WO2022149875A1 - 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2022149875A1
WO2022149875A1 PCT/KR2022/000231 KR2022000231W WO2022149875A1 WO 2022149875 A1 WO2022149875 A1 WO 2022149875A1 KR 2022000231 W KR2022000231 W KR 2022000231W WO 2022149875 A1 WO2022149875 A1 WO 2022149875A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
aqueous electrolyte
lithium
battery
Prior art date
Application number
PCT/KR2022/000231
Other languages
English (en)
French (fr)
Inventor
이정민
염철은
이철행
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22736852.9A priority Critical patent/EP4120420A4/en
Priority to US17/918,752 priority patent/US20230137991A1/en
Priority to CN202280003484.8A priority patent/CN115461905A/zh
Publication of WO2022149875A1 publication Critical patent/WO2022149875A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for a lithium secondary battery capable of reducing battery resistance and swelling under high voltage, and a lithium secondary battery including the same.
  • the battery which is the power source
  • the battery is also small, lightweight, capable of charging and discharging for a long time, and is a secondary battery with excellent high rate characteristics. Development is strongly demanded.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and significantly higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and lead sulfate batteries that use aqueous electrolyte solutions. It is gaining popularity as an advantage.
  • lithium secondary batteries have safety problems such as ignition and explosion due to the use of a non-aqueous electrolyte, and these problems become more serious as the capacity density of the battery increases.
  • the positive electrode active material of the non-aqueous electrolyte battery is made of a lithium-containing metal oxide capable of occluding and releasing lithium and/or lithium ions. is transformed In this overcharged state, when the battery temperature reaches a critical temperature due to an external physical shock, for example, exposure to high temperature, oxygen is released from the cathode active material having an unstable structure, and the released oxygen causes an exothermic decomposition reaction with an electrolyte solvent and the like. In particular, since the combustion of the electrolyte is further accelerated by the oxygen released from the positive electrode, the battery fires and bursts due to thermal runaway by such a chain exothermic reaction.
  • a method of adding an aromatic compound as a redox shuttle additive in an electrolyte solution is used to control ignition or explosion due to an increase in temperature inside the battery as described above.
  • Japanese Patent Laid-Open No. 2002-260725 discloses a non-aqueous lithium ion battery capable of preventing overcharge current and thermal runaway by using an aromatic compound such as biphenyl.
  • an aromatic compound such as biphenyl.
  • U.S. Patent No. 5,879,834 a small amount of aromatic compounds such as biphenyl and 3-chlorothiophene are added to electrochemically polymerize in an abnormal overvoltage state to increase the internal resistance, thereby improving the safety of the battery. Methods for improving are described.
  • high-voltage batteries systems of 4.2V or more
  • increasing the charging voltage generally increases the amount of charge.
  • safety problems such as electrolyte decomposition, insufficient space for storing lithium, and danger due to an increase in the potential of the electrode occur. Therefore, in order to make a battery operated at a high voltage, the standard reduction potential difference between the negative active material and the positive active material is easily maintained, and the entire condition is managed as a system so that the electrolyte is not decomposed at this voltage.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-260725
  • Patent Document 2 US Patent No. 5,879,834
  • the present invention is to solve the conventional problems, by including a pyridine-based additive containing two nitrile groups as an additive in a non-aqueous electrolyte for a lithium secondary battery, while maintaining good basic performance such as high rate charge/discharge characteristics and lifespan characteristics,
  • An object of the present invention is to provide a non-aqueous electrolyte for a lithium secondary battery capable of suppressing the elution of transition metals from the positive electrode in a high voltage state and improving the swelling characteristics of the battery by reducing the amount of gas generated at high temperature, and a lithium secondary battery including the same.
  • an object of the present invention is to provide a lithium secondary battery with improved capacity characteristics and safety by suppressing a side reaction between a positive electrode and an electrolyte under a high voltage and high temperature condition by including the non-aqueous electrolyte for a lithium secondary battery.
  • the present invention provides a non-aqueous electrolyte for a lithium secondary battery comprising a lithium salt, an organic solvent, and a pyridine-based additive containing two nitrile groups.
  • the present invention provides a non-aqueous electrolyte for a lithium secondary battery, wherein the pyridine-based additive is represented by the following formula (1).
  • R is -L-CN, and L is an alkylene group.
  • the present invention provides a non-aqueous electrolyte for a lithium secondary battery, wherein Chemical Formula 1 is represented by the following Chemical Formula 1-1.
  • the present invention provides a non-aqueous electrolyte for a lithium secondary battery, wherein Formula 1 is represented by any one of the following compounds.
  • the present invention provides a non-aqueous electrolyte for a lithium secondary battery, wherein the pyridine-based additive is included in an amount of 0.01% to 10% by weight based on the total weight of the electrolyte.
  • the lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiB 10 Cl 10 , LiAlCl 4 , LiAlO 4 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiCH 3 SO 3 , LiFSI (Lithium bis(fluorosulfonyl)imide, LiN(SO 2 F) 2 ), LiBETI (lithium bisperfluoroethanesulfonimide, LiN(SO 2 CF 2 CF 3 ) 2 ), and LiTFSI (lithium) (bis)trifluoromethanesulfonimide, LiN(SO 2 CF 3 ) 2 ) It provides a non-aqueous electrolyte for a lithium secondary battery that is selected from the group consisting of.
  • the present invention provides a non-aqueous electrolyte for a lithium secondary battery, wherein the concentration of the lithium salt is 0.1M to 3M.
  • the present invention provides a non-aqueous electrolyte for a lithium secondary battery in which the organic solvent includes at least one selected from the group consisting of ethers, esters, amides, linear carbonates, and cyclic carbonates.
  • the present invention provides a non-aqueous electrolyte for a lithium secondary battery, characterized in that the lithium secondary battery has an operating voltage of 4.0V or more.
  • the present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and the non-aqueous electrolyte for the lithium secondary battery.
  • the non-aqueous electrolyte for a lithium secondary battery according to the present invention includes a pyridine-based additive containing two nitrile groups, so that the electrolyte is oxidized/decomposed at high voltage and high temperature, and the battery swelling is remarkably improved, resulting in excellent safety and It exhibits excellent discharge characteristics.
  • the lithium secondary battery containing the non-aqueous electrolyte for a lithium secondary battery according to the present invention suppresses the elution of transition metals from the positive electrode in a high voltage state while maintaining good basic performance such as high-efficiency charge/discharge characteristics and lifespan characteristics, By reducing the amount of gas generated at high temperature, the swelling characteristic of the battery is improved.
  • the present invention provides a non-aqueous electrolyte for a lithium secondary battery comprising a lithium salt, an organic solvent, and a pyridine-based additive containing two nitrile groups.
  • the pyridine-based additive containing the two nitrile groups may be a compound represented by Formula 1 below.
  • R is -L-CN, and L is an alkylene group.
  • the compound represented by the formula (1) may preferably be a compound represented by the following formula (1-1).
  • the compound represented by Formula 1 may more preferably be any one of the following compounds.
  • the non-aqueous electrolyte solution for a lithium secondary battery of the present invention contains the pyridine-based additive containing the two nitrile groups, thereby suppressing a side reaction within the battery, whereby the electrolyte is oxidized/decomposed in a high voltage state, causing the battery to swell (swelling) , and exhibits excellent storage characteristics under high-temperature conditions as well as excellent discharge characteristics.
  • the nitrile group forms a bond with transition metal ions on the surface of the anode to form an anode film, thereby preventing side reactions caused by direct contact between the cathode surface and the electrolyte. It plays a role in preventing the occurrence. For this reason, the performance of the battery is improved by suppressing the generation of gases that can be generated at high temperatures and the elution of transition metals.
  • the pyridine-based additive containing the two nitrile groups when used, it exhibits an excellent effect in improving the performance of the battery compared to the case containing one or three or more nitrile groups.
  • the additive preferably contains two nitrile groups.
  • the nitrile group substituted in the pyridine-based additive is preferably an acetonitrile group. That is, as described above, when an acetonitrile group is included as a nitrile group, compared to a case where there is no linking group other than an acetonitrile group or a case where it is linked with an allylene group, it exhibits a more excellent effect in improving battery performance.
  • the nitrile group substituted in the pyridine-based additive is connected to an arylene group, there is a risk that a reduction reaction may easily occur due to a double bond present in the linking group. As this increases, the effect of the nitrile group cannot be sufficiently exhibited at the positive electrode.
  • the nitrile group is directly substituted in the pyridine structure without a linking group, since the binding energy between the nitrile group and the transition metal ion tends to be lower, even if a bond is formed, it can be easily broken compared to the methylene group.
  • the methylene group is substituted with a linking group rather than the nitrile group is directly substituted with the pyridine structure. That is, the nitrile group is preferably an acetonitrile group.
  • the non-aqueous electrolyte for a lithium secondary battery of the present invention is lithium difluoro oxalatoborate (LiFOB), lithium bisoxalatoborate (LiB(C 2 O 4 ) 2 , LiBOB), fluoroethylene carbonate (FEC), vinylene carbonate (VC), vinylethylene carbonate (VEC), divinyl sulfone, ethylene sulfite, propylene sulfite, diallyl sulfonate, ethane sultone, An additive selected from the group consisting of propane sulton (PS), butane sulton, ethene sultone, butene sultone, and propene sultone (PRS) may be further included.
  • PS propane sulton
  • PRS propene sultone
  • the content of the pyridine-based additive containing the two nitrile groups may be 0.01 wt% to 10 wt%, preferably 0.1 wt% to 5 wt%, more preferably 0.5 wt% based on the total weight of the electrolyte solution. It may be from weight % to 2 weight %.
  • the content of the pyridine-based additive When the content of the pyridine-based additive is less than the above range, the additive effect does not appear, such as suppressing the swelling of the battery during high voltage driving or the improvement of the capacity retention rate is insignificant, and the discharge capacity or output of the lithium secondary battery is improved
  • the effect is insignificant, and when the content of the pyridine-based additive exceeds the above range, there is a problem in that the characteristics of the lithium secondary battery are rather deteriorated, such as rapid deterioration in lifespan. Therefore, it is preferable that the content of the pyridine-based additive satisfies the above range.
  • the non-aqueous electrolyte for a lithium secondary battery of the present invention may include a lithium salt, wherein the lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiB 10 Cl 10 , LiAlCl 4 , LiAlO 4 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiCH 3 SO 3 , LiFSI(Lithium bis(fluorosulfonyl)imide, LiN(SO 2 F) 2 ), LiBETI(lithium bisperfluoroethanesulfonimide, LiN(SO) 2 CF 2 CF 3 ) 2 ) and LiTFSI (lithium (bis)trifluoromethanesulfonimide, LiN(SO 2 CF 3 ) 2 ) may include at least one selected from the group consisting of.
  • the lithium salt is LiCl
  • the concentration of the lithium salt may be 0.1M to 3.0M, preferably 0.5M to 2.5M, and more preferably 0.8M to 2.0M. If the concentration of the lithium salt is less than 0.1M, the conductivity of the electrolyte is lowered and the performance of the electrolyte is deteriorated. Therefore, the concentration of the lithium salt preferably satisfies the above range.
  • the lithium salt serves as a source of lithium ions in the battery to enable the basic operation of the lithium secondary battery.
  • non-aqueous electrolyte for a lithium secondary battery of the present invention may be used by mixing an imide lithium salt and a lithium salt other than the lithium imide salt.
  • the lithium imide salt is LiFSI (Lithium bis(fluorosulfonyl)imide, LiN(SO 2 F) 2 ), LiBETI (lithium bisperfluoroethanesulfonimide, LiN(SO 2 CF 2 CF 3 ) 2 ) and LiTFSI (lithium (bis)trifluoromethanesulfonimide, LiN (SO 2 CF 3 ) 2 ) may be at least one selected from the group consisting of, and lithium salts other than the imide lithium salt are LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiB 10 Cl 10 , LiAlCl 4 , LiAlO 4 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , and LiCH 3 SO 3 may be at least one selected from the group consisting of.
  • LiFSI Lithium bis(fluoros
  • the molar ratio of the lithium imide salt to a lithium salt other than the lithium imide salt may be 1:1 to 7:1, preferably 1:1 to 6:1, and more preferably It may be 1:1 to 4:1.
  • the non-aqueous electrolyte for a lithium secondary battery of the present invention may include an organic solvent, and the organic solvent is a solvent commonly used in lithium secondary batteries, for example, ether compounds, esters (Acetates, Propionates) compounds, and amides.
  • a compound, a linear carbonate, or a cyclic carbonate compound may be used alone or in combination of two or more.
  • a mixture of linear carbonates and cyclic carbonates may be preferably used as the organic solvent.
  • the organic solvent when a mixture of a linear carbonate and a cyclic carbonate is used, dissociation and movement of the lithium salt can be facilitated.
  • the cyclic carbonate-based compound and the linear carbonate-based compound are mixed in a volume ratio of 1:9 to 6:4, preferably 1:9 to 4:6 by volume, more preferably 2:8 to 4:6 by volume.
  • the linear carbonate compound is a specific example of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethylmethyl carbonate (EMC), methylpropyl carbonate (MPC) and ethylpropyl carbonate (EPC)
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • EMC ethylmethyl carbonate
  • MPC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • EPC ethylpropyl carbonate
  • cyclic carbonate compound is a specific example of ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3- one compound selected from the group consisting of pentylene carbonate, vinylene carbonate, and halides thereof, or a mixture of at least two or more thereof.
  • the lithium secondary battery of the present invention may have an operating voltage of 4.0V or higher, preferably an operating voltage of 4.1V or higher, and more preferably, an operating voltage of 4.2V or higher.
  • the operating voltage of the lithium secondary battery is less than 4.0V, the difference according to the addition of the pyridine-based additive of the present invention is not large, but in the lithium secondary battery having an operating voltage of 4.0V or more, high-temperature storage safety and capacity according to the addition of the additive It shows the effect of rapidly increasing the properties.
  • the lithium secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte for a lithium secondary battery. More specifically, it includes at least one positive electrode, at least one negative electrode, a separator that may be selectively interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte for the lithium secondary battery. At this time, since the non-aqueous electrolyte solution for a lithium secondary battery is the same as the above-described content, a detailed description thereof will be omitted.
  • the positive electrode may be prepared by coating a positive electrode active material slurry including a positive electrode active material, an electrode binder, an electrode conductive material, and a solvent on a positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • nickel, titanium, silver or the like surface-treated may be used.
  • the positive electrode current collector may form fine irregularities on the surface to strengthen the bonding force of the positive electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body.
  • the positive active material is a compound capable of reversible intercalation and deintercalation of lithium, and specifically, may include a lithium composite metal oxide including lithium and one or more metals such as cobalt, manganese, nickel or aluminum. have. More specifically, the lithium composite metal oxide is a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4 , etc.), a lithium-cobalt-based oxide (eg, LiCoO 2 , etc.), lithium-nickel-based oxide (eg, LiNiO 2 , etc.), lithium-nickel-manganese oxide (eg, LiNi 1-Y1 Mn Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), LiMn 2-z1 Ni z1 O 4 ( Here, 0 ⁇ Z1 ⁇ 2, etc.), lithium-nickel-cobalt-based oxides (eg, LiNi 1-Y2 Co Y2 O 2 (here, 0 ⁇ Y2 ⁇ 1), etc.), lithium
  • the lithium composite metal oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (eg, Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , in that it is possible to increase the capacity characteristics and stability of the battery. ,Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , or Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 , etc.), or lithium nickel cobalt aluminum oxide (eg, LiNi 0.8 Co 0.15 Al 0.05 O 2 , etc.), etc.
  • the lithium composite metal oxide is Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 ,Li(Ni 0.5 ) Mn 0.3 Co 0.2 )O 2 , Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 , or Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 , and the like, and any one or a mixture of two or more thereof may be used.
  • the binder for the electrode is a component that assists in bonding the positive electrode active material and the electrode conductive material and the like to the current collector.
  • polyvinylidene fluoride polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, polyethylene (PE) , polypropylene, ethylene-propylene-dienter polymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluororubber, and various copolymers.
  • the electrode conductive material is a component for further improving the conductivity of the positive electrode active material.
  • the electrode conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • acetylene black-based products such as Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, etc.
  • Ketjenblack EC series (products of the Armak Company)
  • Vulcan XC-72 products of the Cabot Company
  • Super P products of the Timcal Company
  • the solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount having a desirable viscosity when including the positive electrode active material, and optionally a positive electrode binder and positive electrode conductive material. have.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode may be prepared by coating a negative electrode active material slurry including a negative electrode active material, an electrode binder, an electrode conductive material and a solvent on a negative electrode current collector. Meanwhile, the negative electrode may use a metal negative electrode current collector itself as an electrode.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel.
  • the surface treated with carbon, nickel, titanium, silver, etc., an aluminum-cadmium alloy, etc. may be used.
  • the bonding strength of the negative electrode active material may be strengthened by forming fine irregularities on the surface, and may be used in various forms such as a film, sheet, foil, net, porous body, foam, non-woven body, and the like.
  • Examples of the negative active material include natural graphite, artificial graphite, carbonaceous material; lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe metals (Me); alloys composed of the metals (Me); oxides of the metals (Me) (MeO x ); and at least one negative electrode active material selected from the group consisting of a composite of the metal (Me) and carbon.
  • a conventional porous polymer film conventionally used as a separator for example, polyolefin-based films such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer
  • a porous polymer film made of a polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a nonwoven fabric made of a high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used, but is limited thereto not.
  • Ethylene carbonate (EC):ethylmethyl carbonate (EMC) was mixed in a volume ratio of 30:70, and then LiPF 6 (lithium hexafluorophosphate) was dissolved so that the concentration was 1.0M to prepare a non-aqueous organic solvent.
  • LiPF 6 lithium hexafluorophosphate
  • a cathode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 ; NCM811), carbon black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder were mixed in a weight ratio of 94:3:3, followed by N- as a solvent Methyl-2-pyrrolidone (NMP) was added to prepare a cathode active material slurry.
  • the positive electrode active material slurry was applied to an aluminum (Al) thin film as a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then a positive electrode was manufactured by performing a roll press.
  • a negative electrode active material slurry After mixing graphite as an anode active material, polyvinylidene difluoride (PVDF) as a binder, and carbon black as a conductive material in a 95:2:3 weight ratio, N-methyl-2-pyrrolidone (NMP) as a solvent ) to prepare a negative electrode active material slurry.
  • the negative electrode active material slurry was applied to a 10 ⁇ m-thick copper (Cu) thin film as a negative electrode current collector, dried to prepare a negative electrode, and then a roll press was performed to prepare a negative electrode.
  • the positive electrode, the negative electrode, and the separator made of polypropylene/polyethylene/polypropylene (PP/PE/PP) were laminated in the order of the positive electrode/separator/negative electrode, and the laminated structure was placed in a pouch-type battery case and then a non-aqueous lithium secondary battery A lithium secondary battery was manufactured by injecting an electrolyte solution.
  • a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery were prepared in the same manner as in Example 1, except that 2 g of 2,6-pyridinediacetonitrile as an additive was added to 98 g of the non-aqueous organic solvent.
  • a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery were prepared in the same manner as in Example 1, except that 0.5 g of 2,5-pyridinediacetonitrile was added instead of 0.5 g of 2,6-pyridinediacetonitrile as an additive. .
  • a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery were prepared in the same manner as in Example 1, except that 2,6-pyridinediacetonitrile was not used as an additive when preparing the electrolyte for a lithium secondary battery.
  • a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery were prepared in the same manner as in Example 1, except that 0.5 g of 1,4-phenyldiacetonitrile was added instead of 0.5 g of 2,6-pyridinediacetonitrile as an additive. .
  • a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery were prepared in the same manner as in Example 1, except that 10 g of 2,6-pyridinediacetonitrile was added as an additive.
  • the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 3 were charged to 4.2V/0.05C mA at room temperature under 0.33C/4.2V constant current/constant voltage (CC/CV) conditions, and 0.33C constant current (CC) conditions. was discharged to 3V.
  • the thickness of the lithium secondary battery was measured. This is defined as the initial thickness.
  • the lithium secondary battery was left in an oven at 60° C. (OF-02GW, manufactured by Jeotech) for 4 weeks, stored at a high temperature, and then cooled at room temperature for 24 hours, and then the thickness of the lithium secondary battery was measured.
  • the thickness increase rate (%) was calculated and shown in Table 2 by substituting each of the measured values of the initial thickness and the thickness after high-temperature storage into Equation 1 below.
  • Thickness increase rate (%) ⁇ (thickness after high temperature storage - initial thickness)/initial thickness ⁇ ⁇ 100 (%)
  • the effect of suppressing the generation of high-temperature gas is due to the Lewis base characteristic of the pyridine structure.
  • the Lewis base property of the pyridine structure combines with the Lewis acid property of PF 5 generated in an electrolyte using a LiPF 6 salt to stabilize PF 5 , thereby inhibiting PF 5 from generating HF.
  • the generation of HF at high temperature is reduced to suppress the degradation of the anode surface, the occurrence of side reactions, the decomposition of the electrolyte, and the like, thereby reducing the generation of gas at high temperature, thereby reducing the thickness after high temperature storage.
  • the effect of suppressing the generation of high-temperature gas is due to the anode protection effect by the diacetonitrile functional group.
  • the functional group forms a bond with transition metal ions on the surface of the anode to form an anode film, and serves to suppress the occurrence of side reactions due to direct contact between the cathode surface and the electrolyte. For this reason, by suppressing the generation of a gas that can be generated at a high temperature and the elution of the transition metal, as a result, the thickness is reduced after storage at a high temperature.
  • the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 3 were charged up to 4.2V/0.05C mA at room temperature under 0.33C/4.2V constant current/constant voltage (CC/CV) conditions, and 0.33C constant current (CC) conditions. was discharged to 3V. At this time, the displayed discharge capacity is defined as the initial capacity (mAh).
  • the lithium secondary battery was left in an oven at 60° C. (OF-02GW, manufactured by Jeotech) for 4 weeks and stored at a high temperature. Then, it was cooled at room temperature for 24 hours. Thereafter, the lithium secondary battery was discharged to 3V at room temperature under 0.33C constant current (CC) conditions, and then 4.2V/0.05C mA under 0.33C/4.2V constant current/constant voltage (CC/CV) conditions in the same manner as in the initial capacity measurement. The condition of charging to 3V and discharging to 3V under the condition of 0.33C constant current (CC) was repeated three times. In this case, the discharge capacity that appears the last 3 times is defined as the capacity (mAh) after high-temperature storage.
  • SOC state of charge
  • the capacity retention rate (%) was calculated by substituting each of the measured values of the initial capacity and the capacity after high temperature storage into Equation 2 below, and is shown in Table 3 below.
  • Capacity retention rate (%) (Capacity after high temperature storage (mAh) / Initial capacity (mAh)) ⁇ 100 (%)
  • the excellent effect of the high-temperature storage capacity retention rate is the stabilization of PF 5 for suppressing HF generation under high temperature of the 2,6-pyridinediacetonitrile additive and suppression of anode degradation by the formation of the anode film. It is the result.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬염, 유기 용매 및 2개의 니트릴기를 함유하는 피리딘계 첨가제를 포함하는 리튬 이차전지용 비수계 전해액을 제공한다.

Description

리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지
본 발명은 고전압 하에서 전지의 저항 및 스웰링 현상을 감소시킬 수 있는 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.
본 출원은 2021년 01월 07일자 한국 특허 출원 제10-2021-0001813호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
최근 휴대전자기기의 보급이 광범위하게 이루어지고 있고 이에 따라 이러한 휴대전자기기의 급속한 소형화, 경량화 및 박형화에 수반하여 그 전원인 전지도 소형으로 경량이면서 장시간 충방전이 가능하며 고율특성이 우수한 이차전지의 개발이 강력하게 요구되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차 전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고, 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나, 이러한 리튬 이차 전지는 비수계 전해액을 사용함에 따르는 발화 및 폭발 등의 안전 문제가 존재하며, 이와 같은 문제는 전지의 용량 밀도를 증가시킬수록 더 심각해진다.
비수계 전해액 이차 전지는 연속 충전시 발생되는 전지의 안전성 저하가 큰 문제가 된다. 이것에 영향을 미칠 수 있는 원인 중의 하나는 양극의 구조 붕괴에 따른 발열이다. 이의 작용 원리는 다음과 같다. 즉, 비수계 전해액 전지의 양극 활물질은 리튬 및/또는 리튬 이온을 흡장 및 방출할 수 있는 리튬 함유 금속 산화물 등으로 이루어지는데, 이와 같은 양극 활물질은 과충전시 리튬이 다량 이탈됨에 따라 열적으로 불안정한 구조로 변형된다. 이러한 과충전 상태에서 외부의 물리적 충격, 예컨대 고온 노출 등으로 인하여 전지 온도가 임계 온도에 이르면 불안정한 구조의 양극 활물질로부터 산소가 방출되게 되고, 방출된 산소는 전해액 용매 등과 발열 분해 반응을 일으키게 된다. 특히, 양극으로부터 방출된 산소에 의하여 전해액의 연소는 더욱 가속화되므로, 이러한 연쇄적인 발열 반응에 의하여 열 폭주에 의한 전지의 발화 및 파열 현상이 초래된다.
상기와 같은 전지 내부의 온도 상승에 따른 발화 또는 폭발을 제어하기 위해 전해액 중에 레독스셔틀(redox shuttle)첨가제로서 방향족 화합물을 첨가하는 방법이 이용되고 있다. 예를 들어, 일본 공개특허공보 특개2002-260725호에서는 비페닐(Biphenyl)과 같은 방향족 화합물을 사용하여 과충전 전류 및 이로 인한 열폭주 현상을 방지할수 있는 비수계 리튬이온전지를 개시하고 있다. 또한, 미국 등록특허 5,879,834호에서도 비페닐(biphenyl), 3-클로로티오펜(3-chlorothiophene) 등의 방향족 화합물을 소량 첨가시켜 비정상적인 과전압상태에서 전기화학적으로 중합되어 내부저항을 증가시킴으로써 전지의 안전성을 향상시키기 위한 방법이 기재되어 있다.
그러나, 비페닐 등과 같은 첨가물을 사용하는 경우에는 일반적인 작동 전압에서는 국부적으로 상대적으로 높은 전압이 발생할 때 충방전 과정에서 점진적으로 분해되거나 전지가 장기간 고온에서 방전될 때, 비페닐 등의 양이 점차 감소하여 300 사이클 충방전 이후에는 안전성을 보장할 수 없는 문제점, 저장특성의 문제점 등이 있다.
한편, 전지의 소형 대용량화를 위해 전기 충전량을 높이는 방안으로 고전압 전지(4.2V 이상의 시스템)가 계속적으로 연구, 개발되고 있다. 같은 전지 시스템에서도 충전 전압을 높이면 일반적으로 충전량은 증가한다. 그러나, 전해액 분해, 리튬 흡장 공간의 부족, 전극의 전위 상승에 따른 위험 등 안전의 문제가 발생하게 된다. 따라서, 고전압으로 운용되는 전지를 만들기 위해서는 음극 활물질과 양극 활물질의 표준 환원 전위차가 크게 유지되기 쉽고, 전해액이 이 전압에서 분해되지 않도록 전체 조건을 시스템으로 관리하게 된다.
고전압 전지의 이런 점을 고려할 때, 일반 리튬 이온 전지에서 사용되는 비페닐(BP)이나 시클로헥실벤젠(CHB) 같은 기존의 과충전 방지제를 사용할 경우, 정상적인 충방전 동작 중에도 이들의 분해가 많이 이루어지고 조금만 온도가 높은 곳에서도 전지의 특성이 급격히 나빠져 전지 수명을 단축시키는 문제가 발생하게 됨을 쉽게 알 수 있다. 또한, 통상 사용되고 있는 비수성 카보네이트계 용매를 전해액으로 사용하는 경우에는 통상적인 충전전위인 4.0V 보다 높은 전압으로 충전하면 산화력이 높아져, 충방전 사이클이 진행될수록 전해액의 분해반응이 진행되어 수명특성이 급격하게 열화되는 문제점이 있다.
따라서, 고전압 전지(4.2V 이상의 시스템)에 있어서, 양극 전이금속의 용출을 억제하고, 고온에서의 가스 발생을 감소시켜 전지의 스웰링 특성을 개선시키기 위한 방법의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 일본 공개특허공보 특개2002-260725호
(특허문헌 2) 미국 등록특허 제5,879,834호
본 발명은 종래 문제점을 해결하기 위한 것으로, 리튬 이차전지용 비수계 전해액에 첨가제로서 2개의 니트릴기를 함유하는 피리딘계 첨가제를 포함함으로써, 고율 충방전 특성, 수명 특성 등의 기본적인 성능을 양호하게 유지하면서, 고전압 상태에서 양극으로부터의 전이금속의 용출을 억제하고, 고온에서의 가스 발생량을 감소시켜 전지의 스웰링 특성을 개선할 수 있는 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지를 제공하고자 한다.
또한, 본 발명은 상기 리튬 이차전지용 비수계 전해액을 포함함으로써, 고전압 고온의 조건 하에서 양극과 전해액 간의 부반응을 억제하고, 용량 특성 및 안전성이 향상된 리튬 이차전지를 제공하고자 한다.
상기 목적을 달성하기 위하여, 본 발명은, 리튬염, 유기 용매 및 2개의 니트릴기를 함유하는 피리딘계 첨가제를 포함하는 리튬 이차전지용 비수계 전해액을 제공한다.
또한, 본 발명은, 상기 피리딘계 첨가제가 하기 화학식 1로 표시되는 것인, 리튬 이차전지용 비수계 전해액을 제공한다.
[화학식 1]
Figure PCTKR2022000231-appb-I000001
상기 화학식 1에 있어서, R은 -L-CN이고, 상기 L은 알킬렌기이다.
또한, 본 발명은, 상기 화학식 1이 하기 화학식 1-1로 표시되는 것인, 리튬 이차전지용 비수계 전해액을 제공한다.
[화학식 1-1]
Figure PCTKR2022000231-appb-I000002
또한, 본 발명은, 상기 화학식 1이 하기 화합물 중 어느 하나로 표시되는 것인, 리튬 이차전지용 비수계 전해액을 제공한다.
Figure PCTKR2022000231-appb-I000003
Figure PCTKR2022000231-appb-I000004
Figure PCTKR2022000231-appb-I000005
Figure PCTKR2022000231-appb-I000006
Figure PCTKR2022000231-appb-I000007
Figure PCTKR2022000231-appb-I000008
또한, 본 발명은, 상기 피리딘계 첨가제가 전해액 전체 중량에 대하여 0.01중량% 내지 10중량%를 포함되는, 리튬 이차전지용 비수계 전해액을 제공한다.
또한, 본 발명은, 상기 리튬염이 LiCl, LiBr, LiI, LiBF4, LiClO4, LiB10Cl10, LiAlCl4, LiAlO4, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiCH3SO3, LiFSI(Lithium bis(fluorosulfonyl)imide, LiN(SO2F)2), LiBETI(lithium bisperfluoroethanesulfonimide, LiN(SO2CF2CF3)2) 및 LiTFSI(lithium (bis)trifluoromethanesulfonimide, LiN(SO2CF3)2)로 이루어진 군으로부터 선택된 것인, 리튬 이차전지용 비수계 전해액을 제공한다.
또한, 본 발명은, 상기 리튬염의 농도가 0.1M 내지 3M인, 리튬 이차전지용 비수계 전해액을 제공한다.
또한, 본 발명은, 상기 유기 용매가 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인 리튬 이차전지용 비수계 전해액을 제공한다.
또한, 본 발명은, 상기 리튬 이차전지가 4.0V 이상의 작동 전압을 갖는 것을 특징으로 하는 리튬 이차전지용 비수계 전해액을 제공한다.
또한, 본 발명은, 양극, 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 상기 리튬 이차전지용 비수계 전해액을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 리튬 이차전지용 비수계 전해액은 2개의 니트릴기를 함유하는 피리딘계 첨가제를 포함함으로써, 고전압 고온 상태에서 전해액이 산화/분해되어 전지가 부푸는 현상(swelling)이 현저하게 개선되어 우수한 안전성 및 우수한 방전 특성을 나타낸다.
또한, 본 발명에 따른 리튬 이차전지용 비수계 전해액을 포함하는 리튬 이차전지는 고효율 충방전 특성, 수명 특성 등의 기본적인 성능을 양호하게 유지하면서, 고전압 상태에서 양극으로부터의 전이금속의 용출을 억제하고, 고온에서의 가스 발생량을 감소시켜 전지의 스웰링 특성이 개선되는 효과를 나타낸다.
본 발명에 따라 제공되는 구체예는 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아님을 이해해야 한다.
본 발명은, 리튬염, 유기 용매 및 2개의 니트릴기를 함유하는 피리딘계 첨가제를 포함하는 리튬 이차전지용 비수계 전해액을 제공한다.
상기 2개의 니트릴기를 함유하는 피리딘계 첨가제는 하기 화학식 1로 표시되는 화합물일 수 있다.
[화학식 1]
Figure PCTKR2022000231-appb-I000009
상기 화학식 1에 있어서, R은 -L-CN이고, 상기 L은 알킬렌기이다.
또한, 상기 화학식 1로 표시되는 화합물은 바람직하게는 하기 화학식 1-1로 표시되는 화합물일 수 있다.
[화학식 1-1]
Figure PCTKR2022000231-appb-I000010
또한, 상기 화학식 1로 표시되는 화합물은 보다 바람직하게 하기 화합물 중 어느 하나일 수 있다.
Figure PCTKR2022000231-appb-I000011
Figure PCTKR2022000231-appb-I000012
Figure PCTKR2022000231-appb-I000013
Figure PCTKR2022000231-appb-I000014
Figure PCTKR2022000231-appb-I000015
Figure PCTKR2022000231-appb-I000016
본 발명의 리튬 이차전지용 비수계 전해액은 상기 2개의 니트릴기를 함유하는 피리딘계 첨가제를 포함함으로써, 전지 내 부반응을 억제하고, 이로 인하여 고전압 상태에서 전해액이 산화/분해되어 전지가 부푸는 현상(swelling)을 현저하게 개선하고, 고온 조건에서 우수한 저장 특성을 나타낼 뿐만 아니라 우수한 방전 특성을 나타낸다.
이와 관련하여, 상기 2개의 니트릴기를 포함하는 첨가제를 전해질에 적용하는 경우, 상기 니트릴기는 양극 표면에서 전이금속 이온과 결합을 형성하여 양극 피막을 형성하여, 양극 표면과 전해질의 직접적인 접촉에 의한 부반응의 발생 등을 억제시키는 역할을 한다. 이로 인해, 고온에서 생성될 수 있는 가스의 발생과 전이금속의 용출을 억제함으로써 전지의 성능을 개선시키게 되는데, 이러한 성능 개선은 양극 표면에서 전이금속 이온과 니트릴기 자체의 결합에 의한 것이다.
또한, 상기 2개의 니트릴기를 함유하는 피리딘계 첨가제를 사용하는 경우, 니트릴기를 1개 또는 3개 이상 함유하는 경우에 비하여 전지의 성능을 개선시키는데 있어, 우수한 효과를 나타낸다.
구체적으로, 상기 니트릴기가 1개일 경우에는, 첨가제로 소량 적용시 충분히 양극 표면에 피막을 형성하기에는 부족하다. 이러한 문제를 해결하기 위해 첨가제의 함량을 크게 증가시키면, 전지의 저항이 증가하는 문제를 유발시킬 수 있기 때문에, 상기 니트릴기를 1개 함유하는 첨가제의 경우, 전지의 양극을 보호하기 위한 첨가제로서 적합하지 않다. 또한, 상기 니트릴기가 3개 이상인 경우에는, 점도의 증가 등에 의해 전해액의 물성을 악화시킬 수 있으며, 첨가제의 구조가 지나치게 벌키(bulky)해져 입체장애(steric hindrance)로 인하여, 양극 표면에서 효과적으로 전이금속 이온과 결합하기 어려워진다. 따라서, 상기 첨가제는 니트릴기를 2개 함유하는 것이 바람직하다.
한편, 상기 피리딘계 첨가제에 치환되어 있는 니트릴기는 아세토니트릴기인 것이 바람직하다. 즉, 상기와 같이, 니트릴기로서 아세토니트릴기를 함유하는 경우, 아세토니트릴기 이외에, 연결기가 없는 경우 또는 알릴렌기로 연결된 경우 등에 비하여, 전지의 성능을 개선시키는데 있어, 보다 우수한 효과를 나타낸다.
구체적으로, 상기 피리딘계 첨가제에 치환되어 있는 니트릴기가 아릴렌기로 연결된 경우에는 연결기에 존재하는 이중결합에 의해 환원반응이 쉽게 일어날 우려가 있어, 상기 피리딘계 첨가제가 양극 피막에 작용하기 전에 음극에서 반응성이 증가되면서 니트릴기의 효과를 양극에서 충분히 발휘할 수 없다. 또한, 니트릴기가 연결기 없이 직접 피리딘 구조에 치환되어 있는 경우에는 니트릴기와 전이금속 이온의 결합에너지 측면에서 더 낮아지는 경향성을 나타내기 때문에, 결합을 형성하더라도 메틸렌기에 비하여 쉽게 끊어질 수 있게 된다. 따라서, 장기적으로 양극에 피막을 형성하는 기작 측면에서 불리하기 때문에, 피리딘 구조에 니트릴기가 직접적으로 치환되어 있는 것 보다 메틸렌기를 연결기로 치환되어 있는 것이 피막 유지 측면에서 유리하다. 즉, 상기 니트릴기는 아세토니트릴기인 것이 바람직하다.
또한, 본 발명의 리튬 이차전지용 비수계 전해액은, 리튬디플루오로 옥살레이토보레이트(LiFOB), 리튬 비스옥살레이토보레이트(LiB(C2O4)2, LiBOB), 플루오로에틸렌카보네이트(FEC), 비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트(VEC), 다이비닐 설폰(divinyl sulfone), 에틸렌 설파이트(ethylene sulfite), 프로필렌 설파이트(propylene sulfite), 다이알릴 설포네이트 (diallyl sulfonate), 에탄 설톤, 프로판 설톤(propane sulton, PS), 부탄 설톤(butane sulton), 에텐 설톤, 부텐 설톤 및 프로펜 설톤(propene sultone, PRS)으로 이루어진 군으로부터 선택된 첨가제를 더 포함할 수 있다.
또한, 상기 2개의 니트릴기를 함유하는 피리딘계 첨가제의 함유량은 전해액 전체 중량에 대하여 0.01중량% 내지 10중량%일 수 있고, 바람직하게는 0.1중량% 내지 5중량%일 수 있고, 보다 바람직하게는 0.5중량% 내지 2중량%일 수 있다. 상기 피리딘계 첨가제의 함유량이 상기 범위 미만인 경우, 고전압 구동 중 전지가 부푸는 현상(swelling)을 억제하거나 용량 유지율의 개선이 미미한 등 첨가 효과가 나타나지 않으며, 리튬 이차전지의 방전용량 또는 출력 등의 향상 효과가 미미하고, 상기 피리딘계 첨가제의 함유량이 상기 범위를 초과하는 경우에는, 급격한 수명 열화가 발생되는 등, 오히려 리튬 이차전지의 특성이 저하되는 문제점이 존재한다. 따라서, 상기 피리딘계 첨가제의 함유량이 상기 범위를 만족하는 것이 바람직하다.
본 발명의 리튬 이차전지용 비수계 전해액은 리튬염을 포함할 수 있고, 상기 리튬염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiB10Cl10, LiAlCl4, LiAlO4, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiCH3SO3, LiFSI(Lithium bis(fluorosulfonyl)imide, LiN(SO2F)2), LiBETI(lithium bisperfluoroethanesulfonimide, LiN(SO2CF2CF3)2) 및 LiTFSI(lithium (bis)trifluoromethanesulfonimide, LiN(SO2CF3)2)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 리튬염의 농도는 0.1M 내지 3.0M일 수 있고, 바람직하게는 0.5M 내지 2.5M일 수 있고, 보다 바람직하게는 0.8M 내지 2.0M일 수 있다. 리튬염의 농도가 0.1M 미만이면 전해액의 전도도가 낮아져 전해액 성능이 떨어지고, 3.0M을 초과하는 경우에는 전해액의 점도가 증가하여 리튬 이온의 이동성이 감소하는 문제점이 있다. 따라서, 리튬염의 농도는 상기 범위를 만족하는 것이 바람직하다. 상기 리튬염은 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 한다.
또한, 본 발명의 리튬 이차전지용 비수계 전해액은 이미드 리튬염과 이미드 리튬염이 아닌 다른 종류의 리튬염을 혼합하여 사용할 수 있다.
상기 이미드 리튬염은 LiFSI(Lithium bis(fluorosulfonyl)imide, LiN(SO2F)2), LiBETI(lithium bisperfluoroethanesulfonimide, LiN(SO2CF2CF3)2) 및 LiTFSI(lithium (bis)trifluoromethanesulfonimide, LiN(SO2CF3)2)로 이루어진 군에서 선택되는 1종 이상일 수 있고, 상기 이미드 리튬염이 아닌 다른 종류의 리튬염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiB10Cl10, LiAlCl4, LiAlO4, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, 및 LiCH3SO3로 이루어진 군에서 선택되는 1종 이상일 수 있다.
또한, 상기 이미드 리튬염과 이미드 리튬염이 아닌 다른 종류의 리튬염의 몰비는 1:1 내지 7:1일 수 있고, 바람직하게는 1:1 내지 6:1일 수 있으며, 보다 바람직하게는 1:1 내지 4:1일 수 있다. 상기 이미드 리튬염과 이미드 리튬염이 아닌 다른 종류의 리튬염은 몰비를 만족함으로써, 전해액 부반응을 억제시키면서도, 집전체 부식 현상을 억제할 수 있는 피막을 안정적으로 형성할 수 있다.
본 발명의 리튬 이차전지용 비수계 전해액은 유기용매를 포함할 수 있고, 상기 유기용매는 리튬 이차전지에 통상적으로 사용되는 용매로서, 예를 들면 에테르 화합물, 에스테르(Acetate류, Propionate류) 화합물, 아미드 화합물, 선형 카보네이트 또는 환형 카보네이트 화합물 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
상기 나열된 화합물들 중에서도, 바람직하게는 유기용매로서, 선형 카보네이트 및 환형 카보네이트를 혼합하여 사용할 수 있다. 유기용매로서, 선형 카보네이트 및 환형 카보네이트를 혼합하여 사용하는 경우, 리튬염의 해리 및 이동을 원활하게 할 수 있다. 이때, 상기 환형 카보네이트계 화합물 및 선형 카보네이트계 화합물은 1:9 내지 6:4 부피비, 바람직하게는 1:9 내지 4:6 부피비, 보다 바람직하게는 2:8 내지 4:6 부피비로 혼합된 것일 수 있다.
한편, 상기 선형 카보네이트 화합물은 그 구체적인 예로 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군에서 선택되는 1종의 화합물 또는 적어도 2종 이상의 혼합물 등을 들 수 있으며, 이에 한정되는 것은 아니다.
또한, 상기 환형 카보네이트 화합물은 그 구체적인 예로 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 및 이들의 할로겐화물로 이루어진 군에서 선택되는 1종의 화합물 또는 적어도 2종 이상의 혼합물을 들 수 있다.
본 발명의 리튬 이차전지는 4.0V 이상의 작동 전압을 가질 수 있고, 바람직하게는 4.1V 이상의 작동 전압을 가질 수 있으며, 보다 바람직하게는 4.2V 이상의 작동 전압을 가질 수 있다. 리튬 이차전지의 작동 전압이 4.0V 미만인 경우에는 본 발명의 상기 피리딘계 첨가제의 첨가에 따른 차이가 크지 않으나, 4.0V 이상의 작동 전압을 갖는 리튬 이차전지에서는 상기 첨가제의 첨가에 따라 고온 저장 안전성 및 용량 특성이 급격히 상승하는 효과를 나타낸다.
리튬 이차전지
이하에서는, 본 발명에 따른 리튬 이차전지에 대해 설명한다.
본 발명의 리튬 이차전지는, 양극, 음극, 분리막 및 리튬 이차전지용 비수계 전해액을 포함한다. 보다 구체적으로, 적어도 하나 이상의 양극, 적어도 하나 이상의 음극 및 상기 양극과 음극 사이에 선택적으로 개재될 수 있는 분리막 및 상기 리튬 이차전지용 비수계 전해액을 포함한다. 이때, 상기 리튬 이차전지용 비수계 전해액에 대해서는 상술한 내용과 동일하므로, 구체적인 설명을 생략한다.
(1) 양극
상기 양극은 양극 집전체 상에 양극 활물질, 전극용 바인더, 전극 도전재 및 용매 등을 포함하는 양극 활물질 슬러리를 코팅하여 제조할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 양극 집전체는, 표면에 미세한 요철을 형성하여 양극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-Y1MnY1O2(여기에서, 0<Y1<1), LiMn2-z1Niz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y2CoY2O2(여기에서, 0<Y2<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y3MnY3O2(여기에서, 0<Y3<1), LiMn2-z2Coz2O4(여기에서, 0<Z2<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(Nip1Coq1Mnr1)O2(여기에서, 0<p1<1, 0<q1<1, 0<r1<1, p1+q1+r1=1) 또는 Li(Nip2Coq2Mnr2)O4(여기에서, 0<p2<2, 0<q2<2, 0<r2<2, p2+q2+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip3Coq3Mnr3MS1)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군에서 선택되고, p3, q3, r3 및 s1은 각각 독립적인 원소들의 원자 분율로서, 0<p3<1, 0<q3<1, 0<r3<1, 0<s1<1, p3+q3+r3+s1=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2,Li(Ni0.5Mn0.3Co0.2)O2, 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, LiNi0.8Co0.15Al0.05O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2,Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 전극용 바인더는 양극 활물질과 전극 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분이다. 구체적으로, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌(PE), 폴리프로필렌, 에틸렌-프로필렌-디엔테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 전극 도전재는 양극 활물질의 도전성을 더욱 향상시키기 위한 성분이다. 상기 전극 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질, 및 선택적으로 양극용 바인더 및 양극 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다.
(2) 음극
또한, 상기 음극은, 음극 집전체 상에 음극 활물질, 전극용 바인더, 전극 도전재 및 용매 등을 포함하는 음극 활물질 슬러리를 코팅하여 제조할 수 있다. 한편, 상기 음극은 금속 음극 집전체 자체를 전극으로 사용할 수 있다.
상기 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질로는 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군에서 선택된 1종 이상의 음극 활물질을 들 수 있다.
상기 전극용 바인더, 전극 도전재 및 용매에 대한 내용은 상술한 내용과 동일하므로, 구체적인 설명을 생략한다.
(3) 분리막
상기 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.
실시예
1. 실시예 1
(1) 리튬 이차전지용 비수계 전해액의 제조
에틸렌 카보네이트(EC):에틸메틸 카보네이트(EMC)를 30:70 부피비로 혼합한 다음, LiPF6(리튬헥사플루오로포스페이트) 농도가 1.0M이 되도록 용해하여 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 99.5g에 첨가제인 2,6-피리딘디아세토니트릴 0.5g을 첨가하여 리튬 이차전지용 비수계 전해액을 제조하였다.
(2) 리튬 이차전지의 제조
양극 활물질 (LiNi0.8Co0.1Mn0.1O2; NCM811), 도전재로 카본 블랙(carbon black), 바인더로 폴리비닐리덴플루오라이드(PVDF)를 94:3:3 중량비로 혼합한 후 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 활물질 슬러리를 제조하였다. 상기 양극 활물질 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로 흑연, 바인더로 폴리비닐리덴디플루오라이드(PVDF), 도전재로 카본 블랙(carbon black)을 95:2:3 중량비로 혼합한 후 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 음극 활물질 슬러리를 제조하였다. 상기 음극 활물질 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP)으로 이루어진 분리막을 양극/분리막/음극 순서대로 적층하였으며, 상기 적층 구조물을 파우치형 전지 케이스에 위치시킨 후 리튬 이차전지용 비수계 전해액을 주액하여 리튬 이차전지를 제조하였다.
2. 실시예 2
비수성 유기용매 98g에 첨가제인 2,6-피리딘디아세토니트릴 2g을 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지용 비수계 전해액 및 리튬 이차전지를 제조하였다.
3. 실시예 3
첨가제로서 2,6-피리딘디아세토니트릴 0.5g 대신 2,5-피리딘디아세토니트릴 0.5g을 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지용 비수계 전해액 및 리튬 이차전지를 제조하였다.
비교예
1. 비교예 1
리튬 이차전지용 전해액을 제조할 때, 2,6-피리딘디아세토니트릴을 첨가제로 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지용 비수계 전해액 및 리튬 이차전지를 제조하였다.
2. 비교예 2
첨가제로서 2,6-피리딘디아세토니트릴 0.5g 대신 1,4-페닐디아세토니트릴 0.5g을 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지용 비수계 전해액 및 리튬 이차전지를 제조하였다.
3. 비교예 3
첨가제로서 2,6-피리딘디아세토니트릴 10g을 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차전지용 비수계 전해액 및 리튬 이차전지를 제조하였다.
상기 실시예 1 내지 3 및 비교예 1 내지 3에서 사용된 첨가제의 성분 및 함량을 하기 표 1에 나타내었다.
첨가제 종류 첨가제 함량(중량%)
실시예 1 2,6-피리딘디아세토니트릴 0.5
실시예 2 2,6-피리딘디아세토니트릴 2
실시예 3 2,5-피리딘디아세토니트릴 0.5
비교예 1 - 0
비교예 2 페닐아세토니트릴 0.5
비교예 3 2,6-피리딘디아세토니트릴 10
실험예
1. 실험예 1 : 고온 저장 두께 증가율 평가
실시예 1 내지 3과 비교예 1 내지 3의 리튬 이차전지를 상온에서 0.33C/4.2V 정전류/정전압(CC/CV) 조건으로 4.2V/0.05C mA까지 충전하고, 0.33C 정전류(CC)조건으로 3V까지 방전하였다.
이어서, 각각의 리튬 이차전지의 충전 상태를 SOC(State Of Charge) 100%로 설정한 후, 리튬 이차전지의 두께를 측정하였다. 이를 초기 두께로 정의한다.
그런 다음, 리튬 이차전지를 60℃ 오븐(OF-02GW, 제이오텍사 제조)에 4주간 방치하며 고온 저장을 시행한 다음, 상온에서 24시간 동안 냉각한 후, 리튬 이차전지의 두께를 측정하였다. 상기 초기 두께 및 고온저장 후 두께 각각의 측정값을 하기 식 1에 대입하여 두께 증가율(%)을 계산하여 표 2에 나타내었다.
[식 1]
두께 증가율(%) = {(고온 저장 후 두께 - 초기 두께)/초기 두께} Х 100(%)
두께 증가율(%)
실시예 1 7.4
실시예 2 6.8
실시예 3 8.4
비교예 1 18.6
비교예 2 14.9
비교예 3 12.2
상기 표 2를 참고하면, 실시예 1 내지 3에 따른 리튬 이차전지의 경우, 비교예 1 내지 3 따른 리튬 이차전지에 비해 두께 증가율이 낮은 것을 확인할 수 있었다.
이는, 하기의 2,6-피리딘디아세토니트릴의 고온 가스 발생 억제 효과에 의한 것으로 해석된다.
첫째로, 상기 고온 가스 발생 억제 효과는 피리딘 구조가 가지는 루이스 염기 특성에 의한 것이다.
구체적으로, 피리딘 구조가 가지는 루이스 염기 특성이 LiPF6 염을 사용한 전해질에서 생성되는 PF5의 루이스 산 특성과 결합하여 PF5를 안정화시켜줌으로써, PF5가 HF를 발생시키는 것을 억제한다. 결과적으로, 고온에서의 HF의 발생이 감소하여 양극 표면의 퇴화 및 부반응의 발생, 전해액의 분해 등을 억제하여, 고온에서의 가스 발생이 감소하고, 이로 인해 고온 저장 후 두께가 감소한다.
둘째로, 상기 고온 가스 발생 억제 효과는 디아세토니트릴 작용기에 의한 양극 보호 효과에 의한 것이다.
구체적으로, 상기 작용기는 양극 표면에서 전이금속 이온과 결합을 형성하여 양극 피막을 형성하게 되고, 양극 표면과 전해질의 직접적인 접촉에 의한 부반응의 발생 등을 억제시키는 역할을 한다. 이로 인해, 고온에서 생성될 수 있는 가스의 발생과 전이금속의 용출을 억제함으로써, 결과적으로 고온 저장 후 두께가 감소한다.
따라서, 본 발명에 따른 2개의 니트릴기를 포함하는 피리딘계 첨가제를 첨가함으로써, 우수한 고온 저장 안정성을 나타냄을 확인할 수 있었다.
2. 실험예 2 : 고온 저장 용량 유지율 평가
실시예 1 내지 3과 비교예 1 내지 3의 리튬 이차전지를 상온에서 0.33C/4.2V 정전류/정전압(CC/CV) 조건으로 4.2V/0.05C mA까지 충전하고, 0.33C 정전류(CC) 조건으로 3V까지 방전하였다. 이 때, 나타난 방전용량을 초기 용량(mAh)으로 정의한다.
이어서, 각각의 리튬 이차전지의 충전 상태를 SOC(State Of Charge) 100%로 설정한 후, 리튬 이차전지를 60℃ 오븐(OF-02GW, 제이오텍사 제조)에 4주간 방치하며 고온 저장을 시행한 다음, 상온에서 24시간 동안 냉각하였다. 이후, 리튬 이차전지를 상온에서 0.33C 정전류(CC) 조건으로 3V까지 방전한 다음, 상기 초기 용량 측정과 동일하게 0.33C/4.2V 정전류/정전압(CC/CV) 조건으로 4.2V/0.05C mA까지 충전하고, 0.33C 정전류(CC) 조건으로 3V까지 방전하는 조건을 3회 반복하였다. 이 때, 마지막 3회째 나타난 방전용량을 고온 저장 후 용량(mAh)으로 정의한다.
상기 초기 용량 및 고온 저장 후 용량 각각의 측정값을 하기 식 2에 대입하여 용량 유지율(%)을 계산하여 하기 표 3에 나타내었다.
[식 2]
용량 유지율(%) = (고온 저장 후 용량(mAh) / 초기 용량(mAh)) Х 100(%)
용량 유지율(%)
실시예 1 94.7
실시예 2 93.3
실시예 3 94.4
비교예 1 92.6
비교예 2 93.1
비교예 3 91.4
상기 표 3을 참조하면, 상기 실시예 1 내지 3에 따른 리튬 이차전지의 경우, 비교예 1 내지 3에 따른 리튬 이차전지에 비해 고온 저장 용량 유지율이 우수함을 확인할 수 있었다.
상기 고온 저장 용량 유지율이 우수한 효과는 실험예 1에서 기술한 바와 같이, 2,6-피리딘디아세토니트릴 첨가제의 고온 하에서의 HF 생성 억제를 위한 PF5의 안정화와 양극 피막 형성에 의한 양극 퇴화의 억제의 결과이다.
한편, 비교예 3과 같이, 과량의 첨가제가 적용되는 경우에는 전극 표면에서의 저항이 과도하게 증가하기 때문에, 가스 발생의 억제와 관계없이 오히려 용량 유지율이 저하되는 결과를 확인할 수 있었다.
따라서, 본 발명에 따른 2개의 니트릴기를 포함하는 피리딘계 첨가제를 첨가함으로써, 우수한 고온 저장 후 용량 유지율을 나타냄을 확인할 수 있었다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것이며, 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (10)

  1. 리튬염, 유기 용매 및 2개의 니트릴기를 함유하는 피리딘계 첨가제를 포함하는 것을 특징으로 하는 리튬 이차전지용 비수계 전해액.
  2. 제1항에 있어서,
    상기 피리딘계 첨가제가 하기 화학식 1로 표시되는 것을 특징으로 하는 리튬 이차전지용 비수계 전해액:
    [화학식 1]
    Figure PCTKR2022000231-appb-I000017
    상기 화학식 1에 있어서, R은 -L-CN이고, 상기 L은 알킬렌기이다.
  3. 제2항에 있어서,
    상기 화학식 1이 하기 화학식 1-1로 표시되는 것을 특징으로 하는 리튬 이차전지용 비수계 전해액.
    [화학식 1-1]
    Figure PCTKR2022000231-appb-I000018
  4. 제2항에 있어서,
    상기 화학식 1이 하기 화합물 중 어느 하나로 표시되는 것을 특징으로 하는 리튬 이차전지용 비수계 전해액.
    Figure PCTKR2022000231-appb-I000019
    Figure PCTKR2022000231-appb-I000020
    Figure PCTKR2022000231-appb-I000021
    Figure PCTKR2022000231-appb-I000022
    Figure PCTKR2022000231-appb-I000023
    Figure PCTKR2022000231-appb-I000024
  5. 제1항에 있어서,
    상기 피리딘계 첨가제가 전해액 전체 중량에 대하여 0.01중량% 내지 10중량%를 포함되는 것을 특징으로 하는 리튬 이차전지용 비수계 전해액.
  6. 제1항에 있어서,
    상기 리튬염이 LiCl, LiBr, LiI, LiBF4, LiClO4, LiB10Cl10, LiAlCl4, LiAlO4, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiCH3SO3, LiN(SO2F)2, LiN(SO2CF2CF3)2 및 LiN(SO2CF3)2로 이루어진 군으로부터 선택된 것을 특징으로 하는 리튬 이차전지용 비수계 전해액.
  7. 제1항에 있어서,
    상기 리튬염의 농도가 0.1M 내지 3M인 것을 특징으로 하는 리튬 이차전지용 비수계 전해액.
  8. 제1항에 있어서,
    상기 유기 용매가 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 리튬 이차전지용 비수계 전해액.
  9. 제1항에 있어서,
    상기 리튬 이차전지가 4.0V 이상의 작동 전압을 갖는 것을 특징으로 하는 리튬 이차전지용 비수계 전해액.
  10. 양극, 음극, 상기 양극과 음극 사이에 개재된 분리막 및 제1항 내지 제9항 중 어느 한 항에 따른 리튬 이차전지용 비수계 전해액을 포함하는 리튬 이차전지.
PCT/KR2022/000231 2021-01-07 2022-01-06 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지 WO2022149875A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22736852.9A EP4120420A4 (en) 2021-01-07 2022-01-06 NON-AQUEOUS ELECTROLYTIC SOLUTION FOR LITHIUM SECONDARY BATTERY, AND LITHIUM SECONDARY BATTERY INCLUDING SAME
US17/918,752 US20230137991A1 (en) 2021-01-07 2022-01-06 Non-Aqueous Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Comprising Same
CN202280003484.8A CN115461905A (zh) 2021-01-07 2022-01-06 锂二次电池用非水电解液和包含其的锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210001813A KR20220099653A (ko) 2021-01-07 2021-01-07 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지
KR10-2021-0001813 2021-01-07

Publications (1)

Publication Number Publication Date
WO2022149875A1 true WO2022149875A1 (ko) 2022-07-14

Family

ID=82358264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000231 WO2022149875A1 (ko) 2021-01-07 2022-01-06 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지

Country Status (5)

Country Link
US (1) US20230137991A1 (ko)
EP (1) EP4120420A4 (ko)
KR (1) KR20220099653A (ko)
CN (1) CN115461905A (ko)
WO (1) WO2022149875A1 (ko)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879834A (en) 1995-08-23 1999-03-09 Nec Moli Energy (Canada) Ltd. Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries
JP2002260725A (ja) 2001-03-06 2002-09-13 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
KR20140024079A (ko) * 2012-08-16 2014-02-28 삼성에스디아이 주식회사 고전압 리튬 이차전지용 전해액, 및 이것을 포함하는 고전압 리튬이차전지
WO2017029176A1 (en) * 2015-08-14 2017-02-23 Basf Se Cyclic dinitrile compounds as additives for electrolyte
CN107460497A (zh) * 2017-07-07 2017-12-12 北京工业大学 酰基取代的缺电子含氮杂环化合物的电化学催化合成方法
WO2019128160A1 (zh) * 2017-12-29 2019-07-04 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
WO2019183351A1 (en) * 2018-03-23 2019-09-26 Maxwell Technologies, Inc. Electrolyte additives and formulations for energy storage devices
CN111446501A (zh) * 2020-04-08 2020-07-24 青岛滨海学院 一种含-f和-b两基团化合物的电解液及其电化学装置
KR20210001813A (ko) 2019-06-28 2021-01-06 삼성전기주식회사 인쇄회로기판 및 이를 포함하는 전자기기
CN113299971A (zh) * 2021-05-20 2021-08-24 珠海冠宇电池股份有限公司 一种锂离子电池及其应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879834A (en) 1995-08-23 1999-03-09 Nec Moli Energy (Canada) Ltd. Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries
JP2002260725A (ja) 2001-03-06 2002-09-13 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
KR20140024079A (ko) * 2012-08-16 2014-02-28 삼성에스디아이 주식회사 고전압 리튬 이차전지용 전해액, 및 이것을 포함하는 고전압 리튬이차전지
WO2017029176A1 (en) * 2015-08-14 2017-02-23 Basf Se Cyclic dinitrile compounds as additives for electrolyte
CN107460497A (zh) * 2017-07-07 2017-12-12 北京工业大学 酰基取代的缺电子含氮杂环化合物的电化学催化合成方法
WO2019128160A1 (zh) * 2017-12-29 2019-07-04 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
WO2019183351A1 (en) * 2018-03-23 2019-09-26 Maxwell Technologies, Inc. Electrolyte additives and formulations for energy storage devices
KR20210001813A (ko) 2019-06-28 2021-01-06 삼성전기주식회사 인쇄회로기판 및 이를 포함하는 전자기기
CN111446501A (zh) * 2020-04-08 2020-07-24 青岛滨海学院 一种含-f和-b两基团化合物的电解液及其电化学装置
CN113299971A (zh) * 2021-05-20 2021-08-24 珠海冠宇电池股份有限公司 一种锂离子电池及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4120420A4

Also Published As

Publication number Publication date
EP4120420A4 (en) 2023-11-22
CN115461905A (zh) 2022-12-09
US20230137991A1 (en) 2023-05-04
EP4120420A1 (en) 2023-01-18
KR20220099653A (ko) 2022-07-14

Similar Documents

Publication Publication Date Title
WO2018062719A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2016159702A1 (ko) 비수 전해액 및 이를 구비한 리튬 이차전지
WO2017086672A1 (ko) 비수전해액 및 이를 포함하는 리튬 이차전지
WO2018135915A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2013012248A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2019156539A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019168301A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018135889A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2014193148A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2019103434A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2019151724A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2013009155A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2021256825A1 (ko) 리튬 이차전지용 비수 전해액 첨가제 및 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2016105176A1 (ko) 전기 화학 소자
WO2021049872A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020055180A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2023121028A1 (ko) 비수 전해질용 첨가제를 포함하는 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2018124781A1 (ko) 이차전지용 양극 활물질, 그 제조 방법, 이를 포함하는 이차전지용 양극 및 이차전지
WO2017057963A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2020204607A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2021133125A1 (ko) 비수계 전해액 및 이를 포함하는 리튬 이차전지
WO2021101174A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022114930A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020138865A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022736852

Country of ref document: EP

Effective date: 20221011

NENP Non-entry into the national phase

Ref country code: DE