WO2016143748A1 - ジアミン化合物及びその中間体の製造方法 - Google Patents

ジアミン化合物及びその中間体の製造方法 Download PDF

Info

Publication number
WO2016143748A1
WO2016143748A1 PCT/JP2016/057022 JP2016057022W WO2016143748A1 WO 2016143748 A1 WO2016143748 A1 WO 2016143748A1 JP 2016057022 W JP2016057022 W JP 2016057022W WO 2016143748 A1 WO2016143748 A1 WO 2016143748A1
Authority
WO
WIPO (PCT)
Prior art keywords
piperidine
reaction
production method
nitrophenyl
tertiary
Prior art date
Application number
PCT/JP2016/057022
Other languages
English (en)
French (fr)
Inventor
顕司 高瀬
佳道 森本
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201680014766.2A priority Critical patent/CN107406385B/zh
Priority to KR1020177027754A priority patent/KR102592383B1/ko
Priority to JP2017505330A priority patent/JP6669159B2/ja
Publication of WO2016143748A1 publication Critical patent/WO2016143748A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/26Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a diamine compound that is useful as a raw material of a polyimide polymer for producing a liquid crystal alignment film, and a novel method for producing an intermediate thereof.
  • a polyimide film is used as a liquid crystal alignment film used in a liquid crystal display element, and the liquid crystal alignment film of the polyimide film is soluble in a solution of polyamic acid, which is a precursor of polyimide, or a solvent.
  • a polyimide solution is applied to a substrate and baked, and the resulting film is produced by a method of orientation treatment such as rubbing treatment.
  • This polyamic acid and polyimide are generally produced by a polycondensation reaction between a tetracarboxylic acid derivative such as tetracarboxylic acid dihydrate and a diamine.
  • the diamine which is a raw material such as polyamic acid and polyimide, is important because it affects the characteristics of the liquid crystal alignment film obtained from the raw material, that is, the characteristics of the liquid crystal display element.
  • Various diamine compounds have been used and proposed in the past. Yes.
  • the inventors of the present invention provide a polyamic acid capable of obtaining a liquid crystal alignment film having a high voltage holding ratio, excellent liquid crystal alignment, and having little residual charge accumulated by a direct current voltage, even when alignment processing is performed by a rubbing method or a photo alignment method.
  • a diamine compound that is a raw material for polyimide a diamine represented by the following formula (A) was found.
  • the present inventors react p-fluoronitrobenzene and 4- (aminomethyl) piperidine to produce a dinitro compound, which is subjected to tertiary butoxycarbonylation and then reduced.
  • the method was devised and implemented.
  • the present invention solves the above problems and has a high reaction rate, a high volumetric efficiency, a small amount of by-products, a high purity, and it is not necessary to isolate an intermediate. It aims at providing the method of manufacturing the diamine compound represented by this, and its intermediate body.
  • the present inventors have found a method for producing the diamine compound represented by the above formula (A) that can achieve the above object and an intermediate thereof, and Completed.
  • the present invention has the following gist.
  • the reaction rate is high, the volumetric efficiency is high, the number of by-products is high, the purity is high, and it is not necessary to isolate the intermediate, and the polyimide precursor or the raw material for producing the polyimide is obtained in high yield.
  • a diamine compound represented by the above formula (A) and a method for producing an intermediate thereof are provided.
  • the proportion of 4- (aminomethyl) piperidine (E) and p-fluoronitrobenzene (D) used is preferably 2 to 10 moles of the latter with respect to 1 mole of the former. From the viewpoint of suppressing the formation of residual and excessive reactants, the amount is more preferably 2.0 to 2.2 mol.
  • p-fluoronitrobenzene and 4- (aminomethyl) piperidine used as starting materials are commercially available.
  • the benzene ring of p-fluoronitrobenzene may have one or more substituents such as a methyl group.
  • the reaction type may be either a rotary type (batch type) or a flow type, but a batch type is preferable from the viewpoint of operability.
  • the reaction is preferably performed in the presence of a base.
  • the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, alkali metal bicarbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate, and phosphoric acid.
  • Organic bases such as potassium and 1,8-diazabicyclo [5,4,0] -7-undecene can be used. Of these, alkali metal carbonates such as sodium carbonate and potassium carbonate are preferred.
  • the amount of base used is 1 to 4 equivalents, preferably 1.0 to 1.5 equivalents, relative to 4- (aminomethyl) piperidine (E).
  • the reaction solvent is at least one selected from the group consisting of dimethylacetamide (DMAc), 1,3-dimethyl-2-imidazolidinone (DMI), dimethyl sulfoxide (DMSO), and N-methylpyrrolidone (NMP). used. Of these, N-methylpyrrolidone is particularly preferable.
  • the reaction solution can be used as it is in the next Boc step after the reaction is completed, which is advantageous in production.
  • the amount of the solvent used is not particularly limited, but it is preferable to use 1 to 10 times by mass of the solvent with respect to 1 part by mass of the compound represented by the formula (C).
  • the amount is more preferably 3 to 5 times by mass, still more preferably 3.1 to 3.3 times by mass.
  • the reaction temperature is, for example, ⁇ 10 to 200 ° C., preferably 40 to 100 ° C.
  • the reaction time is 0.5 to 20 hours, preferably 1 to 15 hours.
  • the reaction solution containing 4- (p-nitrophenylaminomethyl) -N- (p-nitrophenyl) piperidine (C) obtained in the above reaction is tertiary butyloxycarbonylated. This gives 4- (Np-nitrophenyl-N-tertiarybutoxycarbonylamino) methyl-N- (p-nitrophenyl) piperidine (B).
  • a reaction solution containing it can be used as it is in the next step, improving reaction efficiency and yield. This is advantageous in terms of improvement of
  • a tertiary butyloxycarbonylating agent such as di-tert-butyl dicarbonate (Boc 2 O) is preferably used in an amount of 1 to 5 mol, preferably 1.3 mol, per 1 mol of compound (C).
  • the amount used is preferably 2.5 mol, and the amount of di-tert-butyl dicarbonate (also referred to as Boc group) introduced can be controlled by the amount used.
  • tertiary butyloxycarbonylating agent examples include N-tert-butoxycarbonylimidazole, tert-butylphenyl carbonate, tert-butyl carbamate, tert-butyl chloroformate, di-tert-butyl dicarbonate, and the like. Is di-tert-butyl dicarbonate.
  • a base for example, sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, potassium phosphate, sodium carbonate, potassium carbonate, Inorganic bases such as lithium carbonate and cesium carbonate; amines such as trimethylamine, triethylamine, tripropylamine, triisopropylamine, tributylamine, diisopropylethylamine, pyridine, N, N-dimethyl-4-aminopyridine, imidazole, quinoline, collidine Bases such as sodium hydride, potassium hydride, sodium tert-butoxy, potassium tert-butoxy; and the like can be used.
  • N, N-dimethyl-4-aminopyridine is preferable.
  • the amount of the base used is preferably 0.01 to 5.0 equivalents, more preferably 0.01 to 0.10 equivalents, relative to the compound represented by the formula (C).
  • the solvent for reacting 4- (p-nitrophenylaminomethyl) -N- (p-nitrophenyl) piperidine with the tertiary butyloxycarbonylating agent may be used as long as it does not react with each raw material. it can.
  • aprotic polar organic solvents dimethylformamide (DMF), DMSO, DMAc, NMP, etc.
  • ethers diethyl ether (Et 2 O), diisopropyl ether (i-Pr 2 O), tertiary butyl methyl ether (TBME), cyclopentyl methyl ether (CPME), tetrahydrofuran (THF), dioxane, etc.
  • aliphatic hydrocarbons pentane, hexane, heptane, petroleum ether, etc.
  • aromatic hydrocarbons benzene, toluene, xylene, mesitylene) , Chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.
  • halogenated hydrocarbons chloroform, dichloromethane, carbon tetrachloride, dichloroethane, etc.
  • lower fatty acid esters methylformamide (DMF
  • solvents can be used. These solvents can be appropriately selected in consideration of the ease of reaction. Moreover, it can be used individually by 1 type or in mixture of 2 or more types. If necessary, the solvent can be dried using a suitable dehydrating agent or desiccant and used as a non-aqueous solvent.
  • the solvent ethers are preferable, and THF is particularly preferable.
  • THF the compound represented by the formula (B), which is the target product
  • the compound represented by the formula (B), which is the target product can be obtained in a state of being contained in the THF solution by adding water after the completion of the reaction and liquid separation. THF and water are usually mixed together to form a uniform solution.
  • potassium fluoride produced as a by-product in the condensation step is dissolved in the aqueous phase, so that the salt concentration of the aqueous phase is increased. Since the compound represented by the formula (B), which is the target product, is poorly soluble in water, both of them are separated satisfactorily.
  • the ratio of THF to water is preferably 0.1 to 0.5 parts by mass, more preferably 0.3 to 0.4 parts by mass with respect to 1 part by mass of THF.
  • the amount of the solvent used is not particularly limited, but it is preferable to use 0.1 to 100 times by mass of the solvent with respect to 1 part by mass of the dinitro compound of the formula (C). More preferably, it is 0.5 to 30 times by mass, and further preferably 1 to 10 times by mass.
  • the reaction temperature is not particularly limited, but is in the range from ⁇ 100 ° C. to the boiling point of the solvent used, preferably in the range of ⁇ 50 to 150 ° C.
  • the reaction time is usually 0.05 to 200 hours, preferably 0.5 to 100 hours.
  • a THF solution containing the compound represented by the formula (B) can be obtained by adding water and liquid separation as described above.
  • Examples of the reduction method include a hydrogenation reaction in the presence of a catalyst, a reduction reaction performed in the presence of protons, a reduction reaction using formic acid as a hydrogen source, a reduction reaction using hydrazine as a hydrogen source, and the like. A plurality of may be combined.
  • the reduction method is preferably a hydrogenation reaction in the presence of a catalyst.
  • the catalyst used for the hydrogenation reaction is preferably an activated carbon-supported metal available as a commercial product, and examples thereof include palladium-activated carbon, platinum-activated carbon, and rhodium-activated carbon. Further, palladium hydroxide, platinum oxide, Raney nickel or the like is not necessarily an activated carbon-supported metal catalyst. Palladium-activated carbon that is widely used in general is preferred because good results are obtained such as no generation of waste after the reaction and side reactions are unlikely to occur.
  • the amount of the catalyst used is not particularly limited, but is preferably 0.0001 to 0.1 mol, more preferably 0.001 to 0.1 mol with respect to 1 mol of the compound represented by the above formula (B) from the viewpoint of reactivity. 0.01 mole.
  • the reaction may be carried out in the presence of activated carbon.
  • the amount of the activated carbon to be used is not particularly limited, but is preferably 1 to 20% by mass and more preferably 5 to 10% by mass with respect to 100% by mass of the dinitro compound of the formula (B).
  • the reaction may be carried out under pressurized hydrogen.
  • it in order to avoid reduction of benzene nuclei, it is carried out in a pressure range up to 20 atm.
  • the reaction is preferably carried out in the range up to 10 atm.
  • a solvent does not react with each raw material, it can be used without a restriction
  • aprotic polar organic solvents DMF, DMSO, DMAc, NMP, etc.
  • ethers Et 2 O, i-Pr 2 O, TBME, CPME, THF, dioxane, etc.
  • aliphatic hydrocarbons penentane, Hexane, heptane, petroleum ether, etc.
  • aromatic hydrocarbons benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.
  • halogenated hydrocarbons chloroform, dichloromethane, carbon tetrachloride, dichloroethane) Etc.
  • lower fatty acid esters methyl acetate, ethyl acetate, butyl acetate, methyl propionate, etc.
  • solvents can be appropriately selected in consideration of the ease of reaction. Moreover, it can be used individually by 1 type or in mixture of 2 or more types. If necessary, the solvent can be dried using a suitable dehydrating agent or desiccant and used as a non-aqueous solvent.
  • the amount of solvent used is not particularly limited, but is 0.1 to 100 times by mass with respect to 1 part by mass of the dinitro compound of the formula (B).
  • the amount is preferably 0.5 to 30 times by mass, more preferably 1 to 10 times by mass.
  • the reaction temperature is not particularly limited, but is in the range from ⁇ 100 ° C. to the boiling point of the solvent used, preferably ⁇ 50 to 150 ° C.
  • the reaction time is usually 0.05 to 350 hours, preferably 0.5 to 100 hours.
  • ⁇ Condensation step> In a 1 L (liter) four-necked flask, 4- (aminomethyl) piperidine (15.0 g, 131.4 mmol), potassium carbonate (21.8 g, 157.7 mmol) and N-methylpyrrolidone (40.5 g) were added. The temperature was raised to 75 ° C. with stirring and feather stirring. Thereafter, p-fluoronitrobenzene (38.9 g, 275.9 mmol) and N-methylpyrrolidone (7.5 g) were added dropwise over 2 hours, and the mixture was stirred at 75 ° C. for 6 hours. After confirming the completion of the reaction by HPLC, the reaction solution was used as it was and proceeded to the next step.
  • 4- (Np-aminophenyl-N-tertiarybutoxycarbonylamino) methyl-N- (p-aminophenyl) piperidine obtained in the present invention is a polyimide precursor or a polyimide raw material used for a liquid crystal alignment film or the like. Useful as a material.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2015-045862 filed on March 9, 2015 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Hydrogenated Pyridines (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 液晶配向膜を作製するためのポリイミド系重合体の原料などとして有用であるジアミン化合物及びその中間体の新規な製造方法を提供する。 p-フルオロニトロベンゼン(D)と、4-(アミノメチル)ピペリジン(E)とを、ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド及びN-メチルピロリドンからなる群から選ばれる溶媒中で反応させて式(C)で表される化合物を得る。この化合物のアミノ基をターシャリーブチルオキシカルボニル化することにより、式(B)で表される化合物を得る。更に、この化合物を還元して式(A)で表される化合物を得る。

Description

ジアミン化合物及びその中間体の製造方法
 本発明は、液晶配向膜を作製するためのポリイミド系重合体の原料などとして有用であるジアミン化合物及びその中間体の新規な製造方法に関する。
 現在、液晶表示素子に用いられる液晶配向膜には、多くの場合、ポリイミド膜が使用されており、ポリイミド膜の液晶配向膜は、ポリイミドの前駆体であるポリアミック酸の溶液、又は溶媒に可溶性のあるポリイミドの溶液を基板に塗布し、焼成して、得られる膜をラビング処理などの配向処理する方法により作製されている。(特許文献1、2を参照)
 このポリアミック酸やポリイミドは、一般的に、テトラカルボン酸二水物などのテトラカルボン酸誘導体と、ジアミンとの縮重合反応によって製造されている。
 かかるポリアミック酸やポリイミドなどの原料であるジアミンは、これから得られる液晶配向膜の特性、すなわち、液晶表示素子の特性に影響するので重要であり、従来から種々のジアミン化合物が使用され、提案されている。
日本特開平7-120769号公報 日本特開平9-146100号公報
 本発明者らは、ラビング法、あるいは光配向法で配向処理しても、電圧保持率が高く、液晶の配向性に優れ、直流電圧により蓄積する残留電荷の少ない液晶配向膜が得られるポリアミック酸やポリイミドの原料であるジアミン化合物として、下記の式(A)で表わされるジアミンを見出した。
Figure JPOXMLDOC01-appb-C000004
 上記ジアミン化合物の製造方法として、本発明者らは、p-フルオロニトロベンゼンと、4-(アミノメチル)ピペリジンとを反応させてジニトロ化合物を製造し、ターシャリーブトキシカルボニル化に供した後、還元するという方法を考案し、実施した。
 しかし、この製造方法を実施してみると、各前工程で得られる上記ジアミン化合物の中間体を生成し、これを単離しようとする場合、それによって収率が低下する。また、p-フルオロニトロベンゼンと4-(アミノメチル)ピペリジンとの反応の際、当該反応の一般的な条件である、炭酸カリウムの存在下に溶媒として、DMF(N,N-ジメチルホルムアミド)などの通常の溶媒を用いた場合には、フッ素原子がDMFに由来するジメチルアミノ基と置換反応して、p-ニトロ-N,N-ジメチルアニリンが副生し、さらに収率を低下させるという問題があった。
 本発明は、上記問題を解決するとともに、反応速度が高く、容積効率が高く、副生物が少なく、高純度で、かつ中間体を単離する必要がなく、高収率で、上記式(A)で表されるジアミン化合物及びその中間体を製造する方法を提供することを目的とする。
 本発明者らは、上記の状況に鑑み、鋭意検討した結果、上記目的を達成することができる上記式(A)で表されるジアミン化合物及びその中間体を製造する方法を見出し、本発明の完成に至った。
 すなわち、本発明は、下記を要旨とするものである。
 1.p-フルオロニトロベンゼンと、4-(アミノメチル)ピペリジンとを、ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド及びN-メチルピロリドンからなる群から選ばれる少なくとも1種の溶媒中で反応させる、4-(p-ニトロフェニルアミノメチル)-N-(p-ニトロフェニル)ピペリジン(C)の製造方法。
Figure JPOXMLDOC01-appb-C000005
 2.塩基の存在下に反応させる上記1に記載の製造方法。
 3.4-(アミノメチル)ピペリジン1モルに対して、p-フルオロニトロベンゼンを2~10モル反応させる上記1又は2に記載の製造方法。
 4.前記溶媒が、N-メチルピロリドンである上記1~3のいずれかに記載の製造方法。
 5.上記1~3のいずれかで得られる4-(p-ニトロフェニルアミノメチル)-N-(p-ニトロフェニル)ピペリジン(C)を、ターシャリーブチルオキシカルボニル化する、4-(N-p-ニトロフェニル-N-ターシャリーブトキシカルボニルアミノ)メチル-N-(p-ニトロフェニル)ピペリジン(B)の製造方法。
Figure JPOXMLDOC01-appb-C000006
 6.前記ターシャリーブチルオキシカルボニル化を塩基の存在下にて行う上記5に記載の製造方法。
 7.前記ターシャリーブチルオキシカルボニル化剤の使用量が式(C)で表される化合物1モルに対して1~10モルである上記5又は6に記載の製造方法。
 8.前記ターシャリーブチルオキシカルボニル化をテトラヒドロフランの溶媒中行う上記5~7のいずれかに記載の製造方法。
 9.上記5~8のいずれかで得られる4-(N-p-ニトロフェニル-N-ターシャリーブトキシカルボニルアミノ)メチル-N-(p-ニトロフェニル)ピペリジン(B)を還元する、4-(N-p-アミノフェニル-N-ターシャリーブトキシカルボニルアミノ)メチル-N-(p-アミノフェニル)ピペリジン(A)の製造方法。
Figure JPOXMLDOC01-appb-C000007
 10.触媒の存在下における水素添加反応により還元する上記9に記載の製造方法。
 11.活性炭担持触媒の存在下に還元する上記9又は10に記載の製造方法。
 本発明によれば、反応速度が高く、容積効率が高く、副生物が少なく、高純度で、かつ中間体を単離する必要がなく、高収率で、ポリイミド前駆体あるいはポリイミドの製造の原料として有用な、上記式(A)で表されるジアミン化合物、及びその中間体を製造する方法が提供される。
 以下、本発明を詳細に説明する。
 本発明では、p-フルオロニトロベンゼン(D)と、4-(アミノメチル)ピペリジン(E)とを反応させることにより、4-(p-ニトロフェニルアミノメチル)-N-(p-ニトロフェニル)ピペリジン(C)が得られる。
Figure JPOXMLDOC01-appb-C000008
 上記反応において、4-(アミノメチル)ピペリジン(E)とp-フルオロニトロベンゼン(D)との使用割合は、前者1モルに対して、後者が、好ましくは2~10モルであり、中間体の残存や過剰反応物の生成を抑制する観点から、より好ましくは2.0~2.2モルである。
 上記反応において、出発原料として用いるp-フルオロニトロベンゼン、及び4-(アミノメチル)ピペリジンは市販品として入手することができる。なお、本発明では、p-フルオロニトロベンゼンのベンゼン環は、メチル基などの置換基を単数若しくは複数有していてもよい。
 反応形式は、回転式(バッチ式)、流通式のいずれでもよいが、操作性の観点から、バッチ式が好ましい。
 反応は、塩基存在下で行うことが好ましい。塩基としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属重炭酸塩、リン酸カリウム、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン等の有機塩基等を用いることができる。
 中でも、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩が好ましい。特に、微粉末炭酸カリウムを用いると、反応性が向上するので好ましい。市販されている微粉末炭酸カリウムとしては、FG-F20(旭硝子社商品名)等が挙げられる。
 塩基の使用量は、4-(アミノメチル)ピペリジン(E)に対して1~4当量、好ましくは1.0~1.5当量用いることができる。
 反応溶媒としては、ジメチルアセトアミド(DMAc)、1,3-ジメチル-2-イミダゾリジノン(DMI)、ジメチルスルホキシド(DMSO)、及びN-メチルピロリドン(NMP)からなる群から選ばれる少なくとも1種が使用される。なかでも、N-メチルピロリドンが特に好ましい。
 これらの溶媒を使用した場合、反応終了後に、反応溶液をそのまま、次のBoc工程で使用することが出来る点で、製造上も有利である。
 溶媒の使用量は、特に限定されないが、式(C)で表される化合物1質量部に対し、1~10質量倍の溶媒を用いることが好ましい。より好ましくは、3~5質量倍であり、さらに好ましくは3.1~3.3質量倍である。
 反応温度は、例えば、-10~200℃、好ましくは40~100℃である。反応時間は、バッチ処理の場合には、0.5~20時間、好ましくは1~15時間である。
 本発明では、上記で得られた上記反応で得られた4-(p-ニトロフェニルアミノメチル)-N-(p-ニトロフェニル)ピペリジン(C)を含む反応溶液をターシャリーブチルオキシカルボニル化することにより、4-(N-p-ニトロフェニル-N-ターシャリーブトキシカルボニルアミノ)メチル-N-(p-ニトロフェニル)ピペリジン(B)が得られる。本発明では、4-(p-ニトロフェニルアミノメチル)-N-(p-ニトロフェニル)ピペリジンを単離せずに、これを含む反応溶液をそのまま次工程に使用でき、反応効率の向上や収率の向上等の点で有利である。
Figure JPOXMLDOC01-appb-C000009
 上記の反応では、化合物(C)1モルに対して、二炭酸ジ-tert-ブチル(BocO)などのターシャリーブチルオキシカルボニル化剤を、好ましくは1~5モル、好ましくは1.3~2.5モル使用することが好ましく、かかる使用量により、二炭酸ジ-tert-ブチル(Boc基とも言う。)の導入数を制御することができる。
 ターシャリーブチルオキシカルボニル化剤としては、N-tert-ブトキシカルボニルイミダゾール、炭酸tert-ブチルフェニル、カルバジン酸tert-ブチル、クロロギ酸tert-ブチル、二炭酸ジ-tert-ブチル等が挙げられ、特に好ましいのは二炭酸ジ-tert-ブチルである。
 上記反応において塩基の存在は、必ずしも必要ではないが、塩基を用いる場合、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸水素カリウム、燐酸カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウムなどの無機塩基;トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリイソプロピルアミン、トリブチルアミン、ジイソプロピルエチルアミン、ピリジン、N,N-ジメチル-4-アミノピリジン、イミダゾール、キノリン、コリジンなどのアミン類;水素化ナトリウム、水素化カリウム、tert-ブトキシナトリウム、tert-ブトキシカリウムなどの塩基;等を使用できる。なかでも、N,N-ジメチル-4-アミノピリジン(DMAP)が好ましい。
 塩基の使用量は、上記式(C)で表される化合物に対して、好ましくは0.01~5.0当量、より好ましくは0.01~0.10当量である。
 4-(p-ニトロフェニルアミノメチル)-N-(p-ニトロフェニル)ピペリジンを、ターシャリーブチルオキシカルボニル化剤と反応させる際の溶媒は、各原料と反応しない溶媒であれば使用することができる。
 例えば、非プロトン性極性有機溶媒(ジメチルホルムアミド(DMF)、DMSO、DMAc、NMPなど);エーテル類(ジエチルエーテル(EtO)、ジイソプロピルエーテル(i-PrO)、ターシャリーブチルメチルエーテル(TBME)、シクロペンチルメチルエーテル(CPME)、テトラヒドロフラン(THF)、ジオキサンなど);脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテルなど);芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど);ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど);低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等);ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等);等が使用できる。これらの溶媒は、反応の起こり易さなどを考慮して適宜選択することができる。また、1種単独で又は2種以上混合して用いることができる。必要に応じて、適当な脱水剤や乾燥剤を用いて溶媒を乾燥し、非水溶媒として用いることもできる。
 溶媒としては、エーテル類が好ましく、THFが特に好ましい。THFを用いた場合、反応終了後に水を加えて分液することで、目的物である式(B)で表される化合物は、THF溶液に含まれた状態で得ることができる。
 THFと水は、通常は、混合し合って均一な溶液となるが、本発明の製造方法においては、縮合工程で副生したフッ化カリウムが、水相に溶解することにより水相の塩濃度が高いこと、目的物である式(B)で表される化合物が水に難溶性であること等から、両者は良好に分液する。その際のTHFと水の比率としては、THF1質量部に対して、水0.1~0.5質量部が好ましく、0.3~0.4質量部がより好ましい。
 溶媒の使用量は特に限定されないが、式(C)のジニトロ化合物1質量部に対し、0.1~100質量倍の溶媒を用いることが好ましい。より好ましくは、0.5~30質量倍であり、さらに好ましくは1~10質量倍である。
 反応温度は特に限定されないが、-100℃から使用する溶媒の沸点までの範囲、好ましくは、-50~150℃の範囲である。
 反応時間は、通常0.05~200時間、好ましくは0.5~100時間である。
 反応終了後は、上記の通り、水を加えて分液することで、式(B)で表される化合物を含むTHF溶液が得られる。
 次いで、本発明では、上記で得られた4-(N-p-ニトロフェニル-N-ターシャリーブトキシカルボニルアミノ)メチル-N-(p-ニトロフェニル)ピペリジン(B)を、を還元することにより、4-(N-p-アミノフェニル-N-ターシャリーブトキシカルボニルアミノ)メチル-N-(p-アミノフェニル)ピペリジン(A)が得られる。
 本発明では、式(B)のニトロ化合物を単離せずに、これを含む溶液をそのまま、次工程の還元反応に供することができ、この場合、反応効率の向上や収率の向上等の点で、好ましい。
Figure JPOXMLDOC01-appb-C000010
 還元の方法としては、触媒の存在下における水素添加反応、プロトンの共存下に行う還元反応、蟻酸を水素源とする還元、ヒドラジンを水素源とする還元反応などが挙げられるが、これらの還元反応を複数組み合わせてもよい。式(B)のジニトロ化合物の構造と反応性を考慮すると、還元の方法としては、触媒の存在下における水素添加反応が好ましい。
 水素添加反応に用いられる触媒は、市販品として入手できる活性炭担持金属が好ましく、例えば、パラジウム-活性炭、白金-活性炭、ロジウム-活性炭などが挙げられる。また、水酸化パラジウム、酸化白金、ラネーニッケルなど、必ずしも、活性炭担持型の金属触媒でなくてもよい。一般的に広く使用されているパラジウム-活性炭が、反応後に廃棄物が発生しない、副反応が起こりにくい等の良好な結果が得られることから好ましい。
 触媒の使用量は特に限定されないが、反応性の点から、上記式(B)で表される化合物1モルに対して、好ましくは0.0001~0.1モル、より好ましくは0.001~0.01モルである。
 水素添加反応をより効果的に進行させるため、さらに、活性炭の共存下で、反応を実施することもある。この時、使用する活性炭の量は特に限定されないが、式(B)のジニトロ化合物の100質量%に対して、1~20質量%が好ましく、5~10質量%がより好ましい。
 更なる反応促進のために、加圧水素下で反応を実施する場合もある。この場合、ベンゼン核の還元を避けるため、20気圧までの加圧範囲で行う。好ましくは10気圧までの範囲で反応を実施する。
 溶媒は、各原料と反応しない溶媒であれば、制限なく使用することができる。
 例えば、非プロトン性極性有機溶媒(DMF、DMSO、DMAc、NMPなど);エーテル類(EtO、i-PrO、TBME、CPME、THF、ジオキサンなど);脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテルなど);芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど);ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど);低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等);ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等);などが使用できる。なかでも、THF、ジオキサン、酢酸エチルが好ましい。
 これらの溶媒は、反応の起こり易さなどを考慮して、適宜選択できる。また、1種単独で又は2種以上混合して用いることができる。必要に応じて、適当な脱水剤や乾燥剤を用いて溶媒を乾燥し、非水溶媒として用いることもできる。
 溶媒の使用量(反応濃度)は特に限定されないが、式(B)のジニトロ化合物の1質量部に対し、0.1~100質量倍である。好ましくは0.5~30質量倍であり、さらに好ましくは1~10質量倍である。
 反応温度は特に限定されないが、-100℃から使用する溶媒の沸点までの範囲、好ましくは、-50~150℃である。反応時間は、通常0.05~350時間、好ましくは0.5~100時間である。
 以下、本発明を実施例によりさらに具体的に説明するが、これらの実施例によって本発明の解釈が限定されるものではない。なお、実施例において採用した分析装置及び分析条件は、下記のとおりである。
H-NMRの測定)
 装置:Varian NMR system 400NB(400MHz)(Varian社製)、及びJMTC-500/54/SS(500MHz)(JEOL社製)
 測定溶媒:CDCl(重水素化クロロホルム),DMSO-d(重水素化ジメチルスルホキシド)
 基準物質:TMS(テトラメチルシラン)(δ:0.0ppm,H)及びCDCl(δ:77.0ppm,13C)
(HPLC(高速液体クロマトグラフィ)の測定)
 装置 :LC-20AD(島津製作所社製)
 カラム:X Bridge BEHC18 5μm,4.6×250mm Column (Waters)
 検出器:SPD-M20A(島津製作所社製) (検出波長:254nm)
 溶離液:MeOH / 0.2%AcOH、0.8%Et3N aq. = 70/30 [vol/vol]
 <4-(N-p-アミノフェニル-N-ターシャリーブトキシカルボニルアミノ)メチル-N-(p-アミノフェニル)ピペリジンの合成>
Figure JPOXMLDOC01-appb-C000011
<縮合工程>
 1L(リットル)の四つ口フラスコに、4-(アミノメチル)ピペリジン(15.0g,131.4mmol)、炭酸カリウム(21.8g、157.7mmol)及びN-メチルピロリドン(40.5g)を仕込み、羽攪拌下に75℃にまで昇温した。その後、p-フルオロニトロベンゼン(38.9g、275.9mmol)、及びN-メチルピロリドン(7.5g)を2時間かけて滴下し、75℃にて6時間撹拌した。HPLCにて反応終了を確認した後、反応液をそのまま用いて、次工程へと進んだ。
<Boc工程>
 前工程の反応液にテトラヒドロフラン(270.0g)、及びDMAP(N,N-dimethyl-4-aminopyridine)(0.80g,6.57mmol)を仕込み、BocO (二炭酸ジ-tert-ブチル)(57.3g,262.5mmol)を30分かけて滴下した後,1時間攪拌した。HPLCにて反応終了を確認し、その後、テトラヒドロフラン(15.0g)、及び水(90.0g)を加えて撹拌した(1時間)。次いで、分液して水層を除去し、THF溶液をそのまま用いて、次工程へ進んだ。
<還元工程>
 前記THF溶液に5質量%Pd/C(50質量%含水型)(3.0g)、及び活性炭(白鷺WP-H(6.0g))を仕込んだ。その後、水素置換を行い、50℃に昇温した後、5時間撹拌した。HPLCにて反応終了を確認した後、メンブレンフィルターによりろ過を行い、Pd/C等を除去した。その後、内容量が210.0gになるまで濃縮した。次いで、2-プロパノール(420.0g)を滴下し、5℃に冷却して、さらに、1時間撹拌した。析出した結晶を減圧濾過し、2-プロパノール(27.0g)で洗浄した後、乾燥し、粉末結晶として、4-(N-p-アミノフェニル-N-ターシャリーブトキシカルボニルアミノ)メチル-N-(p-アミノフェニル)ピペリジンを得た(収量44.3g,収率85.0%)。
H-NMR(DMSO-d):δ=6.83(d,2H, J=8.0), 6.65(d,2H J=8.4), 6.50(d,2H, J=8.4), 6.45(d,2H, J=8.4), 5.05(br, 2H), 4.54(br,2H), 3.41(d,2H, J=6.8), 3.29(d,2H,J=12.4), 2.36(t,2H, J=10.8), 1.64(d,2H, J=11.6), 1.42-1.19(br,12H).
 本発明で得られる4-(N-p-アミノフェニル-N-ターシャリーブトキシカルボニルアミノ)メチル-N-(p-アミノフェニル)ピペリジンは、液晶配向膜等に用いられるポリイミド前駆体或いはポリイミドの原料材料として有用である。
 なお、2015年3月9日に出願された日本特許出願2015-045862号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  1.p-フルオロニトロベンゼンと、4-(アミノメチル)ピペリジンとを、ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド及びN-メチルピロリドンからなる群から選ばれる少なくとも1種の溶媒中で反応させる、4-(p-ニトロフェニルアミノメチル)-N-(p-ニトロフェニル)ピペリジン(C)の製造方法。
  2.  塩基の存在下に反応させる請求項1に記載の製造方法。
  3.  4-(アミノメチル)ピペリジン1モルに対して、p-フルオロニトロベンゼンを2~10モル反応させる請求項1又は2に記載の製造方法。
  4.  前記溶媒が、N-メチルピロリドンである請求項1~3のいずれかに記載の製造方法。
  5.  請求項1~3のいずれかで得られる、4-(p-ニトロフェニルアミノメチル)-N-(p-ニトロフェニル)ピペリジン(C)を、ターシャリーブチルオキシカルボニル化する、4-(N-p-ニトロフェニル-N-ターシャリーブトキシカルボニルアミノ)メチル-N-(p-ニトロフェニル)ピペリジン(B)の製造方法。
    Figure JPOXMLDOC01-appb-C000002
  6.  前記ターシャリーブチルオキシカルボニル化を塩基の存在下にて行う請求項5に記載の製造方法。
  7.  前記ターシャリーブチルオキシカルボニル化剤の使用量が式(C)で表される化合物1モルに対して1~5モルである請求項5又は6に記載の製造方法。
  8.  前記ターシャリーブチルオキシカルボニル化をテトラヒドロフランの溶媒中で行う請求項5~7のいずれかに記載の製造方法。
  9.  請求項5~8のいずれかで得られるターシャリーブチルオキシカルボニル化する、4-(N-p-ニトロフェニル-N-ターシャリーブトキシカルボニルアミノ)メチル-N-(p-ニトロフェニル)ピペリジン(B)を還元する4-(N-p-アミノフェニル-N-ターシャリーブトキシカルボニルアミノ)メチル-N-(p-アミノフェニル)ピペリジン(A)の製造方法。
    Figure JPOXMLDOC01-appb-C000003
  10.  触媒の存在下における水素添加反応により還元する請求項9に記載の製造方法。
  11.  活性炭担持触媒の存在下に還元する請求項9又は10に記載の製造方法。
PCT/JP2016/057022 2015-03-09 2016-03-07 ジアミン化合物及びその中間体の製造方法 WO2016143748A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680014766.2A CN107406385B (zh) 2015-03-09 2016-03-07 二胺化合物及其中间体的制造方法
KR1020177027754A KR102592383B1 (ko) 2015-03-09 2016-03-07 디아민 화합물 및 그 중간체의 제조 방법
JP2017505330A JP6669159B2 (ja) 2015-03-09 2016-03-07 ジアミン化合物及びその中間体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-045862 2015-03-09
JP2015045862 2015-03-09

Publications (1)

Publication Number Publication Date
WO2016143748A1 true WO2016143748A1 (ja) 2016-09-15

Family

ID=56880204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057022 WO2016143748A1 (ja) 2015-03-09 2016-03-07 ジアミン化合物及びその中間体の製造方法

Country Status (5)

Country Link
JP (1) JP6669159B2 (ja)
KR (1) KR102592383B1 (ja)
CN (1) CN107406385B (ja)
TW (1) TWI691485B (ja)
WO (1) WO2016143748A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117089070B (zh) * 2023-08-21 2024-04-16 波米科技有限公司 一种液晶取向剂及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104633A (ja) * 1996-10-02 1998-04-24 Japan Synthetic Rubber Co Ltd 液晶配向剤
JP2012155311A (ja) * 2011-01-05 2012-08-16 Jnc Corp 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP2013152421A (ja) * 2011-12-26 2013-08-08 Jsr Corp 液晶配向剤、液晶配向膜、液晶表示素子、重合体及び化合物
WO2015122413A1 (ja) * 2014-02-13 2015-08-20 日産化学工業株式会社 新規な液晶配向剤、ジアミン、及びポリイミド前駆体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191535B2 (ja) 1993-10-21 2001-07-23 ジェイエスアール株式会社 液晶配向剤および液晶表示素子
JP3206401B2 (ja) 1995-11-20 2001-09-10 ジェイエスアール株式会社 液晶配向剤および液晶表示素子
TWI673301B (zh) * 2014-05-30 2019-10-01 日商日產化學工業股份有限公司 液晶配向劑、液晶配向膜、及液晶顯示元件
JP6569872B2 (ja) * 2014-10-03 2019-09-04 日産化学株式会社 液晶配向剤、液晶配向膜およびそれを用いた液晶表示素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104633A (ja) * 1996-10-02 1998-04-24 Japan Synthetic Rubber Co Ltd 液晶配向剤
JP2012155311A (ja) * 2011-01-05 2012-08-16 Jnc Corp 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP2013152421A (ja) * 2011-12-26 2013-08-08 Jsr Corp 液晶配向剤、液晶配向膜、液晶表示素子、重合体及び化合物
WO2015122413A1 (ja) * 2014-02-13 2015-08-20 日産化学工業株式会社 新規な液晶配向剤、ジアミン、及びポリイミド前駆体

Also Published As

Publication number Publication date
JPWO2016143748A1 (ja) 2017-12-21
TW201708192A (zh) 2017-03-01
KR20170127495A (ko) 2017-11-21
JP6669159B2 (ja) 2020-03-18
CN107406385A (zh) 2017-11-28
KR102592383B1 (ko) 2023-10-20
TWI691485B (zh) 2020-04-21
CN107406385B (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
JP5322183B2 (ja) イソシアナート化合物の製造方法
JP5468289B2 (ja) ピリミジン系化合物の製造方法
JP5689321B2 (ja) 2−アミノ−4−トリフルオロメチルピリジン類の製造方法
JP6669159B2 (ja) ジアミン化合物及びその中間体の製造方法
JP2014181185A (ja) ジアミン化合物の製造方法
JP2004262835A (ja) 芳香族イソシアネートの製造方法
JP2019534299A (ja) (s)−n1−(2−アミノエチル)−3−(4−アルコキシフェニル)プロパン−1,2−ジアミン三塩酸塩の製造方法
JP7103232B2 (ja) 芳香族ジアミン化合物前駆体の製造方法
US20130303740A1 (en) Method for producing urethanes
JP5790645B2 (ja) ビスアミノフェニルアルキルウレアの新規な製造方法
JP4297837B2 (ja) フッ化フェニレンジアミンの製造方法
JP5279449B2 (ja) 5−{4−[2−(5−エチル−2−ピリジル)エトキシ]ベンジル}−2,4−チアゾリジンジオン塩酸塩の製造方法
JP2004331520A (ja) 2,5−ビス(イソシアナトメチル)−1,4−ジチアン類の製造方法およびその中間体
JP5851974B2 (ja) ジアミン化合物及びその製造方法
JP5851975B2 (ja) ジアミン化合物及びその製造方法
ES2241303T3 (es) Derivados de difluorometoxibenceno y su uso como intermediarios.
KR20130093981A (ko) 파라-아미노벤조산의 제조방법
JP2021155348A (ja) ベンゾニトリル誘導体の製造方法
US20140336380A1 (en) Process for the preparation of agomelatine
JPWO2008007763A1 (ja) イミダゾリジン−2,4−ジオン化合物の製法及び固体状4,5−ジヒドロキシ−2−イミダゾリジノン化合物の取得方法
KR20200009001A (ko) 디아미노벤젠 화합물의 제조 방법
JP2014094890A (ja) ジアミン化合物及びその製造方法
JPS58225071A (ja) 6−ニトロベンツオキサゾロン類の製造方法
JPS62123162A (ja) シアノ置換アニリン類の製造方法
JP2013181053A (ja) ポリアミック酸、ポリイミド及び新規ジアミン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505330

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177027754

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16761716

Country of ref document: EP

Kind code of ref document: A1