WO2021238531A1 - 一种非水电解液及锂离子电池 - Google Patents

一种非水电解液及锂离子电池 Download PDF

Info

Publication number
WO2021238531A1
WO2021238531A1 PCT/CN2021/089303 CN2021089303W WO2021238531A1 WO 2021238531 A1 WO2021238531 A1 WO 2021238531A1 CN 2021089303 W CN2021089303 W CN 2021089303W WO 2021238531 A1 WO2021238531 A1 WO 2021238531A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
carbonate
battery
independently selected
electrolyte according
Prior art date
Application number
PCT/CN2021/089303
Other languages
English (en)
French (fr)
Inventor
曹朝伟
胡时光
郭鹏凯
王驰
向晓霞
钱韫娴
邓永红
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2021238531A1 publication Critical patent/WO2021238531A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and specifically relates to a non-aqueous electrolyte and a lithium ion battery.
  • Lithium-ion batteries are widely used in daily life and production due to their excellent performance.
  • people are concerned about the durability of lithium-ion batteries, especially their use in harsh environments such as high and low temperatures.
  • High voltage or high energy density positive and negative electrode materials have been used to improve the performance of lithium-ion batteries, but the effect is still not satisfactory, especially the cycle performance and high temperature conditions. Storage performance needs to be further improved.
  • non-aqueous electrolyte is a key factor affecting battery cycle performance.
  • additives in non-aqueous electrolyte are particularly important for the high-temperature performance of the battery.
  • lithium ions in the positive electrode material of the battery are deintercalated and embedded in the carbon negative electrode through the electrolyte.
  • the surface of the positive electrode and the negative electrode in contact with the electrolyte will react to form a passivation film .
  • the passivation film formed during the initial charging process not only prevents the electrolyte from further decomposition, but also acts as a lithium ion tunnel, allowing only lithium ions to pass through. Therefore, the passivation film determines the performance of the lithium-ion battery.
  • the film-forming additives can take precedence over the decomposition reaction of solvent molecules on the surface of the positive electrode or negative electrode, and can form a passivation film on the surface of the positive electrode or negative electrode to prevent the electrolyte from further decomposing on the electrode surface, thereby improving the cycle performance of the battery.
  • the existing film-forming additives can improve the battery's normal temperature cycle performance to a certain extent, there is still a large room for improvement in the existing film-forming additives to improve the battery's cycle and storage performance at high temperatures, and improve the battery's high temperature cycle performance.
  • the film-forming additives of the cycle performance and storage performance still need to be further developed.
  • the present invention provides a non-aqueous electrolyte and a lithium-ion battery.
  • the present invention provides a non-aqueous electrolyte, including an organic solvent, an electrolyte, and an additive, and the additive includes the compound of structural formula 1:
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently selected from groups containing 1-5 carbon atoms; X 1 , X 2 , and X 3 are each independently selected from oxygen, Sulfate, sulfite, and sulfonate groups.
  • R 1 , R 2 , and R 3 are each independently selected from a hydrocarbon group of 1 to 5 carbon atoms or a halogenated hydrocarbon group.
  • R 4 , R 5 , and R 6 are each independently selected from a hydrocarbon group of 1 to 5 carbon atoms, a halogenated hydrocarbon group, a cyano group, or an alkanesilyl group.
  • R 4 , R 5 , and R 6 are each independently selected from an unsaturated hydrocarbon group or fluorinated hydrocarbon group of 1 to 5 carbon atoms.
  • the compound of Structural Formula 1 is selected from the following compounds:
  • the mass percentage of the compound represented by the structural formula 1 is 0.1% to 5.0%.
  • the non-aqueous electrolyte further includes one of 1,3-propane sultone, 1,4-butane sultone, vinylene carbonate, fluoroethylene carbonate, and vinyl sulfate, or Many kinds.
  • the organic solvent includes one or more of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate.
  • the electrolyte includes LiPF 6 , LiBF 4 , LiBOB, LiDFOB, LiPO 2 F 2 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC One or more of (SO 2 CF 3 ) 3 and LiN(SO 2 F) 2.
  • the present invention provides a lithium ion battery including a positive electrode, a negative electrode, and the non-aqueous electrolyte as described above.
  • the compound represented by structural formula 1 is added as an additive.
  • the compound represented by structural formula 1 can decompose on the positive electrode and the negative electrode to form a passivation film, which can inhibit the positive electrode or the negative electrode.
  • the direct contact between the active material and the non-aqueous electrolyte prevents its further decomposition and realizes the protection of the positive electrode material and the negative electrode material.
  • the passivation film formed by the compound shown in structural formula 1 can significantly reduce the flatulence of the battery under high temperature conditions. Problems, thereby improving the high-temperature storage performance and high-temperature cycle performance of the battery.
  • An embodiment of the present invention provides a non-aqueous electrolyte, including an organic solvent, an electrolyte, and an additive, and the additive includes the compound of structural formula 1:
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently selected from groups containing 1-5 carbon atoms; X 1 , X 2 , and X 3 are each independently selected from oxygen, Sulfate, sulfite, and sulfonate groups.
  • the compound shown in structural formula 1 can decompose on the positive electrode and the negative electrode to form a passivation film.
  • the passivation film can inhibit the direct contact between the active material of the positive electrode or the negative electrode and the non-aqueous electrolyte, inhibit its further decomposition, and realize the effect of the positive electrode material.
  • the protection of the negative electrode material, in particular, the passivation film formed by the compound of structural formula 1 can significantly reduce the flatulence problem of the battery under high temperature conditions, thereby improving the high temperature storage performance and high temperature cycle performance of the battery.
  • R 1 , R 2 , and R 3 are each independently selected from a hydrocarbon group of 1 to 5 carbon atoms or a halogenated hydrocarbon group.
  • R 1 , R 2 , and R 3 are each independently selected from fluorinated hydrocarbon groups of 1 to 5 carbon atoms.
  • R 4 , R 5 , and R 6 are each independently selected from a hydrocarbyl group of 1 to 5 carbon atoms, a halogenated hydrocarbyl group, a cyano group, or an alkanesilyl group.
  • R 4 , R 5 , and R 6 are each independently selected from unsaturated hydrocarbon groups or fluorinated hydrocarbon groups of 1 to 5 carbon atoms.
  • the compound of Structural Formula 1 is selected from the following compounds:
  • Compounds 1 to 20 can be prepared by single or multiple substitution reactions of trimethylol phosphine oxide.
  • the following uses compound 4, compound 6 and compound 19 as examples to carry out the preparation method of the compound represented by structural formula 1 of the present invention. illustrate:
  • the mass percentage of the compound represented by Structural Formula 1 is 0.1% to 5.0%.
  • the mass percentage of the compound represented by Structural Formula 1 is 0.3% to 2.0%.
  • the mass percentage of the compound represented by the structural formula 1 is 0.5% to 1.0%.
  • the non-aqueous electrolyte further includes one of 1,3-propane sultone, 1,4-butane sultone, vinylene carbonate, fluoroethylene carbonate, and vinyl sulfate. kind or more.
  • the mass percentage of the fluoroethylene carbonate is 0.1%-30%.
  • the mass percentage of the 1,3-propane sultone is 0.1%-10%.
  • the mass percentage of the 1,4-butane sultone is 0.1%-10%.
  • the mass percentage of the vinylene carbonate is 0.1%-10%.
  • the mass percentage of the vinyl sulfate is 0.1%-10%.
  • the organic solvent includes one or more of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate .
  • the organic solvent is selected from a combination of ethylene carbonate, diethyl carbonate and ethyl methyl carbonate.
  • the electrolyte includes LiPF 6 , LiBF 4 , LiBOB, LiDFOB, LiPO 2 F 2 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 One or more of LiC(SO 2 CF 3 ) 3 and LiN(SO 2 F) 2.
  • Another embodiment of the present invention provides a lithium ion battery, including a positive electrode, a negative electrode, and the non-aqueous electrolyte as described above.
  • the positive electrode includes a positive electrode active material selected from LiNi x Co y Mn z L (1-xyz) O 2 , where L is Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, Cu, V or Fe, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ x+y+z ⁇ 1.
  • the positive electrode active material is selected from LiCo x L (1-x) O 2 , where L is Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, Cu, V or Fe, 0 ⁇ x ⁇ 1.
  • the positive electrode further includes a positive electrode current collector for drawing current, and the positive electrode active material covers the positive electrode current collector.
  • the negative electrode includes a negative electrode active material, which can be made of carbon materials, metal alloys, lithium-containing oxides, and silicon-containing materials.
  • the negative electrode further includes a negative electrode current collector for drawing current, and the negative electrode active material covers the negative electrode current collector.
  • a separator is further provided between the positive electrode and the negative electrode, and the separator is a conventional separator in the field of lithium-ion batteries, so it will not be repeated.
  • This embodiment is used to illustrate the preparation method of the non-aqueous electrolyte and lithium ion battery disclosed in the present invention, including the following operation steps:
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • the positive electrode active material lithium nickel cobalt manganese oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 in a mass ratio of 93:4:3, conductive carbon black Super-P and binder polyvinylidene fluoride (PVDF), and then combine them Disperse in N-methyl-2-pyrrolidone (NMP) to obtain positive electrode slurry.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode slurry is uniformly coated on both sides of the aluminum foil, dried, calendered, and vacuum dried, and the aluminum lead wires are welded with an ultrasonic welder to obtain the positive electrode.
  • the thickness of the positive electrode is 120-150 ⁇ m.
  • negative electrode active material artificial graphite conductive carbon black Super-P
  • binder styrene-butadiene rubber SBR
  • carboxymethyl cellulose CMC
  • the negative electrode slurry is coated on both sides of the copper foil, dried, calendered and vacuum dried, and then a nickel lead wire is welded with an ultrasonic welder to obtain the negative electrode.
  • the thickness of the negative electrode is 120-150 ⁇ m.
  • a three-layer separator with a thickness of 20 ⁇ m is placed between the positive electrode and the negative electrode, and then the sandwich structure composed of the positive electrode, the negative electrode and the separator is wound, and then the wound body is flattened and placed in an aluminum foil packaging bag, and vacuumed at 75°C Bake for 48 hours to obtain the cells to be injected.
  • Examples 2 to 41 are used to illustrate the lithium ion battery non-aqueous electrolyte, lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps in Example 1. The difference lies in:
  • the non-aqueous electrolyte is added with the components shown in Example 2 to Example 41 in Table 1 in percentage by mass.
  • the positive electrode active materials shown in Example 2 to Example 41 in Table 1 were used.
  • Comparative Examples 1 to 5 are used to compare and illustrate the lithium ion battery non-aqueous electrolyte, lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps in Example 1. The difference lies in:
  • the non-aqueous electrolyte was added to the components shown in Table 1 in percentage by mass as shown in Comparative Example 1 to Comparative Example 5.
  • the following performance tests were performed on the lithium ion batteries prepared in the foregoing Examples 1 to 41 and Comparative Examples 1 to 5.
  • the tested performance includes high temperature cycle performance test and high temperature storage performance test.
  • the specific test methods for each item are as follows:
  • the lithium ion batteries prepared in Examples 1 to 41 and Comparative Examples 1 to 5 were placed in an oven at a constant temperature of 45°C, and charged to 4.2V at a constant current of 1C (LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery) , 4.2V (LiNi 0.8 Co 0.15 Al 0.05 O 2 /artificial graphite battery), 4.5V (LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery), 4.2V (LiNi 0.6 Co 0.2 Mn 0.2 O 2 /artificial graphite battery) ) Or 4.4V (LiCoO 2 /artificial graphite battery), then charge at a constant voltage until the current drops to 0.02C, then discharge at a constant current of 1C to 3.0V, and so on. Record the first discharge capacity and the last Discharge capacity.
  • the capacity retention rate of high temperature cycle is calculated by the following formula:
  • Capacity retention ratio last discharge capacity/first discharge capacity ⁇ 100%.
  • the formed lithium-ion battery is charged to 4.2V (LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery), 4.2V (LiNi 0.8 Co 0.15 Al 0.05 O 2 /artificial graphite battery) at room temperature with 1C constant current and constant voltage ), 4.5V (LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery), 4.2V (LiNi 0.6 Co 0.2 Mn 0.2 O 2 /artificial graphite battery) or 4.4V (LiCoO 2 /artificial graphite battery), measure the initial battery Discharge capacity and initial battery thickness, then after storing for 30 days in a 60°C environment, discharge to 3V at 1C, and measure the battery's retention capacity and recovery capacity and battery thickness after storage. Calculated as follows:
  • Battery capacity retention rate (%) retention capacity/initial capacity ⁇ 100%
  • Battery capacity recovery rate (%) recovery capacity/initial capacity ⁇ 100%
  • Thickness expansion rate (%) (battery thickness after storage-initial battery thickness)/initial battery thickness ⁇ 100%.
  • Example 12 and Example 15 have better high-temperature cycle performance, indicating that the introduction of alkynyl and halogen atoms in structural formula 1 can help improve the high-temperature cycle performance.
  • Example 14 it can be seen that when an alkynyl group and a halogen atom are simultaneously introduced into the compound shown in Structural Formula 1, the high-temperature storage performance is significantly improved.
  • compound 1 and 1% VC are used at the same time, the battery has the best high temperature cycle and storage performance.
  • comparative examples 34-41 and comparative example 5 show that the addition of the compound shown in structural formula 1 can also improve the high-temperature cycle and storage performance.
  • the battery When compound 15 is added, the battery’s The high temperature cycle performance is the best, with the highest capacity retention rate and the highest high temperature storage capacity retention rate. At the same time, it is found that when compound 20 is added, the high temperature performance of the battery system is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

为克服现有锂离子电池存在高温循环性能和高温存储性能不足的问题,提供了一种非水电解液,包括有机溶剂、电解质和添加剂,所述添加剂包括结构式1所述的化合物,其中,R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自含1-5个碳原子的基团;X 1、X 2、X 3各自独立地选自氧、硫酸酯、亚硫酸酯、磺酸酯的基团。还提供了包括上述非水电解液的锂离子电池。提供的非水电解液能够有效改善电池的高温存储性能和高温循环性能。

Description

一种非水电解液及锂离子电池 技术领域
本发明属于锂离子电池技术领域,具体涉及一种非水电解液及锂离子电池。
背景技术
锂离子电池因其优良的性能广泛应用于生活生产中,近年来,随着消费类电子产品和新能源汽车的发展,人们对锂离子电池的耐用度尤其是高低温等恶劣环境下的可使用度提出了更高的要求,目前已经采用了高电压或者高能量密度的正负极材料对锂离子电池的性能进行了改进,但是效果仍不能令人满意,尤其是高温条件下的循环性能和存储性能有待进一步提升。
在锂离子电池中,非水电解液是影响电池循环性能的关键因素,特别地,非水电解液中的添加剂对电池高温性能的发挥尤其重要。在锂离子电池初始充电过程中,电池正极材料中的锂离子脱嵌出来,通过电解液嵌入碳负极中,在此过程中,正极和负极与电解液接触的表面会发生反应产生形成钝化膜。在初始充电过程中形成的钝化膜,不仅阻止电解液进一步分解,而且起到锂离子隧道作用,只允许锂离子通过。因此,钝化膜决定了锂离子电池性能的好坏。
为了提高锂离子电池的各项性能,许多研究通过往电解液中添加不同功能的添加剂(如负极成膜添加剂、正极保护添加剂等)来改善电极与电解液界面兼容性,从而改善电池的各项性能。例如通过在电解液中添加碳酸亚乙烯酯、醋酸乙烯酯、亚硫酸乙烯酯、噻吩等成膜添加剂来提高电池的循环特性。成膜添加剂能够优先于溶剂分子在正极或负极表面发生分解反应,能在正极或负极表面形成钝化膜,阻止电解液在电极表面进一步分解,从而提高电池的循环性能。
然而现有的成膜添加剂虽然能够在一定程度上提高电池的常温循环性能,但是现有的成膜添加剂在提高电池高温下循环和储存性能上仍存在较大的提升空间,提高电池在高温下的循环性能和存储性能的成膜添加剂仍需进一步开发。
发明内容
针对现有锂离子电池存在高温循环性能和高温存储性能不足的问题,本发明提供了一种非水电解液及锂离子电池。
本发明解决上述技术问题所采用的技术方案如下:
一方面,本发明提供了一种非水电解液,包括有机溶剂、电解质和添加剂,所述添加剂包括结构式1所述的化合物:
Figure PCTCN2021089303-appb-000001
其中,R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自含1-5个碳原子的基团;X 1、X 2、X 3各自独立地选自氧、硫酸酯、亚硫酸酯、磺酸酯的基团。
可选的,R 1、R 2、R 3各自独立地选自1-5个碳原子的烃基或卤代烃基。
可选的,R 4、R 5、R 6各自独立地选自1-5个碳原子的烃基、卤代烃基、氰基或烷烃硅基。
可选的,R 4、R 5、R 6各自独立地选自1-5个碳原子的不饱和烃基或氟代烃基。
可选的,所述结构式1所述的化合物选自以下化合物:
Figure PCTCN2021089303-appb-000002
Figure PCTCN2021089303-appb-000003
Figure PCTCN2021089303-appb-000004
可选的,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的质量百分含量为0.1%~5.0%。
可选的,所述非水电解液还包括1,3-丙烷磺内酯、1,4-丁烷磺内酯、碳酸亚乙烯酯、氟代碳酸乙烯酯和硫酸乙烯酯中的一种或多种。
可选的,所述有机溶剂包括碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的一种或多种。
可选的,所述电解质包括LiPF 6、LiBF 4、LiBOB、LiDFOB、LiPO 2F 2、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3和LiN(SO 2F) 2中的一种或多种。
另一方面,本发明提供了一种锂离子电池,包括正极、负极以及如上所述的非水电解液。
根据本发明提供的非水电解液,加入了结构式1所示的化合物作为添加剂,结构式1所示的化合物能够在正极、负极上发生分解,形成钝化膜,该钝化膜能够抑制正极或负极的活性物质与非水电解液的直接接触,抑制其进一步分解,实现对正极材料和负极材料的保护,尤其是,结构式1所示化合物参与形成的钝化膜可以明显降低高温条件下电池的胀气问题,从而改善电池的高温存储性能和高温循环性能。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明一实施例提供了一种非水电解液,包括有机溶剂、电解质和添加剂,所述添加剂包括结构式1所述的化合物:
Figure PCTCN2021089303-appb-000005
其中,R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自含1-5个碳原子的基团;X 1、X 2、X 3各自独立地选自氧、硫酸酯、亚硫酸酯、磺酸酯的基团。
结构式1所示的化合物能够在正极、负极上发生分解,形成钝化膜,该钝化膜能够抑制正极或负极的活性物质与非水电解液的直接接触,抑制其进一步分解,实现对正极材料和负极材料的保护,尤其是,结构式1所示化合物参与形成的钝化膜可以明显降低高温条件下电池的胀气问题,从而改善电池的高温存储性能和高温循环性能。
在一些实施例中,R 1、R 2、R 3各自独立地选自1-5个碳原子的烃基或卤代烃基。
在更优选的实施例中,R 1、R 2、R 3各自独立地选自1-5个碳原子的氟代烃 基。
在一些实施例中,R 4、R 5、R 6各自独立地选自1-5个碳原子的烃基、卤代烃基、氰基或烷烃硅基。
在更优选的实施例中,R 4、R 5、R 6各自独立地选自1-5个碳原子的不饱和烃基或氟代烃基。
在一些实施例中,所述结构式1所述的化合物选自以下化合物:
Figure PCTCN2021089303-appb-000006
Figure PCTCN2021089303-appb-000007
Figure PCTCN2021089303-appb-000008
需要说明的是,以上是本发明所要求保护的部分化合物,但不限于此,不应理解为对本发明的限制。
化合物1~化合物20可通过三羟甲基氧化膦通过单次或多次的取代反应制备得到,以下通过化合物4、化合物6和化合物19为例,对本发明结构式1所示的化合物的制备方法进行说明:
以化合物4为例,在60℃条件下,首先将三羟甲基氧化膦(THPO)和氢氧化钠进行反应,其中用甲苯和水的混合物作为溶剂,添加适量的相转移催化剂TEAB,然后滴加氯丙炔,三者的摩尔比为1:2:2.05,氯丙炔略微过量,反应完成即可得到中间产物,然后将一氯甲硅烷加入到中间产物中反应即可得到化合物4,反应过程如下:
Figure PCTCN2021089303-appb-000009
以化合物6为例,在60℃条件下,首先将三羟甲基氧化膦(THPO)和氢氧化钠进行反应,添加适量的相转移催化剂TEAB,其中用甲苯和水的混合物作为溶剂,然后滴加氯丙炔,三者的摩尔比为1:3:3,反应完成即可得到化合物6,反应过程如下:
Figure PCTCN2021089303-appb-000010
以化合物19为例,在60℃条件下,首先将三羟甲基氧化膦(THPO)和氢氧化钠进行反应,其中用甲苯和水的混合物作为溶剂,添加适量的相转移催化剂TEAB,然后滴加氯丙炔,三者的摩尔比为1:2:2.05,首先反应得到中间产物,然后将亚硫酸酯和0.5wt%K2CO3溶于DMF中,再加入到中间产物中反应即可得到化合物19,反应过程如下:
Figure PCTCN2021089303-appb-000011
在一些实施例中,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的质量百分含量为0.1%~5.0%。
在一些优选的实施例中,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的质量百分含量为0.3%~2.0%。
在更优选的实施例中,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的质量百分含量为0.5%~1.0%。
在一些实施例中,所述非水电解液还包括1,3-丙烷磺内酯、1,4-丁烷磺内酯、碳酸亚乙烯酯、氟代碳酸乙烯酯和硫酸乙烯酯中的一种或多种。
其中,以所述非水电解液的总质量为100%计,所述氟代碳酸乙烯酯的质量百分含量为0.1%~30%。
以所述非水电解液的总质量为100%计,所述1,3-丙烷磺内酯的质量百分含量为0.1%~10%。
以所述非水电解液的总质量为100%计,所述1,4-丁烷磺内酯的质量百分含量为0.1%~10%。
以所述非水电解液的总质量为100%计,所述碳酸亚乙烯酯的质量百分含量 为0.1%~10%。
以所述非水电解液的总质量为100%计,所述硫酸乙烯酯的质量百分含量为0.1%~10%。
在一些实施例中,所述有机溶剂包括碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的一种或多种。
在更优的实施例中,所述有机溶剂选自碳酸乙烯酯、碳酸二乙酯和碳酸甲乙酯的组合物。
在一些实施例中,所述电解质包括LiPF 6、LiBF 4、LiBOB、LiDFOB、LiPO 2F 2、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3和LiN(SO 2F) 2中的一种或多种。
本发明的另一实施例提供了一种锂离子电池,包括正极、负极以及如上所述的非水电解液。
在一些实施例中,所述正极包括正极活性材料,所述正极活性材料选自LiNi xCo yMn zL (1-x-y-z)O 2,其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Cu、V或Fe,0≤x≤1,0≤y≤1,0≤z≤1,0≤x+y+z≤1。
在更优选的实施例中,所述正极活性材料选自LiCo xL (1-x)O 2,其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Cu、V或Fe,0<x≤1。
在一些实施例中,所述正极还包括有用于引出电流的正极集流体,所述正极活性材料覆盖于所述正极集流体上。
所述负极包括负极活性材料,所述负极活性材料可由碳材料、金属合金、含锂氧化物及含硅材料制得。
所述负极还包括有用于引出电流的负极集流体,所述负极活性材料覆盖于所述负极集流体上。
在一些实施例中,所述正极和所述负极之间还设置有隔膜,所述隔膜为锂离子电池领域的常规隔膜,因此不再赘述。
以下通过实施例对本发明进行进一步的说明。
实施例1
本实施例用于说明本发明公开的非水电解液及锂离子电池的制备方法,包括以下操作步骤:
1)非水电解液的制备
将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为EC:DEC:EMC=1:1:1进行混合,然后加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,再加入按非水电解液的总质量计1%的化合物1(注:此处化合物1即为上述化合物1~20中的化合物1,以下实施例类同)。
2)正极的制备
按93:4:3的质量比混合正极活性材料锂镍钴锰氧化物LiNi 0.5Co 0.2Mn 0.3O 2,导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将它们分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将正极浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极,正极的厚度在120-150μm。
3)负极的制备
按94:1:2.5:2.5的质量比混合负极活性材料人造石墨,导电碳黑Super-P,粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将负极浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极,负极的厚度在120-150μm。
4)电芯的制备
在正极和负极之间放置厚度为20μm的三层隔离膜,然后将正极、负极和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入铝箔包装袋,在75℃下真空烘烤48h,得到待注液的电芯。
5)电芯的注液和化成
在露点控制在-40℃以下的手套箱中,将上述制备的电解液注入电芯中,经真空封装,静止24h。
然后按以下步骤进行首次充电的常规化成:0.05C恒流充电180min,0.2C恒流充电至3.95V,二次真空封口,然后进一步以0.2C的电流恒流充电至4.2V,常温搁置24hr后,以0.2C的电流恒流放电至3.0V。
实施例2~41
实施例2~41用于说明本发明公开的锂离子电池非水电解液、锂离子电池及其制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
所述非水电解液的制备步骤中:
以所述非水电解液的总质量为100%计,所述非水电解液加入表1中实施例 2~实施例41所示质量百分含量的组分。
所述正极的制备步骤中:
采用表1中实施例2~实施例41所示的正极活性材料。
对比例1~5
对比例1~5用于对比说明本发明公开的锂离子电池非水电解液、锂离子电池及其制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
所述非水电解液制备步骤中:
以所述非水电解液的总重量为100%计,所述非水电解液加入表1中对比例1~对比例5所示质量百分含量的组分。
所述正极的制备步骤中:
采用表1中对比例1~对比例5所示的正极活性材料。
性能测试
为了验证本发明的锂离子电池非水电解液对电池性能的影响,下面对上述实施例1~41及对比例1~5制备的锂离子电池进行相关的性能测试。测试的性能包括高温循环性能测试和高温储存性能测试,各项的具体测试方法如下:
一、高温循环性能测试
将实施例1~41及对比例1~5制备的锂离子电池置于恒温45℃的烘箱中,以1C的电流恒流充电至4.2V(LiNi 0.5Co 0.2Mn 0.3O 2/人造石墨电池)、4.2V(LiNi 0.8Co 0.15Al 0.05O 2/人造石墨电池)、4.5V(LiNi 0.5Co 0.2Mn 0.3O 2/人造石墨电池)、4.2V(LiNi 0.6Co 0.2Mn 0.2O 2/人造石墨电池)或4.4V(LiCoO 2/人造石墨电池),再恒压充电至电流下降至0.02C,然后以1C的电流恒流放电至3.0V,如此循环,记录第1次的放电容量和最后一次的放电容量。
按下式计算高温循环的容量保持率:
容量保持率=最后一次的放电容量/第1次的放电容量×100%。
二、高温储存性能测试
将化成后的锂离子电池在常温下用1C恒流恒压充至4.2V(LiNi 0.5Co 0.2Mn 0.3O 2/人造石墨电池)、4.2V(LiNi 0.8Co 0.15Al 0.05O 2/人造石墨电池)、4.5V(LiNi 0.5Co 0.2Mn 0.3O 2/人造石墨电池)、4.2V(LiNi 0.6Co 0.2Mn 0.2O 2/人造石墨电池)或4.4V(LiCoO 2/人造石墨电池),测量电池初始放电容量及初始电池厚度, 然后在60℃环境中储存30天后,以1C放电至3V,测量电池的保持容量和恢复容量及储存后电池厚度。计算公式如下:
电池容量保持率(%)=保持容量/初始容量×100%;
电池容量恢复率(%)=恢复容量/初始容量×100%;
厚度膨胀率(%)=(储存后电池厚度-初始电池厚度)/初始电池厚度×100%。
得到的测试结果填入表1。
表1
Figure PCTCN2021089303-appb-000012
Figure PCTCN2021089303-appb-000013
Figure PCTCN2021089303-appb-000014
从表1的测试结果可以看出,对比实施例1~40和对比例1~5的测试数据可知,在不同的电池体系中,在电解液中加入结构式1所示的化合物,能够有显著提高电池的高温循环性能和高温储存性能。
其中,在正极材料为NCM523(LiNi 0.5Co 0.2Mn 0.3O 2)的电池体系中,将实施例1-9与对比例1比较可知,可以看到,添加结构式1所示的化合物能明显改善电池的高温性能,当单独使用化合物6时,电池拥有高的高温循环容量保持 率、高温存储容量保持率和恢复率以及最小的气胀。同时,将化合物1和VC(碳酸亚乙烯酯)、FEC(氟代碳酸乙烯酯)、PS(1,3-丙磺内酯)、DTD(硫酸乙烯酯)同时使用时能够进一步提高电池的高温循环和存储性能,与1%的VC(碳酸亚乙烯酯)同时使用时,电池拥有最佳的高温循环性能,与1%PS同时使用时电池拥有最佳的高温存储性能。
在正极材料为NCM811(LiNi 0.8Co 0.1Mn 0.1O 2)的电池体系中,对比实施例10-19和对比例2可知,添加结构式1所示的化合物也可以明显改善电池的高温存储和循环性能,其中实施例12和实施例15拥有较好的高温循环性能,说明在结构式1中引进炔基和卤素原子有助于高温循环性能的改善。结合实施例14可知,在结构式1所示的化合物中同时引进炔基和卤素原子时,对高温存储性能提升明显。同样的,在该电池体系中,将化合物1和1%VC同时使用时,电池拥有最好的高温循环和存储性能。
当正极材料为NCA(LiNi 0.8Co 0.15Al 0.05O 2)时,对比实施例20-24和对比例3可知,添加化合物5时,该电池拥有最好的高温循环性能,而添加化合物4时则拥有最好的高温存储性能,推测在结构式1中引进硅氧基有利于高温存储性能的提升。
在正极材料为LCO(LiCoO 2)的电池体系中,对比实施例34-41和对比例5可知,添加结构式1所示的化合物也可以改善高温循环和存储性能,当添加化合物15时,电池的高温循环性能最好,拥有最高的容量保持率,最高的高温存储容量保持率。同时发现添加化合物20时,该电池体系的高温性能表现优秀。
在正极材料为NCM622(LiNi 0.6Co 0.2Mn 0.2O 2)的电池体系中,对比实施例25-33和对比例4可知,结构式1所示的化合物均能够提升电池的高温存储性能和高温循环性能,且随着电解液中结构式1所示的化合物的含量的提升,其对电池的高温存储性能和高温循环性能的提升逐渐提高,尤其是当结构式1所示的化合物的质量含量为1%时,该提升作用更为明显,但过多的添加量则会弱化对电池的提升效果。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种非水电解液,其特征在于,包括有机溶剂、电解质和添加剂,所述添加剂包括结构式1所述的化合物:
    Figure PCTCN2021089303-appb-100001
    其中,R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自含1-5个碳原子的基团;X 1、X 2、X 3各自独立地选自氧、硫酸酯、亚硫酸酯、磺酸酯的基团。
  2. 根据权利要求1所述的非水电解液,其特征在于,R 1、R 2、R 3各自独立地选自1-5个碳原子的烃基或卤代烃基。
  3. 根据权利要求1所述的非水电解液,其特征在于,R 4、R 5、R 6各自独立地选自1-5个碳原子的烃基、卤代烃基、氰基或烷烃硅基。
  4. 根据权利要求1~3任意一项所述的非水电解液,其特征在于,R 4、R 5、R 6各自独立地选自1-5个碳原子的不饱和烃基或氟代烃基。
  5. 根据权利要求1所述的非水电解液,其特征在于,所述结构式1所述的化合物选自以下化合物:
    Figure PCTCN2021089303-appb-100002
    Figure PCTCN2021089303-appb-100003
    Figure PCTCN2021089303-appb-100004
  6. 根据权利要求1所述的非水电解液,其特征在于,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的质量百分含量为0.1%~5.0%。
  7. 根据权利要求1所述的非水电解液,其特征在于,所述非水电解液还包 括1,3-丙烷磺内酯、1,4-丁烷磺内酯、碳酸亚乙烯酯、氟代碳酸乙烯酯和硫酸乙烯酯中的一种或多种。
  8. 根据权利要求1所述的非水电解液,其特征在于,所述有机溶剂包括碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的一种或多种。
  9. 根据权利要求1所述的非水电解液,其特征在于,所述电解质包括LiPF 6、LiBF 4、LiBOB、LiDFOB、LiPO 2F 2、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3和LiN(SO 2F) 2中的一种或多种。
  10. 一种锂离子电池,其特征在于,包括正极、负极以及如权利要求1~9任意一项所述的非水电解液。
PCT/CN2021/089303 2020-05-28 2021-04-23 一种非水电解液及锂离子电池 WO2021238531A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010469797.5A CN113745658B (zh) 2020-05-28 2020-05-28 一种非水电解液及锂离子电池
CN202010469797.5 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021238531A1 true WO2021238531A1 (zh) 2021-12-02

Family

ID=78724263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089303 WO2021238531A1 (zh) 2020-05-28 2021-04-23 一种非水电解液及锂离子电池

Country Status (2)

Country Link
CN (1) CN113745658B (zh)
WO (1) WO2021238531A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114267882A (zh) * 2021-12-17 2022-04-01 珠海冠宇电池股份有限公司 一种电池
CN115141285A (zh) * 2022-08-11 2022-10-04 湖北亿纬动力有限公司 一种改性羧甲基纤维素盐粘结剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189039A (ja) * 1996-12-25 1998-07-21 Mitsui Chem Inc 非水電解液及び非水電解液二次電池
CN103460495A (zh) * 2011-04-12 2013-12-18 宇部兴产株式会社 非水电解液及使用了该非水电解液的蓄电设备
CN103875117A (zh) * 2011-10-21 2014-06-18 三井化学株式会社 含有膦酰基磺酸化合物的非水电解液及锂二次电池
CN109065951A (zh) * 2018-07-31 2018-12-21 东莞市杉杉电池材料有限公司 一种锂离子电池电解液及锂离子电池
CN109273766A (zh) * 2018-11-28 2019-01-25 杉杉新材料(衢州)有限公司 一种作用于镍锰酸锂正极材料的高温高电压的非水电解液
CN109950620A (zh) * 2017-12-20 2019-06-28 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228928A (ja) * 1997-02-14 1998-08-25 Denso Corp 難燃性電解液
KR100873632B1 (ko) * 2005-08-24 2008-12-12 삼성에스디아이 주식회사 유기전해액 및 이를 채용한 리튬 전지
CN105140566A (zh) * 2015-08-03 2015-12-09 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN105428715B (zh) * 2015-11-04 2018-06-08 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN108808066B (zh) * 2017-04-28 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN110265716B (zh) * 2019-06-13 2021-12-10 东莞维科电池有限公司 一种锂离子电池电解液及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189039A (ja) * 1996-12-25 1998-07-21 Mitsui Chem Inc 非水電解液及び非水電解液二次電池
CN103460495A (zh) * 2011-04-12 2013-12-18 宇部兴产株式会社 非水电解液及使用了该非水电解液的蓄电设备
CN103875117A (zh) * 2011-10-21 2014-06-18 三井化学株式会社 含有膦酰基磺酸化合物的非水电解液及锂二次电池
CN109950620A (zh) * 2017-12-20 2019-06-28 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子电池
CN109065951A (zh) * 2018-07-31 2018-12-21 东莞市杉杉电池材料有限公司 一种锂离子电池电解液及锂离子电池
CN109273766A (zh) * 2018-11-28 2019-01-25 杉杉新材料(衢州)有限公司 一种作用于镍锰酸锂正极材料的高温高电压的非水电解液

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114267882A (zh) * 2021-12-17 2022-04-01 珠海冠宇电池股份有限公司 一种电池
CN115141285A (zh) * 2022-08-11 2022-10-04 湖北亿纬动力有限公司 一种改性羧甲基纤维素盐粘结剂及其制备方法和应用
CN115141285B (zh) * 2022-08-11 2023-09-01 湖北亿纬动力有限公司 一种改性羧甲基纤维素盐粘结剂及其制备方法和应用

Also Published As

Publication number Publication date
CN113745658B (zh) 2023-09-08
CN113745658A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
CN109950621B (zh) 一种锂离子电池非水电解液及锂离子电池
CN109950620B (zh) 一种锂离子电池用非水电解液及锂离子电池
JP7055884B2 (ja) 非水性電解液及びこれを含むリチウム二次電池
JP6717977B2 (ja) リチウムイオン電池用非水電解液およびこの電解液を用いたリチウムイオン電池
CN111082129A (zh) 电化学装置和电子装置
KR102612376B1 (ko) 전해액, 전기화학장치 및 전자장치
CN111542496A (zh) 二次电池用正极活性材料、其制备方法和包含其的锂二次电池
WO2020140923A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2021120434A1 (zh) 一种电解液及电化学装置
WO2019128161A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2019128160A1 (zh) 一种锂离子电池非水电解液及锂离子电池
US20230261264A1 (en) Electrochemical device and electronic device containing same
WO2021238531A1 (zh) 一种非水电解液及锂离子电池
WO2019210559A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2019041696A1 (zh) 锂离子电池用非水电解液及锂离子电池
WO2022141283A1 (zh) 电解液、电化学装置及电子装置
JP5626035B2 (ja) リチウムイオン二次電池の前処理方法及び使用方法
WO2020135667A1 (zh) 一种非水电解液及锂离子电池
WO2022218145A1 (zh) 一种非水电解液及锂离子电池
JP7217072B2 (ja) 二次電池用正極材に含まれる不可逆添加剤、これを含む正極材、および正極材を含む二次電池
CN114400375A (zh) 电解液、电化学装置及电子装置
WO2022095772A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2023122956A1 (zh) 一种电解液、包含该电解液的电化学装置和电子装置
WO2022042374A1 (zh) 锂离子电池非水电解液以及锂离子电池
CN114447430A (zh) 锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813352

Country of ref document: EP

Kind code of ref document: A1