WO2009157276A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2009157276A1
WO2009157276A1 PCT/JP2009/059999 JP2009059999W WO2009157276A1 WO 2009157276 A1 WO2009157276 A1 WO 2009157276A1 JP 2009059999 W JP2009059999 W JP 2009059999W WO 2009157276 A1 WO2009157276 A1 WO 2009157276A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
conduction
supply line
lines
Prior art date
Application number
PCT/JP2009/059999
Other languages
English (en)
French (fr)
Inventor
憲一 榊原
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP09769986.2A priority Critical patent/EP2299583B1/en
Priority to AU2009263526A priority patent/AU2009263526B2/en
Priority to KR1020127031852A priority patent/KR20120137519A/ko
Priority to CN2009801241816A priority patent/CN102077451B/zh
Priority to US13/001,096 priority patent/US9712076B2/en
Publication of WO2009157276A1 publication Critical patent/WO2009157276A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2173Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters

Definitions

  • Non-Patent Document 1 describes a direct power converter with a DC link.
  • the converter and the inverter are connected via a DC link.
  • the converter converts the AC current on the input side into a DC current and outputs it to the DC link.
  • the converter main circuit shown here cannot perform the reverse conversion, that is, convert the DC current of the DC link into AC current and output it to the input side. Therefore, the converter cannot regenerate the induced current of the inductive load generated when the inverter is shut off to the power supply side.
  • Non-Patent Document 1 a clamp capacitor is provided in the DC link, and the clamp capacitor absorbs the induced current.
  • a filter consisting of a reactor and an input capacitor is provided on the input side of the converter. Therefore, when the clamp capacitor is in a discharging state, if the converter is turned on, the input capacitor and the clamp capacitor are short-circuited with each other, and an inrush current may flow from the input capacitor to the clamp capacitor.
  • Non-Patent Document 2 describes a technique that can solve such a problem.
  • Non-Patent Document 2 describes a direct power conversion circuit with a DC link having a clamp circuit, in which a diode rectifier circuit for charging a clamp capacitor is separately provided.
  • Non-patent documents 3 and 4 are disclosed as techniques related to the present invention.
  • Japanese Patent Application No. 2007-220907 describes a direct power converter that prevents an inrush current from an input capacitor to a clamp capacitor.
  • the direct power converter two clamp capacitors connected in series with each other are provided in the DC link, and the neutral point of the power source and the clamp capacitors are connected to each other. Then, when charging the clamp capacitor, the converter is appropriately controlled to rectify the AC voltage from the power supply by double voltage rectification and supply it to the clamp capacitor.
  • Such a technique can prevent an inrush current from flowing from the input capacitor to the clamp capacitor, but requires a dedicated charging circuit (for example, a circuit that connects the neutral point of the power source and the clamp capacitor via a resistor). Therefore, the circuit scale and manufacturing cost have increased.
  • a dedicated charging circuit for example, a circuit that connects the neutral point of the power source and the clamp capacitor via a resistor. Therefore, the circuit scale and manufacturing cost have increased.
  • an object of the present invention is to provide a power conversion device that can eliminate an inrush current from a capacitor on the input side of a converter to a clamp capacitor while omitting a dedicated charging circuit.
  • a plurality of input lines (ACLr, ACLs, ACLt) to which a multiphase AC voltage is applied between the plurality of input lines and a plurality of input lines interposed between the plurality of input lines are provided.
  • Capacitors (Cr, Cs, Ct), a first DC power line (L1), a second DC power line (L2) to which a potential lower than the first DC power line is applied, and the plurality The first diodes (Drp, Dsp, Dp, Dsp,...) are provided corresponding to each of the input lines, and the anode is connected to the corresponding one of the plurality of input lines and the cathode is connected to the first DC power supply line.
  • a second diode (Drn, Dsn, Dtn) having an anode connected to the second DC power supply line side and a cathode connected to the corresponding one of the plurality of input line sides, Provided corresponding to each of the input lines, based on external signals (SSrp, SSrn; SSsp, SSsn; SStp, SStn) Conduction / non-conduction through the first diode between a plurality of input lines and the first DC power supply line, and the corresponding one of the plurality of input lines and the second DC power supply line In the state where the conduction / non-conduction through the second diode is selected and the signal is not received, the corresponding one of the plurality of input lines is brought into conduction with the first and second DC power supply lines.
  • a converter (1) having a switch unit (Trp, Tsp, Ttp, Trn, Tsn, Ttn) and clamp capacitors (Cc1, Cc2) connected between the
  • a second aspect of the power conversion device according to the present invention is the power conversion device according to the first aspect, wherein the switch section (Trp, Tsp, Ttp, Trn, Tsn, Ttn) is a junction field effect transistor. Have.
  • a fourth aspect of the power conversion device according to the present invention is the power conversion device according to the third aspect, in which the high arm side switch element (Sup, Svp, Swp) and the low arm side switch element (Sun, Svn, Swn) has an insulated gate bipolar transistor.
  • the switch unit connects the one input line and the first DC power supply line via the first diode in a state where no signal is received,
  • One input line and the second DC power supply line are connected through two diodes. Therefore, the converter functions as a rectifier circuit without receiving a signal. Therefore, for example, when a multiphase AC voltage is applied to the input line in a state where the switch unit is not receiving a signal before the power converter is activated, the DC voltage is charged to the clamp capacitor. In this case, since a voltage is applied to the capacitor and the clamp capacitor almost simultaneously, no inrush current is generated from the capacitor to the clamp capacitor.
  • the junction field effect transistor since the junction field effect transistor conducts without receiving a signal, the junction field effect transistor that is easy to configure as the switch unit can be used as it is. it can. In addition, it is possible to apply a junction field effect transistor that can be easily manufactured when a wide band gap element such as SiC or GaN is used.
  • the power storage means such as a smoothing capacitor between the first and second DC power supply lines after the voltage is charged in the clamp capacitor. It can function itself as a direct AC power converter.
  • the current returned from the voltage-side inverter can be accumulated by a clamp capacitor and can be held at a constant voltage.
  • the 4th aspect of the power converter device which concerns on this invention, it contributes to realization of the power converter device which concerns on a 3rd aspect.
  • FIG. 3 is a diagram showing a hybrid element in which a J-FET and a MOS-FET are connected in cascode connection. It is a figure which shows another example of the conceptual structure of the direct power converter which concerns on 1st Embodiment. It is a figure which shows an example of a notional structure of the direct power converter device which concerns on 2nd Embodiment. It is a figure which shows another example of the notional structure of the direct power converter device which concerns on 2nd Embodiment. It is a figure which shows an example of a notional structure of the direct power converter device which concerns on 3rd Embodiment.
  • FIG. 1 shows an example of a conceptual configuration of a direct power converter according to the first embodiment.
  • the direct power converter includes a plurality of input lines ACLr, ACLs, ACLt, reactors Lr, Ls, Lt, capacitors Cr, Cs, Ct, a current source converter 1, DC power supply lines L1, L2, and a clamp.
  • a circuit 2, a voltage source inverter 3, and a plurality of output lines ACLu, ACLv, ACLw are provided.
  • a power source E1 is connected to all of the input lines ACLr, ACLs, and ACLt.
  • the power supply E1 is a multiphase AC power supply, for example, a three-phase AC power supply.
  • the power supply E1 applies a three-phase AC voltage between the input lines ACLr, ACLs, and ACLt.
  • Reactors Lr, Ls, and Lt are provided on input lines ACLr, ACLs, and ACLt, respectively.
  • the capacitors Cr, Cs, and Ct are interposed between the input lines ACLr, ACLs, and ACLt, for example, Y-connected. That is, the capacitors Cr and Cs are connected in series between the input lines ACLr and ACLs. The capacitors Cs and Ct are connected in series between the input lines ACLs and ACLt. Capacitors Ct and Cr are connected in series between input lines ACLt and ACLr. These are provided on the input side of the current source converter 1 and function as a voltage source. On the other hand, it can be understood that the capacitors Cr, Cs, and Ct constitute a carrier current component removal filter that removes the carrier current component together with the reactors Lr, Ls, and Lt, respectively.
  • the current source converter 1 has a plurality of switch elements Sxp, Sxn (where x represents r, s, t. The same applies hereinafter).
  • the three-phase AC voltage applied between the input lines ACLr, ACLs, and ACLt is selectively supplied between the DC power supply lines L1 and L2 by the selection operation of the plurality of switch elements Sxp and Sxn.
  • a current is passed through power supply lines L1 and L2.
  • a DC voltage having the DC power supply line L1 as the high potential side and the DC power supply line L2 as the low potential side is applied between the DC power supply lines L1 and L2.
  • FIG. 2 shows a conceptual example of a specific configuration of the current source converter 1. However, FIG. 2 shows a configuration for one phase.
  • the switch element Sxp includes a transistor Txp and a high-speed diode Dxp.
  • the switch element Sxn includes a transistor Txn and a high-speed diode Dxn.
  • the anode of the high-speed diode Dxp is connected to the input line ACLx side, and the cathode is connected to the DC power supply line L1 side.
  • the anode of the high-speed diode Dxn is connected to the DC power supply line L2 side, and the cathode is connected to the input line ACLx side.
  • Transistors Txp and Txn receive an external signal, and the conduction / non-conduction is selected.
  • the transistors Txp and Txn are so-called normally-on switches that conduct in a state where they do not receive the signal.
  • the transistor Txp is provided between the input line ACLx and the anode of the high speed diode Dxp.
  • the transistor Txn is provided between the input line ACLx and the cathode of the high speed diode Dxn.
  • the transistors Txp and Txn are connected / disconnected via the high-speed diode Dxp between the input line ACLx and the DC power supply line L 1 and the input line ACLx based on an external signal. It can be grasped as a switch unit that selects conduction / non-conduction through the high-speed diode Dxn with the DC power supply line L2 and conducts the input line ACLx with the DC power supply lines L1 and L2 without receiving the signal.
  • the clamp circuit 2 includes a diode D1 and a clamp capacitor Cc1.
  • the clamp capacitor Cc1 is connected between the DC power supply lines L1 and L2.
  • the diode D1 has an anode positioned on the DC power supply line L1 side and a cathode positioned on the DC power supply line L2 side, and is connected in series with the clamp capacitor Cc1.
  • the clamp circuit 2 causes the current flowing through the DC power supply line L1 from the inductive load (for example, a motor) connected to the output lines ACLu, ACLv, and ACLw to pass through the voltage source inverter 3 to the inductive current of the inductive load. Is stored and held at a constant voltage.
  • the inductive load for example, a motor
  • the voltage source inverter 3 includes a plurality of high arm side switch elements Syp (provided that y represents u, v, and w. The same applies hereinafter) and a low arm side switch element Syn. Hereinafter, they are simply referred to as switch elements Syp and Syn.
  • the switch element Syp selects conduction / non-conduction between the DC power supply line L1 and the output line ACLy.
  • Switch element Syn selects conduction / non-conduction between DC power supply line L2 and output line ACLy. Then, the voltage between the DC power supply lines L1 and L2 is converted and output to the output lines ACLu, ACLv, and ACLw by the selection operation of the plurality of switch elements Syp and Syn.
  • FIG. 3 shows a conceptual example of a specific configuration of the voltage source inverter 3. However, FIG. 3 shows a configuration for one phase.
  • the switch element Syp includes a transistor Typ and a free wheel diode Dyp.
  • the switch element Syn includes a transistor Tyn and a free-wheeling diode Dyn.
  • the collector of the transistor Typ and the cathode of the free-wheeling diode Dyp are connected to the DC power supply line L1.
  • the emitter of the transistor Tyn and the anode of the freewheeling diode Dyn are connected to the DC power supply line L2.
  • the emitter of the transistor Typ, the collector of the transistor Tyn, the anode of the freewheeling diode Dyp, and the cathode of the freewheeling diode Dyn are commonly connected to the output line ACLy.
  • Transistors Typ and Tyn are normally-off type switches, and are, for example, insulated gate bipolar transistors (hereinafter referred to as IGBTs).
  • IGBTs insulated gate bipolar transistors
  • the diode D1 inhibits the discharge of the voltage charged in the clamp capacitor Cc1. Therefore, the direct power converter functions as a direct power converter that does not have power storage means such as a smoothing capacitor and a reactor in the DC power supply lines L1 and L2 when supplying current to the inductive load. Can do.
  • the clamp circuit 2 accumulates the current from the voltage source inverter 3 generated when, for example, the switch elements Syp and Syn are cut off, and holds the current at a constant voltage.
  • the current source converter 1 functions as a rectifier circuit when no signal is received from the outside. Therefore, for example, when a three-phase AC voltage is applied to the input lines ACLr, ACLs, and ACLt in a state where the transistors Txp and Txn are not receiving signals as in the case before the direct power converter is activated, a DC voltage is applied to the clamp capacitor Cc1. Is charged.
  • the capacitors Cr, Cs, Ct and the clamp capacitor Cc1 are connected to each other via the current source converter 1.
  • a three-phase AC voltage is applied to the input lines ACLr, ACLs, ACLt
  • voltages are applied to the clamp capacitor Cc1 and the capacitors Cr, Cs, Ct substantially simultaneously. Therefore, charging of the clamp capacitor Cc1 can be started in a state where no voltage is charged in any of the capacitors Cr, Cs, and Ct. Therefore, at the start of charging of the clamp capacitor Cc1, it is possible to prevent an inrush current from flowing from the capacitors Cr, Cs, Ct to the clamp capacitor Cc1.
  • J-FETs junction field effect transistors
  • Txp and Txn junction field effect transistors
  • the J-FET is a normally-on type switch element, and its configuration is simpler than that of an IGBT or the like.
  • FIG. 4 shows the hybrid element.
  • the J-FET 51 and the MOS-FET 52 are cascode-connected.
  • Such a hybrid element is described in Non-Patent Document 3 described above.
  • the transistors Txp and Txn are normally-on type switches in this direct power converter
  • J-FETs having a simple configuration can be used as they are as the transistors Txp and Txn. This can lead to a reduction in manufacturing costs.
  • a junction field effect transistor that can be easily manufactured can be applied when wide band gap elements such as SiC and GaN are employed as the transistors Txp and Txn. As a result, it is possible to improve the control performance and the conversion efficiency by increasing the carrier of the direct power converter.
  • FIG. 5 shows another example of the conceptual configuration of the direct power converter. Compared to the direct power converter shown in FIG. 1, the configuration of the clamp circuit 2 is different.
  • the clamp circuit 2 includes clamp capacitors Cc1 and Cc2 and diodes D1 to D3.
  • the clamp capacitors Cc1 and Cc2 are connected in series between the DC power supply lines L1 and L2.
  • the clamp capacitor Cc2 is provided on the DC power supply line L2 side with respect to the clamp capacitor Cc1.
  • the diode D1 is provided between the clamp capacitors Cc1 and Cc2, and has an anode connected to the clamp capacitor Cc1 and a cathode connected to the clamp capacitor Cc2.
  • the anode of the diode D2 is connected between the clamp capacitor Cc2 and the diode D1, and the cathode thereof is connected to the DC power supply line L1.
  • the anode of the diode D3 is connected to the DC power supply line L2, and the cathode is connected between the clamp capacitor Cc1 and the diode D1.
  • Such a clamp circuit 2 operates as follows.
  • the load current flowing therethrough may be delayed with respect to the voltage between the DC power supply lines L1 and L2, depending on the load power factor.
  • the clamp capacitors Cc1 and Cc2 are charged in series with each other.
  • the charging voltage at this time (a pair of voltages across the clamp capacitors Cc1 and Cc2) is also determined based on the load power factor.
  • the clamp capacitors Cc1 and Cc2 rises above the voltage between the DC power supply lines L1 and L2, the clamp capacitors Cc1 and Cc2 are discharged in parallel with each other. Since the clamp capacitors Cc1 and Cc2 are charged in series with each other and discharged in parallel with each other, the discharge voltage is 1 ⁇ 2 of the charge voltage.
  • the charging / discharging operation acts so that the voltages of the clamp capacitors Cc1 and Cc2 are balanced.
  • the inductive load can be driven efficiently.
  • the clamp circuit 2 does not require a so-called active element such as a switch element, power consumption and manufacturing cost can be reduced.
  • the control unit 4 is connected to both ends of the clamp capacitor Cc1, and uses the voltage across the clamp capacitor Cc1 as an operating power source.
  • the control unit 4 gives the signals SSxp and SSxn to the current source converter 1 (more specifically, the transistors Txp and Txn), and the signals SSyp and SSyn to the voltage source inverter 3 (more specifically, the transistors Typ and Tyn). give.
  • the transistors Txp, Txn, Typ, Tyn are controlled to be turned on / off based on signals SSxp, SSxn, SSyp, SSyn, respectively.
  • FIG. 7 shows another example of the conceptual configuration of the direct power converter. However, in FIG. 7, the subsequent stage is omitted from the clamp circuit 2.
  • resistors R1 and R2 are connected to both ends of the clamp capacitors Cc1 and Cc2, respectively.
  • the resistors R1 and R2 indicate the control unit 4 as a pseudo resistor.
  • the resistor R1 can be a control unit on the converter 1 side of the control unit 4, and the resistor R2 can be a control unit on the inverter 3 side. It is desirable to choose.
  • the control unit 4 uses the voltage across the clamp capacitors Cc1 and Cc2 as an operating power source. Therefore, the rectifier circuit for supplying the operation power to the control unit 4 can be omitted, and the circuit scale and manufacturing cost can be reduced.
  • FIG. 8 shows an example of a conceptual configuration of the direct power converter according to the third embodiment. However, in FIG. 8, the subsequent stage is omitted from the clamp circuit 2. Compared with the direct power converter shown in FIG. 1, resistors R3 and R4 and switches S1 and S2 are further provided.
  • the resistors R3 and R4 are provided on at least any two of the input lines ACLr, ACLs, and ACLt.
  • the resistors R3 and R4 are provided on the input lines ACLr and ACLt.
  • the switches S1, S2 are normally-off type relays, for example, and are connected in parallel with the resistors R3, R4, respectively. By causing the switches S1 and S2 to conduct after the clamp capacitor Cc1 is charged, the loss caused by the resistors R3 and R4 in the normal operation can be avoided.
  • clamp circuit 2 in FIG. 8 may be replaced with the clamp circuit 2 shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

 本発明は、コンバータの入力側のコンデンサからクランプコンデンサへと流れる突入電流を防止しつつ、専用の充電回路なしにクランプコンデンサを充電できる電力変換装置である。複数のコンデンサ(Cr,Cs,Ct)は複数の入力線(ACLr,ACLs,ACLt)の相互間に介在する。クランプコンデンサ(Cc1)は2つの直流電源線(L1,L2)の間に接続される。電流型コンバータ(1)は複数のスイッチ素子(Sxp,Sxn)(但し、xはr,s,tを代表する)を備える。スイッチ素子(Sxp,Sxn)はそれぞれダイオードとトランジスタを備えている。そして、いずれのダイオードもアノードが直流電源線(L2)側にカソードが直流電源線(L1)側に接続される。いずれのトランジスタもダイオードと直列に接続される。いずれのトランジスタもノーマリーオン型のトランジスタである。

Description

電力変換装置
 本発明は、電力変換装置に関し、特に直流リンクにクランプコンデンサを有する直接形電力変換装置に関する。
 非特許文献1には直流リンク付きの直接形電力変換装置が記載されている。当該直接形電力変換装置においてコンバータとインバータとが直流リンクを介して接続されている。
 コンバータは入力側の交流電流を直流電流に変換して直流リンクに出力する。ここで示されるコンバータ主回路はその逆の変換、即ち直流リンクの直流電流を交流電流に変換して入力側に出力することはできない。よって、インバータを遮断したときに生じる誘導性負荷の誘導電流をコンバータが電源側へ回生できない。
 そこで、非特許文献1では直流リンクにクランプコンデンサを設け、上記誘導電流をクランプコンデンサが吸収していた。
 また、コンバータの入力側にはリアクトルと入力コンデンサからなるフィルタが設けられている。よって、クランプコンデンサが放電状態にある時、コンバータが導通すると、入力コンデンサとクランプコンデンサが相互に短絡し、入力コンデンサからクランプコンデンサへと突入電流が流れる可能性があった。
 このような問題を解決することができる技術が例えば非特許文献2に記載されている。非特許文献2には、クランプ回路を有する直流リンク付きの直接形電力変換回路において、クランプコンデンサを充電するためのダイオード整流回路が別に設けられるものが記載されている。
 なお、本発明に関連する技術として非特許文献3,4が開示されている。
Lixiang Wei, T.A.Lipo, Ho Chan:"Matrix Converter Topologies With Reduced Number of Switches," Proc. of PESC 2002, vol. 1, pp 57-63(2002) J.Schonberger,T.Friedli,S.D.Round,and J.W.Kolar :"An Ultra Sparse Matrix Converter with a Novel Active Clamp Circuit", Proc. of PCC-Nagoya 2007(2007) K.Mino, S.Herold, and J. W. Kolar:" A Gate Drive Circuit for Silicon Carbide JFET.", Proc. of IECON'03 pp.1162-1166 (2003) F. Schafmeister, S. Herold, and J.W. Kolar:" Evaluation of 1200V-Si-IGBTs and 1300V-SiC-JFETs for Application in Three-Phase Very Sparse Matrix AC-AC Converter Systems."APEC'03(2003)
 特願2007-220907号の明細書には、入力コンデンサからクランプコンデンサへの突入電流を防止する直接形電力変換装置が記載されている。当該直接形電力変換装置においては、相互に直列に接続された2つのクランプコンデンサが直流リンクに設けられ、電源の中性点とクランプコンデンサの相互間とが接続されている。そして、クランプコンデンサの充電に際して、コンバータを適宜に制御して、電源からの交流電圧を倍電圧整流してクランプコンデンサに供給している。
 かかる技術は、しかしながら、入力コンデンサからクランプコンデンサへと突入電流が流れることを防止できるものの、専用の充電回路(例えば電源の中性点とクランプコンデンサを抵抗を介して接続する回路)が必要であるので、回路規模や製造コストが増大していた。
 そこで、本発明はコンバータの入力側のコンデンサからクランプコンデンサへの突入電流を防止しつつ、専用の充電回路を省略できる電力変換装置を提供することを目的とする。
 本発明に係る電力変換装置の第1の態様は、相互間に多相交流電圧が印加される複数の入力線(ACLr,ACLs,ACLt)と、前記複数の入力線の相互間に介在する複数のコンデンサ(Cr,Cs,Ct)と、第1の直流電源線(L1)と、前記第1の直流電源線よりも低い電位が印加される第2の直流電源線(L2)と、前記複数の入力線の各々に対応して設けられ、アノードが対応する一の前記複数の入力線側に、カソードが前記第1の直流電源線側にそれぞれ接続された第1のダイオード(Drp,Dsp,Dtp)と、アノードが前記第2の直流電源線側に、カソードが対応する前記一の前記複数の入力線側にそれぞれ接続された第2のダイオード(Drn,Dsn,Dtn)と、前記複数の入力線の各々に対応して設けられ、外部からの信号(SSrp,SSrn;SSsp,SSsn;SStp,SStn)に基づいて、対応する前記一の前記複数の入力線と前記第1の直流電源線との間の前記第1のダイオードを介した導通/非導通、及び対応する前記一の前記複数の入力線と前記第2の直流電源線との間の前記第2ダイオードを介した導通/非導通を選択し、前記信号を受け取らない状態で、対応する前記一の前記複数の入力線を前記第1及び前記第2の直流電源線と導通させる、スイッチ部(Trp,Tsp,Ttp,Trn,Tsn,Ttn)と、を有するコンバータ(1)と、前記第1及び前記第2の直流電源線の間で接続されるクランプコンデンサ(Cc1,Cc2)とを備える。
 本発明に係る電力変換装置の第2の態様は、第1の態様に係る電力変換装置であって、前記スイッチ部(Trp,Tsp,Ttp,Trn,Tsn,Ttn)は接合型電界効果トランジスタを有する。
 本発明に係る電力変換装置の第3の態様は、第1又は第2の態様に係る電力変換装置であって、アノードが前記第1の直流電源線(L1)側に、カソードが前記第2の直流電源線(L2)側にそれぞれ位置し、前記クランプコンデンサと直列に接続された第3のダイオード(D1)と、複数の出力線(ACLu,ACLv,ACLw)と、一の前記複数の出力線と、前記第1の直流電源線との間の導通/非導通を選択するハイアーム側スイッチ素子(Sup,Svp,Swp)と、前記一の前記複数の出力線と、前記第2の直流電源線との間の導通/非導通を選択するローアーム側スイッチ素子(Sun,Svn,Swn)とを有するインバータ(3)とを更に備える。
 本発明に係る電力変換装置の第4の態様は、第3の態様に係る電力変換装置であって、前記ハイアーム側スイッチ素子(Sup,Svp,Swp)及び前記ローアーム側スイッチ素子(Sun,Svn,Swn)は絶縁ゲートバイポーラトランジスタを有する。
 本発明に係る電力変換装置の第1の態様によれば、スイッチ部は信号を受け取らない状態で、第1のダイオードを介して一の入力線と第1の直流電源線とを接続し、第2のダイオードを介して一の入力線と第2の直流電源線とを接続する。よって、信号を受け取らない状態でコンバータは整流回路として機能する。従って、例えば電力変換装置の起動前のようにスイッチ部が信号を受け取っていない状態で入力線に多相交流電圧が印加されると、クランプコンデンサに直流電圧が充電される。この場合、コンデンサ及びクランプコンデンサには略同時に電圧が印加されるので、コンデンサからクランプコンデンサへと突入電流が生じない。
 また、専用の充電回路が不要であるので、回路規模及び製造コストを低減できる。
 本発明に係る電力変換装置の第2の態様によれば、接合型電界効果トランジスタは信号を受け取らない状態で導通するので、スイッチ部として構成が容易である接合型電界効果トランジスタをそのまま用いることができる。また、SiC、GaN等のワイドバンドギャップ素子を用いて構成する際に製作が容易な接合型電界効果トランジスタを適用することができる。
 本発明に係る電力変換装置の第3の態様によれば、クランプコンデンサに電圧が充電された後は、第1及び第2の直流電源線の間に平滑コンデンサなどの電力蓄積手段を有さない直接形交流電力変換装置として自身を機能させることができる。また、電圧側インバータから還流された電流をクランプコンデンサで蓄積し、一定の電圧に保持できる。
 本発明に係る電力変換装置の第4の態様によれば、第3の態様に係る電力変換装置の実現に寄与する。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
第1の実施の形態にかかる直接形交流電力変換装置の概念的な構成の一例を示す図である。 電流型コンバータの概念的な構成の一例を示す図である。 電圧形コンバータの概念的な構成の一例を示す図である。 J-FETとMOS-FETとがカスコート接続されたハイブリッド素子を示す図である。 第1の実施の形態に係る直接形電力変換装置の概念的な構成の他の一例を示す図である。 第2の実施の形態に係る直接形電力変換装置の概念的な構成の一例を示す図である。 第2の実施の形態に係る直接形電力変換装置の概念的な構成の他の一例を示す図である。 第3の実施の形態に係る直接形電力変換装置の概念的な構成の一例を示す図である。
 第1の実施の形態.
 図1は第1の実施の形態に係る直接形電力変換装置の概念的な構成の一例を示す。本直接形電力変換装置は、複数の入力線ACLr,ACLs,ACLtと、リアクトルLr,Ls,Ltと、コンデンサCr,Cs,Ctと、電流形コンバータ1と、直流電源線L1,L2と、クランプ回路2と、電圧形インバータ3と、複数の出力線ACLu,ACLv,ACLwとを備えている。
 入力線ACLr,ACLs,ACLtにはいずれも電源E1が接続されている。電源E1は多相交流電源であって例えば3相交流電源である。電源E1は入力線ACLr,ACLs,ACLtの相互間に3相交流電圧を印加する。
 リアクトルLr,Ls,Ltの各々は入力線ACLr,ACLs,ACLt上にそれぞれ設けられている。
 コンデンサCr,Cs,Ctは入力線ACLr,ACLs,ACLtの相互間に介在し、例えばY結線されている。即ち、コンデンサCr,Csは入力線ACLr,ACLsの間に直列に接続されている。コンデンサCs,Ctは入力線ACLs,ACLtの間に直列に接続されている。コンデンサCt,Crは入力線ACLt,ACLrの間に直列に接続される。これらは電流形コンバータ1の入力側に設けられ電圧源として機能する。他方、コンデンサCr,Cs,CtはそれぞれリアクトルLr,Ls,Ltと共にキャリヤ電流成分を除去するキャリヤ電流成分除去フィルタを構成すると把握することもできる。
 電流形コンバータ1は、複数のスイッチ素子Sxp,Sxn(但し、xはr,s,tを代表する。以下、同様。)を有している。そして、当該複数のスイッチ素子Sxp,Sxnの選択動作によって、入力線ACLr,ACLs,ACLtの間に印加される3相交流電圧を選択的に直流電源線L1,L2の間に供給することで直流電源線L1,L2に電流を流す。これによって、直流電源線L1を高電位側、直流電源線L2を低電位側とする直流電圧が直流電源線L1,L2の間に印加される。
 図2は電流形コンバータ1の具体的な構成の概念的な一例を示す。但し、図2においては1つの相についての構成を示している。スイッチ素子SxpはトランジスタTxpと高速ダイオードDxpとを備えている。スイッチ素子SxnはトランジスタTxnと高速ダイオードDxnとを備えている。
 高速ダイオードDxpのアノードが入力線ACLx側に、そのカソードが直流電源線L1側にそれぞれ接続されている。高速ダイオードDxnのアノードが直流電源線L2側に、そのカソードが入力線ACLx側にそれぞれ接続されている。
 トランジスタTxp,Txnは外部の信号を受けてその導通/非導通が選択される。トランジスタTxp,Txnは当該信号を受けない状態で導通する、いわゆるノーマリーオン型のスイッチである。トランジスタTxpは入力線ACLxと高速ダイオードDxpのアノードとの間に設けられている。トランジスタTxnは入力線ACLxと高速ダイオードDxnのカソードとの間に設けられている。
 このような電流形コンバータ1において、トランジスタTxp,Txnは、外部の信号に基づいて、入力線ACLxと直流電源線L1との間の高速ダイオードDxpを介した導通/非導通、及び入力線ACLxと直流電源線L2との間の高速ダイオードDxnを介した導通/非導通を選択し、当該信号を受けない状態で入力線ACLxを直流電源線L1,L2と導通させるスイッチ部と把握できる。
 クランプ回路2はダイオードD1とクランプコンデンサCc1とを備えている。クランプコンデンサCc1は直流電源線L1,L2の間で接続される。ダイオードD1は、そのアノードが直流電源線L1側に、そのカソードが直流電源線L2側に位置し、クランプコンデンサCc1と直列に接続されている。
 クランプ回路2は、出力線ACLu,ACLv,ACLwに接続される誘導性負荷(例えばモータ)から電圧形インバータ3を介して直流電源線L1を流れる電流を自身に流して、誘導性負荷の誘導電流を蓄積し、一定の電圧に保持する。
 電圧形インバータ3は、複数のハイアーム側スイッチ素子Syp(但し、yはu,v,wを代表する。以下、同様。)と、ローアーム側スイッチ素子Synを有している。以下では、単にスイッチ素子Syp,Synと呼ぶ。スイッチ素子Sypは直流電源線L1と出力線ACLyとの間の導通/非導通を選択する。スイッチ素子Synは直流電源線L2と出力線ACLyとの間の導通/非導通を選択する。そして、これら複数のスイッチ素子Syp,Synの選択動作によって、直流電源線L1,L2の間の電圧を変換して出力線ACLu,ACLv,ACLwに出力する。
 図3は電圧形インバータ3の具体的な構成の概念的な一例を示す。但し、図3においては1つの相についての構成を示している。スイッチ素子SypはトランジスタTypと還流ダイオードDypとを備えている。スイッチ素子SynはトランジスタTynと還流ダイオードDynとを備えている。
 トランジスタTypのコレクタおよび還流ダイオードDypのカソードは直流電源線L1に接続されている。トランジスタTynのエミッタおよび還流ダイオードDynのアノードは直流電源線L2に接続されている。トランジスタTypのエミッタおよびトランジスタTynのコレクタおよび還流ダイオードDypのアノードおよび還流ダイオードDynのカソードは共通して出力線ACLyに接続されている。
 トランジスタTyp,Tynはノーマリーオフ型のスイッチであって、例えば絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、以下、IGBTと呼ぶ)である。
 このような直接形電力変換装置において、ダイオードD1はクランプコンデンサCc1に充電された電圧の放電を阻害する。よって、本直接形電力変換装置は、誘導性負荷へと電流を供給するに際して、直流電源線L1,L2に平滑コンデンサやリアクトルなどの電力蓄積手段を有さない直接形電力変換装置として機能することができる。なお、クランプ回路2は例えばスイッチ素子Syp,Synを遮断した場合に生じる電圧形インバータ3からの電流を蓄積し、一定の電圧に保持する。
 次に本直流形電力変換装置のクランプコンデンサCc1の充電に関する作用について説明する。
 トランジスタTxp,Txnはノーマリーオン型のスイッチであるので、外部から信号を受けていない状態で電流形コンバータ1は整流回路として機能する。よって、例えば直接形電力変換装置の起動前のようにトランジスタTxp,Txnが信号を受けていない状態で入力線ACLr,ACLs,ACLtに3相交流電圧が印加されると、クランプコンデンサCc1に直流電圧が充電される。
 このとき、コンデンサCr,Cs,CtとクランプコンデンサCc1とは電流形コンバータ1を介して相互に接続されている。入力線ACLr,ACLs,ACLtに3相交流電圧が印加されると、クランプコンデンサCc1とコンデンサCr,Cs,Ctには略同時に電圧が印加される。よって、コンデンサCr,Cs,Ctの何れにも電圧が充電されていない状態で、クランプコンデンサCc1の充電を開始できる。従って、クランプコンデンサCc1の充電の開始に際して、コンデンサCr,Cs,CtからクランプコンデンサCc1へと突入電流が流れることを防止できる。
 また、コンデンサCr,Cs,CtからクランプコンデンサCc1への突入電流を回避しつつも、クランプコンデンサCc1を充電するための専用の充電回路が不要であるので、回路規模及び製造コストを低減できる。
 また、図2においてはトランジスタTxp,Txnとして接合型電解効果トランジスタ(Junction Field Effect Transistor、以下、J-FETと呼ぶ。)を採用している。J-FETはノーマリーオン型のスイッチ素子であって、その構成がIGBTなどに比べて、簡易である。
 なお、従来ではトランジスタTxp,Txnとしてノーマリーオフ型のスイッチ素子を採用していた。よって、従来ではノーマリーオン型のJ-FETを採用するために、これとMOS-FET(metal-oxide-semiconductor field-effect transistor)とをカスコード接続していた。図4は当該ハイブリッド素子を示している。J-FET51とMOS-FET52とがカスコード接続されている。このようなハイブリッド素子は上述した非特許文献3に記載されている。
 一方、本直接形電力変換装置ではトランジスタTxp,Txnはノーマリーオン型のスイッチであるので、トランジスタTxp,Txnとして簡易な構成であるJ-FETをそのまま採用することができる。これによって、製造コストの低減を招来できる。また、トランジスタTxp,TxnとしてSiC、GaN等のワイドバンドギャップ素子を採用する際に製作が容易な接合型電界効果トランジスタを適用することができる。これによって直接形電力変換装置の高キャリヤ化による制御性能および、変換効率を向上することができる。
 図5は直接形電力変換装置の概念的な構成の他の一例を示している。図1に示す直接形電力変換装置と比較して、クランプ回路2の構成が相違している。
 クランプ回路2はクランプコンデンサCc1,Cc2とダイオードD1~D3とを備えている。クランプコンデンサCc1,Cc2は直流電源線L1,L2の間で相互に直列に接続されている。クランプコンデンサCc2はクランプコンデンサCc1に対して直流電源線L2側に設けられている。
 ダイオードD1は、クランプコンデンサCc1,Cc2の間に設けられ、そのアノードがクランプコンデンサCc1に、そのカソードがクランプコンデンサCc2にそれぞれ接続されている。ダイオードD2のアノードがクランプコンデンサCc2とダイオードD1との間に、そのカソードが直流電源線L1にそれぞれ接続されている。ダイオードD3のアノードが直流電源線L2に、そのカソードがクランプコンデンサCc1とダイオードD1との間にそれぞれ接続されている。
 このようなクランプ回路2は次のように作用する。電圧形インバータ3側に例えば誘導性負荷が接続された場合、これに流れる負荷電流は、その負荷力率に依存して、直流電源線L1,L2の間の電圧に対して遅れる場合がある。この場合には誘導性負荷から直流電源線L1へと還流電流が流れる期間が存在し、クランプコンデンサCc1,Cc2は相互に直列状態で充電される。このときの充電電圧(クランプコンデンサCc1,Cc2の一組の両端電圧)も負荷力率に基づいて決定される。他方、クランプコンデンサCc1,Cc2の各々の両端電圧が、直流電源線L1,L2の間の電圧より上昇すると、クランプコンデンサCc1,Cc2は相互に並列状態で放電する。なお、クランプコンデンサCc1,Cc2は相互に直列状態で充電し、相互に並列状態で放電することから、放電電圧は充電電圧の1/2である。
 このような充放電動作によりクランプコンデンサCc1,Cc2の電圧が平衡するように作用する。
 以上のように、誘導性負荷からの還流電流を充電し、また放電して誘導性負荷へと再び供給することができるので、誘導性負荷を効率よく駆動できる。また、クランプ回路2はスイッチ素子等のいわゆるアクティブ素子を必要としていないので、消費電力や製造コストを低減できる。
 第2の実施の形態.
 図6は第2の実施の形態に係る直接形電力変換装置の概念的な構成の一例を示す。図1に示す直接形電力変換装置と比較して、制御部4を更に備えている。
 制御部4はクランプコンデンサCc1の両端と接続され、クランプコンデンサCc1の両端電圧を動作電源として用いる。制御部4は電流形コンバータ1(より具体的にはトランジスタTxp,Txn)へと信号SSxp,SSxnを与え、電圧形インバータ3(より具体的にはトランジスタTyp,Tyn)へと信号SSyp,SSynを与える。
 トランジスタTxp,Txn,Typ,Tynはそれぞれ信号SSxp,SSxn,SSyp,SSynに基づいてその導通/非導通が制御される。
 このような直接形電力変換装置によれば、制御部4へと動作電源を与える整流回路を省略できるので回路規模や製造コストを低減できる。
 図7は直接形電力変換装置の概念的な構成の他の一例を示す。但し、図7においてはクランプ回路2よりも後段を省略して示している。図5に示す直接形電力変換装置と比較して、クランプコンデンサCc1,Cc2の両端にそれぞれ抵抗R1、R2が接続されている。当該抵抗R1、R2は制御部4を擬似的に抵抗として示したものである。例えば、抵抗R1は制御部4のうち、コンバータ1側の制御部、抵抗R2はインバータ3側の制御部とすることができ、抵抗R1,R2でそれぞれ示される制御部がほぼ等しい負荷となるよう選択することが望ましい。
 制御部4はクランプコンデンサCc1,Cc2の両端電圧を動作電源として用いる。よって制御部4へと動作電源を与える整流回路を省略でき、以て回路規模や製造コストを低減できる。
 第3の実施の形態.
 図8は第3の実施の形態に係る直接形電力変換装置の概念的な構成の一例を示す。但し、図8においてはクランプ回路2よりも後段を省略して示している。図1に示す直接形電力変換装置と比較して抵抗R3,R4、スイッチS1,S2を更に備えている。
 抵抗R3,R4は入力線ACLr,ACLs,ACLtの少なくとも何れか二つに設けられている。例えば抵抗R3,R4は入力線ACLr,ACLt上に設けられている。
 これによって、クランプコンデンサCc1の充電に際して電源E1からクランプコンデンサCc1へと流れる電流が抵抗R3,R4を介すので、電源E1からクランプコンデンサCc1へと流れる突入電流を低減できる。よって、例えばクランプコンデンサCc1として電気容量の大きい電解コンデンサを採用しても、突入電流が問題にならない。
 スイッチS1,S2は例えばノーマリーオフ形のリレーであって、それぞれ抵抗R3,R4と並列に接続されている。クランプコンデンサCc1が充電された後にスイッチS1,S2を導通させることで、通常運転において抵抗R3,R4で生じる損失を回避できる。
 なお、図8におけるクランプ回路2を、図5に示すクランプ回路2に置き換えてもよい。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。

Claims (4)

  1.  相互間に多相交流電圧が印加される複数の入力線(ACLr,ACLs,ACLt)と、
     前記複数の入力線の相互間に介在する複数のコンデンサ(Cr,Cs,Ct)と、
     第1の直流電源線(L1)と、
     前記第1の直流電源線よりも低い電位が印加される第2の直流電源線(L2)と、
     前記複数の入力線の各々に対応して設けられ、アノードが対応する一の前記複数の入力線側に、カソードが前記第1の直流電源線側にそれぞれ接続された第1のダイオード(Drp,Dsp,Dtp)と、アノードが前記第2の直流電源線側に、カソードが対応する前記一の前記複数の入力線側にそれぞれ接続された第2のダイオード(Drn,Dsn,Dtn)と、前記複数の入力線の各々に対応して設けられ、外部からの信号(SSrp,SSrn;SSsp,SSsn;SStp,SStn)に基づいて、対応する前記一の前記複数の入力線と前記第1の直流電源線との間の前記第1のダイオードを介した導通/非導通、及び対応する前記一の前記複数の入力線と前記第2の直流電源線との間の前記第2ダイオードを介した導通/非導通を選択し、前記信号を受け取らない状態で、対応する前記一の前記複数の入力線を前記第1及び前記第2の直流電源線と導通させる、スイッチ部(Trp,Tsp,Ttp,Trn,Tsn,Ttn)と、を有するコンバータ(1)と、
     前記第1及び前記第2の直流電源線の間で接続されるクランプコンデンサ(Cc1,Cc2)と
    を備える、電力変換装置。
  2.  前記スイッチ部(Trp,Tsp,Ttp,Trn,Tsn,Ttn)は接合型電界効果トランジスタを有する、請求項1に記載の電力変換装置。
  3.  アノードが前記第1の直流電源線(L1)側に、カソードが前記第2の直流電源線(L2)側にそれぞれ位置し、前記クランプコンデンサと直列に接続された第3のダイオード(D1)と、
     複数の出力線(ACLu,ACLv,ACLw)と、
     一の前記複数の出力線と、前記第1の直流電源線との間の導通/非導通を選択するハイアーム側スイッチ素子(Sup,Svp,Swp)と、前記一の前記複数の出力線と、前記第2の直流電源線との間の導通/非導通を選択するローアーム側スイッチ素子(Sun,Svn,Swn)とを有するインバータ(3)と
    を更に備える、請求項1又は2に記載の電力変換装置。
  4.  前記ハイアーム側スイッチ素子(Sup,Svp,Swp)及び前記ローアーム側スイッチ素子(Sun,Svn,Swn)は絶縁ゲートバイポーラトランジスタを有する、請求項3に記載の電力変換装置。
PCT/JP2009/059999 2008-06-27 2009-06-01 電力変換装置 WO2009157276A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09769986.2A EP2299583B1 (en) 2008-06-27 2009-06-01 Electric power conversion device
AU2009263526A AU2009263526B2 (en) 2008-06-27 2009-06-01 Power converter
KR1020127031852A KR20120137519A (ko) 2008-06-27 2009-06-01 전력 변환 장치
CN2009801241816A CN102077451B (zh) 2008-06-27 2009-06-01 电力转换装置
US13/001,096 US9712076B2 (en) 2008-06-27 2009-06-01 Power converter with clamp capacitor on DC power supply line

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008168490A JP4375489B1 (ja) 2008-06-27 2008-06-27 電力変換装置
JP2008-168490 2008-06-27

Publications (1)

Publication Number Publication Date
WO2009157276A1 true WO2009157276A1 (ja) 2009-12-30

Family

ID=41444346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059999 WO2009157276A1 (ja) 2008-06-27 2009-06-01 電力変換装置

Country Status (7)

Country Link
US (1) US9712076B2 (ja)
EP (1) EP2299583B1 (ja)
JP (1) JP4375489B1 (ja)
KR (2) KR20100134134A (ja)
CN (1) CN102077451B (ja)
AU (1) AU2009263526B2 (ja)
WO (1) WO2009157276A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2953662B1 (fr) * 2009-12-03 2011-11-18 Schneider Toshiba Inverter Convertisseur de puissance a source de courant utilisant des transistors a effet de champ normalement fermes
JP5749638B2 (ja) * 2011-12-08 2015-07-15 アイダエンジニアリング株式会社 プレス機械の電源装置
JP5429316B2 (ja) * 2012-03-02 2014-02-26 ダイキン工業株式会社 インダイレクトマトリックスコンバータ
JP5533945B2 (ja) * 2012-06-15 2014-06-25 株式会社安川電機 電力変換装置
BR112015006785B1 (pt) * 2012-09-27 2021-09-28 Daikin Industries, Ltd. Conversor de potência de ca direta
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US20140156099A1 (en) * 2012-12-05 2014-06-05 Cummins Power Generation, Inc. Generator power systems with active and passive rectifiers
KR101985079B1 (ko) * 2016-07-04 2019-05-31 숭실대학교산학협력단 전기자동차용 캐스코드 컨버터 및 그 구동방법
EP3726719A1 (en) * 2019-04-15 2020-10-21 Infineon Technologies Austria AG Power converter and power conversion method
US11394264B2 (en) 2020-01-21 2022-07-19 Itt Manufacturing Enterprises Llc Motor assembly for driving a pump or rotary device with a low inductance resistor for a matrix converter
US11451156B2 (en) 2020-01-21 2022-09-20 Itt Manufacturing Enterprises Llc Overvoltage clamp for a matrix converter
JP2021116378A (ja) * 2020-01-28 2021-08-10 Jnc株式会社 シロキサンポリマー及びシロキサンポリマーの製造方法
WO2022070867A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 電力変換装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314081A (ja) * 2000-04-28 2001-11-09 Sanken Electric Co Ltd Ac−dcコンバータ
JP2007295686A (ja) * 2006-04-24 2007-11-08 Daikin Ind Ltd 直接形交流電力変換装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2903863B2 (ja) * 1992-05-29 1999-06-14 三菱電機株式会社 インバータ装置
CN1040272C (zh) * 1995-03-15 1998-10-14 松下电工株式会社 逆变装置
SE510404C2 (sv) 1995-11-03 1999-05-17 Ericsson Telefon Ab L M Anordning och förfaranden för att mata energi från en växelspänningskälla
JPH09266695A (ja) * 1996-03-28 1997-10-07 Mitsubishi Electric Corp 周波数変換装置
US5943223A (en) * 1997-10-15 1999-08-24 Reliance Electric Industrial Company Electric switches for reducing on-state power loss
CN2415540Y (zh) * 2000-01-24 2001-01-17 南京航空航天大学 零电压零电流开关的三电平直流变换器
US20050040792A1 (en) * 2003-08-18 2005-02-24 Rajendran Nair Method & apparatus for charging, discharging and protection of electronic battery cells
DE102004035799A1 (de) * 2004-07-23 2006-03-16 Siemens Ag Frequenzumrichter mit einem kondensatorlosen Zwischenkreis
JP3772898B2 (ja) * 2004-09-08 2006-05-10 ダイキン工業株式会社 多相電流供給回路及び駆動装置
US7148660B2 (en) * 2004-09-30 2006-12-12 General Electric Company System and method for power conversion using semiconductor switches having reverse voltage withstand capability
US7492616B2 (en) 2005-03-25 2009-02-17 Lineage Power Corporation Modulation controller, method of controlling and three phase converter system employing the same
US8144149B2 (en) 2005-10-14 2012-03-27 Via Technologies, Inc. System and method for dynamically load balancing multiple shader stages in a shared pool of processing units
JP2009117613A (ja) * 2007-11-06 2009-05-28 Toshiba Corp 半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314081A (ja) * 2000-04-28 2001-11-09 Sanken Electric Co Ltd Ac−dcコンバータ
JP2007295686A (ja) * 2006-04-24 2007-11-08 Daikin Ind Ltd 直接形交流電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2299583A4 *

Also Published As

Publication number Publication date
EP2299583B1 (en) 2024-05-15
KR20100134134A (ko) 2010-12-22
JP4375489B1 (ja) 2009-12-02
AU2009263526A1 (en) 2009-12-30
EP2299583A1 (en) 2011-03-23
US9712076B2 (en) 2017-07-18
KR20120137519A (ko) 2012-12-21
AU2009263526B2 (en) 2013-08-22
EP2299583A4 (en) 2017-08-16
US20110134663A1 (en) 2011-06-09
CN102077451B (zh) 2013-09-04
CN102077451A (zh) 2011-05-25
JP2010011646A (ja) 2010-01-14

Similar Documents

Publication Publication Date Title
JP4375489B1 (ja) 電力変換装置
US8310848B2 (en) Direct AC power converting apparatus
JP4772542B2 (ja) 電力変換装置
AU2008292604B2 (en) Direct type AC power converting device
JP5933873B1 (ja) 回生コンバータ
US20070053213A1 (en) Wide-voltage-range converter
JP6421882B2 (ja) 電力変換装置
JP6467524B2 (ja) 電力変換装置および鉄道車両
CN111835215A (zh) 转换器电路、电力转换系统以及电动机驱动装置
JP2016127677A (ja) 電力変換装置
US9300208B2 (en) Power converter with switched current supply control element
WO2005029690A1 (ja) Pwmサイクロコンバータ
JPWO2019202862A1 (ja) ゲート駆動回路および電力変換装置
JP2022183645A (ja) 電力変換装置
JP2001037245A (ja) 電力変換装置とその制御装置
JP2013027182A (ja) 電力変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124181.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107026541

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009769986

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009263526

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13001096

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009263526

Country of ref document: AU

Date of ref document: 20090601

Kind code of ref document: A