであってもよい。
 タッチパネルとしては、抵抗膜方式、静電容量方式、電磁誘導方式等のいずれであってもよい。
 画像表示パネルは、偏光フィルム、その他の光学フィルム、液晶材料及びバックライトシステム等から構成されるものであり、液晶材料の制御方式によりSTN方式やVA方式やIPS方式等があるが、何れの方式であってもよい。
 また、画像表示パネルは、タッチパネル機能をTFT-LCD内に内蔵したインセル型であっても、偏光板とカラーフィルタを設けたガラス基板の間にタッチパネル機能を内蔵したオンセル型であってもよい。
(画像表示装置)
 画像表示装置は、上述した画像表示装置構成用積層体を有するものであればよく、具体的には、該画像表示装置構成用積層体を備える液晶表示装置(LCD)、有機EL表示装置(OLED)、プラズマディスプレイ(PDP)及びエレクトロルミネッセンスディスプレイ(ELD)等を挙げることができる。
<語句の説明>
 本願発明において、「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
 また、一般的に「シート」とは、JISにおける定義上、薄く、一般にその厚さが長さと幅のわりには小さく平らな製品をいい、一般的に「フィルム」とは、長さ及び幅に比べて厚さが極めて小さく、最大厚さが任意に限定されている薄い平らな製品で、通常、ロールの形で供給されるものをいう(日本工業規格JIS K6900)。例えば厚さに関して言えば、狭義では100μm以上のものをシートと称し、100μm未満のものをフィルムと称すことがある。しかし、シートとフィルムの境界は定かでなく、本発明において文言上両者を区別する必要がないので、本発明においては、「フィルム」と称する場合でも「シート」を含むものとし、「シート」と称する場合でも「フィルム」を含むものとする。
 以下、実施例でさらに詳しく説明する。但し、これらにより本発明は何ら制限を受けるものではない。
[実施例1]
 ベースとなる熱可塑性樹脂として、エチレン-ブテンランダム共重合体(密度:870kg/m、融点:55℃、MFR(190℃、21.18N):35g/10min)を900g、シラン変性エチレン-オクテンランダム共重合体(密度:868kg/m、融点:54℃、MFR(190℃、21.18N):1.7g/10min)を100g、架橋剤として、イソボルニルメタクリレートを30g、1,10-デカンジオールジメタクリレートを20g、光架橋開始剤として2,4,6-トリメチルベンゾフェノンと4-メチルベンゾフェノンの混合物を30g混合して、樹脂組成物1を作製した。樹脂組成物1の融点は55℃であった。
 次いで、剥離処理されたフィルムとしてのポリエチレンテレフタレートフィルム(「離型PETフィルム」と称する。三菱樹脂社製、ダイアホイルMRA100、厚さ:100μm)の上に、前記樹脂組成物1を厚さが150μmとなるようシート状に賦形して2層の光学フィルム積層体を得た。更に、前記光学フィルム積層体の上に保護フィルムとして、離型PETフィルム(三菱樹脂社製、ダイアホイルMRF75、厚さ:75μm)を被覆することで、両面に保護フィルムを積層させた樹脂フィルム1を作製した。
 この樹脂フィルム1から、両側の前記離型PETフィルムを剥離した後、25℃にて1.4倍に縦延伸し、さらに、高圧水銀ランプを用いて0.5J/cmの紫外線(UV)を照射させた後に23℃の恒温槽で冷却することを繰り返しながら、感度波長域310~390nm/中心波長365nmで測定した場合の積算光量が4J/cmになるまでUVを照射させ、もう1度両面に剥離処理したPETフィルムを被覆した。このとき、UV照射直後のシートの温度が40℃以下になるようにした。
 これを、23℃、50%RHで12時間養生した後、恒温槽を用いて80℃、30分の熱処理を施すことで光学フィルム1を得た。
 光学フィルム1の組成及び製造条件を表1に、物性評価を表2に示す。
[実施例2]
 実施例1で得られた樹脂フィルム1から、両側の離型PETフィルムを剥離した後、1.35倍に縦延伸し、さらに、実施例1と同様の方法で、高圧水銀ランプを用いて10J/cmのUVを冷却しながら照射させ、もう1度フィルムの両面に離型PETフィルムを被覆した。これを、23℃、50%RHで12時間養生した後、恒温槽を用いて80℃、30分の熱処理を施すことで光学フィルム2を得た。
 光学フィルム2の組成及び製造条件を表1に、物性評価を表2に示す。
[実施例3]
 ベースとなる熱可塑性樹脂として、エチレン-ブテンランダム共重合体を900g、シラン変性エチレン-オクテンランダム共重合体を100g、架橋剤として、イソボルニルメタクリレートを30g、1,10-デカンジオールジメタクリレートを20g、光架橋開始剤として2,4,6-トリメチルベンゾフェノンと4-メチルベンゾフェノンの混合物を60g混合して、樹脂組成物2を作製した。樹脂組成物2の融点は55℃であった。
 次いで、離型PETフィルム(三菱樹脂社製、ダイアホイルMRA100、厚さ:100μm)の上に、前記樹脂組成物2を厚さが150μmとなるようシート状に賦形して2層の光学フィルム積層体を得た。更に、前記光学フィルム積層体の上に、離型PETフィルム(三菱樹脂社製、ダイアホイルMRF75、厚さ:75μm)を被覆することで、両面に保護フィルムを積層させた樹脂フィルム2を作製した。
 この樹脂フィルム2から、両側の離型PETフィルムを剥離した後、25℃にて1.25倍に縦延伸し、さらに実施例1と同様の方法で、高圧水銀ランプを用いて10J/cmのUVを冷却しながら照射し、もう1度フィルムの両面に離型PETフィルムを被覆した。これを、23℃、50%RHで12時間養生した後、恒温槽を用いて80℃、30分の熱処理を施すことで光学フィルム3を得た。
 光学フィルム3の組成及び製造条件を表1に、物性評価を表2に示す。
[実施例4]
 実施例3で得られた樹脂フィルム2から、両側のPETフィルムを剥離したのち、25℃にて1.25倍に縦延伸し、さらに実施例1と同様の方法で、高圧水銀ランプを用いて10J/cmのUVを冷却しながら照射し、もう1度フィルムの両面に、離型PETフィルムを被覆することで光学フィルム4を得た。
 なお、UV照射後の熱処理は行わなかった。光学フィルム4の組成及び製造条件を表1に、物性評価を表2に示す。
[実施例5]
 2-エチルヘキシルアクリレート77質量部、酢酸ビニル19質量部、アクリル酸4質量部をランダム共重合してなるアクリル酸エステル共重合体(重量平均分子量(Mw):40万)1kgに対して、架橋剤として1,10-デカンジオールジメタクリレートを20g、光架橋開始剤として2,4,6-トリメチルベンゾフェノンと4-メチルベンゾフェノンの混合物を15g混合して、樹脂組成物3を作製した。
 次いで、離型PETフィルム(三菱樹脂社製、ダイアホイルMRA100、厚さ:100μm)の上に、樹脂組成物3/樹脂組成物1/樹脂組成物3の厚さがそれぞれ10μm/150μm/10μmとなるようにシート状に形成した後、剥離処理したPETフィルム(三菱樹脂社製、ダイアホイルMRF75、厚さ:75μm)を被覆することで、樹脂フィルム3を得た。
 この樹脂フィルム3から、両面の離型PETフィルムを剥離した後、25℃にて1.35倍に縦延伸し、さらに実施例1と同様の方法で、高圧水銀ランプを用いて10J/cmのUVを冷却しながら照射し、もう1度両面に離型PETフィルムを被覆した。これを、23℃、50%RHで12時間養生したのち、恒温槽を用いて80℃、30分の熱処理を施すことで、光学フィルム5を得た。
 光学フィルム5の組成及び製造条件を表1に、物性評価を表2に示す。
[比較例1]
 実施例1で樹脂フィルム1から、両面の離型PETフィルムを剥離した後、25℃にて1.2倍に縦延伸し、ソーダライムガラス(0.5mm厚)に両端をテープで固定して貼り付け、フィルムの片面を、離型PETフィルム(三菱樹脂社製、ダイアホイルMRF75、厚さ:75μm)で被覆した。これを光学フィルム6とした。
 光学フィルム6の組成及び製造条件を表1に、物性評価を表2に示す。
Figure JPOXMLDOC01-appb-T000001
<評価>
 上記実施例及び比較例で得た光学フィルムについて、次のように物性評価した。
(ヘーズ)
 実施例・比較例で得た光学フィルムの両面あるいは片面の離型PETフィルムを剥離し、該光学フィルムを、ソーダライムガラス(0.5mm厚)とCOPフィルム(日本ゼオン社製、ゼオノアフィルムZF14、0.1mm厚)との間に挟み、ハンドロール貼合を行って試験サンプルを作製した。
 この試験サンプルについて、ヘーズメーター(日本電色工業社製NDH5000)を用いて、JIS K7136に準拠して、光学フィルムのヘーズ値を測定した。
(面内位相差)
 ヘーズ測定で作製した試験サンプル(ガラス/光学フィルム/COPフィルム)を使用し、位相差測定装置(王子計測機器社製、KOBRA-WR)を用いて、室温での波長586.4nmにおける光学フィルムの面内位相差R0を測定した。
(面内位相差の耐熱性)
 同じくヘーズ測定で作製した試験サンプル(ガラス/光学フィルム/COPフィルム)を使用し、100℃に設定された熱風オーブンに当該試験サンプルを30分間投入し、取り出したサンプルを23℃、50%RHで1時間養生し、面内位相差R0測定の際と同様の方法で、波長586.4nmにおける100℃で30分間加熱後の光学フィルムの面内位相差R0(h)を測定した。面内位相差の耐熱性については下記基準で評価した。
 ◎:R0とR0(h)の比(R0(h)/R0)が0.90以上。
 ○:R0とR0(h)の比(R0(h)/R0)が0.80以上0.90未満。
 ×:R0とR0(h)の比(R0(h)/R0)が0.80未満。
(視認性(直交ニコル))
 液晶ディスプレイの偏光軸とのなす角が45°となるように、上記耐熱性評価後の光学フィルムサンプルを配置した。さらに、液晶ディスプレイの偏光軸とのなす角が90°となるように偏光板を配置した。その際に偏光板側から見える液晶ディスプレイの見え方を下記の基準で評価した。
 ○:輝度がほとんど低下せず、ディスプレイの表示がはっきりと見える。
 ×:輝度が著しく低下し、ディスプレイの表示がほとんど見えない。
(ゲル分率)
 実施例・比較例で得た光学フィルムの両面或いは片面の離型フィルムを剥離し、該光学フィルムを約0.4g分採取し、予め質量(X)を測定したSUSメッシュ(#200)で袋状に包み、袋の口を折って閉じて、この包みの質量(Y)を測定した。その後、130℃で加熱還流させたトルエン50mL中に包みを8時間浸漬させたのち、取り出して80℃で8時間真空乾燥し、付着しているトルエンを蒸発させ、乾燥した包みの質量(Z)を測定し、求めた質量を下記式に代入して、熱可塑性樹脂の光架橋反応物についてのゲル分率を求めた。結果は表2に示した。
ゲル分率[%]=[(Z-X)/(Y-X)]×100
Figure JPOXMLDOC01-appb-T000002
 実施例1~5では、融点の低い軟質な熱可塑性樹脂をベースに作製されているものの、熱可塑性樹脂組成物の融点又はガラス転移温度より低温に冷却しながら光照射して光架橋させることによって、位相差を固定化している。このようにして得られた光学フィルムは、熱可塑性樹脂由来の柔軟性や透明性を維持しながらも、偏光部材を通して液晶ディスプレイを見た場合の視認性が得られ、かつ100℃での面内位相差の耐熱性試験に耐えられるほどの十分な耐熱性を有したものであった。
 一方、比較例1で作製したシートは、延伸配向後に光照射を行っていないため、延伸配向による位相差が固定化されておらず、熱可塑性樹脂組成物の耐熱温度以上では延伸配向が緩和されるため、偏光部材を通して液晶ディスプレイを見た場合の視認性が得られないものであった。

 

Claims (16)

  1.  光学的位相差を有する光学フィルムの製造方法であって、
     熱可塑性樹脂組成物をシート状に成形する成形工程、前記成形工程で得られたシートを1軸又は2軸に延伸することにより、分子鎖を配向させて光学的位相差を生じさせる位相差付与工程、及び、前記位相差付与工程で得られたシートを、前記熱可塑性樹脂組成物の融点又はガラス転移温度より低温に冷却しながら光照射して光架橋させることにより、前記光学的位相差を固定化させる位相差固定工程を備えた、光学フィルムの製造方法。
  2.  前記熱可塑性樹脂組成物の融点(Tm)又はガラス転移温度(Tg)が100℃未満であることを特徴とする請求項1に記載の光学フィルムの製造方法。
  3.  前記位相差固定工程により得られた光学フィルムの、波長586.4nmにおける室温での面内位相差R0が50nm以上350nm以下であり、かつ、当該面内位相差R0と、100℃で30分間加熱後の波長586.4nmにおける面内位相差R0(h)との比(R0(h)/R0)が0.80以上であることを特徴とする請求項1又は2に記載の光学フィルムの製造方法。
  4.  前記位相差固定工程後、光学フィルムを60~200℃の環境下に置いて熱処理を実施する熱処理工程を備えた請求項1~3の何れかに記載の光学フィルムの製造方法。
  5.  熱可塑性樹脂組成物をシート状に成形後、1軸又は2軸に延伸することにより分子鎖を配向させて光学的位相差を生じさせ、光照射して光架橋することにより前記光学的位相差を固定化させて得られる光学フィルムであって、
     波長586.4nmにおける室温での面内位相差R0が50nm以上350nm以下であり、かつ、当該面内位相差R0と、100℃で30分間加熱後の波長586.4nmにおける面内位相差R0(h)との比(R0(h)/R0)が0.80以上であることを特徴とする光学フィルム。
  6.  光学的位相差を有するフィルムであって、熱可塑性樹脂の光架橋反応物を含み、波長586.4nmにおける室温での面内位相差R0が50nm以上350nm以下であることを特徴とする光学フィルム。
  7.  面内位相差R0と、100℃で30分間加熱後の波長586.4nmにおける面内位相差R0(h)との比(R0(h)/R0)が0.80以上であることを特徴とする請求項6に記載の光学フィルム。
  8.  前記熱可塑性樹脂の光架橋反応物のゲル分率が10%以上であることを特徴とする請求項6又は7に記載の光学フィルム。
  9.  オレフィン系共重合体、スチレン系共重合体、アクリル系共重合体、ウレタン系共重合体、ポリエステル系共重合体からなる群より選ばれる1種又は2種以上の熱可塑性樹脂の光架橋反応物であることを特徴とする請求項6~8の何れかに記載の光学フィルム。
  10.  エチレン-α-オレフィン共重合体の光架橋反応物であることを特徴とする請求項6~8の何れかに記載の光学フィルム。
  11.  JIS K7136に準じて測定したヘーズが5%以下であることを特徴とする、請求項5~10の何れかに記載の光学フィルム。
  12.  請求項5~11の何れかに記載の光学フィルムに粘着剤層を積層してなる構成を備えた光学フィルム。
  13.  請求項5~12の何れかに記載の光学フィルムに離型フィルムを積層してなる構成を備えた光学フィルム。
  14.  請求項1~13の何れかに記載の光学フィルムが画像表示構成部材と積層された構成を有する画像表示装置構成用積層体。
  15.  前記画像表示装置構成部材が、タッチパネル、画像表示パネル及び表面保護パネルからなる群のうちいずれか又はこれら2種類以上の組み合わせからなる積層体であることを特徴とする請求項14に記載の画像表示装置構成用積層体。
  16.  請求項15に記載の画像表示装置構成用積層体を有する画像表示装置。
     
PCT/JP2016/056927 2015-03-13 2016-03-07 光学フィルム及びその製造方法 WO2016147923A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680014698.XA CN107430233B (zh) 2015-03-13 2016-03-07 光学薄膜和其制造方法
CN202011459740.3A CN112526665B (zh) 2015-03-13 2016-03-07 光学薄膜和其制造方法
JP2017506458A JP6760263B2 (ja) 2015-03-13 2016-03-07 光学フィルムの製造方法
KR1020177022707A KR102511899B1 (ko) 2015-03-13 2016-03-07 광학 필름 및 그 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015050761 2015-03-13
JP2015-050761 2015-03-13
JP2015-135362 2015-07-06
JP2015135362 2015-07-06

Publications (1)

Publication Number Publication Date
WO2016147923A1 true WO2016147923A1 (ja) 2016-09-22

Family

ID=56919676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056927 WO2016147923A1 (ja) 2015-03-13 2016-03-07 光学フィルム及びその製造方法

Country Status (5)

Country Link
JP (2) JP6760263B2 (ja)
KR (1) KR102511899B1 (ja)
CN (2) CN107430233B (ja)
TW (1) TWI698666B (ja)
WO (1) WO2016147923A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998414A (zh) * 2017-08-09 2020-04-10 帝人株式会社 平视显示器显示装置和用于该平视显示器显示装置的透光部件
JP2020170179A (ja) * 2015-03-13 2020-10-15 三菱ケミカル株式会社 光学フィルム及びその製造方法
JP2022177154A (ja) * 2020-10-20 2022-11-30 大日本印刷株式会社 面発光装置、表示装置、面発光装置用封止部材シートおよび面発光装置の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102361868B1 (ko) * 2018-02-21 2022-02-14 후지필름 가부시키가이샤 환상 올레핀 수지 필름의 제조 방법, 환상 올레핀 수지 필름, 복합 필름

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055228A (ja) * 2000-08-09 2002-02-20 Kanegafuchi Chem Ind Co Ltd 光学フィルム
JP2007010863A (ja) * 2005-06-29 2007-01-18 Teijin Ltd 位相差フィルム及びその製造方法
KR20070082653A (ko) * 2006-02-17 2007-08-22 최유진 액정성 고분자 필름
JP2008089894A (ja) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd 位相差フィルムの製造方法
JP2009134257A (ja) * 2007-10-31 2009-06-18 Sumitomo Chemical Co Ltd 位相差フィルム、およびそれを用いた楕円偏光板
KR20090070053A (ko) * 2007-12-26 2009-07-01 엘지디스플레이 주식회사 광학 보상필름을 포함하는 횡전계방식 액정표시장치
JP2010230816A (ja) * 2009-03-26 2010-10-14 Nippon Zeon Co Ltd 光学部材及び液晶表示装置
JP2014228864A (ja) * 2013-05-27 2014-12-08 三星電子株式会社Samsung Electronics Co.,Ltd. 逆波長分散位相遅延フィルムおよびこれを備える表示装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3459779B2 (ja) 1998-10-30 2003-10-27 帝人株式会社 位相差板
JP2002022944A (ja) 2000-07-06 2002-01-23 Fuji Photo Film Co Ltd 円偏光板およびその製造方法
JP2004170875A (ja) 2002-11-22 2004-06-17 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
JP4467039B2 (ja) * 2003-07-25 2010-05-26 日東電工株式会社 液晶フィルム、液晶配向フィルムの製造方法および画像表示装置
KR101040457B1 (ko) * 2003-12-30 2011-06-09 엘지디스플레이 주식회사 코팅형 보상필름을 적용한 액정표시장치 및 그 제조방법
JP2005308988A (ja) * 2004-04-20 2005-11-04 Nitto Denko Corp 円偏光型反射偏光板、光学素子、集光バックライトシステムおよび液晶表示装置
JP2008164925A (ja) * 2006-12-28 2008-07-17 Hayashi Telempu Co Ltd 位相差フィルムおよびその製造方法
TWI431375B (zh) * 2007-03-28 2014-03-21 Nippon Steel & Sumikin Chem Co A retardation film and a retardation film laminate, and a method of manufacturing the same
JP5266801B2 (ja) * 2007-09-18 2013-08-21 住友化学株式会社 光学フィルム及び光学フィルムの製造方法
CN101802662B (zh) * 2007-09-21 2012-02-29 住友化学株式会社 相位差膜的制造方法
JP5117987B2 (ja) 2008-10-09 2013-01-16 株式会社日立製作所 ガス絶縁開閉装置
JP2010164902A (ja) * 2009-01-19 2010-07-29 Nippon Shokubai Co Ltd 正の位相差フィルム
WO2010101140A1 (ja) 2009-03-04 2010-09-10 林テレンプ株式会社 偏光解消フィルム
JP5457051B2 (ja) * 2009-03-05 2014-04-02 新日鉄住金化学株式会社 位相差フィルム及びその製造方法
JP5644241B2 (ja) * 2010-08-04 2014-12-24 住友化学株式会社 位相差フィルムの製造方法
JP5861485B2 (ja) 2012-02-14 2016-02-16 日産自動車株式会社 表示装置、自動車用表示装置、及び表示装置の製造方法
JP6054054B2 (ja) * 2012-05-11 2016-12-27 日東電工株式会社 偏光子の製造方法、偏光子、偏光板、光学フィルムおよび画像表示装置
JP5789221B2 (ja) * 2012-05-16 2015-10-07 株式会社オートネットワーク技術研究所 感光性熱可塑性樹脂組成物及びそれを用いた成形物
WO2016147923A1 (ja) * 2015-03-13 2016-09-22 三菱樹脂株式会社 光学フィルム及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055228A (ja) * 2000-08-09 2002-02-20 Kanegafuchi Chem Ind Co Ltd 光学フィルム
JP2007010863A (ja) * 2005-06-29 2007-01-18 Teijin Ltd 位相差フィルム及びその製造方法
KR20070082653A (ko) * 2006-02-17 2007-08-22 최유진 액정성 고분자 필름
JP2008089894A (ja) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd 位相差フィルムの製造方法
JP2009134257A (ja) * 2007-10-31 2009-06-18 Sumitomo Chemical Co Ltd 位相差フィルム、およびそれを用いた楕円偏光板
KR20090070053A (ko) * 2007-12-26 2009-07-01 엘지디스플레이 주식회사 광학 보상필름을 포함하는 횡전계방식 액정표시장치
JP2010230816A (ja) * 2009-03-26 2010-10-14 Nippon Zeon Co Ltd 光学部材及び液晶表示装置
JP2014228864A (ja) * 2013-05-27 2014-12-08 三星電子株式会社Samsung Electronics Co.,Ltd. 逆波長分散位相遅延フィルムおよびこれを備える表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020170179A (ja) * 2015-03-13 2020-10-15 三菱ケミカル株式会社 光学フィルム及びその製造方法
JP6996590B2 (ja) 2015-03-13 2022-01-17 三菱ケミカル株式会社 光学フィルム及びその製造方法
CN110998414A (zh) * 2017-08-09 2020-04-10 帝人株式会社 平视显示器显示装置和用于该平视显示器显示装置的透光部件
JP2022177154A (ja) * 2020-10-20 2022-11-30 大日本印刷株式会社 面発光装置、表示装置、面発光装置用封止部材シートおよび面発光装置の製造方法
JP2022177155A (ja) * 2020-10-20 2022-11-30 大日本印刷株式会社 面発光装置、表示装置、面発光装置用封止部材シートおよび面発光装置の製造方法
JP7327610B2 (ja) 2020-10-20 2023-08-16 大日本印刷株式会社 面発光装置、表示装置、面発光装置用封止部材シートおよび面発光装置の製造方法

Also Published As

Publication number Publication date
JP2020170179A (ja) 2020-10-15
JPWO2016147923A1 (ja) 2017-12-28
TW201636658A (zh) 2016-10-16
KR20170126453A (ko) 2017-11-17
KR102511899B1 (ko) 2023-03-20
CN107430233A (zh) 2017-12-01
CN112526665B (zh) 2023-01-03
CN112526665A (zh) 2021-03-19
JP6996590B2 (ja) 2022-01-17
TWI698666B (zh) 2020-07-11
CN107430233B (zh) 2021-03-16
JP6760263B2 (ja) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6996590B2 (ja) 光学フィルム及びその製造方法
TWI796298B (zh) 光學積層體
TWI805553B (zh) 光學積層體
CN103221876B (zh) 光学元件
CN104927691B (zh) 带粘合剂的树脂膜及使用其的光学层叠体
KR101496506B1 (ko) 편광판용 접착제 및 이를 포함하는 편광판
CN102909903B (zh) 光学薄膜用粘合片、其制造方法、粘合型光学薄膜及图像显示装置
CN101290367B (zh) 偏振片、光学薄膜及图像显示装置
KR101065198B1 (ko) 광학필름 및 이의 제조방법
KR102473610B1 (ko) 점착제 조성물, 점착제층, 및 점착제층 부착 광학 부재
TW201235436A (en) Pressure sensitive adhesive sheet, optical film with pressure sensitive adhesive and optical laminate
CN106715624B (zh) 光学粘合片
TW201811563A (zh) 由丙烯酸系樹脂組成物構成之成形體
KR20090126217A (ko) 광학필름 및 이의 제조방법
KR20100038065A (ko) 광학 필름 및 이의 제조방법
CN112996661B (zh) 带玻璃层的层叠体、以及包含该带玻璃层的层叠体的图像显示装置
KR20170066393A (ko) 광경화성 접착제와, 그것을 이용한 편광판, 적층 광학 부재 및 액정 표시 장치
KR20140147033A (ko) 다층 광학 필름, 그 제조방법 및 이를 포함하는 편광판
JP2020173458A (ja) 偏光板
US20130070183A1 (en) Optical film, polarizing plate, and image display device
WO2009038382A2 (en) Optical film and method of manufacturing the same
TW202244141A (zh) 光學膜及偏光板
TW202246064A (zh) 光學膜及偏光板
JP2012032696A (ja) 複合位相差板、複合偏光板および液晶表示装置
WO2021131237A1 (ja) 画像表示装置および光学部材のセット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506458

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177022707

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764753

Country of ref document: EP

Kind code of ref document: A1