WO2016139705A1 - 転写フィルム及び転写フィルムの製造方法 - Google Patents

転写フィルム及び転写フィルムの製造方法 Download PDF

Info

Publication number
WO2016139705A1
WO2016139705A1 PCT/JP2015/005902 JP2015005902W WO2016139705A1 WO 2016139705 A1 WO2016139705 A1 WO 2016139705A1 JP 2015005902 W JP2015005902 W JP 2015005902W WO 2016139705 A1 WO2016139705 A1 WO 2016139705A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photocatalyst
transfer
film
transfer film
Prior art date
Application number
PCT/JP2015/005902
Other languages
English (en)
French (fr)
Inventor
和彦 金内
岳永 芝田
知之 井上
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017503214A priority Critical patent/JPWO2016139705A1/ja
Priority to CN201580038015.XA priority patent/CN106660387B/zh
Priority to US15/324,099 priority patent/US10569496B2/en
Publication of WO2016139705A1 publication Critical patent/WO2016139705A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14827Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using a transfer foil detachable from the insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • B32B37/025Transfer laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/17Dry transfer
    • B44C1/1712Decalcomanias applied under heat and pressure, e.g. provided with a heat activable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0831Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using UV radiation

Definitions

  • the present invention relates to a transfer film used in in-mold molding and a method for manufacturing the transfer film.
  • the concavo-convex shape may be transferred to the product surface to provide a tactile sensation.
  • an uneven shape was formed on the surface of the product by sticking the uneven shape to the surface of the product using a transfer film during in-mold molding of the product.
  • FIG. 6 is a cross-sectional view showing a layer structure of a general transfer film with an uneven shape.
  • the transfer film 201 having an uneven shape is a continuous film.
  • the transfer film 201 having an uneven shape is roughly divided into a carrier layer 202 that is not transferred to the molded product and a transfer layer 203 that is transferred to the surface of the molded product.
  • the transfer film 201 having an uneven shape will be described in more detail.
  • Reference numeral 204 denotes a base film made of PET, acrylic film, or the like that plays a role of continuously supplying the transfer film 201 having an uneven shape into the mold.
  • Reference numeral 205 denotes a release layer that peels off the transfer layer 203 transferred to the base film 204 and the molded product. In order to transfer the uneven shape to the outermost surface of the transfer layer 203, the release layer 205 is provided with an uneven shape in advance.
  • Reference numeral 206 denotes a protective layer or a hard coat layer having an uneven shape for imparting a tactile sensation to the outermost surface of the molded product, and imparting strength and hardness to the transfer layer 203 to prevent scratches, dirt, and the like.
  • Reference numeral 207 denotes an anchor layer or a primer layer that facilitates printing of ink and improves adhesion between the ink and the protective layer 206 or the hard coat layer.
  • Reference numeral 208 denotes a colored layer for imparting a color, pattern, pattern, or the like by ink on the transfer layer 203.
  • Reference numeral 209 denotes an adhesive layer that serves to adhere the molten resin to the transfer layer 203.
  • the transfer film 201 having an uneven shape is composed of a plurality of layers.
  • FIGS. 7A to 7H A manufacturing process in which the transfer film 201 having the concavo-convex shape is transferred onto the surface of the molded product by an in-mold molding method.
  • 7A to 7H are diagrams for explaining the in-mold forming process for each process.
  • the transfer film 201 having a concavo-convex shape is fed to a predetermined position between the fixed mold 1 and the movable mold 2 by using the foil feeding device 3.
  • the transfer film 201 having an uneven shape is arranged so that the transfer layer side of the transfer film 201 faces the movable mold 2.
  • the transfer film 201 having a concavo-convex shape may be fed into the mold after being preheated by a heater (not shown) so that the transfer film 201 can be easily molded into the mold.
  • the transfer mold film 201 having the concavo-convex shape is sent to a predetermined position, as shown in FIG.
  • the suction hole 4 formed in the cavity surface of the movable mold 2 has the concavo-convex shape.
  • the transfer type film 201 having a concavo-convex shape is formed on the cavity surface of the movable mold 2.
  • the outer periphery of the transfer-type film 201 having an uneven shape is fixed by a film pressing mechanism (not shown), and the transfer-type film 201 is positioned.
  • the movable mold 2 is moved and clamped.
  • FIG. 7C the movable mold 2 is moved and clamped.
  • the molten resin 6 is injected from the gate 5 of the fixed mold 1 toward the adhesive layer on the surface of the transfer mold film 201 having the concavo-convex shape, and melted into the cavity in the mold. Is filled.
  • FIG. 7E when the filling of the molten resin 6 is completed, the molten resin 6 is cooled to a predetermined temperature.
  • FIG. 7F the movable mold 2 is moved and opened, and when the in-mold molded product 7 is taken out, the carrier layer 202 of the transfer mold film 201 having an uneven shape is peeled from the in-mold molded product 7.
  • the contact area between the release layer and the protective layer or the hard coat layer is increased at the uneven portion of the release layer, and the contact between the release layer and the protective layer or the hard coat layer is increased at the uneven portion. It becomes good and it becomes difficult to peel between a peeling layer and a protective layer or a hard-coat layer.
  • the direction in which the adhesion between the release layer and the protective layer or the hard coat layer is good and the separation between the release layer and the protective layer or the hard coat layer is difficult to peel is defined as a high peel strength.
  • the direction in which the adhesion between the release layer and the protective layer or the hard coat layer is lowered and the peel layer and the protective layer or the hard coat layer are easily peeled is defined as light peel strength.
  • the peel strength between the release layer and the protective layer or hard coat layer is too heavy, a part of the protective layer or hard coat layer that should be transferred to the molding resin surface during molding is smooth between the release layer and the release layer. And the protective layer or hard coat layer is not completely released from the release layer, and a part of the protective layer or hard coat remains on the release layer, resulting in transfer failure.
  • the peel strength between the release layer and the protective layer or hard coat layer is too heavy during molding, and the protective layer or hard coat layer is not transferred cleanly to the surface of the molded product, resulting in poor transfer. If it occurs, it is necessary to adjust the peel strength between the release layer of the concavo-convex part and the protective layer or the hard coat layer in the direction of lightening.
  • the peel layer can be adjusted by changing the material composition, reducing the thickness of the peel layer, or changing the depth of the concavo-convex shape to a shallow level. This method is the mainstream, and has been optimized for each material laminated on the release layer.
  • the material composition of the release layer and the depth change of the concavo-convex shape are repeated by trial and error, and it takes time until optimization, which is a costly method.
  • the peel strength cannot be adjusted immediately and with flexibility according to various conditions, and once the composition is determined, the peel strength cannot be adjusted, and the peel strength can be easily optimized. There wasn't.
  • the tactile sensation of the concavo-convex shape which is the original purpose, is reduced by reducing the concavo-convex shape for adjusting the peel strength.
  • the present invention solves the above-described conventional problems, and an object thereof is to easily optimize the peel strength between a release layer having an uneven shape and a transfer layer.
  • a transfer film of the present invention is an in-mold transfer film, which is a base film, a photocatalyst layer formed in contact with the base film, and a surface of the photocatalyst layer in contact with the base film. And a transfer layer formed in contact with the back surface of the photocatalyst layer in contact with the base film. And it has the photocatalyst microparticles contained in the photocatalyst layer, and a plurality of voids formed at the interface between at least the photocatalyst layer and the transfer layer of either or both of the photocatalyst layer and the transfer layer.
  • the plurality of voids are formed by irradiating the photocatalyst fine particles with ultraviolet rays, and the amount of the voids can be adjusted by the irradiation amount of ultraviolet rays.
  • the method for producing a transfer film of the present invention includes a step of laminating a base film, a photocatalyst layer containing photocatalyst fine particles, and a transfer layer made of an organic resin in this order, and irradiating the photocatalyst layer with ultraviolet rays to photocatalyst. Forming a plurality of voids at the interface between at least the photocatalyst layer and the transfer layer of either or both of the layer and the transfer layer. Then, by irradiation with ultraviolet rays, electrons are generated in the photocatalyst layer, and at least part of the electrons enter the transfer layer to decompose a part of the organic resin to form voids. It is characterized by adjusting the amount of.
  • the transfer film having the concavo-convex shape of the present invention is unlikely to cause a transfer failure of the concavo-convex shape to the surface of the molded product during in-mold molding.
  • the peel strength between the photocatalyst layer and the transfer layer can be optimized.
  • Sectional drawing which shows the structure of the uneven
  • corrugated shaped transfer film of this invention The conceptual diagram explaining the process of forming the space
  • Sectional drawing which shows the structure of the transfer film with uneven
  • Sectional drawing which shows layer structure of transfer film with general uneven
  • FIG. 1 is a cross-sectional view showing a configuration of a transfer film with a concavo-convex shape in Embodiment 1 of the present invention.
  • the same components as those in FIGS. 6 to 7H are denoted by the same reference numerals and description thereof is omitted.
  • the carrier layer 101 basically includes a base film 204, a photocatalyst layer 103 serving as a release layer of a conventional in-mold molding film, a protective layer 206 such as a protective film or a hard coat film, an anchor layer 207, and a colored layer 208. , Composed of an adhesive layer 209. Further, an antistatic layer may be provided on the side of the base film 204 opposite to the photocatalyst layer 103 as necessary.
  • the protective layer 206 is a film having an uneven shape for imparting a tactile sensation to the outermost surface of the molded product, and imparting strength and hardness to the transfer layer 102 to prevent scratches, dirt, and the like.
  • the anchor layer 207 is a layer that is easy to print ink and improves adhesion between the ink and the protective layer 206, and includes a primer layer and other layers.
  • the transfer film 100 with concave and convex shapes of the present invention Details of the transfer film 100 with concave and convex shapes of the present invention will be described.
  • a PET film or an acrylic film having an average film thickness of 20 to 100 ⁇ m can be used as the base film 204.
  • a PET film having an average film thickness of 50 ⁇ m was used.
  • the photocatalyst layer 103 of the present invention will be described.
  • photocatalyst fine particles 104 that exhibit a photocatalytic action are contained in the resin.
  • the photocatalyst fine particles 104 it is preferable to use, for example, titanium oxide and zinc oxide that are relatively easily available.
  • photocatalyst fine particles 104 tin oxide, iron oxide, zirconium oxide, tungsten oxide, chromium oxide, molybdenum oxide, ruthenium oxide, germanium oxide, lead oxide, cadmium oxide, copper oxide, vanadium oxide, niobium oxide, tantalum oxide, manganese oxide
  • metal oxides such as cobalt oxide, rhodium oxide, nickel oxide, and rhenium oxide
  • strontium titanate can be substituted.
  • the photocatalyst fine particles 104 need not be limited to these as long as the same effects can be obtained.
  • the photocatalyst fine particles 104 may be used alone or in combination of two or more.
  • the resin constituting the photocatalyst layer 103 may be an inorganic resin or an organic resin, and thermosetting resins such as silicone resins, aminoalkyd resins, olefin resins, and melamine resins can be used. In addition, it is not necessary to be limited to these resins as long as the same effect can be obtained.
  • the resin constituting the photocatalyst layer 103 of the present invention was formed using a melamine resin.
  • the average film thickness of the photocatalyst layer 103 is 0.2 ⁇ m or more and 3 ⁇ m or less, and more preferably, the photocatalyst layer 103 is formed in a range of 0.5 ⁇ m or more and 2 ⁇ m or less in which the peeling function of the photocatalyst layer 103 and the flexibility during in-mold forming are easy to stabilize. Is desirable. When the average film thickness is thinner than 0.2 ⁇ m, it becomes difficult for the photocatalyst layer 103 to have a sufficient peeling function as a peeling layer.
  • the photocatalytic action of the photocatalyst layer 103 is such that the photocatalyst fine particle 104 and the weight ratio of the resin, which determine the photocatalytic action, are converted into a solid content of 100% by mass.
  • the photocatalyst fine particles 104 When 0.05 ⁇ m of titanium oxide is used, it is desirable to disperse the photocatalyst fine particles 104 at a ratio of 20 mass% to 90 mass%.
  • the weight ratio of the photocatalyst fine particles 104 is 50% by mass or more and 80% by mass or less in a range where the photocatalytic action and the peeling performance in the photocatalyst layer 103 are stable.
  • the amount is less than 20% by mass, the photocatalytic action of the photocatalytic layer 103 is not sufficiently exhibited. If it exceeds 90% by mass, the resin component of the photocatalyst layer becomes too small, and the peel strength between the protective layer 206 formed on the photocatalyst layer 103 becomes too light from the beginning, and the peel strength required at the time of in-mold molding It is difficult to secure
  • the photocatalyst fine particles 104 dispersed in the photocatalyst layer 103 can be sol type, spherical type, porous type, or the like. It is desirable to use a photocatalyst fine particle having an average particle size in the range of 0.01 ⁇ m to 0.2 ⁇ m. When the average particle diameter is smaller than 0.01 ⁇ m, it is difficult to sufficiently obtain the photocatalytic effect of the photocatalyst layer 112. When the average particle diameter is larger than 0.2 ⁇ m, the photocatalyst fine particles 104 are applied when the photocatalyst layer 112 is applied with a gravure coater or the like.
  • the agglomerates are likely to be formed, which causes appearance defects due to the photocatalyst fine particles 104 on the film.
  • a method of forming the uneven shape on the photocatalyst layer 103 a method of processing an uneven pattern on the base film 204 before the photocatalyst layer 103 is applied is generally used.
  • embossing, sand blasting, brushing, laser processing, or the like can be used to form the concavo-convex pattern on the base film 204, and the concavo-convex pattern may be appropriately selected depending on the design required for the concavo-convex.
  • the pattern formation of a specific uneven shape may be performed by printing the desired uneven shape in advance by performing plate making or ink jet printing or the like, thereby printing the photocatalyst layer 103 once or a plurality of times.
  • the specific uneven pattern is formed by forming a uniform coating film of the photocatalyst layer 103 with an ordinary gravure coater, and then embossing, sandblasting, brushing, and laser processing a desired uneven shape on the photocatalyst layer 103. You may implement
  • the protective layer 206 which is a protective film or a hard coat film of the present invention will be described.
  • the protective layer of the present invention is preferably formed so that the average film thickness after drying is between 2 ⁇ m and 10 ⁇ m.
  • the average film thickness of the protective layer 206 is smaller than 2 ⁇ m, it is difficult to obtain a sufficient film strength for protecting the molded product surface after the protective layer 206 is molded.
  • the thickness is larger than 10 ⁇ m, the foil breakage is deteriorated at the time of in-mold molding, which causes the generation of foil burrs.
  • the protective film used in the present invention is a precure type two-component curable acrylic resin or the like, and the hard coat film is an ultraviolet curable after cure type hard coat film or the like.
  • the after-cure type hard coat material means a hard coat film of a type that is cured by applying ultraviolet rays after in-mold molding. Therefore, at the stage of the transfer film 100 before in-mold molding, the ultraviolet curable resin constituting the hard coat film exists in an uncured or semi-cured state that is not completely photocured (polymerized).
  • the ultraviolet curable hard coat film is generally one that is photocured (polymerized) with a high-pressure mercury lamp or metal halide lamp after in-mold molding.
  • both the anchor layer 207 and the adhesive layer 209 are formed so that the average film thickness after drying is in the range of 2 ⁇ m to 10 ⁇ m.
  • the colored layer 208 may be formed of a single layer or a plurality of layers depending on differences in design properties and concealment properties.
  • the colored layer 208 may be formed of a single layer or a plurality of layers, but is preferably formed in an average film thickness range of 0.5 ⁇ m to 15 ⁇ m.
  • the anchor layer 207 As a method for forming the anchor layer 207, the colored layer 208, and the adhesive layer 209, a gravure coater, a comma coater, a roll coat, gravure printing, screen printing, inkjet printing, or the like is used. Further, the colored layer 208 can be formed by an appropriate construction method each time according to a required design such as metal deposition other than ink, sputtering, or coating.
  • the protective layer 206 may be provided with the function of the anchor layer 207 so that the anchor layer 207 is omitted.
  • the adhesive layer 209 is omitted when the function of the adhesive layer 209 can be imparted to the protective layer 206. You can also
  • a transfer film with an uneven shape may be formed by omitting each layer as necessary.
  • FIG. 2 is a view for explaining a coating process of the photocatalyst layer in the transfer film with uneven shape of the present invention. 2
  • the same components as those in FIG. 1 and FIGS. 6 to 7H are denoted by the same reference numerals, and description thereof is omitted.
  • a base film 204 having a specific uneven shape formed on a PET film by embossing is used. Further, the base film 204 has an antistatic layer formed on the surface opposite to the surface provided with the uneven shape.
  • the photocatalyst layer 103 is disposed on the coated surface side of the surface of the PET film provided with the uneven shape of the base film 204.
  • the roll-to-roll coating equipment is used to wind up the unwinding part 120 of the base film 204 and the base film 204 coated with the photocatalyst coating liquid that are continuously supplied to coat the photocatalyst coating liquid.
  • the base film 204 is continuously transported in the X1 and X2 directions in FIG.
  • the antistatic layer provided on the surface of the base film 204 opposite to the coated surface of the photocatalyst layer 103 is formed to prevent wrinkles from being generated on the base film 204 due to peeling charging that occurs when the base film 204 is conveyed.
  • a plastic film or a plastic sheet made of a material such as polyacryl, polyurethane, polyolefin, polycarbonate, or triacetyl cellulose may be used in addition to PET.
  • the average thickness of the PET film constituting the base film 204 is appropriately selected according to the purpose, but the average thickness of the base material used in roll-to-roll coating is preferably in the range of 20 ⁇ m to 250 ⁇ m. .
  • the roll-to-roll coating facility further includes a gravure roller 122 for applying the photocatalyst paint onto the base film 204 and a guide roller 125 for applying tension to the base film 204.
  • the guide roller 125 applies tension to the base film 204 when the photocatalyst paint is transferred to the base film 204 by the gravure roller 122, and is provided on the side opposite to the gravure roller 122 that sandwiches the base film 204.
  • the gravure roller 122 In the gravure roller 122, a groove having a depth of several tens of ⁇ m, which is not shown, is formed in a spiral shape, and the photocatalyst paint is supplied into the groove.
  • the gravure roller 122 rotates clockwise as shown in FIG. 2, and the photocatalyst paint is supplied to the spiral groove of the gravure roller 122 through the liquid pan 124 containing the photocatalyst paint for supplying the photocatalyst paint. Is done.
  • the gravure roller 122 passes through a doctor blade 123 that serves to scrape the photocatalyst paint from the surface of the gravure roller 122 to a predetermined liquid amount.
  • the photocatalyst paint remains in only the groove portion. Thereafter, when the gravure roller 122 and the base film 204 come into contact with each other, the photocatalyst paint in the groove of the gravure roller 122 is transferred to the PET surface of the base film 204, and a wet film of the photocatalyst paint is formed on the PET surface of the base film 204. Is done. That is, a liquid photocatalyst layer spread uniformly on the base film 204 is formed.
  • the method for applying the photocatalyst paint in the production process of the transfer film with concavo-convex shape of the present invention can use any other coating and printing methods such as die coating, calendar coating, roll coating, gravure printing in addition to gravure coating. .
  • the base film 204 on which the photocatalyst layer is formed is transported to the thermal drying furnace 211 in order to thermally cure the photocatalyst paint on the PET surface of the base film 204.
  • a hot air furnace an infrared heater (IR) furnace, a heat drying furnace using both hot air and IR, or the like can be used, and a general heat drying process is performed.
  • the hot drying furnace used in the present invention uses a hot air circulating furnace to thermally dry and thermally cure the liquid photocatalyst layer at 150 ° C. for 1 minute, and the photocatalyst layer 103 having an average thickness after drying of 2 ⁇ m is formed on the base film 204. Formed.
  • the photocatalyst coating material used in the present invention used a titanium oxide sol as photocatalyst fine particles and dispersed together with a melamine resin as a binder.
  • FIG. 3A is a diagram illustrating a coating process of a protective layer in the transfer film with uneven shape according to the present invention.
  • FIG. 3B is a conceptual diagram for sequentially explaining the steps of forming the air gap in the first embodiment, and is a diagram illustrating a plan view in which the main part is enlarged in the order of the steps.
  • 3A and 3B the same components as those in FIGS. 1 to 2 and FIGS. 6 to 7H are denoted by the same reference numerals, and description thereof is omitted.
  • the coating process of the protective layer was applied by a roll-to-roll gravure coater in the same manner as the photocatalyst paint application process of FIG.
  • the base film 204 previously coated with the photocatalyst layer 103 was placed on the unwinding portion 120 so that the photocatalyst layer 103 was the coating surface, and the coating material for the protective layer 206 was coated on the photocatalyst layer 103 of the base film 204.
  • the coating for the protective layer 206 used in the present invention is a two-part curable acrylic coating applied by a gravure coater so that the average film thickness after drying is 5 ⁇ m, and then heated at 100 ° C. 2 by a thermal drying oven 211. Heat dried and cured in minutes. Thus, a uniform protective layer 206 was formed on the photocatalyst layer 103.
  • the photocatalyst layer 103 is formed due to the difference in the resin constituting the photocatalyst layer 103. In some cases, coating unevenness may occur due to repelling of the paint to be applied on top.
  • a hydrophilic group is formed on the coated surface of the photocatalyst layer 103 due to the photocatalytic action of the photocatalyst fine particles 104 in the photocatalyst layer 103, and thus hydrophilic. It becomes.
  • the wettability between the paint applied on the photocatalyst layer 103 and the photocatalyst layer 103 is improved, and there is also an effect that the repelling of the paint on the photocatalyst layer 103 is suppressed and coating unevenness is reduced.
  • the ultraviolet ray 214 is irradiated with the ultraviolet ray 214 by the ultraviolet ray irradiation unit 212 disposed after the heat drying furnace 211.
  • the ultraviolet lamp 213 low-pressure mercury, high-pressure mercury, LED-UV lamp, or the like may be used.
  • the peel strength between the photocatalyst layer 103 and the protective layer 206 on the base film 204 can be adjusted by the mechanism described in the partially enlarged view of FIG. 3B.
  • STEP 1 when the base film 204 is conveyed to the ultraviolet irradiation unit 212, the ultraviolet ray 214 is irradiated to the photocatalyst layer 103 from the ultraviolet lamp 213.
  • the emitted electrons 118 move in the photocatalytic layer 103 and reach the adjacent protective layer 206. Since the binding energy of the organic resin constituting each of the photocatalyst layer 103 and the protective layer 206 is smaller than the energy amount of the electrons 118, the electron 118 having a higher energy amount and the photocatalyst layer having a smaller binding energy than the energy amount of the electrons 118. A redox reaction occurs between the organic resin 103 and the organic resin constituting the protective layer 206. By this oxidation-reduction reaction, + charges are taken from a part of the organic resin constituting the photocatalyst layer 103 and the protective layer 206, and the electrons 118 are stabilized.
  • a part of the organic resin constituting the photocatalyst layer 103 and the protective layer 206 from which the positive charge is removed is disconnected between the organic resins from which the positive charge is removed, and the photocatalyst layer 103 and the protective layer 206 are removed.
  • a part of the organic resin constituting is decomposed. More specifically, since the organic resin is decomposed in order from the portion adjacent to the photocatalyst layer 103 in the protective layer 206, the inside of the protective layer 206 is not decomposed and only the vicinity of the back surface of the protective layer 206 adjacent to the photocatalyst layer 103 is decomposed. Is done. Or in the protective layer 206, decomposition
  • a large amount of electrons 118 emitted from the photocatalyst fine particles 104 repeat the oxidation-reduction reaction with the organic resin constituting the photocatalyst layer 103 and the protective layer 206, and + from the organic resin constituting the photocatalyst layer 103 and the protective layer 206.
  • the molecular bonds in the organic resin constituting the photocatalyst layer 103 and the protective layer 206 are successively broken, and the decomposition of the organic resin constituting the photocatalyst layer 103 and the protective layer 206 proceeds sequentially. .
  • the uneven-shaped transfer film 200 after irradiation with the ultraviolet rays 214 has the effect of innumerable voids 119 smaller than the size of the photocatalyst fine particles 104 between the photocatalyst layer 103 and the protective layer 206, and the photocatalyst layer 103 and the protective layer.
  • the peel strength between 206 is reduced.
  • the amount of decomposition of the organic resin constituting the photocatalyst layer 103 and the protective layer 206 can be adjusted by increasing or decreasing the amount of energy of the ultraviolet rays 214 irradiated to the photocatalyst layer 103.
  • the peel strength between the photocatalyst layer 103 and the protective layer 206 can be adjusted by adjusting the density of the voids 119.
  • the gap 119 may exist in both the photocatalyst layer 103 and the protective layer 206, or may exist only in the interface between any one of the photocatalyst layer 103 and the protective layer 206.
  • the photocatalyst layer 103 itself from the photocatalytic action of the photocatalyst fine particles 104 by using an inorganic silicone resin or the like as the resin constituting the photocatalyst layer 103. Is reduced. As a result, only the organic resin constituting the protective layer 206 is decomposed, and the gap 119 generated between the photocatalyst layer 103 and the protective layer 206 can be reduced as compared with the case where the photocatalyst layer 103 is made of organic resin. The peel strength between the photocatalyst layer 103 and the protective layer 206 can be finely adjusted.
  • a metal halide lamp is used as the ultraviolet lamp 213 in the ultraviolet irradiation unit 212, and the integrated light quantity is 1200 mJ / cm 2 at a wavelength of 365 nm of the ultraviolet ray 214 generated from the metal halide lamp. It adjusted so that it might become.
  • the width of the integrated quantity of ultraviolet light for irradiating the photocatalyst layer 103 in the first embodiment it is desirable to be irradiated at 700 mJ / cm 2 or more 5000 mJ / cm 2 or less.
  • the photocatalytic action of the photocatalyst layer 103 does not generate enough electrons 118 to decompose the organic chains in the organic resin 115 constituting the protective layer 206, and is greater than 5000 mJ / cm 2 This causes deterioration of the base film 204.
  • it is not limited to the above-mentioned range of integrated light amount, but depends on the type of base film 204 to be used, the amount of photocatalyst fine particles 104 contained in the photocatalyst layer 103, and the amount of organic chain decomposition in the protective layer 206.
  • an LED-UV lamp having a narrow wavelength region of the irradiated ultraviolet ray 214 can be used as the ultraviolet lamp 213 for irradiating the photocatalyst layer 103.
  • an LED-UV lamp having a peak wavelength of 385 nm and an ultraviolet ray generation region of 350 nm or more and 410 nm or less is used, and a photopolymerization initiator having a wavelength necessary for curing the hard coat film of 300 nm or less is used as the hard coat film.
  • the photopolymerization initiator in the hard coat film prevents the start of the reaction when the ultraviolet ray 214 is irradiated by the LED-UV lamp 213 to the photocatalyst layer 103. Curing of the coating film can be prevented.
  • the uneven shape formed on the photocatalyst layer 103 is preferably formed with a step in the range of 1 ⁇ m or more and 10 ⁇ m or less in the depth direction of the transfer film 200.
  • it becomes smaller than 1 ⁇ m it becomes close to the film thickness of the photocatalyst layer 103 which is a release layer, and it becomes difficult to obtain sufficient undulations as an uneven shape.
  • the thickness is larger than 10 ⁇ m, it becomes difficult for the photocatalyst layer 103 to enter the concavo-convex shape when the photocatalyst layer 103 is applied, and it becomes difficult to form the photocatalyst layer 103 in the concavo-convex shape.
  • the width of the concavo-convex shape is preferably in the range of 50 ⁇ m or more and 500 ⁇ m or less because it has the effect of preventing defective peeling during in-mold molding. If the size of the concavo-convex shape in the width direction is 50 ⁇ m or less, it becomes difficult to visually distinguish the concavo-convex shape on the surface of the molded product, and if it is larger than 500 ⁇ m, the concavo-convex shape is too large and is protected from the photocatalyst layer 103 during in-mold molding. This is a region in which the peeling defect itself of the layer 206 hardly occurs. However, since the depth and size of the uneven shape varies depending on the design, it is not necessary to limit to the above range as long as the same effect can be obtained.
  • the photocatalyst fine particles 104 smaller than the size of the uneven shape in the depth direction and the width direction are used. For this reason, when the organic resin constituting the protective layer 206 of the uneven shape is decomposed by the photocatalytic action of the photocatalyst fine particles 104, the uneven shape change due to the decomposition due to the photocatalytic action is suppressed, and the protective layer adjacent to the photocatalyst layer 103 is protected. On the surface of the layer 206, a large number of fine voids 119 that cannot be visually confirmed in the concavo-convex shape can be generated without unevenness.
  • the primer layer, the colored layer 208, and the adhesive layer 209 are printed using a gravure printing machine so that the average film thickness after drying of each layer is 3 ⁇ m.
  • FIG. 4 is a cross-sectional view showing the structure of the transfer film with uneven shape of the present invention produced by this process.
  • the same components as those in FIGS. 1 to 3B and FIGS. 6 to 7H are denoted by the same reference numerals, and description thereof is omitted.
  • the uneven-shaped transfer film 200 has innumerable voids 119 smaller than the size of the photocatalyst fine particles 104 at the boundary between the photocatalyst layer 103 and the protective layer 206. Since there is no contact between 103 and the protective layer 206, the adhesion between the photocatalyst layer 103 and the protective layer 206 is poor. As a result, the concavo-convex shaped transfer film 200 of the present invention has a conventional concavo-convex peel strength between the photocatalyst layer 103 and the protective layer 206 due to an infinite number of voids 119 between the photocatalyst layer 103 and the protective layer 206. Lighter than transfer film.
  • the peel strength between the photocatalyst layer 103 and the protective layer 206 in the uneven-shaped portion is lighter than that of the conventional uneven-shaped transfer film, and after molding
  • the release of the protective layer 206 from the photocatalyst layer 103 in the concavo-convex shape portion became smooth, and the transfer film 200 with the concavo-convex shape in which transfer failure to the molded product of the transfer layer after the protective layer 206 hardly occurred was obtained.
  • In-mold molding may be performed using the transfer film 200 in which the gap 119 is formed in advance, but the resin after being inserted into the mold using the transfer film 100 in which the gap 119 is not formed and only the photocatalyst fine particles 104 are formed.
  • a necessary amount of the gap 119 may be formed by irradiating with ultraviolet rays before the injection of.
  • the peel strength can be adjusted in more detail according to the molded product and the processing environment.
  • the gap 119 can be adjusted by further irradiating the transfer film 200 with ultraviolet rays in the mold.
  • the gap 119 can be added according to the molded product and the processing environment, and the peel strength can be adjusted in detail.
  • the present invention provides, for example, in-mold molding of AV equipment such as television and audio, home appliances such as refrigerators, vacuum cleaners, and air conditioners, mobile-related products such as mobile phones, or the surfaces of exterior molded parts related to automobile cockpits and audio panels. It can be used widely when a concave / convex shape design is applied to the surface. Further, the uneven shape may be fine unevenness of the antireflection film, and in this case, the surface of the transfer layer may be an antireflection film.
  • the part to be transferred to the molded product is set to a state in which the peel strength between the photocatalyst layer and the protective layer is relatively light.
  • disconnects the edge part of a transfer film may be performed in order to arrange the width
  • the transfer layer after the protective layer may be powdered and peeled off from the transfer film, and the powdered transfer layer that has been peeled off causes foil powder scattering.
  • the foil powder is scattered at the time of slitting (cutting) the transfer film, and when a part is mixed in the transfer film roll being slit, it becomes a foreign matter.
  • the transfer layer at that portion becomes unexpectedly large in unevenness, resulting in poor printing.
  • the lighter the peel strength the easier the transfer layer becomes powdery and peels off from the transfer film. For this reason, it is better to keep the peel strength between the photocatalyst layer and the protective layer at the portion to be slit processed heavier than the portion to be transferred.
  • the conventional method for adjusting the peel strength between the photocatalyst layer and the protective layer basically peels the entire film on which the photocatalyst layer is formed. Since the strength is adjusted to be the same in the plane, the peel strength between the photocatalyst layer and the protective layer formed on the same film has the same value. Therefore, it has been difficult to change the peel strength between the photocatalyst layer and the protective layer only at a specific site in the transfer film surface.
  • FIG. 5A is a diagram illustrating a coating process of a protective layer in the transfer film with uneven shape according to Embodiment 2 of the present invention.
  • 5B and 5C are schematic views illustrating the configuration of the ultraviolet irradiation unit in the second embodiment.
  • 5A to 5C the same components as those in FIGS. 1 to 4 and FIGS. 6 to 7H are denoted by the same reference numerals, and description thereof is omitted.
  • a base film 204 made of the same antistatic PET film as in the first embodiment coating is performed with a roll-to-roll gravure coater in the same process as in the first embodiment until the photocatalyst layer 103 is coated. did.
  • the ultraviolet ray irradiation unit 212 used the ultraviolet lamp 213 to irradiate the photocatalyst layer 103 with the ultraviolet ray 214 in the following process.
  • Partial enlarged views 5B and 5C are plan views of the inside of the ultraviolet irradiation unit 212 when the ultraviolet irradiation is performed in two patterns.
  • the problem at the time of slit processing is the problem that delamination occurs during the slit processing between the photocatalyst layer 103 and the protective layer 206, and a part of the transfer layer after the protective layer 206 is peeled off from the photocatalyst layer 103 and becomes foil powder and is scattered around. It is. As the scattered foil powder is mixed in the roll of the uneven film with slits during slitting, irregularities due to the foil powder can be made where the foil powder is mixed, and the transfer layer of the transfer film with uneven shapes can be deformed. The defect which becomes a foreign material in an in-mold molding process occurs. In order to prevent the generation of foil powder, it is better that the peel strength between the photocatalyst layer 103 and the protective layer 206 is heavier.
  • the film coating is performed in a width direction perpendicular to the feed direction of the base film 204 as shown in FIG. 5B.
  • An ultraviolet irradiation lamp 215 having a width smaller than the work width or an ultraviolet irradiation lamp having an irradiation intensity (illuminance) at the end portion of which is lower than the ultraviolet irradiation amount (illuminance) at the center is used.
  • the amount of decomposition of the organic resin constituting the photocatalyst layer 103 and the protective layer 205 by the photocatalyst layer 103 is made smaller at the end than at the center.
  • the peeling strength between the photocatalyst layer 103 and the protective layer 206 at both ends in the width direction perpendicular to the feed direction of the arrow-shaped base film 204 is kept heavier than the central portion of the transfer film with the concavo-convex shape.
  • the transfer layer after the protective layer 206 is hardly peeled off from the photocatalyst layer 103, and the generation of foil powder can be suppressed and the generation of foil powder can be suppressed by slit processing.
  • produces by slit processing can be suppressed, and mixing of foil powder in the roll of a transcription
  • the coating width is wide in the width direction perpendicular to the feeding direction of the base film 204 shown by the arrows X1 and X2, for example, the arrow of the arrow after coating of all layers
  • the center portion is also slit in the width direction perpendicular to the feed direction of the base film 204 to divide the photocatalyst layer 103 into two or more regions in the width direction.
  • either two ultraviolet lamps 216 are installed in accordance with the slit width so that the ultraviolet irradiation amount to the photocatalyst layer 103 at the end portion and the central portion is reduced in advance, or the ultraviolet ray amount can be adjusted only at the central portion by one.
  • An ultraviolet cut filter that can be adjusted to a specific ultraviolet energy amount may be attached to a place corresponding to a slit machining place of the ultraviolet lamp as possible.
  • the present invention can optimally adjust the peel strength between the release layer and the transfer layer, and is useful for a transfer film used in in-mold molding, a method for producing the transfer film, and the like.

Abstract

ベースフィルムと接する光触媒層内に光触媒微粒子が設けられ、光触媒微粒子に紫外線が照射されて、保護層と光触媒層との界面領域に空隙が形成される。

Description

転写フィルム及び転写フィルムの製造方法
 本発明は、インモールド成形で使用する転写フィルム及び転写フィルムの製造方法に関するものである。
 近年、AV機器、モバイル、家電の外装及び車載の内装分野における加飾において、顧客嗜好の多様化から幅広いデザインニーズがあり、商品表面の外観及び触感を追求したデザインが求められることがある。その中でもデザインとして商品表面に顧客嗜好に合わせ凹凸形状を有するヘアラインやシボを付与するために、商品表面に凹凸形状を転写して触感を付与することがある。商品のインモールド成形の際に転写フィルムを用いて凹凸形状を商品の表面に貼り付けることにより、商品表面に凹凸形状を形成する場合もあった。
 まず、図6を用いて、インモールド成形で使用される一般的な凹凸形状を有する転写フィルムの構成について説明する。図6は一般的な凹凸形状付きの転写フィルムの層構成を示す断面図である。
 凹凸形状を有する転写フィルム201は連続フィルムである。凹凸形状を有する転写フィルム201は大きく分けて、成形品に転写されないキャリア層202と成形品の表面に転写される転写層203で構成される。凹凸形状を有する転写フィルム201を更に詳細に説明する。204は凹凸形状を有する転写フィルム201を連続的に金型内へ供給する役割を果たすPETやアクリルフィルム等からなるベースフィルムである。205はベースフィルム204と成形品へ転写される転写層203を剥離させる剥離層であり、転写層203の最表面に凹凸形状を転写させるため剥離層205は予め凹凸形状が付与される。206は、成形品の最表面に触感を付与するための凹凸形状を有し、且つ転写層203に強度や硬度を付与させ、傷、汚れなどを防ぐための保護層または、ハードコート層である。207はインキを印刷しやすく且つインキと保護層206またはハードコート層の密着を良くするためのアンカー層またはプライマー層である。208は転写層203上にインキによる色、模様、柄等を付与するための着色層である。209は転写層203に溶融した樹脂を接着させる役割を果たす接着層である。以上のように凹凸形状を有する転写フィルム201は複数層で構成される。
 上記、凹凸形状を有する転写フィルム201を成形品表面にインモールド成形工法で転写させる製造プロセスを図7A~図7Hにて説明する。図7A~図7Hはインモールド成形の工程を工程毎に説明する図である。
 図7Aにおいて、まず凹凸形状を有する転写フィルム201は箔送り装置3を用いて固定型1と可動型2の間の所定の位置に送られる。この時、凹凸形状を有する転写フィルム201は転写フィルム201の転写層側が可動型2と対向するように配置される。また、転写フィルム201が金型に賦型し易いように、図示されていないヒーターで予熱されてから、凹凸形状を有する転写型フィルム201は金型内へ送り込まれても良い。次に、凹凸形状を有する転写型フィルム201が所定の位置へ送られた後、図7Bに示すように、可動型2のキャビティ面に空けられた吸引穴4が凹凸形状を有する転写型フィルム201を吸引し可動型2のキャビティ面へ凹凸形状を有する転写型フィルム201を賦形する。その際に、図示されていないフィルム押さえ機構で凹凸形状を有する転写型フィルム201の外周が固定され、転写型フィルム201は位置決めされる。その後、図7Cに示すように、可動型2が動かされて型締される。次に、図7Dに示すように、固定型1のゲート5より凹凸形状を有する転写型フィルム201表面の接着層に向け溶融した樹脂6が注入され、金型内のキャビティ内に溶融した樹脂6が充填される。次に、図7Eに示すように、溶融した樹脂6の充填が完了したら、所定の温度まで溶融した樹脂6が冷却される。次に、図7Fに示すように、可動型2が可動されて型開きされ、インモールド成形品7を取り出す際にインモールド成形品7から凹凸形状を有する転写型フィルム201のキャリア層202が剥がれ、転写層203のみ転写されインモールド成形品7の最表面は凹凸形状を有する転写層203が転写された状態となる。その後、図7Gに示すように、固定型1側の突き出しピン8が押し出されて成形品7を金型内より取り出す。最後に、図7Hに示すように、次の成形に備えて可動型2の吸引穴4での凹凸形状を有する転写型フィルム201のキャリア層の可動型2のキャビティ内への吸着が止められ、箔送り装置3により次の成形に使用する凹凸形状を有する転写型フィルム201が所定位置まで送られ、この動作を繰り返して連続成形する(特許文献1参照)。
特開2012-096412号公報
 前述の一般的な凹凸形状を有する転写フィルム201において、剥離層上に凹凸形状を形成した後に、凹凸形状を有した剥離層上に保護層またはハードコート層を形成する方法がある。しかしながら、この方法では、凹凸形状を有した剥離層上に保護層またはハードコート層用の塗剤を塗工するため、剥離層上の凹凸部に保護層またはハードコート層の塗剤が流れ込み、剥離層上の凹凸形状が保護層またはハードコート層の最表面に形成される。これによりインモールド成形時に、転写層が成形品表面に転写された後に最表面の保護層またはハードコート層に凹凸形状が付与されることとなる。
 そのため、剥離層の凹凸形状部で剥離層と保護層またはハードコート層との接触面積が大きくなり、凹凸形状部では剥離層と保護層またはハードコート層の間で接点が増える結果、密着性が良くなり、剥離層と保護層またはハードコート層との間が剥がれにくくなる。このように、剥離層と保護層またはハードコート層の密着性が良く、剥離層と保護層またはハードコート層との間で剥がれにくくなる方向を剥離強度が重いと定義する。逆に剥離層と保護層またはハードコート層との間の密着性が落ち、剥離層と保護層またはハードコート層の間が剥がれ易くなる方向を剥離強度が軽いと定義する。そのため、剥離層と保護層またはハードコート層との間の剥離強度が重すぎると、成形時に成形樹脂表面に転写されるはずの保護層またはハードコート層の一部が剥離層との間でスムーズに剥離されず、保護層またはハードコート層が完全に剥離層から離型されずに剥離層上に保護層またはハードコートの一部が残り、転写不良が発生する。
 また、凹凸形状を有する転写フィルムでは成形時に剥離層と保護層またはハードコート層との間の剥離強度が重過ぎて、成形品表面へ保護層またはハードコート層が綺麗に転写されず転写不良が発生している場合、本来、凹凸部の剥離層と保護層またはハードコート層との間の剥離強度を軽くする方向へ調整が必要となる。しかし、従来の凹凸形状を有する転写フィルムでは、凹凸部の剥離層と保護層またはハードコート層との間の剥離強度の調整で剥離強度を軽くする場合、フィルム側で剥離層と保護層またはハードコート層との間の剥離強度を調整する手段として、剥離層の材料組成変更や剥離層の膜厚を薄くすることや、凹凸形状の深さを浅く変更することで剥離層の剥離強度を調整する方法が主流であり、剥離層上に積層する材料毎で都度最適化していた。そのため、剥離層上に積層する材料等を考慮して試行錯誤で剥離層の材料組成及び凹凸形状の深さ変更を繰り返し、最適化までの時間を要するためコストが高くなる方法であった。つまり、様々な条件に応じて、即時且つ自由度を持って剥離強度を調整することができず、一度組成等を決定すると剥離強度を調整できず、容易に剥離強度を最適化することができなかった。また、剥離強度の調整のため凹凸形状を小さくすることで本来の目的である凹凸形状の触感も少なくなる課題もあった。
 本発明は、前記従来の課題を解決するもので、凹凸形状を有する剥離層と転写層の間の剥離強度を容易に最適化することを目的とする。
 上記目的を達成するために、本発明の転写フィルムは、インモールド成形用の転写フィルムであって、ベースフィルムと、ベースフィルムに接して形成される光触媒層と、光触媒層のベースフィルムに接する面に対する裏面に形成される凹凸形状と、光触媒層のベースフィルムに接する面に対する裏面と接して形成される転写層とを有する。そして、光触媒層に含有される光触媒微粒子と、光触媒層および転写層のいずれかまたは両方の少なくとも光触媒層と転写層との界面に形成される複数の空隙とを有することを特徴とする。
 また、複数の空隙は、光触媒微粒子に紫外線を照射することにより形成され、空隙の量が紫外線の照射量で調整可能であることを特徴とする。
 さらに、本発明の転写フィルムの製造方法は、ベースフィルムと、光触媒微粒子を含有する光触媒層と、有機樹脂から成る転写層とをこの順で積層する工程と、光触媒層に紫外線を照射して光触媒層および転写層のいずれかまたは両方の少なくとも光触媒層と転写層の界面に複数の空隙を形成する工程とを有する。そして、紫外線の照射により、光触媒層に電子を生成させ、電子の少なくとも一部が転写層に進入して有機樹脂の一部を分解して空隙を形成させ、紫外線の照射量により形成される空隙の量を調整することを特徴とする。
 以上のように、本発明の凹凸形状付きの転写フィルム及び転写フィルムの製造方法によれば、凹凸形状を有する転写フィルムにおいてインモールド成形時の成形品表面への凹凸形状の転写不良が起こり難く、光触媒層と転写層との間の剥離強度を最適にできる。
本発明の実施の形態1における凹凸形状付き転写フィルムの構成を示す断面図 本発明の凹凸形状付き転写フィルムにおける光触媒層の塗工プロセスを説明する図 本発明の凹凸形状付き転写フィルムにおける保護層の塗工プロセスを説明する図 実施の形態1における空隙を形成する工程を順に説明する概念図 本発明の凹凸形状付き転写フィルムの構成を示す断面図 本発明の実施の形態2における凹凸形状付き転写フィルムにおける保護層の塗工プロセスを説明する図 実施の形態2における紫外線照射部の構成を例示する概略図 実施の形態2における紫外線照射部の構成を例示する概略図 一般的な凹凸形状付きの転写フィルムの層構成を示す断面図 インモールド成形の工程を工程毎に説明する図 インモールド成形の工程を工程毎に説明する図 インモールド成形の工程を工程毎に説明する図 インモールド成形の工程を工程毎に説明する図 インモールド成形の工程を工程毎に説明する図 インモールド成形の工程を工程毎に説明する図 インモールド成形の工程を工程毎に説明する図 インモールド成形の工程を工程毎に説明する図
 以下本発明の実施の形態について、図面を参照しながら説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1における凹凸形状付き転写フィルムの構成を示す断面図である。図1において図6~図7Hまでと同じ構成要素については同じ符号を用いて説明を省略する。
 図1の本発明の凹凸形状付き転写フィルム100の層構成は、キャリア層101と転写層102から構成される。キャリア層101は、基本的にベースフィルム204、従来のインモールド成形用フィルムの剥離層の役割をする光触媒層103、保護膜またはハードコート膜等である保護層206、アンカー層207、着色層208、接着層209から構成される。またベースフィルム204の光触媒層103と反対側に必要に応じて帯電防止層設けても良い。また、保護層206は、成形品の最表面に触感を付与するための凹凸形状を有し、且つ転写層102に強度や硬度を付与させ、傷、汚れなどを防ぐための膜である。また、アンカー層207は、インキを印刷しやすく且つインキと保護層206の密着を良くするための層で、プライマー層やその他の層を含む概念である。
 本発明の凹凸形状付きの転写フィルム100の詳細について説明する。一般的にベースフィルム204の厚みは平均膜厚20~100μmの間のPETフィルムやアクリルフィルム等が使用可能である。今回は、平均膜厚50μmのPETフィルムを使用した。次に本発明の光触媒層103について説明する。光触媒層中103には光触媒作用を発現する光触媒微粒子104が樹脂中に含有される。光触媒微粒子104として例えば、比較的に容易に入手可能な酸化チタン、酸化亜鉛を用いることが好ましい。しかし、光触媒微粒子104として酸化錫、酸化鉄、酸化ジルコニウム、酸化タングステン、酸化クロム、酸化モリブデン、酸化ルテニウム、酸化ゲルマニウム、酸化鉛、酸化カドミウム、酸化銅、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化マンガン、酸化コバルト、酸化ロジウム、酸化ニッケル、酸化レニウム等の金属酸化物の他、チタン酸ストロンチウム等で代用することも出来る。光触媒微粒子104は、これら以外にも同様の効果を得られるものがあればこれらに限定される必要はない。また、上記の光触媒微粒子104を単独もしくは、二種類以上併用して用いても良い。光触媒層103を構成する樹脂は無機系樹脂でも有機系樹脂でもよく、シリコーン系樹脂、アミノアルキッド系樹脂、オレフィン系樹脂、メラミン系樹脂等の熱硬化型樹脂を用いることができる。また、これら以外に同様の効果を得ることができればこれらの樹脂に限定される必要はない。本発明の光触媒層103を構成する樹脂にはメラミン系樹脂を用いて形成した。光触媒層103の平均膜厚は0.2μm以上3μm以下、より好ましくは光触媒層103の剥離機能とインモールド成形時の可とう性が安定し易い0.5μm以上2μm以下の範囲で形成されることが望ましい。平均膜厚が0.2μmより薄い場合、光触媒層103が剥離層として十分な剥離機能が出難くなる。また、平均膜厚が3μmより大きくなるとインモールド成形時に十分な可とう性を得ることが難しくなり、インモールド成形時に割れ、微小クラックが発生し易い。また、光触媒層103の組成においては光触媒層103の光触媒作用において、光触媒作用を決定する光触媒微粒子104と樹脂の重量比は固形分100質量%比率で換算し、光触媒微粒子104として平均粒子径が0.05μmの酸化チタンを使用した場合、光触媒微粒子104を20質量%以上90質量%以下の割合で分散させることが望ましい。より好ましくは、光触媒微粒子104の重量比は光触媒層103での光触媒作用と剥離性能が安定する範囲の50質量%以上80質量%以下である。20質量%より少ないと光触媒層103の光触媒作用が十分に発現されない。また90質量%よりも多くなると、光触媒層の樹脂成分が少なくなり過ぎ、光触媒層103上に形成した保護層206との間の剥離強度が最初から軽く成り過ぎ、インモールド成形時に求められる剥離強度を担保することが困難となる。
 また、光触媒層103内に分散される光触媒微粒子104はゾルタイプ、球状タイプ、多孔質タイプ等を用いることができる。光触媒微粒子の平均粒子径が0.01μm以上0.2μm以下の範囲のものを使用することが望ましい。平均粒子径が0.01μmよりも小さい場合、光触媒層112の光触媒効果を十分に得ることが難しく、0.2μmよりも大きい場合、光触媒層112をグラビアコーター等で塗工する際に光触媒微粒子104の凝集物が出来やすく、フィルム上で光触媒微粒子104に起因する外観不良発生の要因となる。また、光触媒層103に凹凸形状を形成する方法としては、光触媒層103の塗工前にベースフィルム204に凹凸パターンを加工する方法が一般的である。ベースフィルム204への凹凸パターンの形成は、一般的にエンボス加工、サンドブラスト加工、ブラッシング加工、レーザー加工等を用いることが可能で、凹凸に求められる意匠により適宜選択すれば良い。
 また、特定の凹凸形状のパターン形成は、印刷により所望の凹凸形状を予め製版もしくはインクジェット印刷等を行うことにより、光触媒層103を1回もしくは複数回に分けて印刷して行っても良い。
 また、特定の凹凸パターンの形成は、通常のグラビアコーターで光触媒層103の均一な塗膜を形成した後に、光触媒層103上に所望の凹凸形状をエンボス加工、サンドブラスト加工、ブラッシング加工、レーザー加工を行うことにより実現しても良い。上記以外の方法でも同様に光触媒層103上に特定の凹凸形状を付与できればこれらに限定される必要はない。
 次に本発明の保護膜またはハードコート膜等である保護層206について説明する。本発明の保護層は、乾燥後の平均膜厚が2μm以上10μm以下の間で形成することが望ましい。保護層206の平均膜厚が2μmより小さい場合、保護層206は成形後、成形品表面を保護するための十分な膜強度が得られ難い。また10μmより大きい場合、インモールド成形時に箔切れが悪くなり、箔バリ発生の原因となる。また、本発明で使用する保護膜はプレキュアタイプの2液硬化型のアクリル系樹脂等であり、また、ハードコート膜は紫外線硬化型のアフターキュアタイプのハードコート膜等である。ハードコート膜の場合、アフターキュアタイプハードコート材料とは、インモールド成形後に紫外線を当てて硬化させるタイプのハードコート膜を意味する。よって、インモールド成形前の転写フィルム100の段階ではハードコート膜を構成する紫外線硬化型の樹脂は完全に光硬化(重合)されていない未硬化や半硬化の状態で存在する。紫外線硬化型のハードコート膜はインモールド成形後に高圧水銀ランプやメタルハライドランプで光硬化(重合)させるものが一般的である。
 次にアンカー層207、接着層209は、いずれも乾燥後の平均膜厚が2μm以上10μm以下の範囲で形成されることが好ましい。
 また、着色層208は意匠性、隠蔽性などの違いにより、単層もしくは複数層で形成されても良い。着色層208は単層または複数層で形成しても良いが平均膜厚が0.5μm以上15μm以下の範囲で形成されることが好ましい。
 アンカー層207、着色層208、接着層209を形成する方法は、グラビアコーター、コンマコーター、ロールコート、グラビア印刷、スクリーン印刷、インクジェット印刷等が用いられる。また、着色層208はインキ以外の金属蒸着、スパッタ、塗装等の求められる意匠によりその都度、適切な工法で形成できる。保護層206にアンカー層207の機能も付与して、アンカー層207を省いた層構成にしても良い。また、意匠上に着色層208が不要で凹凸形状のみをインモールド成形で成形品の表面に転写したい場合、保護層206に接着層209の機能が付与可能な場合は、接着層209を省略することもできる。
 この様に、各層に複数の機能を付与することが可能な場合は、必要に応じて各層を省略して凹凸形状付き転写フィルムを形成しても良い。
 次に、図1,図2を用いて本発明の凹凸形状付き転写フィルム製造時の光触媒層の塗工プロセスについて説明する。図2は、本発明の凹凸形状付き転写フィルムにおける光触媒層の塗工プロセスを説明する図である。図2において図1及び図6~図7Hまでと同じ構成要素については同じ符号を用いて説明を省略する。
 本発明ではエンボス加工によりPETフィルム上に特定の凹凸形状を形成したベースフィルム204を用いた。またベースフィルム204は凹凸形状が付与された面と反対側の面に帯電防止層が形成されている。光触媒層103はベースフィルム204の凹凸形状が付与されたPETフィルムの面の塗工面側に配置される。ロールトゥロール塗工設備は、光触媒塗工液を塗工するために連続的に供給されるベースフィルム204の巻き出し部120と光触媒塗工液が塗工されたベースフィルム204を巻き取る巻取り部121とを備え、ベースフィルム204は連続的に図2中のX1,X2方向へ搬送される仕組みとなっている。ベースフィルム204の光触媒層103の塗工面と反対側の面に付与された帯電防止層は、ベースフィルム204の搬送時に起こる剥離帯電によるベースフィルム204へのシワ発生防止のために形成されている。ベースフィルム204の種類としてPET以外に、一般的にポリアクリル、ポリウレタン、ポリオレフィン、ポリカーボネート、トリアセチルセルロース等の素材からなるプラスチックフィルムやプラスチックシートなどが用いられても良い。ベースフィルム204を構成するPETフィルムの平均厚さは目的に応じて適宜選択されるが、ロールトゥロールの塗工で使用する基材の平均厚さは20μm以上250μm以下の範囲であることが好ましい。20μmより薄いと搬送時の張力の制御が難しく塑性変形してしまい伸びシワが入ることや、ベースフィルム204に形成していく各種機能層の積層時に塗剤の乾燥時の熱硬化収縮等により反り易くなることから、後工程での扱いが難しくなる。また250μmより大きいと、ロール作成時に塗工長さが長くなりロール巻き取り時のロールの巻き芯径が大きくなり過ぎることにより後工程で扱い難いことや、PETフィルムとしてのコストも高くなることが挙げられる。しかし、上記範囲に限らずニーズや用途に応じて、上記範囲以外の平均厚みのPETフィルムや他の樹脂フィルムを使用しても問題ない。本発明の実施の形態1ではロールトゥロール塗工設備で光触媒層を塗工し、ベースフィルム204はPETフィルムで平均厚み50μmのものを使用した。
 ベースフィルム204のPET面へ光触媒層形成用の光触媒塗料を塗工するためにグラビアコーターが用いられる。そのため、ロールトゥロール塗工設備は、光触媒塗料をベースフィルム204上に塗工するためのグラビアローラー122と、ベースフィルム204に張力をかけるためのガイドローラー125とをさらに備える。ガイドローラー125は、グラビアローラー122でベースフィルム204へ光触媒塗料を転写する際にベースフィルム204に張力をかけ、ベースフィルム204を挟むグラビアローラー122と反対側に設けられる。グラビアローラー122には図示されていない細線から成る深さ数十μmの溝が螺旋状に形成されており、その溝の中に光触媒塗料が供給される仕組みである。またグラビアローラー122は図2中に示すように時計回りに回転しており、光触媒塗料を供給するための光触媒塗料が入った液パン124を通りグラビアローラー122の螺旋状の溝部へ光触媒塗料が供給される。次にグラビアローラー122は、所定の液量までグラビアローラー122表面から光触媒塗料をかき取る役割をするドクターブレード123を通る。これにより、グラビアローラー122は、ベースフィルム204と接触する前に、光触媒塗料が溝部の中だけに残った状態となる。その後、グラビアローラー122とベースフィルム204が接触した際に、グラビアローラー122の溝部の光触媒塗料がベースフィルム204のPET面へ転写され、ベースフィルム204のPET面に光触媒塗料のウエット状態の膜が形成される。つまり、ベースフィルム204の上に均一に広がった液状の光触媒層が形成される。
 本発明の凹凸形状付き転写フィルムの製造プロセスにおける光触媒塗料を塗工する方法は、グラビアコート以外にダイコート、カレンダーコート、ロールコート、グラビア印刷等の他のあらゆる塗工、印刷方式を用いることができる。
 次の工程では、ベースフィルム204のPET面上の光触媒塗料を熱硬化させるために、光触媒層が形成されたベースフィルム204は熱乾燥炉211へ搬送される。熱乾燥炉211は温風炉もしくは赤外線ヒーター(IR)炉、もしくは熱風とIRを併用した熱乾燥炉等を用いることができ、一般的な熱乾燥工程を行う。本発明で使用した熱乾燥炉は熱風循環炉を使用して液状の光触媒層を150℃1分で熱乾燥及び熱硬化させ、乾燥後の平均膜厚が2μmの光触媒層103をベースフィルム204上に形成した。本発明で使用した光触媒塗料は、光触媒微粒子として酸化チタンゾルを使用し、バインダーとしてメラミン系樹脂と一緒に分散させたものを使用した。
 次に、図1~図3Bを用いて本発明の凹凸形状付き転写フィルム製造時の保護層の塗工プロセスについて説明する。図3Aは本発明の凹凸形状付き転写フィルムにおける保護層の塗工プロセスを説明する図である。図3Bは実施の形態1における空隙を形成する工程を順に説明する概念図であり、工程順に要部を拡大した平面図を示す図である。図3A,図3Bにおいて図1~図2、図6~図7Hまでと同じ構成要素については同じ符号を用いて説明を省略する。図3Aにおいて図2の光触媒塗料の塗工プロセスと同様に、保護層の塗工プロセスもロールトゥロール方式のグラビアコーターにて塗工した。
 巻き出し部120に先ほど光触媒層103を塗工したベースフィルム204を光触媒層103が塗工面となるように配置し、保護層206用の塗料をベースフィルム204の光触媒層103上に塗工した。本発明で使用した保護層206用の塗料は2液硬化型のアクリル系塗料を、乾燥後の平均膜厚が5μmとなるようにグラビアコーターで塗工した後、熱乾燥炉211により100℃2分で熱乾燥及び熱硬化させた。こうして、光触媒層103上に、均一な保護層206が形成した。また、別の材料の保護層206を形成する際、もしくは保護層206以外の機能層及び転写層を光触媒層103上に形成する際に、光触媒層103を構成する樹脂の違い等から光触媒層103上に塗工する塗料が弾かれて塗工ムラが発生する場合がはある。その場合、予め光触媒層103上に紫外線照射もしくはコロナ処理、プラズマ処理などを施こすことで、光触媒層103中の光触媒微粒子104の光触媒作用により光触媒層103の塗工面に親水基が形成されて親水化される。その結果、光触媒層103上に塗工する塗料と光触媒層103の濡れ性が良くなり、塗料の光触媒層103上での弾きを抑え、塗工ムラを低減する効果もある。
 その後、熱乾燥炉211の後に配置された紫外線照射部212で紫外線ランプ213により紫外線214を照射する。紫外線ランプ213としては、低圧水銀、高圧水銀、LED-UVランプ等を使用しても良い。次に、図3Bの部分拡大図で説明するメカニズムで、ベースフィルム204上の光触媒層103と保護層206の間の剥離強度の調整が可能となる。STEP1では、紫外線照射部212にベースフィルム204が搬送されると紫外線ランプ213から紫外線214が光触媒層103へ照射される。その際にSTEP2で光触媒層103中の光触媒微粒子104の酸化チタンから反応性の高い電子118が光触媒微粒子104から外へ多量に放出されることで、光触媒層103内で反応性の高い電子118が多数発生した状態となる。なお、光触媒層103に紫外線214を照射する場合を例示したが、光触媒層103に電子118を放出させることができれば紫外線214に限らず、X線等のその外の電磁波を照射する構成とすることもできる。放出された電子118は光触媒層103内を移動し、隣接する保護層206にも到達する。光触媒層103及び保護層206のそれぞれを構成する有機樹脂の結合エネルギーは電子118の持つエネルギー量よりも小さいため、エネルギー量の高い電子118と、電子118のエネルギー量よりも結合エネルギーが小さい光触媒層103及び保護層206を構成する有機樹脂との間では酸化還元反応が起こる。この酸化還元反応により、光触媒層103及び保護層206を構成する有機樹脂の一部から+の電荷を奪い電子118は安定化する。その結果、+の電荷を奪われた光触媒層103及び保護層206を構成する有機樹脂の一部は+の電荷を奪われた有機樹脂同士の間で結合が外れ、光触媒層103及び保護層206を構成する有機樹脂の一部が分解される。より詳しくは、保護層206は光触媒層103と隣接した部位から順番に有機樹脂が分解されるため、保護層206の内部は分解されず光触媒層103と隣接した保護層206の裏面付近のみが分解される。あるいは、保護層206において、光触媒層103との境界部分の分解は、その他の領域より進行する。
 この光触媒微粒子104から出た多量の電子118が光触媒層103及び保護層206を構成する有機樹脂との間で先ほどの酸化還元反応を繰り返し、光触媒層103及び保護層206を構成する有機樹脂から+の電子を奪うことが繰り返されることにより、光触媒層103及び保護層206を構成する有機樹脂内の分子結合が次々に切れ、光触媒層103及び保護層206層を構成する有機樹脂の分解が順次進む。
 これにより、最終的に特定の積算光量の紫外線214を照射し終わったSTEP3では、光触媒層103及び保護層206を構成する有機樹脂が一定量分解され、分解された箇所には無数の光触媒微粒子104の平均粒子径よりも平均幅の小さい空隙119が生成される。光触媒微粒子104よりも微小な無数の空隙119が形成される領域では、光触媒層103と保護層206とは接点がなく、光触媒層103と保護層206の間での密着性が悪くなる。これにより紫外線214を照射した後の凹凸形状付き転写フィルム200は、光触媒層103と保護層206との間の光触媒微粒子104の大きさよりも小さい無数の空隙119の効果で、光触媒層103と保護層206の間の剥離強度が軽くなる。この時、光触媒層103に照射させる紫外線214のエネルギー量の増減で光触媒層103及び保護層206を構成する有機樹脂の分解量を調整できる。つまり空隙119の密度を調整して光触媒層103と保護層206の間の剥離強度を調整できる。なお、空隙119は、光触媒層103及び保護層206の両方に存在していても良いし、いずれか一方の光触媒層103と保護層206との界面にのみに存在していても良い。
 光触媒層103と保護層206の間の剥離強度を更に微調整したい場合は、光触媒層103を構成する樹脂として無機系のシリコーン系樹脂等を用いることで光触媒微粒子104による光触媒作用から光触媒層103自体の分解が低減される。その結果、保護層206を構成する有機樹脂のみ分解が進み、光触媒層103を有機樹脂で構成する場合よりも光触媒層103と保護層206の間に生成される空隙119を減らすことができ、より細かく光触媒層103と保護層206の間の剥離強度を調整できる。
 今回、実施の形態1では保護層206の塗工後、紫外線照射部212で紫外線ランプ213としてメタルハライドランプを用いて、メタルハライドランプから発生する紫外線214の365nmの波長で積算光量が1200mJ/cmとなる様に調整した。実施の形態1では光触媒層103に照射させる紫外線の積算光量の幅としては、700mJ/cm以上5000mJ/cm以下で照射されることが望ましい。700mJ/cmより少ないと光触媒層103による光触媒作用で保護層206を構成する有機樹脂115中の有機鎖を分解させるのに十分な電子118が発生せず、また、5000mJ/cmより大きい場合ベースフィルム204の劣化の要因となる。しかし、上記の積算光量の範囲内に限定される訳でなく、使用するベースフィルム204の種類、光触媒層103内に含有される光触媒微粒子104の添加量、保護層206の有機鎖の分解量により適宜調整すれば良く、同様の発明の効果を得られれば積算光量は上記範囲外でも問題ない。また、保護層206としてアフターキュアタイプのハードコート膜を形成する場合、成形前にハードコート膜が硬化すると成形時にハードコート膜が伸びずにクラック発生等の不良が起こる。そのため、上記プロセスで光触媒層103への紫外線214照射時にハードコート膜の硬化防止が必要となる。その方法として、ハードコート膜の硬化波長と光触媒層103へ照射する紫外線214の波長を分離する方式などが用いられる。具体的には、光触媒層103へ照射する紫外線ランプ213として、照射される紫外線214の波長領域の狭いLED-UVランプを用いることができる。例えばLED-UVランプとしてはピーク波長が385nmで紫外線発生領域は350nm以上410nm以下のものを使用し且つハードコート膜の硬化に必要な波長が300nm以下となるような光重合開始剤をハードコート膜に添加することで、光触媒層103へのLED-UVランプ213での紫外線214照射時には、ハードコート膜内の光重合開始剤は反応開始を防止し、光触媒層103の光触媒作用を発現させ且つハードコート膜の硬化は防止することができる。
 光触媒層103に形成される凹凸形状は、転写フィルム200の深さ方向で1μm以上10μm以下の範囲の段差で形成されることが好ましい。1μmより小さくなると剥離層である光触媒層103の膜厚に近くなり、凹凸形状として十分な起伏を得ることが難しくなる。また、10μmより大きくなると光触媒層103の塗工時に凹凸形状内に光触媒層103が入り込み難く成り、凹凸形状内への光触媒層103の形成が難しくなる。
 次にフィルムの幅方向の大きさは特に限定される必要はないが、インモールド成形時の剥離不良を防ぐ効果があるため、凹凸形状の幅の長さは50μm以上500μm以下の範囲が好ましい。凹凸形状の幅方向の大きさが50μm以下になると成形品表面の目視での凹凸形状の判別が難しい水準となり、また500μmより大きくなると凹凸形状が大きなり過ぎインモールド成形時、光触媒層103から保護層206の剥離不良自体が起こり難い領域となる。但し、意匠により上記の凹凸形状の深さ、大きさは変わるため同様の効果が得られれば特に上記範囲に限定する必要はない。
 また、本発明の凹凸形状付きの転写フィルム200では、凹凸形状の深さ方向及び幅方向の大きさよりも小さい光触媒微粒子104が用いられる。このため、凹凸形状の内の保護層206を構成する有機樹脂を光触媒微粒子104の光触媒作用により分解する際に、光触媒作用による分解での凹凸形状変化が抑えられ、且つ光触媒層103に隣接する保護層206の表面で、凹凸形状内に目視で確認できない微細な空隙119をムラなく多数発生させることができる。これにより、光触媒層103と保護層206の界面の空隙119の表面積を大きくすることができるため、光触媒層103と保護層206の界面の接点を効果的に減らすことができる。よって、光触媒層103と保護層206の剥離強度を適切に調整可能で且つ高品位な凹凸形状の転写が可能となる。
 次に、本発明では保護層206形成後に、プライマー層、着色層208、接着層209が、各層の乾燥後の平均膜厚が3μmとなる様にグラビア印刷機を用いて印刷される。
 このプロセスで出来た本発明の凹凸形状付き転写フィルムの構成を示す断面図を図4に示す。図4において図1~図3B及び図6~図7Hまでと同じ構成要素については同じ符号を用いて説明を省略する。
 図4に示すように、凹凸形状付き転写フィルム200は、光触媒層103と保護層206の境界に光触媒微粒子104の大きさよりも微小な無数の空隙119が存在し、無数の空隙部119では光触媒層103と保護層206の間で接点がないため、光触媒層103と保護層206の密着性が悪い状態となる。その結果、本発明の凹凸形状付き転写フィルム200は、光触媒層103と保護層206の間に無数に存在する空隙部119により、光触媒層103と保護層206の間の剥離強度が従来の凹凸付き転写フィルムよりも軽くなる。凹凸形状付き転写フィルム200を用いてABS樹脂によりインモールド成形を実施した結果、従来の凹凸形状付き転写フィルムよりも凹凸形状部の光触媒層103と保護層206の間の剥離強度が軽く、成形後に凹凸形状部の光触媒層103からの保護層206の離型がスムーズとなり、保護層206以降の転写層の成形品への転写不良が起こり難い凹凸形状付き転写フィルム200を得ることができた。
 なお、インモールド成形は、あらかじめ空隙119が形成された転写フィルム200を用いて行っても良いが、空隙119が形成されず光触媒微粒子104のみを備える転写フィルム100を用い、金型に挿入後樹脂の注入前に紫外線を照射して必要量の空隙119を形成しても良い。インモールド成形中に空隙119を形成することにより、より成形品や処理環境に応じて剥離強度を詳細に調整することができる。また、転写フィルム200を金型に挿入する場合においても、空隙119の調整は、金型内で転写フィルム200にさらに紫外線を照射することにより行うこともできる。この場合も、空隙119が形成された転写フィルム200について、成形品や処理環境に応じて空隙119を追加し、剥離強度を詳細に調整することができる。
 また、本発明は、例えばインモールド成形によるテレビやオーディオなどのAV機器や冷蔵庫、掃除機、エアコンなどの家電、携帯電話等のモバイル関連、または自動車のコックピット、オーディオパネル関連の外装成形部品の表面に凹凸形状のデザインを付与する際等に幅広く利用できる。また、凹凸形状としては反射防止膜の微細な凹凸でも良く、その場合、転写層の表面が反射防止膜であっても良い。
 (実施の形態2)
 実施の形態1の転写フィルムにおいて、成形品に転写する箇所は光触媒層と保護層との間の剥離強度は比較的軽い状態に設定される。また、一般的に、転写フィルムの幅を揃えるために転写フィルムの端部を切断するスリット工程が行われる場合がある。このスリット工程において、保護層以降の転写層が粉状になって転写フィルムから剥がれ落ちる場合があり、剥がれ落ちた粉状の転写層は箔粉飛散の要因となる。箔粉が転写フィルムのスリット(切断)時に飛散し、スリット加工中の転写フィルムロール内に一部が混入するとそれが異物となる。混入した箔粉により転写型フィルム面に異物が付着し、そのまま転写フィルムが巻き取られると、その部位の転写層は想定外に凹凸が大きくなり印刷不良となる。また、剥離強度が軽いほど、転写層が粉状になって転写フィルムから剥がれ落ち易い。そのため、スリット加工する箇所の光触媒層と保護層との間の剥離強度は転写される箇所よりも重い状態に保つ方が良い。
 この様に、転写フィルムの剥離強度を転写フィルム面内で変更したい場合、従来の光触媒層と保護層との間の剥離強度の調整法では、基本的に光触媒層が形成されたフィルム全体の剥離強度は面内で同一に調整されるため、同一フィルム上に形成された光触媒層と保護層との間の剥離強度は同じ程度の値となる。そのため、転写型フィルム面内で特定の部位のみの光触媒層と保護層の間の剥離強度を変えることは難しかった。
 実施の形態1の転写フィルムにおいて、さらに、転写フィルム内で剥離強度の軽重に差異を持たせる転写フィルムを実施の形態2として説明する。
 図5Aは、本発明の実施の形態2における凹凸形状付き転写フィルムにおける保護層の塗工プロセスを説明する図である。図5B、図5Cは実施の形態2における紫外線照射部の構成を例示する概略図である。図5A~図5Cにおいて図1~図4及び図6~図7Hまでと同じ構成要素については同じ符号を用いて説明を省略する。
 実施の形態1と同様の帯電防止付きPETフィルムからなるベースフィルム204を用いて、光触媒層103を塗工するまでは、実施の形態1と同様のプロセスでロールトゥロールのグラビアコーターにて塗工した。光触媒層103の塗工において、光触媒層103の熱乾燥工程後、紫外線照射部212にて紫外線ランプ213を用いて光触媒層103へ紫外線214を照射する際に次のプロセスで照射した。部分拡大図5Bと図5Cは2通りのパターンで紫外線照射した際の紫外線照射部212内部の平面図である。
 図5Bに示す紫外線照射部の場合、凹凸形状付き転写フィルムの全層の塗工後に、矢印X1、X2に示すベースフィルム204の送り方向とは垂直な方向の両側の幅方向の端面をスリット加工し凹凸形状付き転写フィルムロールの中心部と端部の高さを合わせる。これはグラビアコーターでの塗工の際に、矢印のベースフィルム204の送り方向とは垂直な幅方向の両側で、ベースフィルム204の中心部よりも端部への塗剤の塗工量が多くなるため、形成される転写フィルムをスリット加工して凹凸形状付き転写フィルム中心部と端部の高さを揃える必要があるためである。スリット加工時に問題となるのが、光触媒層103と保護層206の間でスリット加工時に層間剥離が起こり光触媒層103から一部保護層206以降の転写層が剥がれ、箔粉となり周囲に飛散する問題である。飛散した箔粉がスリット加工中の凹凸形状付き転写フィルムのロール内に混入することで、箔粉が混入した箇所で箔粉による凹凸が出来、凹凸形状付き転写フィルムの転写層を変形させることや、インモールド成形工程で異物となる不良が発生する。箔粉発生防止には、光触媒層103と保護層206の間の剥離強度が重い方が良い。
 本発明では、凹凸形状付き転写フィルムのスリット加工時に箔粉が出難い凹凸形状付き転写フィルムとするため、図5Bの様に矢印のベースフィルム204の送り方向とは垂直な幅方向でフィルムの塗工幅よりも小さい幅の紫外線照射ランプ215もしくは照射強度が中心部の紫外線照射量(照度)より端部の紫外線照射量(照度)が弱い紫外線照射ランプを使用する。この紫外線214を照射させることで光触媒層103による光触媒層103及び保護層205を構成する有機樹脂の分解量を中心部よりも端部の方を少なくする。これにより矢印のベースフィルム204の送り方向とは垂直な幅方向の両側端部の光触媒層103と保護層206の間の剥離強度を凹凸形状付き転写フィルムの中心部よりも重い状態に保ち、スリット加工時に保護層206以降の転写層が光触媒層103から剥がれ難い状態とし、箔粉の発生を抑制させスリット加工で箔粉の発生を抑制することができる。これによりスリット加工で発生する箔粉の発生を抑え、スリット加工で凹凸付き転写フィルムのロール内への箔粉の混入を低減させることができる。
 また、図5Cに示すように、凹凸形状付き転写フィルムにおいて、矢印X1、X2に示すベースフィルム204の送り方向とは垂直な幅方向で塗工幅が広く、例えば全層の塗工後矢印のベースフィルム204の送り方向とは垂直な幅方向において中心部もスリット加工して、光触媒層103を幅方向に2つ以上の領域に分割する場合がある。この場合は予め端部と中心部の光触媒層103への紫外線照射量が少なくなる様にスリット幅に合わせて、紫外線ランプ216を2個設置するかもしくは1本で中心部のみ紫外線量の調整が可能なように紫外線ランプのスリット加工する場所に相当する所に特定の紫外線エネルギー量に調整可能な紫外線カットフィルターを付けても良い。このような紫外線ランプを用いることにより、紫外線214を凹凸形状付き転写フィルムへ照射させることで凹凸形状付き転写フィルムの端部及び中心部の光触媒層103及び保護層206を構成する有機樹脂の分解量を減らし、その箇所の光触媒層103と保護層206の間の剥離強度を、他の成形で転写させる箇所よりも重い状態に保つことが可能となる。これにより図5Bと同様にしてスリット加工時にスリット箇所箔粉が発生することを抑えることができ、スリット加工時の箔粉の飛散を防止しスリット加工における凹凸形状付き転写フィルムロール内への箔粉の飛散による異物混入が防止され、箔粉混入による不良の少ない凹凸形状付き転写フィルムの提供が可能となる。
 この様に、塗工後の凹凸形状付き転写フィルムのスリットの形態に合わせて紫外線214の照射量をフィルム幅方向で、スリット加工部のみ紫外線214の照射量が少なくなるように調整することで、凹凸形状付き転写フィルムのスリット加工時に発生していた箔粉の飛散防止への対応が可能となる。
 本発明は、剥離層と転写層との間の剥離強度を最適に調整でき、インモールド成形で使用する転写フィルム及び転写フィルムの製造方法等に有用である。
   1 固定型
   2 可動型
   3 箔送り装置
   4 吸引穴
   5 ゲート
   6 樹脂
   7 成形品
   8 突き出しピン
 100 転写フィルム
 101 キャリア層
 102 転写層
 103 光触媒層
 104 光触媒微粒子
 118 電子
 119 空隙
 120 巻き出し部
 121 巻取り部
 122 グラビアローラー
 123 ドクターブレード
 124 液パン
 125 ガイドローラー
 200 転写フィルム
 201 転写フィルム
 202 キャリア層
 203 転写層
 204 ベースフィルム
 205 剥離層
 206 保護層
 207 アンカー層
 208 着色層
 209 接着層
 211 熱乾燥炉
 212 紫外線照射部
 213 紫外線ランプ
 214 紫外線
 215 紫外線ランプ
 216 紫外線ランプ

Claims (10)

  1.  インモールド成形用の転写フィルムであって、
     ベースフィルムと、
     前記ベースフィルムに接して形成される光触媒層と、
     前記光触媒層の前記ベースフィルムに接する面に対する裏面に形成される凹凸形状と、
     前記光触媒層の前記ベースフィルムに接する面に対する裏面と接して形成される転写層と、
     前記光触媒層に含有される光触媒微粒子と、
     前記光触媒層および前記転写層のいずれかまたは両方の少なくとも前記光触媒層と前記転写層との界面に形成される複数の空隙と
    を有することを特徴とする転写フィルム。
  2.  前記複数の空隙は、前記光触媒微粒子に紫外線を照射することにより形成され、前記複数の空隙の量が前記紫外線の照射光量で調整可能であることを特徴とする請求項1に記載の転写フィルム。
  3.  前記空隙の平均幅は前記光触媒微粒子の平均粒子径よりも小さいことを特徴とする請求項1に記載の転写フィルム。
  4.  前記転写層が有機系樹脂で構成されることを特徴とする請求項1に記載の転写フィルム。
  5.  前記転写層に形成される前記空隙が前記転写層内の他の領域よりも前記光触媒層との界面に多く存在することを特徴とする請求項1に記載の転写フィルム。
  6.  前記光触媒層に形成された凹凸の深さが前記光触媒微粒子の平均粒子径よりも大きいことを特徴とする請求項1に記載の転写フィルム。
  7.  前記光触媒微粒子の平均粒子径が、0.01μm以上0.2μm以下であることを特徴とする請求項1に記載の転写フィルム。
  8.  前記光触媒層と前記転写層との間の剥離強度が、短手方向である幅方向における中心部よりも両端部の方が重いことを特徴とする請求項1に記載の転写フィルム。
  9.  ベースフィルムと、光触媒微粒子を含有する光触媒層と、有機樹脂から成る転写層とをこの順で積層する工程と、
     前記光触媒層に紫外線を照射して前記光触媒層および前記転写層のいずれかまたは両方の少なくとも前記光触媒層と前記転写層の界面に複数の空隙を形成する工程と
    を有し、前記紫外線の照射により、前記光触媒層に電子を生成させ、前記電子の少なくとも一部が前記転写層に進入して前記有機樹脂の一部を分解して前記空隙を形成させ、前記紫外線の照射光量により形成される前記空隙の量を調整することを特徴とする転写フィルムの製造方法。
  10.  前記光触媒層の前記紫外線が照射される面において、前記紫外線の照射量に差異を設け、転写フィルムの短手方向である幅方向で、形成される前記空隙の量に差異を持たせることを特徴とする請求項9記載の転写フィルムの製造方法。
PCT/JP2015/005902 2015-03-02 2015-11-27 転写フィルム及び転写フィルムの製造方法 WO2016139705A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017503214A JPWO2016139705A1 (ja) 2015-03-02 2015-11-27 転写フィルム及び転写フィルムの製造方法
CN201580038015.XA CN106660387B (zh) 2015-03-02 2015-11-27 转印膜以及转印膜的制造方法
US15/324,099 US10569496B2 (en) 2015-03-02 2015-11-27 Transfer film and method for manufacturing transfer film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-039738 2015-03-02
JP2015039738 2015-03-02

Publications (1)

Publication Number Publication Date
WO2016139705A1 true WO2016139705A1 (ja) 2016-09-09

Family

ID=56848056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005902 WO2016139705A1 (ja) 2015-03-02 2015-11-27 転写フィルム及び転写フィルムの製造方法

Country Status (4)

Country Link
US (1) US10569496B2 (ja)
JP (1) JPWO2016139705A1 (ja)
CN (1) CN106660387B (ja)
WO (1) WO2016139705A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019014224A (ja) * 2017-07-05 2019-01-31 大勤化成股▲分▼有限公司Daigin Chemical Co.,Ltd. 転写フィルム及びその製造方法、並びに転写フィルムによる3次元立体転写パターンを有する製品及びその製造方法
JP2020075417A (ja) * 2018-11-08 2020-05-21 パナソニックIpマネジメント株式会社 インモールド加飾成形品の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017118904A1 (de) 2017-08-18 2019-02-21 Leonhard Kurz Stiftung & Co. Kg Transferfolie, Verfahren zur Herstellung eines folienbeschichteten Artikels und folienbeschichteter Artikel
US20200180353A1 (en) * 2017-08-31 2020-06-11 3M Innovative Properties Company Shaped transfer article comprising partially embedded microspheres, shaped finished articles therefrom, and methods of making
DE102018105523A1 (de) * 2018-03-09 2019-09-12 Leonhard Kurz Stiftung & Co. Kg Verfahren zur Herstellung eines dekorierten Formteils
WO2019198484A1 (ja) * 2018-04-12 2019-10-17 信越化学工業株式会社 光触媒転写フィルム及びその製造方法
CN113631382A (zh) * 2019-03-29 2021-11-09 大日本印刷株式会社 转印片和装饰成型品的制造方法
DE102022100412A1 (de) * 2022-01-10 2023-07-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Beschichtungsstoffübertragungsanordnung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025362A1 (fr) * 1999-10-01 2001-04-12 Nippon Soda Co., Ltd. Feuille de transfert de photocatalyseur
WO2007034643A1 (ja) * 2005-09-20 2007-03-29 Konica Minolta Opto, Inc. 凹凸パターンフィルムの形成方法
JP2008221491A (ja) * 2007-03-09 2008-09-25 Dainippon Printing Co Ltd ナノインプリント用モールドおよびその製造方法
JP2010086619A (ja) * 2008-10-01 2010-04-15 Bridgestone Corp 成形樹脂の製造方法及び光情報記録媒体の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126607A (ja) * 1998-10-26 2000-05-09 Dainippon Printing Co Ltd 光触媒機能を有する合成樹脂成形品
JP2001198474A (ja) * 2000-01-20 2001-07-24 Natl Inst Of Advanced Industrial Science & Technology Meti 光触媒担持体及びその製造方法
AU2003255147A1 (en) * 2002-07-24 2004-02-09 Tdk Corporation Functional film for transfer having functional layer, object furnished with functional layer and process for producing the same
JP4142517B2 (ja) 2002-07-29 2008-09-03 大日本印刷株式会社 保護層熱転写シートおよびマット調印画物
US20050183769A1 (en) * 2003-11-10 2005-08-25 Hiroki Nakagawa Method of producing substrate for dye-sensitized solar cell and dye-sensitized solar cell
JP2008087392A (ja) * 2006-10-04 2008-04-17 Mitsubishi Kagaku Sanshi Corp 光触媒層を有する積層体およびその製造方法
JP2010149388A (ja) 2008-12-25 2010-07-08 Toppan Printing Co Ltd 転写箔とそれを用いた被転写体の製造方法
JP2011224915A (ja) 2010-04-22 2011-11-10 Oji Paper Co Ltd 転写シート
JP2012045781A (ja) 2010-08-25 2012-03-08 Dainippon Printing Co Ltd 加飾シート
JP5741995B2 (ja) 2010-10-29 2015-07-01 大日本印刷株式会社 転写箔およびその製造方法
KR101337137B1 (ko) 2011-12-02 2013-12-05 (주)엘지하우시스 입체패턴을 나타내는 인몰드 사출용 전사필름 및 그의 제조방법
KR101417247B1 (ko) 2012-02-08 2014-07-08 (주)엘지하우시스 탄성질감이 부여된 인몰드 전사필름 및 그 제조방법
JP2014205247A (ja) 2013-04-10 2014-10-30 パナソニック株式会社 転写用部材
JP6146569B2 (ja) 2013-09-05 2017-06-14 パナソニックIpマネジメント株式会社 加飾フィルム及びこれを用いた成形品
US9246134B2 (en) * 2014-01-20 2016-01-26 3M Innovative Properties Company Lamination transfer films for forming articles with engineered voids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025362A1 (fr) * 1999-10-01 2001-04-12 Nippon Soda Co., Ltd. Feuille de transfert de photocatalyseur
WO2007034643A1 (ja) * 2005-09-20 2007-03-29 Konica Minolta Opto, Inc. 凹凸パターンフィルムの形成方法
JP2008221491A (ja) * 2007-03-09 2008-09-25 Dainippon Printing Co Ltd ナノインプリント用モールドおよびその製造方法
JP2010086619A (ja) * 2008-10-01 2010-04-15 Bridgestone Corp 成形樹脂の製造方法及び光情報記録媒体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019014224A (ja) * 2017-07-05 2019-01-31 大勤化成股▲分▼有限公司Daigin Chemical Co.,Ltd. 転写フィルム及びその製造方法、並びに転写フィルムによる3次元立体転写パターンを有する製品及びその製造方法
JP2020075417A (ja) * 2018-11-08 2020-05-21 パナソニックIpマネジメント株式会社 インモールド加飾成形品の製造方法
JP7122535B2 (ja) 2018-11-08 2022-08-22 パナソニックIpマネジメント株式会社 インモールド加飾成形品の製造方法

Also Published As

Publication number Publication date
JPWO2016139705A1 (ja) 2017-06-08
US10569496B2 (en) 2020-02-25
CN106660387B (zh) 2020-01-14
US20170210084A1 (en) 2017-07-27
CN106660387A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2016139705A1 (ja) 転写フィルム及び転写フィルムの製造方法
US11938751B2 (en) Method for manufacturing a floor board
US20170100920A1 (en) Sheet for three-dimensional molding
WO2015151611A1 (ja) 積層造形物の製造装置、製造方法及び液状原料
JPS5984497A (ja) 電磁波の遮蔽または反射用frp板
CN113235046B (zh) 壳体的加工方法、壳体和电子设备
JP6728569B2 (ja) 転写シート及びこれを用いた加飾樹脂成形品
JP2019089335A (ja) 三次元成形用転写フィルム
JP2009291996A (ja) 転写シート、転写シートの製造方法、転写成形品の製造方法および転写成形品
EP4223480A1 (en) Transfer sheet and method for producing resin molded article using same
JP2015193246A (ja) 表面加工フィルム及びその製造方法
JP6429011B2 (ja) インモールド成型用転写フィルム及びその製造方法
JP5885469B2 (ja) 転写シートおよび真空圧着法による加飾成形品の製造方法
JP4838035B2 (ja) 繊維調加飾シートとこれを用いた繊維調加飾成形品の製造方法
JP6331546B2 (ja) 加飾シートの製造方法
CN113423793B (zh) 用于制造胶粘剂丝的方法和胶粘剂丝
JP5870277B2 (ja) フィルムの製造方法
JPH08112866A (ja) ハードコートフィルムとその製造方法
KR20120072657A (ko) 실크 스크린 공법을 통하여 다양한 패턴의 입체 질감을 구현할 수 있는 인몰드용 전사필름 및 그 제조 방법
TW201309468A (zh) 滾壓成型之裝飾性機板的製造方法
JPH04200777A (ja) 艶消しフィルムの製造方法
KR101115033B1 (ko) 롤러와 밴드를 이용하여 유브이 패턴 필름을 제조하는 장치
JPH07266798A (ja) 転写シート及びこれを用いた化粧板の製造方法
JP2004142303A (ja) 透視性装飾材の製造方法、透視性装飾材製造用転写シートの製造方法及び該転写シートを用いた透視性装飾材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883875

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15324099

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017503214

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883875

Country of ref document: EP

Kind code of ref document: A1