WO2019128160A1 - 一种锂离子电池非水电解液及锂离子电池 - Google Patents

一种锂离子电池非水电解液及锂离子电池 Download PDF

Info

Publication number
WO2019128160A1
WO2019128160A1 PCT/CN2018/092971 CN2018092971W WO2019128160A1 WO 2019128160 A1 WO2019128160 A1 WO 2019128160A1 CN 2018092971 W CN2018092971 W CN 2018092971W WO 2019128160 A1 WO2019128160 A1 WO 2019128160A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion battery
compound
nonaqueous electrolyte
carbonate
Prior art date
Application number
PCT/CN2018/092971
Other languages
English (en)
French (fr)
Inventor
熊得军
胡时光
石桥
曹朝伟
贠娇娇
邓朝晖
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2019128160A1 publication Critical patent/WO2019128160A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and particularly relates to a lithium ion battery non-aqueous electrolyte and a lithium ion battery.
  • Lithium-ion batteries have made great progress in the field of portable electronic products due to their high operating voltage, high safety, long life and no memory effect. At the same time, with the development of new energy vehicles, lithium-ion batteries have great application prospects in power supply systems for new energy vehicles.
  • the non-aqueous electrolyte lithium ion battery is a key factor affecting the performance of the battery.
  • the influence of the additive in the non-aqueous electrolyte on the performance of the battery is particularly prominent.
  • lithium ions are deintercalated from the positive electrode material, and then passed through the electrolyte and then combined with the corresponding electrons embedded in the carbon negative electrode through the external circuit.
  • the electrolyte Since the reduction potential of the components in the electrolyte is higher than that of lithium, the electrolyte is reduced on the surface of the carbon anode during the initial charging process to produce a passivation film composed of inorganic and organic compounds, which is called a solid electrolyte interface.
  • Membrane SEI
  • the SEI can be formed not only on the surface of the carbon negative electrode but also on the surface of the positive electrode material due to oxidation of the electrolytic solution.
  • the SEI film formed on the surface of the positive and negative electrodes during the initial charging process determines the degree of decomposition of the electrolyte in the negative electrode or the positive electrode, and also affects the speed at which lithium ions are embedded in the negative electrode and the positive electrode, so the SEI film is largely determined. The performance of lithium-ion battery performance.
  • the battery is prone to generate gas during high-temperature storage, causing the battery to swell.
  • the passivation film formed by vinylene carbonate has a large impedance, especially under low temperature conditions, it is prone to low-temperature charge and lithium deposition, which affects battery safety.
  • the fluoroethylene carbonate can also form a passivation film on the surface of the negative electrode to improve the cycle performance of the battery, and the passivation film formed has a relatively low impedance, which can improve the low-temperature discharge performance of the battery.
  • fluoroethylene carbonate produces more gas at high temperature storage, which significantly reduces the high temperature storage performance of the battery.
  • lithium ion batteries are also key functions that lithium ion batteries need to pay attention to.
  • lithium ion batteries are difficult to balance low temperature performance, high temperature storage and cycle performance.
  • the present invention provides a lithium ion battery non-aqueous electrolyte and a lithium ion battery.
  • the present invention provides a lithium ion battery nonaqueous electrolyte comprising a pyridine compound and a compound A of the formula 1:
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently selected from hydrogen, a fluorine atom, or a group having 1 to 5 carbon atoms;
  • the pyridine-based composite compound is a composite compound of a pyridine compound and boron trifluoride or phosphorus pentafluoride.
  • the group having 1 to 5 carbon atoms is selected from a hydrocarbon group, a halogenated hydrocarbon group, an oxygen-containing hydrocarbon group, a silicon-containing hydrocarbon group or a cyano group-substituted hydrocarbon group.
  • the R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently selected from a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, a methoxy group, an ethoxy group, and a trimethyl group. Silyloxy, cyano or trifluoromethyl.
  • the compound A represented by the structural formula 1 is selected from the following compounds:
  • the pyridine-based composite compound is selected from the compound B represented by the structural formula 2 and/or the compound C represented by the structure 3:
  • R 7 to R 16 are each independently selected from a hydrogen atom, a halogen atom, a cyano group or a hydrocarbon group having 1 to 5 carbon atoms.
  • the compound B represented by the structural formula 2 is selected from the following compounds:
  • the compound C represented by the structural formula 3 is selected from the following compounds:
  • the mass percentage of the compound A is 0.1% to 5.0%, and the mass percentage of the pyridine complex compound is 100% by mass of the total mass of the nonaqueous electrolyte of the lithium ion battery. 0.1% to 5.0%.
  • the non-aqueous electrolyte further comprises at least one of an unsaturated cyclic carbonate, a fluorinated cyclic carbonate, a cyclic sultone and a cyclic sulfate.
  • the unsaturated cyclic carbonate includes at least one of vinylene carbonate, ethylene carbonate, and methylene carbonate;
  • the fluorinated cyclic carbonate includes at least one of fluoroethylene carbonate, trifluoromethyl ethylene carbonate, and difluoroethylene carbonate;
  • the cyclic sultone lactone includes at least one of 1,3-propane sultone, 1,4-butane sultone, and propylene-1,3- sultone;
  • the cyclic sulfate is selected from at least one of vinyl sulfate and 4-methylsulfate.
  • the present invention provides a lithium ion battery comprising a positive electrode, a negative electrode, a separator for isolating the positive electrode and the negative electrode, and a lithium ion battery nonaqueous electrolyte as described above.
  • the pyridine-based composite compound and the compound A represented by the structural formula 1 are simultaneously added to the non-aqueous electrolyte of the lithium ion battery provided by the present invention.
  • the pyridine composite compound can participate in the formation of the passivation film on the surface of the negative electrode material during the first charging process, and effectively inhibits further decomposition of the solvent and the lithium salt, thereby improving the cycle performance of the battery.
  • the passivation film formed by the pyridine composite compound has a large impedance, which is not conducive to the conduction of lithium ions, and reduces the rate of the battery and the low-temperature discharge performance.
  • the inventors have found through a large number of experiments that when a pyridine compound is added to a non-aqueous electrolyte of a lithium ion battery, the cycle performance of the lithium ion battery is improved, but the rate of the battery and the low-temperature discharge performance are lowered, and the pyridine compound and the pyridine compound are
  • the use of the compound A shown in Structural Formula 1 allows the obtained lithium ion to have good high-temperature storage and cycle properties, and at the same time, low-temperature properties.
  • the embodiment of the invention provides a lithium ion battery non-aqueous electrolyte, comprising a pyridine compound and a compound A represented by the formula 1:
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently selected from hydrogen, a fluorine atom, or a group having 1 to 5 carbon atoms;
  • the pyridine compound is A complex compound of a pyridine compound with boron trifluoride or phosphorus pentafluoride.
  • the group having 1 to 5 carbon atoms is selected from a hydrocarbon group, a halogenated hydrocarbon group, an oxygen-containing hydrocarbon group, a silicon-containing hydrocarbon group, or a cyano group-substituted hydrocarbon group.
  • each of R 3 , R 4 , R 5 , R 6 , R 7 , R 8 is independently selected from the group consisting of a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, a methoxy group, an ethoxy group, Trimethylsiloxy, cyano or trifluoromethyl.
  • the compound A shown in Structural Formula 1 is selected from the group consisting of:
  • the pyridine-based composite compound is a composite compound of a pyridine compound and boron trifluoride or phosphorus pentafluoride.
  • the pyridine compound is pyridine or a pyridine functional pyridine derivative.
  • the pyridine complex compound is selected from Compound B shown in Structural Formula 2 and/or Compound C shown in Structure 3:
  • R 7 to R 16 are each independently selected from a hydrogen atom, a halogen atom, a cyano group or a hydrocarbon group having 1 to 5 carbon atoms.
  • the compound B represented by the structural formula 2 is selected from the following compounds:
  • the compound C represented by the structural formula 3 is selected from the following compounds:
  • both the compound A and the pyridine-based composite compound are used as an electrolyte additive, and the content thereof is not excessively high.
  • the mass percentage of the compound A is 0.1% to 5.0%, and the mass percentage of the pyridine compound compound is 100% by mass of the total mass of the nonaqueous electrolyte of the lithium ion battery.
  • the content is from 0.1% to 5.0%.
  • the mass percentage of the compound A may be 0.1%, 0.2%, 0.4%, 0.5%, 0.6%, 0.8%, 0.9%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.1. %, 2.4%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%.
  • the compound A has a mass percentage of from 0.1% to 2.5%.
  • the content of the compound A and the pyridine-based composite compound is too low or too high, it is disadvantageous for the improvement of the performance of the battery.
  • the content of the compound A is too high, the low-temperature performance of the battery is remarkably lowered.
  • the nonaqueous electrolytic solution further contains at least one of an unsaturated cyclic carbonate, a fluorinated cyclic carbonate, a cyclic sultone, and a cyclic sulfate.
  • the unsaturated cyclic carbonate includes vinylene carbonate (CAS: 872-36-6, abbreviated as VC), ethylene carbonate (CAS: 4427-96-7, abbreviation At least one of VEC), methylene ethylene carbonate (CAS: 124222-05-5);
  • the fluorinated cyclic carbonate includes fluoroethylene carbonate (CAS: 114435-02-8, abbreviated as FEC), trifluoromethyl ethylene carbonate (CAS: 167951-80-6), and bisfluoroethylene carbonate. At least one of esters (CAS: 311810-76-1);
  • the cyclic sultone lactone includes 1,3-propane sultone (CAS: 1120-71-4, abbreviated as PS), 1,4-butane sultone (CAS: 1633-83-6), and At least one of propenyl-1,3-sulfonate (CAS: 21806-61-1);
  • the cyclic sulfate is selected from at least one of vinyl acetate (CAS: 1072-53-3, abbreviated as DTD) and 4-methylsulfate (CAS: 5689-83-8).
  • the lithium ion battery non-aqueous electrolyte contains a solvent and a lithium salt.
  • the solvent of the lithium ion battery non-aqueous electrolyte contains a cyclic carbonate and Chain carbonate.
  • the cyclic carbonate includes at least one of ethylene carbonate, propylene carbonate, and butylene carbonate.
  • the chain carbonate includes at least one of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate.
  • the lithium salt in the present invention is not particularly limited and may be variously used.
  • the lithium salt may be selected from the group consisting of LiPF 6 , LiBF 4 , LiBOB, LiDFOB, LiN(SO 2 CF 3 ) 2 , LiN (SO 2 F). ) at least one of 2 .
  • the content of the lithium salt may vary within a wide range.
  • the lithium ion battery has a lithium salt content of 0.1-15% in the nonaqueous electrolyte.
  • Another embodiment of the present invention discloses a lithium ion battery including a positive electrode, a negative electrode, a separator for isolating the positive electrode and the negative electrode, and a lithium ion battery nonaqueous electrolyte as described above.
  • the positive electrode includes a positive electrode active material, and the active material of the positive electrode is LiNi x Co y MnzL (1-xyz) O 2 , LiCo x ' L (1-x') O 2 , LiNi x" L' y' Mn ( At least one of 2-x"-y') O 4 , Li z ' MPO 4 ; wherein L is at least one of Al, Sr, Mg, Ti, Ca, Zr, Zn, Si or Fe; ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ x + y + z ⁇ 1, 0 ⁇ x ' ⁇ 1, 0.3 ⁇ x" ⁇ 0.6, 0.01 ⁇ y' ⁇ 0.2; L' It is at least one of Co, Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, and Fe; 0.5 ⁇ z' ⁇ 1, and M is at least one of Fe,
  • the negative electrode includes a negative active material, which may be made of a carbon material, a metal alloy, a lithium-containing oxide, and a silicon-containing material.
  • the anode active material is selected from the group consisting of artificial graphite and natural graphite. Of course, it is not limited to the two listed.
  • the separator is a conventional separator in the field of lithium ion batteries, and therefore will not be described again.
  • the lithium ion battery provided by the embodiment of the invention has better low temperature performance, high temperature cycle performance and high temperature storage performance because it contains the above nonaqueous electrolyte.
  • This embodiment is for explaining a lithium ion battery non-aqueous electrolyte, a lithium ion battery and a preparation method thereof, and the following steps are as follows:
  • the positive electrode preparation step is: mixing the positive electrode active material lithium nickel cobalt manganese oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 , the conductive carbon black Super-P and the binder polyvinylidene fluoride (PVDF) at a mass ratio of 92:4:3. Dispersing in N-methyl-2-pyrrolidone (NMP) to obtain a positive electrode slurry, uniformly coating the positive electrode slurry on both sides of the aluminum foil, drying, calendering, and vacuum drying, and welding with an ultrasonic welder A positive electrode plate was obtained after the aluminum lead wire, and the thickness of the positive electrode plate was between 120 and 150 ⁇ m.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode preparation step is: mixing artificial graphite, conductive carbon black Super-P, binder styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) in a mass ratio of 94:1:2.5:2.5, dispersed in deionized In the water, the negative electrode slurry is obtained, and the negative electrode slurry is coated on both sides of the copper foil, dried, calendered and vacuum dried, and the nickel lead wire is welded by an ultrasonic welding machine to obtain a negative electrode plate, and the thickness of the negative electrode plate is 120. -150 ⁇ m.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • the separator preparation step is as follows: a three-layer separator is used, and the thickness is 20 ⁇ m.
  • the battery assembly step is: placing a three-layer separator between the positive electrode plate and the negative electrode plate, and then winding the sandwich structure composed of the positive electrode plate, the negative electrode plate and the separator, and then flattening the wound body into an aluminum foil packaging bag.
  • the battery was to be vacuum-baked at 85 ° C for 24 h to obtain a cell to be injected; in the glove box whose dew point was controlled below -40 ° C, the electrolyte prepared above was injected into the cell, and vacuum-packed and allowed to stand for 24 h.
  • Embodiments 2 to 14 are for explaining a lithium ion battery non-aqueous electrolyte, a lithium ion battery, and a preparation method thereof according to the present invention, and include most of the operation steps in Embodiment 1, the differences being:
  • the non-aqueous electrolyte was added to the components of the mass percentages shown in Examples 2 to 14 of Table 1 based on 100% by weight of the total of the non-aqueous electrolyte.
  • Comparative Examples 1 to 11 are used for comparative description of the lithium ion battery nonaqueous electrolyte, the lithium ion battery and the preparation method thereof, and include most of the operation steps in Embodiment 1, the differences being:
  • the non-aqueous electrolyte was added to the components of the mass percentages shown in Comparative Example 1 to Comparative Example 11 in Table 1 in terms of 100% by weight based on the total weight of the non-aqueous electrolyte.
  • the formed battery was charged to 4.2 V with a constant current of 1 C at 45 ° C, the off current was 0.01 C, and then discharged to 3.0 V with a constant current of 1 C. After the N cycles of charging/discharging, the retention of the capacity after the Nth cycle was calculated to evaluate the high temperature cycle performance.
  • the Nth cycle capacity retention ratio (%) (the Nth cycle discharge capacity / the first cycle discharge capacity) ⁇ 100%.
  • the battery after the formation is charged to 4.2V at a normal temperature with a constant current of 1C, the off current is 0.01 C, and then discharged to 3.0 V with a constant current of 1 C, and the initial discharge capacity of the battery is measured, and then charged with a constant current of 1 C to a constant voltage.
  • the current is 0.01C, measure the initial thickness of the battery, then store the battery at 60 ° C for N days, measure the thickness of the battery, and then discharge to 3.0V with a constant current of 1C, measure the holding capacity of the battery, and then use 1C constant
  • the flow was continuously charged to 4.2 V, the off current was 0.01 C, and then discharged to 3.0 V with a constant current of 1 C, and the recovery capacity was measured.
  • the formula for calculating the capacity retention rate and capacity recovery rate is as follows:
  • Battery capacity retention rate (%) retention capacity / initial capacity ⁇ 100%;
  • Battery capacity recovery rate (%) recovery capacity / initial capacity ⁇ 100%;
  • Battery thickness expansion ratio (%) (thickness after N days - initial thickness) / initial thickness ⁇ 100%.
  • the formed lithium ion battery was charged to 4.2 V with a constant current of 1 C at 25 ° C, and then discharged to 3.0 V with a constant current of 1 C, and the discharge capacity was recorded. Then, it was charged to 4.2 V with a constant current of 1 C, placed in an environment of -20 ° C for 12 hours, and then discharged to 3.0 V with a constant current of 0.2 C to record the discharge capacity.
  • Comparative Example 6 and Example 8 show that when the content of the compound A is too high, the low-temperature performance of the battery is remarkably lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

为克服现有锂离子电池存在低温性能、高温储存及循环性能不足的问题,本发明提供了一种锂离子电池非水电解液,包括吡啶类复合化合物和结构式1所示的化合物A。在结构式1中,R1、R2、R3、R4、R5、R6各自独立地选自氢、氟原子或含1~5个碳原子的基团;所述吡啶类复合化合物为吡啶类化合物与三氟化硼或五氟化磷的复合化合物。同时,本发明还公开了包括上述锂离子电池非水电解液的锂离子电池。本发明提供的锂离子电池非水电解液有利于改善电池的低温性能、高温储存及循环性能。

Description

一种锂离子电池非水电解液及锂离子电池 技术领域
本发明属于锂离子电池技术领域,具体涉及一种锂离子电池非水电解液及锂离子电池。
背景技术
锂离子电池因其工作电压高、安全性高、长寿命、无记忆效应等特点,在便携式电子产品领域中取得了长足的发展。同时,随着新能源汽车的发展,锂离子电池在新能源汽车用动力电源系统具有巨大的应用前景。
在非水电解液锂离子电池中,非水电解液是影响电池性能的一个关键因素,特别地,非水电解液中的添加剂对电池性能的影响尤其突出。在锂离子电池初始充电过程中,锂离子从正极材料中脱嵌出来,通过电解液然后结合通过外电路相应的电子嵌入碳负极。由于电解液中的成分的还原电位比锂高,在初始充电过程中电解液会在在碳负极表面被还原生产由无机和有机化合物组成的钝化膜,该钝化膜称为固体电解液界面膜(SEI)。SEI不仅可以在碳负极表面形成,也可以在正极材料表面由于电解液氧化而形成。在初始充电过程中正负极材料表面形成的SEI膜,决定了电解液随后在负极或者正极分解的程度,同时也影响了锂离子嵌入负极和脱嵌正极的速度,所以SEI膜在很大程度上决定了锂离子电池性能的优劣。
为了提高锂离子电池的各项性能,许多科研者通过往电解液中添加不同的负极成膜添加剂(如碳酸亚乙烯酯,氟代碳酸乙烯酯,碳酸乙烯亚乙酯)来改善SEI膜,从而改善电池的各项性能。例如,在日本特开2000-123867号公报中提出了通过在电解液中添加碳酸亚乙烯酯来提高电池特性。碳酸亚乙烯酯能够优先于溶剂分子在负极表面发生还原分解反应,能在负极表面形成钝化膜,阻止电解液在电极表面进一步分解,也能阻止电解液在正极表面氧化从而提高电池的循环性能。但添加碳酸亚乙烯酯后,电池在高温储存中过程中容易产生气体,导致电池发生鼓胀。此外,碳酸亚乙烯酯形成的钝化膜阻抗较大,尤其在低温条件下,容易发生低温充电析锂,影响电池安全性。氟代碳酸乙烯酯也能 在负极表面形成钝化膜,改善电池的循环性能,且形成的钝化膜阻抗比较低,能够改善电池的低温放电性能。但氟代碳酸乙烯酯在高温储存产生更多的气体,明显降低电池高温储存性能。
同时,低温性能及循环性能也是锂离子电池需要关注的关键性能,目前的锂离子电池难以兼顾低温性能、高温储存及循环性能。
发明内容
针对现有锂离子电池难以兼顾低温性能、高温储存及循环性能的问题,本发明提供了一种锂离子电池非水电解液及锂离子电池。
本发明解决上述技术问题所采用的技术方案如下:
一方面,本发明提供了一种锂离子电池非水电解液,包括吡啶类复合化合物和结构式1所示的化合物A:
Figure PCTCN2018092971-appb-000001
在结构式1中,R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自氢、氟原子或含1~5个碳原子的基团;
所述吡啶类复合化合物为吡啶类化合物与三氟化硼或五氟化磷的复合化合物。
可选的,所述含1-5个碳原子的基团选自烃基、卤代烃基、含氧烃基、含硅烃基或含氰基取代的烃基。
可选的,所述R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自氢原子、氟原子、甲基、乙基、甲氧基、乙氧基、三甲基硅氧基、氰基或三氟甲基。
可选的,所述结构式1所示的化合物A选自如下化合物:
Figure PCTCN2018092971-appb-000002
Figure PCTCN2018092971-appb-000003
可选的,所述吡啶类复合化合物选自结构式2所示的化合物B和/或结构3所示的化合物C:
Figure PCTCN2018092971-appb-000004
R 7-R 16各自独立选自氢原子、卤族原子、氰基或含1-5个碳原子的烃基。
可选的,所述结构式2所示的化合物B选自如下化合物:
Figure PCTCN2018092971-appb-000005
所述结构式3所示的化合物C选自如下化合物:
Figure PCTCN2018092971-appb-000006
可选的,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为0.1%~5.0%,所述吡啶类复合化合物的质量百分含量为0.1%~5.0%。
可选的,所述非水电解液还包括不饱和环状碳酸酯、氟代环状碳酸酯、环 状磺酸内酯和环状硫酸酯中的至少一种。
可选的,所述不饱和环状碳酸酯包括碳酸亚乙烯酯、碳酸乙烯亚乙酯、亚甲基碳酸乙烯酯中的至少一种;
所述氟代环状碳酸酯包括氟代碳酸乙烯酯、三氟甲基碳酸乙烯酯和双氟代碳酸乙烯酯中的至少一种;
所述环状磺酸内酯包括1,3-丙烷磺内酯、1,4-丁烷磺内酯和丙烯基-1,3-磺酸内酯中的至少一种;
所述环状硫酸酯选自硫酸乙烯酯和4-甲基硫酸乙烯酯中的至少一种。
另一方面,本发明提供了一种锂离子电池,包括正极、负极、用于隔离所述正极和所述负极的隔膜、以及如上所述的锂离子电池非水电解液。
本发明提供的锂离子电池非水电解液中同时加入了吡啶类复合化合物和结构式1所示的化合物A。其中,吡啶类复合化合物能够在首次充电过程中,能够参与负极材料表面钝化膜的形成,有效抑制了溶剂及锂盐的进一步分解,从而提高电池的循环性能。但吡啶类复合化合物形成的钝化膜阻抗较大,不利于锂离子的传导,降低电池的倍率和低温放电性能。发明人通过大量实验发现,当锂离子电池非水电解液中加入吡啶类复合化合物时,锂离子电池的循环性能会提高,但是会降低电池的倍率和低温放电性能,而通过吡啶类复合化合物和结构式1所示的化合物A一起使用,可使制得的锂离子具有良好的高温存储和循环性能,并兼顾了低温性能。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种锂离子电池非水电解液,包括吡啶类复合化合物和结构式1所示的化合物A:
Figure PCTCN2018092971-appb-000007
Figure PCTCN2018092971-appb-000008
在结构式1中,R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自氢、氟原子或含1~5个碳原子的基团;所述吡啶类复合化合物为吡啶类化合物与三氟化硼或五氟化磷的复合化合物。
在一些实施例中,所述含1-5个碳原子的基团选自烃基、卤代烃基、含氧烃基、含硅烃基或含氰基取代的烃基。
在一些实施例中,所述R 3、R 4、R 5、R 6、R 7、R 8各自独立地选自氢原子、氟原子、甲基、乙基、甲氧基、乙氧基、三甲基硅氧基、氰基或三氟甲基。
在一些实施例中,所述结构式1所示的化合物A选自如下化合物:
Figure PCTCN2018092971-appb-000009
需要说明的是,以上是本发明所要求保护的部分化合物,但不限于此,不应理解为对本发明的限制。
本发明中,所述吡啶类复合化合物为吡啶类化合物与三氟化硼或五氟化磷的复合化合物。所述吡啶类化合物为吡啶或含吡啶官能团的吡啶衍生物。在一些实施例中,所述吡啶类复合化合物选自结构式2所示的化合物B和/或结构3所示的化合物C:
Figure PCTCN2018092971-appb-000010
R 7-R 16各自独立选自氢原子、卤族原子、氰基或含1-5个碳原子的烃基。
可选的,所述结构式2所示的化合物B选自如下化合物:
Figure PCTCN2018092971-appb-000011
Figure PCTCN2018092971-appb-000012
所述结构式3所示的化合物C选自如下化合物:
Figure PCTCN2018092971-appb-000013
Figure PCTCN2018092971-appb-000014
本发明中,化合物A和吡啶类复合化合物均作为电解液添加剂使用,其含量均不可过高。在一些实施例中,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为0.1%~5.0%,所述吡啶类复合化合物的质量百分含量为0.1%~5.0%。例如,所述化合物A的质量百分含量可以为0.1%、0.2%、0.4%、0.5%、0.6%、0.8%、0.9%、1%、1.2%、1.5%、1.8%、2%、2.1%、2.4%、2.5%、3%、3.5%、4%、4.5%、5%。优选情况下,所述化合物A的质量百分含量为0.1%~2.5%。所述化合物A和所述吡啶类复合化合物的含量过低或过高时,均不利于电池的性能的提高。尤其是当化合物A的含量过高时,电池的低温性能会显著下降。
所述非水电解液还包含不饱和环状碳酸酯、氟代环状碳酸酯、环状磺酸内酯和环状硫酸酯中的至少一种。
在更优选的实施例中,所述不饱和环状碳酸酯包括碳酸亚乙烯酯(CAS:872-36-6,缩写为VC)、碳酸乙烯亚乙酯(CAS:4427-96-7,缩写为VEC)、亚甲基碳酸乙烯酯(CAS:124222-05-5)中的至少一种;
所述氟代环状碳酸酯包括氟代碳酸乙烯酯(CAS:114435-02-8,缩写为FEC)、三氟甲基碳酸乙烯酯(CAS:167951-80-6)和双氟代碳酸乙烯酯(CAS:311810-76-1)中的至少一种;
所述环状磺酸内酯包括1,3-丙烷磺内酯(CAS:1120-71-4,缩写为PS)、1,4-丁烷磺内酯(CAS:1633-83-6)和丙烯基-1,3-磺酸内酯(CAS:21806-61-1)中 的至少一种;
所述环状硫酸酯选自硫酸乙烯酯(CAS:1072-53-3,缩写为DTD)和4-甲基硫酸乙烯酯(CAS:5689-83-8)中的至少一种。
如现有的,锂离子电池非水电解液中均含有溶剂以及锂盐,本发明方案中对于溶剂种类和含量没有特殊限制,例如该锂离子电池非水电解液的溶剂包含环状碳酸酯和链状碳酸酯。
优选地,所述环状碳酸酯包括碳酸乙烯酯、碳酸丙烯酯和碳酸丁烯酯中的至少一种。所述链状碳酸酯包括碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯中的至少一种。
本发明中对锂盐没有特殊限制,可采用现有的各种,例如所述锂盐可选自LiPF 6、LiBF 4、LiBOB、LiDFOB、LiN(SO 2CF 3) 2、LiN(SO 2F) 2中的至少一种。所述锂盐的含量可在较大范围内变动,优选情况下,所述锂离子电池非水电解液中,锂盐的含量为0.1-15%。
本发明的另一实施例公开了一种锂离子电池,包括正极、负极、用于隔离所述正极和所述负极的隔膜、以及如上所述的锂离子电池非水电解液。
所述正极包括正极活性材料,所述正极的活性材料为LiNi xCo yMnzL (1-x-y-z)O 2、LiCo x’L (1-x’)O 2、LiNi x”L’ y’Mn (2-x”-y’)O 4、Li z’MPO 4中的至少一种;其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种;0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x’≤1,0.3≤x”≤0.6,0.01≤y’≤0.2;L’为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe中的至少一种;0.5≤z’≤1,M为Fe、Mn、Co中的至少一种。
所述负极包括负极活性材料,所述负极活性材料可由碳材料、金属合金、含锂氧化物及含硅材料制得。优选的,所述负极活性材料选自人造石墨、天然石墨。当然,不限于所列举的这两种。
所述隔膜为锂离子电池领域的常规隔膜,因此不再赘述。
本发明实施例提供的锂离子电池,由于含有上述非水电解液,因此具有较好的低温性能、高温循环性能和高温存储性能。
以下通过实施例对本发明进行进一步的说明。
实施例1
本实施例用于说明本发明公开的锂离子电池非水电解液、锂离子电池及其 制备方法,包括以下操作步骤:
正极制备步骤为:按92:4:3的质量比混合正极活性材锂镍钴锰氧化物LiNi 0.5Co 0.2Mn 0.3O 2、导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料,将正极浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,正极板的厚度在120-150μm之间。
负极制备步骤为:按94:1:2.5:2.5的质量比混合人造石墨、导电碳黑Super-P、粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),分散在去离子水中,得到负极浆料,将负极浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,负极板的厚度在120-150μm之间。
非水电解液制备步骤为:将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为EC:DEC:EMC=1:1:1进行混合,然后加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,且以所述非水电解液的总重量为100%计,加入含有表1中实施例1所示质量百分含量的组分。
隔膜制备步骤为:采用三层隔离膜,厚度为20μm。
电池组装步骤为:在正极板和负极板之间放置三层隔离膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入铝箔包装袋,在85℃下真空烘烤24h,得到待注液的电芯;在露点控制在-40℃以下的手套箱中,将上述制备的电解液注入电芯中,经真空封装,静止24h。
然后按以下步骤进行首次充电的常规化成:0.05C恒流充电180min,0.2C恒流充电至3.95V,二次真空封口,然后进一步以0.2C的电流恒流充电至4.2V,常温搁置24h后,以0.2C的电流恒流放电至3.0V,得到一种4.2V的LiNi 0.5Co 0.2Mn 0.3O 2/人造石墨锂离子电池。
实施例2~14
实施例2~14用于说明本发明公开的锂离子电池非水电解液、锂离子电池及其制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
所述非水电解液制备步骤中:
以所述非水电解液的总重量为100%计,所述非水电解液加入表1中实施例2~实施例14所示质量百分含量的组分。
对比例1~11
对比例1~11用于对比说明本发明公开的锂离子电池非水电解液、锂离子电池及其制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
所述非水电解液制备步骤中:
以所述非水电解液的总重量为100%计,所述非水电解液加入表1中对比例1~对比例11所示质量百分含量的组分。
性能测试
对上述实施例1~14和对比例1~11制备得到的锂离子电池进行如下性能测试:
1)高温循环性能测试
在45℃下,将化成后的电池用1C恒流恒压充至4.2V,截至电流为0.01C,然后用1C恒流放电至3.0V。如此充/放电N次循环后,计算第N次循环后容量的保持率,以评估其高温循环性能。
45℃1C循环N次容量保持率计算公式如下:
第N次循环容量保持率(%)=(第N次循环放电容量/第一次循环放电容量)×100%。
2)60℃高温储存性能测试
将化成后的电池在常温下用1C恒流恒压充至4.2V,截至电流为0.01C,再用1C恒流放电至3.0V,测量电池初始放电容量,再用1C恒流恒压充电至4.2V,截至电流为0.01C,测量电池的初始厚度,然后将电池在60℃储存N天后,测量电池的厚度,再以1C恒流放电至3.0V,测量电池的保持容量,再用1C恒流恒压充电至4.2V,截至电流为0.01C,然后用1C恒流放电至3.0V,测量恢复容量。容量保持率、容量恢复率的计算公式如下:
电池容量保持率(%)=保持容量/初始容量×100%;
电池容量恢复率(%)=恢复容量/初始容量×100%;
电池厚度膨胀率(%)=(N天后的厚度-初始厚度)/初始厚度×100%。
3)-20℃低温性能测试
在25℃下,将化成后的锂离子电池用1C恒流恒压充至4.2V,然后用1C恒流放电至3.0V,记录放电容量。再用1C恒流恒压充至4.2V,置于-20℃的环境中搁置12h后,以0.2C恒流放电至3.0V,记录放电容量。
-20℃的低温放电容量保持率=0.2C放电容量(-20℃)/1C放电容量(25℃)×100%。
得到的测试结果填入表1。
表1
Figure PCTCN2018092971-appb-000015
Figure PCTCN2018092971-appb-000016
由表1中实施例1~14和对比例1~11的数据可知,相比于单独添加吡啶类复合化合物,采用吡啶类复合化合物和结构式1所示的化合物A共用时,能够明显提高电池的低温性能、高温循环及高温储存性能。
对比实施例10~14与对比例7~11的数据可知,在吡啶类复合化合物与碳酸亚乙烯酯、氟代碳酸乙烯酯、1,3-丙烷磺内酯或硫酸乙烯酯的混合体系基础上添加结构式1所示的化合物A,电池的低温性能、高温循环及高温储存性能得到了进一步的提高。
同时,对比实施例6和实施例8的测试结果可知,化合物A含量过高时,电池低温性能显著下降。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种锂离子电池非水电解液,其特征在于,包括吡啶类复合化合物和结构式1所示的化合物A:
    Figure PCTCN2018092971-appb-100001
    在结构式1中,R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自氢、氟原子或含1~5个碳原子的基团;
    所述吡啶类复合化合物为吡啶类化合物与三氟化硼或五氟化磷的复合化合物。
  2. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述含1-5个碳原子的基团选自烃基、卤代烃基、含氧烃基、含硅烃基或含氰基取代的烃基。
  3. 根据权利要求2所述的锂离子电池非水电解液,其特征在于,所述R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自氢原子、氟原子、甲基、乙基、甲氧基、乙氧基、三甲基硅氧基、氰基或三氟甲基。
  4. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述结构式1所示的化合物A选自如下化合物:
    Figure PCTCN2018092971-appb-100002
    Figure PCTCN2018092971-appb-100003
  5. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述吡啶类复合化合物选自结构式2所示的化合物B和/或结构3所示的化合物C:
    Figure PCTCN2018092971-appb-100004
    R 7-R 16各自独立选自氢原子、卤原子、氰基或含1-5个碳原子的烃基。
  6. 根据权利要求5所述的锂离子电池非水电解液,其特征在于,所述结构式2所示的化合物B选自如下化合物:
    Figure PCTCN2018092971-appb-100005
    所述结构式3所示的化合物C选自如下化合物:
    Figure PCTCN2018092971-appb-100006
  7. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为0.1%~5.0%,所述吡啶类复合化合物的质量百分含量为0.1%~5.0%。
  8. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述非水电解液还包括不饱和环状碳酸酯、氟代环状碳酸酯、环状磺酸内酯和环状硫酸酯中的至少一种。
  9. 根据权利要求8所述的锂离子电池非水电解液,其特征在于,所述不饱和环状碳酸酯包括碳酸亚乙烯酯、碳酸乙烯亚乙酯、亚甲基碳酸乙烯酯中的至少一种;
    所述氟代环状碳酸酯包括氟代碳酸乙烯酯、三氟甲基碳酸乙烯酯和双氟代碳酸乙烯酯中的至少一种;
    所述环状磺酸内酯包括1,3-丙烷磺内酯、1,4-丁烷磺内酯和丙烯基-1,3-磺酸内酯中的至少一种;
    所述环状硫酸酯选自硫酸乙烯酯和4-甲基硫酸乙烯酯中的至少一种。
  10. 一种锂离子电池,其特征在于,包括正极、负极、用于隔离所述正极和所述负极的隔膜、以及如权利要求1~9任一项所述的锂离子电池非水电解液。
PCT/CN2018/092971 2017-12-29 2018-06-27 一种锂离子电池非水电解液及锂离子电池 WO2019128160A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711482050.8A CN109994779A (zh) 2017-12-29 2017-12-29 一种锂离子电池非水电解液及锂离子电池
CN201711482050.8 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019128160A1 true WO2019128160A1 (zh) 2019-07-04

Family

ID=67062971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092971 WO2019128160A1 (zh) 2017-12-29 2018-06-27 一种锂离子电池非水电解液及锂离子电池

Country Status (2)

Country Link
CN (1) CN109994779A (zh)
WO (1) WO2019128160A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149875A1 (ko) * 2021-01-07 2022-07-14 주식회사 엘지에너지솔루션 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110994027B (zh) * 2019-12-25 2022-05-13 湖州昆仑亿恩科电池材料有限公司 具有良好高温循环特性的锂离子电池电解液和锂离子电池
CN111509298B (zh) * 2020-06-01 2022-04-12 蜂巢能源科技股份有限公司 锂离子电池用电解液功能添加剂、锂离子电池电解液及锂离子电池
CN112886061B (zh) * 2021-01-12 2023-01-24 宁德新能源科技有限公司 一种电解液及包含该电解液的电化学装置
CN114156533B (zh) * 2022-02-10 2022-04-22 河南电池研究院有限公司 一种锂离子电池凝胶电解质及锂离子电池的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092476A (ja) * 2013-10-04 2015-05-14 旭化成株式会社 非水電解液、リチウムイオン二次電池用電解液、及び非水電解液電池
CN105489935A (zh) * 2016-01-11 2016-04-13 东莞新能源科技有限公司 电解液以及包括该电解液的锂离子电池
CN105680096A (zh) * 2016-01-11 2016-06-15 东莞新能源科技有限公司 电解液以及包括该电解液的锂离子电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055536B2 (ja) * 2005-02-09 2012-10-24 国立大学法人宇都宮大学 二酸化炭素の高度固定化物
JP5604105B2 (ja) * 2006-09-20 2014-10-08 エルジー・ケム・リミテッド 非水電解液添加剤及びこれを用いた二次電池
JP7239267B2 (ja) * 2015-02-04 2023-03-14 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー ルイス酸:ルイス塩基複合物電解質添加剤を含む電気化学セル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092476A (ja) * 2013-10-04 2015-05-14 旭化成株式会社 非水電解液、リチウムイオン二次電池用電解液、及び非水電解液電池
CN105489935A (zh) * 2016-01-11 2016-04-13 东莞新能源科技有限公司 电解液以及包括该电解液的锂离子电池
CN105680096A (zh) * 2016-01-11 2016-06-15 东莞新能源科技有限公司 电解液以及包括该电解液的锂离子电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149875A1 (ko) * 2021-01-07 2022-07-14 주식회사 엘지에너지솔루션 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지
EP4120420A4 (en) * 2021-01-07 2023-11-22 LG Energy Solution, Ltd. NON-AQUEOUS ELECTROLYTIC SOLUTION FOR LITHIUM SECONDARY BATTERY, AND LITHIUM SECONDARY BATTERY INCLUDING SAME

Also Published As

Publication number Publication date
CN109994779A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
CN109950620B (zh) 一种锂离子电池用非水电解液及锂离子电池
CN109950621B (zh) 一种锂离子电池非水电解液及锂离子电池
CN111403807B (zh) 一种锂离子电池非水电解液及锂离子电池
WO2017056981A1 (ja) リチウムイオン二次電池、その製造方法およびその評価方法
CN108847501B (zh) 一种锂离子电池非水电解液及锂离子电池
WO2019128160A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2016110123A1 (zh) 一种非水电解液及锂离子二次电池
WO2019128161A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2021135920A1 (zh) 一种锂离子电池
CN113130992B (zh) 一种非水电解液及锂离子电池
CN110444804B (zh) 一种锂离子电池非水电解液及锂离子电池
CN109768327B (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
WO2022143188A1 (zh) 一种锂离子电池
WO2019041696A1 (zh) 锂离子电池用非水电解液及锂离子电池
CN112928328A (zh) 一种含有硅烷基磺酰胺化合物的锂离子电池电解液和锂离子二次电池
WO2021238531A1 (zh) 一种非水电解液及锂离子电池
WO2020135667A1 (zh) 一种非水电解液及锂离子电池
CN114447432B (zh) 一种锂离子电池非水电解液及锂离子电池
WO2023279953A1 (zh) 一种非水电解液及电池
CN109638351B (zh) 一种兼顾高低温性能的高电压电解液及其锂离子电池
CN114447430A (zh) 锂离子电池
WO2020103923A1 (zh) 一种非水电解液及锂离子电池
CN113871715A (zh) 一种磷酸铁锂电池
CN110611123A (zh) 一种锂离子电池电解液和锂离子电池
CN112582675B (zh) 电解液和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896550

Country of ref document: EP

Kind code of ref document: A1