WO2016117006A1 - 回生コンバータ - Google Patents

回生コンバータ Download PDF

Info

Publication number
WO2016117006A1
WO2016117006A1 PCT/JP2015/051240 JP2015051240W WO2016117006A1 WO 2016117006 A1 WO2016117006 A1 WO 2016117006A1 JP 2015051240 W JP2015051240 W JP 2015051240W WO 2016117006 A1 WO2016117006 A1 WO 2016117006A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
power
converter
regenerative converter
regenerative
Prior art date
Application number
PCT/JP2015/051240
Other languages
English (en)
French (fr)
Inventor
市原 昌文
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to BR112016016384-2A priority Critical patent/BR112016016384B1/pt
Priority to KR1020167018469A priority patent/KR101720915B1/ko
Priority to CN201580005029.1A priority patent/CN106416042B/zh
Priority to US15/107,987 priority patent/US20160365806A1/en
Priority to RU2016129172A priority patent/RU2617675C1/ru
Priority to DE112015000284.7T priority patent/DE112015000284B4/de
Priority to PCT/JP2015/051240 priority patent/WO2016117006A1/ja
Priority to JP2016507922A priority patent/JP5933873B1/ja
Priority to TW105101050A priority patent/TWI583121B/zh
Publication of WO2016117006A1 publication Critical patent/WO2016117006A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/125Avoiding or suppressing excessive transient voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/062Avoiding or suppressing excessive transient voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor

Definitions

  • the present invention relates to a regenerative converter that converts electric power supplied from a power source and outputs the converted electric power to a load and converts electric power supplied from the load and outputs the converted electric power to the power source.
  • the regenerative converter is a power converter that is arranged between an inverter that performs variable speed control of an AC motor and an AC power source, and that regenerates the induced electromotive force generated when the AC motor is decelerated to the AC power source.
  • the conventional power converter shown in Patent Document 1 has both the functions of a regenerative converter and the function of an inverter, and can be used as a single inverter or a single regenerative converter, so that it is easy to use and can improve productivity. .
  • Regenerative converters are classified into two types, one of which is the power conversion section of the main circuit that constitutes the regenerative converter, both the power running current supplied from the AC power source to the AC motor and the regenerative current regenerated from the AC motor to the AC power source.
  • the other is a converter in which only the regenerative current flows to the power converter.
  • the former converter is referred to as a full regenerative converter and the latter is referred to as a partial regenerative converter.
  • a power running current flows to the power conversion unit, whereas in the partial regenerative converter, a power running current preventing diode is provided to prevent the power running current from flowing to the power conversion unit.
  • the partial regenerative converter can reduce the converter cost by selecting the capacity of the regenerative converter based on the regenerative power in an application where the regenerative power is smaller than the power running power.
  • the prior art disclosed in Patent Document 1 has both the function of a regenerative converter and the function of an inverter, but does not have both the functions of a full regenerative converter and the function of a partial regenerative converter. Since all the regenerative converters which can respond to electric power are needed, there existed a subject that the need to aim at the further reduction of the cost of a regenerative converter could not be met.
  • the present invention has been made in view of the above, and an object thereof is to obtain a regenerative converter capable of further reducing the cost.
  • the present invention provides an AC terminal connected to the AC side of the power converter, and a first terminal connected to one end of the DC side of the power converter.
  • a second terminal connected to one end on the DC side of the power conversion unit via a backflow prevention element, and a third terminal connected to the other end on the DC side of the power conversion unit.
  • the regenerative converter according to the present invention has an effect that the cost can be further reduced.
  • Configuration diagram of regenerative converter according to Embodiment 1 of the present invention Configuration diagram of an inverter connected to the regenerative converter according to the first embodiment of the present invention.
  • the figure which shows the example of a connection of a regenerative converter and an inverter when the regenerative converter which concerns on Embodiment 1 of this invention is used as a full regenerative converter.
  • the figure which shows the example of a connection of a regenerative converter and an inverter when the regenerative converter which concerns on Embodiment 1 of this invention is used as a partial regenerative converter.
  • Configuration diagram of regenerative converter according to Embodiment 2 of the present invention Configuration diagram of inverter connected to regenerative converter according to embodiment 2 of the present invention
  • FIG. 1 The figure which shows the example of a connection of the regenerative converter when the regenerative converter which concerns on Embodiment 2 of this invention is used as a partial regenerative converter, and the inverter shown in FIG.
  • FIG. 1 The figure which shows the example of a connection of the regenerative converter when the regenerative converter which concerns on Embodiment 2 of this invention is used as a partial regenerative converter, and the inverter shown in FIG.
  • FIG. 1 is a configuration diagram of a regenerative converter according to Embodiment 1 of the present invention
  • FIG. 2 is a configuration diagram of an inverter connected to the regenerative converter according to Embodiment 1 of the present invention
  • a regenerative converter 100 shown in FIG. 1 is connected to an AC terminal 11 and includes a power conversion unit 12 including a plurality of switching elements, a DC terminal 16, an inrush current prevention circuit 13, a powering current prevention diode 14, And a main circuit capacitor 15.
  • the AC terminal 11 side of the power conversion unit 12 is referred to as “AC side of the power conversion unit 12”
  • the DC terminal 16 side of the power conversion unit 12 is referred to as “DC side of the power conversion unit 12”.
  • the DC terminal 16 is connected to the positive electrode bus P which is one end on the DC side of the power converter 12 via the inrush current prevention circuit 13 and also connected to the positive terminal P constituting the DC terminal 24 of the inverter 200 shown in FIG. 2 is connected to the positive electrode bus P on the DC side of the power converter 12 via the first terminal P1, the power running current prevention diode 14 and the inrush current prevention circuit 13, and the inverter 200 shown in FIG.
  • the inrush current prevention circuit 13 is connected to the positive electrode bus P on the DC side of the power conversion unit 12, and the other end is connected to a connection point between the power running current prevention diode 14 and the first terminal P1.
  • the power running current prevention diode 14 is an example of a backflow prevention element that prevents a current flowing from the power conversion unit 12 to the second terminal P2, that is, a power running current.
  • the anode is connected to the second terminal P2.
  • the cathode is connected to the inrush current prevention circuit 13.
  • One end of the main circuit capacitor 15 is connected to the connection point of the inrush current prevention circuit 13, the power running current prevention diode 14, and the first terminal P 1, and the other end is connected to the negative electrode bus Q on the DC side of the power converter 12 and the first 3 is connected to the connection point with the terminal N.
  • the arrangement relationship among the first terminal P1, the second terminal P2, the third terminal N, the powering current prevention diode 14 and the inrush current prevention circuit 13 is not limited to the illustrated example, and the powering current prevention is performed.
  • the power diode 14 and the inrush current prevention circuit 13 may be connected to the negative electrode bus Q on the DC side of the power converter 12 and the direction of the power running current prevention diode 14 may be reversed.
  • the power conversion unit 12 includes a series circuit including a switching element 12a and a switching element 12d, a series circuit including a switching element 12b and a switching element 12e, and a switching element 12c and a switching element 12f.
  • a series circuit a backflow prevention element 12a1 connected in parallel with the switching element 12a, a backflow prevention element 12b1 connected in parallel with the switching element 12b, a backflow prevention element 12c1 connected in parallel with the switching element 12c, and a switching A backflow prevention element 12d1 connected in parallel with the element 12d, a backflow prevention element 12e1 connected in parallel with the switching element 12e, and a backflow prevention element 12f1 connected in parallel with the switching element 12f.
  • connection point between the switching element 12c and the switching element 12f is connected to the R phase terminal of the AC terminal 11
  • the connection point between the switching element 12b and the switching element 12e is connected to the S phase terminal of the AC terminal 11
  • the switching element 12a A connection point with the switching element 12 d is connected to a T-phase terminal of the AC terminal 11.
  • a semiconductor element such as a power transistor, a power MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), or an IGBT (Insulated Gate Bipolar Transistor) is used.
  • a wide band gap semiconductor such as gallium nitrogen or silicon carbide may be used.
  • the power converter 12 can be downsized and the regenerative converter 100 can be further downsized. Further, by reducing the size of the regenerative converter 100, it is possible to reduce the volume of members related to the manufacture of the regenerative converter 100.
  • the inverter 200 shown in FIG. 2 includes a plurality of rectifier diodes, and includes a rectifier circuit 22 connected to the AC terminal 21 and a plurality of switching elements.
  • the DC power output from the rectifier circuit 22 is shown in FIG. While converting the DC power from the regenerative converter 100 into AC power, the power converter 26 that converts AC power input from the AC terminal 27 into DC power, and the positive bus between the rectifier circuit 22 and the power converter 26 Inrush current prevention circuit 23 connected to P, DC terminal 24, one end is connected to positive bus P between inrush current prevention circuit 23 and power converter 26, and the other end is rectifier circuit 22 and power converter. 26 and a capacitor 25 connected to the negative electrode bus Q between them.
  • the positive terminal P constituting the DC terminal 24 is connected to the positive bus P between the inrush current prevention circuit 23 and the power converter 26, and the negative terminal N constituting the DC terminal 24 is connected to the rectifier circuit 22 and the power converter. 26 is connected to the negative electrode bus Q between them.
  • FIG. 3 is a diagram showing a connection example between the regenerative converter and the inverter when the regenerative converter according to Embodiment 1 of the present invention is used as a full regenerative converter.
  • the AC power source 1 is connected to the AC terminal 11 of the regenerative converter 100 via the reactor 2, and the DC terminal of the inverter 200 is connected to the first terminal P1 of the regenerative converter 100.
  • 24 is connected to the third terminal N of the regenerative converter 100, and the negative terminal N of the DC terminal 24 of the inverter 200 is connected to the third terminal N of the regenerative converter 100.
  • AC electric motor 3 is connected to a U-phase terminal, a V-phase terminal, and a W-phase terminal constituting AC terminal 27.
  • the AC motor 3 may be an induction motor or a synchronous motor.
  • the AC motor 3 is driven by the supply of AC power.
  • the plurality of switching elements constituting the power converter 26 operate according to switching signals output from a control circuit (not shown), whereby AC power supplied from the AC motor 3 is converted into DC power.
  • the converted DC power is supplied to the power converter 12 via the DC terminal 24 and the DC terminal 16.
  • a plurality of switching elements constituting the power conversion unit 12 operate according to a switching signal output from a control circuit (not shown)
  • the power conversion unit 12 converts DC power into AC power, and the AC power is converted into AC terminal 11 and a reactor. It is regenerated to the AC power source 1 through 2.
  • FIG. 4 is a diagram showing a connection example between the regenerative converter and the inverter when the regenerative converter according to Embodiment 1 of the present invention is used as a partial regenerative converter.
  • the AC power source 1 is connected to the AC terminal 11 of the regenerative converter 100 via the reactor 2, and the DC terminal of the inverter 200 is connected to the second terminal P2 of the regenerative converter 100.
  • 24 is connected to the third terminal N of the regenerative converter 100, and the negative terminal N of the DC terminal 24 of the inverter 200 is connected to the third terminal N of the regenerative converter 100.
  • AC power supply 1 is connected to AC terminal 21, and AC electric motor 3 is connected to a U-phase terminal, a V-phase terminal, and a W-phase terminal constituting AC terminal 27.
  • the plurality of switching elements constituting the power converter 26 operate according to switching signals output from a control circuit (not shown), whereby AC power supplied from the AC motor 3 is converted into DC power.
  • the converted DC power is supplied to the power converter 12 via the DC terminal 24 and the DC terminal 16.
  • a plurality of switching elements constituting the power conversion unit 12 operate according to a switching signal output from a control circuit (not shown)
  • the power conversion unit 12 converts DC power into AC power
  • the AC power is converted into AC terminal 11 and a reactor. It is regenerated to the AC power source 1 through 2.
  • the regenerative converter 100 functions as a partial regenerative converter by connecting the DC terminal 24 of the inverter 200 to the second terminal P2 and the third terminal N.
  • the regenerative converter 100 functions as a full regenerative converter.
  • the full regenerative converter and the partial regenerative converter cannot be shared, but the regenerative converter 100 according to the first embodiment has the first terminal P1, the second terminal P2, and the third terminal N. It is possible to deal with both the partial regenerative converter and the full regenerative converter by switching the connection of the DC terminal 16.
  • the partial regenerative converter is suitable when the load driven by the AC motor is a load with a large mechanical loss such as a belt conveyor and a pump.
  • the full regenerative converter is suitable when the load driven by the AC motor is a load with a small mechanical loss such as an automobile and a train. More specifically, since most of the regenerative power is lost due to mechanical loss at a load with large mechanical loss, the regenerative power supplied to the regenerative converter is smaller than when a load with low mechanical loss is used.
  • the relationship between the power running capacity of the inverter 200 and the regenerative capacity of the regenerative converter 100 is the power running capacity >> regenerative capacity.
  • the relationship between the inverter capacity during regeneration and the converter capacity during power running can be expressed as inverter capacity >> converter capacity. Therefore, the partial regenerative converter can be made smaller and less expensive than the full regenerative converter.
  • FIG. FIG. 5 is a configuration diagram of a regenerative converter according to Embodiment 2 of the present invention.
  • a regenerative converter 100A shown in FIG. 5 includes a power converter 12, an inrush current prevention circuit 13, a power running current prevention diode 14, a main circuit capacitor 15, and a DC terminal 16 in the same manner as the regenerative converter 100 shown in FIG.
  • the difference from the regenerative converter 100 shown in FIG. 1 is the position of the inrush current prevention circuit 13 and the position of the main circuit capacitor 15.
  • the inrush current prevention circuit 13 has one end connected to the connection point between the positive electrode bus P on the DC side of the power conversion unit 12 and the power running current prevention diode 14, and the other end is the first.
  • a connection point between the terminal P1 and the main circuit capacitor 15 is connected.
  • the main circuit capacitor 15 has one end connected to a connection point between the inrush current prevention circuit 13 and the first terminal P1, and the other end connected between the negative electrode bus Q on the DC side of the power converter 12 and the third terminal N. Connected to the connection point.
  • FIG. 6 is a configuration diagram of an inverter connected to the regenerative converter according to Embodiment 2 of the present invention
  • FIG. 7 shows a path of a current that flows when the inverter shown in FIG. 6 is connected to the regenerative converter shown in FIG.
  • An inverter 200A shown in FIG. 6 includes a rectifier circuit 22, a power converter 26, an inrush current prevention circuit 23, a DC terminal 24, and a capacitor 25, similarly to the inverter 200 shown in FIG.
  • the difference from the inverter 200 shown in FIG. 2 is the connection position of the DC terminal 24.
  • the positive terminal P constituting the DC terminal 24 is connected to the positive bus P between the inrush current prevention circuit 23 and the rectification circuit 22.
  • FIG. 7 shows an example in which the regenerative converter 100 of FIG. 1 is connected to the inverter 200A shown in FIG.
  • the combination of regenerative converter 100 and inverter 200A shown in FIG. 7 is a connection configuration when regenerative converter 100 is used as a partial regenerative converter.
  • the positive terminal P constituting the DC terminal 24 of the inverter 200 ⁇ / b> A is connected to the second terminal P ⁇ b> 2 constituting the DC terminal 16 of the regenerative converter 100 to constitute the DC terminal 24 of the inverter 200 ⁇ / b> A.
  • the negative terminal N is connected to the third terminal N that constitutes the DC terminal 16 of the regenerative converter 100.
  • FIG. 7 shows an example in which the regenerative converter 100 of FIG. 1 is connected to the inverter 200A shown in FIG.
  • the combination of regenerative converter 100 and inverter 200A shown in FIG. 7 is a connection configuration when regenerative converter 100 is used as a partial regenerative converter.
  • the inrush current prevention circuit 13 includes a connection point between the DC positive electrode bus P of the power converter 12 and the power running current prevention diode 14, a first terminal P1, a main circuit capacitor 15, and the like. It is connected between the connection points. Therefore, in regenerative converter 100A shown in FIG. 5, even when either inverter 200 shown in FIG. 2 or inverter 200A shown in FIG. 6 is connected, a short-circuit current can be prevented.
  • this will be specifically described with reference to FIGS.
  • FIG. 8 is a diagram showing a connection example between the regenerative converter and the inverter shown in FIG. 2 when the regenerative converter according to Embodiment 2 of the present invention is used as a full regenerative converter.
  • AC power supply 1 is connected to AC terminal 11 of regenerative converter 100A via reactor 2
  • DC terminal of inverter 200 is connected to first terminal P1 of regenerative converter 100A.
  • 24 is connected to the third terminal N of the regenerative converter 100A, and the negative terminal N of the DC terminal 24 of the inverter 200 is connected to the third terminal N of the regenerative converter 100A.
  • AC electric motor 3 is connected to a U-phase terminal, a V-phase terminal, and a W-phase terminal constituting AC terminal 27.
  • the AC motor 3 is driven by the supply of AC power.
  • the plurality of switching elements constituting the power converter 26 operate according to switching signals output from a control circuit (not shown), whereby AC power supplied from the AC motor 3 is converted into DC power.
  • the converted DC power is supplied to the power converter 12 via the DC terminal 24 and the DC terminal 16.
  • a plurality of switching elements constituting the power conversion unit 12 operate according to a switching signal output from a control circuit (not shown)
  • the power conversion unit 12 converts DC power into AC power, and the AC power is converted into AC terminal 11 and a reactor. It is regenerated to the AC power source 1 through 2.
  • FIG. 9 is a diagram showing a connection example between the regenerative converter and the inverter shown in FIG. 6 when the regenerative converter according to Embodiment 2 of the present invention is used as a full regenerative converter.
  • regenerative converter 100A When regenerative converter 100A is used as a full regenerative converter, AC power supply 1 is connected to AC terminal 11 of regenerative converter 100A via reactor 2, and DC terminal of inverter 200A is connected to first terminal P1 of regenerative converter 100A.
  • 24 is connected to the third terminal N of the regenerative converter 100A, and the negative terminal N of the DC terminal 24 of the inverter 200A is connected to the third terminal N of the regenerative converter 100A.
  • a plurality of switching elements constituting the power converter 12 operate according to switching signals output from a control circuit (not shown), whereby AC power supplied from the AC power source 1 is converted into DC power.
  • the converted DC power is supplied to the power converter 26 via the DC terminal 16 and the DC terminal 24.
  • the power conversion unit 26 converts DC power into AC power, and the AC power is transmitted through the AC terminal 27.
  • the plurality of switching elements constituting the power converter 26 operate according to switching signals output from a control circuit (not shown), whereby AC power supplied from the AC motor 3 is converted into DC power.
  • the converted DC power is supplied to the power converter 12 via the DC terminal 24 and the DC terminal 16.
  • a plurality of switching elements constituting the power conversion unit 12 operate according to a switching signal output from a control circuit (not shown)
  • the power conversion unit 12 converts DC power into AC power
  • the AC power is converted into AC terminal 11 and a reactor. It is regenerated to the AC power source 1 through 2.
  • FIG. 10 is a diagram showing a connection example between the regenerative converter and the inverter shown in FIG. 2 when the regenerative converter according to Embodiment 2 of the present invention is used as a partial regenerative converter.
  • AC power supply 1 is connected to AC terminal 11 of regenerative converter 100A via reactor 2
  • DC terminal of inverter 200 is connected to second terminal P2 of regenerative converter 100A.
  • 24 is connected to the third terminal N of the regenerative converter 100A
  • the negative terminal N of the DC terminal 24 of the inverter 200 is connected to the third terminal N of the regenerative converter 100A.
  • AC power supply 1 is connected to AC terminal 21, and AC electric motor 3 is connected to a U-phase terminal, a V-phase terminal, and a W-phase terminal constituting AC terminal 27.
  • the plurality of switching elements constituting the power converter 26 operate according to switching signals output from a control circuit (not shown), whereby AC power supplied from the AC motor 3 is converted into DC power.
  • the converted DC power is supplied to the power converter 12 via the DC terminal 24 and the DC terminal 16.
  • a plurality of switching elements constituting the power conversion unit 12 operate according to a switching signal output from a control circuit (not shown)
  • the power conversion unit 12 converts DC power into AC power
  • the AC power is converted into AC terminal 11 and a reactor. It is regenerated to the AC power source 1 through 2.
  • FIG. 11 is a diagram showing a connection example between the regenerative converter and the inverter shown in FIG. 6 when the regenerative converter according to Embodiment 2 of the present invention is used as a partial regenerative converter.
  • AC power supply 1 is connected to AC terminal 11 of regenerative converter 100A via reactor 2
  • DC terminal of inverter 200A is connected to second terminal P2 of regenerative converter 100A.
  • 24 is connected to the third terminal N of the regenerative converter 100A
  • the negative terminal N of the DC terminal 24 of the inverter 200A is connected to the third terminal N of the regenerative converter 100A.
  • AC power supply 1 is connected to AC terminal 21, and AC electric motor 3 is connected to a U-phase terminal, a V-phase terminal, and a W-phase terminal that constitute AC terminal 27.
  • the plurality of switching elements constituting the power converter 26 operate according to switching signals output from a control circuit (not shown), whereby AC power supplied from the AC motor 3 is converted into DC power.
  • the converted DC power is supplied to the power converter 12 via the DC terminal 24 and the DC terminal 16.
  • a plurality of switching elements constituting the power conversion unit 12 operate according to a switching signal output from a control circuit (not shown)
  • the power conversion unit 12 converts DC power into AC power
  • the AC power is converted into AC terminal 11 and a reactor. It is regenerated to the AC power source 1 through 2.
  • regenerative converters 100 and 100A have a first AC terminal connected to an AC terminal connected to the AC side of the power converter and one end of the DC side of the power converter.
  • a second terminal connected to one end on the DC side of the power converter via a backflow prevention element, and a third terminal connected to the other end on the DC side of the power converter.
  • the regenerative converters 100 and 100A switch the connection of the DC terminal composed of the first terminal P1, the second terminal P2, and the third terminal N, so that the functions of the full regenerative converter and the partial regenerative converter are achieved.
  • the regenerative converter having each function need not be individually manufactured, and the cost can be further reduced.
  • the second terminal and the third terminal include a rectifier circuit, a power converter that converts DC power from the rectifier circuit into AC power, and the power converter. And an inrush current preventing circuit disposed between the rectifier circuit and a DC terminal disposed between the inrush current preventing circuit and the rectifier circuit.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

 回生コンバータ100は、複数のスイッチング素子で構成される電力変換部12と、電力変換部12の交流側に接続される交流端子11と、電力変換部12の直流側の一端に接続される第1の端子P1と、逆流防止素子を介して電力変換部12の直流側の一端に接続される第2の端子P2と、電力変換部12の直流側の他端に接続される第3の端子Nとを備え、第1の端子P1、第2の端子P2、および第3の端子Nの接続を切り替えることにより、部分回生コンバータと全回生コンバータとの何れにも対応可能であり、コストの更なる低減を図ることができる。

Description

回生コンバータ
 本発明は、電源から供給される電力を変換して負荷へ出力すると共に負荷から供給される電力を変換して電源へ出力する回生コンバータに関する。
 回生コンバータは、交流電動機の可変速制御を行うインバータと交流電源との間に配置され、交流電動機の減速時に発生する誘導起電力を交流電源に回生する電力変換器である。特許文献1に示す従来の電力変換器は、回生コンバータの機能とインバータの機能とを併せ持ち、インバータ単体または回生コンバータ単体で使用できるため使い勝手が良く、また生産性の向上を図ることが可能である。
特開平7-194144号公報
 回生コンバータは2種類に分類され、一方は交流電源から交流電動機に供給される力行電流と交流電動機から交流電源に回生される回生電流との双方が、回生コンバータを構成する主回路の電力変換部に流れるコンバータであり、他方は回生電流のみが電力変換部に流れるコンバータである。以下では説明を簡単化するため、前者のコンバータを全回生コンバータと称し、後者を部分回生コンバータと称する。全回生コンバータでは力行電流が電力変換部に流れるのに対して、部分回生コンバータでは力行電流が電力変換部に流れないようにするため力行電流防止用ダイオードが設けられている。従って全回生コンバータと部分回生コンバータは共用することができない。部分回生コンバータは、力行電力よりも回生電力が小さい用途において、回生コンバータの容量を回生電力によって選定し、コンバータコストを低減することが可能である。特許文献1に示す従来技術は、回生コンバータの機能とインバータの機能とを併せ持つが、全回生コンバータの機能と部分回生コンバータの機能とを併せ持つものではなく、回生電力が小さい用途であっても力行電力に対応できる全回生コンバータが必要となるため、回生コンバータのコストの更なる低減を図るというニーズに対応することができないという課題があった。
 本発明は、上記に鑑みてなされたものであって、コストの更なる低減を図ることができる回生コンバータを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、電力変換部の交流側に接続される交流端子と、前記電力変換部の直流側の一端に接続される第1の端子と、逆流防止素子を介して前記電力変換部の直流側の一端に接続される第2の端子と、前記電力変換部の直流側の他端に接続される第3の端子と、を備えることを特徴とする。
 本発明にかかる回生コンバータは、コストの更なる低減を図ることができるという効果を奏する。
本発明の実施の形態1に係る回生コンバータの構成図 本発明の実施の形態1に係る回生コンバータに接続されるインバータの構成図 本発明の実施の形態1に係る回生コンバータが全回生コンバータとして使用されるときの回生コンバータとインバータとの接続例を示す図 本発明の実施の形態1に係る回生コンバータが部分回生コンバータとして使用されるときの回生コンバータとインバータとの接続例を示す図 本発明の実施の形態2に係る回生コンバータの構成図 本発明の実施の形態2に係る回生コンバータに接続されるインバータの構成図 図6に示すインバータを図1に示す回生コンバータに接続したときに流れる電流の経路を示す図 本発明の実施の形態2に係る回生コンバータが全回生コンバータとして使用されるときの回生コンバータと図2に示すインバータとの接続例を示す図 本発明の実施の形態2に係る回生コンバータが全回生コンバータとして使用されるときの回生コンバータと図6に示すインバータとの接続例を示す図 本発明の実施の形態2に係る回生コンバータが部分回生コンバータとして使用されるときの回生コンバータと図2に示すインバータとの接続例を示す図 本発明の実施の形態2に係る回生コンバータが部分回生コンバータとして使用されるときの回生コンバータと図6に示すインバータとの接続例を示す図
 以下に、本発明の実施の形態にかかる回生コンバータを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は本発明の実施の形態1に係る回生コンバータの構成図、図2は本発明の実施の形態1に係る回生コンバータに接続されるインバータの構成図である。図1に示す回生コンバータ100は、交流端子11に接続され、複数のスイッチング素子で構成される電力変換部12と、直流端子16と、突入電流防止回路13と、力行電流防止用ダイオード14と、主回路コンデンサ15とを備える。以下の説明では電力変換部12の交流端子11側を「電力変換部12の交流側」とし、電力変換部12の直流端子16側を「電力変換部12の直流側」とする。
 直流端子16は、突入電流防止回路13を介して電力変換部12の直流側の一端である正極母線Pに接続されると共に、図2に示すインバータ200の直流端子24を構成する正極端子Pに接続される第1の端子P1と、力行電流防止用ダイオード14と突入電流防止回路13とを介して電力変換部12の直流側の正極母線Pに接続されると共に、図2に示すインバータ200の直流端子24を構成する正極端子Pに接続される第2の端子P2と、電力変換部12の直流側の他端である負極母線Qに接続されると共に、図2に示すインバータ200の直流端子24を構成する負極端子Nに接続される第3の端子Nとで構成される。突入電流防止回路13は、一端が電力変換部12の直流側の正極母線Pに接続され、他端が力行電流防止用ダイオード14と第1の端子P1との接続点に接続される。力行電流防止用ダイオード14は、電力変換部12から第2の端子P2側へ流れる電流、すなわち力行電流を防止する逆流防止素子の一例であり、図示例ではアノードが第2の端子P2に接続され、カソードが突入電流防止回路13に接続される。主回路コンデンサ15は、一端が突入電流防止回路13と力行電流防止用ダイオード14と第1の端子P1との接続点に接続され、他端が電力変換部12の直流側の負極母線Qと第3の端子Nとの接続点に接続される。なお、第1の端子P1と第2の端子P2と第3の端子Nと力行電流防止用ダイオード14と突入電流防止回路13との配置関係は図示例に限定されるものではなく、力行電流防止用ダイオード14と突入電流防止回路13とを電力変換部12の直流側の負極母線Q側に接続し、かつ、力行電流防止用ダイオード14の向きを反転させる構成でもよい。
 電力変換部12は、スイッチング素子12aとスイッチング素子12dとで構成される直列回路と、スイッチング素子12bとスイッチング素子12eとで構成される直列回路と、スイッチング素子12cとスイッチング素子12fとで構成される直列回路と、スイッチング素子12aと並列に接続される逆流防止素子12a1と、スイッチング素子12bと並列に接続される逆流防止素子12b1と、スイッチング素子12cと並列に接続される逆流防止素子12c1と、スイッチング素子12dと並列に接続される逆流防止素子12d1と、スイッチング素子12eと並列に接続される逆流防止素子12e1と、スイッチング素子12fと並列に接続される逆流防止素子12f1とで構成される。スイッチング素子12cとスイッチング素子12fとの接続点は交流端子11のR相端子に接続され、スイッチング素子12bとスイッチング素子12eとの接続点は交流端子11のS相端子に接続され、スイッチング素子12aとスイッチング素子12dとの接続点は交流端子11のT相端子に接続されている。複数のスイッチング素子12a,12b,12c,12d,12e,12fの各々には、パワートランジスタ、パワーMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)といった半導体素子を用いてもよいし、窒素ガリウムまたは炭化ケイ素といったワイドバンドギャップ半導体を用いてもよい。一般的にワイドバンドギャップ半導体はシリコン半導体に比べて耐電圧および耐熱性が高いため、許容電流密度も高くなる。そのため、電力変換部12の小型化が可能となり、回生コンバータ100の更なる小型化を図ることができる。また回生コンバータ100の小型化により、回生コンバータ100の製造に係る部材の減容化を図ることができる。
 図2に示すインバータ200は、複数の整流ダイオードで構成され、交流端子21に接続される整流回路22と、複数のスイッチング素子で構成され、整流回路22から出力される直流電力または図1に示す回生コンバータ100からの直流電力を交流電力に変換すると共に、交流端子27から入力される交流電力を直流電力に変換する電力変換部26と、整流回路22と電力変換部26との間の正極母線Pに接続された突入電流防止回路23と、直流端子24と、一端が突入電流防止回路23と電力変換部26との間の正極母線Pに接続され、他端が整流回路22と電力変換部26との間の負極母線Qに接続されるコンデンサ25とを備える。直流端子24を構成する正極端子Pは、突入電流防止回路23と電力変換部26との間の正極母線Pに接続され、直流端子24を構成する負極端子Nは、整流回路22と電力変換部26との間の負極母線Qに接続される。
 図3は本発明の実施の形態1に係る回生コンバータが全回生コンバータとして使用されるときの回生コンバータとインバータとの接続例を示す図である。回生コンバータ100を全回生コンバータとして使用する場合、回生コンバータ100の交流端子11にはリアクトル2を介して交流電源1が接続され、回生コンバータ100の第1の端子P1には、インバータ200の直流端子24を構成する正極端子Pが接続され、回生コンバータ100の第3の端子Nにはインバータ200の直流端子24を構成する負極端子Nが接続される。インバータ200では、交流端子27を構成するU相端子、V相端子、およびW相端子に交流電動機3が接続される。交流電動機3は誘導電動機であってもよいし同期電動機であってもよい。
 以下、図3に示す回生コンバータ100とインバータ200の動作を説明する。まず交流電動機3の力行時の動作を説明した後に交流電動機3の回生時の動作を説明する。交流電動機3の力行時には、電力変換部12を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、交流電源1から供給される交流電力が直流電力に変換され、変換された直流電力は直流端子16および直流端子24を経由して電力変換部26に供給される。電力変換部26を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、電力変換部26では直流電力が交流電力に変換され、交流電力は交流端子27を介して交流電動機3に供給され、交流電動機3は交流電力の供給を受けて駆動する。交流電動機3の回生時には、電力変換部26を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、交流電動機3から供給される交流電力が直流電力に変換され、変換された直流電力は直流端子24および直流端子16を経由して電力変換部12に供給される。電力変換部12を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、電力変換部12では直流電力が交流電力に変換され、交流電力は交流端子11およびリアクトル2を介して交流電源1に回生される。
 図4は本発明の実施の形態1に係る回生コンバータが部分回生コンバータとして使用されるときの回生コンバータとインバータとの接続例を示す図である。回生コンバータ100を部分回生コンバータとして使用する場合、回生コンバータ100の交流端子11にはリアクトル2を介して交流電源1が接続され、回生コンバータ100の第2の端子P2には、インバータ200の直流端子24を構成する正極端子Pが接続され、回生コンバータ100の第3の端子Nにはインバータ200の直流端子24を構成する負極端子Nが接続される。インバータ200では、交流端子21に交流電源1が接続され、交流端子27を構成するU相端子、V相端子、およびW相端子に交流電動機3が接続される。
 以下、図4に示す回生コンバータ100とインバータ200の動作を説明する。まず交流電動機3の力行時の動作を説明した後に交流電動機3の回生時の動作を説明する。交流電動機3の力行時には、整流回路22を構成する複数の整流ダイオードにより、交流電源1から供給される交流電力が直流電力に変換され、変換された直流電力は電力変換部26に供給される。電力変換部26を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、電力変換部26では直流電力が交流電力に変換され、交流電力は交流端子27を介して交流電動機3に供給され、交流電動機3は交流電力の供給を受けて駆動する。この際、ダイオード14により、コンバータ12には電力は流れない。交流電動機3の回生時には、電力変換部26を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、交流電動機3から供給される交流電力が直流電力に変換され、変換された直流電力は直流端子24および直流端子16を経由して電力変換部12に供給される。電力変換部12を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、電力変換部12では直流電力が交流電力に変換され、交流電力は交流端子11およびリアクトル2を介して交流電源1に回生される。
 以上に説明したように実施の形態1に係る回生コンバータ100は、第2の端子P2および第3の端子Nにインバータ200の直流端子24を接続することにより、部分回生コンバータとして機能し、第1の端子P1および第3の端子Nにインバータ200の直流端子24を接続することにより、回生コンバータ100は全回生コンバータとして機能する。前述したように全回生コンバータでは力行電流が電力変換部に流れるのに対して、部分回生コンバータでは力行電流が電力変換部に流れないように構成する必要がある。従って、従来技術では全回生コンバータと部分回生コンバータとを共用することはできないが、実施の形態1に係る回生コンバータ100は、第1の端子P1、第2の端子P2、および第3の端子Nで構成される直流端子16を備え、直流端子16の接続を切り替えることにより、部分回生コンバータと全回生コンバータとの何れにも対応可能である。
 なお、部分回生コンバータは、交流電動機で駆動される負荷がベルトコンベヤおよびポンプといった機械損失の大きい負荷である場合に適している。一方、全回生コンバータは、交流電動機で駆動される負荷が自動車および列車といった機械損失の小さい負荷である場合に適している。具体的に説明すると、機械損失の大きい負荷では回生電力の大半が機械損失で失われるため、回生コンバータに供給される回生電力は、機械損失の小さい負荷が用いられる場合に比べて小さい。図4に示す回生コンバータ100とインバータ200との組み合わせでは、力行電力をインバータ200に負担させることができるため、インバータ200の力行容量と回生コンバータ100の回生容量との関係は力行容量≫回生容量となる。従って、図4に示す回生コンバータ100とインバータ200との組み合わせでは、回生時のインバータ容量と力行時のコンバータ容量との関係をインバータ容量≫コンバータ容量とすることができる。従って部分回生コンバータは全回生コンバータよりも小型で安価に構成することができる。
実施の形態2.
 図5は本発明の実施の形態2に係る回生コンバータの構成図である。実施の形態2では、実施の形態1と同一部分に同一符号を付してその説明を省略し、異なる部分についてのみ述べる。図5に示す回生コンバータ100Aは、図1に示す回生コンバータ100と同様に電力変換部12、突入電流防止回路13、力行電流防止用ダイオード14、主回路コンデンサ15、および直流端子16を備える。図1に示す回生コンバータ100との相違点は突入電流防止回路13の位置と主回路コンデンサ15の位置である。図5に示す回生コンバータ100Aでは、突入電流防止回路13は、一端が電力変換部12の直流側の正極母線Pと力行電流防止用ダイオード14との接続点に接続され、他端が第1の端子P1と主回路コンデンサ15との接続点に接続されている。また主回路コンデンサ15は、一端が突入電流防止回路13と第1の端子P1との接続点に接続され、他端が電力変換部12の直流側の負極母線Qと第3の端子Nとの接続点に接続される。
 図6は本発明の実施の形態2に係る回生コンバータに接続されるインバータの構成図であり、図7は図6に示すインバータを図1に示す回生コンバータに接続したときに流れる電流の経路を示す図である。図6に示すインバータ200Aは、図2に示すインバータ200と同様に整流回路22、電力変換部26、突入電流防止回路23、直流端子24、およびコンデンサ25を備える。図2に示すインバータ200との相違点は直流端子24の接続位置である。図6に示すインバータ200Aでは、直流端子24を構成する正極端子Pが、突入電流防止回路23と整流回路22との間の正極母線Pに接続されている。
 図7には、図6に示すインバータ200Aに図1の回生コンバータ100を接続した例が示されている。図7に示す回生コンバータ100とインバータ200Aとの組み合わせは、回生コンバータ100を部分回生コンバータとして使用する場合の接続構成である。図7の接続例によれば、インバータ200Aの直流端子24を構成する正極端子Pが回生コンバータ100の直流端子16を構成する第2の端子P2に接続され、インバータ200Aの直流端子24を構成する負極端子Nが回生コンバータ100の直流端子16を構成する第3の端子Nに接続されている。図7の接続構成では、電源投入の際、交流端子21、整流回路22、直流端子24、力行電流防止用ダイオード14、および主回路コンデンサ15が接続された状態となり、実線の矢印で示す経路で電流が流れる。すなわち突入電流防止回路を経由せずに電流が流れるため、主回路コンデンサ15が交流電源1と直結され、短絡電流が流れる。図5に示す回生コンバータ100Aでは、突入電流防止回路13が電力変換部12の直流側の正極母線Pと力行電流防止用ダイオード14との接続点と、第1の端子P1と主回路コンデンサ15との接続点との間に接続されている。そのため、図5に示す回生コンバータ100Aでは、図2に示すインバータ200と図6に示すインバータ200Aとの何れかが接続された場合でも、短絡電流を防止することができる。以下、図8から図11を用いて具体的に説明する。
 図8は本発明の実施の形態2に係る回生コンバータが全回生コンバータとして使用されるときの回生コンバータと図2に示すインバータとの接続例を示す図である。回生コンバータ100Aを全回生コンバータとして使用する場合、回生コンバータ100Aの交流端子11にはリアクトル2を介して交流電源1が接続され、回生コンバータ100Aの第1の端子P1には、インバータ200の直流端子24を構成する正極端子Pが接続され、回生コンバータ100Aの第3の端子Nにはインバータ200の直流端子24を構成する負極端子Nが接続される。インバータ200では、交流端子27を構成するU相端子、V相端子、およびW相端子に交流電動機3が接続される。
 以下、図8に示す回生コンバータ100Aとインバータ200の動作を説明する。まず交流電動機3の力行時の動作を説明した後に交流電動機3の回生時の動作を説明する。交流電動機3の力行時には、電力変換部12を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、交流電源1から供給される交流電力が直流電力に変換され、変換された直流電力は直流端子16および直流端子24を経由して電力変換部26に供給される。電力変換部26を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、電力変換部26では直流電力が交流電力に変換され、交流電力は交流端子27を介して交流電動機3に供給され、交流電動機3は交流電力の供給を受けて駆動する。交流電動機3の回生時には、電力変換部26を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、交流電動機3から供給される交流電力が直流電力に変換され、変換された直流電力は直流端子24および直流端子16を経由して電力変換部12に供給される。電力変換部12を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、電力変換部12では直流電力が交流電力に変換され、交流電力は交流端子11およびリアクトル2を介して交流電源1に回生される。
 図9は本発明の実施の形態2に係る回生コンバータが全回生コンバータとして使用されるときの回生コンバータと図6に示すインバータとの接続例を示す図である。回生コンバータ100Aを全回生コンバータとして使用する場合、回生コンバータ100Aの交流端子11にはリアクトル2を介して交流電源1が接続され、回生コンバータ100Aの第1の端子P1には、インバータ200Aの直流端子24を構成する正極端子Pが接続され、回生コンバータ100Aの第3の端子Nにはインバータ200Aの直流端子24を構成する負極端子Nが接続される。
 以下、図9に示す回生コンバータ100Aとインバータ200Aの動作を説明する。交流電動機3の力行時には、電力変換部12を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、交流電源1から供給される交流電力が直流電力に変換され、変換された直流電力は直流端子16および直流端子24を経由して電力変換部26に供給される。電力変換部26を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、電力変換部26では直流電力が交流電力に変換され、交流電力は交流端子27を介して交流電動機3に供給され、交流電動機3は交流電力の供給を受けて駆動する。交流電動機3の回生時には、電力変換部26を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、交流電動機3から供給される交流電力が直流電力に変換され、変換された直流電力は直流端子24および直流端子16を経由して電力変換部12に供給される。電力変換部12を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、電力変換部12では直流電力が交流電力に変換され、交流電力は交流端子11およびリアクトル2を介して交流電源1に回生される。
 図10は本発明の実施の形態2に係る回生コンバータが部分回生コンバータとして使用されるときの回生コンバータと図2に示すインバータとの接続例を示す図である。回生コンバータ100Aを部分回生コンバータとして使用する場合、回生コンバータ100Aの交流端子11にはリアクトル2を介して交流電源1が接続され、回生コンバータ100Aの第2の端子P2には、インバータ200の直流端子24を構成する正極端子Pが接続され、回生コンバータ100Aの第3の端子Nにはインバータ200の直流端子24を構成する負極端子Nが接続される。インバータ200では、交流端子21に交流電源1が接続され、交流端子27を構成するU相端子、V相端子、およびW相端子に交流電動機3が接続される。
 以下、図10に示す回生コンバータ100Aとインバータ200の動作を説明する。交流電動機3の力行時には、整流回路22を構成する複数の整流ダイオードにより、交流電源1から供給される交流電力が直流電力に変換され、変換された直流電力は電力変換部26に供給される。電力変換部26を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、電力変換部26では直流電力が交流電力に変換され、交流電力は交流端子27を介して交流電動機3に供給され、交流電動機3は交流電力の供給を受けて駆動する。交流電動機3の回生時には、電力変換部26を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、交流電動機3から供給される交流電力が直流電力に変換され、変換された直流電力は直流端子24および直流端子16を経由して電力変換部12に供給される。電力変換部12を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、電力変換部12では直流電力が交流電力に変換され、交流電力は交流端子11およびリアクトル2を介して交流電源1に回生される。
 図11は本発明の実施の形態2に係る回生コンバータが部分回生コンバータとして使用されるときの回生コンバータと図6に示すインバータとの接続例を示す図である。回生コンバータ100Aを部分回生コンバータとして使用する場合、回生コンバータ100Aの交流端子11にはリアクトル2を介して交流電源1が接続され、回生コンバータ100Aの第2の端子P2には、インバータ200Aの直流端子24を構成する正極端子Pが接続され、回生コンバータ100Aの第3の端子Nにはインバータ200Aの直流端子24を構成する負極端子Nが接続される。インバータ200Aでは、交流端子21に交流電源1が接続され、交流端子27を構成するU相端子、V相端子、およびW相端子に交流電動機3が接続される。
 以下、図11に示す回生コンバータ100Aとインバータ200Aの動作を説明する。交流電動機3の力行時には、整流回路22を構成する複数の整流ダイオードにより、交流電源1から供給される交流電力が直流電力に変換され、変換された直流電力は電力変換部26に供給される。電力変換部26を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、電力変換部26では直流電力が交流電力に変換され、交流電力は交流端子27を介して交流電動機3に供給され、交流電動機3は交流電力の供給を受けて駆動する。交流電動機3の回生時には、電力変換部26を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、交流電動機3から供給される交流電力が直流電力に変換され、変換された直流電力は直流端子24および直流端子16を経由して電力変換部12に供給される。電力変換部12を構成する複数のスイッチング素子が図示しない制御回路から出力されるスイッチング信号に従い動作することにより、電力変換部12では直流電力が交流電力に変換され、交流電力は交流端子11およびリアクトル2を介して交流電源1に回生される。
 以上に説明したように実施の形態1,2に係る回生コンバータ100,100Aは、電力変換部の交流側に接続される交流端子と、前記電力変換部の直流側の一端に接続される第1の端子と、逆流防止素子を介して前記電力変換部の直流側の一端に接続される第2の端子と、前記電力変換部の直流側の他端に接続される第3の端子とを備える。この構成により回生コンバータ100,100Aは、第1の端子P1、第2の端子P2、および第3の端子Nで構成される直流端子の接続を切り替えることにより、全回生コンバータの機能と部分回生コンバータの機能とを発揮することができ、各々の機能を有する回生コンバータを個別に製作する必要がなく、コストの更なる低減を図ることが可能である。
 また、実施の形態2に係る回生コンバータ100Aは、第2の端子と第3の端子とが、整流回路と、整流回路からの直流電力を交流電力に変換する電力変換部と、当該電力変換部と前記整流回路との間に配置された突入電流防止回路と、前記突入電流防止回路と前記整流回路との間に配置された直流端子とを有するインバータ200Aの、前記直流端子に接続される。この構成により、図11に示すようにインバータ200Aが回生コンバータ100Aに接続された場合でも、回生コンバータ100A内の突入電流防止回路13により、電源投入時の短絡電流が遮断される。その結果、実施の形態2に係る回生コンバータ100Aは、実施の形態1の効果に加えて品質の向上を図ることができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 交流電源、2 リアクトル、3 交流電動機、11 交流端子、12 電力変換部、12a,12b,12c,12d,12e,12f スイッチング素子、12a1,12b1,12c1,12d1,12e1,12f1 逆流防止素子、13 突入電流防止回路、14 力行電流防止用ダイオード、15 主回路コンデンサ、16 直流端子、21 交流端子、22 整流回路、23 突入電流防止回路、24 直流端子、25 コンデンサ、26 電力変換部、27 交流端子、100,100A 回生コンバータ、200,200A インバータ。

Claims (4)

  1.  電力変換部と、
     前記電力変換部の交流側に接続される交流端子と、
     前記電力変換部の直流側の一端に接続される第1の端子と、
     逆流防止素子を介して前記電力変換部の直流側の一端に接続される第2の端子と、
     前記電力変換部の直流側の他端に接続される第3の端子と、
     を備えることを特徴とする回生コンバータ。
  2.  一端が前記電力変換部の直流側の一端に接続され、他端が前記逆流防止素子と前記第1の端子との接続点に接続される突入電流防止回路を備えることを特徴とする請求項1に記載の回生コンバータ。
  3.  一端が前記電力変換部の直流側の一端と前記逆流防止素子との接続点に接続され、他端が前記第1の端子に接続される突入電流防止回路を備えることを特徴とする請求項1に記載の回生コンバータ。
  4.  前記第2の端子と前記第3の端子は、
     整流回路と、前記整流回路からの直流電力を交流電力に変換する電力変換部と、当該電力変換部と前記整流回路との間に配置された突入電流防止回路と、前記突入電流防止回路と前記整流回路との間に配置された直流端子とを有するインバータの、前記直流端子に接続されることを特徴とする請求項3に記載の回生コンバータ。
PCT/JP2015/051240 2015-01-19 2015-01-19 回生コンバータ WO2016117006A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112016016384-2A BR112016016384B1 (pt) 2015-01-19 2015-01-19 Conversor regenerativo
KR1020167018469A KR101720915B1 (ko) 2015-01-19 2015-01-19 회생 컨버터
CN201580005029.1A CN106416042B (zh) 2015-01-19 2015-01-19 再生转换器
US15/107,987 US20160365806A1 (en) 2015-01-19 2015-01-19 Regenerative converter
RU2016129172A RU2617675C1 (ru) 2015-01-19 2015-01-19 Рекуперативный преобразователь
DE112015000284.7T DE112015000284B4 (de) 2015-01-19 2015-01-19 Rückspeisender Wandler
PCT/JP2015/051240 WO2016117006A1 (ja) 2015-01-19 2015-01-19 回生コンバータ
JP2016507922A JP5933873B1 (ja) 2015-01-19 2015-01-19 回生コンバータ
TW105101050A TWI583121B (zh) 2015-01-19 2016-01-14 再生轉換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/051240 WO2016117006A1 (ja) 2015-01-19 2015-01-19 回生コンバータ

Publications (1)

Publication Number Publication Date
WO2016117006A1 true WO2016117006A1 (ja) 2016-07-28

Family

ID=56120541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051240 WO2016117006A1 (ja) 2015-01-19 2015-01-19 回生コンバータ

Country Status (9)

Country Link
US (1) US20160365806A1 (ja)
JP (1) JP5933873B1 (ja)
KR (1) KR101720915B1 (ja)
CN (1) CN106416042B (ja)
BR (1) BR112016016384B1 (ja)
DE (1) DE112015000284B4 (ja)
RU (1) RU2617675C1 (ja)
TW (1) TWI583121B (ja)
WO (1) WO2016117006A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019221007A (ja) * 2018-06-15 2019-12-26 富士電機株式会社 電力変換装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3031849B1 (fr) * 2015-01-16 2017-02-17 Alstom Transp Tech Convertisseur d'alimentation reseau et/ou de sous-station de recuperation de l'energie de freinage
CN106864267B (zh) * 2017-03-10 2023-03-21 南昌工程学院 一种用于列车的自供电方法
JP6503413B2 (ja) * 2017-05-31 2019-04-17 本田技研工業株式会社 Dc/dcコンバータおよび電気機器
KR101983272B1 (ko) * 2017-12-18 2019-09-10 주식회사 에너지파트너즈 회생 전원을 이용하는 엘리베이터 구동 장치
CN109861356B (zh) 2018-05-09 2023-03-24 台达电子工业股份有限公司 冲击电流抑制模块、车载双向充电机及控制方法
JP7021411B2 (ja) * 2018-05-31 2022-02-17 東芝三菱電機産業システム株式会社 電力変換システム
RU183854U1 (ru) * 2018-06-20 2018-10-05 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" (ФГУП "ГосНИИАС") Полумостовой инвертор прямоугольного тока с трансформаторно-циклоконверторным делителем частоты

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970185A (ja) * 1982-10-14 1984-04-20 Toshiba Corp 電力変換装置
JPS60234474A (ja) * 1984-05-07 1985-11-21 Hitachi Ltd インバータ装置
JPH04261372A (ja) * 1991-01-31 1992-09-17 Mitsubishi Electric Corp 電力回生装置
JPH0759359A (ja) * 1993-08-09 1995-03-03 Fuji Electric Co Ltd 電源回生用電力変換装置
JP2004180427A (ja) * 2002-11-27 2004-06-24 Mitsubishi Electric Corp 電源回生コンバータ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1246310A1 (ru) * 1984-10-11 1986-07-23 Донецкий Ордена Трудового Красного Знамени Политехнический Институт Устройство дл торможени асинхронного электродвигател
US4720776A (en) 1984-12-04 1988-01-19 Square D Company DC bus shorting apparatus and method for polyphase AC inverter
FI890004A (fi) * 1988-08-03 1990-02-04 Siemens Ag Foerfarande foer att undvika vaexelriktarlaosning vid en till naetet aotermatande stroemriktare av en naetsidig reverseringsstroemriktare av en spaenningsmellankrets-omriktare vid dynamisk spaenningssaenkning och kopplingsanordning foer genomfoerande av foerfarandet.
JPH05244788A (ja) * 1992-02-27 1993-09-21 Fuji Electric Co Ltd 電力回生装置
JPH07194144A (ja) 1993-12-27 1995-07-28 Hitachi Ltd 電力変換装置
JP3395427B2 (ja) * 1995-02-16 2003-04-14 株式会社日立製作所 セルビウス制御装置
RU2149496C1 (ru) * 1998-09-14 2000-05-20 Вейтцель Олег Олегович Способ управления преобразователем
CN1183654C (zh) * 1999-01-19 2005-01-05 松下电器产业株式会社 电源装置及使用了该电源的空调机
CA2402426A1 (en) * 2000-03-08 2001-09-13 Kabushiki Kaisha Yaskawa Denki Pwm cycloconverter and power supply abnormality detection circuit
JP3928559B2 (ja) * 2003-01-10 2007-06-13 トヨタ自動車株式会社 電圧変換装置、故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体および故障処理方法
JP4056512B2 (ja) 2004-09-28 2008-03-05 ファナック株式会社 モータ駆動装置
JP5186829B2 (ja) * 2007-08-07 2013-04-24 ダイキン工業株式会社 直接形電力変換装置
RU2361357C2 (ru) * 2007-08-07 2009-07-10 ОАО "Электровыпрямитель" Устройство для управления асинхронным электродвигателем транспортного средства
JP2011139607A (ja) * 2009-12-28 2011-07-14 Mitsubishi Electric Corp 電源回生コンバータおよび電力変換装置
CN103026606B (zh) * 2010-07-28 2015-08-05 三菱电机株式会社 斩波器装置
DE102011109773A1 (de) 2011-08-09 2013-02-14 Hochschule Ostwestfalen-Lippe Verfahren und Schaltung für den mehrphasigen Betrieb eines Elektromotors
JP5724903B2 (ja) * 2012-02-20 2015-05-27 株式会社安川電機 電源回生装置および電力変換装置
JP5664589B2 (ja) * 2012-04-20 2015-02-04 株式会社安川電機 電源回生コンバータおよび電力変換装置
CN103999342B (zh) * 2012-12-14 2017-04-05 三菱电机株式会社 逆变器装置
KR101329366B1 (ko) 2013-08-21 2013-11-14 이옥형 회생 에너지 저장 기능을 갖는 엘리베이터 제어 장치
RU2615170C1 (ru) * 2013-12-26 2017-04-04 Мицубиси Электрик Корпорейшн Устройство преобразования энергии

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970185A (ja) * 1982-10-14 1984-04-20 Toshiba Corp 電力変換装置
JPS60234474A (ja) * 1984-05-07 1985-11-21 Hitachi Ltd インバータ装置
JPH04261372A (ja) * 1991-01-31 1992-09-17 Mitsubishi Electric Corp 電力回生装置
JPH0759359A (ja) * 1993-08-09 1995-03-03 Fuji Electric Co Ltd 電源回生用電力変換装置
JP2004180427A (ja) * 2002-11-27 2004-06-24 Mitsubishi Electric Corp 電源回生コンバータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019221007A (ja) * 2018-06-15 2019-12-26 富士電機株式会社 電力変換装置
JP7135480B2 (ja) 2018-06-15 2022-09-13 富士電機株式会社 電力変換装置

Also Published As

Publication number Publication date
TWI583121B (zh) 2017-05-11
KR20160095147A (ko) 2016-08-10
TW201633690A (zh) 2016-09-16
KR101720915B1 (ko) 2017-03-28
US20160365806A1 (en) 2016-12-15
BR112016016384B1 (pt) 2022-04-19
CN106416042B (zh) 2018-09-28
JP5933873B1 (ja) 2016-06-15
DE112015000284T5 (de) 2016-10-06
DE112015000284B4 (de) 2022-02-03
JPWO2016117006A1 (ja) 2017-04-27
BR112016016384A2 (ja) 2017-08-08
RU2617675C1 (ru) 2017-04-26
CN106416042A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
JP5933873B1 (ja) 回生コンバータ
EP2487786A2 (en) Five-level power conversion device
US10707776B2 (en) 3-level power conversion circuit including serially-connected switching element and diode
WO2009157276A1 (ja) 電力変換装置
JP5611496B1 (ja) 電力変換装置
JP5223610B2 (ja) 電力変換回路
WO2011086705A1 (ja) パワー半導体モジュール、電力変換装置および鉄道車両
US9143078B2 (en) Power inverter including SiC JFETs
WO2013145854A1 (ja) 電力変換装置
WO2019030966A1 (ja) 電力変換装置及び電力変換方法
US8779710B2 (en) Inverter device
JP5546664B2 (ja) パワー半導体モジュール、電力変換装置および鉄道車両
JP2011139592A (ja) 共振型電力変換装置
US9843075B2 (en) Internal energy supply of energy storage modules for an energy storage device, and energy storage device with such an internal energy supply
JP5264863B2 (ja) パワー半導体モジュール、電力変換装置および鉄道車両
WO2014141441A1 (ja) 電流形電力変換装置
JP6105168B2 (ja) 車両用補助電源装置
JP2012191761A (ja) 交流−直流変換回路
JP5443289B2 (ja) 電力変換装置
JP2020039221A (ja) 電力変換装置及び電気車
JP2018061374A (ja) 電力変換装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016507922

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15107987

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167018469

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015000284

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2016129172

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878702

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016016384

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016016384

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160714

122 Ep: pct application non-entry in european phase

Ref document number: 15878702

Country of ref document: EP

Kind code of ref document: A1