WO2016117492A1 - フッ素樹脂の改質成形品の製造方法 - Google Patents
フッ素樹脂の改質成形品の製造方法 Download PDFInfo
- Publication number
- WO2016117492A1 WO2016117492A1 PCT/JP2016/051248 JP2016051248W WO2016117492A1 WO 2016117492 A1 WO2016117492 A1 WO 2016117492A1 JP 2016051248 W JP2016051248 W JP 2016051248W WO 2016117492 A1 WO2016117492 A1 WO 2016117492A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluororesin
- molded product
- tfe
- copolymer
- mass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/28—Treatment by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/16—Chemical modification with polymerisable compounds
- C08J7/18—Chemical modification with polymerisable compounds using wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/26—Tetrafluoroethene
- C08F214/262—Tetrafluoroethene with fluorinated vinyl ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/123—Treatment by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/10—Homopolymers or copolymers of unsaturated ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/18—Homopolymers or copolymers of tetrafluoroethylene
Definitions
- the present invention relates to a method for producing a modified molded product of a fluororesin.
- Fluororesin is excellent in heat resistance, chemical resistance, weather resistance, contamination resistance, and the like, and is used in various fields such as semiconductors, automobiles, architecture, electrical / electronics, chemical plants, and pharmaceuticals. Various methods for further improving various properties such as heat resistance, mechanical properties, and radiation resistance of such fluororesins have been studied.
- Patent Documents 1 and 2 As one of the methods for modifying a fluororesin, it is known to irradiate with radiation. As such a modification method, a method in which a fluororesin is heated to a melting point or higher and irradiated with radiation is known (Patent Documents 1 and 2).
- Patent Literature 3 ionizing radiation with a high dose rate of 100 kGy / sec or more is irradiated from a particle accelerator in a range of irradiation doses of 200 kGy to 100 MGy without irradiation in advance.
- a method for producing a modified fluororesin in which the resin is crosslinked and the heat resistance and chemical resistance are improved in a simple and short time is disclosed.
- Patent Document 4 discloses that a fluororesin heated to 0 to 150 ° C. or from 0 ° C. to a crystal dispersion temperature is irradiated with ionizing radiation at an irradiation amount of 5 Gy to 500 kGy, and the irradiated fluororesin is irradiated at a predetermined temperature. It is disclosed that the heat resistance deterioration characteristic and the compression strain resistance are improved by holding for a predetermined time.
- Patent Documents 5 to 7 a tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer having a specific range of heat of crystal melting or a composition containing the copolymer is applied at 10 kGy under irradiation conditions of 100 ° C. or less. It is disclosed that the above ionizing radiation was irradiated.
- a fluororesin is coated on a metal substrate that is difficult to adhere to a fluororesin, and is crosslinked by irradiation with ionizing radiation at 200 ° C. to 400 ° C., and the fluororesin is peeled off from the substrate.
- a method for obtaining a modified fluororesin molded product by separation or the like is disclosed.
- the fluororesin layer is baked by heating to a temperature in the range of 150 ° C. higher than the melting point of the fluororesin, and baked uncrosslinked
- the temperature of the fluororesin layer is set to a temperature in a range from a temperature 60 ° C. lower than the melting point (Tm) of the fluororesin to a temperature lower than the melting point by 1 ° C., crosslinking by irradiation with radiation.
- a base material having thermal stability at a temperature equal to or higher than the melting point of the fluororesin is a modified fluororesin coating material coated with a cross-linked fluororesin film, and the fluororesin has a cross-linking of 250- It is disclosed to be performed with ionizing radiation at a temperature in the range of 400 ° C.
- Molded products for distributing and storing gas and chemicals are required to have characteristics that make gas and chemicals difficult to permeate.
- the present invention produces a modified molded article having a good appearance, having high breaking strength and excellent wear resistance, and excellent low permeability to nitrogen gas and hydrochloric acid. It aims to provide a way to do.
- the inventors of the present invention have a case where the thickness of the molded product is small when the fluororesin molded product is irradiated with a specific irradiation dose at a specific temperature.
- wrinkles were not generated, the breaking strength was not impaired, and at the same time, the wear resistance was improved and the nitrogen gas permeability coefficient and the hydrochloric acid permeability coefficient were dramatically reduced, and the present invention was completed.
- the present invention includes a step of obtaining a molded product by molding a fluororesin, and a step of obtaining a modified molded product by irradiating the molded product with radiation of less than 100 kGy at 50 to 200 ° C. This is a method for producing a modified molded product.
- the molded article preferably has a thickness of 0.01 to 3.0 mm.
- the molded product is preferably a tube, a film, or a bottle.
- the modified molded article preferably has a specific gravity of 2.14 to 2.30.
- the fluororesin is preferably a fluororesin that can be melt processed.
- the fluororesin is preferably a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer.
- the fluororesin preferably has 500 functional groups or less per 10 6 main chain carbon atoms.
- the present invention is also a modified molded product obtained from the above-described production method.
- the present invention is also made of a melt-processable fluororesin (except polytetrafluoroethylene and polychlorotrifluoroethylene), does not contain an inorganic substance or polytetrafluoroethylene, and has a specific gravity of 2.170 or more. It is also a molded product characterized by a breaking strength of 13 MPa or more (in this specification, this molded product may be referred to as a molded product (A)).
- the modified molded article of the present invention has a good appearance, high breaking strength, excellent wear resistance, and excellent low permeability to nitrogen gas and hydrochloric acid.
- the molded product (A) of the present invention has a good appearance, high breaking strength, excellent wear resistance, and excellent low permeability to nitrogen gas and hydrochloric acid.
- the production method of the present invention is characterized by including a step of irradiating a molded product obtained by molding a fluororesin with a radiation of less than 100 kGy at 50 to 200 ° C.
- the irradiation temperature of radiation is 50 to 200 ° C. Preferably, it is 80 ° C. or higher, more preferably 100 ° C. or higher, still more preferably 140 ° C. or higher, and preferably 180 ° C. or lower.
- the irradiation temperature is too high, wrinkles are generated in the reformed molded product, and the breaking strength is impaired. If the irradiation temperature is too low, a reformed molded article excellent in low permeability and wear resistance cannot be produced.
- the irradiation temperature is preferably within the above numerical range and lower than the melting point of the fluororesin.
- the adjustment of the irradiation temperature is not particularly limited, and can be performed by a known method. Specifically, a method of holding the above-mentioned fluororesin in a heating furnace maintained at a predetermined temperature, placing on a hot plate, energizing a heater built in the hot plate, or hot plate by an external heating means The method of heating is mentioned.
- the radiation dose is less than 100 kGy. Preferably, it is 95 kGy or less, More preferably, it is 80 kGy or less, Preferably, it is 20 kGy or more, More preferably, it is 40 kGy or more, More preferably, it is 60 kGy or more. Whether the irradiation dose is too large or too small, the appearance is good, has a high breaking strength and excellent wear resistance, and has a modified molded product with excellent permeability to nitrogen gas and hydrochloric acid. It cannot be manufactured.
- Examples of the radiation include electron beams, ultraviolet rays, gamma rays, X-rays, neutron rays, high energy ions, and the like.
- an electron beam is preferable because it has excellent transmission power, a high dose rate, and is suitable for industrial production.
- the method of irradiating with radiation is not particularly limited, and examples thereof include a method performed using a conventionally known radiation irradiating apparatus.
- the irradiation environment is not particularly limited, but the oxygen concentration is preferably 1000 ppm or less, more preferably in the absence of oxygen, and in an inert gas atmosphere such as nitrogen, helium or argon More preferably, it is in the middle.
- the conventional method is a method of modifying a molded article by irradiating a fluororesin molded article with radiation to advance a crosslinking reaction of the fluororesin.
- the production method of the present invention is characterized in that the conditions under which crosslinking hardly proceeds are adopted.
- the reason why a modified molded article having excellent low permeability to nitrogen gas and hydrochloric acid can be produced by the production method of the present invention without impairing the appearance and breaking strength is not clear, but the crystallinity of the molded article Is estimated to be improved.
- One of the reasons for the above estimation is that the modified molded product obtained by the production method of the present invention has a higher specific gravity than the molded product before irradiation with radiation.
- the manufacturing method of this invention includes the process of shape
- the method for molding the fluororesin is not particularly limited, and examples thereof include known methods such as extrusion molding, injection molding, transfer molding, inflation molding, and compression molding. What is necessary is just to select these shaping
- the method for molding the fluororesin is preferably extrusion molding, compression molding or injection molding, and more preferably extrusion molding.
- molded articles such as tubes, films, and bottles can be easily produced. It is also easy to produce molded articles such as tubes, films, and bottles with a small thickness.
- These molding methods are methods in which a fluororesin is flowed by heating. Therefore, a molded product in which each polymer chain constituting the fluororesin is oriented in the flow direction is obtained. Therefore, when the molded product is heated, it tends to shrink in the flow direction, and when it shrinks too much, the appearance is impaired. In particular, shrinkage is remarkably observed in molded articles obtained using extrusion molding.
- the production method of the present invention can suppress shrinkage of a molded product and can provide a modified molded product having a good appearance.
- the molded article preferably has a thickness of 0.01 to 3.0 mm, more preferably 0.2 mm or more, further preferably 0.5 mm or more, and 1.0 mm or more. Particularly preferred is 2.0 mm or less. Since a molded product with a small thickness is easy to permeate nitrogen gas and hydrochloric acid, it is desirable to reduce the permeability coefficient for nitrogen gas and hydrochloric acid. In addition, since a molded article having a small thickness does not have a high breaking strength from the beginning, it is particularly desired to avoid a loss of breaking strength by irradiation with radiation.
- the production method of the present invention produces a reformed molded article having good appearance, high breaking strength, and excellent low permeability to nitrogen gas and hydrochloric acid even when the thickness is within the above range. can do.
- the shape of the molded product is not particularly limited, and examples thereof include pellets, films, sheets, plates, rods, blocks, cylinders, containers, electric wires, and tubes. Also, coating layers for cooking utensils such as rice cookers, hot plates and frying pans, and topcoat layers for fixing rollers for image forming devices such as electrophotographic or electrostatic recording copying machines and laser printers are formed.
- a fluororesin coating film may be used. The fluororesin coating film can be formed by applying a fluororesin paint to a substrate.
- the molded product is preferably a tube, a film, or a bottle.
- Tubes, films and bottles are usually produced by extrusion, compression molding or injection molding, and in particular, they are often produced by extrusion. Therefore, in the tube, the film, and the bottle, the polymer chains constituting the fluororesin are oriented in the flow direction, and when these molded products are heated, they tend to shrink in the flow direction, and when they shrink too much, the appearance is impaired. Even if a molded article is a tube, a film, or a bottle, the manufacturing method of this invention can suppress shrinkage
- a fluororesin is extruded, compression molded or injection molded to obtain a tube, film or bottle having the above thickness, and the tube, film or bottle is irradiated at the above irradiation temperature. It may include a step of irradiating the radiation with the irradiation dose.
- a tube, film or bottle having a thickness of 3.0 mm or less, preferably 2.5 mm or less, more preferably 2.0 mm or less can be produced, and the appearance is good, and nitrogen gas and hydrochloric acid are produced. It is possible to produce a modified molded article having excellent low permeability to the above.
- the fluororesin preferably has a melting point of 190 to 347 ° C.
- fusing point 200 degreeC or more is more preferable, 220 degreeC or more is further more preferable, 280 degreeC or more is especially preferable, and 322 degreeC or less is more preferable.
- the melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
- fluororesin examples include polytetrafluoroethylene, a copolymer composed of a tetrafluoroethylene unit (TFE unit) and a perfluoro (alkyl vinyl ether) unit, a copolymer composed of a TFE unit and a hexafluoropropylene unit, and polychloro Examples thereof include trifluoroethylene.
- the fluororesin is preferably a melt-processable fluororesin, and is a copolymer composed of tetrafluoroethylene units (TFE units) and perfluoro (alkyl vinyl ether) units (PAVE units) (hereinafter referred to as TFE / PAVE copolymers). (Or PFA)) and a copolymer consisting of a TFE unit and a hexafluoropropylene unit (HFP unit) (hereinafter referred to as a TFE / HFP copolymer (or FEP)). At least one copolymer is more preferable, and a TFE / PAVE copolymer is still more preferable.
- the at least 1 sort (s) selected from the group which consists of can be mentioned.
- the copolymer contains PAVE units
- the low permeability to nitrogen gas and hydrochloric acid can be further improved. This is presumed to be because the effects of irradiation with radiation are sufficiently obtained even at low temperatures because many large side chains called alkoxy groups undergo large molecular motion even at low temperatures.
- PAVE perfluoro (propyl vinyl ether)
- the TFE / PAVE copolymer preferably contains 1.0 to 10% by mass of PAVE-based polymer units based on the total polymer units.
- the amount of the polymerized units based on the PAVE is more preferably 2.0% by mass or more, further preferably 3.5% by mass or more, particularly preferably 4.0% by mass or more, based on all polymerized units, and 5.0% by mass. % By mass or more is most preferable, 8.0% by mass or less is more preferable, 7.0% by mass or less is further preferable, 6.5% by mass or less is particularly preferable, and 6.0% by mass or less is most preferable.
- the amount of polymerized units based on the above PAVE is measured by 19 F-NMR method.
- the TFE / PAVE copolymer preferably has a melting point of 280 to 322 ° C.
- the melting point is more preferably 290 ° C. or higher, and more preferably 315 ° C. or lower.
- the melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
- the TFE / PAVE copolymer preferably has a glass transition temperature (Tg) of 70 to 110 ° C.
- the glass transition temperature is more preferably 80 ° C. or higher, and more preferably 100 ° C. or lower.
- the glass transition temperature is a value obtained by measurement by dynamic viscoelasticity measurement.
- the TFE / PAVE copolymer is produced by a conventionally known method such as emulsion polymerization or suspension polymerization by appropriately mixing monomers as constituent units and additives such as a polymerization initiator. Can do.
- the TFE / HFP copolymer includes tetrafluoroethylene (TFE) units and hexafluoropropylene (HFP) units.
- the TFE / HFP copolymer preferably has a mass ratio (TFE / HFP) of TFE units to HFP units of 70 to 99/1 to 30 (mass%).
- the mass ratio (TFE / HFP) is more preferably 85 to 95/5 to 15 (mass%).
- the TFE / HFP copolymer preferably further contains perfluoro (alkyl vinyl ether) (PAVE) units.
- PAVE perfluoro (alkyl vinyl ether)
- the lower permeability can be improved.
- PAVE unit contained in the TFE / HFP copolymer include those similar to the PAVE unit constituting the TFE / PAVE copolymer described above. Among these, PPVE is more preferable because it is excellent in improving low permeability. Since the TFE / PAVE copolymer described above does not contain HFP units, it differs from the TFE / HFP / PAVE copolymer in that respect.
- the mass ratio (TFE / HFP). / PAVE) is preferably 70 to 99.8 / 0.1 to 25 / 0.1 to 25 (mass%). Within the above range, the heat resistance and chemical resistance are excellent.
- the mass ratio (TFE / HFP / PAVE) is more preferably 75 to 98 / 1.0 to 15 / 1.0 to 10 (mass%).
- the TFE / HFP / PAVE copolymer contains 1% by mass or more of HFP units and PAVE units in total.
- the HFP unit is preferably 25% by mass or less based on the total monomer units.
- the content of the HFP unit is more preferably 20% by mass or less, and further preferably 18% by mass or less. Especially preferably, it is 15 mass% or less.
- 0.1 mass% or more is preferable and, as for content of a HFP unit, 1 mass% or more is more preferable. Especially preferably, it is 2 mass% or more.
- the content of the HFP unit can be measured by 19 F-NMR method.
- the content of the PAVE unit is more preferably 20% by mass or less, and further preferably 10% by mass or less. Especially preferably, it is 3 mass% or less. Moreover, 0.1 mass% or more is preferable and, as for content of a PAVE unit, 1 mass% or more is more preferable.
- the content of the PAVE unit can be measured by 19 F-NMR method.
- the TFE / HFP copolymer may further contain other ethylenic monomer ( ⁇ ) units.
- ethylenic monomer ( ⁇ ) units are not particularly limited as long as they are monomer units copolymerizable with TFE units, HFP units, and PAVE units.
- vinyl fluoride (VF) fluoride
- fluoride Examples thereof include fluorine-containing ethylenic monomers such as vinylidene (VdF), chlorotrifluoroethylene [CTFE], and ethylene (ETFE), and non-fluorinated ethylenic monomers such as ethylene, propylene, and alkyl vinyl ether.
- the mass ratio (TFE / HFP / PAVE / other ethylenic monomer ( ⁇ )) is: It is preferably 70 to 98 / 0.1 to 25 / 0.1 to 25 / 0.1 to 25 (mass%).
- the TFE / HFP copolymer contains 1% by mass or more of polymerization units other than TFE units.
- the TFE / HFP copolymer preferably has a melting point of 200 to 322 ° C. If the melting point is less than 200 ° C., the effect of irradiation with radiation may not be sufficiently exhibited. When the temperature exceeds 322 ° C., the molecular weight is reduced due to main chain cleavage, and the mechanical strength may be greatly reduced.
- the melting point is more preferably higher than 200 ° C., further preferably 220 ° C. or higher, more preferably 300 ° C. or lower, still more preferably 280 ° C. or lower.
- the melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
- the TFE / HFP copolymer preferably has a glass transition temperature (Tg) of 60 to 110 ° C., more preferably 65 ° C. or more, and more preferably 100 ° C. or less.
- Tg glass transition temperature
- the glass transition temperature is a value obtained by measurement by dynamic viscoelasticity measurement.
- the TFE / HFP copolymer is prepared by a conventionally known method such as emulsion polymerization, solution polymerization, suspension polymerization, or the like by appropriately mixing monomers as constituent units and additives such as a polymerization initiator. Can be manufactured.
- the fluororesin is preferably the TFE / PAVE copolymer and the TFE / HFP copolymer. That is, the TFE / PAVE copolymer and the TFE / HFP copolymer can be mixed and used.
- the mass ratio ((A) / (B)) between the TFE / PAVE copolymer and the TFE / HFP copolymer is preferably 1/9 to 7/3. The mass ratio is more preferably 5/5 to 2/8.
- the above mixture is a mixture of two or more fluororesins having different melting points and melt-mixed (melt-kneaded), mixed with a resin dispersion after emulsion polymerization, and coagulated with an acid such as nitric acid to recover the resin. It is good to prepare by well-known methods, such as.
- the melt mixing can be performed at a temperature equal to or higher than the melting point of the fluororesin having the highest melting point among two or more fluororesins having different melting points.
- a TFE / PAVE copolymer is preferable because it has a good appearance and can obtain a modified molded article having particularly low permeability to nitrogen gas and hydrochloric acid.
- a copolymer consisting of only PAVE units is more preferred.
- the TFE / PAVE copolymer preferably contains 1.0 to 10% by mass of PAVE units based on the total polymerization units.
- the amount of the PAVE unit is more preferably 2.0% by mass or more, further preferably 3.5% by mass or more, particularly preferably 4.0% by mass or more, and more preferably 5.0% by mass or more with respect to the total polymerization units. Is most preferably 8.0% by mass or less, more preferably 7.0% by mass or less, particularly preferably 6.5% by mass or less, and most preferably 6.0% by mass or less.
- the fluororesin preferably has a melt flow rate (MFR) at 372 ° C. of 0.1 to 100 g / 10 min.
- MFR melt flow rate
- the MFR is more preferably 0.5 g / 10 min or more, more preferably 80 g / 10 min or less, and still more preferably 40 g / 10 min or less.
- the MFR uses a melt indexer (manufactured by Yasuda Seiki Seisakusyo Co., Ltd.), and the mass of the polymer flowing out from a nozzle having an inner diameter of 2 mm and a length of 8 mm under a load of 372 ° C. and 5 kg per 10 minutes ( g / 10 minutes).
- a fluororesin having many TFE units and having a low MFR when a fluororesin having many TFE units and having a low MFR is used, a molded article having excellent low permeability to nitrogen gas and hydrochloric acid can be produced, but the melt fluidity is low and molding is difficult.
- the production method of the present invention can produce a molded article having excellent low permeability to nitrogen gas and hydrochloric acid even when a fluororesin having a high MFR and excellent moldability is used.
- the polytetrafluoroethylene preferably has fibrillation properties, but may not have fibrillation properties.
- the PTFE preferably has non-melt processability.
- the above-mentioned non-melt processability means the property that the melt flow rate cannot be measured at a temperature higher than the crystallization melting point in accordance with ASTM D-1238 and D-2116.
- the PTFE has a high specific gravity and low permeability, and the specific gravity and low permeability can be further improved by irradiation with radiation.
- the melting point of the PTFE is preferably 325 to 347 ° C.
- the melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
- the PTFE may be a TFE homopolymer composed only of tetrafluoroethylene [TFE] or a modified PTFE composed of TFE and a modifying monomer.
- the modifying monomer is not particularly limited as long as it can be copolymerized with TFE.
- perfluoroolefin such as HFP
- chlorofluoroolefin such as CTFE
- hydrogen-containing fluoroolefin such as trifluoroethylene and VDF.
- Perfluorovinyl ether perfluoroalkylethylene; ethylene and the like.
- denatured monomer to be used may be 1 type, and multiple types may be sufficient as it.
- PCTFE polychlorotrifluoroethylene
- CTFE chlorotrifluoroethylene
- ⁇ monomer
- CTFE units chlorotrifluoroethylene units
- the PCTFE preferably has a melting point of 190 to 216 ° C.
- the melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
- the PCTFE preferably has a flow value of 1 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 1 (cc / sec).
- the above flow value is the volume of resin melted at 230 ° C. by a high / low flow tester CFT-500D (manufactured by Shimadzu Corporation) and extruded from a nozzle diameter of 1 mm ⁇ per second at a load of 100 kg.
- the PCTFE preferably has 90 to 100 mol% of CTFE units. From the viewpoint of more excellent low permeability, the CTFE unit is more preferably 98 to 100 mol%, and the CTFE unit is more preferably 99 to 100 mol%.
- the monomer ( ⁇ ) is not particularly limited as long as it is a monomer copolymerizable with CTFE, and examples thereof include TFE, ethylene, VdF, PAVE, and HFP.
- the fluororesin may have a functional group.
- the functional group is a functional group present at the main chain end or side chain end of the copolymer, and a functional group present in the main chain or side chain.
- the functional group present in the main chain is a functional group directly bonded to the main chain carbon.
- the functional group which exists in the said side chain is a functional group which exists in the side chain which is not a side chain terminal.
- the functional group is preferably a functional group present at the main chain end or side chain end of the copolymer.
- the functional group is preferably at least one selected from the group consisting of —CF ⁇ CF 2 , —CF 2 H, —COF, —COOH, —COOCH 3 , —CONH 2 and —CH 2 OH, More preferably, it is at least one selected from the group consisting of —CH 2 CF 2 H, —CH 2 COF, —CH 2 COOH, —CH 2 COOCH 3 , —CH 2 CONH 2 and —CH 2 OH, It is more preferably at least one selected from the group consisting of —CF 2 H, —COF, —COOH, and —CH 2 OH, and particularly preferably —CH 2 OH.
- the functional group may be at least one selected from the group consisting of —CH 2 —, —CH 3 , —CH 2 CH 3, —CN, —OCH 3, and —SO 3 H.
- a method for introducing the functional group into the fluororesin is known.
- a method of using a chain transfer agent when polymerizing the monomer, and a method of using a polymerization initiator to initiate the polymerization can be mentioned.
- methane or ethane is used as the chain transfer agent
- —CH 3 or —CH 2 CH 3 can be introduced into the main chain terminal of the fluororesin copolymer, and if alcohol is used, the main chain terminal of the copolymer can be introduced.
- -CH 2 OH can be introduced into the.
- -CH 2 OH can be introduced into the main chain terminal of the copolymer by using a peroxide having a structure of -CH 2 OH as a polymerization initiator.
- the said functional group can be introduce
- the monomer having a functional group includes at least one selected from the group consisting of —CF ⁇ CF 2 , —CF 2 H, —COF, —COOH, —COOCH 3 , —CONH 2 and —CH 2 OH.
- a monomer having — is more preferred, and a monomer having —CH 2 OH is still more preferred.
- the monomer having a functional group has at least one selected from the group consisting of —CH 2 —, —CH 3 , —CH 2 CH 3 , —CN, —OCH 3 and —SO 3 H. It may be a monomer.
- CX 1 2 CX 2 -R f -T
- X 1 and X 2 are the same or different and are a hydrogen atom or a fluorine atom
- R f is a divalent alkylene group having 1 to 40 carbon atoms, a fluorine-containing oxyalkylene group having 1 to 40 carbon atoms, or 2 carbon atoms.
- T represents the above functional group).
- preferable the above functional group.
- T is preferably at least one selected from the group consisting of —CF ⁇ CF 2 , —CF 2 H, —COF, —COOH, —COOCH 3 , —CONH 2 and —CH 2 OH, More preferably, it is at least one selected from the group consisting of CH 2 CF 2 H, —CH 2 COF, —CH 2 COOH, —CH 2 COOCH 3 , —CH 2 CONH 2 and —CH 2 OH, More preferably, it is CH 2 OH. Further, T may be at least one selected from the group consisting of —CH 3 , —CH 2 CH 3 , —CN, —OCH 3, and —SO 3 H.
- the fluororesin has a polymerization unit based on the monomer (x) of 0.01 to 4% by mass with respect to the total of the polymerization units based on the monomer other than the monomer (x). Also good.
- the fluororesin preferably has 500 functional groups or less per 10 6 main chain carbon atoms. More preferably, it is 400 or less, more preferably 350 or less, and the lower limit is not particularly limited, but may be 0. When there are too many functional groups, the crosslinking reaction is likely to proceed by irradiating radiation, and there is a possibility that a modified molded article having excellent low permeability cannot be produced.
- the number of functional groups that promote crosslinking is small.
- the number of functional groups that promote crosslinking is large.
- the number of functional groups can be selected in consideration of the radiation temperature and radiation dose.
- I Absorbance K: Correction coefficient t: Film thickness (mm)
- Table 1 shows the absorption frequency, molar extinction coefficient, and correction coefficient for the functional groups in this specification.
- the molar extinction coefficient is determined from FT-IR measurement data of a low molecular weight model compound.
- the absorption frequencies of —CH 2 CF 2 H, —CH 2 COF, —CH 2 COOH, —CH 2 COOCH 3 , —CH 2 CONH 2 are shown in the table, respectively, —CF 2 H, —COF, —
- the absorption frequency of COOH free, —COOH bonded, —COOCH 3 , and —CONH 2 is lower by several tens of Kaiser (cm ⁇ 1 ). Therefore, for example, the number of functional groups of —COF is the number of functional groups obtained from the absorption peak at an absorption frequency of 1883 cm ⁇ 1 due to —CF 2 COF and the absorption peak at an absorption frequency of 1840 cm ⁇ 1 due to —CH 2 COF. It is the total with the obtained number of functional groups.
- the fluororesin may be a TFE / PAVE copolymer and / or a mixture of the TFE / HFP copolymer and polytetrafluoroethylene.
- the mixture can be prepared by adding polytetrafluoroethylene (PTFE) to the TFE / PAVE copolymer, the TFE / HFP copolymer, or a mixture thereof.
- PTFE polytetrafluoroethylene
- the mixing method is not particularly limited, and includes mixing with a liquid in which a resin is emulsified and dispersed, mixing with a liquid in which a resin is dispersed in a solution, mixing in a molten state of a resin, and mixing with a powder.
- the PTFE content in this case is preferably 0.01 to 60% by mass, more preferably 0.05 to 55% by mass, and further preferably 0.1 to 50% by mass in the fluororesin mixture. .
- the content of PTFE is preferably 20% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less in the fluororesin mixture.
- the added PTFE is a homopolymer of TFE or a modified PTFE containing more than 99% by weight TFE and less than 1% by weight modifying monomer.
- modifying monomer examples include hexafluoropropylene (HFP), perfluoro (alkyl vinyl ether) (PAVE), fluoroalkylethylene, and chlorotrifluoroethylene (CTFE).
- HFP hexafluoropropylene
- PAVE perfluoro (alkyl vinyl ether)
- CTFE chlorotrifluoroethylene
- One or two or more modified monomers may be used.
- the PTFE preferably has a melting point of 315 to 350 ° C.
- the molded product and the modified molded product may contain other components as necessary.
- Other components include additives such as crosslinking agents, antistatic agents, heat stabilizers, foaming agents, foaming nucleating agents, antioxidants, surfactants, photopolymerization initiators, antiwear agents, surface modifiers, etc. Can be mentioned.
- a mixture of the fluororesin and other components may be mixed by a known method. And after shape
- molding method the method similar to the method mentioned above is mentioned, As a method of irradiating the radiation to the said mixture, the method similar to the method mentioned above is mentioned.
- the production method of the present invention may include a step of heat-treating the modified molded product obtained in the step of irradiating radiation. By including this step, the low permeability to nitrogen gas and hydrochloric acid can be further improved.
- the heat treatment temperature is preferably 230 to 270 ° C., and the heat treatment time is preferably 5 to 24 hours.
- a modified molded product can be obtained by the manufacturing method described above.
- the present invention is also a modified molded product obtained from the above-described production method.
- the modified molded product is characterized by a specific gravity of 2.14 to 2.30.
- the modified molded article has excellent low permeability to nitrogen gas and hydrochloric acid because the specific gravity is within the above range.
- the specific gravity is preferably 2.15 or more, and may be 2.18 or less.
- the present invention also comprises a melt-processable fluororesin (excluding PTFE and PCTFE), does not contain an inorganic substance or PTFE, has a specific gravity of 2.170 or more, and a breaking strength of 13 MPa or more.
- a melt-processable fluororesin excluding PTFE and PCTFE
- this molded product may be referred to as a molded product (A)).
- Japanese Patent Application Laid-Open Nos. 2006-159524 and 2007-320267 describe that the specific gravity is increased by adding 30% by weight or more of PTFE to PFA which is a melt-processable fluororesin.
- a molded article containing only a fluororesin that can be melt-processed as a fluororesin (except PTFE and PCTFE) and having a specific gravity of 2.170 or more is not known.
- the molded product (A) has a specific gravity of 2.170 or more, and thus has a high breaking strength and excellent wear resistance, and also has an excellent low permeability to nitrogen gas and hydrochloric acid.
- the specific gravity may be 2.300 or less and 2.180 or less.
- the molded article (A) preferably has a melting point of 190 to 330 ° C.
- fusing point 200 degreeC or more is more preferable, 220 degreeC or more is further more preferable, and 280 degreeC or more is especially preferable.
- the melting point is a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
- the molded product (A) has a breaking strength of 13 MPa or more.
- the breaking strength is preferably 15 MPa or more.
- the upper limit is not particularly limited, but may be 30 MPa.
- melt-processable fluororesin constituting the molded article (A) at least one copolymer selected from the group consisting of the above-mentioned PFA and the above-mentioned FEP is more preferable, and the above-mentioned PFA is more preferable.
- the molded article (A) is characterized by containing neither inorganic substances nor PTFE having non-melt processability.
- the inorganic material include electrically conductive metals such as silicon, aluminum, iron, copper, silver, and cobalt, compounds of these metals, and metal materials such as alloys composed of two or more of these metals.
- the PTFE and PCTFE are as described for the PTFE and PCTFE exemplified as the fluororesin.
- the molded product (A) can be suitably manufactured by the above-described method for manufacturing a modified molded product of a fluororesin.
- the molded product (A) can be easily obtained by setting the irradiation temperature to 140 ° C. or higher and the irradiation dose to 60 kGy or higher.
- the number of functional groups and MFR of the fluororesin before irradiation also affect the specific gravity, it is preferable that the number of functional groups is small, and that the MFR is high.
- the modified molded product or molded product (A) preferably has a thickness of 0.01 to 3.0 mm, more preferably 0.2 mm or more, still more preferably 0.5 mm or more, More preferably, it is 2.0 mm or less.
- a molded product having a small thickness is desired to have a good appearance and high breaking strength, and at the same time, it is easy to permeate nitrogen gas and hydrochloric acid. Therefore, it is desirable that the permeability coefficient for nitrogen gas and hydrochloric acid is small.
- the modified molded product or molded product (A) has a good appearance even when the thickness is within the above range, and has low permeability excellent for nitrogen gas and hydrochloric acid.
- the shape of the modified molded product or the molded product (A) is not particularly limited, and examples thereof include pellets, films, sheets, plates, rods, blocks, cylinders, containers, electric wires, and tubes. Also, coating layers for cooking utensils such as rice cookers, hot plates and frying pans, and topcoat layers for fixing rollers for image forming devices such as electrophotographic or electrostatic recording copying machines and laser printers are formed. A fluororesin coating film may be used.
- the modified molded product or molded product (A) is preferably a tube, a film or a bottle.
- Tubes, films and bottles are usually produced by extrusion, compression molding or injection molding, and in particular, they are often produced by extrusion. Therefore, in the tube, the film, and the bottle, each polymer chain constituting the fluororesin is oriented in the flow direction, and when these molded products are heated, they easily contract in the flow direction.
- the modified molded product or molded product (A) has a good appearance even when the shape is a tube, a film or a bottle.
- the modified molded product or molded product (A) preferably has a nitrogen gas permeability coefficient of 6.5 ⁇ 10 ⁇ 11 cm 3 (STP) ⁇ cm / cm 2 / sec / cmHg or less.
- the modified molded product or molded product (A) preferably has a hydrochloric acid permeability coefficient of 5.0 ⁇ 10 ⁇ 13 g ⁇ cm / cm 2 / sec or less.
- the modified molded product or molded product (A) preferably has a breaking strength of 15 MPa or more.
- the modified molded product or molded product (A) is not particularly limited, but can be applied to the following uses, for example: Diaphragm diaphragm parts, bellows molded products, wire coating products, semiconductor parts, packing and seals, thin tubes for copy rolls, monofilaments, belts, gaskets, optical lens parts, oil excavation tubes, geothermal power generation tubes, oil excavation Electric wires, satellite wires, nuclear power wires, aircraft wires, solar battery panel films, gaskets for secondary batteries and electric double layer capacitors, OA rolls, etc.
- the modified molded product or molded product (A) is particularly preferably used as a tube for distributing gas or chemicals, a bottle for storing chemicals, a gas bag, a chemical solution bag, a chemical solution container, a frozen storage bag, etc. it can.
- the above-mentioned reformed molded product or molded product (A) is a sleeve used when connecting a tube and a body of an on-off valve, parts, joints, and the like that are particularly concerned about generation of particles such as wear powder due to friction during use. It can be suitably used for products such as products, screw caps for chemical bottles and containers, products such as gears, screws, frying pans, pans, rice cookers, metals, etc., coated with a fluororesin on a substrate, release films, and the like.
- MFR melt indexer (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), the mass of the polymer flowing out per 10 minutes from a nozzle having an inner diameter of 2 mm and a length of 8 mm under a load of 372 ° C. and 5 kg (g / 10 minutes) )
- N I ⁇ K / t (A) I: Absorbance K: Correction coefficient t: Film thickness (mm)
- Table 2 shows the absorption frequency, molar extinction coefficient, and correction coefficient for the functional groups in this specification.
- the molar extinction coefficient is determined from FT-IR measurement data of a low molecular weight model compound.
- the amount of permeation in the nitrogen gas permeation coefficient was measured using a pressurized gas permeation measuring device (Gasperm-100 manufactured by JASCO Corporation). The measurement was performed using a single gas of nitrogen, applying a pressure of 0.5 MPa ⁇ G to the pressure side and the atmospheric pressure on the permeation side. In this apparatus, the gas permeation amount per hour can be obtained by continuously observing the gas amount permeated by the measuring instrument. Moreover, the measurement was performed with the sample film which cut the test piece obtained in the reference example or the comparative example into the circle of diameter 5cm.
- the obtained gas permeation amount per time, pressure difference ⁇ (pressure on the pressure side) ⁇ (atmospheric pressure) ⁇ , and the permeation area of the sample were calculated from the seal ring inner diameter of 3.9 mm.
- the nitrogen gas permeability coefficient (cm 3 (STP) ⁇ cm / cm 2 / sec / cmHg) was calculated from the following formula.
- Permeation coefficient ⁇ gas permeation amount (cm 3 ) ⁇ sheet thickness (cm) ⁇ / ⁇ pressure difference (cm Hg) ⁇ sheet permeation area (cm 2 ) ⁇ permeation time (sec) ⁇
- the test piece or tube obtained in the reference example or the comparative example was measured using 35% by mass of hydrochloric acid by the method for measuring the hydrochloric acid permeability coefficient described in Japanese Patent No. 4563568.
- the chlorine ion concentration Y (ppm) contained in the permeated pure water was quantified using an ion chromatograph (trade name: IC7000-E, manufactured by Yokogawa Electric Corporation).
- the hydrochloric acid permeability coefficient X (g ⁇ cm / cm 2 / sec) was calculated using the following formula.
- T Elapsed time from the start of transmission to sampling (unit: sec)
- Film thickness test piece thickness or tube thickness (unit: cm)
- Cross-sectional area Area of the portion where the test piece or tube is in contact with pure water (unit: cm 2 )
- test piece was irradiated with a 60 kGy electron beam under the conditions of an electron beam acceleration voltage of 3000 kV and an irradiation dose intensity of 20 kGy / 5 min.
- the dimensional change of the test piece before and after electron beam irradiation was 1% or less, and no wrinkle was generated.
- specific gravity and nitrogen gas permeability coefficient were measured. The results are shown in Table 3. Further, functional groups of the copolymer used in Reference Example 1 (unirradiated) is 321 (number / carbon atom 10 6) (150 breakdown CH 2 OH is, COF is 17, COOH 154 pieces) Met.
- the tube was irradiated with a 60 kG electron beam under the conditions of an electron beam acceleration voltage of 3000 kV and an irradiation dose intensity of 20 kGy / 5 min.
- the dimensional change of the tube before and after the electron beam irradiation was 1% or less, and no wrinkle was generated.
- specific gravity, breaking strength, strength retention, and hydrochloric acid permeability coefficient were measured. The results are shown in Table 5. Further, the copolymer used in Reference Example 9 functionality of (unirradiated) is 8 (number / carbon atom 10 6) (breakdown 0 is CH 2 OH, 2 pieces COF is, COOH six) Met.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Toxicology (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明の成形品(A)は、外観が良好であり、高い破断強度及び優れた耐摩耗性を有し、窒素ガス及び塩酸に対して優れた低透過性を有する。
CF2=CFO(CF2CFY1O)p-(CF2CF2CF2O)q-Rf (1)
(式中、Y1はF又はCF3を表し、Rfは炭素数1~5のパーフルオロアルキル基を表す。pは0~5の整数を表し、qは0~5の整数を表す。)、及び、一般式(2):
CFX=CXOCF2OR1 (2)
(式中、Xは、同一又は異なり、H、F又はCF3を表し、R1は、直鎖又は分岐した、H、Cl、Br及びIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が1~6のフルオロアルキル基、若しくは、H、Cl、Br及びIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が5又は6の環状フルオロアルキル基を表す。)
からなる群より選択される少なくとも1種を挙げることができる。
上記PAVEに基づく重合単位の量は、全重合単位に対して、2.0質量%以上がより好ましく、3.5質量%以上が更に好ましく、4.0質量%以上が特に好ましく、5.0質量%以上が最も好ましく、8.0質量%以下がより好ましく、7.0質量%以下が更に好ましく、6.5質量%以下が特に好ましく、6.0質量%以下が最も好ましい。
なお、上記PAVEに基づく重合単位の量は、19F-NMR法により測定する。
上記融点は、290℃以上であることがより好ましく、315℃以下であることがより好ましい。
上記融点は、示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度である。
上記ガラス転移温度は、80℃以上がより好ましく、100℃以下がより好ましい。
上記ガラス転移温度は、動的粘弾性測定により測定して得られる値である。
上記TFE/HFP共重合体に含まれるPAVE単位としては、上述したTFE/PAVE共重合体を構成するPAVE単位と同様のものを挙げることができる。
なかでも、低透過性の改善に優れている点で、PPVEがより好ましい。
上述したTFE/PAVE共重合体は、HFP単位を含まないので、その点で、TFE/HFP/PAVE共重合体とは異なる。
上記質量比(TFE/HFP/PAVE)は、75~98/1.0~15/1.0~10(質量%)であることがより好ましい。
上記TFE/HFP/PAVE共重合体は、HFP単位及びPAVE単位を合計で1質量%以上含む。
HFP単位の含有量が上述の範囲内であると、耐熱性に優れた改質成形品を得ることができる。
HFP単位の含有量は、20質量%以下がより好ましく、18質量%以下が更に好ましい。特に好ましくは15質量%以下である。また、HFP単位の含有量は、0.1質量%以上が好ましく、1質量%以上がより好ましい。特に好ましくは、2質量%以上である。
なお、HFP単位の含有量は、19F-NMR法により測定することができる。
他のエチレン性単量体(α)単位としては、TFE単位、HFP単位及びPAVE単位と共重合可能な単量体単位であれば特に限定されず、例えば、フッ化ビニル(VF)、フッ化ビニリデン(VdF)、クロロトリフルオロエチレン〔CTFE〕、エチレン(ETFE)等の含フッ素エチレン性単量体や、エチレン、プロピレン、アルキルビニルエーテル等の非フッ素化エチレン性単量体等が挙げられる。
上記TFE/HFP共重合体は、TFE単位以外の重合単位を合計で1質量%以上含む。
上記主鎖中に存在する官能基は、主鎖炭素に直接結合している官能基である。上記側鎖中に存在する官能基は、側鎖末端でない側鎖中に存在する官能基である。上記官能基は、共重合体の主鎖末端又は側鎖末端に存在する官能基であることが好ましい。
また、官能基を有する単量体としては、-CH2-、-CH3、-CH2CH3、-CN、-OCH3及び-SO3Hからなる群より選択される少なくとも1種を有する単量体であってもよい。
CX1 2=CX2-Rf-T
(X1及びX2は同じか又は異なり、水素原子又はフッ素原子であり、Rfは炭素数1~40の2価のアルキレン基、炭素数1~40の含フッ素オキシアルキレン基、炭素数2~40のエーテル結合を含む含フッ素アルキレン基又は炭素数2~40のエーテル結合を含む含フッ素オキシアルキレン基を表わし、Tは上記の官能基を表す。)で示される単量体(x)が好ましい。
また、Tとしては、-CH3、-CH2CH3、-CN、-OCH3及び-SO3Hからなる群より選択される少なくとも1種であっても良い。
官能基数については、具体的には、以下の方法で測定する。
まず、上記フッ素樹脂を330~340℃にて30分間溶融し、圧縮成形して、厚さ0.25~0.3mmのフィルムを作製する。このフィルムをフーリエ変換赤外分光分析により分析して、上記フッ素樹脂の赤外吸収スペクトルを得、完全にフッ素化されて官能基が存在しないベーススペクトルとの差スペクトルを得る。この差スペクトルに現れる特定の官能基の吸収ピークから、下記式(A)に従って、上記含フッ素樹脂における炭素原子1×106個あたりの官能基数Nを算出する。
N=I×K/t (A)
I:吸光度
K:補正係数
t:フィルムの厚さ(mm)
従って、例えば、-COFの官能基数とは、-CF2COFに起因する吸収周波数1883cm-1の吸収ピークから求めた官能基数と、-CH2COFに起因する吸収周波数1840cm-1の吸収ピークから求めた官能基数との合計である。
PTFEの含有量は、フッ素樹脂混合物中20質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下が更に好ましい。
添加されるPTFEは、TFEのホモポリマーであるか、又は、99質量%超のTFEと1質量%未満の変性モノマーとを含む変性PTFEである。上記変性モノマーとしては、ヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)、フルオロアルキルエチレン、及び、クロロトリフルオロエチレン(CTFE)が挙げられる。上記変性モノマーは、1種であっても2種以上であってもよい。
上記PTFEは、315~350℃の融点を有することが好ましい。
上記無機物としては、電気伝導性のあるシリコンやアルミニウム、鉄、銅、銀、コバルト等の金属、これら金属の化合物、これら金属のうち2種以上からなる合金類等の金属材料等が挙げられる。
上記PTFE及びPCTFEについては、上記フッ素樹脂として例示した上記PTFE及びPCTFEに関する説明のとおりである。
ダイヤフラムポンプの隔膜部、ベローズ成形品、電線被覆品、半導体用部品、パッキン・シール、コピーロール用薄肉チューブ、モノフィラメント、ベルト、ガスケット、光学レンズ部品、石油発掘用チューブ、地熱発電用チューブ、石油発掘用電線、サテライト用電線、原子力発電用電線、航空機用電線、太陽電池パネルフィルム、二次電池や電気二重層コンデンサーなどのガスケット、OAロール等。
各単量体単位の含有量は、19F-NMR法により測定した。
ASTM D1238に従って、メルトインデクサー((株)安田精機製作所製)を用いて、372℃、5kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)を求めた。
高下式フローテスターCFT-500D((株)島津製作所製)にて、230℃で溶融し荷重100kgで、ノズル径1mmφから1秒間あたりに押し出された樹脂の体積を測定した。
試料を330~340℃にて30分間溶融し、圧縮成形して、厚さ0.25~0.3mmのフィルムを作製する。このフィルムをフーリエ変換赤外分光分析装置〔FT-IR(商品名:1760X型、パーキンエルマー社製)により40回スキャンし、分析して赤外吸収スペクトルを得、完全にフッ素化されて官能基が存在しないベーススペクトルとの差スペクトルを得る。この差スペクトルに現れる特定の官能基の吸収ピークから、下記式(A)に従って試料における炭素原子1×106個あたりの官能基数Nを算出する。
I:吸光度
K:補正係数
t:フィルムの厚さ(mm)
水中置換法にて測定した。
ASTM D2176に準じて測定した。具体的には、幅12.5mm、長さ130mmの電子線未照射又は照射後の試験片を、MIT試験機(型番12176、(株)安田精機製作所製)に装着し、荷重1.25kg、左右の折り曲げ角度各135度、折り曲げ回数175回/分の条件下で試験片を屈曲させ、試験片が切断するまでの回数(MIT値)を測定した。
MIT保持率は次式で求めた。
MIT保持率(%)=(電子線照射後のMIT値/電子線未照射のMIT値)×100
参考例又は比較例において得られた試験片を、ASTM V型ダンベルを用いて得られたダンベル状試験片を用いて、オートグラフ((株)島津製作所製 AGS-J 5kN)を使用して、ASTM D638に準じて、50mm/分の条件下で、25℃で破断強度を測定した。
参考例又は比較例において得られたチューブを縦割りにカットして、ASTM V型ダンベルを用いてダンベル状試験片を切り抜き、オートグラフ((株)島津製作所製 AGS-J 5kN)を使用して、ASTM D638に準じて、50mm/分の条件下で、25℃で破断強度を測定した。
強度保持率は次式で求めた。
強度保持率(%)=(電子線照射後の破断強度/電子線未照射の破断強度)×100
窒素ガス透過係数における透過量の測定は、加圧式ガス透過測定機(日本分光(株)製のGasperm-100)を用いて行なった。測定は窒素の単一ガスを用い、加圧側に0.5MPa・Gの圧力をかけ、透過側は大気圧で行なった。この装置では、測定器が透過したガスの量を連続的に観測することにより、時間当りの気体の透過量が得られる。また、測定は、参考例又は比較例において得られた試験片を直径5cmの円形にカットしたサンプルフィルムにより行った。得られた時間あたりの気体透過量、圧力差{(加圧側の圧力)-(大気圧)}、試料の透過面積はシールリング内径3.9mmから計算した。
下記式より窒素ガスの透過係数(cm3(STP)・cm/cm2/sec/cmHg)を算出した。
透過係数={気体透過量(cm3)×シート厚さ(cm)}/{圧力差(cmHg)×シートの透過面積(cm2)×透過時間(sec)}
参考例又は比較例において得られた試験片又はチューブを特許第4569568号明細書記載の塩酸透過係数の測定方法で35質量%の塩酸を用いて測定した。
透過した純水中に含まれる塩素イオン濃度Y(ppm)は、イオンクロマトグラフ(商品名:IC7000-E、横河電気社製)を用いて定量した。
塩酸透過係数X(g・cm/cm2/sec)は、次の式を用いて計算した。
X=(β×膜厚)/断面積
β:Tに対し、αをプロットしたとき、αがTに対して直線的に変化している期間(Tβ)の傾き
α:透過総量(単位:g)=Y×W×10-6(単位:g/sec)
W:純水量(単位:ml)
T:透過開始からサンプリングまでの経過時間(単位:sec)
膜厚:試験片の厚み又はチューブの肉厚(単位:cm)
断面積:透過試験機において、試験片又はチューブと純水が接している部分の面積(単位:cm2)
学振型摩耗試験機((株)安田精機製作所製)を使用して、摩耗試験を実施し、試験前後の重量を測定した。
試験片:長さ220mm、幅30mm
摩擦紙:コピー紙(20mm×20mm)
荷重:1.96N、
摩擦距離:120mm
摩擦速度:30往復/min
PFAペレット(MFR=22.0(g/10min)、組成比TFE/HFP/PPVE=94.1/0.0/5.9(質量%))をヒートプレス成形機で直径120mmの円盤状、1.5mm厚のシート状に成形し試験片を得た。
得られた試験片を、電子線照射装置(NHVコーポレーション社製)の電子線照射容器に収容し、その後窒素ガスを加えて容器内を窒素雰囲気にした。容器内の温度を180℃まで昇温し温度が安定した後、電子線加速電圧が3000kV、照射線量の強度が20kGy/5minの条件で、試験片に60kGyの電子線を照射した。電子線照射前後での試験片の寸法変化は1%以下でシワの発生は無かった。
電子線照射後の試験片について、比重、窒素ガス透過係数を測定した。結果を表3に示す。
また、参考例1で用いた共重合体(未照射)の官能基数は、321(個/炭素原子106個)(内訳はCH2OHが150個、COFが17個、COOHが154個)であった。
電子線照射を行わなかった点以外は、参考例1と同様にして、試験片を得て、比重、MIT値、MIT保持率、破断強度、強度保持率、窒素ガス透過係数を測定した。結果を表3に示す。
表3に記載の照射温度と照射線量で電子線照射を行った点以外は、参考例1と同様にして、電子線照射後の試験片について、比重、MIT値、MIT保持率、破断強度、強度保持率、窒素ガス透過係数を測定した。結果を表3に示す。参考例2、3において、電子線照射前後での試験片の寸法変化は何れも1%以下でシワの発生は無かった。比較例2において、電子線照射前後での試験片の寸法変化(収縮)は1.5%以上であった。
PFAペレット(MFR=26.0(g/10min)、組成比TFE/HFP/PPVE=94.4/0.0/5.6(質量%))を用い、表4に記載の照射温度と照射線量で電子線照射を行った点以外は参考例1と同様にして、電子線照射後の試験片について、比重、破断強度、強度保持率、窒素ガス透過係数を測定した。結果を表4に示す。参考例4~8において、電子線照射前後での試験片の寸法変化は何れも1%以下でシワの発生は無かった。
また、参考例4~8及び比較例4、5で用いた共重合体(未照射)の官能基数は、69(個/炭素原子106個)(内訳はCH2OHが0個、COFが17個、COOHが52個)であった。
電子線照射を行わなかった点以外は、参考例4と同様にして、試験片を得て、比重、破断強度、強度保持率、窒素ガス透過係数を測定した。結果を表4に示す。
PFAペレット(MFR=2.2(g/10min)、組成比 TFE/HFP/PPVE=96.9/0.0/3.1(質量%))をチューブ押出成形機で成形し外径12mm、1.0mm厚のチューブを得た。
得られたチューブを40cm長さにカットして、電子線照射装置(NHVコーポレーション社製)の電子線照射容器に収容し、その後窒素ガスを加えて容器内を窒素雰囲気にした。容器内の温度を83℃まで昇温し温度が安定した後、電子線加速電圧が3000kV、照射線量の強度が20kGy/5minの条件で、チューブに60kGの電子線を照射した。電子線照射前後でのチューブの寸法変化は1%以下でシワの発生は無かった。
電子線照射後のチューブについて、比重、破断強度、強度保持率、塩酸透過係数を測定した。結果を表5に示す。
また、参考例9で用いた共重合体(未照射)の官能基数は、8(個/炭素原子106個)(内訳はCH2OHが0個、COFが2個、COOHが6個)であった。
電子線照射を行わなかった点以外は、参考例9と同様にして、チューブを得て、比重、破断強度、強度保持率、塩酸透過係数を測定した。結果を表5に示す。
表5に記載の照射温度と照射線量で電子線照射を行った点以外は、参考例9と同様にして、電子線照射後のチューブについて、比重、破断強度、強度保持率、塩酸透過係数を測定した。結果を表5に示す。参考例10、11において、電子線照射前後でのチューブの寸法変化は何れも1%以下でシワの発生は無かった。
PFAペレット(MFR=2.1(g/10min)、組成比TFE/HFP/PPVE=94.5/0.0/5.5(質量%))を用い、表6に記載の照射温度と照射線量で電子線照射を行った点以外は参考例9と同様にして、電子線照射後のチューブについて、比重、破断強度、強度保持率を測定した。結果を表6に示す。参考例12~14において、電子線照射前後でのチューブの寸法変化は何れも1%以下でシワの発生は無かった。
また、参考例12~14で用いた共重合体(未照射)の官能基数は、6(個/炭素原子106個)(内訳はCH2OHが0個、COFが2個、COOHが4個)であった。
電子線照射を行わなかった点以外は、参考例12と同様にして、チューブを得て、比重、破断強度、強度保持率を測定した。結果を表6に示す。
PFAペレット(MFR=2.2(g/10min)、組成比TFE/HFP/PPVE=96.9/0.0/3.1(質量%))を用い、表7に記載の照射温度と照射線量で電子線照射を行った点以外は参考例1と同様にして、電子線照射後の試験片について、比重、破断強度、強度保持率、窒素ガス透過係数、塩酸透過係数を測定した。結果を表7に示す。参考例15~18において、電子線照射前後での試験片の寸法変化は何れも1%以下でシワの発生は無かった。
また、参考例15~18で用いた共重合体(未照射)の官能基数は、8(個/炭素原子106個)(内訳はCH2OHが0個、COFが2個、COOHが6個)であった。
電子線照射を行わなかった点以外は、参考例15と同様にして、試験片を得て、比重、破断強度、強度保持率、窒素ガス透過係数、塩酸透過係数を測定した。結果を表7に示す。
PFAペレット(MFR=2.2(g/10min)、組成比TFE/HFP/PPVE=96.6/0.0/3.4(質量%))を用い、表8に記載の照射温度と照射線量で電子線照射を行った点以外は参考例1と同様にして、電子線照射後の試験片について、比重、破断強度、強度保持率、窒素ガス透過係数を測定した。結果を表8に示す。参考例19~21において、電子線照射前後での試験片の寸法変化は何れも1%以下でシワの発生は無かった。
また、参考例19~21で用いた共重合体(未照射)の官能基数は、60(個/炭素原子106個)(内訳はCH2OHが13個、COFが28個、COOHが19個)であった。
電子線照射を行わなかった点以外は、参考例19と同様にして、試験片を得て、比重、破断強度、強度保持率、窒素ガス透過係数を測定した。結果を表8に示す。
PTFEペレット(MFR=<0.1(g/10min)、組成比TFE/HFP/PPVE=100/0.0/0.0(質量%))を用い、表9に記載の照射温度と照射線量で電子線照射を行った点以外は参考例1と同様にして、電子線照射後の試験片について、比重、破断強度、強度保持率、窒素ガス透過係数を測定した。結果を表9に示す。参考例22~25において、電子線照射前後での試験片の寸法変化は何れも1%以下でシワの発生は無かった。
また、参考例22~25で用いた共重合体(未照射)の官能基数は、0(個/炭素原子106個)(内訳はCH2OHが0個、COFが0個、COOHが0個)であった。
電子線照射を行わなかった点以外は、参考例22と同様にして、試験片を得て、比重、破断強度、強度保持率、窒素ガス透過係数を測定した。結果を表9に示す。
PCTFEペレット(フロー値=1.0×10-3(cc/sec)、組成比CTFE=100(質量%))を用い、表10に記載の照射温度と照射線量で電子線照射を行った点以外は参考例1と同様にして、電子線照射後の試験片について、比重、破断強度、強度保持率、窒素ガス透過係数を測定した。結果を表10に示す。参考例26~29において、電子線照射前後での試験片の寸法変化は何れも1%以下でシワの発生は無かった。
また、参考例26~29で用いた共重合体(未照射)の官能基数は、0(個/炭素原子106個)(内訳はCH2OHが0個、COFが0個、COOHが0個)であった。
電子線照射を行わなかった点以外は、参考例26と同様にして、試験片を得て、比重、破断強度、強度保持率、窒素ガス透過係数を測定した。結果を表10に示す。
FEPペレット(MFR=3.0(g/10min)、組成比TFE/HFP/PPVE=89.0/11.0/0.0(質量%))を用い、表11に記載の照射温度と照射線量で電子線照射を行った点以外は参考例9と同様にして、電子線照射後のチューブについて、比重、破断強度、強度保持率、塩酸透過係数を測定した。結果を表11に示す。参考例30~33において、電子線照射前後でのチューブの寸法変化は何れも1%以下でシワの発生は無かった。
また、参考例30~33で用いた共重合体(未照射)の官能基数は、18(個/炭素原子106個)(内訳はCH2OHが0個、COFが0個、COOHが18個)であった。
電子線照射を行わなかった点以外は、参考例30と同様にして、チューブを得て、比重、破断強度、強度保持率、塩酸透過係数を測定した。結果を表11に示す。
参考例15と同じPFAペレットを用い、表12に記載の照射温度と照射線量で電子線照射を行った点以外は参考例1と同様にして、電子線照射後の試験片を得た。この試験片について耐摩耗性試験を実施した。結果を表12に示す。
(参考例36、比較例16~19)
参考例19と同じPFAペレットを用い、表13に記載の照射温度と照射線量で電子線照射を行った点以外は参考例1と同様にして、電子線照射後の試験片を得た。この試験片について耐摩耗性試験を実施した。結果を表13に示す。
Claims (9)
- フッ素樹脂を成形して成形品を得る工程、及び、
前記成形品に50~200℃で100kGy未満の放射線を照射することにより改質成形品を得る工程
を含むことを特徴とする改質成形品の製造方法。 - 成形品は、厚みが0.01~3.0mmである請求項1記載の製造方法。
- 成形品は、チューブ、フィルム又はボトルである請求項1又は2記載の製造方法。
- 改質成形品は、比重が2.14~2.30である請求項1、2又は3記載の製造方法。
- フッ素樹脂は、溶融加工可能なフッ素樹脂である1、2、3又は4記載の製造方法。
- フッ素樹脂は、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体である請求項1、2、3、4又は5記載の製造方法。
- フッ素樹脂は、官能基が主鎖炭素数106個当たり500個以下である請求項1、2、3、4、5又は6記載の製造方法。
- 請求項1、2、3、4、5、6又は7記載の製造方法から得られる改質成形品。
- 溶融加工可能なフッ素樹脂(但し、ポリテトラフルオロエチレン及びポリクロロトリフルオロエチレンを除く)からなり、
無機物又はポリテトラフルオロエチレンを含まず、
比重が2.170以上であり、
破断強度が13MPa以上である
ことを特徴とする成形品。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/528,559 US10294339B2 (en) | 2015-01-20 | 2016-01-18 | Method for producing modified molded article of fluororesin |
KR1020177016889A KR101934225B1 (ko) | 2015-01-20 | 2016-01-18 | 불소 수지의 개질 성형품의 제조 방법 |
US15/985,567 US11021582B2 (en) | 2015-01-20 | 2018-05-21 | Method for producing modified molded article of fluororesin |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015008664 | 2015-01-20 | ||
JP2015-008664 | 2015-01-20 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/528,559 A-371-Of-International US10294339B2 (en) | 2015-01-20 | 2016-01-18 | Method for producing modified molded article of fluororesin |
US15/985,567 Division US11021582B2 (en) | 2015-01-20 | 2018-05-21 | Method for producing modified molded article of fluororesin |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016117492A1 true WO2016117492A1 (ja) | 2016-07-28 |
Family
ID=56417038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/051248 WO2016117492A1 (ja) | 2015-01-20 | 2016-01-18 | フッ素樹脂の改質成形品の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10294339B2 (ja) |
JP (1) | JP5962873B2 (ja) |
KR (1) | KR101934225B1 (ja) |
WO (1) | WO2016117492A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018028082A (ja) * | 2016-08-16 | 2018-02-22 | ダイキン工業株式会社 | 成形品及び成形品の製造方法 |
WO2023190947A1 (ja) * | 2022-03-30 | 2023-10-05 | ダイキン工業株式会社 | 共重合体、成形体、押出成形体およびトランスファー成形体 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7001384B2 (ja) * | 2016-08-10 | 2022-01-19 | キヤノン株式会社 | 電子写真用ベルトの製造方法 |
WO2019156037A1 (ja) * | 2018-02-07 | 2019-08-15 | ダイキン工業株式会社 | 親水性化合物の除去方法及び臭気除去方法 |
JP6708275B2 (ja) | 2018-03-26 | 2020-06-10 | ダイキン工業株式会社 | フッ素樹脂材料、高周波伝送用フッ素樹脂材料および高周波伝送用被覆電線 |
EP3960794A4 (en) * | 2019-04-26 | 2022-12-14 | Daikin Industries, Ltd. | MAGNET WIRE AND COIL |
JP7288219B2 (ja) * | 2021-02-26 | 2023-06-07 | ダイキン工業株式会社 | 含フッ素共重合体 |
TW202348650A (zh) * | 2022-03-30 | 2023-12-16 | 日商大金工業股份有限公司 | 粉體塗料、塗膜及物品 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002327068A (ja) * | 2001-05-02 | 2002-11-15 | Japan Atom Energy Res Inst | フッ素樹脂の改質方法および改質フッ素樹脂構成体 |
JP2007137982A (ja) * | 2005-11-17 | 2007-06-07 | Japan Atomic Energy Agency | 放射線架橋含フッ素共重合体 |
JP2010155443A (ja) * | 2009-01-05 | 2010-07-15 | Sumitomo Electric Fine Polymer Inc | 架橋フッ素樹脂複合材料の製造方法 |
JP2010180365A (ja) * | 2009-02-06 | 2010-08-19 | Daikin Ind Ltd | 熱可塑性樹脂組成物及び成形品 |
JP2012045812A (ja) * | 2010-08-26 | 2012-03-08 | Asahi Glass Co Ltd | ポリテトラフルオロエチレン延伸フィルムの製造方法およびポリテトラフルオロエチレン延伸フィルム |
JP2012144717A (ja) * | 2010-12-21 | 2012-08-02 | Daikin Industries Ltd | ポリテトラフルオロエチレン混合物 |
JP2013216915A (ja) * | 2012-07-27 | 2013-10-24 | Daikin Industries Ltd | 含フッ素エラストマーを含む架橋性組成物及び架橋ゴム成形品 |
WO2014007350A1 (ja) * | 2012-07-05 | 2014-01-09 | ダイキン工業株式会社 | 改質フッ素樹脂混合物、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3674758A (en) * | 1968-04-01 | 1972-07-04 | Du Pont | Stabilized tetrafluoroethylene-fluoroolefin copolymers having methyl ester end-groups and process for producing same |
DE2639109A1 (de) * | 1976-08-31 | 1978-03-09 | Hoechst Ag | Copolymerisate des tetrafluoraethylens und verfahren zu deren herstellung |
US4262107A (en) * | 1979-10-04 | 1981-04-14 | General Electric Company | Rhodium catalyzed silicone rubber compositions |
US5093409A (en) * | 1988-05-27 | 1992-03-03 | E. I. Du Pont De Nemours And Company | Process for the stabilization of fluoropolymers |
JPH02102247A (ja) * | 1988-10-07 | 1990-04-13 | Daikin Ind Ltd | 溶融型フッ素樹脂組成物 |
US5709944A (en) * | 1992-02-05 | 1998-01-20 | Daikin Industries, Ltd. | Polytetrafluoroethylene molding powder |
DE4332712A1 (de) * | 1993-09-25 | 1995-03-30 | Hoechst Ag | Verfahren zur Herstellung eines modifizierten Polytetrafluorethylens und seine Verwendung |
JP3337785B2 (ja) * | 1993-10-26 | 2002-10-21 | 日本原子力研究所 | 改質ポリテトラフルオロエチレンの製造方法 |
JP3563928B2 (ja) * | 1997-07-31 | 2004-09-08 | 日本原子力研究所 | 改質フッ素樹脂シート |
IT1298172B1 (it) * | 1998-01-22 | 1999-12-20 | Ausimont Spa | Processo per la preparazione di politetrafluoroetilene (ptfe) modificato |
CN100379772C (zh) * | 1998-03-09 | 2008-04-09 | 大金工业株式会社 | 稳定化的含氟聚合物及使含氟聚合物稳定化的方法 |
JP3836255B2 (ja) * | 1998-06-10 | 2006-10-25 | 株式会社レイテック | 改質フッ素樹脂の製造方法 |
JP3659039B2 (ja) | 1998-12-22 | 2005-06-15 | 日立電線株式会社 | 改質フッ素樹脂の製造方法 |
EP1260526A4 (en) * | 1999-09-08 | 2008-10-01 | Daikin Ind Ltd | FLUOROPOLYMER AND ELECTRICAL WIRE AND CABLE WHICH BOTH ARE COATED WITH THIS |
JP4665149B2 (ja) * | 2000-07-19 | 2011-04-06 | 独立行政法人 日本原子力研究開発機構 | 改質フッ素樹脂成形体を製造する方法 |
JP4533115B2 (ja) * | 2004-12-03 | 2010-09-01 | 三井・デュポンフロロケミカル株式会社 | フッ素樹脂成形方法及びフッ素樹脂成形品 |
JP5066096B2 (ja) * | 2005-11-18 | 2012-11-07 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | フルオロポリマー組成物 |
JP5224314B2 (ja) * | 2007-03-23 | 2013-07-03 | 独立行政法人日本原子力研究開発機構 | 放射線架橋含フッ素共重合体 |
JP5224315B2 (ja) | 2007-03-23 | 2013-07-03 | 独立行政法人日本原子力研究開発機構 | 放射線架橋含フッ素共重合体 |
US9040646B2 (en) * | 2007-10-04 | 2015-05-26 | W. L. Gore & Associates, Inc. | Expandable TFE copolymers, methods of making, and porous, expanded articles thereof |
JP2011105012A (ja) | 2011-02-17 | 2011-06-02 | Raytech Corp | 改質フッ素樹脂被覆材およびその製造方法 |
US20140255703A1 (en) * | 2013-03-05 | 2014-09-11 | E I Du Pont De Nemours And Company | Adhesion of Fluoropolymer to Metal |
US20150011697A1 (en) * | 2013-07-03 | 2015-01-08 | E I Du Pont De Nemours And Company | Melt-processible vinyl fluoride interpolymers of low crystallinity |
-
2016
- 2016-01-18 WO PCT/JP2016/051248 patent/WO2016117492A1/ja active Application Filing
- 2016-01-18 US US15/528,559 patent/US10294339B2/en active Active
- 2016-01-18 KR KR1020177016889A patent/KR101934225B1/ko active IP Right Grant
- 2016-01-18 JP JP2016006981A patent/JP5962873B2/ja active Active
-
2018
- 2018-05-21 US US15/985,567 patent/US11021582B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002327068A (ja) * | 2001-05-02 | 2002-11-15 | Japan Atom Energy Res Inst | フッ素樹脂の改質方法および改質フッ素樹脂構成体 |
JP2007137982A (ja) * | 2005-11-17 | 2007-06-07 | Japan Atomic Energy Agency | 放射線架橋含フッ素共重合体 |
JP2010155443A (ja) * | 2009-01-05 | 2010-07-15 | Sumitomo Electric Fine Polymer Inc | 架橋フッ素樹脂複合材料の製造方法 |
JP2010180365A (ja) * | 2009-02-06 | 2010-08-19 | Daikin Ind Ltd | 熱可塑性樹脂組成物及び成形品 |
JP2012045812A (ja) * | 2010-08-26 | 2012-03-08 | Asahi Glass Co Ltd | ポリテトラフルオロエチレン延伸フィルムの製造方法およびポリテトラフルオロエチレン延伸フィルム |
JP2012144717A (ja) * | 2010-12-21 | 2012-08-02 | Daikin Industries Ltd | ポリテトラフルオロエチレン混合物 |
WO2014007350A1 (ja) * | 2012-07-05 | 2014-01-09 | ダイキン工業株式会社 | 改質フッ素樹脂混合物、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法 |
JP2013216915A (ja) * | 2012-07-27 | 2013-10-24 | Daikin Industries Ltd | 含フッ素エラストマーを含む架橋性組成物及び架橋ゴム成形品 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018028082A (ja) * | 2016-08-16 | 2018-02-22 | ダイキン工業株式会社 | 成形品及び成形品の製造方法 |
WO2018034238A1 (ja) * | 2016-08-16 | 2018-02-22 | ダイキン工業株式会社 | 成形品及び成形品の製造方法 |
KR20190040005A (ko) * | 2016-08-16 | 2019-04-16 | 다이킨 고교 가부시키가이샤 | 성형품 및 성형품의 제조 방법 |
KR101996788B1 (ko) | 2016-08-16 | 2019-07-04 | 다이킨 고교 가부시키가이샤 | 성형품 및 성형품의 제조 방법 |
TWI678276B (zh) * | 2016-08-16 | 2019-12-01 | 日商大金工業股份有限公司 | 成形品及成形品之製造方法 |
US11826975B2 (en) | 2016-08-16 | 2023-11-28 | Daikin Industries, Ltd. | Molded article and manufacturing method for molded article |
WO2023190947A1 (ja) * | 2022-03-30 | 2023-10-05 | ダイキン工業株式会社 | 共重合体、成形体、押出成形体およびトランスファー成形体 |
JP7364989B1 (ja) | 2022-03-30 | 2023-10-19 | ダイキン工業株式会社 | 共重合体、成形体、押出成形体およびトランスファー成形体 |
JP2023158246A (ja) * | 2022-03-30 | 2023-10-27 | ダイキン工業株式会社 | 共重合体、成形体、押出成形体およびトランスファー成形体 |
Also Published As
Publication number | Publication date |
---|---|
JP2016135862A (ja) | 2016-07-28 |
US20170260344A1 (en) | 2017-09-14 |
US20180265654A1 (en) | 2018-09-20 |
US11021582B2 (en) | 2021-06-01 |
KR101934225B1 (ko) | 2018-12-31 |
KR20170086607A (ko) | 2017-07-26 |
JP5962873B2 (ja) | 2016-08-03 |
US10294339B2 (en) | 2019-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5962873B2 (ja) | フッ素樹脂の改質成形品の製造方法 | |
JP5967181B2 (ja) | 改質含フッ素共重合体及びフッ素樹脂成形品 | |
JP5454726B2 (ja) | 改質含フッ素共重合体、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法 | |
JP5598579B2 (ja) | 改質フッ素樹脂混合物、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法 | |
JP5392433B1 (ja) | 改質含フッ素共重合体、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法 | |
TW201827495A (zh) | 改質成形品之製造方法、成形品、隔膜(diaphragm)及隔膜閥(diaphragm valve) | |
CN112313271A (zh) | 成型品及其制造方法 | |
JP6358379B2 (ja) | 成形品及び成形品の製造方法 | |
KR102507245B1 (ko) | 우수한 내블리스터성을 갖는 pfa 성형체 및 pfa 성형체에서의 블리스터의 발생을 제어하는 방법 | |
WO2022075316A1 (ja) | 成形品およびその製造方法、ダイヤフラムおよびダイヤフラムバルブ | |
JP3450597B2 (ja) | フッ素樹脂成形体 | |
JP3903547B2 (ja) | 配向ふっ素樹脂成形体及びその製造方法 | |
JPH11116706A (ja) | ガスバリア性改質ふっ素樹脂成形体 | |
JPH11116624A (ja) | 改質ふっ素樹脂及び成形体 | |
JP2004017018A (ja) | ふっ素樹脂膜の形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16740099 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15528559 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20177016889 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16740099 Country of ref document: EP Kind code of ref document: A1 |