WO2019128161A1 - 一种锂离子电池非水电解液及锂离子电池 - Google Patents
一种锂离子电池非水电解液及锂离子电池 Download PDFInfo
- Publication number
- WO2019128161A1 WO2019128161A1 PCT/CN2018/092980 CN2018092980W WO2019128161A1 WO 2019128161 A1 WO2019128161 A1 WO 2019128161A1 CN 2018092980 W CN2018092980 W CN 2018092980W WO 2019128161 A1 WO2019128161 A1 WO 2019128161A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium ion
- ion battery
- nonaqueous electrolyte
- lithium
- phosphate
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention belongs to the technical field of lithium ion batteries, and particularly relates to a lithium ion battery non-aqueous electrolyte and a lithium ion battery.
- Lithium-ion batteries have made great progress in the field of portable electronic products due to their high operating voltage, high safety, long life and no memory effect. At the same time, with the development of new energy vehicles, lithium-ion batteries have great application prospects in power supply systems for new energy vehicles.
- the non-aqueous electrolyte lithium ion battery is a key factor affecting the high and low temperature performance of the battery.
- the additive in the non-aqueous electrolyte is particularly important for the performance of the high-low temperature performance of the battery.
- the electrolyte Since the reduction potential of the components in the electrolyte is higher than that of lithium, the electrolyte is reduced on the surface of the carbon anode during the initial charging process to produce a passivation film composed of inorganic and organic compounds, which is called a solid electrolyte interface.
- Membrane SEI
- the SEI can be formed not only on the surface of the carbon negative electrode but also on the surface of the positive electrode material due to oxidation of the electrolytic solution.
- the SEI film formed on the surface of the positive and negative electrodes during the initial charging process determines the degree of decomposition of the electrolyte in the negative electrode or the positive electrode, and also affects the speed at which lithium ions are embedded in the negative electrode and the positive electrode, so the SEI film is largely determined. The performance of lithium-ion battery performance.
- the battery is prone to generate gas during high-temperature storage, causing the battery to swell.
- the passivation film formed by vinylene carbonate has a large impedance, especially under low temperature conditions, it is prone to low-temperature charge and lithium deposition, which affects battery safety.
- the fluoroethylene carbonate can also form a passivation film on the surface of the negative electrode to improve the cycle performance of the battery, and the passivation film formed has a relatively low impedance, which can improve the low-temperature discharge performance of the battery.
- fluoroethylene carbonate produces more gas at high temperature storage, which significantly reduces the high temperature storage performance of the battery.
- Cide CN 201180016330.4 discloses a lithium ion battery non-aqueous electrolyte containing lithium difluoride (bisoxalate) lithium phosphate and lithium tetrafluorooxalate phosphate, which can improve cycle and low temperature performance.
- the present invention has found through experiments that a lithium ion battery non-aqueous electrolyte containing lithium difluoride (bisoxalate) lithium phosphate or/and tetrafluorooxalate lithium phosphate can improve the cycle and low temperature performance of the battery, but has high temperature storage performance and high temperature. Cyclic performance still needs to be further improved.
- the present invention provides a lithium ion battery non-aqueous electrolyte and a lithium ion battery.
- the present invention provides a lithium ion battery non-aqueous electrolyte comprising oxalate phosphate and Compound A of Structural Formula 1:
- R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently selected from hydrogen, a fluorine atom or a group having 1 to 5 carbon atoms.
- the group having 1 to 5 carbon atoms is selected from a hydrocarbon group, a halogenated hydrocarbon group, an oxygen-containing hydrocarbon group, a silicon-containing hydrocarbon group or a cyano group-substituted hydrocarbon group.
- the R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently selected from a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, a methoxy group, an ethoxy group, and a trimethyl group. Silyloxy, cyano or trifluoromethyl.
- the compound A represented by the structural formula 1 is selected from the following compounds:
- the mass percentage of the compound A is 0.1% to 5.0%, and the mass percentage of the oxalate phosphate is 100% by mass of the total mass of the nonaqueous electrolyte of the lithium ion battery. 0.01% to 5.0%.
- the oxalate phosphate is at least one selected from the group consisting of difluoro(bisoxalate) lithium phosphate, lithium tetrafluoro oxalate phosphate, and lithium trioxalate phosphate.
- the oxalate phosphate is selected from the group consisting of difluoro (dioxalate) lithium phosphate having a mass percentage of 0.1% to 5.0%, based on 100% of the total mass of the nonaqueous electrolyte of the lithium ion battery. And a mass percentage of 0.01% to 2.0% of at least one of lithium tetrafluoro oxalate phosphate or lithium trioxalate phosphate in an amount of 0.01% to 2.0% by mass.
- the non-aqueous electrolyte further comprises at least one of an unsaturated cyclic carbonate, a fluorinated cyclic carbonate, a cyclic sultone and a cyclic sulfate.
- the unsaturated cyclic carbonate includes at least one of vinylene carbonate, ethylene carbonate, and methylene carbonate;
- the fluorinated cyclic carbonate includes at least one of fluoroethylene carbonate, trifluoromethyl ethylene carbonate, and difluoroethylene carbonate;
- the cyclic sultone lactone includes at least one of 1,3-propane sultone, 1,4-butane sultone, and propylene-1,3- sultone;
- the cyclic sulfate is selected from at least one of vinyl sulfate and 4-methylsulfate.
- the present invention provides a lithium ion battery comprising a positive electrode, a negative electrode, a separator for isolating the positive electrode and the negative electrode, and a lithium ion battery nonaqueous electrolyte as described above.
- oxalate phosphate and the compound A represented by the structural formula 1 are simultaneously added.
- oxalate phosphate can form a passivation film on the surface of the negative electrode, and the passivation film has high lithium ion conductivity, thereby improving low temperature performance.
- oxalate phosphate produces more gas during high-temperature storage of the battery, which reduces the contact between the pole pieces, thereby reducing the high-temperature storage performance and high-temperature cycle performance of the battery.
- oxalate phosphate When oxalate phosphate is used together with compound A shown in Structural Formula 1, it can be decomposed on the surface of the negative electrode to form a composite passivation film which is more thermally stable than the passivation film of oxalate phosphate. It can suppress the high temperature storage expansion of the battery, thereby improving the high temperature storage capacity retention and recovery of the battery, and further improving the high temperature cycle performance of the battery.
- the embodiment of the invention provides a lithium ion battery non-aqueous electrolyte, comprising oxalate phosphate and compound A represented by structural formula 1:
- R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently selected from hydrogen, a fluorine atom or a group having 1 to 5 carbon atoms.
- oxalate phosphate can form a passivation film on the surface of the negative electrode, and the passivation film has high lithium ion conductivity, thereby improving low temperature performance.
- oxalate phosphate produces more gas during high-temperature storage of the battery, which reduces the contact between the pole pieces, thereby reducing the high-temperature storage performance and high-temperature cycle performance of the battery.
- compound A shown in Structural Formula 1 it can be decomposed on the surface of the negative electrode to form a composite passivation film which is more thermally stable than the passivation film of oxalate phosphate. It can suppress the high temperature storage expansion of the battery, thereby improving the high temperature storage capacity retention and recovery of the battery, and further improving the high temperature cycle performance of the battery.
- the group having 1 to 5 carbon atoms is selected from a hydrocarbon group, a halogenated hydrocarbon group, an oxygen-containing hydrocarbon group, a silicon-containing hydrocarbon group, or a cyano group-substituted hydrocarbon group.
- each of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 is independently selected from the group consisting of a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, a methoxy group, an ethoxy group, Trimethylsiloxy, cyano or trifluoromethyl.
- the compound A shown in Structural Formula 1 is selected from the group consisting of:
- the compound A represented by the above structural formula 1 may be produced by a polyol (such as erythritol, xylitol, etc.) and a carbonate (such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, etc.) under the action of a basic catalyst.
- a polyol such as erythritol, xylitol, etc.
- a carbonate such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, etc.
- the transesterification reaction is further purified by recrystallization or column chromatography.
- the specific synthetic route is as follows:
- the preparation of the fluorine-containing compound in the compound A is carried out by fluorinating a mixture of the corresponding carbonate and F 2 /N 2 , followed by purification by recrystallization or column chromatography.
- An example of its synthetic route is as follows:
- the preparation of the cyano group-containing compound in the compound A is carried out by reacting the corresponding carbonate with a sulfonyl chloride, reacting with NaCN or KCN, and purifying by recrystallization or column chromatography.
- An example of its synthetic route is as follows:
- the preparation of the trimethylsiloxy compound in the compound A is carried out by subjecting the corresponding hydroxycarbonate to a substitution reaction with a nitrogen silane, followed by recrystallization or column chromatography.
- An example of its synthetic route is as follows:
- both the compound A and the oxalate phosphate are used as an electrolyte additive, and the content thereof is not excessively high.
- the mass percentage of the compound A is 0.1% to 5.0%, and the mass percentage of the oxalate phosphate is 100% by mass of the total mass of the nonaqueous electrolyte of the lithium ion battery.
- the content is from 0.01% to 5.0%.
- the mass percentage of the compound A may be 0.1%, 0.2%, 0.4%, 0.5%, 0.6%, 0.8%, 0.9%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.1. %, 2.4%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%.
- the compound A has a mass percentage of from 0.1% to 2.5%.
- the content of the compound A and the oxalate phosphate is too low or too high, it is disadvantageous to the improvement of the performance of the battery.
- the content of the compound A is too high, the low-temperature performance of the battery is remarkably lowered.
- the oxalate phosphate is selected from at least one of difluoro (bisoxalate) lithium phosphate, lithium tetrafluoro oxalate phosphate, and lithium trioxalate phosphate.
- the oxalate phosphate is selected from the group consisting of difluoro (dioxalate) having a mass percentage of 0.1% to 5.0%, based on 100% by mass of the total mass of the lithium ion battery non-aqueous electrolyte.
- Lithium phosphate at least one of a content of 0.01% to 2.0% by mass of lithium tetrafluoro oxalate phosphate or a lithium by weight of 0.01% to 2.0% of lithium oxalate phosphate.
- the nonaqueous electrolytic solution further contains at least one of an unsaturated cyclic carbonate, a fluorinated cyclic carbonate, a cyclic sultone, and a cyclic sulfate.
- the unsaturated cyclic carbonate includes vinylene carbonate (CAS: 872-36-6, abbreviated as VC), ethylene carbonate (CAS: 4427-96-7, abbreviation At least one of VEC), methylene ethylene carbonate (CAS: 124222-05-5);
- the fluorinated cyclic carbonate includes fluoroethylene carbonate (CAS: 114435-02-8, abbreviated as FEC), trifluoromethyl ethylene carbonate (CAS: 167951-80-6), and bisfluoroethylene carbonate. At least one of esters (CAS: 311810-76-1);
- the cyclic sultone lactone includes 1,3-propane sultone (CAS: 1120-71-4, abbreviated as PS), 1,4-butane sultone (CAS: 1633-83-6), and At least one of propenyl-1,3-sulfonate (CAS: 21806-61-1);
- the cyclic sulfate is selected from at least one of vinyl acetate (CAS: 1072-53-3, abbreviated as DTD) and 4-methylsulfate (CAS: 5689-83-8).
- the lithium ion battery non-aqueous electrolyte contains a solvent and a lithium salt.
- the solvent of the lithium ion battery non-aqueous electrolyte contains a cyclic carbonate and Chain carbonate.
- the cyclic carbonate includes at least one of ethylene carbonate, propylene carbonate, and butylene carbonate.
- the chain carbonate includes at least one of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate.
- the lithium salt in the present invention is not particularly limited and may be variously used.
- the lithium salt may be selected from the group consisting of LiPF 6 , LiBF 4 , LiBOB, LiDFOB, LiN(SO 2 CF 3 ) 2 , LiN (SO 2 F). ) at least one of 2 .
- the content of the lithium salt may vary within a wide range.
- the lithium ion battery has a lithium salt content of 0.1-15% in the nonaqueous electrolyte.
- Another embodiment of the present invention discloses a lithium ion battery including a positive electrode, a negative electrode, a separator for isolating the positive electrode and the negative electrode, and a lithium ion battery nonaqueous electrolyte as described above.
- the positive electrode includes a positive electrode active material, and the active material of the positive electrode is LiNi x Co y MnzL (1-xyz) O 2 , LiCo x ' L (1-x') O 2 , LiNi x" L' y' Mn ( At least one of 2-x"-y') O 4 , Li z ' MPO 4 ; wherein L is at least one of Al, Sr, Mg, Ti, Ca, Zr, Zn, Si or Fe; ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ x + y + z ⁇ 1, 0 ⁇ x ' ⁇ 1, 0.3 ⁇ x" ⁇ 0.6, 0.01 ⁇ y' ⁇ 0.2; L' It is at least one of Co, Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, and Fe; 0.5 ⁇ z' ⁇ 1, and M is at least one of Fe,
- the negative electrode includes a negative active material, which may be made of a carbon material, a metal alloy, a lithium-containing oxide, and a silicon-containing material.
- the anode active material is selected from the group consisting of artificial graphite and natural graphite. Of course, it is not limited to the two listed.
- the separator is a conventional separator in the field of lithium ion batteries, and therefore will not be described again.
- the lithium ion battery provided by the embodiment of the invention has better high temperature cycle performance and high temperature storage performance because it contains the above nonaqueous electrolyte.
- This embodiment is used to illustrate the lithium ion battery non-aqueous electrolyte, the lithium ion battery and the preparation method thereof, and the following steps are included in the following steps:
- the positive electrode preparation step is: mixing the positive electrode active material lithium nickel cobalt manganese oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 , the conductive carbon black Super-P and the binder polyvinylidene fluoride (PVDF) at a mass ratio of 92:4:3. Dispersing in N-methyl-2-pyrrolidone (NMP) to obtain a positive electrode slurry, uniformly coating the positive electrode slurry on both sides of the aluminum foil, drying, calendering, and vacuum drying, and welding with an ultrasonic welder A positive electrode plate was obtained after the aluminum lead wire, and the thickness of the positive electrode plate was between 120 and 150 ⁇ m.
- NMP N-methyl-2-pyrrolidone
- the negative electrode preparation step is: mixing artificial graphite, conductive carbon black Super-P, binder styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) in a mass ratio of 94:1:2.5:2.5, dispersed in deionized In the water, the negative electrode slurry is obtained, and the negative electrode slurry is coated on both sides of the copper foil, dried, calendered and vacuum dried, and the nickel lead wire is welded by an ultrasonic welding machine to obtain a negative electrode plate, and the thickness of the negative electrode plate is 120. -150 ⁇ m.
- EC ethylene carbonate
- DEC diethyl carbonate
- EMC ethyl methyl carbonate
- the separator preparation step is as follows: a three-layer separator is used, and the thickness is 20 ⁇ m.
- the battery assembly step is: placing a three-layer separator between the positive electrode plate and the negative electrode plate, and then winding the sandwich structure composed of the positive electrode plate, the negative electrode plate and the separator, and then flattening the wound body into an aluminum foil packaging bag.
- the battery was to be vacuum-baked at 85 ° C for 24 h to obtain a cell to be injected; in the glove box whose dew point was controlled below -40 ° C, the electrolyte prepared above was injected into the cell, and vacuum-packed and allowed to stand for 24 h.
- Embodiments 2 to 12 are for explaining a lithium ion battery non-aqueous electrolyte, a lithium ion battery, and a preparation method thereof according to the present invention, and include most of the operation steps in Embodiment 1, the differences being:
- the nonaqueous electrolytic solution contained the components of the mass percentages shown in Examples 2 to 12 in Table 1 based on 100% by weight of the total of the nonaqueous electrolytic solution.
- Comparative Examples 1 to 6 are used for comparative description of the lithium ion battery nonaqueous electrolyte, the lithium ion battery and the preparation method thereof, and include most of the operation steps in Embodiment 1, the differences being:
- the nonaqueous electrolytic solution contained the components of the mass percentages shown in Comparative Example 1 to Comparative Example 6 in Table 1 in terms of 100% by weight of the total of the nonaqueous electrolytic solution.
- the formed battery was charged to 4.2 V with a constant current of 1 C at 45 ° C, the off current was 0.01 C, and then discharged to 3.0 V with a constant current of 1 C. After the N cycles of charging/discharging, the retention of the capacity after the Nth cycle was calculated to evaluate the high temperature cycle performance.
- the Nth cycle capacity retention ratio (%) (the Nth cycle discharge capacity / the first cycle discharge capacity) ⁇ 100%.
- the battery after the formation is charged to 4.2V at a normal temperature with a constant current of 1C, the off current is 0.01 C, and then discharged to 3.0 V with a constant current of 1 C, and the initial discharge capacity of the battery is measured, and then charged with a constant current of 1 C to a constant voltage.
- the current is 0.01C, measure the initial thickness of the battery, then store the battery at 60 ° C for N days, measure the thickness of the battery, and then discharge to 3.0V with a constant current of 1C, measure the holding capacity of the battery, and then use 1C constant
- the flow was continuously charged to 4.2 V, the off current was 0.01 C, and then discharged to 3.0 V with a constant current of 1 C, and the recovery capacity was measured.
- the formula for calculating the capacity retention rate and capacity recovery rate is as follows:
- Battery capacity retention rate (%) retention capacity / initial capacity ⁇ 100%;
- Battery capacity recovery rate (%) recovery capacity / initial capacity ⁇ 100%;
- Battery thickness expansion ratio (%) (thickness after N days - initial thickness) / initial thickness ⁇ 100%.
- the formed lithium ion battery was charged to 4.2 V with a constant current of 1 C at 25 ° C, and then discharged to 3.0 V with a constant current of 1 C, and the discharge capacity was recorded. Then, it was charged to 4.2 V with a constant current of 1 C, placed in an environment of -20 ° C for 12 hours, and then discharged to 3.0 V with a constant current of 0.2 C to record the discharge capacity.
- Comparative Examples 1-7 and 12 show that when the content of the compound A is too high, the low-temperature performance of the battery is remarkably lowered.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
为克服现有锂离子电池高温储存性能及高温循环性能不足的问题,本发明提供了一种锂离子电池非水电解液,包括草酸根磷酸盐和结构式1所示的化合物A:在结构式1中,R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自氢、氟原子或含1~5个碳原子的基团。同时,本发明还公开了包括上述非水电解液的锂离子电池。本发明提供的锂离子电池非水电解液有利于改善电池的高温储存及高温循环性能。
Description
本发明属于锂离子电池技术领域,具体涉及一种锂离子电池非水电解液及锂离子电池。
锂离子电池因其工作电压高、安全性高、长寿命、无记忆效应等特点,在便携式电子产品领域中取得了长足的发展。同时,随着新能源汽车的发展,锂离子电池在新能源汽车用动力电源系统具有巨大的应用前景。
在非水电解液锂离子电池中,非水电解液是影响电池高低温性能的关键因素,特别地,非水电解液中的添加剂对电池高低温性能的发挥尤其重要。在锂离子电池初始充电过程中,电池正极材料中的锂离子脱嵌出来,通过电解液然后结合通过外电路相应的电子嵌入碳负极。由于电解液中的成分的还原电位比锂高,在初始充电过程中电解液会在在碳负极表面被还原生产由无机和有机化合物组成的钝化膜,该钝化膜称为固体电解液界面膜(SEI)。SEI不仅可以在碳负极表面形成,也可以在正极材料表面由于电解液氧化而形成。在初始充电过程中正负极材料表面形成的SEI膜,决定了电解液随后在负极或者正极分解的程度,同时也影响了锂离子嵌入负极和脱嵌正极的速度,所以SEI膜在很大程度上决定了锂离子电池性能的优劣。
为了提高锂离子电池的各项性能,许多科研者通过往电解液中添加不同的负极成膜添加剂(如碳酸亚乙烯酯,氟代碳酸乙烯酯,碳酸乙烯亚乙酯)来改善SEI膜的质量,从而改善电池的各项性能。例如,在日本特开2000-123867号公报中提出了通过在电解液中添加碳酸亚乙烯酯来提高电池特性。碳酸亚乙烯酯能够优先于溶剂分子在负极表面发生还原分解反应,能在负极表面形成钝化膜,阻止电解液在电极表面进一步分解,从而提高电池的循环性能。但添加碳酸亚乙烯酯后,电池在高温储存中过程中容易产生气体,导致电池发生鼓胀。此外,碳酸亚乙烯酯形成的钝化膜阻抗较大,尤其在低温条件下,容易发生低温充电析锂,影响电池安全性。氟代碳酸乙烯酯也能在负极表面形成钝化膜, 改善电池的循环性能,且形成的钝化膜阻抗比较低,能够改善电池的低温放电性能。但氟代碳酸乙烯酯在高温储存产生更多的气体,明显降低电池高温储存性能。中国专利CN 201180016330.4公开了一种含二氟(双草酸根)磷酸锂和四氟草酸根磷酸锂的锂离子电池非水电解液,能够改善循环及低温性能。但本发明通过实验发现,含二氟(双草酸根)磷酸锂或/和四氟草酸根磷酸锂的锂离子电池非水电解液虽然能够改善电池的循环及低温性能,但高温储存性能及高温循环性能仍然有待进一步提高。
发明内容
针对现有锂离子电池高温储存性能及高温循环性能不足的问题,本发明提供了一种锂离子电池非水电解液及锂离子电池。
本发明解决上述技术问题所采用的技术方案如下:
一方面,本发明提供了一种锂离子电池非水电解液,包括草酸根磷酸盐和结构式1所示的化合物A:
在结构式1中,R
1、R
2、R
3、R
4、R
5、R
6各自独立地选自氢、氟原子或含1~5个碳原子的基团。
可选的,所述含1-5个碳原子的基团选自烃基、卤代烃基、含氧烃基、含硅烃基或含氰基取代的烃基。
可选的,所述R
1、R
2、R
3、R
4、R
5、R
6各自独立地选自氢原子、氟原子、甲基、乙基、甲氧基、乙氧基、三甲基硅氧基、氰基或三氟甲基。
可选的,所述结构式1所示的化合物A选自如下化合物:
可选的,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为0.1%~5.0%,所述草酸根磷酸盐的质量百分含量为0.01%~5.0%。
可选的,所述草酸根磷酸盐选自二氟(双草酸根)磷酸锂、四氟草酸根磷酸锂和三草酸根磷酸锂中的至少一种。
可选的,以所述锂离子电池非水电解液的总质量为100%计,所述草酸根磷酸盐选自质量百分含量为0.1%~5.0%的二氟(双草酸根)磷酸锂、质量百分含量为0.01%~2.0%的四氟草酸根磷酸锂或质量百分含量为0.01%~2.0%的三草酸根磷酸锂中的至少一种。
可选的,所述非水电解液还包括不饱和环状碳酸酯、氟代环状碳酸酯、环 状磺酸内酯和环状硫酸酯中的至少一种。
可选的,所述不饱和环状碳酸酯包括碳酸亚乙烯酯、碳酸乙烯亚乙酯、亚甲基碳酸乙烯酯中的至少一种;
所述氟代环状碳酸酯包括氟代碳酸乙烯酯、三氟甲基碳酸乙烯酯和双氟代碳酸乙烯酯中的至少一种;
所述环状磺酸内酯包括1,3-丙烷磺内酯、1,4-丁烷磺内酯和丙烯基-1,3-磺酸内酯中的至少一种;
所述环状硫酸酯选自硫酸乙烯酯和4-甲基硫酸乙烯酯中的至少一种。
另一方面,本发明提供了一种锂离子电池,包括正极、负极、用于隔离所述正极和所述负极的隔膜、以及如上所述的锂离子电池非水电解液。
本发明提供的锂离子电池非水电解液中同时加入了草酸根磷酸盐和结构式1所示的化合物A。其中,草酸根磷酸盐能够在负极表面形成钝化膜,且该钝化膜具有较高的锂离子传导性,从而改善低温性能。但草酸根磷酸盐在电池高温储存过程中,产生较多的气体,降低了极片之间接触性,从而降低电池的高温储存性能及高温循环性能。当草酸根磷酸盐和结构式1所示的化合物A一起使用时,能够共同在负极表面分解从而形成复合钝化膜,该复合钝化膜比草酸根磷酸盐的钝化膜的热稳定性要高,能够抑制电池高温储存气胀,从而改善电池的高温储存容量保持及恢复,电池的高温循环性能也得到进一步改善。
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种锂离子电池非水电解液,包括草酸根磷酸盐和结构式1所示的化合物A:
在结构式1中,R
1、R
2、R
3、R
4、R
5、R
6各自独立地选自氢、氟原子或含1~5个碳原子的基团。
其中,草酸根磷酸盐能够在负极表面形成钝化膜,且该钝化膜具有较高的锂离子传导性,从而改善低温性能。但草酸根磷酸盐在电池高温储存过程中,产生较多的气体,降低了极片之间接触性,从而降低电池的高温储存性能及高温循环性能。当草酸根磷酸盐和结构式1所示的化合物A一起使用时,能够共同在负极表面分解从而形成复合钝化膜,该复合钝化膜比草酸根磷酸盐的钝化膜的热稳定性要高,能够抑制电池高温储存气胀,从而改善电池的高温储存容量保持及恢复,电池的高温循环性能也得到进一步改善。
在一些实施例中,所述含1-5个碳原子的基团选自烃基、卤代烃基、含氧烃基、含硅烃基或含氰基取代的烃基。
在一些实施例中,所述R
1、R
2、R
3、R
4、R
5、R
6各自独立地选自氢原子、氟原子、甲基、乙基、甲氧基、乙氧基、三甲基硅氧基、氰基或三氟甲基。
在一些实施例中,所述结构式1所示的化合物A选自如下化合物:
需要说明的是,以上是本发明所要求保护的部分化合物,但不限于此,不应理解为对本发明的限制。
上述结构式1所代表的化合物A可采用多元醇(如赤藓醇、木糖醇等)与碳酸酯(如碳酸二甲酯、碳酸二乙酯、碳酸乙烯酯等)在碱性催化剂作用下发生酯交换反应,再经重结晶或柱层析纯化制备,其具体合成路线示例如下:
化合物A中含氟化合物的制备采用对应的碳酸酯与F
2/N
2的混合气氟化后,再经重结晶或柱层析纯化而得。其合成路线示例如下:
化合物A中含氰基化合物的制备采用对应的碳酸酯与磺酰氯发生氯代反应后,再与NaCN或KCN反应,经重结晶或柱层析纯化而得。其合成路线示例如下:
化合物A中含三甲基硅氧基化合物的制备采用对应的羟基碳酸酯与氮硅烷发生取代反应后,经重结晶或柱层析纯化而得。其合成路线示例如下:
本发明中,化合物A和草酸根磷酸盐均作为电解液添加剂使用,其含量均不可过高。在一些实施例中,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为0.1%~5.0%,所述草酸根磷酸盐的质量百分含量为0.01%~5.0%。例如,所述化合物A的质量百分含量可以为0.1%、0.2%、0.4%、0.5%、0.6%、0.8%、0.9%、1%、1.2%、1.5%、1.8%、2%、2.1%、2.4%、2.5%、3%、3.5%、4%、4.5%、5%。优选情况下,所述化合物A的质量百分含量为0.1%~2.5%。所述化合物A和所述草酸根磷酸盐的含量过低或过高时,均不利于电池的性能的提高。尤其是当化合物A的含量过高时,电池的低温性能会显著下降。
在一些实施例中,所述草酸根磷酸盐选自二氟(双草酸根)磷酸锂、四氟草酸根磷酸锂和三草酸根磷酸锂中的至少一种。
在一些实施例中,以所述锂离子电池非水电解液的总质量为100%计,所述草酸根磷酸盐选自质量百分含量为0.1%~5.0%的二氟(双草酸根)磷酸锂、质量百分含量为0.01%~2.0%的四氟草酸根磷酸锂或质量百分含量为0.01%~2.0%的三草酸根磷酸锂中的至少一种。
所述非水电解液还包含不饱和环状碳酸酯、氟代环状碳酸酯、环状磺酸内酯和环状硫酸酯中的至少一种。
在更优选的实施例中,所述不饱和环状碳酸酯包括碳酸亚乙烯酯(CAS:872-36-6,缩写为VC)、碳酸乙烯亚乙酯(CAS:4427-96-7,缩写为VEC)、亚甲基碳酸乙烯酯(CAS:124222-05-5)中的至少一种;
所述氟代环状碳酸酯包括氟代碳酸乙烯酯(CAS:114435-02-8,缩写为FEC)、三氟甲基碳酸乙烯酯(CAS:167951-80-6)和双氟代碳酸乙烯酯(CAS:311810-76-1)中的至少一种;
所述环状磺酸内酯包括1,3-丙烷磺内酯(CAS:1120-71-4,缩写为PS)、1,4-丁烷磺内酯(CAS:1633-83-6)和丙烯基-1,3-磺酸内酯(CAS:21806-61-1)中的至少一种;
所述环状硫酸酯选自硫酸乙烯酯(CAS:1072-53-3,缩写为DTD)和4-甲基硫酸乙烯酯(CAS:5689-83-8)中的至少一种。
如现有的,锂离子电池非水电解液中均含有溶剂以及锂盐,本发明方案中对于溶剂种类和含量没有特殊限制,例如该锂离子电池非水电解液的溶剂包含环状碳酸酯和链状碳酸酯。
优选地,所述环状碳酸酯包括碳酸乙烯酯、碳酸丙烯酯和碳酸丁烯酯中的至少一种。所述链状碳酸酯包括碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯中的至少一种。
本发明中对锂盐没有特殊限制,可采用现有的各种,例如所述锂盐可选自LiPF
6、LiBF
4、LiBOB、LiDFOB、LiN(SO
2CF
3)
2、LiN(SO
2F)
2中的至少一种。所述锂盐的含量可在较大范围内变动,优选情况下,所述锂离子电池非水电解液中,锂盐的含量为0.1-15%。
本发明的另一实施例公开了一种锂离子电池,包括正极、负极、用于隔离所述正极和所述负极的隔膜、以及如上所述的锂离子电池非水电解液。
所述正极包括正极活性材料,所述正极的活性材料为LiNi
xCo
yMnzL
(1-x-y-z)O
2、LiCo
x’L
(1-x’)O
2、LiNi
x”L’
y’Mn
(2-x”-y’)O
4、Li
z’MPO
4中的至少一种;其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种;0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x’≤1,0.3≤x”≤0.6,0.01≤y’≤0.2;L’为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe中的至少一种;0.5≤z’≤1,M为Fe、Mn、Co中的至少一种。
所述负极包括负极活性材料,所述负极活性材料可由碳材料、金属合金、含锂氧化物及含硅材料制得。优选的,所述负极活性材料选自人造石墨、天然石墨。当然,不限于所列举的这两种。
所述隔膜为锂离子电池领域的常规隔膜,因此不再赘述。
本发明实施例提供的锂离子电池,由于含有上述非水电解液,因此具有较好的高温循环性能和高温存储性能。
以下通过实施例对本发明进行进一步的说明。
实施例1
本实施例用于说明本发明公开的锂离子电池非水电解液、锂离子电池及其制备方法,包括以下操作步骤:
正极制备步骤为:按92:4:3的质量比混合正极活性材锂镍钴锰氧化物LiNi
0.5Co
0.2Mn
0.3O
2、导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料,将正极浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,正极板的厚度在120-150μm之间。
负极制备步骤为:按94:1:2.5:2.5的质量比混合人造石墨、导电碳黑Super-P、粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),分散在去离子水中,得到负极浆料,将负极浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,负极板的厚度在120-150μm之间。
非水电解液制备步骤为:将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为EC:DEC:EMC=1:1:1进行混合,然后加入六氟磷酸锂(LiPF
6)至摩尔浓度为1mol/L,且以所述非水电解液的总重量为100%计,加入含有表1中实施例1所示质量百分含量的组分。
隔膜制备步骤为:采用三层隔离膜,厚度为20μm。
电池组装步骤为:在正极板和负极板之间放置三层隔离膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入铝箔包装袋,在85℃下真空烘烤24h,得到待注液的电芯;在露点控制在-40℃以下的手套箱中,将上述制备的电解液注入电芯中,经真空封装,静止24h。
然后按以下步骤进行首次充电的常规化成:0.05C恒流充电180min,0.2C恒流充电至3.95V,二次真空封口,然后进一步以0.2C的电流恒流充电至4.2V, 常温搁置24h后,以0.2C的电流恒流放电至3.0V,得到一种4.2V的LiNi
0.5Co
0.2Mn
0.3O
2/人造石墨锂离子电池。
实施例2~12
实施例2~12用于说明本发明公开的锂离子电池非水电解液、锂离子电池及其制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
所述非水电解液制备步骤中:
以所述非水电解液的总重量为100%计,所述非水电解液含有表1中实施例2~实施例12所示质量百分含量的组分。
对比例1~6
对比例1~6用于对比说明本发明公开的锂离子电池非水电解液、锂离子电池及其制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
所述非水电解液制备步骤中:
以所述非水电解液的总重量为100%计,所述非水电解液含有表1中对比例1~对比例6所示质量百分含量的组分。
性能测试
对上述实施例1~12和对比例1~6制备得到的锂离子电池进行如下性能测试:
1)高温循环性能测试
在45℃下,将化成后的电池用1C恒流恒压充至4.2V,截至电流为0.01C,然后用1C恒流放电至3.0V。如此充/放电N次循环后,计算第N次循环后容量的保持率,以评估其高温循环性能。
45℃1C循环N次容量保持率计算公式如下:
第N次循环容量保持率(%)=(第N次循环放电容量/第一次循环放电容量)×100%。
2)60℃高温储存性能测试
将化成后的电池在常温下用1C恒流恒压充至4.2V,截至电流为0.01C,再用1C恒流放电至3.0V,测量电池初始放电容量,再用1C恒流恒压充电至4.2V,截至电流为0.01C,测量电池的初始厚度,然后将电池在60℃储存N天后,测 量电池的厚度,再以1C恒流放电至3.0V,测量电池的保持容量,再用1C恒流恒压充电至4.2V,截至电流为0.01C,然后用1C恒流放电至3.0V,测量恢复容量。容量保持率、容量恢复率的计算公式如下:
电池容量保持率(%)=保持容量/初始容量×100%;
电池容量恢复率(%)=恢复容量/初始容量×100%;
电池厚度膨胀率(%)=(N天后的厚度-初始厚度)/初始厚度×100%。
3)-20℃低温性能测试
在25℃下,将化成后的锂离子电池用1C恒流恒压充至4.2V,然后用1C恒流放电至3.0V,记录放电容量。再用1C恒流恒压充至4.2V,置于-20℃的环境中搁置12h后,以0.2C恒流放电至3.0V,记录放电容量。
-20℃的低温放电容量保持率=0.2C放电容量(-20℃)/1C放电容量(25℃)×100%。
得到的测试结果填入表1。
表1
由表1中实施例1~12和对比例1~6的数据可知,相比于单独添加草酸根磷酸盐,采用草酸根磷酸盐和结构式1所示的化合物A共用时,能够共同在负极表面形成热稳定性更好的复合钝化膜该复合钝化膜比单独加入草酸根磷酸盐形成的钝化膜的热稳定性要高,有效抑制电池高温储存气胀,能够明显提高电池的高温循环及高温储存性能。同时可以看出,随结构式1所示的化合物A含量的提高,能够进一步改善电池的高温循环及高温储存性能。
对比实施例8~11与对比例3~6的数据可知,在草酸根磷酸盐与碳酸亚乙烯酯、氟代碳酸乙烯酯、1,3-丙烷磺内酯或硫酸乙烯酯的混合体系基础上添加结构式1所示的化合物A,电池的高温循环及高温储存性能得到了进一步的提高。
同时,对比实施例1-7和实施例12的测试结果可知,化合物A含量过高时,电池低温性能显著下降。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发 明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述含1-5个碳原子的基团选自烃基、卤代烃基、含氧烃基、含硅烃基或含氰基取代的烃基。
- 根据权利要求2所述的锂离子电池非水电解液,其特征在于,所述R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自氢原子、氟原子、甲基、乙基、甲氧基、乙氧基、三甲基硅氧基、氰基或三氟甲基。
- 根据权利要求1所述的锂离子电池非水电解液,其特征在于,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为0.1%~5.0%,所述草酸根磷酸盐的质量百分含量为0.01%~5.0%。
- 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述草酸根磷酸盐选自二氟(双草酸根)磷酸锂、四氟草酸根磷酸锂和三草酸根磷酸锂中的至少一种。
- 根据权利要求6所述的锂离子电池非水电解液,其特征在于,以所述锂离子电池非水电解液的总质量为100%计,所述草酸根磷酸盐选自质量百分含量为0.1%~5.0%的二氟(双草酸根)磷酸锂、质量百分含量为0.01%~2.0%的四氟草酸根磷酸锂或质量百分含量为0.01%~2.0%的三草酸根磷酸锂中的至少一种。
- 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述非水电解液还包括不饱和环状碳酸酯、氟代环状碳酸酯、环状磺酸内酯和环状硫酸酯中的至少一种。
- 根据权利要求8所述的锂离子电池非水电解液,其特征在于,所述不饱和环状碳酸酯包括碳酸亚乙烯酯、碳酸乙烯亚乙酯、亚甲基碳酸乙烯酯中的至少一种;所述氟代环状碳酸酯包括氟代碳酸乙烯酯、三氟甲基碳酸乙烯酯和双氟代碳酸乙烯酯中的至少一种;所述环状磺酸内酯包括1,3-丙烷磺内酯、1,4-丁烷磺内酯和丙烯基-1,3-磺酸内酯中的至少一种;所述环状硫酸酯选自硫酸乙烯酯和4-甲基硫酸乙烯酯中的至少一种。
- 一种锂离子电池,其特征在于,包括正极、负极、用于隔离所述正极和所述负极的隔膜、以及如权利要求1~9任一项所述的锂离子电池非水电解液。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711470558.6A CN109994776B (zh) | 2017-12-29 | 2017-12-29 | 一种锂离子电池非水电解液及锂离子电池 |
CN201711470558.6 | 2017-12-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019128161A1 true WO2019128161A1 (zh) | 2019-07-04 |
Family
ID=67065071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/092980 WO2019128161A1 (zh) | 2017-12-29 | 2018-06-27 | 一种锂离子电池非水电解液及锂离子电池 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109994776B (zh) |
WO (1) | WO2019128161A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111952666A (zh) * | 2020-07-08 | 2020-11-17 | 深圳市比克动力电池有限公司 | 电池电解液用添加剂、锂离子电池电解液、锂离子电池 |
CN112038697A (zh) * | 2020-08-28 | 2020-12-04 | 香河昆仑化学制品有限公司 | 一种锂离子电池非水电解液及锂离子电池 |
CN114566707A (zh) * | 2022-01-20 | 2022-05-31 | 上海兰钧新能源科技有限公司 | 锂离子电池电解液及其制备方法、锂离子电池 |
CN114583242A (zh) * | 2020-11-30 | 2022-06-03 | 深圳新宙邦科技股份有限公司 | 锂离子电池 |
CN115380415A (zh) * | 2022-01-28 | 2022-11-22 | 宁德新能源科技有限公司 | 电化学装置及电子装置 |
WO2024139584A1 (zh) * | 2022-12-28 | 2024-07-04 | 深圳新宙邦科技股份有限公司 | 一种锂离子电池 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113611911B (zh) * | 2021-07-30 | 2022-10-18 | 深圳新宙邦科技股份有限公司 | 一种锂离子电池 |
CN114552004A (zh) * | 2022-01-21 | 2022-05-27 | 深圳新宙邦科技股份有限公司 | 一种非水电解液及二次电池 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102246341A (zh) * | 2008-12-12 | 2011-11-16 | 株式会社村田制作所 | 非水电解液二次电池 |
JP2015092476A (ja) * | 2013-10-04 | 2015-05-14 | 旭化成株式会社 | 非水電解液、リチウムイオン二次電池用電解液、及び非水電解液電池 |
JP2015103361A (ja) * | 2013-11-22 | 2015-06-04 | 宇部興産株式会社 | 非水電解液およびそれを用いた蓄電デバイス |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5055536B2 (ja) * | 2005-02-09 | 2012-10-24 | 国立大学法人宇都宮大学 | 二酸化炭素の高度固定化物 |
WO2008035928A1 (en) * | 2006-09-20 | 2008-03-27 | Lg Chem, Ltd. | Additive for non-aqueous electrolyte and secondary battery using the same |
JP5573313B2 (ja) * | 2010-04-06 | 2014-08-20 | セントラル硝子株式会社 | 非水電解液電池用電解液及びこれを用いる非水電解液電池 |
-
2017
- 2017-12-29 CN CN201711470558.6A patent/CN109994776B/zh active Active
-
2018
- 2018-06-27 WO PCT/CN2018/092980 patent/WO2019128161A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102246341A (zh) * | 2008-12-12 | 2011-11-16 | 株式会社村田制作所 | 非水电解液二次电池 |
JP2015092476A (ja) * | 2013-10-04 | 2015-05-14 | 旭化成株式会社 | 非水電解液、リチウムイオン二次電池用電解液、及び非水電解液電池 |
JP2015103361A (ja) * | 2013-11-22 | 2015-06-04 | 宇部興産株式会社 | 非水電解液およびそれを用いた蓄電デバイス |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111952666A (zh) * | 2020-07-08 | 2020-11-17 | 深圳市比克动力电池有限公司 | 电池电解液用添加剂、锂离子电池电解液、锂离子电池 |
CN112038697A (zh) * | 2020-08-28 | 2020-12-04 | 香河昆仑化学制品有限公司 | 一种锂离子电池非水电解液及锂离子电池 |
CN114583242A (zh) * | 2020-11-30 | 2022-06-03 | 深圳新宙邦科技股份有限公司 | 锂离子电池 |
CN114566707A (zh) * | 2022-01-20 | 2022-05-31 | 上海兰钧新能源科技有限公司 | 锂离子电池电解液及其制备方法、锂离子电池 |
CN115380415A (zh) * | 2022-01-28 | 2022-11-22 | 宁德新能源科技有限公司 | 电化学装置及电子装置 |
WO2024139584A1 (zh) * | 2022-12-28 | 2024-07-04 | 深圳新宙邦科技股份有限公司 | 一种锂离子电池 |
Also Published As
Publication number | Publication date |
---|---|
CN109994776B (zh) | 2022-05-03 |
CN109994776A (zh) | 2019-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109950621B (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
CN109950620B (zh) | 一种锂离子电池用非水电解液及锂离子电池 | |
EP3907803B1 (en) | Non-aqueous electrolyte for lithium ion battery and lithium ion battery | |
WO2019128161A1 (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
EP3483972B1 (en) | Non-aqueous electrolyte solution for lithium-ion battery, and lithium-ion battery using the same | |
CN108847501B (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
WO2021135920A1 (zh) | 一种锂离子电池 | |
WO2019128160A1 (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
CN110444804B (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
EP4235893A1 (en) | Electrochemical device and electronic device comprising same | |
WO2020135667A1 (zh) | 一种非水电解液及锂离子电池 | |
WO2019041696A1 (zh) | 锂离子电池用非水电解液及锂离子电池 | |
WO2023000889A1 (zh) | 一种非水电解液及锂离子电池 | |
CN113130970A (zh) | 锂离子电池 | |
EP4243146B1 (en) | Lithium ion battery non-aqueous electrolyte and lithium ion battery | |
CN114447430B (zh) | 锂离子电池 | |
WO2021135923A1 (zh) | 一种锂离子电池 | |
WO2022218144A1 (zh) | 一种锂离子电池 | |
WO2023279953A1 (zh) | 一种非水电解液及电池 | |
CN110247116B (zh) | 一种锂离子电池非水电解液及使用该电解液的锂离子电池 | |
CN114447429B (zh) | 锂离子电池非水电解液以及锂离子电池 | |
WO2022213823A1 (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
CN117747942A (zh) | 一种改善常温循环性能的电解液和锂离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18895840 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18895840 Country of ref document: EP Kind code of ref document: A1 |