WO2020135668A1 - 一种锂离子电池非水电解液及锂离子电池 - Google Patents

一种锂离子电池非水电解液及锂离子电池 Download PDF

Info

Publication number
WO2020135668A1
WO2020135668A1 PCT/CN2019/128996 CN2019128996W WO2020135668A1 WO 2020135668 A1 WO2020135668 A1 WO 2020135668A1 CN 2019128996 W CN2019128996 W CN 2019128996W WO 2020135668 A1 WO2020135668 A1 WO 2020135668A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
aqueous electrolyte
ion battery
lithium ion
lithium
Prior art date
Application number
PCT/CN2019/128996
Other languages
English (en)
French (fr)
Inventor
胡时光
贠娇娇
张海玲
曹朝伟
熊得军
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811643006.5A external-priority patent/CN111384391B/zh
Priority claimed from CN201811643032.8A external-priority patent/CN111384438B/zh
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2020135668A1 publication Critical patent/WO2020135668A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and particularly relates to a non-aqueous electrolyte of lithium ion batteries and a lithium ion battery.
  • LiNiMnO 4 , LiNi 0.5 Mn 1.5 O 4 and some other nickel-rich ternary materials can generate lithium ion deintercalation reactions at higher voltages, thus bringing new hope for improving the energy density of lithium ion batteries.
  • non-aqueous electrolyte batteries using these positive and negative electrode materials have been put into practical use, they have not been satisfactory in terms of durability.
  • the Chinese patent CN103107363A filed by the applicant discloses the use of unsaturated phosphite compounds as electrolyte additives, which can improve the high-temperature storage performance and high-temperature cycle performance of the battery to a certain extent, but the above-mentioned unsaturated phosphite additives are used in After being in the electrolyte, it will lead to an increase in the color of the electrolyte and affect the quality of the electrolyte.
  • the present invention provides a non-aqueous electrolyte of a lithium-ion battery and a lithium-ion battery.
  • the present invention provides a non-aqueous electrolyte for a lithium ion battery, including a solvent, a lithium salt, and an unsaturated phosphite compound represented by structural formula 1:
  • R 1 is an alkenyl group having 2 to 5 carbon atoms or an alkynyl group having 2 to 5 carbon atoms
  • R 2 is a fluoroalkyl group or cyano group having 1 to 4 carbon atoms
  • R 3 is Alkyl groups with 1-4 carbon atoms, aryl groups with 6-10 carbon atoms, alkenyl groups with 2-5 carbon atoms, alkynyl groups with 2-5 carbon atoms, and 1-carbon atoms 5 Fluoroalkyl or cyano.
  • the non-aqueous electrolyte of the lithium ion battery provided by the present invention does not cause the increase in the color of the electrolyte after the unsaturated phosphite compound shown in Structural Formula 1 is added; at the same time, the inventor also unexpectedly found that Some unsaturated phosphite compounds, the unsaturated phosphite compounds disclosed in this application can better improve the high-temperature storage performance and high-temperature cycle performance of the battery.
  • R 2 is a group having a strong electron withdrawing induction effect such as a fluoroalkyl group or a cyano group, which can stabilize the unsaturated phosphite compounds Molecular structure, improve the stability of unsaturated phosphite compounds in the electrolyte, avoid the failure of unsaturated phosphite compounds in the process of long-term storage, on the one hand, it can effectively avoid the increase of the color of the electrolyte, and On the one hand, it can play a more effective role, thereby further improving battery performance.
  • a strong electron withdrawing induction effect such as a fluoroalkyl group or a cyano group
  • the unsaturated phosphite compound represented by the structural formula one is selected from one or more of the following compounds:
  • the mass percentage content of the unsaturated phosphite compound shown in Structural Formula 1 is 0.1%-5%.
  • the solvent is a mixture of cyclic carbonate and chain carbonate.
  • the cyclic carbonate includes one or more of ethylene carbonate, propylene carbonate or butylene carbonate
  • the chain carbonate includes dimethyl carbonate, diethyl carbonate, methyl carbonate One or more of ethyl acetate or methylpropyl carbonate.
  • the lithium salt includes LiPF 6 , LiBF 4 , LiBOB, LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) One or more of 3 and LiN(SO 2 F) 2 .
  • the non-aqueous electrolyte of the lithium ion battery further includes one or more of unsaturated cyclic carbonate and fluorinated cyclic carbonate.
  • the content of the unsaturated cyclic carbonate is 0.01-10% based on the weight of the non-aqueous electrolyte as 100%; the content of the fluorinated cyclic carbonate is 0.01-10% .
  • the unsaturated cyclic carbonate includes one or more of vinylene carbonate, ethylene ethylene carbonate, and methylene ethylene carbonate;
  • the fluorinated cyclic carbonate includes one or more of fluoroethylene carbonate, trifluoromethyl ethylene carbonate, and difluoroethylene carbonate.
  • the present invention provides a lithium ion battery, which is characterized by including a positive electrode, a negative electrode, and the non-aqueous electrolyte as described above.
  • the positive electrode includes a positive electrode active material selected from at least one of LiNi x Co y L (1-xy) O 2 , wherein 0.5 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.5, L At least one of Mn, Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, or Fe.
  • the positive electrode active material is selected from one or more of lithium nickel cobalt manganate and lithium nickel cobalt manganate, and the lithium nickel cobalt manganate is selected from LiNi x Co y Mn 1-xy O 2 , wherein , 0.5 ⁇ x ⁇ 0.8, 0.1 ⁇ y ⁇ 0.3; the lithium nickel cobalt aluminate is selected from LiNi z Co n Al 1-zn O 2 , wherein 0.5 ⁇ z ⁇ 0.8, 0.1 ⁇ n ⁇ 0.3.
  • An embodiment of the present invention provides a non-aqueous electrolyte for a lithium ion battery, including a solvent, a lithium salt, and an unsaturated phosphite compound represented by structural formula 1:
  • R 1 is an alkenyl group having 2 to 5 carbon atoms or an alkynyl group having 2 to 5 carbon atoms
  • R 2 is a fluoroalkyl group or cyano group having 1 to 4 carbon atoms
  • R 3 is Alkyl groups with 1-4 carbon atoms, aryl groups with 6-10 carbon atoms, alkenyl groups with 2-5 carbon atoms, alkynyl groups with 2-5 carbon atoms, and 1-carbon atoms 5 Fluoroalkyl or cyano.
  • the non-aqueous electrolyte of the lithium ion battery provided by the present invention does not cause the increase in the color of the electrolyte after the unsaturated phosphite compound shown in Structural Formula 1 is added; at the same time, the inventor also unexpectedly found that Some unsaturated phosphite compounds, the unsaturated phosphite compounds disclosed in this application can better improve the high-temperature storage performance and high-temperature cycle performance of the battery.
  • R 2 is a group having a strong electron withdrawing induction effect such as a fluoroalkyl group or a cyano group, which can stabilize the unsaturated phosphite compounds Molecular structure, improve the stability of unsaturated phosphite compounds in the electrolyte, avoid the failure of unsaturated phosphite compounds in the process of long-term storage, on the one hand, it can effectively avoid the increase of the color of the electrolyte, and On the one hand, it can play a more effective role, thereby further improving battery performance.
  • a strong electron withdrawing induction effect such as a fluoroalkyl group or a cyano group
  • the unsaturated phosphite compound represented by structural formula one is selected from one or more of the following compounds:
  • the mass percentage content of the unsaturated phosphite compound shown in Structural Formula 1 is 0.1%-5%.
  • the mass percentage content of the unsaturated phosphite compound shown in the structural formula 1 may be 0.1%, 0.3%, 0.6%, 1% , 1.2%, 1.5%, 1.8%, 2.0%, 2.3%, 2.6%, 2.9%, 3.1%, 3.5%, 3.7%, 4.0%, 4.3%, 4.5%, 4.8% or 5%.
  • the solvent is a mixture of cyclic carbonate and chain carbonate.
  • the cyclic carbonate includes one or more of ethylene carbonate, propylene carbonate, or butylene carbonate.
  • the chain carbonate includes one or more of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, or methyl propyl carbonate.
  • the lithium salt includes LiPF 6 , LiBF 4 , LiBOB, LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) One or more of 3 and LiN(SO 2 F) 2 .
  • the non-aqueous electrolyte of the lithium ion battery further includes one or more of unsaturated cyclic carbonate and fluorinated cyclic carbonate.
  • the unsaturated cyclic carbonate includes one or more of vinylene carbonate, ethylene ethylene carbonate and methylene ethylene carbonate; preferably, the The weight of the aqueous electrolyte is 100%, the content of the unsaturated cyclic carbonate is 0.01-10%; the content of the fluorinated cyclic carbonate is 0.01-10%.
  • the fluorinated cyclic carbonate includes one or more of fluoroethylene carbonate, trifluoromethyl ethylene carbonate, and difluoroethylene carbonate.
  • the unsaturated cyclic carbonate and the fluorinated cyclic carbonate can promote the formation of a stable passivation film on the positive and negative electrodes.
  • the Chinese patent No. CN103107363A filed by the applicant discloses that the use of unsaturated phosphite compounds as electrolyte additives can improve the high-temperature storage performance and high-temperature cycle performance of the battery to a certain extent.
  • the nickel content in the positive electrode material is high, on the one hand, the radius of Li + and Ni 2+ are similar, it is easier to mix the cationic crystal sites, which leads to the destruction of the lattice structure of the material.
  • the high nickel material Ni 4+ during charging Has a higher catalytic activity. During long-term high-temperature storage or high-temperature cycling, the metal ion dissolution of the positive electrode will be more serious.
  • Another embodiment of the present invention provides a lithium ion battery, including a positive electrode, a negative electrode, and the non-aqueous electrolyte as described above.
  • the positive electrode includes a positive electrode active material selected from at least one of LiNi x Co y L (1-xy) O 2 , where 0.5 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.5, L is Mn, At least one of Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, or Fe.
  • the inventors of the present invention have found through a lot of experiments that the phosphorus atom in the unsaturated phosphite compound has a certain force with Ni in the high nickel cathode material, which reduces the catalytic activity of the charged cathode material, but the unsaturated phosphate activity It is relatively high and cannot be stably present in the electrolyte of high-nickel batteries, leading to failure.
  • an unsaturated phosphite compound represented by structural formula 1 is added to the non-aqueous electrolyte, and the fluoroalkyl group or cyano group contained in R 2 has a strong
  • the electron-withdrawing induction effect can reduce the electron density on the phosphorus atom and exist stably, while maintaining the interaction with Ni, reducing the catalytic activity of the surface of the high-nickel cathode material, thereby enhancing the high-nickel cathode material in the charge and discharge cycle.
  • the interface stability promotes the improvement effect of the battery high-temperature cycle and high-temperature storage performance.
  • the positive electrode active material is selected from one or more of lithium nickel cobalt manganate and lithium nickel cobalt manganate, and the lithium nickel cobalt manganate is selected from LiNi x Co y Mn 1-xy O 2 , Wherein 0.5 ⁇ x ⁇ 0.8, 0.1 ⁇ y ⁇ 0.3; the lithium nickel cobalt aluminate is selected from LiNi z Co n Al 1-zn O 2 , wherein 0.5 ⁇ z ⁇ 0.8, 0.1 ⁇ n ⁇ 0.3.
  • the positive electrode further includes a positive electrode current collector for drawing current, and the positive electrode active material covers the positive electrode current collector.
  • the negative electrode includes a negative electrode active material, and the negative electrode active material may be made of a carbon material, a metal alloy, a lithium-containing oxide, and a silicon-containing material.
  • the negative electrode further includes a negative electrode current collector for drawing current, and the negative electrode active material covers the negative electrode current collector.
  • a separator is further provided between the positive electrode and the negative electrode, and the separator is a conventional separator in the field of lithium-ion batteries, and thus will not be described in detail.
  • the lithium ion battery provided by the embodiment of the present invention can effectively solve the stability problem of the unsaturated phosphite compound due to the above-mentioned non-aqueous electrolyte, and improve the electrochemical performance of the lithium ion battery.
  • This embodiment is used to illustrate the non-aqueous electrolyte of the lithium ion battery disclosed in the present invention and the preparation method thereof, including the following steps:
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • Examples 2 to 8 are used to illustrate the lithium-ion battery non-aqueous electrolyte disclosed in the present invention and its preparation method, including most of the operation steps in Example 1, the difference is that:
  • the non-aqueous electrolyte is added with the components with a mass percentage shown in Example 2 to Example 8 in Table 1.
  • Comparative examples 1 to 3 are used for comparative description of the lithium-ion battery non-aqueous electrolyte disclosed in the present invention and its preparation method, including most of the operation steps in Example 1, except that:
  • the non-aqueous electrolyte is added with the components in the mass percentages shown in Comparative Examples 1 to 3 in Table 1.
  • the non-aqueous electrolytes prepared in the above Examples 1 to 8 and Comparative Examples 1 to 3 were stored at normal temperature and high temperature, and the changes in the color and additive content of the electrolyte after different storage days were measured.
  • the detection method of the electrolyte chromaticity is: the color of the sample is visually compared with the color of the standard platinum-cobalt colorimetric solution, and the results are expressed in Hazen (platinum-cobalt) color units.
  • the Hazen (platinum-cobalt) color unit is: the color of a solution containing 1 mg platinum (or 2.10 mg chloroplatinic acid) per liter of solution is 1 Hazen.
  • the electrolyte additive content was tested using GC.
  • Embodiments 9 to 16 are used to illustrate the lithium ion battery disclosed in the present invention and the preparation method thereof, including the following steps:
  • the positive electrode active material LiNi 0.8 Co 0.15 Al 0.05 O 2 , conductive carbon black Super-P and binder polyvinylidene fluoride (PVDF) are mixed according to the mass ratio of 93:4:3. Dispersed in N-methyl-2-pyrrolidone (NMP) to obtain a positive electrode slurry. The slurry is evenly coated on both sides of the aluminum foil, after drying, calendering and vacuum drying, and the aluminum lead wire is welded with an ultrasonic welding machine to obtain a positive electrode plate with a thickness of 120-150 ⁇ m.
  • NMP N-methyl-2-pyrrolidone
  • a polyethylene microporous membrane with a thickness of 20 ⁇ m is placed between the positive electrode plate and the negative electrode plate as a separator, and then the sandwich structure composed of the positive electrode plate, the negative electrode plate and the separator is wound, and then the wound body is flattened and placed in aluminum foil packaging
  • the bag was vacuum-baked at 75°C for 48 hours to obtain the battery cell to be injected.
  • the electrolytes prepared in Examples 1 to 8 were injected into the battery cells respectively, vacuum-sealed, and left still for 24 hours.
  • Embodiment 17 is used to illustrate the lithium ion battery disclosed in the present invention and the preparation method thereof, including most of the operation steps in Embodiment 9, except that the positive electrode active material uses lithium nickel cobalt manganese oxide LiNi 0.6 Co 0.2 Mn 0.2 O 2 .
  • Embodiment 18 is used to illustrate the lithium ion battery disclosed in the present invention and the preparation method thereof, including most of the operation steps in Embodiment 9, except that the positive electrode active material uses lithium nickel cobalt manganese oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 .
  • the positive electrode active material uses lithium nickel cobalt manganese oxide LiNi 0.33 Co 0.33 Mn 0.33 O 2 .
  • Comparative examples 4 to 6 are used for comparative description of the lithium ion battery disclosed in the present invention and its preparation method, including the following steps:
  • the positive electrode active material LiNi 0.8 Co 0.15 Al 0.05 O 2 , conductive carbon black Super-P and binder polyvinylidene fluoride (PVDF) are mixed according to the mass ratio of 93:4:3. Dispersed in N-methyl-2-pyrrolidone (NMP) to obtain a positive electrode slurry. The slurry is evenly coated on both sides of the aluminum foil, after drying, calendering and vacuum drying, and the aluminum lead wire is welded with an ultrasonic welding machine to obtain a positive electrode plate with a thickness of 120-150 ⁇ m.
  • NMP N-methyl-2-pyrrolidone
  • a polyethylene microporous membrane with a thickness of 20 ⁇ m is placed between the positive electrode plate and the negative electrode plate as a separator, and then the sandwich structure composed of the positive electrode plate, the negative electrode plate and the separator is wound, and then the wound body is flattened and placed in aluminum foil packaging
  • the bag was vacuum-baked at 75°C for 48 hours to obtain the battery cell to be injected.
  • the electrolytes prepared in Comparative Examples 1 to 3 are respectively injected into the battery cells, vacuum-sealed, and still for 24 hours.
  • the positive electrode active material uses lithium nickel cobalt manganese oxide LiNi 0.33 Co 0.33 Mn 0.33 O 2 .
  • the positive electrode active material uses lithium nickel cobalt manganese oxide LiNi 0.33 Co 0.33 Mn 0.33 O 2 .
  • the positive electrode active material uses lithium nickel cobalt manganese oxide LiNi 0.33 Co 0.33 Mn 0.33 O 2 .
  • the positive electrode active material uses lithium nickel cobalt manganese oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 .
  • the positive electrode active material uses lithium nickel cobalt manganese oxide LiNi 0.6 Co 0.2 Mn 0.2 O 2 .
  • Capacity retention rate discharge capacity of the last lap / discharge capacity of the first lap ⁇ 100%
  • Battery capacity retention rate (%) retention capacity / initial capacity ⁇ 100%;
  • Battery capacity recovery rate (%) recovery capacity/initial capacity ⁇ 100%
  • Thickness expansion ratio (%) (battery thickness after storage-initial battery thickness)/initial battery thickness x 100%.
  • the unsaturated phosphite compounds shown in Structural Formula 1 provided by the present invention can better improve the cycling of lithium ion batteries at high temperature Performance and high temperature storage performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂离子电池非水电解液以及包括上述非水电解液的锂离子电池,电解液包括溶剂、锂盐以及结构式一所示的不饱和亚磷酸酯类化合物:(I)其中,R 1为含有碳原子数为2-5的烯基或碳原子数为2-5的炔基,R2为碳原子数为1-4的氟代烷基或氰基,R 3为碳原子数为1-4的烷基、碳原子数为6-10的芳基、碳原子数为2-5的烯基、碳原子数为2-5的炔基、碳原子数为1-5的氟代烷基或氰基。针对不饱和亚磷酸酯添加剂用于锂离子电池电解液后,会导致电解液色度增加的问题,上述锂离子电池非水电解液存储过程中不会出现变色。

Description

一种锂离子电池非水电解液及锂离子电池 技术领域
本发明属于锂离子电池技术领域,具体涉及一种锂离子电池非水电解液及锂离子电池。
背景技术
随着人们生活水平的提高,对锂离子电池的能量密度、工作环境提出了更高的要求。开发高能量密度动力电池是解决上述问题的关键。LiNiMnO 4,LiNi 0.5Mn 1.5O 4以及其他一些富镍的三元材料能够在较高的电压下发生锂离子的脱嵌反应,因此为提高锂离子电池的能量密度带来了新的希望。虽然采用这些正负极材料的非水电解液电池已经实用化,但在耐久性使用上还无法让人满意。
改善电解液组成成分,可以优化材料在充电过程中与电解液接触的界面环境。本申请人提交的CN103107363A号中国专利公开了采用不饱和亚磷酸酯类化合物作为电解液添加剂,可以在一定程度上提高电池的高温存储性能和高温循环性能,但上述不饱和亚磷酸酯添加剂用于电解液中后,会导致电解液色度增加,影响电解液品质。
发明内容
针对现有技术中的不饱和亚磷酸酯添加剂用于锂离子电池电解液后,会导致电解液色度增加的问题,本发明提供了一种锂离子电池非水电解液及锂离子电池。
本发明解决上述技术问题所采用的技术方案如下:
一方面,本发明提供了一种锂离子电池非水电解液,包括溶剂、锂盐以及结构式一所示的不饱和亚磷酸酯类化合物:
Figure PCTCN2019128996-appb-000001
其中,R 1为含有碳原子数为2-5的烯基或碳原子数为2-5的炔基,R 2为碳原子数为1-4的氟代烷基或氰基,R 3为碳原子数为1-4的烷基、碳原子数为6-10的芳基、碳原子数为2-5的烯基、碳原子数为2-5的炔基、碳原子数为1-5的氟代烷基或氰基。
本发明提供的锂离子电池非水电解液中加入了结构式一所示的不饱和亚磷酸酯类化合物后,不会导致电解液色度增加;同时,发明人还意外的发现,相比于现有的不饱和亚磷酸酯类化合物,本申请公开的不饱和亚磷酸酯类化合物能够更好的提高电池的高温存储性能和高温循环性能。本申请提供的结构式一所示的不饱和亚磷酸酯类化合物中,R 2为氟代烷基或氰基等具有较强的吸电子诱导效应的基团,可以稳定不饱和亚磷酸酯类化合物的分子结构,提高不饱和亚磷酸酯类化合物在电解液中的稳定性,避免在长期保存的过程中不饱和亚磷酸酯类化合物的失效,一方面可有效避免电解液色度的增加,另一方面可更有效的发挥作用,从而进一步提高电池性能。
可选的,所述结构式一所示的不饱和亚磷酸酯类化合物选自如下化合物中的一种或多种:
Figure PCTCN2019128996-appb-000002
可选的,以所述非水电解液的重质量为100%计,所述结构式一所示的不饱和亚磷酸酯类化合物的质量百分含量为0.1%-5%。
可选的,所述溶剂为环状碳酸酯和链状碳酸酯的混合物。
可选的,所述环状碳酸酯包括碳酸乙烯酯、碳酸丙烯酯或碳酸丁烯酯中的一种或多种,所述链状碳酸酯包括碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯或碳酸甲丙酯中的一种或多种。
可选的,所述锂盐包括LiPF 6、LiBF 4、LiBOB、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3和LiN(SO 2F) 2中的一种或多种。
可选的,所述锂离子电池非水电解液还包括不饱和环状碳酸酯和氟代环状碳酸酯中的一种或多种。优选情况下,以所述非水电解液的重质量为100%计,所述不饱和环状碳酸酯的含量为0.01-10%;所述氟代环状碳酸酯的含量为0.01-10%。
可选的,所述不饱和环状碳酸酯包括碳酸亚乙烯酯、碳酸乙烯亚乙酯和亚甲基碳酸乙烯酯中的一种或多种;
所述氟代环状碳酸酯包括氟代碳酸乙烯酯、三氟甲基碳酸乙烯酯和双氟代碳酸乙烯酯中的一种或多种。
另一方面,本发明提供了一种锂离子电池,其特征在于,包括正极、负极以及如上所述的非水电解液。
优选的,所述正极包括正极活性材料,所述正极活性材料选自LiNi xCo yL (1-x-y)O 2中的至少一种,其中0.5≤x≤1,0≤y<0.5,L为Mn、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种。
可选的,所述正极活性材料选自镍钴锰酸锂和镍钴铝酸锂中一种或多种,所述镍钴锰酸锂选自LiNi xCo yMn 1-x-yO 2,其中,0.5≤x≤0.8,0.1≤y≤0.3;所述镍钴铝酸锂选自LiNi zCo nAl 1-z-nO 2,其中,0.5≤z≤0.8,0.1≤n≤0.3。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明一实施例提供了一种锂离子电池非水电解液,包括溶剂、锂盐以及结构式一所示的不饱和亚磷酸酯类化合物:
Figure PCTCN2019128996-appb-000003
其中,R 1为含有碳原子数为2-5的烯基或碳原子数为2-5的炔基,R 2为碳原子数为1-4的氟代烷基或氰基,R 3为碳原子数为1-4的烷基、碳原子数为6-10的芳基、碳原子数为2-5的烯基、碳原子数为2-5的炔基、碳原子数为1-5的氟代烷基或氰基。
本发明提供的锂离子电池非水电解液中加入了结构式一所示的不饱和亚磷酸酯类化合物后,不会导致电解液色度增加;同时,发明人还意外的发现,相比于现有的不饱和亚磷酸酯类化合物,本申请公开的不饱和亚磷酸酯类化合物能够更好的提高电池的高温存储性能和高温循环性能。本申请提供的结构式一所示的不饱和亚磷酸酯类化合物中,R 2为氟代烷基或氰基等具有较强的吸电子诱导效应的基团,可以稳定不饱和亚磷酸酯类化合物的分子结构,提高不饱和亚磷酸酯类化合物在电解液中的稳定性,避免在长期保存的过程中不饱和亚磷酸酯类化合物的失效,一方面可有效避免电解液色度的增加,另一方面可更有效的发挥作用,从而进一步提高电池性能。
在一些实施例中,所述结构式一所示的不饱和亚磷酸酯类化合物选自如下化合物中的一种或多种:
Figure PCTCN2019128996-appb-000004
Figure PCTCN2019128996-appb-000005
需要说明的是,上述化合物1-8仅是本发明所要保护的部分化合物,但不限于此,不应理解为对本发明的限制。
在一些实施例中,以所述非水电解液的重质量为100%计,所述结构式一所示的不饱和亚磷酸酯类化合物的质量百分含量为0.1%-5%。具体的,以所述非水电解液的重质量为100%计,所述结构式一所示的不饱和亚磷酸酯类化合物的质量百分含量可以为0.1%、0.3%、0.6%、1%、1.2%、1.5%、1.8%、2.0%、2.3%、2.6%、2.9%、3.1%、3.5%、3.7%、4.0%、4.3%、4.5%、4.8%或5%。
在一些实施例中,所述溶剂为环状碳酸酯和链状碳酸酯的混合物。
在更优选的实施例中,所述环状碳酸酯包括碳酸乙烯酯、碳酸丙烯酯或碳酸丁烯酯中的一种或多种。
所述链状碳酸酯包括碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯或碳酸甲丙酯中的一种或多种。
在一些实施例中,所述锂盐包括LiPF 6、LiBF 4、LiBOB、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3和LiN(SO 2F) 2中的一种或多种。
在一些实施例中,所述锂离子电池非水电解液还包括不饱和环状碳酸酯和氟代环状碳酸酯中的一种或多种。
在更优选的实施例中,所述不饱和环状碳酸酯包括碳酸亚乙烯酯、碳酸乙烯亚乙酯和亚甲基碳酸乙烯酯中的一种或多种;优选情况下,以所述非水电解液的重质量为100%计,所述不饱和环状碳酸酯的含量为0.01-10%;所述氟代环状碳酸酯的含量为0.01-10%。
所述氟代环状碳酸酯包括氟代碳酸乙烯酯、三氟甲基碳酸乙烯酯和双氟代碳酸乙烯酯中的一种或多种。
所述不饱和环状碳酸酯和所述氟代环状碳酸酯能够促进正负极上稳定钝化膜的形成。
本申请人提交的CN103107363A号中国专利公开了采用不饱和亚磷酸酯类化合物作为电解液添加剂,可以在一定程度上提高电池的高温存储性能和高温循环性能。但是当正极材料中镍含量较高时,一方面,Li +与Ni 2+半径相似更易发生阳离子晶位混合,导致材料晶格结构破坏,另一方面,高镍材料在充电过程中Ni 4+具有更高的催化活性。在长时间高温储存或高温循环过程中,正极金属离子的溶出会更加严重,当上述含不饱和亚磷酸酯类化合物的电解液用于高 镍锂离子电池中时,由于高镍材料所带来的特殊性质,使含有不饱和亚磷酸酯类化合物的锂离子电池的高温储存或高温循环的改善效果不够理想。
,本发明的另一实施例提供了一种锂离子电池,包括正极、负极以及如上所述的非水电解液。
所述正极包括正极活性材料,所述正极活性材料选自LiNi xCo yL (1-x-y)O 2中的至少一种,其中0.5≤x≤1,0≤y<0.5,L为Mn、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种。
本发明的发明人通过大量实验发现,不饱和亚磷酸酯化合物中的磷原子与高镍正极材料中的Ni有一定的作用力,降低了充电态正极材料的催化活性,但不饱和磷酸酯活性较高,在高镍电池的电解液中不能稳定存在而导致失效。而本发明提供的高镍锂离子电池中,在非水电解液中添加了结构式一所示的不饱和亚磷酸酯类化合物,其中R 2含有的氟代烷基或氰基等具有较强的吸电子诱导效应,可以降低磷原子上电子密度而稳定存在,同时还能保持与Ni之间的作用力,降低高镍正极材料表面的催化活性,从而提升高镍正极材料在充放电循环中的界面稳定性,促进对电池高温循环和高温存储性能的改善效果。
在一些实施例中,所述正极活性材料选自镍钴锰酸锂和镍钴铝酸锂中一种或多种,所述镍钴锰酸锂选自LiNi xCo yMn 1-x-yO 2,其中,0.5≤x≤0.8,0.1≤y≤0.3;所述镍钴铝酸锂选自LiNi zCo nAl 1-z-nO 2,其中,0.5≤z≤0.8,0.1≤n≤0.3。
所述正极还包括有用于引出电流的正极集流体,所述正极活性材料覆盖于所述正极集流体上。
所述负极包括负极活性材料,所述负极活性材料可由碳材料、金属合金、含锂氧化物及含硅材料制得。
所述负极还包括有用于引出电流的负极集流体,所述负极活性材料覆盖于所述负极集流体上。
在一些实施例中,所述正极和所述负极之间还设置有隔膜,所述隔膜为锂离子电池领域的常规隔膜,因此不再赘述。
本发明实施例提供的锂离子电池,由于含有上述非水电解液,能够有效解决不饱和亚磷酸酯类化合物存在的稳定性问题,提高锂离子电池的电化学性能。
以下通过实施例对本发明进行进一步的说明。
实施例1
本实施例用于说明本发明公开的锂离子电池非水电解液及其制备方法,包括以下步骤:
将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为EC:DEC:EMC=1:1:1进行混合,然后加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,以所述非水电解液的总重量为100%计,加入按表1中实施例1所示质量百分含量的组分,得到非水电解液。
实施例2~8
实施例2~8用于说明本发明公开的锂离子电池非水电解液及其制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
所述非水电解液的制备步骤中:
以所述非水电解液的总质量为100%计,所述非水电解液加入表1中实施例2~实施例8所示质量百分含量的组分。
对比例1~3
对比例1~3用于对比说明本发明公开的锂离子电池非水电解液及其制备方法,包括实施例1中大部分的操作步骤,其不同之处在于:
所述非水电解液的制备步骤中:
以所述非水电解液的总质量为100%计,所述非水电解液加入表1中对比例1~对比例3所示质量百分含量的组分。
表1中化合物9和化合物10的具体结构如下:
Figure PCTCN2019128996-appb-000006
性能测试
对上述实施例1~8和对比例1~3制备得到的非水电解液在常温下和高温下的进行保存,并检测保存不同天数后电解液的色度和添加剂含量变化。
电解液色度的检测方法为:试样的颜色与标准铂-钴比色液的颜色目测比较,并以Hazen(铂-钴)颜色单位表示结果。Hazen(铂-钴)颜色单位即:每升溶 液含1mg铂(或2.10mg氯铂酸)的溶液颜色为1Hazen。
电解液添加剂含量使用GC测试。
得到的测试结果填入表1、表2和表3。
表1
Figure PCTCN2019128996-appb-000007
表2
Figure PCTCN2019128996-appb-000008
表3
Figure PCTCN2019128996-appb-000009
Figure PCTCN2019128996-appb-000010
从表1和表2的测试结果可以看出,相比于添加了化合物9和化合物10的非水电解液,添加本发明提供的结构式一所示的不饱和亚磷酸酯类化合物的非水电解液在高温和常温的储存过程中色度基本无变化,也更趋向于未加入不饱和亚磷酸酯类化合物的非水电解液的变化规律。
从表3的测试结果可以看出,含有化合物9、化合物10的电解液,在45℃保存过程中,化合物9、化合物10的含量逐渐降低,说明化合物9和化合物10在电解液中不稳定,而含有化合物1,、化合物2的电解液,在45℃保存过程中,添加剂可以稳定存在,含量基本保持不变。
实施例9~16
实施例9~16用于说明本发明公开的锂离子电池及其制备方法,包括以下步骤:
1)正极板的制备
按93:4:3的质量比混合正极活性材料锂镍钴铝氧化物LiNi 0.8Co 0.15Al 0.05O 2,导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将它们分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,极板的厚度在120-150μm之间。
2)负极板的制备:
按94:1:2.5:2.5的质量比混合负极活性材料人造石墨,导电碳黑Super-P,粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,极板的厚度在120-150μm之间。
3)电芯的制备:
在正极板和负极板之间放置厚度为20μm的聚乙烯微孔膜作为隔膜,然后将 正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入铝箔包装袋,在75℃下真空烘烤48h,得到待注液的电芯。
4)电芯的注液和化成:
在露点控制在-40℃以下的手套箱中,将实施例1~8制备的电解液分别注入电芯中,经真空封装,静止24h。
然后按以下步骤进行首次充电的常规化成:0.05C恒流充电180min,0.2C恒流充电至3.95V,二次真空封口,然后进一步以0.2C的电流恒流充电至4.2V,常温搁置24hr后,以0.2C的电流恒流放电至3.0V,得到LiNi 0.8Co 0.15Al 0.05O 2/人造石墨锂离子电池。
实施例17
实施例17用于说明本发明公开的锂离子电池及其制备方法,包括实施例9中大部分的操作步骤,其不同之处在于:正极活性材料使用锂镍钴锰氧化物LiNi 0.6Co 0.2Mn 0.2O 2
实施例18
实施例18用于说明本发明公开的锂离子电池及其制备方法,包括实施例9中大部分的操作步骤,其不同之处在于:正极活性材料使用锂镍钴锰氧化物LiNi 0.5Co 0.2Mn 0.3O 2
实施例19
用于对比说明本发明公开的锂离子电池及其制备方法,包括实施例9中大部分的操作步骤,其不同之处在于:正极活性材料使用锂镍钴锰氧化物LiNi 0.33Co 0.33Mn 0.33O 2
对比例4~6
对比例4~6用于对比说明本发明公开的锂离子电池及其制备方法,包括以下步骤:
1)正极板的制备
按93:4:3的质量比混合正极活性材料锂镍钴铝氧化物LiNi 0.8Co 0.15Al 0.05O 2,导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将它们分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将浆料均匀涂布在铝箔的两面上,经过 烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,极板的厚度在120-150μm之间。
2)负极板的制备:
按94:1:2.5:2.5的质量比混合负极活性材料人造石墨,导电碳黑Super-P,粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,极板的厚度在120-150μm之间。
3)电芯的制备:
在正极板和负极板之间放置厚度为20μm的聚乙烯微孔膜作为隔膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入铝箔包装袋,在75℃下真空烘烤48h,得到待注液的电芯。
4)电芯的注液和化成:
在露点控制在-40℃以下的手套箱中,将对比例1~3制备的电解液分别注入电芯中,经真空封装,静止24h。
然后按以下步骤进行首次充电的常规化成:0.05C恒流充电180min,0.2C恒流充电至3.95V,二次真空封口,然后进一步以0.2C的电流恒流充电至4.2V,常温搁置24hr后,以0.2C的电流恒流放电至3.0V,得到LiNi 0.8Co 0.15Al 0.05O 2/人造石墨锂离子电池。
对比例7
用于对比说明本发明公开的锂离子电池及其制备方法,包括对比例4中大部分的操作步骤,其不同之处在于:正极活性材料使用锂镍钴锰氧化物LiNi 0.33Co 0.33Mn 0.33O 2
对比例8
用于对比说明本发明公开的锂离子电池及其制备方法,包括对比例5中大部分的操作步骤,其不同之处在于:正极活性材料使用锂镍钴锰氧化物LiNi 0.33Co 0.33Mn 0.33O 2
对比例9
用于对比说明本发明公开的锂离子电池及其制备方法,包括对比例6中大 部分的操作步骤,其不同之处在于:正极活性材料使用锂镍钴锰氧化物LiNi 0.33Co 0.33Mn 0.33O 2
对比例10
用于对比说明本发明公开的锂离子电池及其制备方法,包括对比例4中大部分的操作步骤,其不同之处在于:正极活性材料使用锂镍钴锰氧化物LiNi 0.5Co 0.2Mn 0.3O 2
对比例11
用于对比说明本发明公开的锂离子电池及其制备方法,包括对比例4中大部分的操作步骤,其不同之处在于:正极活性材料使用锂镍钴锰氧化物LiNi 0.6Co 0.2Mn 0.2O 2
性能测试
对上述实施例9~19和对比例4~11制备得到的锂离子电池进行如下测试:
1)高温循环性能测试
将电池置于恒温45℃的烘箱中,以1C的电流恒流充电至4.2V然后恒压充电至电流下降至0.02C,然后以1C的电流恒流放电至3.0V,如此循环,记录第1圈的放电容量和最后一圈的放电容量,按下式计算高温循环的容量保持率:
容量保持率=最后一圈的放电容量/第1圈的放电容量×100%
2)高温储存性能测试
将化成后的电池在常温下用1C恒流恒压充至4.2V,测量电池初始放电容量及初始电池厚度,然后再60℃储存30天后,以1C放电至3V,测量电池的保持容量和恢复容量及储存后电池厚度。计算公式如下:
电池容量保持率(%)=保持容量/初始容量×100%;
电池容量恢复率(%)=恢复容量/初始容量×100%;
厚度膨胀率(%)=(储存后电池厚度-初始电池厚度)/初始电池厚度×100%。
得到的测试结果填入表4和表5。
表4
Figure PCTCN2019128996-appb-000011
Figure PCTCN2019128996-appb-000012
表5
Figure PCTCN2019128996-appb-000013
从表4的测试结果可以看出,与常规的不饱和亚磷酸酯类化合物相比,本发明提供的结构式一所示的不饱和亚磷酸酯类化合物可更好的提高锂离子电池在高温循环性能和高温存储性能。
从表5的测试结果可以看出,在LiNi 0.33Co 0.33Mn 0.33O 2体系,对比例7与实施例19之间的差别较小,在LiNi 0.5Co 0.2Mn 0.3O 2体系,对比例10和实施例18之间的差别较大,在LiNi 0.8Co 0.15Al 0.05O 2体系,对比例6与实施例9之间的差别最大,即Ni含量越高,化合物1比化合物9的高温循环性能和高温存储性能方面有更明显的优势。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发 明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种锂离子电池非水电解液,其特征在于,包括溶剂、锂盐以及结构式一所示的不饱和亚磷酸酯类化合物:
    Figure PCTCN2019128996-appb-100001
    其中,R 1为含有碳原子数为2-5的烯基或碳原子数为2-5的炔基,R 2为碳原子数为1-4的氟代烷基或氰基,R 3为碳原子数为1-4的烷基、碳原子数为6-10的芳基、碳原子数为2-5的烯基、碳原子数为2-5的炔基、碳原子数为1-5的氟代烷基或氰基。
  2. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述结构式一所示的不饱和亚磷酸酯类化合物选自如下化合物中的一种或多种:
    Figure PCTCN2019128996-appb-100002
  3. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,以所述非 水电解液的重质量为100%计,所述结构式一所示的不饱和亚磷酸酯类化合物的质量百分含量为0.1%-5%。
  4. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述溶剂为环状碳酸酯和链状碳酸酯的混合物。
  5. 根据权利要求4所述的锂离子电池非水电解液,其特征在于,所述环状碳酸酯包括碳酸乙烯酯、碳酸丙烯酯或碳酸丁烯酯中的一种或多种,所述链状碳酸酯包括碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯或碳酸甲丙酯中的一种或多种。
  6. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述锂盐包括LiPF 6、LiBF 4、LiBOB、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3和LiN(SO 2F) 2中的一种或多种。
  7. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述锂离子电池非水电解液还包括不饱和环状碳酸酯和氟代环状碳酸酯中的一种或多种;以所述非水电解液的重质量为100%计,所述不饱和环状碳酸酯的含量为0.01-10%;所述氟代环状碳酸酯的含量为0.01-10%。
  8. 根据权利要求7所述的锂离子电池非水电解液,其特征在于,所述不饱和环状碳酸酯包括碳酸亚乙烯酯、碳酸乙烯亚乙酯和亚甲基碳酸乙烯酯中的一种或多种;
    所述氟代环状碳酸酯包括氟代碳酸乙烯酯、三氟甲基碳酸乙烯酯和双氟代碳酸乙烯酯中的一种或多种。
  9. 一种锂离子电池,其特征在于,包括正极、负极以及如权利要求1~8任意一项所述的非水电解液。
  10. 根据权利要求9所述的锂离子电池非水电解液,其特征在于,所述正极包括正极活性材料,所述正极活性材料选自LiNi xCo yL (1-x-y)O 2中的至少一种,其中0.5≤x≤1,0≤y<0.5,L为Mn、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe 中的至少一种。
  11. 根据权利要求10所述的锂离子电池非水电解液,其特征在于,所述正极活性材料选自镍钴锰酸锂和镍钴铝酸锂中一种或多种,所述镍钴锰酸锂选自LiNi xCo yMn 1-x-yO 2,其中,0.5≤x≤0.8,0.1≤y≤0.3;所述镍钴铝酸锂选自LiNi zCo nAl 1-z-nO 2,其中,0.5≤z≤0.8,0.1≤n≤0.3。
PCT/CN2019/128996 2018-12-29 2019-12-27 一种锂离子电池非水电解液及锂离子电池 WO2020135668A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811643006.5A CN111384391B (zh) 2018-12-29 2018-12-29 一种高镍锂离子电池
CN201811643032.8A CN111384438B (zh) 2018-12-29 2018-12-29 一种锂离子电池非水电解液及锂离子电池
CN201811643032.8 2018-12-29
CN201811643006.5 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020135668A1 true WO2020135668A1 (zh) 2020-07-02

Family

ID=71127693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128996 WO2020135668A1 (zh) 2018-12-29 2019-12-27 一种锂离子电池非水电解液及锂离子电池

Country Status (1)

Country Link
WO (1) WO2020135668A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024124922A1 (zh) * 2022-12-13 2024-06-20 山东海科创新研究院有限公司 氰基亚磷酸酯的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108454A (ja) * 2009-11-16 2011-06-02 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
CN103107363A (zh) * 2013-01-31 2013-05-15 深圳新宙邦科技股份有限公司 一种锂离子电池用非水电解液及其相应的锂离子电池
CN106558731A (zh) * 2015-09-28 2017-04-05 比亚迪股份有限公司 一种锂离子电池电解液和锂离子电池
CN107171022A (zh) * 2017-06-14 2017-09-15 厦门首能科技有限公司 一种锂离子电解液及其锂离子电池
CN108365265A (zh) * 2018-05-15 2018-08-03 中山弘毅新材料有限公司 一种锂离子电池非水电解液及锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108454A (ja) * 2009-11-16 2011-06-02 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
CN103107363A (zh) * 2013-01-31 2013-05-15 深圳新宙邦科技股份有限公司 一种锂离子电池用非水电解液及其相应的锂离子电池
CN106558731A (zh) * 2015-09-28 2017-04-05 比亚迪股份有限公司 一种锂离子电池电解液和锂离子电池
CN107171022A (zh) * 2017-06-14 2017-09-15 厦门首能科技有限公司 一种锂离子电解液及其锂离子电池
CN108365265A (zh) * 2018-05-15 2018-08-03 中山弘毅新材料有限公司 一种锂离子电池非水电解液及锂离子电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024124922A1 (zh) * 2022-12-13 2024-06-20 山东海科创新研究院有限公司 氰基亚磷酸酯的制备方法

Similar Documents

Publication Publication Date Title
CN106505249B (zh) 一种锂离子电池电解液及含该电解液的锂离子电池
WO2019165796A1 (zh) 电池及电池放电后负极极片中剩余活性锂容量的测试方法
US12107228B2 (en) Non-aqueous electrolyte for a lithium ion battery and lithium ion battery
CN108808071B (zh) 一种高镍三元正极材料体系电池用电解液及锂离子电池
JP2021536112A (ja) リチウムイオン二次電池
WO2020052118A1 (zh) 一种锂离子电池电解液及含有该电解液的锂离子电池
WO2016110123A1 (zh) 一种非水电解液及锂离子二次电池
WO2017020431A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2022143188A1 (zh) 一种锂离子电池
CN112635835B (zh) 高低温兼顾的非水电解液及锂离子电池
WO2024055794A1 (zh) 一种锂离子电池
WO2017020430A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2020043151A1 (zh) 正极极片、其制备方法及锂离子二次电池
WO2022111346A1 (zh) 锂离子电池
US11489199B2 (en) Non-aqueous electrolyte for lithium ion battery and lithium ion battery
CN113130992A (zh) 一种非水电解液及锂离子电池
WO2020135667A1 (zh) 一种非水电解液及锂离子电池
CN111384438B (zh) 一种锂离子电池非水电解液及锂离子电池
US11961966B2 (en) Non-aqueous electrolyte and lithium ion battery
CN106450427B (zh) 一种含有草酸磷酸锂的电解液及使用该电解液的锂离子电池
CN114695867A (zh) 一种锂离子电池
CN116845382A (zh) 一种高稳定性的钠离子电池
WO2020135668A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2022042372A1 (zh) 锂离子电池
CN115377497A (zh) 一种无钴锂离子电池电解液和含有其的无钴锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905832

Country of ref document: EP

Kind code of ref document: A1