WO2016110123A1 - 一种非水电解液及锂离子二次电池 - Google Patents

一种非水电解液及锂离子二次电池 Download PDF

Info

Publication number
WO2016110123A1
WO2016110123A1 PCT/CN2015/089149 CN2015089149W WO2016110123A1 WO 2016110123 A1 WO2016110123 A1 WO 2016110123A1 CN 2015089149 W CN2015089149 W CN 2015089149W WO 2016110123 A1 WO2016110123 A1 WO 2016110123A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
lithium
electrolyte
battery
structural formula
Prior art date
Application number
PCT/CN2015/089149
Other languages
English (en)
French (fr)
Inventor
石桥
林木崇
谌谷春
胡时光
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2016110123A1 publication Critical patent/WO2016110123A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of lithium ion battery electrolytes, and more particularly to a nonaqueous electrolyte which can be used in a lithium ion secondary battery and a lithium ion secondary battery using the same.
  • lithium-ion batteries Compared with other batteries, lithium-ion batteries have the advantages of light weight, small size, high operating voltage, high energy density, high output power, high charging efficiency, no memory effect and long cycle life. They have become 3C batteries and power. The first choice for car batteries. In the past decade, the steady growth of 3C batteries has driven the rapid development of the lithium battery industry. Lithium-ion secondary batteries in the 3C field are required to have higher specific energy density, good cycle performance and high temperature performance. In the field of power vehicles, power lithium-ion batteries are required to have excellent high and low temperature performance, long life cycle performance, and long-term storage. Features of performance and safety performance.
  • Lithium cobaltate material has been the preferred cathode material for lithium-ion batteries in the 3C field due to its high specific energy density and good cycle performance, but the disadvantage of lithium cobalt oxide as a cathode material is its poor safety and high price.
  • the ternary nickel-cobalt-manganese material and lithium iron phosphate material have become the mainstream cathode materials for power lithium-ion batteries due to their excellent cycle performance and safety; the ternary material-powered lithium-ion battery has high energy density, excellent ambient temperature cycle and low temperature performance.
  • the advantages of good safety are that the high temperature performance is insufficient.
  • the lithium iron phosphate battery power lithium ion battery has the advantages of excellent cycle performance and high temperature performance, and excellent safety.
  • the disadvantage is that the low temperature performance is insufficient and the energy density is low.
  • the electrolyte is a key factor affecting the electrochemical performance of the battery.
  • the additives in the electrolyte play an important role in the performance of the battery.
  • lithium cobalt oxide batteries are commonly used in the 3C field, and more and more high-voltage lithium cobalt oxide batteries are used.
  • batteries are increasingly required to have higher capacity, which requires the positive and negative surface density and compaction density of the battery to be continuously increased, which leads to an increase in the impedance of the battery. .
  • vinylene carbonate (VC), methylene ethylene carbonate or vinyl ethylene carbonate is generally selected as a film forming additive in the electrolyte. Because these three types of additives can form an excellent SEI film in the graphite negative electrode when the battery is first charged, the SEI film has good compactness and good thermal stability, and can obviously inhibit the reductive decomposition of the electrolyte in the negative electrode, thereby greatly improving the cycle.
  • the stability of the negative electrode which greatly improves the cycle life of the battery, especially high The cycle life of the temperature.
  • the invention provides a non-aqueous electrolyte which can be used in a lithium ion secondary battery, which has excellent normal temperature and high temperature cycle performance, low impedance, low temperature performance and high temperature performance; and on the basis of the above, A lithium ion secondary battery using the nonaqueous electrolyte, which has excellent overall performance.
  • a lithium ion secondary battery nonaqueous electrolyte comprising a nonaqueous organic solvent, a lithium salt, and further comprising the following (A) and (B):
  • R 1 to R 12 are each independently selected from a hydrogen atom, a halogen or an alkyl group having 1 to 5 carbon atoms.
  • the (A) is from 0.1% to 5% by weight based on the total weight of the electrolyte.
  • the (B) is from 0.2% to 5% by weight based on the total weight of the electrolyte.
  • the ratio between the total weight of the electrolyte (A) and the total weight of the electrolyte (B) is greater than or equal to 0.2.
  • the (B) is at least one compound selected from the group consisting of vinylene carbonate, vinyl methyl carbonate, and vinyl vinyl carbonate.
  • At least one compound of 1,3-propane sultone, 1,4-butane sultone and 1,3-propene sultone is further included.
  • the non-aqueous organic solvent is selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and methyl propyl carbonate. kind or more than two.
  • the lithium salt is selected from the group consisting of lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium difluorooxalate borate, lithium bis(trifluoromethylsulfonyl)imide, and bisfluorosulfonimide.
  • the lithium salts are selected from the group consisting of lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium difluorooxalate borate, lithium bis(trifluoromethylsulfonyl)imide, and bisfluorosulfonimide.
  • lithium salts is selected from the group consisting of lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium difluorooxalate borate, lithium bis(trifluoromethylsulfonyl)imide, and bisfluorosulfonimide.
  • a lithium ion secondary battery comprising a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and further comprising the nonaqueous electrolyte according to the first aspect.
  • the structural formula of the active material of the positive electrode is selected from the group consisting of:
  • LiNi x Co y Mn z L (1-xyz) O 2 where 0.2 ⁇ x ⁇ 0.8, 0 ⁇ y ⁇ 0.8, 0 ⁇ z ⁇ 0.8, L is Al, Sr, Mg, Ti, Ca, Zr, Zn , Si or Fe; or LiFe x Mn 1-x PO 4 , wherein 0 ⁇ x ⁇ 1; or LiCo x M 1-x O 2 , wherein 0 ⁇ x ⁇ 1, M is Al, Sr, Mg, Ti , Ca, Zr, Zn, Si or Fe.
  • the non-aqueous electrolyte of the present invention contains methanesulfonic anhydride, which can form an SEI film on the negative electrode, and the formed SEI film has low impedance, ensuring excellent low-temperature performance and high-temperature performance of the lithium ion battery; VC in the electrolyte, Methylene vinyl carbonate or vinyl ethylene carbonate can form an excellent SEI film on the negative electrode, ensuring excellent normal temperature and high temperature cycle performance of the lithium ion battery, and therefore the nonaqueous electrolyte of the present invention has excellent lithium ion battery.
  • the cycle performance, lower impedance, excellent low temperature performance and high temperature performance benefits are examples of the cycle performance, lower impedance, excellent low temperature performance and high temperature performance benefits.
  • sulfonic anhydrides mentioned in these patents are generally used to improve high temperature performance and cycle performance. There is no mention of the effect of sulfonic anhydride on lowering the impedance, and there is no mention of the use of methyl sulfonic anhydride to reduce impedance and improve battery performance. .
  • the invention differs from the patents CN200610088591.8 and JP3760539 in that the innovative choice of methylsulfonic anhydride as a lithium battery electrolyte additive reduces the battery impedance, and among the similar substances of the sulfonic anhydride, only the methylsulfonic anhydride has The effect of reducing the battery impedance is because the organic group of the methanesulfonic anhydride is the smallest.
  • the use of methyl sulfonic anhydride as an additive in the electrolyte not only reduces the battery resistance, but also improves the high and low temperature performance and cycle performance of the battery, especially the high temperature cycle performance.
  • the key point of the present invention is that after the inventors added methanesulfonic anhydride to a non-aqueous electrolyte containing an additive such as vinylene carbonate, it was surprisingly found that methanesulfonic anhydride can significantly reduce the additives such as vinylene carbonate.
  • the problem of high battery impedance That is to say, the inventors have obtained a non-aqueous electrolyte capable of lowering the impedance of the battery by using an additive such as methanesulfonic anhydride and vinylene carbonate, thereby obtaining excellent low temperature while ensuring excellent cycle performance of the battery. Performance and high temperature performance.
  • the nonaqueous electrolytic solution in one embodiment of the present invention comprises a nonaqueous organic solvent, a lithium salt, and the following compounds (A) and (B):
  • R 1 to R 12 are each independently selected from a hydrogen atom, a halogen or an alkyl group having 1 to 5 carbon atoms.
  • the above compound (B) is at least one compound selected from the group consisting of vinylene carbonate, vinylene carbonate, and vinyl ethylene carbonate.
  • the above compound (B) is an additive commonly used in a non-aqueous electrolyte to form an SEI film, and their addition can improve the cycle performance of the battery, especially the high-temperature cycle performance, but the SEI film formed by the decomposition thereof has a large impedance, which directly leads to The overall impedance of the battery is increased, resulting in significant deterioration in low temperature performance and rate charge and discharge performance.
  • the addition of methanesulfonic anhydride can lower the impedance and improve the low temperature performance and the high temperature performance.
  • the methylsulfonic anhydride represented by Structural Formula 1 accounts for 0.1% to 5% of the total weight of the electrolyte, and when the methylsulfonic anhydride content is less than 0.1%, the film forming effect is poor and cannot be effective.
  • the battery impedance is lowered; when the content is more than 5%, the SEI film formed on the negative electrode is thicker, which in turn increases the battery impedance and deteriorates the battery performance.
  • the compound (B) is from 0.2% to 5% by weight based on the total weight of the electrolyte.
  • the content of the compound (B) is less than 0.2%, the SEI film formed on the negative electrode is thin, not dense enough, and has a poor self-repairing ability during the cycle, and does not have an improvement effect on the circulation; when the content is more than 5% At the time, the impedance of the battery is significantly increased, resulting in a serious deterioration of the low temperature performance of the battery.
  • the ratio of the total weight of the compound (A) to the total weight of the compound (B) to the total weight of the electrolyte is greater than or equal to 0.2.
  • the ratio is less than 0.2, the methyl group is indicated.
  • the content of sulfonic anhydride is low, which does not improve the impedance and does not improve the low temperature performance and high temperature performance.
  • the ratio should not be too high. If it is too high, it may indicate that the content of compound (B) is insufficient, resulting in a thinner SEI film formed in the negative electrode, which is not dense enough, and has poor self-repairing ability during cycling, which is not effective for circulation. The improvement that should be made.
  • the non-aqueous electrolyte further comprises one or two of 1,3-propane sultone, 1,4-butane sultone and 1,3-propene sultone. More than one species. These compounds generally have a function of forming a film in the positive and negative electrodes, and can effectively suppress the swelling of the battery after high-temperature storage and improve the high-temperature performance.
  • the non-aqueous organic solvent in the present invention is one or two selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and methylpropyl carbonate. the above.
  • the lithium salt electrolyte in the present invention is selected from the group consisting of lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium difluorooxalate borate, lithium bis(trifluoromethylsulfonyl)imide and lithium bisfluorosulfonimide. One or two or more.
  • the active material of the positive electrode of the lithium ion secondary battery is selected from the group consisting of:
  • LiNi x Co y Mn z L (1-xyz) O 2 where 0.2 ⁇ x ⁇ 0.8, 0 ⁇ y ⁇ 0.8, 0 ⁇ z ⁇ 0.8, L is Al, Sr, Mg, Ti, Ca, Zr, Zn , Si or Fe, for example, LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 or the like, preferably LiNi 1/3 Mn 1/3 Co 1/3 O 2 ; or LiFe x Mn 1-x PO 4 , wherein 0 ⁇ x ⁇ 1, preferably LiFePO 4 ; or LiCo x M 1-x O 2 , wherein 0 ⁇ x ⁇ 1, M is Al, Sr, Mg, Ti, Ca, Zr, Zn, Si or Fe is preferably LiCoO 2 .
  • the preparation method of the lithium ion battery of the embodiment includes a positive electrode preparation step, a negative electrode preparation step, an electrolyte preparation step, a separator preparation step, and a battery assembly step.
  • the positive electrode preparation step is: mixing the positive active material LiNi 1/3 Mn 1/3 Co 1/3 O 2 , the conductive carbon black and the binder polyvinylidene fluoride according to a mass ratio of 96.8:2.0:1.2, dispersed in In the N-methyl-2-pyrrolidone, a positive electrode slurry is obtained, and the positive electrode slurry is uniformly coated on both sides of the aluminum foil, dried, calendered, and vacuum dried, and the aluminum lead wire is welded by an ultrasonic welder to obtain a positive electrode.
  • the thickness of the plates and plates is between 120 and 150 ⁇ m.
  • the preparation step of the negative electrode is: mixing graphite, conductive carbon black, binder styrene butadiene rubber and carboxymethyl cellulose in a mass ratio of 96:1:1.2:1.8, dispersing in deionized water to obtain a negative electrode slurry, The negative electrode slurry is coated on both sides of the copper foil, dried, calendered and vacuum dried, and welded with nickel by an ultrasonic welder. After the lead wire is taken out, a negative electrode plate is obtained, and the thickness of the electrode plate is between 120 and 150 ⁇ m.
  • Lithium hexafluorophosphate was added with 0.2 wt% of vinylene carbonate and 0.1 wt% of methanesulfonic anhydride based on the total weight of the electrolyte.
  • the separator is prepared by using a three-layer separator of polypropylene, polyethylene and polypropylene and having a thickness of 20 ⁇ m.
  • the battery assembly step is: placing a three-layer separator having a thickness of 20 ⁇ m between the positive electrode plate and the negative electrode plate, and then winding the sandwich structure composed of the positive electrode plate, the negative electrode plate and the separator, and then squashing the wound body and placing it
  • the lead wires of the positive and negative electrodes are respectively welded to the corresponding positions of the cover plate, and the cover plate and the metal shell are welded together by a laser welding machine to obtain the battery core to be injected;
  • the electrolyte is injected into the cell through the injection hole, and the amount of the electrolyte is required to fill the gap in the cell.
  • 500th cycle capacity retention rate (%) (500th cycle discharge capacity / first cycle discharge capacity) ⁇ 100%;
  • 500th cycle capacity retention rate (%) (500th cycle discharge capacity / first cycle discharge capacity) ⁇ 100%;
  • High-temperature storage performance The battery after the formation is filled with 1C constant current and constant voltage at normal temperature, and the initial discharge capacity of the battery is measured, and then stored at 60 ° C for 30 days, and then discharged to 3.0 V at 1 C (for lithium iron phosphate battery, put To 2.0V), measure the battery's holding capacity and recovery capacity. Calculated as follows:
  • Battery capacity retention rate (%) retention capacity / initial capacity ⁇ 100%;
  • Battery capacity recovery rate (%) recovery capacity / initial capacity ⁇ 100%.
  • the low temperature discharge efficiency value of -20 ° C 1 C discharge capacity (-20 ° C) / 1 C discharge capacity (25 ° C).
  • Charge DCIR value slope value of a linear plot of different charge currents and corresponding cutoff voltages.
  • Discharge DCIR value slope value of a linear plot of different discharge currents and corresponding cutoff voltages.
  • Example 2 the same as Example 1 except that the additive composition, the content (based on the total weight of the electrolyte) and the positive electrode material were as shown in Table 1.
  • Table 1 is a table showing the composition contents of the electrolyte additive and the different ternary cathode materials.
  • Comparative Examples 1-6 the same as Example 1 except that the additive composition and content (based on the total weight of the electrolyte) were added as shown in Table 2.
  • Table 2 is a table of the contents of each component of the electrolyte additive.
  • Table 3 is a comparison table of the properties of Examples 1-18 and Comparative Examples 1-6.
  • Example 19-32 except for replacing the positive electrode active material LiNi 1/3 Mn 1/3 Co 1/3 O 2 with the lithium iron phosphate positive electrode material LiFePO 4 in the battery preparation method, the composition and content of each additive of the electrolyte ( The same as in Example 1 except that the total weight of the electrolyte was added as shown in Table 4.
  • Table 4 is a table showing the weight content of each component of the electrolyte additive of Examples 19-32.
  • Comparative Examples 7-12 except for the positive electrode active material LiNi 1/3 Mn 1/3 Co 1/3 O 2 was replaced with lithium iron phosphate positive electrode material LiFePO 4 in the battery preparation method, the composition and content of the additive (based on the total electrolyte solution) The weights were the same as in Example 1 except that they were added as shown in Table 5.
  • Table 5 is a table of the contents of each component of the electrolyte additive.
  • Table 6 is a comparison table of the properties of Examples 19-32 and Comparative Examples 7-12.
  • Example 33-46 except for replacing the positive electrode active material LiNi 1/3 Mn 1/3 Co 1/3 O 2 with the positive electrode material LiCoO 2 in the battery preparation method, the composition and content of each additive of the electrolyte (based on the electrolyte The total weight) was the same as in Example 1 except that it was added as shown in Table 7.
  • Table 7 is a table showing the weight content of each component of the electrolyte additive of Examples 33-46.
  • Comparative Example 13-18 except that the positive electrode active material LiNi 1/3 Mn 1/3 Co 1/3 O 2 was replaced with the positive electrode material LiCoO 2 in the battery preparation method, the composition and content of the additive (based on the total weight of the electrolyte) were Except for the addition shown in Table 8, the others were the same as in Example 1.
  • Table 8 is a table of the contents of each component of the electrolyte additive.
  • Table 9 is a comparison table of the performance of Examples 33-46 and Comparative Examples 13-18.
  • the electrolyte additive of the lithium ion battery provided by the present invention is added with a vinylene carbonate compound, a methylene vinyl carbonate compound or a vinyl ethylene carbonate compound. Further addition of methanesulfonic anhydride can effectively improve the low temperature performance and high temperature storage performance of the battery while ensuring excellent cycle performance of the battery. In addition, additives such as 1,3-propane sultone may be further added to optimize the performance.

Abstract

一种非水电解液及锂离子二次电池,所述非水电解液包含非水有机溶剂、锂盐及以下的(A)和(B):(A)结构式1所示的甲基磺酸酐;(B)选自结构式2所示的碳酸亚乙烯酯化合物、结构式3所示的亚甲基碳酸乙烯酯化合物、结构式4所示的乙烯基碳酸乙烯酯化合物的至少一种化合物;其中,结构是2、3、4中,R 1~R 12各自独立地选自氢原子、卤素或碳原子数为1~5的烷基。所述非水电解液用于锂离子二次电池中,一方面能在电池负极形成良好的SEI膜,另一方面能降低电池阻抗,从而使得锂离子二次电池具有良好的充放电循环特性和低温性能以及高温存储性能。

Description

一种非水电解液及锂离子二次电池 技术领域
本发明涉及锂离子电池电解液技术领域,更具体地说,涉及一种可用于锂离子二次电池中的非水电解液及使用该非水电解液的锂离子二次电池。
背景技术
锂离子电池与其他电池相比,具有质量轻、体积小、工作电压高、能量密度高、输出功率大、充电效率高、无记忆效应和循环寿命长等优点,目前已经成为了3C电池和动力汽车电池的首选。在过去十年,3C电池的稳定增长带动了锂电池行业的快速发展。3C领域的锂离子二次电池,要求具有比能量密度高、循环性能和高温性能好的特点;而在动力汽车领域,动力锂离子电池要求具有优异的高低温性能、长寿命循环性能、长期存储性能和安全性能的特点。
钴酸锂材料因其高的比能量密度和良好的循环性能,一直是3C领域锂离子电池的首选正极材料,但钴酸锂作为正极材料的缺点是其安全性差,且价格高。三元镍钴锰材料和磷酸铁锂材料因其优良的循环性能和安全性成为目前动力锂离子电池的主流正极材料;三元材料动力锂离子电池具有能量密度高,常温循环和低温性能优良,安全性好的优点,缺点是高温性能不足;磷酸铁锂材料动力锂离子电池具有循环性能和高温性能优异,安全性优异的优点,缺点是低温性能不足,能量密度较低。无论对于哪种材料的锂离子电池,电解液是影响电池各项电化学性能的关键因素,特别地,电解液中的添加剂对电池的各项性能发挥尤其重要。
目前3C领域普遍使用的是钴酸锂电池,而且越来越多的使用高电压钴酸锂电池。随着锂离子电池的能量密度要求不断提高,电池越来越要求高容量化,这就要求电池的正、负极面密度和压实密度不断提高,随之带来的就是电池的阻抗不断增大。
而在动力锂离子电池领域,为了保证优异的循环性能,电解液中一般会选择碳酸亚乙烯酯(VC)、亚甲基碳酸乙烯酯或乙烯基碳酸乙烯酯等作为成膜添加剂。因为这三类添加剂在电池首次充电时,能在石墨负极形成优良的SEI膜,该SEI膜致密性好,热稳定性好,能明显抑制电解液在负极的还原分解,大大提高了循环过程中负极的稳定性,从而大大提高了电池的循环寿命,特别是高 温下的循环寿命。但这类成膜添加剂在使用时,也有明显的缺点,就是其分解所形成的SEI膜阻抗较大,直接导致了电池直流内阻(DCIR)的增大和低温性能的明显劣化,且这两个性能会随着成膜添加剂含量的提高,劣化更明显。因此,在动力电池中,使用碳酸亚乙烯酯(VC)、亚甲基碳酸乙烯酯和乙烯基碳酸乙烯酯等添加剂来改善循环的同时,要解决这些添加剂所带来的高阻抗的问题。
为了解决3C领域小电芯因高容量所带来的高阻抗问题和动力电池领域电解液因使用VC、亚甲基碳酸乙烯酯、乙烯基碳酸乙烯酯等所带来的高阻抗问题,需要在这两个领域的电池电解液体系中使用能降低阻抗的添加剂。电解液中使用降低阻抗添加剂,可以降低电池的阻抗,降低充放电过程中的DCIR,提高低温性能,高温性能和循环性能。
发明内容
本发明提供一种可用于锂离子二次电池中的非水电解液,该非水电解液的常温和高温循环性能优良、阻抗较低、低温性能和高温性能良好;并在此基础上,提供一种使用该非水电解液的锂离子二次电池,其具有优良的综合性能。
根据本发明的第一方面,本发明提供一种锂离子二次电池非水电解液,包含非水有机溶剂、锂盐,还包含以下的(A)和(B):
(A)结构式1所示的甲基磺酸酐;
(B)选自结构式2所示的碳酸亚乙烯酯化合物、结构式3所示的亚甲基碳酸乙烯酯化合物、结构式4所示的乙烯基碳酸乙烯酯化合物的至少一种化合物;
Figure PCTCN2015089149-appb-000001
其中,结构式2、3、4中,R1~R12各自独立地选自氢原子、卤素或碳原子数为1~5的烷基。
作为本发明的优选方案,所述(A)占电解液总重量的0.1%-5%。
作为本发明的优选方案,所述(B)占电解液总重量的0.2%-5%。
作为本发明的优选方案,所述(A)占电解液的总重量与(B)占电解液的总重量之间的比值大于或等于0.2。
作为本发明的优选方案,所述(B)为碳酸亚乙烯酯、亚甲基碳酸乙烯酯和乙烯基碳酸乙烯酯中的至少一种化合物。
作为本发明的优选方案,还包括1,3-丙烷磺内酯、1,4-丁烷磺内酯和1,3-丙烯磺内酯中的至少一种化合物。
作为本发明的优选方案,所述非水有机溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的一种或两种以上。
作为本发明的优选方案,所述锂盐选自六氟磷酸锂、高氯酸锂、四氟硼酸锂、双氟草酸硼酸锂、二(三氟甲基磺酰)亚胺锂和双氟磺酰亚胺锂盐中的一种或两种以上。
根据本发明的第二方面,本发明提供一种锂离子二次电池,包括正极、负极和置于正极与负极之间的隔膜,还包括第一方面所述的非水电解液。
作为本发明的优选方案,所述正极的活性物质的结构式选自:
LiNixCoyMnzL(1-x-y-z)O2,其中,0.2≤x≤0.8,0≤y≤0.8,0≤z≤0.8,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe;或LiFexMn1-xPO4,其中,0<x≤1;或LiCoxM1-xO2,其中,0<x≤1,M为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe。
本发明的非水电解液中含有甲基磺酸酐,可以在负极形成SEI膜,并且所形成的SEI膜阻抗较低,保证锂离子电池获得优良的低温性能和高温性能;电解液中的VC、亚甲基碳酸乙烯酯或乙烯基碳酸乙烯酯等能够在负极形成优良的SEI膜,保证锂离子电池获得优良的常温和高温循环性能,因此本发明的非水电解液具有使锂离子电池获得优良的循环性能、较低的阻抗、优良的低温性能和高温性能的有益效果。
需要特别指出的是,在申请号为CN200610088591.8的专利中,采用磺酸酐作为电解液添加剂在4.35V三元镍钴锰电池中的使用,所使用的磺酸酐为丁烷磺酸酐和丁烷戊烷磺酸酐,指出它们的作用是抑制电池的内部产气,提高电池 的高温性能。此外,在专利号JP3760539中有特别提到磺酸酐类添加剂可以有效形成SEI膜,抑制电解液在负极的分解,改善电池的循环性能。这些专利中提及的磺酸酐一般都是用于提高高温性能和循环性能,并没有提及到磺酸酐降低阻抗的作用,更没有提及使用甲基磺酸酐来降低阻抗、改善电池性能的案例。本发明与专利CN200610088591.8和JP3760539所不同的是,在于创新性的选择甲基磺酸酐作为锂电池电解液添加剂,降低了电池阻抗,并且在磺酸酐的同类物质中,只有甲基磺酸酐具有降低电池阻抗的效果,因为甲基磺酸酐的有机基团最小。电解液中使用甲基磺酸酐作为添加剂,不仅可以降低电池阻抗,而且还改善电池的高低温性能和循环性能,特别是高温循环性能。
具体实施方式
为使本发明的目的、内容和效果更加清楚明了,以下通过具体实施方式对本发明进行详细描述。
本发明的关键在于,发明人将甲基磺酸酐加入含有碳酸亚乙烯酯等添加剂的非水电解液中后,惊奇地发现甲基磺酸酐能够显著地降低由碳酸亚乙烯酯等添加剂带来的电池阻抗较高的问题。也就是说,发明人通过将甲基磺酸酐与碳酸亚乙烯酯等添加剂组合使用,制得了一种能降低电池阻抗的非水电解液,在保证电池优良的循环性能的同时,获得优良的低温性能和高温性能。
本发明的一个实施方案中的非水电解液,包含非水有机溶剂、锂盐及如下化合物(A)和(B):
(A)结构式1所示的甲基磺酸酐;
(B)选自结构式2所示的碳酸亚乙烯酯化合物、结构式3所示的亚甲基碳酸乙烯酯化合物和结构式4所示的乙烯基碳酸乙烯酯化合物中的至少一种化合物;
Figure PCTCN2015089149-appb-000002
其中,结构式2、3、4中,R1~R12各自独立地选自氢原子、卤素或碳原子数为1~5的烷基。
优选地,上述化合物(B)为碳酸亚乙烯酯、亚甲基碳酸乙烯酯和乙烯基碳酸乙烯酯中的至少一种化合物。
上述化合物(B)是常用在非水电解液中以形成SEI膜的添加剂,它们的加入能够提高电池循环性能,尤其是高温循环性能,但是其分解所形成的SEI膜阻抗较大,直接导致了电池的整体阻抗增大,从而导致低温性能和倍率充放电性能的明显劣化。而本发明中,添加甲基磺酸酐能够降低阻抗,改善低温性能和高温性能。
本发明的一个优选的实施方案中,结构式1所示的甲基磺酸酐占电解液总重量的0.1%~5%,当甲基磺酸酐含量小于0.1%时,成膜效果较差,不能有效降低电池阻抗;而当含量大于5%时,在负极所形成的SEI膜较厚,反而会增大电池阻抗,劣化电池性能。
本发明的一个优选的实施方案中,化合物(B)占电解液总重量的0.2%~5%。当化合物(B)的含量小于0.2%时,在负极形成的SEI膜较薄,不够致密,在循环过程中自我修复能力较差,对循环起不到应有的改善作用;当含量大于5%时,电池的阻抗会明显增大,导致电池的低温性能严重恶化。
本发明的一个优选的实施方案中,化合物(A)占电解液的总重量与化合物(B)占电解液的总重量之间的比值大于或等于0.2。当比值小于0.2,说明甲基 磺酸酐的含量较低,对降低阻抗起不到应有的改善效果,对改善低温性能和高温性能也就起不到应有的改善效果。但是一般而言比值不宜过高,如果过高可能说明化合物(B)的含量不足,导致在负极形成的SEI膜较薄,不够致密,在循环过程中自我修复能力较差,对循环起不到应有的改善作用。
本发明的一个优选的实施方案中,非水电解液中还包含1,3-丙烷磺内酯、1,4-丁烷磺内酯和1,3-丙烯磺内酯中的一种或两种以上。这些化合物一般具有在正、负极成膜的作用,可以有效的抑制电池高温存储后的气胀,改善高温性能。
本发明中的非水有机溶剂,选自碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的一种或两种以上。
本发明中的锂盐电解质,选自六氟磷酸锂、高氯酸锂、四氟硼酸锂、双氟草酸硼酸锂、二(三氟甲基磺酰)亚胺锂和双氟磺酰亚胺锂盐中的一种或两种以上。
本发明中,锂离子二次电池正极的活性物质选自:
LiNixCoyMnzL(1-x-y-z)O2,其中,0.2≤x≤0.8,0≤y≤0.8,0≤z≤0.8,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe,例如LiNi1/3Mn1/3Co1/3O2、LiNi0.5Mn0.3Co0.2O2、LiNi0.8Mn0.1Co0.1O2等,优选为LiNi1/3Mn1/3Co1/3O2;或LiFexMn1-xPO4,其中,0<x≤1,优选为LiFePO4;或LiCoxM1-xO2,其中,0<x≤1,M为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe,优选为LiCoO2
下面通过具体实施例和对比例对本发明进行更具体详细地说明,这些实施例和对比例不是对本发明保护范围的限制。
实施例1
本实施例锂离子电池的制备方法,包括正极制备步骤、负极制备步骤、电解液制备步骤、隔膜制备步骤和电池组装步骤。
所述正极制备步骤为:按96.8:2.0:1.2的质量比混合正极活性材料LiNi1/3Mn1/3Co1/3O2、导电碳黑和粘结剂聚偏二氟乙烯,分散在N-甲基-2-吡咯烷酮中,得到正极浆料,将正极浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,极板的厚度在120-150μm之间。
所述负极制备步骤为:按96:1:1.2:1.8的质量比混合石墨、导电碳黑、粘结剂丁苯橡胶和羧甲基纤维素,分散在去离子水中,得到负极浆料,将负极浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制 引出线后得到负极板,极板的厚度在120-150μm之间。
所述电解液制备步骤为:将碳酸乙烯酯、碳酸甲乙酯和碳酸二甲酯按体积比为EC:EMC:DMC=3:3:4进行混合,混合后加入浓度为1.1mol/L的六氟磷酸锂,加入基于电解液总重量的0.2wt%的碳酸亚乙烯酯和0.1wt%的甲基磺酸酐。
所述隔膜制备步骤为:采用聚丙烯、聚乙烯和聚丙烯三层隔离膜,厚度为20μm。
电池组装步骤为:在正极板和负极板之间放置厚度为20μm的三层隔离膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入方形铝制金属壳中,将正负极的引出线分别焊接在盖板的相应位置上,并用激光焊接机将盖板和金属壳焊接为一体,得到待注液的电芯;将上述制备的电解液通过注液孔注入电芯中,电解液的量要保证充满电芯中的空隙。
然后按以下步骤进行首次充电的常规化成:0.05C恒流充电3min,0.2C恒流充电5min,0.5C恒流充电25min,搁置1hr,整形,补注液,封口,然后进一步以0.2C的电流恒流充电至4.2V,常温搁置24hr后,0.2C恒流恒压充电至4.2V,然后以0.2C的电流恒流放电至3.0V。
1)高温循环性能测试:对于三元和钴酸锂电池,在45℃下,将化成后的电池用1C恒流恒压充至4.2V,然后用1C恒流放电至3.0V。对于磷酸铁锂电池,在60℃下,将化成后的电池用1C恒流恒压充至3.6V,然后用1C恒流放电至2.0V。充/放电500次循环后计算第500次循环容量的保持率。计算公式如下:
第500次循环容量保持率(%)=(第500次循环放电容量/第一次循环放电容量)×100%;
2)常温循环性能测试:在25℃下,将化成后的电池用1C恒流恒压充至4.2V(对于磷酸铁锂电池,充至3.6V),然后用1C恒流放电至3.0V(对于磷酸铁锂电池,放至2.0V)。充/放电500次循环后计算第500次循环容量的保持率。计算公式如下:
第500次循环容量保持率(%)=(第500次循环放电容量/第一次循环放电容量)×100%;
3)高温储存性能:将化成后的电池在常温下用1C恒流恒压充满,测量电池初始放电容量,然后在60℃储存30天后,以1C放电至3.0V(对于磷酸铁锂电池,放至2.0V),测量电池的保持容量和恢复容量。计算公式如下:
电池容量保持率(%)=保持容量/初始容量×100%;
电池容量恢复率(%)=恢复容量/初始容量×100%。
4)低温放电性能测试:在25℃下,将化成后的电池用1C恒流恒压充至4.2V(对于磷酸铁锂电池,充至3.6V),然后用1C恒流放电至3.0V(对于磷酸铁锂电池,放至2.0V),记录放电容量。然后1C恒流恒压充满,置于-20℃的环境中搁置12h后,1C恒流放电至3.0V(对于磷酸铁锂电池,放至2.0V),记录放电容量。
-20℃的低温放电效率值=1C放电容量(-20℃)/1C放电容量(25℃)。
5)常低温DCIR性能测试:在25℃下,将化成后的电池1C充电到半电状态,分别用0.1C,0.2C,0.5C,1C和2C充放十秒,分别记录充放电截止电压;将半电状态的电池置于-10℃下,分别用0.1C,0.2C和0.5C充放十秒,分别记录充放电截止电压。然后,以不同倍率的充放电电流为横坐标(单位:A),以充放电电流所对应的截止电压为纵坐标,做线性关系图(单位:mV)。
充电DCIR值=不同充电电流与相应截止电压的线性图的斜率值。
放电DCIR值=不同放电电流与相应截止电压的线性图的斜率值。
实施例2-18
实施例2-18中,除了添加剂组成、含量(基于电解液总重量)与正极材料按表1所示外,其它均与实施例1相同。表1为电解液添加剂和不同三元正极材料的各组成含量表。
表1
Figure PCTCN2015089149-appb-000003
Figure PCTCN2015089149-appb-000004
对比例1-6
对比例1-6中,除了添加剂组成与含量(基于电解液总重量)按表2所示添加外,其它均与实施例1相同。表2为电解液添加剂的各组分含量表。
表2
Figure PCTCN2015089149-appb-000005
实施例1-18和对比例1-6的性能对比
表3为实施例1-18与对比例1-6的性能对比表。
表3
Figure PCTCN2015089149-appb-000006
Figure PCTCN2015089149-appb-000007
通过实施例1-18与对比例1-6进行对比,可以发现添加甲基磺酸酐后,不仅可以提高高温性能,而且明显降低阻抗,特别是低温下的阻抗。同时,也可以 发现,甲基磺酸酐与碳酸亚乙烯酯(VC)、亚甲基碳酸乙烯酯和乙烯基碳酸乙烯酯分别组合使用后,电池的循环性能,特别是高温循环性能表现更为优异,低温性能也得到了明显提高,特别地对于高温储存性能,改善效果与碳酸亚乙烯酯(VC)和1,3-丙烷磺内酯(PS)的组合相当。
实施例19-32
实施例19-32中,除了在电池制备方法中将正极活性材料LiNi1/3Mn1/3Co1/3O2换成磷酸铁锂正极材料LiFePO4,电解液的各添加剂组成与含量(基于电解液总重量)按表4所示添加之外,其它均与实施例1相同。表4为实施例19-32的电解液添加剂的各组分重量含量表。
表4
Figure PCTCN2015089149-appb-000008
对比例7-12
对比例7-12中,除了在电池制备方法中将正极活性材料LiNi1/3Mn1/3Co1/3O2换成磷酸铁锂正极材料LiFePO4,添加剂组成与含量(基于电解液总重量)按表 5所示添加外,其它均与实施例1相同。表5为电解液添加剂的各组分含量表。
表5
Figure PCTCN2015089149-appb-000009
实施例19-32与对比例7-12的性能
表6为实施例19-32与对比例7-12的性能对比表。
表6
Figure PCTCN2015089149-appb-000010
Figure PCTCN2015089149-appb-000011
通过实施例19-32与对比例7-12进行对比,可以发现添加甲基磺酸酐后,不仅可以提高高温性能,而且明显降低阻抗,特别是低温下的阻抗。同时,也可以发现,甲基磺酸酐与碳酸亚乙烯酯(VC)、亚甲基碳酸乙烯酯和乙烯基碳酸乙烯酯分别组合使用后,低温性能得到了明显改善,电池的高温性能和循环性能也表现更为优异,特别地对于高温循环,改善效果比碳酸亚乙烯酯(VC)和1,3-丙二磺酸酐的组合更优异。
实施例33-46
实施例33-46中,除了在电池制备方法中将正极活性材料LiNi1/3Mn1/3Co1/3O2换成正极材料LiCoO2,电解液的各添加剂组成与含量(基于电解液总重量)按表7所示添加之外,其它均与实施例1相同。表7为实施例33-46的电解液添加剂的各组分重量含量表。
表7
Figure PCTCN2015089149-appb-000012
Figure PCTCN2015089149-appb-000013
对比例13-18
对比例13-18中,除了在电池制备方法中将正极活性材料LiNi1/3Mn1/3Co1/3O2换成正极材料LiCoO2,添加剂组成与含量(基于电解液总重量)按表8所示添加外,其它均与实施例1相同。表8为电解液添加剂的各组分含量表。
表8
Figure PCTCN2015089149-appb-000014
实施例33-46和对比例13-18的性能对比
表9为实施例33-46与对比例13-18的性能对比表。
表9
Figure PCTCN2015089149-appb-000015
Figure PCTCN2015089149-appb-000016
通过实施例33-46与对比例13-18进行对比,可以发现添加甲基磺酸酐后,不仅可以提高高温性能,而且明显降低阻抗,特别是低温下的阻抗。同时,也可以发现,甲基磺酸酐与碳酸亚乙烯酯(VC)、亚甲基碳酸乙烯酯和乙烯基碳酸乙烯酯分别组合使用后,电池的高温性能和循环性能均得到了提高。
综上所述,本发明提供的锂离子电池的电解液添加剂中,通过添加碳酸亚乙烯酯类化合物、亚甲基碳酸乙烯酯类化合物或乙烯基碳酸乙烯酯类化合物, 进一步添加甲基磺酸酐,在保证电池获得优良的循环性能的同时,可以有效改善电池的低温性能和高温储存性能。此外,还可以进一步添加1,3-丙烷磺酸内酯等添加剂,使得各项性能更加优化。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换。

Claims (10)

  1. 一种锂离子二次电池非水电解液,包含非水有机溶剂、锂盐,其特征在于,还包含以下的(A)和(B):
    (A)结构式1所示的甲基磺酸酐;
    (B)选自结构式2所示的碳酸亚乙烯酯化合物、结构式3所示的亚甲基碳酸乙烯酯化合物、结构式4所示的乙烯基碳酸乙烯酯化合物的至少一种化合物;
    Figure PCTCN2015089149-appb-100001
    其中,结构式2、3、4中,R1~R12各自独立地选自氢原子、卤素或碳原子数为1~5的烷基。
  2. 根据权利要求1所述的非水电解液,其特征在于,所述(A)占电解液总重量的0.1%-5%。
  3. 根据权利要求1所述的非水电解液,其特征在于,所述(B)占电解液总重量的0.2%-5%。
  4. 根据权利要求1所述的非水电解液,其特征在于,所述(A)占电解液的总重量与(B)占电解液的总重量之间的比值大于或等于0.2。
  5. 根据权利要求1所述的非水电解液,其特征在于,所述(B)为碳酸亚乙烯酯、亚甲基碳酸乙烯酯和乙烯基碳酸乙烯酯中的至少一种化合物。
  6. 根据权利要求1所述的非水电解液,其特征在于,还包括1,3-丙烷磺内酯、1,4-丁烷磺内酯和1,3-丙烯磺内酯中的至少一种化合物。
  7. 根据权利要求1所述的非水电解液,其特征在于,所述非水有机溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的一种或两种以上。
  8. 根据权利要求1所述的非水电解液,其特征在于,所述锂盐选自六氟磷酸锂、高氯酸锂、四氟硼酸锂、双氟草酸硼酸锂、二(三氟甲基磺酰)亚胺锂和双氟磺酰亚胺锂盐中的一种或两种以上。
  9. 一种锂离子二次电池,包括正极、负极和置于正极与负极之间的隔膜,其特征在于,还包括权利要求1-8任一项所述的非水电解液。
  10. 根据权利要求9所述的锂离子二次电池,其特征在于,所述正极的活性物质的结构式选自:
    LiNixCoyMnzL(1-x-y-z)O2,其中,0.2≤x≤0.8,0≤y≤0.8,0≤z≤0.8,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe;或LiFexMn1-xPO4,其中,0<x≤1;或LiCoxM1-xO2,其中,0<x≤1,M为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe。
PCT/CN2015/089149 2015-01-05 2015-09-08 一种非水电解液及锂离子二次电池 WO2016110123A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510004643.8 2015-01-05
CN201510004643.8A CN104617333B (zh) 2015-01-05 2015-01-05 一种非水电解液及锂离子二次电池

Publications (1)

Publication Number Publication Date
WO2016110123A1 true WO2016110123A1 (zh) 2016-07-14

Family

ID=53151684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089149 WO2016110123A1 (zh) 2015-01-05 2015-09-08 一种非水电解液及锂离子二次电池

Country Status (2)

Country Link
CN (1) CN104617333B (zh)
WO (1) WO2016110123A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299324A (zh) * 2016-10-17 2017-01-04 广州天赐高新材料股份有限公司 一种用于高容量锂离子电池的电解液、制备方法及锂离子电池
CN110168797A (zh) * 2017-03-17 2019-08-23 株式会社Lg化学 用于锂二次电池的电解质和包括该电解质的锂二次电池
CN112216864A (zh) * 2019-07-09 2021-01-12 宁德时代新能源科技股份有限公司 一种锂离子电池
CN112467222A (zh) * 2020-10-23 2021-03-09 福建南平延平区南孚新能源科技有限公司 一种扣式二次电池
CN112909319A (zh) * 2018-09-19 2021-06-04 宁德时代新能源科技股份有限公司 锂离子二次电池与包含其的电子产品、电动交通工具及机械设备
CN112968157A (zh) * 2021-02-06 2021-06-15 苏州精诚智造智能科技有限公司 一种动力锂离子电池的制备方法
CN113851637A (zh) * 2021-08-23 2021-12-28 合肥国轩高科动力能源有限公司 一种多官能团电解液添加剂、含该添加剂的电解液和锂离子电池
CN113889665A (zh) * 2020-07-02 2022-01-04 浙江蓝天环保高科技股份有限公司 一种除水添加剂及含有该添加剂的电解液和锂离子电池
CN114024033A (zh) * 2020-12-30 2022-02-08 珠海冠宇电池股份有限公司 一种锂离子电池用非水电解液及包括该非水电解液的锂离子电池
CN114245943A (zh) * 2019-12-24 2022-03-25 宁德时代新能源科技股份有限公司 二次电池及含有该二次电池的装置
CN114335740A (zh) * 2021-12-29 2022-04-12 湖北亿纬动力有限公司 锂离子电池的化成方法和锂离子电池
CN114566633A (zh) * 2022-03-04 2022-05-31 中化国际(控股)股份有限公司 一种新型无钴正极材料及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617333B (zh) * 2015-01-05 2017-10-24 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子二次电池
CN109088099B (zh) * 2018-06-28 2021-01-26 华南师范大学 一种兼顾高低温性能的磺酰类电解液添加剂及含该添加剂的电解液
CN110661028B (zh) * 2018-06-29 2021-04-09 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN109860709B (zh) * 2019-01-11 2020-12-11 杉杉新材料(衢州)有限公司 一种改善锂离子电池低温性能的电解液及包含该电解液的锂离子电池
CN113644317B (zh) * 2019-07-30 2023-05-12 宁德时代新能源科技股份有限公司 一种锂离子电池
CN111200162A (zh) * 2019-12-06 2020-05-26 联动天翼新能源有限公司 一种锂离子电池电解液及制备方法
CN110994027B (zh) * 2019-12-25 2022-05-13 湖州昆仑亿恩科电池材料有限公司 具有良好高温循环特性的锂离子电池电解液和锂离子电池
CN112259791A (zh) * 2020-10-27 2021-01-22 惠州亿纬锂能股份有限公司 一种非水电解液及其制备方法和锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2109177A1 (en) * 2008-04-07 2009-10-14 NEC TOKIN Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
CN101842349A (zh) * 2007-11-01 2010-09-22 宇部兴产株式会社 磺酸苯酯化合物、使用它的非水电解液及锂电池
CN102341947A (zh) * 2009-03-18 2012-02-01 日立麦克赛尔能源株式会社 电化学元件
CN104617333A (zh) * 2015-01-05 2015-05-13 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子二次电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5322036B2 (ja) * 2007-03-06 2013-10-23 宇部興産株式会社 スルホン酸tert−ブチルフェニル化合物及びそれを用いたリチウム二次電池用非水電解液、並びにそれを用いたリチウム二次電池
JP2008258013A (ja) * 2007-04-05 2008-10-23 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2010097756A (ja) * 2008-10-15 2010-04-30 Sony Corp 二次電池
JP4992921B2 (ja) * 2009-02-19 2012-08-08 ソニー株式会社 非水電解液二次電池
WO2014133107A1 (ja) * 2013-02-27 2014-09-04 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842349A (zh) * 2007-11-01 2010-09-22 宇部兴产株式会社 磺酸苯酯化合物、使用它的非水电解液及锂电池
EP2109177A1 (en) * 2008-04-07 2009-10-14 NEC TOKIN Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
CN102341947A (zh) * 2009-03-18 2012-02-01 日立麦克赛尔能源株式会社 电化学元件
CN104617333A (zh) * 2015-01-05 2015-05-13 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子二次电池

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299324A (zh) * 2016-10-17 2017-01-04 广州天赐高新材料股份有限公司 一种用于高容量锂离子电池的电解液、制备方法及锂离子电池
CN110168797A (zh) * 2017-03-17 2019-08-23 株式会社Lg化学 用于锂二次电池的电解质和包括该电解质的锂二次电池
CN110168797B (zh) * 2017-03-17 2023-03-31 株式会社Lg新能源 用于锂二次电池的电解质和包括该电解质的锂二次电池
CN112909319B (zh) * 2018-09-19 2022-04-22 宁德时代新能源科技股份有限公司 锂离子二次电池与包含其的电子产品、电动交通工具及机械设备
CN112909319A (zh) * 2018-09-19 2021-06-04 宁德时代新能源科技股份有限公司 锂离子二次电池与包含其的电子产品、电动交通工具及机械设备
CN112216864A (zh) * 2019-07-09 2021-01-12 宁德时代新能源科技股份有限公司 一种锂离子电池
CN112216864B (zh) * 2019-07-09 2024-03-22 宁德时代新能源科技股份有限公司 一种锂离子电池
CN114245943A (zh) * 2019-12-24 2022-03-25 宁德时代新能源科技股份有限公司 二次电池及含有该二次电池的装置
CN113889665A (zh) * 2020-07-02 2022-01-04 浙江蓝天环保高科技股份有限公司 一种除水添加剂及含有该添加剂的电解液和锂离子电池
CN112467222A (zh) * 2020-10-23 2021-03-09 福建南平延平区南孚新能源科技有限公司 一种扣式二次电池
CN114024033A (zh) * 2020-12-30 2022-02-08 珠海冠宇电池股份有限公司 一种锂离子电池用非水电解液及包括该非水电解液的锂离子电池
CN112968157A (zh) * 2021-02-06 2021-06-15 苏州精诚智造智能科技有限公司 一种动力锂离子电池的制备方法
CN113851637A (zh) * 2021-08-23 2021-12-28 合肥国轩高科动力能源有限公司 一种多官能团电解液添加剂、含该添加剂的电解液和锂离子电池
CN114335740A (zh) * 2021-12-29 2022-04-12 湖北亿纬动力有限公司 锂离子电池的化成方法和锂离子电池
CN114335740B (zh) * 2021-12-29 2023-07-28 湖北亿纬动力有限公司 锂离子电池的化成方法和锂离子电池
CN114566633A (zh) * 2022-03-04 2022-05-31 中化国际(控股)股份有限公司 一种新型无钴正极材料及其制备方法

Also Published As

Publication number Publication date
CN104617333A (zh) 2015-05-13
CN104617333B (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2016110123A1 (zh) 一种非水电解液及锂离子二次电池
CN110233292B (zh) 锂离子电池非水电解液及锂离子电池
JP7371246B2 (ja) 電池の電解液用添加剤、リチウムイオン電池の電解液及びリチウムイオン電池
CN109585921B (zh) 一种锂离子电池非水电解液及锂离子电池
WO2016049953A1 (zh) 一种高电压锂离子电池的电解液及高电压锂离子电池
WO2016054843A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2017020431A1 (zh) 一种锂离子电池非水电解液及锂离子电池
CN108110318B (zh) 一种用于锂离子电池的非水电解液及锂离子电池
WO2021004354A1 (zh) 锂离子二次电池及其相关的制备方法、电池模块、电池包和装置
US20220109191A1 (en) Non-aqueous electrolyte for a lithium ion battery and lithium ion battery
CN111525190B (zh) 电解液及锂离子电池
WO2021047500A1 (zh) 电解液、包含该电解液的锂离子电池、电池模块、电池包及装置
WO2018094821A1 (zh) 一种锂离子电池非水电解液及锂离子电池
CN110556577B (zh) 电解液及锂离子电池
WO2017020430A1 (zh) 一种锂离子电池非水电解液及锂离子电池
CN112635835B (zh) 高低温兼顾的非水电解液及锂离子电池
CN109428078B (zh) 一种电池
WO2020238191A1 (zh) 一种降低电池阻抗的锂二次电池电解液及锂二次电池
JP2021534555A (ja) リチウムイオン二次電池
WO2019128160A1 (zh) 一种锂离子电池非水电解液及锂离子电池
CN110444804B (zh) 一种锂离子电池非水电解液及锂离子电池
WO2017020429A1 (zh) 一种高电压锂离子电池用非水电解液及锂离子电池
WO2017004820A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2020135584A1 (zh) 一种电池电解液正极成膜添加剂及使用该添加剂的电解液和锂离子电池
CN114552007A (zh) 一种锂离子电池非水电解液和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876625

Country of ref document: EP

Kind code of ref document: A1