WO2023122956A1 - 一种电解液、包含该电解液的电化学装置和电子装置 - Google Patents

一种电解液、包含该电解液的电化学装置和电子装置 Download PDF

Info

Publication number
WO2023122956A1
WO2023122956A1 PCT/CN2021/142076 CN2021142076W WO2023122956A1 WO 2023122956 A1 WO2023122956 A1 WO 2023122956A1 CN 2021142076 W CN2021142076 W CN 2021142076W WO 2023122956 A1 WO2023122956 A1 WO 2023122956A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
formula
unsubstituted
compound
carbonate
Prior art date
Application number
PCT/CN2021/142076
Other languages
English (en)
French (fr)
Inventor
彭谢学
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202180026202.1A priority Critical patent/CN115443569A/zh
Priority to PCT/CN2021/142076 priority patent/WO2023122956A1/zh
Publication of WO2023122956A1 publication Critical patent/WO2023122956A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of electrochemistry, in particular to an electrolytic solution, an electrochemical device and an electronic device containing the electrolytic solution.
  • secondary batteries such as lithium-ion batteries
  • lithium-ion batteries are widely used in mobile phones, notebook computers, cameras due to their high energy density, high operating voltage, long cycle life, no memory effect, and environmental protection. It has been widely used in the field of portable small electronic devices, and gradually expanded to the field of large-scale electric transportation and storage of renewable energy. With the wide application of lithium-ion batteries in the above fields, people have higher and higher requirements on the energy density of lithium-ion batteries.
  • the present application provides an electrolytic solution, an electrochemical device and an electronic device containing the electrolytic solution, so as to improve the cycle performance and high-temperature storage performance of the electrochemical device.
  • the first aspect of the present application provides a kind of electrolytic solution, it comprises formula (I-A) compound:
  • A is selected from formula (IB) subunit, formula (IC) subunit or formula (ID) subunit:
  • X and Y are each independently selected from subunits of formula (I-E), subunits of formula (I-F), subunits of formula (I-G) or subunits of formula (I-H):
  • R 12 and R 17 are each independently selected from substituted or unsubstituted C 1 to C 10 alkyl, substituted or unsubstituted C 2 to C 10 alkenes substituted or unsubstituted C 2 to C 10 alkynyl group, substituted or unsubstituted C 6 to C 10 aryl group, substituted or unsubstituted C 3 to C 10 alicyclic hydrocarbon group , substituted or unsubstituted C 1 to C 10 aliphatic heterocyclic group, substituted or unsubstituted C 1 to C 10 aromatic heterocyclic group, when substituted, each substituent is independently selected from halogen atom; R 11 , R 13 , R 14 , R 15 , R 16 , R 18 and R 19 are each independently selected from a single bond, substituted or unsubstituted C 1 to C 10 alkylene, substituted or Unsubstituted C2 to C10 alkenylene, substitute
  • Applying the electrolyte comprising the compound of formula (I-A) to the electrochemical device can form a stable positive solid interface film on the surface of the positive electrode of the electrochemical device, and form a stable negative solid interface film on the surface of the negative electrode, further improving the surface of the positive electrode and the surface of the negative electrode.
  • the stability of the electrolyte can inhibit the continuous decomposition of the electrolyte at high temperature, thereby improving the cycle performance and high-temperature storage performance of the electrochemical device.
  • the compound of formula (I-A) comprises at least one of the following compounds (I-1) to (I-38):
  • the mass percentage W I of the compound of formula (IA) is 0.01% to 5%, preferably 0.1% to 1%.
  • the value of W I may be 0.01%, 0.1%, 0.5%, 1%, 3%, 5%, or any value between any two of the above ranges.
  • the electrolyte also includes a compound of formula (II-A):
  • R 21 and R 22 are each independently selected from substituted or unsubstituted C 1 to C 5 alkyl, substituted or unsubstituted C 2 to C 5 alkenyl, substituted or unsubstituted When the C 2 to C 5 alkynyl group is substituted, each substituent is independently selected from a halogen atom or a methyl group, and R 21 and R 22 may form a closed ring structure.
  • the addition of the compound of formula (II-A) in the electrolyte can further improve the stability of the surface of the positive electrode and the surface of the negative electrode, inhibit the continuous decomposition of the electrolyte at high temperature, reduce the consumption required for the oxidation-reduction reaction of the electrolyte, and inhibit the electrolysis. Liquid gas production, thereby further improving the cycle performance and high-temperature storage performance of the electrochemical device.
  • the compound of formula (II-A) comprises at least one of the following compounds (II-1) to (II-12):
  • the electrolyte meets at least one of the following (a) or (b): (a) based on the quality of the electrolyte, the mass percentage of the compound of formula (II-A) W II 0.05% to 3%, preferably 0.1% to 1%; (b) based on the quality of the electrolyte, the mass percentage W I of the compound of formula (IA) and the mass percentage W of the compound of formula (II-A) II satisfies: 0 ⁇ W I /W II ⁇ 10, preferably 0.25 ⁇ W I /W II ⁇ 5.
  • the value of W II can be 0.05%, 0.1%, 1%, 2%, 3% or any value between any two value ranges mentioned above.
  • the value of W I /W II may be 0.1, 0.17, 0.25, 0.5, 5, 10 or any value between any two value ranges mentioned above.
  • the compound of formula (IA) and compound of formula (II-A) can play a synergistic effect, which is more conducive to improving the cycle performance and high-temperature storage performance of the electrochemical device.
  • the electrolyte solution further includes a first lithium salt
  • the first lithium salt includes lithium difluorophosphate (LiPO 2 F 2 ), lithium difluorobisoxalate phosphate (LiDFOP) or lithium tetrafluorooxalate phosphate at least one of the
  • the addition of the first lithium salt to the electrolyte can further improve the film-forming effect of the positive solid interface film on the surface of the positive electrode, reduce the contact between the electrolyte and the positive electrode, and suppress the gas production of the electrolyte.
  • the cycle performance and high-temperature storage performance of the electrochemical device are further improved.
  • the mass percentage W L1 of the first lithium salt is 0.1% to 1%.
  • the value of W L1 may be 0.1%, 0.3%, 0.8%, 1%, or any value between any two value ranges mentioned above.
  • the electrolytic solution also includes a sulfur-oxygen double bond compound, and the sulfur-oxygen double bond compound includes a compound of formula (III-A):
  • A is selected from formula (III-B) subunit, formula (III-C) subunit, formula (III-D) subunit, formula (III-E) subunit, formula (III-F) subunit , any one of the subunits of formula (III-G), subunits of formula (III-H) or subunits of formula (III-I):
  • R 31 and R 32 are each independently selected from substituted or unsubstituted C 1 to C 5 alkyl, substituted or unsubstituted C 2 to C 10 alkenes substituted or unsubstituted C 2 to C 10 alkynyl group, substituted or unsubstituted C 3 to C 10 alicyclic group, substituted or unsubstituted C 6 to C 10 aryl group , substituted or unsubstituted C 1 to C 6 aliphatic heterocyclic group, substituted or unsubstituted C 1 to C 6 aromatic heterocyclic group, substituted or unsubstituted C 1 to C 3 Sulfonyloxyalkyl, when substituted, each substituent is independently selected from a halogen atom, C1 to C3 alkyl, C2 to C3 alkenyl or C2 to C3 alkynyl, R 31 and R 32 can form a closed ring structure; the heteroatoms
  • the addition of sulfur-oxygen double bond compounds in the electrolyte can enhance the anti-oxidation ability of the electrolyte, reduce the possibility of the positive active material being oxidized, and, in the case of lithium deposition at the negative electrode, form a protective layer on the surface of lithium metal.
  • the film can inhibit the decomposition of lithium metal and electrolyte to generate heat, and enhance the protection of negative and positive active materials, thereby further improving the cycle performance, high-temperature storage performance and floating charge performance of the electrochemical device.
  • the compound of formula (III-A) includes at least one of the following compounds (III-1) to (III-53):
  • the compound of formula (III-A) comprises at least one of the following compounds:
  • the electrolyte meets at least one of the following (c) or (d):
  • the mass percent content WS of the sulfur-oxygen double bond compound is 0.01% to 10%, preferably 0.1% to 8%;
  • the mass percentage W I of the compound of formula (IA) and the mass percentage W S of the sulfur-oxygen double bond compound satisfy: 0 ⁇ W I /W S ⁇ 1, preferably, 0.1 ⁇ W I /W S ⁇ 0.3.
  • the value of WS can be 0.01%, 0.1%, 4%, 8%, 10%, or any value between any two value ranges mentioned above. Controlling the mass percentage WS of the sulfur-oxygen double bond compound within the above-mentioned range is more conducive to improving the cycle performance, high-temperature storage performance and float charge performance of the electrochemical device.
  • the value of W I /W S may be 0.01, 0.063, 0.1, 0.125, 0.3, 0.5, 1 or any value between any two of the above ranges. Controlling the value of W I /W S within the above range makes the compound of formula (IA) and the sulfur-oxygen double bond compound play a synergistic effect, which is more conducive to improving the cycle performance, high-temperature storage performance and floating charge performance of the electrochemical device.
  • the electrolytic solution also includes a polynitrile compound, and the polynitrile compound includes at least one of the following compounds (i-1) to (i-16):
  • the addition of the polynitrile compound in the electrolyte makes the compound of the formula (I-A) and the polynitrile compound play a synergistic effect, further improving the high-temperature storage performance and floating charge performance of the electrochemical device.
  • the mass percentage W D of the polynitrile compound is 0.3% to 10%, preferably 2% to 10%.
  • the value of W D can be 0.3%, 1%, 2.5%, 3%, 5%, 10%, or any value between any two value ranges mentioned above.
  • the electrolytic solution further includes a first non-aqueous organic solvent
  • the first non-aqueous organic solvent includes at least one of cyclic carbonate, chain carbonate or carboxylate.
  • the addition of the first non-aqueous organic solvent in the electrolyte can further enhance the stability of the positive solid interface film on the surface of the positive electrode and the negative solid interface film on the surface of the negative electrode, and can also improve the flexibility of the positive solid interface film and the negative solid interface film.
  • the cyclic carbonate comprises a compound of formula (IV-A):
  • R 4 is selected from substituted or unsubstituted C 1 to C 6 alkylene, substituted or unsubstituted C 2 to C 6 alkenylene, and when substituted, each substituent is independently selected from Halogen atom, C 1 to C 6 alkyl or C 2 to C 6 alkenyl.
  • the compound of formula (IV-A) comprises at least one of the following compounds (IV-1) to (IV-12):
  • the chain carbonates include dimethyl carbonate, ethyl methyl carbonate, methyl fluoromethyl carbonate, bis(fluoromethyl) carbonate, methyl difluoromethyl carbonate, ethyl methyl carbonate, Base (fluoromethyl) carbonate, difluoromethyl ethyl carbonate, 2-fluoroethyl methyl carbonate, 2-fluoroethyl (fluoromethyl) carbonate, 2,2-difluoroethyl methyl 2,2-difluoroethyl ethyl carbonate, 2,2,2-trifluoroethyl ethyl carbonate, (2-fluoroethyl) ethyl carbonate, bis (2-fluoroethyl) carbonic acid ester, 2,2-difluoroethyl (2-fluoroethyl) carbonate, bis (2,2-difluoroethyl) carbonate, bis (2,2,2-trifluor
  • the electrolyte meets at least one of the following (e) to (g):
  • the mass percentage W H of the cyclic carbonate is 0.01% to 30%, preferably 0.1% to 30%;
  • the value of W H can be 0.01%, 5%, 15%, 20%, 25%, 30%, or any value between any two value ranges mentioned above.
  • the mass percentage W H of the cyclic carbonate is controlled within the above range, which is more conducive to improving the cycle performance and high-temperature storage performance of the electrochemical device.
  • the adjustment of the value of W H within the above preferred range can further improve the cycle performance of the electrochemical device.
  • the mass ratio of cyclic carbonate and chain carbonate can be 10:40, 15:40, 20:40, 40:40, 55:40, 60:40 or any of the above-mentioned any two numerical ranges. value.
  • the mass ratio of the cyclic carbonate and the chain carbonate is controlled within the above range, so that the cyclic carbonate and the chain carbonate can play a synergistic effect, which is more conducive to improving the cycle performance and high-temperature storage performance of the electrochemical device.
  • the mass ratio of cyclic carbonate to carboxylate can be 10:20, 15:25, 55:50, 60:60 or any value between any two value ranges mentioned above.
  • the mass ratio of the cyclic carbonate and carboxylate is controlled within the above range, so that the synergistic effect of the cyclic carbonate and carboxylate is more conducive to improving the cycle performance and high-temperature storage performance of the electrochemical device.
  • the electrolytic solution also includes a second lithium salt, and the second lithium salt includes a compound of formula (V-A):
  • a 51 , A 52 , A 53 and A 54 are each independently selected from a halogen atom, a group of formula (VB), a group of formula (VC) or a group of formula (VD), A 51 , A 52 , A 53 And the two adjacent groups in A 54 can form a closed ring structure:
  • R 51 and R 53 are each independently selected from substituted or unsubstituted Substituted C 1 to C 6 alkyl, substituted or unsubstituted C 2 to C 6 alkenyl, when substituted, each substituent is independently selected from a halogen atom;
  • R 52 is selected from substituted or unsubstituted When a substituted C1 - C6 alkylene group, a substituted or unsubstituted C2 - C6 alkenyl group is substituted, each substituent is independently selected from a halogen atom.
  • the compound of formula (VA) comprises lithium tetrafluoroborate (LiBF 4 ), lithium dioxalate borate (LiB(C 2 O 4 ) 2 , LiBOB) or lithium difluorooxalate borate (LiBF 2 (C 2 O 4 ), At least one of LiDFOB).
  • the addition of the second lithium salt in the electrolyte can form a positive electrode solid interface film on the surface of the positive electrode, and/or form a negative electrode solid interface film on the surface of the negative electrode to maintain the stability of the positive electrode/electrolyte and negative electrode/electrolyte interfaces, further Improve the cycle performance, float charge performance and high temperature storage performance of electrochemical devices.
  • the mass percentage W L2 of the second lithium salt is 0.1% to 2%.
  • the value of W L2 can be 0.1%, 0.3%, 0.5%, 1%, 2%, or any value between any two value ranges mentioned above. Controlling the mass percentage W L2 of the second lithium salt within the above-mentioned range is more conducive to improving the cycle performance, floating charge performance and high-temperature storage performance of the electrochemical device.
  • the electrolytic solution of the present application may also include a third lithium salt.
  • the present application has no special limitation on the type of the third lithium salt, as long as the purpose of the present application can be achieved.
  • the third lithium salt includes lithium hexafluorophosphate (LiPF 6 ), lithium hexafluoroantimonate (LiSbF 6 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium perfluorobutanesulfonate (LiC 4 F 9 SO 3 ), high Lithium chlorate (LiClO 4 ), lithium aluminate (LiAlO 2 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium bissulfonylimide (LiN(C x F 2x+1 SO 2 ) (C y F 2y+ 1 SO 2 ), wherein x and y are each independently selected from at least one of natural numbers 0 to 6), lithium chloride (Li
  • the electrolytic solution of the present application may further include a second non-aqueous organic solvent.
  • the present application has no special limitation on the type of the second non-aqueous organic solvent, as long as the purpose of the present application can be achieved.
  • the second non-aqueous organic solvent may include ether solvents, sulfone solvents or other organic solvents.
  • Ether solvents may include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dibutyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, or bis(2,2,2-trifluoro At least one of ethyl) ether.
  • the sulfone solvent may include at least one of ethyl vinyl sulfone, methyl isopropyl sulfone, dimethyl sulfoxide, 1,2-dioxolane, sulfolane, methyl sulfolane, isopropyl sec-butyl sulfone or sulfolane A sort of.
  • organic solvents may include 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, formamide, dimethylformamide, acetonitrile, trimethyl phosphate, triethyl phosphate, phosphoric acid Trioctyl, phosphate, propyl propionate, ethylene carbonate (also known as ethylene carbonate, abbreviated as EC), propylene carbonate (also known as propylene carbonate, abbreviated as PC) or diethyl carbonate (DEC) at least one.
  • the mass percentage of the second non-aqueous organic solvent is 5% to 90%. For example 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90% % or any value between any two value ranges above.
  • the second aspect of the present application provides an electrochemical device, which includes the electrolyte solution described in any one of the aforementioned solutions. Therefore, the electrochemical device of the present application has good cycle performance and high-temperature storage performance.
  • the electrochemical device may also include a positive electrode, which generally includes a positive electrode current collector and a positive electrode material layer.
  • the positive electrode current collector is not particularly limited, as long as the purpose of this application can be achieved, for example, it may include but not It is limited to aluminum foil, aluminum alloy foil or composite current collectors, etc.
  • the thickness of the positive electrode collector there is no particular limitation on the thickness of the positive electrode collector, as long as the purpose of the present application can be achieved, for example, the thickness is 8 ⁇ m to 12 ⁇ m.
  • the positive electrode material layer may be provided on one surface in the thickness direction of the positive electrode current collector, or on two surfaces in the thickness direction of the positive electrode current collector. It should be noted that the "surface” here may refer to the entire area of the positive electrode collector or a partial area of the positive electrode collector. This application is not particularly limited, as long as the purpose of this application can be achieved.
  • the positive electrode material layer includes the positive electrode active material
  • the present application has no special limitation on the positive electrode active material, as long as the purpose of the application can be achieved, for example, it can include lithium or transition metal element composite oxides, sulfides, selenium at least one of compounds or halides.
  • the present application has no particular limitation on the above transition metal elements, as long as the purpose of the present application can be achieved, for example, at least one of nickel, manganese, cobalt or iron may be included.
  • the positive electrode active material has a cladding layer on the surface.
  • the application has no special restrictions on the compound of the cladding layer, as long as the purpose of the application can be achieved.
  • the compound of the cladding layer can be amorphous or crystalline
  • coating compounds may include, but are not limited to, coating element oxides, coating element hydroxides, coating element oxyhydroxides, coating element oxycarbonates, or coating element bases At least one of the formula carbonates.
  • the aforementioned coating elements may include but not limited to at least one of Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As or Zr.
  • the present application has no particular limitation on the preparation method of the coating layer, and any preparation method known in the art can be used as long as the purpose of the present application can be achieved, such as spraying or dipping.
  • the positive electrode material layer can also include a positive electrode binder.
  • the application has no special restrictions on the positive electrode binder, as long as the purpose of the application can be achieved, for example, it can include but not limited to polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl Cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, At least one of polyethylene, polypropylene, styrene-butadiene rubber, acrylic (ester)ized styrene-butadiene rubber, epoxy resin or nylon.
  • a conductive agent may also be included in the positive electrode material layer.
  • the present application has no special limitation on the conductive agent, as long as the purpose of the application can be achieved, for example, it may include but not limited to natural graphite, artificial graphite, conductive carbon black (Super At least one of P), carbon nanotubes (CNTs), carbon fibers, graphite flakes, Ketjen black, graphene, metal materials or conductive polymers.
  • the aforementioned carbon nanotubes may include, but are not limited to, single-walled carbon nanotubes and/or multi-walled carbon nanotubes.
  • the aforementioned carbon fibers may include, but are not limited to, vapor grown carbon fibers (VGCF) and/or carbon nanofibers.
  • the above metal material may include but not limited to metal powder and/or metal fiber, specifically, the metal may include but not limited to at least one of copper, nickel, aluminum or silver.
  • the aforementioned conductive polymer may include but not limited to at least one of polyphenylene derivatives, polyaniline, polythiophene, polyacetylene or polypyrrole.
  • the positive electrode may further include a conductive layer located between the positive electrode current collector and the positive electrode material layer.
  • the present application has no particular limitation on the composition of the conductive layer, which may be a commonly used conductive layer in the field, for example, may include but not limited to the above-mentioned conductive agent and the above-mentioned positive electrode binder.
  • the electrochemical device can also include a negative electrode, which usually includes a negative electrode collector.
  • a negative electrode collector which usually includes a negative electrode collector.
  • This application has no special restrictions on the negative electrode collector, as long as the purpose of this application can be achieved.
  • it can include but is not limited to copper foil, copper Alloy foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam or composite current collector, etc.
  • the thickness of the current collector of the negative electrode there is no particular limitation on the thickness of the current collector of the negative electrode, as long as the purpose of the present application can be achieved, for example, the thickness is 4 ⁇ m to 12 ⁇ m.
  • the negative electrode material layer may be provided on one surface in the thickness direction of the negative electrode current collector, or on two surfaces in the thickness direction of the negative electrode current collector. It should be noted that the "surface” here may be the entire area of the negative electrode collector, or a partial area of the negative electrode collector. This application is not particularly limited, as long as the purpose of this application can be achieved.
  • the negative electrode material layer includes a negative electrode active material, wherein the negative electrode active material is not particularly limited, as long as the purpose of the application can be achieved, for example, it can include but not limited to materials that can reversibly intercalate/deintercalate lithium ions, lithium metal , a lithium metal alloy, a material capable of doping/dedoping lithium, or a transition metal oxide.
  • the negative electrode active material is not particularly limited, as long as the purpose of the application can be achieved, for example, it can include but not limited to materials that can reversibly intercalate/deintercalate lithium ions, lithium metal , a lithium metal alloy, a material capable of doping/dedoping lithium, or a transition metal oxide.
  • Materials that reversibly intercalate/deintercalate lithium ions may include, but are not limited to, carbon materials including crystalline carbon and/or amorphous carbon.
  • Crystalline carbon may include, but is not limited to, amorphous or plate-like, platelet-like, spherical or fibrous natural graphite, artificial graphite, pyrolytic carbon, mesophase pitch-based carbon fibers, mesocarbon microbeads, mesophase pitch or high-temperature calcined charcoal (such as petroleum or coke derived from coal tar pitch).
  • the amorphous carbon may include, but is not limited to, at least one of soft carbon, hard carbon, mesophase pitch carbonization product, or fired coke.
  • the lithium metal alloy includes lithium and at least one metal of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al or Sn.
  • Materials capable of doping/dedoping lithium may include, but are not limited to, Si, SiO x (0 ⁇ x ⁇ 2), Si/C composites, Si-Q alloys (where Q includes alkali metals, alkaline earth metals, 13th at least one of elements from group 16 to group 16, transition elements, or rare earth elements, but not Si), Sn, SnO 2 , Sn-C complexes, Sn-R (wherein R includes alkali metals, alkaline earth metals, At least one of Group 13 to Group 16 elements, transition elements or rare earth elements, but not Sn) and the like.
  • Q and R each independently include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh , Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi , S, Se, Te or Po at least one.
  • Transition metal oxides may include, but are not limited to, vanadium oxide and/or lithium vanadium oxide.
  • the negative electrode material layer may also include a conductive agent.
  • the present application has no special limitation on the conductive agent, as long as the purpose of the present application can be achieved, for example, it may include but not limited to at least one of the above-mentioned conductive agents.
  • the negative electrode material layer may also include a negative electrode binder, and the present application has no special restrictions on the negative electrode binder, as long as the purpose of the application can be achieved, for example, it may include but not limited to ethylene difluoride-hexafluoropropylene Copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, carboxylated Polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyethylene, polypropylene, styrene-butadiene rubber, acrylic (ester) styrene-butadiene rubber, epoxy at least one of resin or nylon.
  • PVDF-co-HFP ethylene difluoride-hexafluoroprop
  • the negative electrode may further include a conductive layer located between the negative electrode current collector and the negative electrode material layer.
  • the present application has no particular limitation on the composition of the conductive layer, which may be a commonly used conductive layer in the field, and the conductive layer may include but not limited to the above-mentioned conductive agent and the above-mentioned negative electrode binder.
  • the electrochemical device of the present application also includes a diaphragm, which is used to separate the positive electrode and the negative electrode, prevent the internal short circuit of the lithium ion battery, allow electrolyte ions to pass through freely, and complete the electrochemical charging and discharging process.
  • the separator in the present application is not particularly limited, as long as the purpose of the present application can be achieved.
  • a separator may include a substrate layer and a surface treatment layer.
  • the substrate layer can be a non-woven fabric, a film or a composite film with a porous structure, and the material of the substrate layer can include at least one of polyethylene, polypropylene, polyethylene terephthalate and polyimide, etc. kind.
  • a polypropylene porous film, a polyethylene porous film, a polypropylene non-woven fabric, a polyethylene non-woven fabric, or a polypropylene-polyethylene-polypropylene porous composite film may be used.
  • at least one surface of the substrate layer is provided with a surface treatment layer, and the surface treatment layer may be a polymer layer or an inorganic layer, or a layer formed by mixing a polymer and an inorganic material.
  • the inorganic material layer includes inorganic particles and a binder
  • the inorganic particles are not particularly limited, for example, they can be selected from aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium dioxide, tin oxide, cerium oxide, nickel oxide , zinc oxide, calcium oxide, zirconia, yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, or barium sulfate.
  • the binder is not particularly limited, for example, it can be selected from polyvinylidene fluoride, a copolymer of vinylidene fluoride-hexafluoropropylene, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, polyvinyl pyrene At least one of rolidone, polyvinyl ether, polymethylmethacrylate, polytetrafluoroethylene or polyhexafluoropropylene.
  • the polymer layer comprises a polymer, and the polymer material includes polyamide, polyacrylonitrile, acrylate polymer, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, polyvinylidene fluoride or poly( at least one of vinylidene fluoride-hexafluoropropylene) and the like.
  • the electrochemical device of the present application is not particularly limited, and it may include any device that undergoes an electrochemical reaction.
  • the electrochemical device may include, but is not limited to, a lithium metal secondary battery, a lithium ion secondary battery (lithium ion battery), a lithium polymer secondary battery, or a lithium ion polymer secondary battery, and the like.
  • the preparation process of electrochemical devices is well known to those skilled in the art, and the present application is not particularly limited.
  • it may include but not limited to the following steps: stack the positive electrode, separator and negative electrode in sequence, and wind it as needed, Folding and other operations to obtain the electrode assembly with a winding structure, put the electrode assembly into the packaging case, inject the electrolyte into the packaging case and seal it, and obtain an electrochemical device; or, stack the positive electrode, separator and negative electrode in order, and then tape them
  • the four corners of the entire laminated structure are fixed to obtain the electrode assembly of the laminated structure, the electrode assembly is placed in the packaging case, the electrolyte is injected into the packaging case and sealed to obtain an electrochemical device.
  • anti-overcurrent elements, guide plates, etc. can also be placed in the packaging case as needed, so as to prevent pressure rise and overcharge and discharge inside the electrochemical device.
  • the third aspect of the present application provides an electronic device, which includes the electrochemical device described in the second aspect of the present application.
  • the electronic device has good cycle performance and high-temperature storage performance.
  • the electronic devices of the present application are not particularly limited, and may include but not limited to the following types: notebook computers, pen-input computers, mobile computers, e-book players, portable phones, portable fax machines, portable copiers, portable printers, head-mounted Stereo headphones, VCRs, LCD TVs, portable cleaners, portable CD players, mini-discs, transceivers, electronic organizers, calculators, memory cards, portable tape recorders, radios, backup power supplies, electric motors, automobiles, motorcycles, power-assisted bicycles , bicycles, lighting appliances, toys, game consoles, clocks, electric tools, flashlights, cameras, large household batteries and lithium-ion capacitors, etc.
  • the present application provides an electrolytic solution, an electrochemical device and an electronic device containing the electrolytic solution, wherein the electrolytic solution includes a compound of formula (I-A).
  • Applying the electrolyte comprising the compound of formula (I-A) to the electrochemical device can form a stable positive solid interface film on the surface of the positive electrode of the electrochemical device, and form a stable negative solid interface film on the surface of the negative electrode, thereby effectively improving the performance of the electrochemical device.
  • Cycle performance and high temperature storage performance An electronic device including the electrochemical device also has good high-temperature storage performance and cycle performance.
  • the negative electrode slurry was uniformly coated on one surface of the negative electrode current collector copper foil with a thickness of 12 ⁇ m, and the copper foil was dried at 120° C. to obtain a negative electrode with a coating thickness of 130 ⁇ m coated with a negative electrode material layer on one side.
  • LiPF 6 lithium hexafluorophosphate
  • IA formula (I-1)
  • the concentration of LiPF 6 is 1mol/L, based on the quality of the electrolyte
  • the mass percentage W I of the compound of formula (IA) is 0.1%
  • the rest is the third lithium salt and an organic solvent.
  • Aluminum oxide and polyvinylidene fluoride were mixed according to a mass ratio of 90:10 and dissolved in deionized water to form a ceramic slurry with a solid content of 50 wt%. Subsequently, the ceramic slurry was evenly coated on one side of the porous substrate (polyethylene, thickness 5 ⁇ m, porosity 39%) by the micro-recess coating method, and dried to obtain a double layer of the ceramic coating and the porous substrate. layer structure, the thickness of the ceramic coating is 3 ⁇ m.
  • PVDF Polyvinylidene fluoride
  • polyacrylate was mixed in a mass ratio of 96:4 and dissolved in deionized water to form a polymer slurry with a solid content of 50 wt%. Subsequently, the polymer slurry is uniformly coated on the two surfaces of the above-mentioned ceramic coating layer and the porous substrate by the dimple coating method, and then dried to obtain a separator, in which the polymer slurry forms a single The layer coating thickness is 2 mg/(50 ⁇ 100 mm 2 ).
  • the positive electrode, separator, and negative electrode prepared above are stacked in order, so that the separator is placed between the positive electrode and the negative electrode to play the role of isolation, and the electrode assembly is obtained by winding.
  • Put the electrode assembly in an aluminum-plastic film packaging bag inject electrolyte after drying, and obtain a lithium-ion battery through processes such as vacuum packaging, standing, chemical formation, degassing, and edge trimming.
  • the formation upper limit voltage is 4.15V
  • the formation temperature is 70°C
  • the formation resting time is 2h.
  • the first lithium salt is further added according to the type and mass percentage content shown in Table 3, and the content of the organic solvent changes accordingly, the rest is the same as that of Example 1-1.
  • the positive electrode active material LCO molecular formula is LiCoO 2
  • conductive carbon black conductive carbon black
  • conductive paste conductive paste
  • binder polyvinylidene fluoride in an appropriate amount of NMP solvent in a weight ratio of 97.9:0.4:0.5:1.2
  • stirrer stir until the system becomes uniform and transparent to obtain positive electrode slurry, wherein the solid content of the positive electrode slurry is 70 wt%.
  • the positive electrode slurry was uniformly coated on one surface of a positive electrode current collector aluminum foil with a thickness of 12 ⁇ m, and the aluminum foil was dried at 120° C. for 1 hour to obtain a positive electrode coated with a positive electrode material layer on one side.
  • LiPF 6 lithium hexafluorophosphate
  • the compound (I-1) of the formula (IA) to obtain an electrolyte solution.
  • the concentration of LiPF 6 is 1mol/L, based on the quality of the electrolyte
  • the mass percentage W I of the compound of formula (IA) is 0.1%
  • the rest is the third lithium salt and an organic solvent.
  • the lithium-ion batteries prepared in the examples and comparative examples in Table 1 to Table 5 were charged at 25°C with a constant current of 0.5C to 4.25V, and then charged at a constant voltage to a current of 0.05C to test the thickness of the lithium-ion battery And record it as d 01 ; measure the thickness of the lithium-ion battery after placing it in an oven at 85°C for 6 hours, and record it as d 1 .
  • the thickness expansion rate (%) of the lithium-ion battery after storage at 85° C. for 6 hours (d 1 ⁇ d 01 )/d 01 ⁇ 100%.
  • the thickness of the lithium-ion battery is measured and recorded as d 02 , the thickness of the lithium-ion battery was tested after being placed in an oven at 85°C for 24 hours, recorded as d 2 .
  • the thickness expansion rate (%) of the lithium-ion battery after storage at 85° C. for 24 hours (d 2 ⁇ d 02 )/d 02 ⁇ 100%. Among them, if the thickness expansion rate is greater than 50%, the test is stopped, and the thickness expansion rate "greater than 50%" in Table 6 to Table 9 means that the thickness expansion rate exceeds 50% when the test time is less than 24h, and the test is stopped.
  • Test the thickness of the lithium-ion battery and record it as d 03 , and place it at 45 In an oven at °C, charge at a constant voltage of 4.45V for 30 days, monitor the thickness change, record the thickness as d 3 , the thickness expansion rate of the lithium-ion battery floating charge (%) (d 3 -d 03 )/d 03 ⁇ 100%, the thickness If the expansion rate is greater than 50%, stop the test.
  • the mass percentage W I of the compound of formula (IA) also generally affects the cycle performance and high-temperature storage performance of the lithium-ion battery. From Example 1-1, Example 1-10 to Example 1-14 and Comparative Example 2, it can be seen that the lithium-ion battery with a mass percentage W I of the compound of formula (IA) within the scope of the application has more Good cycle performance and high temperature storage performance.
  • the type and mass percentage W II of the compound of formula (II-A) and the value of W I /W II generally also affect the cycle performance and high-temperature storage performance of the lithium-ion battery. From Example 1-1, Example 2-1 to Example 2-7, it can be seen that the type and mass percentage content W II of the compound of formula (II-A) and the value of W I /W II are within the scope of this application range of lithium-ion batteries, with good cycle performance and high-temperature storage performance.
  • the type and mass percentage W L1 of the first lithium salt usually also affect the cycle performance and high-temperature storage performance of the lithium-ion battery. From Example 1-1, Example 3-1 to Example 3-4, it can be seen that the lithium ion battery with the type and mass percentage W L1 of the first lithium salt within the scope of this application has good cycle performance and high temperature storage performance.
  • the type and mass percentage WS of the sulfur-oxygen double bond compound, and the value of WI / WS usually also affect the cycle performance and high-temperature storage performance of the lithium-ion battery. From Example 1-1, Example 4-1 to Example 4-8, it can be seen that the type and mass percentage content WS of the sulfur-oxygen double bond compound and the value of WI / WS are within the scope of the application
  • the lithium-ion battery has good cycle performance and high temperature storage performance.
  • the compound of formula (I-A) can optionally be used in combination with at least two of the compound of formula (II-A), the first lithium salt or the sulfur-oxygen double bond compound, so as to affect the cycle performance and floating charge performance of the lithium-ion battery.
  • the formula (I-A) compound has good compatibility with the formula (II-A) compound, the first lithium salt or the sulfur-oxygen double bond compound and stackability, the lithium-ion batteries obtained in combination have good cycle performance and float charge performance.
  • the type and mass percentage W D of the polynitrile compound usually also have an impact on the high-temperature storage performance and floating charge performance of the lithium-ion battery. From Example 6-1 to Example 6-8, it can be seen that the lithium ion battery with the type and mass percentage W D of the polynitrile compound within the scope of the present application has good high-temperature storage performance and float charge performance.
  • the kind and mass percentage of the first non-aqueous organic solvent W H , the mass ratio of cyclic carbonate and chain carbonate and the mass ratio of cyclic carbonate and carboxylate will also affect the cycle performance of lithium ion battery usually. and high temperature storage performance.
  • embodiment 7-1 to embodiment 7-7 as can be seen, the kind of the first nonaqueous organic solvent and mass percentage content W H , the mass ratio of cyclic carbonate and chain carbonate
  • the lithium-ion battery whose mass ratio to the cyclic carbonate and carboxylate is within the scope of the application has good cycle performance and high-temperature storage performance.
  • Example 7-1 to Example 7-5 it can be seen that the lithium ion battery with the mass percentage W H of the first non-aqueous organic solvent within the preferred range of the present application has better cycle performance.
  • the type and mass percentage W L2 of the second lithium salt usually also affect the cycle performance, float charge performance and high-temperature storage performance of the lithium-ion battery. From Example 6-1, Example 8-1 to Example 8-6, it can be seen that the type and mass percentage content W L2 of the second lithium salt are within the scope of the application for lithium-ion batteries, which have good cycle performance , Float charge performance and high temperature storage performance. Compared with Example 6-1, Example 8-1 to Example 8-6 especially have better cycle performance.
  • the compound of formula (I-A) is optionally used in combination with at least two of the sulfur-oxygen double bond compound, the polynitrile compound or the second lithium salt to affect the cycle performance, float performance and high-temperature storage performance of the lithium-ion battery. From Example 6-1, Example 9-1 to Example 9-4, it can be seen that the compound of formula (I-A) has good compatibility and can be stacked with sulfur-oxygen double bond compound, polynitrile compound or the second lithium salt The lithium-ion batteries obtained by combined use all have good high-temperature storage performance and float charge performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本申请提供了一种电解液、包含该电解液的电化学装置和电子装置,其中,电解液包括式(I-A)化合物。将包括式(I-A)化合物的电解液应用于电化学装置中,能够使电化学装置的正极表面形成稳定的正极固态界面膜、负极表面形成稳定的负极固态界面膜,从而有效改善电化学装置的循环性能和高温存储性能。包含该电化学装置的电子装置,也具有良好的高温存储性能和循环性能。

Description

一种电解液、包含该电解液的电化学装置和电子装置 技术领域
本申请涉及电化学领域,具体涉及一种电解液、包含该电解液的电化学装置和电子装置。
背景技术
二次电池(例如锂离子电池)作为一种新型的可移动储能装置,由于具有高能量密度、高工作电压、循环寿命长、无记忆效应、绿色环保等特点,在手机、笔记本电脑、摄像机等便携式小型电子设备领域得到了广泛应用,并逐渐向大型电动运输工作和可再生能源存储领域扩展。随着锂离子电池在上述领域中的广泛应用,人们对锂离子电池的能量密度的要求也越来越高。
为了进一步提高锂离子电池的能量密度,通常采用提高充电电压或增加活性物质的容量的方法。但这两种方法均会加速锂离子电池中电解液的分解,进而使锂离子电池的循环性能和高温(≥60℃)存储性能下降。
发明内容
本申请提供了一种电解液、包含该电解液的电化学装置和电子装置,以改善电化学装置的循环性能和高温存储性能。
本申请第一方面提供了一种电解液,其包括式(I-A)化合物:
Figure PCTCN2021142076-appb-000001
其中,A 1选自式(I-B)亚基、式(I-C)亚基或式(I-D)亚基:
Figure PCTCN2021142076-appb-000002
X和Y各自独立地选自式(I-E)亚基、式(I-F)亚基、式(I-G)亚基或式(I-H)亚基:
Figure PCTCN2021142076-appb-000003
Figure PCTCN2021142076-appb-000004
表示与相邻原子的结合位点;R 12和R 17各自独立地选自经取代或未经取代的C 1 至C 10的烷基、经取代或未经取代的C 2至C 10的烯基、经取代或未经取代的C 2至C 10的炔基、经取代或未经取代的C 6至C 10的芳基、经取代或未经取代的C 3至C 10的脂环烃基、经取代或未经取代的C 1至C 10的脂杂环基、经取代或未经取代的C 1至C 10的芳杂环基,经取代时,各取代基各自独立地选自卤原子;R 11、R 13、R 14、R 15、R 16、R 18和R 19各自独立地选自单键、经取代或未经取代的C 1至C 10的亚烷基、经取代或未经取代的C 2至C 10的亚烯基、经取代或未经取代的C 2至C 10的亚炔基、经取代或未经取代的C 6至C 10的亚芳基、经取代或未经取代的C 3至C 10的亚脂环烃基、经取代或未经取代的C 1至C 10的亚脂杂环基、经取代或未经取代的C 1至C 10的亚芳杂环基,经取代时,各取代基各自独立地选自卤原子;脂杂环基、芳杂环基、亚脂杂环基和亚芳杂环基中的杂原子各自独立地包括N、S或O。
将包括式(I-A)化合物的电解液应用于电化学装置中,能够使电化学装置的正极表面形成稳定的正极固态界面膜、负极表面形成稳定的负极固态界面膜,进一步提高正极表面和负极表面的稳定性,抑制电解液在高温下的持续分解,从而改善电化学装置的循环性能和高温存储性能。
优选地,式(I-A)化合物包括以下化合物(I-1)至(I-38)中的至少一个:
Figure PCTCN2021142076-appb-000005
Figure PCTCN2021142076-appb-000006
在本申请的一种实施方案中,基于电解液的质量,式(I-A)化合物的质量百分含量W I为0.01%至5%,优选为0.1%至1%。例如,W I的值可以为0.01%、0.1%、0.5%、1%、3%、5%或上述任两个数值范围间的任一数值。通过将式(I-A)化合物的质量百分含量W I控制在上述范围内,更有利于改善电化学装置的循环性能和高温存储性能。
在本申请的一种实施方案中,电解液还包括式(II-A)化合物:
Figure PCTCN2021142076-appb-000007
其中,R 21和R 22各自独立地选自经取代或未经取代的C 1至C 5的烷基、经取代或未经取代的C 2至C 5的烯基、经取代或未经取代的C 2至C 5的炔基,经取代时,各取代基各自独立地选自卤原子或甲基,R 21和R 22可以构成闭环结构。
式(II-A)化合物在电解液中的加入,能够进一步改善正极表面和负极表面的稳定性、抑制电解液在高温下的持续分解,减少电解液发生氧化还原反应所需的消耗,抑制电解液的产气,从而进一步改善电化学装置的循环性能和高温存储性能。
优选地,式(II-A)化合物包括以下化合物(II-1)至(II-12)中的至少一个:
Figure PCTCN2021142076-appb-000008
在本申请的一种实施方案中,电解液满足以下(a)或(b)中的至少一者:(a)基于电解液的质量,式(II-A)化合物的质量百分含量W II为0.05%至3%,优选为0.1%至1%;(b)基于电解液的质量,式(I-A)化合物的质量百分含量W I与式(II-A)化合物的质量百分含量W II满足:0<W I/W II≤10,优选为0.25≤W I/W II≤5。
例如,W II的值可以为0.05%、0.1%、1%、2%、3%或上述任两个数值范围间的任一数值。通过将式(II-A)化合物的质量百分含量W II控制在上述范围内,更有利于改善电化学装置的循环性能和高温存储性能。
例如,W I/W II的值可以为0.1、0.17、0.25、0.5、5、10或上述任两个数值范围间的任一数值。通过将W I/W II的值控制在上述范围内,使式(I-A)化合物和式(II-A)化合物发挥协同作用,更有利于改善电化学装置的循环性能和高温存储性能。
在本申请的一种实施方案中,电解液还包括第一锂盐,第一锂盐包括二氟磷酸锂(LiPO 2F 2)、二氟双草酸磷酸锂(LiDFOP)或四氟草酸磷酸锂中的至少一种。第一锂盐在电解液中的加入,能够进一步改善正极表面的正极固态界面膜的成膜效果,减少电解液与正极的接触,抑制电解液的产气。从而进一步提高电化学装置的循环性能和高温存储性能。
在本申请的一种实施方案中,基于电解液的质量,第一锂盐的质量百分含量W L1为0.1%至1%。例如,W L1的值可以为0.1%、0.3%、0.8%、1%或上述任两个数值范围间的任一数值。通过将第一锂盐的质量百分含量W L1控制在上述范围内,更有利于改善电化学装置的循环性能和高温存储性能。
在本申请的一种实施方案中,电解液还包括硫氧双键化合物,硫氧双键化合物包括 式(III-A)化合物:
Figure PCTCN2021142076-appb-000009
其中,A 3选自式(III-B)亚基、式(III-C)亚基、式(III-D)亚基、式(III-E)亚基、式(III-F)亚基、式(III-G)亚基、式(III-H)亚基或式(III-I)亚基中的任意一种:
Figure PCTCN2021142076-appb-000010
Figure PCTCN2021142076-appb-000011
表示与相邻原子的结合位点;R 31和R 32各自独立地选自经取代或未经取代的C 1至C 5的烷基、经取代或未经取代的C 2至C 10的烯基、经取代或未经取代的C 2至C 10的炔基、经取代或未经取代的C 3至C 10的脂环基、经取代或未经取代的C 6至C 10的芳基、经取代或未经取代的C 1至C 6的脂杂环基、经取代或未经取代的C 1至C 6的芳杂环基、经取代或未经取代的C 1至C 3的磺酰氧基烷基,经取代时,各取代基各自独立地选自卤原子、C 1至C 3的烷基、C 2至C 3的烯基或C 2至C 3的炔基,R 31和R 32可以构成闭环结构;脂杂环基和芳杂环基中的杂原子各自独立的包括N、S或O。
硫氧双键化合物在电解液中的加入,能够增强电解液的抗氧化能力,使正极活性材料被氧化的可能性降低,并且,在负极析锂的情况下,使金属锂表面形成一层保护膜,抑制金属锂与电解液的分解产热,增强对负极活性材料和正极活性材料的保护,从而进一步改善电化学装置的循环性能、高温存储性能和浮充性能。
优选地,式(III-A)化合物包括以下化合物(III-1)至(III-53)中的至少一种:
Figure PCTCN2021142076-appb-000012
Figure PCTCN2021142076-appb-000013
更优选地,式(III-A)化合物包括以下化合物中的至少一种:
Figure PCTCN2021142076-appb-000014
在本申请的一种实施方案中,电解液满足以下(c)或(d)中的至少一种:
(c)基于电解液的质量,硫氧双键化合物的质量百分含量W S为0.01%至10%,优选 为0.1%至8%;
(d)基于电解液的质量,式(I-A)化合物的质量百分含量W I与硫氧双键化合物的质量百分含量W S满足:0<W I/W S≤1,优选地,0.1≤W I/W S≤0.3。
例如,W S的值可以为0.01%、0.1%、4%、8%、10%或上述任两个数值范围间的任一数值。将硫氧双键化合物的质量百分含量W S控制在上述范围内,更有利于改善电化学装置的循环性能、高温存储性能和浮充性能。
例如,W I/W S的值可以为0.01、0.063、0.1、0.125、0.3、0.5、1或上述任两个数值范围间的任一数值。将W I/W S的值控制在上述范围内,使式(I-A)化合物和硫氧双键化合物发挥协同作用,更有利于改善电化学装置的循环性能、高温存储性能和浮充性能。
在本申请的一种实施方案中,电解液还包括多腈化合物,多腈化合物包括以下化合物(i-1)至(i-16)中的至少一种:
Figure PCTCN2021142076-appb-000015
多腈化合物在电解液中的加入,使式(I-A)化合物与多腈化合物发挥协同作用,进一步改善电化学装置的高温存储性能和浮充性能。
在本申请的一种实施方案中,基于电解液的质量,多腈化合物的质量百分含量W D为 0.3%至10%,优选为2%至10%。例如,W D的值可以为0.3%、1%、2.5%、3%、5%、10%或上述任两个数值范围间的任一数值。通过将多腈化合物的质量百分含量W D控制在上述范围内,更有利于改善电化学装置的高温存储性能和浮充性能。
在本申请的一种实施方案中,电解液还包括第一非水有机溶剂,第一非水有机溶剂包括环状碳酸酯、链状碳酸酯或羧酸酯中的至少一种。第一非水有机溶剂在电解液中的加入,能够进一步增强正极表面的正极固态界面膜和负极表面的负极固态界面膜的稳定性,还可以提高正极固态界面膜和负极固态界面膜的柔性,进一步增加对正极活性材料和负极活性材料的保护作用,降低正极活性材料或负极活性材料与电解液的接触几率,以抑制电化学装置循环过程中的阻抗的增长,从而进一步改善电化学装置的循环性能和高温存储性能。
在本申请的一种实施方案中,环状碳酸酯包括式(IV-A)化合物:
Figure PCTCN2021142076-appb-000016
其中,R 4选自经取代或未经取代的C 1至C 6亚烷基、经取代或未经取代的C 2至C 6亚烯基,经取代时,各取代基各自独立地选自卤原子、C 1至C 6烷基或C 2至C 6烯基。
优选地,式(IV-A)化合物包括以下化合物(IV-1)至(IV-12)中的至少一种:
Figure PCTCN2021142076-appb-000017
在本申请的一种实施方案中,链状碳酸酯包括碳酸二甲酯、碳酸甲乙酯、氟甲基碳酸甲酯、双(氟甲基)碳酸酯、二氟甲基碳酸甲酯、乙基(氟甲基)碳酸酯、二氟甲基乙基碳酸酯、2-氟乙基甲基碳酸酯、2-氟乙基(氟甲基)碳酸酯、2,2-二氟乙基甲基碳酸酯、2,2-二氟乙基碳酸乙酯、2,2,2-三氟乙基碳酸乙酯、(2-氟乙基)碳酸乙酯、双(2-氟乙基)碳酸酯、2,2-二氟乙基(2-氟乙基)碳酸酯、双(2,2-二氟乙基)碳酸酯、双(2,2,2-三氟乙基)碳酸酯、碳酸甲丙酯或碳酸乙丙酯中的至少一种;羧酸酯包括甲酸甲酯、甲酸乙酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸甲酯、丙酸乙酯(EP)、乙酸2,2-二氟乙酯或2,2-二氟乙酸乙酯 中的至少一种。
在本申请的一种实施方案中,电解液满足以下(e)至(g)中的至少一种:
(e)基于电解液的质量,环状碳酸酯的质量百分含量W H为0.01%至30%,优选为0.1%至30%;
(f)环状碳酸酯和链状碳酸酯的质量比为(10-60):40;
(g)环状碳酸酯和羧酸酯的质量比为(10-60):(20-60)。
例如,W H的值可以为0.01%、5%、15%、20%、25%、30%或上述任两个数值范围间的任一数值。环状碳酸酯的质量百分含量W H控制在上述范围内,更有利于改善电化学装置的循环性能和高温存储性能。W H的值调控在上述优选范围内,能够进一步改善电化学装置的循环性能。
例如,环状碳酸酯和链状碳酸酯的质量比可以为10:40、15:40、20:40、40:40、55:40、60:40或上述任两个数值范围间的任一数值。环状碳酸酯和链状碳酸酯的质量比控制在上述范围内,使环状碳酸酯和链状碳酸酯发挥协同作用,更有利于改善电化学装置的循环性能和高温存储性能。
例如,环状碳酸酯和羧酸酯的质量比可以为10:20、15:25、55:50、60:60或上述任两个数值范围间的任一数值。环状碳酸酯和羧酸酯的质量比控制在上述范围内,使环状碳酸酯和羧酸酯发挥协同作用,更有利于改善电化学装置的循环性能和高温存储性能。
在本申请的一种实施方案中,电解液还包括第二锂盐,第二锂盐包括式(V-A)化合物:
Figure PCTCN2021142076-appb-000018
其中,A 51、A 52、A 53和A 54各自独立地选自卤原子、式(V-B)基团、式(V-C)基团或式(V-D)基团,A 51、A 52、A 53和A 54中相邻的两个基团可以构成闭环结构:
Figure PCTCN2021142076-appb-000019
Figure PCTCN2021142076-appb-000020
表示与相邻原子的结合位点;式(V-C)基团的两个结合位点中的O与B连接,k为0或1;R 51和R 53各自独立地选自经取代或未经取代的C 1至C 6的烷基、经取代或未经取代的C 2至C 6的烯基,经取代时,各取代基各自独立地选自卤原子;R 52选自经取代 或未经取代的C 1至C 6的亚烷基、经取代或未经取代的C 2至C 6的烯基,经取代时,各取代基各自独立地选自卤原子。
优选地,式(V-A)化合物包括四氟硼酸锂(LiBF 4)、二草酸硼酸锂(LiB(C 2O 4) 2,LiBOB)或二氟草酸硼酸锂(LiBF 2(C 2O 4),LiDFOB)中的至少一种。
第二锂盐在电解液中的加入,可以在正极表面形成正极固态界面膜,和/或,在负极表面形成负极固态界面膜,维持正极/电解液、负极/电解液界面的稳定性,进一步改善电化学装置的循环性能、浮充性能和高温存储性能。
在本申请的一种实施方案中,基于电解液的质量,第二锂盐的质量百分含量W L2为0.1%至2%。例如,W L2的值可以为0.1%、0.3%、0.5%、1%、2%或上述任两个数值范围间的任一数值。将第二锂盐的质量百分含量W L2控制在上述范围内,更有利于提高电化学装置的循环性能、浮充性能和高温存储性能。
本申请的电解液还可以包括第三锂盐。本申请对第三锂盐的种类没有特别限制,只要能够实现本申请目的即可。例如,第三锂盐包括六氟磷酸锂(LiPF 6)、六氟锑酸锂(LiSbF 6)、六氟砷酸锂(LiAsF 6)、全氟丁基磺酸锂(LiC 4F 9SO 3)、高氯酸锂(LiClO 4)、铝酸锂(LiAlO 2)、四氯铝酸锂(LiAlCl 4)、双磺酰亚胺锂(LiN(C xF 2x+1SO 2)(C yF 2y+1SO 2),其中x和y各自独立地选自自然数0至6)、氯化锂(LiCl)、氟化锂(LiF)中的至少一种。
本申请的电解液还可以包括第二非水有机溶剂。本申请对第二非水有机溶剂的种类没有特别限制,只要能够实现本申请目的即可。例如,第二非水有机溶剂可以包括醚类溶剂、砜类溶剂或其它有机溶剂。醚类溶剂可以包括乙二醇二甲醚、二乙二醇二甲醚、四乙二醇二甲醚、二丁醚、四氢呋喃、2-甲基四氢呋喃或双(2,2,2-三氟乙基)醚中的至少一种。砜类溶剂可以包括乙基乙烯基砜、甲基异丙基砜、二甲亚砜、1,2-二氧戊环、环丁砜、甲基环丁砜、异丙基仲丁基砜或环丁砜中的至少一种。其它有机溶剂可以包括1,3-二甲基-2-咪唑烷酮、N-甲基-2-吡咯烷酮、甲酰胺、二甲基甲酰胺、乙腈、磷酸三甲酯、磷酸三乙酯、磷酸三辛酯、磷酸酯、丙酸丙酯、碳酸乙烯酯(也称为碳酸亚乙酯,简写为EC)、碳酸丙烯酯(也称为碳酸亚丙酯,简写为PC)或碳酸二乙酯(DEC)中的至少一种。基于电解液的质量,第二非水有机溶剂的质量百分含量为5%至90%。例如5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、60%、65%、70%、75%、80%、85%、90%或上述任两个数值范围间的任一数值。
本申请第二方面提供了一种电化学装置,其包括前述任一种方案所述的电解液。因此,本申请的电化学装置具有良好的循环性能和高温存储性能。
在本申请中,电化学装置还可以包括正极,正极通常包括正极集流体和正极材料层,在本申请中,正极集流体没有特别限制,只要能够实现本申请目的即可,例如可以包括但不限于铝箔、铝合金箔或复合集流体等。在本申请中,对正极集流体的厚度没有特别限制,只要能够实现本申请目的即可,例如厚度为8μm至12μm。在本申请中,正极材料层可以设置于正极集流体厚度方向上的一个表面上,也可以设置于正极集流体厚度方向上的两个表面上。需要说明,这里的“表面”可以是正极集流体的全部区域,也可以是正极集流体的部分区域,本申请没有特别限制,只要能实现本申请目的即可。
在本申请中,正极材料层中包括正极活性材料,本申请对正极活性材料没有特别限制,只要能够实现本申请目的即可,例如可以包括锂或过渡金属元素的复合氧化物、硫化物、硒化物或卤化物中的至少一种。本申请对上述过渡金属元素没有特别限制,只要能实现本申请的目的即可,例如可以包括镍、锰、钴或铁中的至少一种。具体的,正极活性材料可以包括LiCoO 2、LiNiO 2、LiMnO 2、LiMn 2O 4、Li(Ni a1Co b1Mn c1)O 2(0<a1<1,0<b1<1,0<c1<1,a1+b1+c1=1)、LiMn 2O 4LiNi 1-y1Co y1O 2(0<y1<1)、LiCo l-y2Mn y2O 2(0<y2<1)、LiNi l-y3Mn y3O 2(0<y3<1)、Li(Ni a2Mn b2Co c2)O 4(0<a2<2,0<b2<2,0<c2<2,a2+b2+c2=2)、LiMn 2-z1Ni z1O 4(0<z1<2)、LiMn 2-z2Co z2O 4(0<z2<2)、Li(Ni a3Co b3Al c3)O 2(0<a3<1,0<b3<1,0<c3<1,a3+b3+c3=1)、LiCoPO 4或LiFePO 4中的至少一种。
可选地,正极活性材料具有位于表面上的包覆层,本申请对包覆层的化合物没有特别限制,只要能实现本申请的目的即可,例如,包覆层的化合物可为非晶的或结晶的,包覆层的化合物可以包括但不限于包覆元素的氧化物、包覆元素的氢氧化物、包覆元素的羟基氧化物、包覆元素的碳酸氧盐或包覆元素的碱式碳酸盐中的至少一种。上述包覆元素可以包括但不限于Mg、Al、Co、K、Na、Ca、Si、Ti、V、Sn、Ge、Ga、B、As或Zr中的至少一种。本申请对包覆层的制备方法没有特别限制,可以使用本领域已知的制备方法,只要能实现本申请的目的即可,例如喷涂法或浸渍法。
正极材料层还可以包括正极粘结剂,本申请对正极粘结剂没有特别限制,只要能够实现本申请目的即可,例如可以包括但不限于聚乙烯醇、羧甲基纤维素、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂或尼龙中的至少一种。
在本申请中,正极材料层中还可以包括导电剂,本申请对导电剂没有特别限制,只要能够实现本申请目的即可,例如可以包括但不限于天然石墨、人造石墨、导电炭黑(Super P)、碳纳米管(CNTs)、碳纤维、鳞片石墨、科琴黑、石墨烯、金属材料或导电聚合物中的至少一种。上述碳纳米管可以包括但不限于单壁碳纳米管和/或多壁碳纳米管。上述碳纤维可以包括但不限于气相生长碳纤维(VGCF)和/或纳米碳纤维。上述金属材料可以包括但不限于金属粉和/或金属纤维,具体地,金属可以包括但不限于铜、镍、铝或银中的至少一种。上述导电聚合物可以包括但不限于聚亚苯基衍生物、聚苯胺、聚噻吩、聚乙炔或聚吡咯中的至少一种。
任选地,正极还可以包括导电层,导电层位于正极集流体和正极材料层之间。本申请对导电层的组成没有特别限制,可以是本领域常用的导电层,例如可以包括但不限于上述导电剂和上述正极粘结剂。
在本申请中,电化学装置还可以包括负极,负极通常包括负极集流体,本申请对负极集流体没有特别限制,只要能够实现本申请目的即可,例如,可以包括但不限于铜箔、铜合金箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜或复合集流体等。在本申请中,对负极的集流体的厚度没有特别限制,只要能够实现本申请目的即可,例如厚度为4μm至12μm。在本申请中,负极材料层可以设置于负极集流体厚度方向上的一个表面上,也可以设置于负极集流体厚度方向上的两个表面上。需要说明,这里的“表面”可以是负极集流体的全部区域,也可以是负极集流体的部分区域,本申请没有特别限制,只要能实现本申请目的即可。
本申请中,负极材料层包括负极活性材料,其中,负极活性材料没有特别限制,只要能实现本申请的目的即可,例如可以包括但不限于可逆地嵌入/脱嵌锂离子的材料、锂金属、锂金属合金、能够掺杂/脱掺杂锂的材料或过渡金属氧化物中的至少一种。
可逆地嵌入/脱嵌锂离子的材料可以包括但不限于碳材料,碳材料包括结晶碳和/或非晶碳。结晶碳可以包括但不限于无定形的或板形的、小片形的、球形的或纤维形的天然石墨、人造石墨、热解碳、中间相沥青基碳纤维、中间相碳微珠、中间相沥青或高温锻烧炭(如石油或衍生自煤焦油沥青的焦炭)。非晶碳可以包括但不限于软碳、硬碳、中间相沥青碳化产物或烧制焦炭中的至少一种。锂金属合金包括锂和Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Si、Sb、Pb、In、Zn、Ba、Ra、Ge、Al或Sn中的至少一种金属。能够掺杂/脱掺杂锂的材料可以包括但不限于Si、SiO x(0<x≤2)、Si/C复合物、Si-Q合金(其中, Q包括碱金属、碱土金属、第13族至第16族元素、过渡元素或稀土元素中的至少一种,但不为Si)、Sn、SnO 2、Sn-C复合物、Sn-R(其中,R包括碱金属、碱土金属、第13族至第16族元素、过渡元素或稀土元素中的至少一种,但不为Sn)等。Q和R各自独立第包括Mg、Ca、Sr、Ba、Ra、Sc、Y、Ti、Zr、Hf、Rf、V、Nb、Ta、Db、Cr、Mo、W、Sg、Tc、Re、Bh、Fe、Pb、Ru、Os、Hs、Rh、Ir、Pd、Pt、Cu、Ag、Au、Zn、Cd、B、Al、Ga、Sn、In、Tl、Ge、P、As、Sb、Bi、S、Se、Te或Po中的至少一种。过渡金属氧化物可以包括但不限于氧化钒和/或氧化锂钒。
在本申请中,负极材料层中还可以包括导电剂,本申请对导电剂没有特别限制,只要能够实现本申请目的即可,例如可以包括但不限于上述导电剂中的至少一种。
在本申请中,负极材料层中还可以包括负极粘结剂,本申请对负极粘结剂没有特别限制,只要能够实现本申请目的即可,例如可以包括但不限于二氟乙烯一六氟丙烯共聚物(PVDF-co-HFP),聚偏二氟乙烯、聚丙烯睛、聚甲基丙烯酸甲醋、聚乙烯醇、羧甲基纤维素、羟丙基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂或尼龙中的至少一种。
任选地,负极还可以包括导电层,导电层位于负极集流体和负极材料层之间。本申请对导电层的组成没有特别限制,可以是本领域常用的导电层,导电层可以包括但不限于上述导电剂和上述负极粘结剂。
本申请的电化学装置还包括隔膜,用以分隔正极和负极,防止锂离子电池内部短路,允许电解质离子自由通过,完成电化学充放电过程的作用。本申请中的隔膜没有特别限制,只要能够实现本申请目的即可。例如,聚乙烯(PE)、聚丙烯(PP)为主的聚烯烃(PO)类隔膜、聚酯膜(例如聚对苯二甲酸二乙酯(PET)膜)、纤维素膜、聚酰亚胺膜(PI)、聚酰胺膜(PA)、氨纶、芳纶膜、织造膜、非织造膜(无纺布)、微孔膜、复合膜、隔膜纸、碾压膜或纺丝膜等中的至少一种。例如,隔膜可以包括基材层和表面处理层。基材层可以为具有多孔结构的无纺布、膜或复合膜,基材层的材料可以包括聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰亚胺等中的至少一种。任选地,可以使用聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜。任选地,基材层的至少一个表面上设置有表面处理层,表面处理层可以是聚合物层或无机物层,也可以是混合聚合物与无机物所形成的层。例如,无机物层包括无机颗粒和粘结剂,所述无机颗粒没有特别限制,例如可以选自氧化铝、氧化硅、氧化镁、氧化钛、 二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙或硫酸钡等中的至少一种。所述粘结剂没有特别限制,例如可以选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯或聚六氟丙烯中的至少一种。聚合物层中包含聚合物,聚合物的材料包括聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚偏氟乙烯或聚(偏氟乙烯-六氟丙烯)等中的至少一种。
本申请的电化学装置没有特别限制,其可以包括发生电化学反应的任何装置。在一些实施例中,电化学装置可以包括但不限于:锂金属二次电池、锂离子二次电池(锂离子电池)、锂聚合物二次电池或锂离子聚合物二次电池等。
电化学装置的制备过程为本领域技术人员所熟知的,本申请没有特别的限制,例如,可以包括但不限于以下步骤:将正极、隔膜和负极按顺序堆叠,并根据需要将其卷绕、折叠等操作得到卷绕结构的电极组件,将电极组件放入包装壳内,将电解液注入包装壳并封口,得到电化学装置;或者,将正极、隔膜和负极按顺序堆叠,然后用胶带将整个叠片结构的四个角固定好得到叠片结构的电极组件,将电极组件置入包装壳内,将电解液注入包装壳并封口,得到电化学装置。此外,也可以根据需要将防过电流元件、导板等置于包装壳中,从而防止电化学装置内部的压力上升、过充放电。
本申请第三方面提供了一种电子装置,其包括本申请第二方面所述的电化学装置。该电子装置具有良好的循环性能和高温存储性能。
本申请的电子装置没有特别限制,其可以包括但不限于以下种类:笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
本申请提供了一种电解液、包含该电解液的电化学装置和电子装置,其中,电解液包括式(I-A)化合物。将包括式(I-A)化合物的电解液应用于电化学装置中,能够使电化学装置的正极表面形成稳定的正极固态界面膜、负极表面形成稳定的负极固态界面膜,从而有效改善电化学装置的循环性能和高温存储性能。包含该电化学装置的电子装置,也具有良好的高温存储性能和循环性能。
具体实施方式
为使本申请的目的、技术方案及优点更加清楚明白,以下参照实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他技术方案,都属于本申请保护的范围。
实施例
以下,举出实施例及对比例来对本申请的实施方式进行更具体地说明。各种的试验及评价按照下述的方法进行。
实施例1-1
<正极的制备>
将正极活性材料NCM811(LiNi 0.8Mn 0.1Co 0.1O 2)、导电剂乙炔黑、粘结剂聚偏二氟乙烯按照质量比为96:2:2进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌均匀,获得正极浆料,其中正极浆料的固含量为70wt%。将正极浆料均匀涂覆于厚度为12μm的正极集流体铝箔的一个表面上,将铝箔在120℃下烘干处理1h,得到单面涂覆有正极材料层的正极。在铝箔的另一个表面上重复以上步骤,即得到双面涂布正极材料层的正极。然后经过冷压、裁片、分切后,在120℃的真空条件下干燥1h,得到规格为74mm×867mm的正极,正极压实密度为3.50g/cm 3
<负极的制备>
将负极活性材料石墨、粘结剂丁苯橡胶、增稠剂羧甲基纤维素钠(CMC)按照质量比为97.4:1.4:1.2进行混合,加入去离子水,在真空搅拌机作用下获得负极浆料,其中负极浆料的固含量为75wt%。将负极浆料均匀涂覆于厚度为12μm的负极集流体铜箔的一个表面上,将铜箔在120℃下烘干,得到涂层厚度为130μm的单面涂覆有负极材料层的负极。在铝箔的另一个表面上重复以上步骤,即得到双面涂布负极材料层的负极。然后经过冷压、裁片、分切后,在120℃的真空条件下干燥1h,得到规格为76mm×851mm的负极,负极的压实密度为1.80g/cm 3
<电解液的制备>
在含水量<10ppm的氩气气氛手套箱中,将EC、PC、DEC按照质量比为30:30:40混合得到有机溶剂,然后向有机溶剂中加入第三锂盐六氟磷酸锂(LiPF 6)和式(I-A)化合物(I-1),得到电解液。其中,LiPF 6的浓度为1mol/L,基于电解液的质量,式(I-A)化合物的质量百分含量W I为0.1%,其余为第三锂盐和有机溶剂。
<隔膜的制备>
将氧化铝与聚偏二氟乙烯依照质量比90:10混合并将其溶入到去离子水中以形成固含量为50wt%的陶瓷浆料。随后采用微凹涂布法将陶瓷浆料均匀涂布到多孔基材(聚乙烯,厚度5μm,孔隙率为39%)的其中一面上,经过干燥处理以获得陶瓷涂层与多孔基材的双层结构,陶瓷涂层的厚度为3μm。
将聚偏二氟乙烯(PVDF)与聚丙烯酸酯依照质量比96:4混合并将其溶入到去离子水中以形成固含量为50wt%的聚合物浆料。随后采用微凹涂布法将聚合物浆料分别均匀涂布到上述陶瓷涂层与多孔基材的双层结构的两个表面上,经过干燥处理以获得隔膜,其中聚合物浆料形成的单层涂层厚度为2mg/(50×100mm 2)。
<锂离子电池的制备>
将上述制备得到的正极、隔膜、负极按顺序叠好,使隔膜处于正极和负极中间以起到隔离的作用,卷绕得到电极组件。将电极组件置于铝塑膜包装袋中,干燥后注入电解液,经过真空封装、静置、化成、脱气、切边等工序得到锂离子电池。化成上限电压为4.15V,化成温度为70℃,化成静置时间为2h。
实施例1-2至实施例1-14
除了按照表1调整式(I-A)化合物的种类和质量百分含量W I、有机溶剂的含量随之变化以外,其余与实施例1-1相同。
实施例2-1至实施例2-7
除了在<电解液的制备>中按照表2所示种类及质量百分含量进一步加入式(II-A)化合物、有机溶剂的含量随之变化以外,其余与实施例1-1相同。
实施例3-1至实施例3-4
除了在<电解液的制备>中按照表3所示种类及质量百分含量进一步加入第一锂盐、有机溶剂的含量随之变化以外,其余与实施例1-1相同。
实施例4-1至实施例4-8
除了在<电解液的制备>中按照表4所示种类及质量百分含量进一步加入硫氧双键化合物、有机溶剂的含量随之变化以外,其余与实施例1-1相同。
实施例5-1至实施例5-2
除了在<电解液的制备>中按照表5所示种类及质量百分含量进一步可选地加入式(II-A)化合物、第一锂盐和硫氧双键化合物、有机溶剂的含量随之变化以外,其余与实施例1-1相同。
实施例6-1
<正极的制备>
将正极活性材料LCO(分子式为LiCoO 2)、导电碳黑、导电浆料、粘结剂聚偏二氟乙烯按重量比97.9:0.4:0.5:1.2在适量的NMP溶剂中充分搅拌混合,在真空搅拌机作用下搅拌至体系成均一透明状,获得正极浆料,其中正极浆料的固含量为70wt%。将正极浆料均匀涂覆于厚度为12μm的正极集流体铝箔的一个表面上,将铝箔在120℃下烘干处理1h,得到单面涂覆有正极材料层的正极。在铝箔的另一个表面上重复以上步骤,即得到双面涂布正极材料层的正极。然后经过冷压、裁片、分切后,在120℃的真空条件下干燥1h,得到规格为74mm×867mm的正极,正极压实密度为4.15g/cm 3
<电解液的制备>
在含水量<10ppm的氩气气氛手套箱中,将EC、PC、DEC、EP、丙酸丙酯,按照20:20:20:20:20的质量比混合均匀得到有机溶剂,然后向有机溶剂中加入第三锂盐六氟磷酸锂(LiPF 6)和式(I-A)化合物(I-1),得到电解液。其中,LiPF 6的浓度为1mol/L,基于电解液的质量,式(I-A)化合物的质量百分含量W I为0.1%,其余为第三锂盐和有机溶剂。
<负极的制备>、<隔膜的制备>、<锂离子电池的制备>与实施例1-1相同。
实施例6-2至实施例6-8
除了在<电解液的制备>中按照表6所示种类及质量百分含量进一步加入多腈化合物、有机溶剂的含量随之变化以外,其余与实施例6-1相同。
实施例7-1至实施例7-7
除了在<电解液的制备>中按照表7所示种类及质量百分含量进一步加入环状碳酸酯和链状碳酸酯、有机溶剂的含量随之变化以外,其余与实施例6-1相同。
实施例8-1至实施例8-6
除了在<电解液的制备>中按照表8所示种类及质量百分含量进一步加入第二锂盐、有机溶剂的含量随之变化以外,其余与实施例6-1相同。
实施例9-1至实施例9-4
除了在<电解液的制备>中按照表9所示种类及质量百分含量进一步可选地加入多腈化合物、第二锂盐和硫氧双键化合物,有机溶剂的含量随之变化以外,其余与实施例6-1相同。
对比例1至对比例2
除了按照表1调整式(I-A)化合物的种类和质量百分含量W I、有机溶剂的含量随之变化以外,其余与实施例1-1相同。
将上述各实施例和对比例制得的锂离子电池按照如下测试方法和设备进行性能测试:
循环容量保持率测试:
在25℃条件下,将锂离子电池以1C充电至4.25V,在4.25V下恒压充电至0.05C。之后以4C的电流放电至2.8V,测试锂离子电池的容量记为首圈容量。以上述充放电过程为一个循环,循环测试800圈,测试锂离子电池的容量记为循环后容量。循环容量保持率(%)=首圈容量/循环后容量×100%。
高温存储性能测试:
将表1至表5中的各实施例和对比例制得的锂离子电池在25℃下以0.5C恒流充电至4.25V,然后恒压充电至电流为0.05C,测试锂离子电池的厚度并记为d 01;放置到85℃烘箱当中6h后测试锂离子电池的厚度,记为d 1。锂离子电池85℃存储6h后的厚度膨胀率(%)=(d 1-d 01)/d 01×100%。
将表6至表9中的各实施例制得的锂离子电池在25℃下以0.5C恒流充电至4.45V,然后恒压充电至电流为0.05C,测试锂离子电池的厚度并记为d 02,放置到85℃烘箱当中24h后测试锂离子电池的厚度,记为d 2。锂离子电池85℃存储24h后的厚度膨胀率(%)=(d 2-d 02)/d 02×100%。其中,厚度膨胀率大于50%则停止测试,表6至表9中厚度膨胀率“大于50%”即表示测试时间小于24h时厚度膨胀率已超过50%,则停止测试。
浮充性能的测试:
将锂离子电池在25℃下以0.5C放电至3.0V,再以0.5C充电至4.45V,4.45V下恒压充电至0.05C,测试锂离子电池的厚度并记为d 03,放置到45℃烘箱当中,4.45V恒压充电30天,监控厚度变化,厚度记为d 3,锂离子电池浮充的厚度膨胀率(%)=(d 3-d 03)/d 03×100%,厚度膨胀率大于50%则停止测试。
各实施例和对比例的制备参数和性能参数如表1至表9所示:
表1
Figure PCTCN2021142076-appb-000021
Figure PCTCN2021142076-appb-000022
注:表1中的“\”表示无对应制备参数或性能参数。表1中的“-”表示对比例1和对比例2的锂离子电池在循环容量保持率测试中的循环圈数未达到800圈。
从实施例1-1至实施例1-9和对比例1可以看出,锂离子电池的循环性能和高温存储性能随着式(I-A)化合物的种类的变化而变化。含有本申请范围内的式(I-A)化合物的锂离子电池,具有更好的循环性能和高温存储性能。
式(I-A)化合物的质量百分含量W I通常也会对锂离子电池的循环性能和高温存储性能产生影响。从实施例1-1、实施例1-10至实施例1-14和对比例2可以看出,式(I-A)化合物的质量百分含量W I在本申请范围内的锂离子电池,具有更好的循环性能和高温存储性能。
表2
Figure PCTCN2021142076-appb-000023
注:表2中的“\”表示无对应制备参数或性能参数。
式(II-A)化合物的种类和质量百分含量W II、以及W I/W II的值通常也会对锂离子电池的循环性能和高温存储性能产生影响。从实施例1-1、实施例2-1至实施例2-7可以看出,式(II-A)化合物的种类和质量百分含量W II、以及W I/W II的值在本申请范围内的锂 离子电池,具有良好的循环性能和高温存储性能。
表3
Figure PCTCN2021142076-appb-000024
注:表3中的“\”表示无对应制备参数或性能参数。
第一锂盐的种类和质量百分含量W L1通常也会对锂离子电池的循环性能和高温存储性能产生影响。从实施例1-1、实施例3-1至实施例3-4可以看出,第一锂盐的种类和质量百分含量W L1在本申请范围内的锂离子电池,具有良好的循环性能和高温存储性能。
表4
Figure PCTCN2021142076-appb-000025
注:表4中的“\”表示无对应制备参数或性能参数。
硫氧双键化合物的种类和质量百分含量W S、以及W I/W S的值通常也会对锂离子电池的循环性能和高温存储性能产生影响。从实施例1-1、实施例4-1至实施例4-8可以看出,硫氧双键化合物的种类和质量百分含量W S、以及W I/W S的值在本申请范围内的锂离子电池,具有良好的循环性能和高温存储性能。
表5
Figure PCTCN2021142076-appb-000026
注:表5中的“\”表示无对应制备参数。
式(I-A)化合物可选地和式(II-A)化合物、第一锂盐或硫氧双键化合物中的至少两种组合使用,对锂离子电池的循环性能和浮充性能产生影响。从实施例1-1、实施例5-1和实施例5-2可以看出,式(I-A)化合物与式(II-A)化合物、第一锂盐或硫氧双键化合物具有良好的兼容性和可叠加性,组合使用得到的锂离子电池均具有良好的循环性能和浮充性能。
表6
Figure PCTCN2021142076-appb-000027
注:表6中的“\”表示无对应制备参数或性能参数。
多腈化合物的种类和质量百分含量W D通常也会对锂离子电池的高温存储性能和浮充性能产生影响。从实施例6-1至实施例6-8可以看出,多腈化合物的种类和质量百分含量W D在本申请范围内的锂离子电池,具有良好的高温存储性能和浮充性能。
表7
Figure PCTCN2021142076-appb-000028
注:表7中的“\”表示无对应制备参数或性能参数。
第一非水有机溶剂的种类和质量百分含量W H、环状碳酸酯和链状碳酸酯的质量比和环状碳酸酯和羧酸酯的质量比通常也会对锂离子电池的循环性能和高温存储性能产生影响。从实施例6-1、实施例7-1至实施例7-7可以看出,第一非水有机溶剂的种类和质量百分含量W H、环状碳酸酯和链状碳酸酯的质量比和环状碳酸酯和羧酸酯的质量比在本申请范围内的锂离子电池,具有良好的循环性能和高温存储性能。从实施例7-1至实施例7-5可以看出,第一非水有机溶剂的质量百分含量W H在本申请优选范围内的锂离子电池,具有更好的循环性能。
表8
Figure PCTCN2021142076-appb-000029
Figure PCTCN2021142076-appb-000030
注:表8中的“\”表示无对应制备参数或性能参数。
第二锂盐的种类和质量百分含量W L2通常也会对锂离子电池的循环性能、浮充性能和高温存储性能产生影响。从实施例6-1、实施例8-1至实施例8-6可以看出,第二锂盐的种类和质量百分含量W L2在本申请范围内的锂离子电池,具有良好的循环性能、浮充性能和高温存储性能。相较于实施例6-1,实施例8-1至实施例8-6尤其具有更好的循环性能。
表9
Figure PCTCN2021142076-appb-000031
注:表9中的“\”表示无对应制备参数或性能参数。
式(I-A)化合物可选地和硫氧双键化合物、多腈化合物或第二锂盐中的至少两种组合使用,对锂离子电池的循环性能、浮充性能和高温存储性能产生影响。从实施例6-1、 实施例9-1至实施例9-4可以看出,式(I-A)化合物与硫氧双键化合物、多腈化合物或第二锂盐具有良好的兼容性和可叠加性,组合使用得到的锂离子电池均具有良好的高温存储性能和浮充性能。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (24)

  1. 一种电解液,其包括式(I-A)化合物:
    Figure PCTCN2021142076-appb-100001
    其中,
    A 1选自式(I-B)亚基、式(I-C)亚基或式(I-D)亚基:
    Figure PCTCN2021142076-appb-100002
    X和Y各自独立地选自式(I-E)亚基、式(I-F)亚基、式(I-G)亚基或式(I-H)亚基:
    Figure PCTCN2021142076-appb-100003
    Figure PCTCN2021142076-appb-100004
    表示与相邻原子的结合位点;
    R 12和R 17各自独立地选自经取代或未经取代的C 1至C 10的烷基、经取代或未经取代的C 2至C 10的烯基、经取代或未经取代的C 2至C 10的炔基、经取代或未经取代的C 6至C 10的芳基、经取代或未经取代的C 3至C 10的脂环烃基、经取代或未经取代的C 1至C 10的脂杂环基、经取代或未经取代的C 1至C 10的芳杂环基,经取代时,各取代基各自独立地选自卤原子;
    R 11、R 13、R 14、R 15、R 16、R 18和R 19各自独立地选自单键、经取代或未经取代的C 1至C 10的亚烷基、经取代或未经取代的C 2至C 10的亚烯基、经取代或未经取代的C 2至C 10的亚炔基、经取代或未经取代的C 6至C 10的亚芳基、经取代或未经取代的C 3至C 10的亚脂环烃基、经取代或未经取代的C 1至C 10的亚脂杂环基、经取代或未经取代的C 1至C 10的亚芳杂环基,经取代时,各取代基各自独立地选自卤原子;
    所述脂杂环基、所述芳杂环基、所述亚脂杂环基和所述亚芳杂环基中的杂原子各自独立地包括N、S或O。
  2. 根据权利要求1所述的电解液,其中,所述式(I-A)化合物包括以下化合物(I-1)至(I-38)中的至少一个:
    Figure PCTCN2021142076-appb-100005
    Figure PCTCN2021142076-appb-100006
  3. 根据权利要求1所述的电解液,其中,基于所述电解液的质量,所述式(I-A)化合物的质量百分含量W I为0.01%至5%。
  4. 根据权利要求3所述的电解液,其中,所述电解液还包括式(II-A)化合物:
    Figure PCTCN2021142076-appb-100007
    其中,
    R 21和R 22各自独立地选自经取代或未经取代的C 1至C 5的烷基、经取代或未经取代的C 2至C 5的烯基、经取代或未经取代的C 2至C 5的炔基,经取代时,各取代基各自独立地选自卤原子或甲基,R 21和R 22可以构成闭环结构。
  5. 根据权利要求4所述的电解液,其中,所述式(II-A)化合物包括以下化合物(II-1)至(II-12)中的至少一个:
    Figure PCTCN2021142076-appb-100008
  6. 根据权利要求4所述的电解液,其中,所述电解液满足以下(a)或(b)中的至少一者:
    (a)基于所述电解液的质量,所述式(II-A)化合物的质量百分含量W II为0.05%至3%;
    (b)基于所述电解液的质量,所述式(I-A)化合物的质量百分含量W I与所述式 (II-A)化合物的质量百分含量W II满足:0<W I/W II≤10。
  7. 根据权利要求1所述的电解液,其中,所述电解液还包括第一锂盐,所述第一锂盐包括二氟磷酸锂、二氟双草酸磷酸锂或四氟草酸磷酸锂中的至少一种。
  8. 根据权利要求7所述的电解液,其中,基于所述电解液的质量,所述第一锂盐的质量百分含量W L1为0.1%至1%。
  9. 根据权利要求3所述的电解液,其中,所述电解液还包括硫氧双键化合物,所述硫氧双键化合物包括式(III-A)化合物:
    Figure PCTCN2021142076-appb-100009
    其中,
    A 3选自式(III-B)亚基、式(III-C)亚基、式(III-D)亚基、式(III-E)亚基、式(III-F)亚基、式(III-G)亚基、式(III-H)亚基或式(III-I)亚基中的任意一种:
    Figure PCTCN2021142076-appb-100010
    Figure PCTCN2021142076-appb-100011
    表示与相邻原子的结合位点;
    R 31和R 32各自独立地选自经取代或未经取代的C 1至C 5的烷基、经取代或未经取代的C 2至C 10的烯基、经取代或未经取代的C 2至C 10的炔基、经取代或未经取代的C 3至C 10的脂环基、经取代或未经取代的C 6至C 10的芳基、经取代或未经取代的C 1至C 6的脂杂环基、经取代或未经取代的C 1至C 6的芳杂环基、经取代或未经取代的C 1至C 3的磺酰氧基烷基,经取代时,各取代基各自独立地选自卤原子、C 1至C 3的烷基、C 2至C 3的烯基或C 2至C 3的炔基,R 31和R 32可以构成闭环结构;
    所述脂杂环基和所述芳杂环基中的杂原子各自独立地包括N、S或O。
  10. 根据权利要求9所述的电解液,其中,所述式(III-A)化合物包括以下化合物(III-1)至(III-53)中的至少一种:
    Figure PCTCN2021142076-appb-100012
    Figure PCTCN2021142076-appb-100013
  11. 根据权利要求9所述的电解液,其中,所述式(III-A)化合物包括以下化合物中的至少一种:
    Figure PCTCN2021142076-appb-100014
  12. 根据权利要求9所述的电解液,其中,所述电解液满足以下(c)或(d)中的至少一种:
    (c)基于所述电解液的质量,所述硫氧双键化合物的质量百分含量W S为0.01%至10%;
    (d)基于所述电解液的质量,所述式(I-A)化合物的质量百分含量W I与所述硫氧双键化合物的质量百分含量W S满足:0<W I/W S≤1。
  13. 根据权利要求1所述的电解液,其中,所述电解液还包括多腈化合物,所述多腈化合物包括以下化合物(i-1)至(i-16)中的至少一种:
    Figure PCTCN2021142076-appb-100015
  14. 根据权利要求13所述的电解液,其中,基于所述电解液的质量,所述多腈化合物的质量百分含量W D为0.3%至10%。
  15. 根据权利要求1所述的电解液,其中,所述电解液还包括第一非水有机溶剂,所述第一非水有机溶剂包括环状碳酸酯、链状碳酸酯或羧酸酯中的至少一种。
  16. 根据权利要求15所述的电解液,其中,所述环状碳酸酯包括式(IV-A)化合物:
    Figure PCTCN2021142076-appb-100016
    其中,R 4选自经取代或未经取代的C 1至C 6亚烷基、经取代或未经取代的C 2至C 6亚烯基,经取代时,各取代基各自独立地选自卤原子、C 1至C 6烷基或C 2至C 6烯基。
  17. 根据权利要求16所述的电解液,其中,所述式(IV-A)化合物包括以下化合物(IV-1)至(IV-12)中的至少一种:
    Figure PCTCN2021142076-appb-100017
  18. 根据权利要求15所述的电解液,其中,
    所述链状碳酸酯包括碳酸二甲酯、碳酸甲乙酯、氟甲基碳酸甲酯、双(氟甲基)碳酸酯、二氟甲基碳酸甲酯、乙基(氟甲基)碳酸酯、二氟甲基乙基碳酸酯、2-氟乙基甲基碳酸酯、2-氟乙基(氟甲基)碳酸酯、2,2-二氟乙基甲基碳酸酯、2,2-二氟乙基碳酸乙酯、2,2,2-三氟乙基碳酸乙酯、(2-氟乙基)碳酸乙酯、双(2-氟乙基)碳酸酯、2,2-二氟乙基(2-氟乙基)碳酸酯、双(2,2-二氟乙基)碳酸酯、双(2,2,2-三氟乙基)碳酸酯、碳酸甲丙酯或碳酸乙丙酯中的至少一种;
    所述羧酸酯包括甲酸甲酯、甲酸乙酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸甲酯、丙酸乙酯、乙酸2,2-二氟乙酯或2,2-二氟乙酸乙酯中的至少一种。
  19. 根据权利要求15所述的电解液,其中,所述电解液满足以下(e)至(g)中的至少一种:
    (e)基于所述电解液的质量,所述环状碳酸酯的质量百分含量W H为0.01%至30%;
    (f)所述环状碳酸酯和所述链状碳酸酯的质量比为(10-60):40;
    (g)所述环状碳酸酯和所述羧酸酯的质量比为(10-60):(20-60)。
  20. 根据权利要求3所述的电解液,其中,所述电解液还包括第二锂盐,所述第二锂盐包括式(V-A)化合物:
    Figure PCTCN2021142076-appb-100018
    其中,
    A 51、A 52、A 53和A 54各自独立地选自卤原子、式(V-B)基团、式(V-C)基团或式(V-D)基团,A 51、A 52、A 53和A 54中相邻的两个基团可以构成闭环结构:
    Figure PCTCN2021142076-appb-100019
    Figure PCTCN2021142076-appb-100020
    表示与相邻原子的结合位点;
    式(V-C)基团的两个结合位点中的O与B连接,k为0或1;
    R 51和R 53各自独立地选自经取代或未经取代的C 1至C 6的烷基、经取代或未经取代的C 2至C 6的烯基,经取代时,各取代基各自独立地选自卤原子;
    R 52选自经取代或未经取代的C 1至C 6的亚烷基、经取代或未经取代的C 2至C 6的烯基,经取代时,各取代基各自独立地选自卤原子。
  21. 根据权利要求20所述的电解液,其中,所述式(V-A)化合物包括四氟硼酸锂、二草酸硼酸锂或二氟草酸硼酸锂中的至少一种。
  22. 根据权利要求20所述的电解液,其中,基于所述电解液的质量,所述第二锂盐的质量百分含量W L2为0.1%至2%。
  23. 一种电化学装置,其包括权利要求1至22中任一项所述的电解液。
  24. 一种电子装置,其包括权利要求23所述的电化学装置。
PCT/CN2021/142076 2021-12-28 2021-12-28 一种电解液、包含该电解液的电化学装置和电子装置 WO2023122956A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180026202.1A CN115443569A (zh) 2021-12-28 2021-12-28 一种电解液、包含该电解液的电化学装置和电子装置
PCT/CN2021/142076 WO2023122956A1 (zh) 2021-12-28 2021-12-28 一种电解液、包含该电解液的电化学装置和电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142076 WO2023122956A1 (zh) 2021-12-28 2021-12-28 一种电解液、包含该电解液的电化学装置和电子装置

Publications (1)

Publication Number Publication Date
WO2023122956A1 true WO2023122956A1 (zh) 2023-07-06

Family

ID=84240900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142076 WO2023122956A1 (zh) 2021-12-28 2021-12-28 一种电解液、包含该电解液的电化学装置和电子装置

Country Status (2)

Country Link
CN (1) CN115443569A (zh)
WO (1) WO2023122956A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116544514B (zh) * 2023-07-07 2024-03-08 宁德新能源科技有限公司 一种电化学装置和电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208920A (ja) * 2002-01-16 2003-07-25 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
CN102119463A (zh) * 2008-08-04 2011-07-06 宇部兴产株式会社 非水电解液及使用了该非水电解液的锂电池
JP2012104439A (ja) * 2010-11-12 2012-05-31 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
CN112599854A (zh) * 2020-12-11 2021-04-02 宁德新能源科技有限公司 电解液、电化学装置及电子装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391460B (zh) * 2018-04-20 2021-02-02 宁德时代新能源科技股份有限公司 电解液及电池
CN112119530B (zh) * 2019-12-24 2022-10-11 宁德新能源科技有限公司 电解液以及使用其的电化学装置和电子装置
CN113366687B (zh) * 2020-09-23 2023-08-29 宁德新能源科技有限公司 电解液、电化学装置及电子装置
CN113711412B (zh) * 2020-12-30 2024-05-28 宁德新能源科技有限公司 电解液、电化学装置及电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208920A (ja) * 2002-01-16 2003-07-25 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
CN102119463A (zh) * 2008-08-04 2011-07-06 宇部兴产株式会社 非水电解液及使用了该非水电解液的锂电池
JP2012104439A (ja) * 2010-11-12 2012-05-31 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
CN112599854A (zh) * 2020-12-11 2021-04-02 宁德新能源科技有限公司 电解液、电化学装置及电子装置

Also Published As

Publication number Publication date
CN115443569A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
KR102612376B1 (ko) 전해액, 전기화학장치 및 전자장치
CN113809399B (zh) 一种电解液、包含该电解液的电化学装置和电子装置
WO2018120794A1 (zh) 电解液及二次电池
CN112400249A (zh) 一种电解液及电化学装置
CN110518286A (zh) 电解液及包括电解液的电化学装置及电子装置
WO2022142093A1 (zh) 电解液、电化学装置及电子装置
KR20190078991A (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022061582A1 (zh) 电解液、电化学装置及电子装置
WO2023164794A1 (zh) 电化学装置及包含该电化学装置的电子装置
WO2022141283A1 (zh) 电解液、电化学装置及电子装置
WO2023122956A1 (zh) 一种电解液、包含该电解液的电化学装置和电子装置
WO2021128203A1 (zh) 一种电解液及电化学装置
CN114221034B (zh) 一种电化学装置及包含该电化学装置的电子装置
WO2023039750A1 (zh) 一种负极复合材料及其应用
WO2023123464A1 (zh) 电解液、包含该电解液的电化学装置及电子装置
CN114400375A (zh) 电解液、电化学装置及电子装置
CN109904520B (zh) 非水电解液及二次电池
WO2021196019A1 (zh) 一种电解液及电化学装置
CN116053461B (zh) 电化学装置和包括其的电子装置
CN112670580B (zh) 电解液、电化学装置及电子装置
CN113921908B (zh) 一种电化学装置及包含该电化学装置的电子装置
WO2024026835A1 (zh) 复合负极活性材料及其制备方法、以及包含其的负极极片、二次电池及用电装置
WO2024040510A1 (zh) 二次电池的制备方法、二次电池及用电装置
WO2021174417A1 (zh) 一种电解液及电化学装置
WO2022193122A1 (zh) 补锂添加剂及包含其的电化学装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969336

Country of ref document: EP

Kind code of ref document: A1