WO2020140923A1 - 一种锂离子电池非水电解液及锂离子电池 - Google Patents
一种锂离子电池非水电解液及锂离子电池 Download PDFInfo
- Publication number
- WO2020140923A1 WO2020140923A1 PCT/CN2020/070004 CN2020070004W WO2020140923A1 WO 2020140923 A1 WO2020140923 A1 WO 2020140923A1 CN 2020070004 W CN2020070004 W CN 2020070004W WO 2020140923 A1 WO2020140923 A1 WO 2020140923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ion battery
- lithium ion
- aqueous electrolyte
- carbonate
- structural formula
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D327/00—Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
- C07D327/02—Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
- C07D327/04—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D497/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms
- C07D497/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D497/04—Ortho-condensed systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0034—Fluorinated solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5805—Phosphides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention belongs to the technical field of lithium ion batteries, and particularly relates to a non-aqueous electrolyte of lithium ion batteries and a lithium ion battery.
- lithium-ion batteries Compared with lead-acid batteries, nickel-metal hydride batteries or nickel-cadmium batteries, lithium-ion batteries have made considerable progress in the field of portable electronic products due to their high operating voltage, high safety, long life, and no memory effect. With the development of new energy vehicles, lithium-ion batteries have huge application prospects in power supply systems for new energy vehicles.
- the lithium salt and the organic solvent decompose on the electrode surface to form a passivation film.
- the formed passivation film can effectively suppress the further decomposition of the organic solvent and the lithium salt, and the passivation film is ion-conductive ,
- the electronic is not conductive.
- the characteristics of the passivation film on the electrode surface (such as impedance size, stability, etc.) have an important impact on the performance of the lithium-ion battery.
- Vinyl carbonate can preferentially cause the reduction decomposition reaction of the solvent molecules on the surface of the negative electrode, and can form a passivation film on the surface of the negative electrode to prevent the electrolyte from further decomposing on the surface of the electrode, thereby improving the cycle performance of the battery.
- the battery is likely to generate gas during high-temperature storage, causing the battery to swell.
- the passivation film formed by vinylene carbonate has a large resistance, especially under low temperature conditions, it is easy to cause lithium deposition at low temperature charging, which affects the safety of the battery.
- Fluoroethylene carbonate can also form a passivation film on the surface of the negative electrode to improve the cycle performance of the battery, and the resistance of the formed passivation film is relatively low, which can improve the low-temperature discharge performance of the battery.
- fluorinated ethylene carbonate generates more gas during high-temperature storage, which significantly reduces the battery's high-temperature storage performance.
- the present invention provides a non-aqueous electrolyte of a lithium ion battery and a lithium ion battery.
- the present invention provides a non-aqueous electrolyte for a lithium ion battery, including a solvent, a lithium salt, and a compound represented by Structural Formula 1 and/or Structural Formula 2:
- a and B are independently structural formula or
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 are each independently selected from hydrogen, halogen, halogenated or non-halogenated of 1-3 carbon atoms Organic group, m, n, h, f are 0, 1 or 2, and m+h ⁇ 1, n+f ⁇ 1;
- a and B are independently structural formula or
- R 11, R 12, R 13 , R 14, R 15, R 16, R 17, R 18, R 19, R 20, R 21, R 22, R 23, R 24 are each independently selected from hydrogen, halo, 1 -Halogenated or non-halogenated organic groups of 3 carbon atoms, w, r, x, y are 0, 1, or 2, and w+r ⁇ 1, x+y ⁇ 1.
- the compound represented by structural formula 1 and/or structural formula 2 is added, and the compound represented by structural formula 1 and/or structural formula 2 can take priority over the organic solvent on the surface of the negative electrode during the charging process
- the electrons are obtained and a reduction reaction occurs to form a passivation film, which has a good film-forming effect, thereby further suppressing decomposition of the organic solvent.
- the thermal stability of the passivation film formed by the compounds represented by Structural Formula 1 and/or Structural Formula 2 is better, and gas generation during high-temperature storage of the battery is effectively suppressed, thereby improving the high-temperature storage and cycle performance of the battery.
- the compound represented by Structural Formula 1 is selected from the following compounds:
- the compound represented by Structural Formula 2 is selected from the following compounds:
- the mass percentage content of the compound represented by Structural Formula 1 and/or Structural Formula 2 is 0.1% to 5.0%.
- the non-aqueous electrolyte of the lithium ion battery further includes one or more of unsaturated cyclic carbonate and fluorinated cyclic carbonate, cyclic sultone, and cyclic sulfate.
- the unsaturated cyclic carbonate includes one or more of vinylene carbonate, ethylene ethylene carbonate, and methylene ethylene carbonate;
- the fluorinated cyclic carbonate includes one or more of fluoroethylene carbonate, trifluoromethyl ethylene carbonate, and difluoroethylene carbonate;
- the cyclic sultone includes one or more of 1,3-propane sultone, 1,4-butane sultone and propenyl-1,3-sultone;
- the cyclic sulfate includes one or more of vinyl sulfate and 4-methyl vinyl sulfate.
- the content of the unsaturated cyclic carbonate is 0.01-10%; the content of the fluorinated cyclic carbonate is 0.01-10%; The content of the ester is 0.01-10%; the content of the cyclic sulfate is 0.01-10%.
- the solvent is a mixture of cyclic carbonate and chain carbonate.
- the lithium salt is selected from one or more of LiPF 6 , LiBF 4 , LiBOB, LiDFOB, LiN(SO 2 CF 3 ) 2 and LiN(SO 2 F) 2 .
- the present invention also provides a lithium ion battery, including a positive electrode, a negative electrode, and the non-aqueous electrolyte of the lithium ion battery as described above.
- the positive electrode including a positive active material is selected from LiNi x Co y Mn z L ( 1-xyz) O 2, LiCo x 'L (1-x') O 2, LiNi x " L 'y' Mn (2- x "-y ') O 4, Li z' MPO 4 at least one, where, L is Al, Sr, Mg, Ti, Ca, Zr, Zn, Si and Fe At least one of 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ x+y+z ⁇ 1, 0 ⁇ x' ⁇ 1, 0.3 ⁇ x" ⁇ 0.6, 0.01 ⁇ y ' ⁇ 0.2, L'is at least one of Co, Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, Fe; 0.5 ⁇ z' ⁇ 1, M is at least one of Fe, Mn, Co Species.
- An embodiment of the present invention provides a non-aqueous electrolyte for a lithium ion battery, including a solvent, a lithium salt, and a compound represented by Structural Formula 1 and/or Structural Formula 2:
- a and B are independently structural formula or
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 are each independently selected from hydrogen, halogen, halogenated or non-halogenated of 1-3 carbon atoms Organic group, m, n, h, f are 0, 1 or 2, and m+h ⁇ 1, n+f ⁇ 1;
- a and B are independently structural formula or
- R 11, R 12, R 13 , R 14, R 15, R 16, R 17, R 18, R 19, R 20, R 21, R 22, R 23, R 24 are each independently selected from hydrogen, halo, 1 -Halogenated or non-halogenated organic groups of 3 carbon atoms, w, r, x, y are 0, 1, or 2, and w+r ⁇ 1, x+y ⁇ 1.
- the compound represented by Structural Formula 1 is selected from the following compounds:
- the compound represented by Structural Formula 2 is selected from the following compounds:
- the mass percentage content of the compound represented by Structural Formula 1 and/or Structural Formula 2 is 0.1% to 5.0%.
- the mass percentage of the compound represented by Structural Formula 1 and/or Structural Formula 2 may be 0.1%, 0.3%, 0.6%, 1%, 1.2%, 1.5%, 1.8%, 2.0%, 2.3%, 2.6%, 2.9%, 3.1%, 3.5%, 3.7%, 4.0%, 4.3%, 4.5%, 4.8% or 5.0%.
- the non-aqueous electrolyte of the lithium ion battery further includes one or more of unsaturated cyclic carbonate and fluorinated cyclic carbonate, cyclic sultone, and cyclic sulfate.
- the unsaturated cyclic carbonate includes vinylene carbonate (VC, CAS: 872-36-6), ethylene ethylene carbonate (CAS: 4427-96-7), methylene One or more of ethylene vinyl carbonate (CAS: 124222-05-5).
- the fluorinated cyclic carbonates include fluoroethylene carbonate (FEC, CAS: 114435-02-8), trifluoromethyl ethylene carbonate (CAS: 167951-80-6), and difluoroethylene carbonate ( CAS: 311810-76-1) one or more.
- the cyclic sultone is selected from 1,3-propane sultone (CAS: 1120-71-4), 1,4-butane sultone (CAS: 1633-83-6), propenyl- One or more of 1,3-sultone (CAS: 21806-61-1).
- the cyclic sulfate is selected from one or more of vinyl sulfate (CAS: 1072-53-3) and 4-methyl vinyl sulfate (CAS: 5689-83-8).
- the solvent is a mixture of cyclic carbonate and chain carbonate.
- the cyclic carbonate is selected from one or more of ethylene carbonate, propylene carbonate, and butylene carbonate.
- the chain carbonate is selected from one or more of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate.
- the lithium salt is selected from one or more of LiPF 6 , LiBF 4 , LiBOB, LiDFOB, LiN(SO 2 CF 3 ) 2 and LiN(SO 2 F) 2 .
- the content of the lithium salt may vary within a relatively large range.
- the content of the lithium salt in the non-aqueous electrolyte of the lithium ion battery is 0.1-15%.
- Another embodiment of the present invention provides a lithium ion battery, including a positive electrode, a negative electrode, and the non-aqueous electrolyte of the lithium ion battery as described above.
- the positive electrode includes a positive active material, the cathode active material is selected from LiNi x Co y Mn z L ( 1-xyz) O 2, LiCo x 'L (1-x') O 2, LiNi x "L 'y' mn (2-x "-y ' ) O 4, Li z' MPO 4 at least one, where, L is Al, Sr, Mg, Ti, Ca, Zr, Zn, Si or Fe, at least one of , 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ x+y+z ⁇ 1, 0 ⁇ x' ⁇ 1, 0.3 ⁇ x" ⁇ 0.6, 0.01 ⁇ y' ⁇ 0.2, L'is at least one of Co, Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, and Fe; 0.5 ⁇ z' ⁇ 1, and M is at least one of Fe, Mn, and Co.
- L is Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, and
- the positive electrode further includes a positive electrode current collector for drawing current, and the positive electrode active material covers the positive electrode current collector.
- the negative electrode includes a negative electrode active material, and the negative electrode active material may be made of a carbon material, a metal alloy, a lithium-containing oxide, and a silicon-containing material.
- the negative electrode further includes a negative electrode current collector for drawing current, and the negative electrode active material covers the negative electrode current collector.
- a separator is further provided between the positive electrode and the negative electrode, and the separator is a conventional separator in the field of lithium-ion batteries, and thus will not be described in detail.
- the lithium ion battery provided by the embodiment of the present invention can effectively solve the cycle performance problem existing in the lithium ion battery and improve the electrochemical performance of the lithium ion battery because it contains the above-mentioned non-aqueous electrolyte.
- This embodiment is used to illustrate the non-aqueous electrolyte of a lithium ion battery, a lithium ion battery and a preparation method thereof disclosed in the present invention, and includes the following steps:
- Preparation of battery core A three-layer separator with a thickness of 20 ⁇ m is placed between the positive electrode plate and the negative electrode plate, and then the sandwich structure composed of the positive electrode plate, the negative electrode plate and the separator is wound, and then the wound body is flattened and then placed Put it into the aluminum foil packaging bag and vacuum-bake at 85°C for 24h to obtain the battery core to be injected.
- Examples 2 to 10 are used to illustrate the non-aqueous electrolyte of lithium ion battery, lithium ion battery and preparation method thereof disclosed in the present invention, including most of the operation steps in example 1, the difference is that:
- the non-aqueous electrolyte is added with the components in the mass percentages shown in Example 2 to Example 10 in Table 1.
- Comparative examples 1 to 6 are used for comparative description of the lithium-ion battery non-aqueous electrolyte, lithium-ion battery, and preparation method thereof disclosed in the present invention, including most of the operation steps in Example 1, except that:
- the non-aqueous electrolyte is added with the components in the mass percentages shown in Comparative Examples 1 to 6 in Table 1.
- the formed battery was charged to 4.2V with 1C constant current and constant voltage, and the cut-off current was 0.01C, and then discharged with 1C constant current to 3.0V. After N cycles of such charging/discharging, the capacity retention rate after the Nth cycle was calculated to evaluate its high-temperature cycle performance.
- N-cycle capacity retention rate (%) (N-cycle discharge capacity/first-cycle discharge capacity) x 100%.
- Battery capacity retention rate (%) retention capacity / initial capacity ⁇ 100%;
- Battery capacity recovery rate (%) recovery capacity / initial capacity ⁇ 100%;
- Battery thickness expansion rate (%) (thickness after N days-initial thickness)/initial thickness x 100%.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
为克服现有锂离子电池非水电解液无法兼顾高温储存及循环性能的问题,本发明提供了一种锂离子电池非水电解液,包括溶剂、锂盐以及结构式(1)和/或结构式(2)所示的化合物:同时,本发明还公开了包括上述锂离子电池非水电解液的锂离子电池。本发明提供的非水电解液能够有效提高锂离子电池的循环性能和高温储存性能。
Description
本发明属于锂离子电池技术领域,具体涉及一种锂离子电池非水电解液及锂离子电池。
相比铅酸电池、镍氢电池或镍镉电池,锂离子电池因其工作电压高、安全性高、长寿命、无记忆效应等特点,在便携式电子产品领域中取得了长足的发展。随着新能源汽车的发展,锂离子电池在新能源汽车用动力电源系统具有巨大的应用前景。
在锂离子电池首次充电过程中,锂盐和有机溶剂在电极表面发生分解反应形成钝化膜,形成的钝化膜可以有效抑制有机溶剂和锂盐的进一步分解,且钝化膜是离子可导,电子不可导。电极表面钝化膜的特性(如阻抗大小、稳定性等)对锂离子电池的性能有着重要的影响在后续的高温储存或高温循环过程中,SEI膜不断被破坏及修复,同时电解液不断被消耗且电池内阻逐渐增加,最终导致电池跳水。许多科研者通过往电解液中添加不同的负极成膜添加剂(如碳酸亚乙烯酯,氟代碳酸乙烯酯,碳酸乙烯亚乙酯)来改善SEI膜的质量,从而改善电池的各项性能。例如,在日本特开2000-123867号公报中提出了通过在电解液中添加碳酸亚乙烯酯来提高电池特性。碳酸亚乙烯酯能够优先于溶剂分子在负极表面发生还原分解反应,能在负极表面形成钝化膜,阻止电解液在电极表面进一步分解,从而提高电池的循环性能。但添加碳酸亚乙烯酯后,电池在高温储存中过程中容易产生气体,导致电池发生鼓胀。此外,碳酸亚乙烯酯形成的钝化膜阻抗较大,尤其在低温条件下,容易发生低温充电析锂,影响电池安全性。氟代碳酸乙烯酯也能在负极表面形成钝化膜,改善电池的循环性能,且形成的钝化膜阻抗比较低,能够改善电池的低温放电性能。但氟代碳酸乙烯酯在高温储存产生更多的气体,明显降低电池高温储存性能。
发明内容
针对现有锂离子电池非水电解液无法兼顾高温储存及循环性能的问题,本发明提供了一种锂离子电池非水电解液及锂离子电池。
本发明解决上述技术问题所采用的技术方案如下:
一方面,本发明提供了一种锂离子电池非水电解液,包括溶剂、锂盐以及结构式1和/或结构式2所示的化合物:
R
1、R
2、R
3、R
4、R
5、R
6、R
7、R
8、R
9、R
10各自独立选自氢、卤素、1-3个碳原子的卤代或非卤代有机基团,m、n、h、f为0、1或2,且m+h≥1,n+f≥1;
R
11、R
12、R
13、R
14、R
15、R
16、R
17、R
18、R
19、R
20、R
21、R
22、R
23、R
24各自独立选自氢、卤素、1-3个碳原子的卤代或非卤代有机基团,w、r、x、y为0、1或2,且w+r≥1,x+y≥1。
根据本发明提供的锂离子电池非水电解液,加入有结构式1和/或结构式2所示的化合物,结构式1和/或结构式2所示的化合物在充电过程中能够优先于有机溶剂在负极表面得到电子而发生还原反应生成钝化膜,且具有良好的成膜 效果,从而进一步抑制有机溶剂分解。此外,结构式1和/或结构式2所示的化合物形成的钝化膜的热稳定性更好,有效地抑制了电池高温存储过程中的气体产生,从而改善电池的高温储存及循环性能。
可选的,所述结构式1所示的化合物选自如下化合物:
可选的,所述结构式2所示的化合物选自如下化合物:
可选的,以所述非水电解液的总质量为100%计,所述结构式1和/或结构式2所示的化合物的质量百分含量为0.1%~5.0%。
可选的,所述锂离子电池非水电解液还包括不饱和环状碳酸酯和氟代环状 碳酸酯、环状磺酸内酯和环状硫酸酯中的一种或多种。
可选的,所述不饱和环状碳酸酯包括碳酸亚乙烯酯、碳酸乙烯亚乙酯和亚甲基碳酸乙烯酯中的一种或多种;
所述氟代环状碳酸酯包括氟代碳酸乙烯酯、三氟甲基碳酸乙烯酯和双氟代碳酸乙烯酯中的一种或多种;
所述环状磺酸内酯包括1,3-丙烷磺内酯、1,4-丁烷磺内酯和丙烯基-1,3-磺酸内酯中的一种或多种;
所述环状硫酸酯包括硫酸乙烯酯和4-甲基硫酸乙烯酯中的一种或多种。
所述锂离子电池非水电解液中,所述不饱和环状碳酸酯的含量为0.01-10%;所述氟代环状碳酸酯的含量为0.01-10%;所述环状磺酸内酯的含量为0.01-10%;所述环状硫酸酯的含量为0.01-10%。
可选的,所述溶剂为环状碳酸酯和链状碳酸酯的混合物。
可选的,所述锂盐选自LiPF
6、LiBF
4、LiBOB、LiDFOB、LiN(SO
2CF
3)
2和LiN(SO
2F)
2中的一种或多种。
另一方面,本发明还提供了一种锂离子电池,包括正极、负极以及如上所述的锂离子电池非水电解液。
可选的,所述正极包括正极活性材料,所述正极活性材料选自LiNi
xCo
yMn
zL
(1-x-y-z)O
2、LiCo
x’L
(1-x’)O
2、LiNi
x”L’
y’Mn
(2-x”-y’)O
4、Li
z’MPO
4中的至少一种,其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种,0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x’≤1,0.3≤x”≤0.6,0.01≤y’≤0.2,L’为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe中的至少一种;0.5≤z’≤1,M为Fe、Mn、Co中的至少一种。
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明一实施例提供了一种锂离子电池非水电解液,包括溶剂、锂盐以及结构式1和/或结构式2所示的化合物:
R
1、R
2、R
3、R
4、R
5、R
6、R
7、R
8、R
9、R
10各自独立选自氢、卤素、1-3个碳原子的卤代或非卤代有机基团,m、n、h、f为0、1或2,且m+h≥1,n+f≥1;
R
11、R
12、R
13、R
14、R
15、R
16、R
17、R
18、R
19、R
20、R
21、R
22、R
23、R
24各自独立选自氢、卤素、1-3个碳原子的卤代或非卤代有机基团,w、r、x、y为0、1或2,且w+r≥1,x+y≥1。
在一些实施例中,所述结构式1所示的化合物选自如下化合物:
在一些实施例中,所述结构式2所示的化合物选自如下化合物:
需要说明的是,以上是本发明所要求保护的部分化合物,但不限于此,不应理解为对本发明的限制。
在一些实施例中,以所述非水电解液的总质量为100%计,所述结构式1和/或结构式2所示的化合物的质量百分含量为0.1%~5.0%。具体的,以所述非水电解液的总质量为100%计,所述结构式1和/或结构式2所示的化合物的质量百分含量可以为0.1%、0.3%、0.6%、1%、1.2%、1.5%、1.8%、2.0%、2.3%、2.6%、2.9%、3.1%、3.5%、3.7%、4.0%、4.3%、4.5%、4.8%或5.0%。
在一些实施例中,所述锂离子电池非水电解液还包括不饱和环状碳酸酯和氟代环状碳酸酯、环状磺酸内酯和环状硫酸酯中的一种或多种。
在更优选的实施例中,所述不饱和环状碳酸酯包括碳酸亚乙烯酯(VC,CAS:872-36-6)、碳酸乙烯亚乙酯(CAS:4427-96-7)、亚甲基碳酸乙烯酯(CAS:124222-05-5)中的一种或多种。
所述氟代环状碳酸酯包括氟代碳酸乙烯酯(FEC,CAS:114435-02-8)、三氟甲基碳酸乙烯酯(CAS:167951-80-6)和双氟代碳酸乙烯酯(CAS:311810-76-1) 中的一种或多种。
所述环状磺酸内酯选自1,3-丙烷磺内酯(CAS:1120-71-4)、1,4-丁烷磺内酯(CAS:1633-83-6)、丙烯基-1,3-磺酸内酯(CAS:21806-61-1)中的一种或多种。
所述环状硫酸酯选自硫酸乙烯酯(CAS:1072-53-3),4-甲基硫酸乙烯酯(CAS:5689-83-8)中的一种或多种。
在一些实施例中,所述溶剂为环状碳酸酯和链状碳酸酯的混合物。
在更优选的实施例中,所述环状碳酸酯选自碳酸乙烯酯、碳酸丙烯酯和碳酸丁烯酯中的一种或多种。
所述链状碳酸酯选自碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的一种或多种。
所述锂盐选自LiPF
6、LiBF
4、LiBOB、LiDFOB、LiN(SO
2CF
3)
2和LiN(SO
2F)
2中的一种或多种。所述锂盐的含量可在较大范围内变动,优选情况下,所述锂离子电池非水电解液中,锂盐的含量为0.1-15%。
本发明的另一实施例提供了一种锂离子电池,包括正极、负极以及如上所述的锂离子电池非水电解液。
所述正极包括正极活性材料,所述正极活性材料选自LiNi
xCo
yMn
zL
(1-x-y-z)O
2、LiCo
x’L
(1-x’)O
2、LiNi
x”L’
y’Mn
(2-x”-y’)O
4、Li
z’MPO
4中的至少一种,其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种,0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x’≤1,0.3≤x”≤0.6,0.01≤y’≤0.2,L’为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe中的至少一种;0.5≤z’≤1,M为Fe、Mn、Co中的至少一种。
所述正极还包括有用于引出电流的正极集流体,所述正极活性材料覆盖于所述正极集流体上。
所述负极包括负极活性材料,所述负极活性材料可由碳材料、金属合金、含锂氧化物及含硅材料制得。
所述负极还包括有用于引出电流的负极集流体,所述负极活性材料覆盖于所述负极集流体上。
在一些实施例中,所述正极和所述负极之间还设置有隔膜,所述隔膜为锂离子电池领域的常规隔膜,因此不再赘述。
本发明实施例提供的锂离子电池,由于含有上述非水电解液,能够有效解 决锂离子电池存在的循环性能问题,提高锂离子电池的电化学性能。
以下通过实施例对本发明进行进一步的说明。
实施例1
本实施例用于说明本发明公开的锂离子电池非水电解液、锂离子电池及其制备方法,包括以下操作步骤:
1)非水电解液的制备:将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为EC:DEC:EMC=1:1:1进行混合,然后加入六氟磷酸锂(LiPF
6)至摩尔浓度为1mol/L,且以所述非水电解液的总重量为100%计,加入含有表1实施例1所示质量百分含量的组分。
2)正极板的制备:按93:4:3的质量比混合正极活性材料锂镍钴锰氧化物LiNi
0.5Co
0.2Mn
0.3O
2,导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将混合物分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将正极浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,正极板的厚度在120-150μm之间。
3)负极板的制备:按94:1:2.5:2.5的质量比混合负极活性材料人造石墨,导电碳黑Super-P,粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将负极浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,负极板的厚度在120-150μm之间。
4)电芯的制备:在正极板和负极板之间放置厚度为20μm的三层隔膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入铝箔包装袋,在85℃下真空烘烤24h,得到待注液的电芯。
5)电芯的注液和化成:在露点控制在-40℃以下的手套箱中,将上述制备的电解液注入电芯中,经真空封装,静止24h。
然后按以下步骤进行首次充电的常规化成:0.05C恒流充电180min,0.2C恒流充电至3.95V,二次真空封口,然后进一步以0.2C的电流恒流充电至4.2V,常温搁置24hr后,以0.2C的电流恒流放电至3.0V,得到一种4.2V的LiNi
0.5Co
0.2Mn
0.3O
2/人造石墨锂离子电池。
实施例2~10
实施例2~10用于说明本发明公开的锂离子电池非水电解液、锂离子电池及其制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
所述非水电解液的制备步骤中:
以所述非水电解液的总质量为100%计,所述非水电解液加入表1中实施例2~实施例10所示质量百分含量的组分。
对比例1~6
对比例1~6用于对比说明本发明公开的锂离子电池非水电解液、锂离子电池及其制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
所述非水电解液制备步骤中:
以所述非水电解液的总重量为100%计,所述非水电解液加入表1中对比例1~对比例6所示质量百分含量的组分。
性能测试
对上述实施例1~10和对比例1~6制备得到的锂离子电池进行如下性能测试:
1)高温循环性能测试:
在45℃下,将化成后的电池用1C恒流恒压充至4.2V,截至电流为0.01C,然后用1C恒流放电至3.0V。如此充/放电N次循环后,计算第N次循环后容量的保持率,以评估其高温循环性能。
45℃1C循环N次容量保持率计算公式如下:
第N次循环容量保持率(%)=(第N次循环放电容量/第一次循环放电容量)×100%。
2)60℃高温储存性能测试:
将化成后的电池在常温下用1C恒流恒压充至4.2V,截至电流为0.01C,再用1C恒流放电至3.0V,测量电池初始放电容量,再用1C恒流恒压充电至4.2V,截至电流为0.01C,测量电池的初始厚度,然后将电池在60℃储存N天后,测量电池的厚度,再以1C恒流放电至3.0V,测量电池的保持容量,再用1C恒流恒压充电至4.2V,截至电流为0.01C,然后用1C恒流放电至3.0V,测量恢复容量。容量保持率、容量恢复率的计算公式如下:
电池容量保持率(%)=保持容量/初始容量×100%;
电池容量恢复率(%)=恢复容量/初始容量×100%;
电池厚度膨胀率(%)=(N天后的厚度-初始厚度)/初始厚度×100%。
得到的测试结果填入表1。
表1
对比表1中实施例1~6和对比例1的测试结果可以看出,在非水电解液中添加本发明提供的结构式1或结构式2所示的化合物,能够有效提高锂离子电池的高温循环性能和高温储存性能。
对比表1中实施例7~10和对比例2~6的测试结果可知,在现有添加剂的电解液体系中添加结构式1或结构式2所示的化合物,能够进一步提高电池的高 温循环性能和高温储存性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种锂离子电池非水电解液,其特征在于,包括溶剂、锂盐以及结构式1和/或结构式2所示的化合物:R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10各自独立选自氢、卤素、1-3个碳原子的卤代或非卤代有机基团,m、n、h、f为0、1或2,且m+h≥1,n+f≥1;R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22、R 23、R 24各自独立选自氢、卤素、1-3个碳原子的卤代或非卤代有机基团,w、r、x、y为0、1或2,且w+r≥1,x+y≥1。
- 根据权利要求1~3中任意一项所述的锂离子电池非水电解液,其特征在于,以所述非水电解液的总质量为100%计,所述结构式1和/或结构式2所示的化合物的质量百分含量为0.1%~5.0%。
- 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述锂离子电池非水电解液还包括不饱和环状碳酸酯和氟代环状碳酸酯、环状磺酸内酯和环状硫酸酯中的一种或多种。
- 根据权利要求5所述的锂离子电池非水电解液,其特征在于,所述不饱和环状碳酸酯包括碳酸亚乙烯酯、碳酸乙烯亚乙酯和亚甲基碳酸乙烯酯中的一种或多种;所述氟代环状碳酸酯包括氟代碳酸乙烯酯、三氟甲基碳酸乙烯酯和双氟代碳酸乙烯酯中的一种或多种;所述环状磺酸内酯包括1,3-丙烷磺内酯、1,4-丁烷磺内酯和丙烯基-1,3-磺酸内酯中的一种或多种;所述环状硫酸酯包括硫酸乙烯酯和4-甲基硫酸乙烯酯中的一种或多种。
- 根据权利要求5或6所述的锂离子电池非水电解液,其特征在于,所述锂离子电池非水电解液中,所述不饱和环状碳酸酯的含量为0.01-10%;所述氟代环状碳酸酯的含量为0.01-10%;所述环状磺酸内酯的含量为0.01-10%;所述环状硫酸酯的含量为0.01-10%。
- 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述锂盐选自LiPF 6、LiBF 4、LiBOB、LiDFOB、LiN(SO 2CF 3) 2和LiN(SO 2F) 2中的一种或多种。
- 一种锂离子电池,其特征在于,包括正极、负极以及如权利要求1~8任意一项所述的锂离子电池非水电解液。
- 根据权利要求9所述的锂离子电池,其特征在于,所述正极包括正极活性材料,所述正极活性材料选自LiNi xCo yMn zL (1-x-y-z)O 2、LiCo x’L (1-x’)O 2、LiNi x”L’ y’Mn (2-x”-y’)O 4、Li z’MPO 4中的至少一种,其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种,0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x’≤1,0.3≤x”≤0.6,0.01≤y’≤0.2,L’为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe中的至少一种;0.5≤z’≤1,M为Fe、Mn、Co中的至少一种。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20736037.1A EP3907803B1 (en) | 2019-01-02 | 2020-01-02 | Non-aqueous electrolyte for lithium ion battery and lithium ion battery |
US17/417,111 US12107228B2 (en) | 2019-01-02 | 2020-01-02 | Non-aqueous electrolyte for a lithium ion battery and lithium ion battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910002263.9A CN111403807B (zh) | 2019-01-02 | 2019-01-02 | 一种锂离子电池非水电解液及锂离子电池 |
CN201910002263.9 | 2019-01-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020140923A1 true WO2020140923A1 (zh) | 2020-07-09 |
Family
ID=71407163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/070004 WO2020140923A1 (zh) | 2019-01-02 | 2020-01-02 | 一种锂离子电池非水电解液及锂离子电池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12107228B2 (zh) |
EP (1) | EP3907803B1 (zh) |
CN (1) | CN111403807B (zh) |
WO (1) | WO2020140923A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022065796A1 (ko) * | 2020-09-28 | 2022-03-31 | 주식회사 엘지에너지솔루션 | 비수 전해액용 첨가제, 이를 포함하는 비수 전해액 및 리튬 이차전지 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112421109B (zh) * | 2020-11-19 | 2022-04-26 | 中节能万润股份有限公司 | 一种环状磺酸酯类锂离子电池电解液添加剂、其制备方法与应用 |
CN112563573B (zh) * | 2020-12-29 | 2022-08-30 | 宁德国泰华荣新材料有限公司 | 一种电解液及锂电池 |
CN115692840A (zh) * | 2021-07-22 | 2023-02-03 | 深圳新宙邦科技股份有限公司 | 一种非水电解液及锂离子电池 |
EP4239745A4 (en) | 2022-01-19 | 2024-10-09 | Shenzhen Capchem Technology Co Ltd | LITHIUM-ION BATTERY |
CN114094109B (zh) * | 2022-01-19 | 2022-05-03 | 深圳新宙邦科技股份有限公司 | 锂离子电池 |
CN118610582A (zh) * | 2022-01-21 | 2024-09-06 | 深圳新宙邦科技股份有限公司 | 一种非水电解液及二次电池 |
CN114639872B (zh) * | 2022-02-21 | 2024-04-05 | 深圳新宙邦科技股份有限公司 | 一种锂离子电池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000123867A (ja) | 1998-10-20 | 2000-04-28 | Hitachi Maxell Ltd | 非水二次電池 |
CN104466246A (zh) * | 2013-09-24 | 2015-03-25 | 三星Sdi株式会社 | 用于锂电池电解质的添加剂、有机电解质溶液和锂电池 |
CN106252710A (zh) * | 2015-06-08 | 2016-12-21 | Sk新技术株式会社 | 锂二次电池用电解质和含有其的锂二次电池 |
JP2017117684A (ja) * | 2015-12-25 | 2017-06-29 | セントラル硝子株式会社 | 非水電解液電池用電解液及びそれを用いた非水電解液電池 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6098684B2 (ja) * | 2015-08-12 | 2017-03-22 | セントラル硝子株式会社 | 非水電解液二次電池用電解液及びそれを用いた非水電解液二次電池 |
JP6737280B2 (ja) * | 2015-09-15 | 2020-08-05 | 宇部興産株式会社 | 蓄電デバイス用非水電解液及びそれを用いた蓄電デバイス |
KR102152365B1 (ko) * | 2016-02-12 | 2020-09-04 | 삼성에스디아이 주식회사 | 유기전해액 및 상기 전해액을 채용한 리튬 전지 |
-
2019
- 2019-01-02 CN CN201910002263.9A patent/CN111403807B/zh active Active
-
2020
- 2020-01-02 EP EP20736037.1A patent/EP3907803B1/en active Active
- 2020-01-02 US US17/417,111 patent/US12107228B2/en active Active
- 2020-01-02 WO PCT/CN2020/070004 patent/WO2020140923A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000123867A (ja) | 1998-10-20 | 2000-04-28 | Hitachi Maxell Ltd | 非水二次電池 |
CN104466246A (zh) * | 2013-09-24 | 2015-03-25 | 三星Sdi株式会社 | 用于锂电池电解质的添加剂、有机电解质溶液和锂电池 |
CN106252710A (zh) * | 2015-06-08 | 2016-12-21 | Sk新技术株式会社 | 锂二次电池用电解质和含有其的锂二次电池 |
JP2017117684A (ja) * | 2015-12-25 | 2017-06-29 | セントラル硝子株式会社 | 非水電解液電池用電解液及びそれを用いた非水電解液電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3907803A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022065796A1 (ko) * | 2020-09-28 | 2022-03-31 | 주식회사 엘지에너지솔루션 | 비수 전해액용 첨가제, 이를 포함하는 비수 전해액 및 리튬 이차전지 |
Also Published As
Publication number | Publication date |
---|---|
CN111403807A (zh) | 2020-07-10 |
US12107228B2 (en) | 2024-10-01 |
CN111403807B (zh) | 2022-12-06 |
EP3907803A4 (en) | 2022-04-06 |
EP3907803A1 (en) | 2021-11-10 |
US20220109191A1 (en) | 2022-04-07 |
EP3907803B1 (en) | 2022-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109950620B (zh) | 一种锂离子电池用非水电解液及锂离子电池 | |
CN109950621B (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
US12107228B2 (en) | Non-aqueous electrolyte for a lithium ion battery and lithium ion battery | |
WO2022042373A1 (zh) | 锂离子电池 | |
CN108847501B (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
CN109994776B (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
WO2021135920A1 (zh) | 一种锂离子电池 | |
WO2019128160A1 (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
CN114695869A (zh) | 一种锂离子电池 | |
CN113130992B (zh) | 一种非水电解液及锂离子电池 | |
CN110444804B (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
CN109768327B (zh) | 一种锂离子电池非水电解液及使用该电解液的锂离子电池 | |
WO2021238052A1 (zh) | 一种锂离子二次电池的电解液及其应用 | |
WO2020135667A1 (zh) | 一种非水电解液及锂离子电池 | |
CN114695867A (zh) | 一种锂离子电池 | |
CN111384438B (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
WO2020103923A1 (zh) | 一种非水电解液及锂离子电池 | |
CN114447430B (zh) | 锂离子电池 | |
CN112467213B (zh) | 电解液和使用了其的锂离子电池 | |
CN109638351B (zh) | 一种兼顾高低温性能的高电压电解液及其锂离子电池 | |
WO2020135668A1 (zh) | 一种锂离子电池非水电解液及锂离子电池 | |
CN113871713B (zh) | 一种电解液及电池 | |
CN112582675B (zh) | 电解液和锂离子电池 | |
CN114447429B (zh) | 锂离子电池非水电解液以及锂离子电池 | |
CN111384391B (zh) | 一种高镍锂离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20736037 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020736037 Country of ref document: EP Effective date: 20210802 |