WO2016054843A1 - 一种锂离子电池非水电解液及锂离子电池 - Google Patents

一种锂离子电池非水电解液及锂离子电池 Download PDF

Info

Publication number
WO2016054843A1
WO2016054843A1 PCT/CN2014/089138 CN2014089138W WO2016054843A1 WO 2016054843 A1 WO2016054843 A1 WO 2016054843A1 CN 2014089138 W CN2014089138 W CN 2014089138W WO 2016054843 A1 WO2016054843 A1 WO 2016054843A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion battery
carbonate
electrolyte
nonaqueous electrolyte
Prior art date
Application number
PCT/CN2014/089138
Other languages
English (en)
French (fr)
Inventor
石桥
胡时光
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2016054843A1 publication Critical patent/WO2016054843A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a battery and a battery using the same, and more particularly to a nonaqueous electrolyte and a lithium ion battery for a lithium ion battery.
  • lithium-ion batteries are widely used in portable electronic products due to their high energy density, high operating voltage, long life, and environmental protection.
  • Lithium-ion batteries are mainly composed of positive and negative electrodes, electrolytes and separators.
  • the positive electrode is mainly a transition metal oxide containing lithium
  • the negative electrode is mainly a carbon material. Since the average discharge voltage of a lithium ion battery is about 3.6-3.7 V, it is necessary to select an electrolyte component which is stable in a charge/discharge voltage of 0-4.2V. For this reason, a lithium ion battery uses an organic solvent mixture in which a lithium salt is dissolved as an electrolytic solution.
  • Preferred organic solvents should have high ionic conductivity, high dielectric constant and low viscosity. However, it is difficult for a single organic solvent to satisfy these requirements at the same time.
  • a mixture of a high dielectric constant organic solvent and a low viscosity organic solvent is generally used as a solvent for a lithium ion battery electrolyte.
  • a lithium ion battery generally uses a mixture comprising a cyclic carbonate solvent (such as ethylene carbonate) and a linear carbonate solvent (such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate) as a solvent, and lithium hexafluorophosphate as a solute.
  • a cyclic carbonate solvent such as ethylene carbonate
  • a linear carbonate solvent such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate
  • the electrolyte reacts with the surface of the carbon anode to generate lithium alkyl carbonate, Li 2 CO 3 , Li 2 O, LiOH, etc., thereby forming a passivation film on the surface of the carbon anode.
  • the passivation film is referred to as a solid electrolyte interface (SEI) film. Since lithium ions must pass through this layer of SEI film, whether it is charged or discharged, the performance of the SEI film determines many properties of the battery (such as cycle performance, high temperature performance, rate performance). After the first charge is formed, the SEI film can prevent further decomposition of the electrolyte solvent and form an ion channel in the subsequent charge and discharge cycle.
  • SEI solid electrolyte interface
  • the repeated expansion and contraction of the electrode may cause cracking or gradual dissolution of the SEI film, and the exposed anode continues to react with the electrolyte while generating gas, thereby increasing the internal pressure of the battery and significantly lowering The cycle life of the battery.
  • the SEI film is more likely to be destroyed, resulting in battery swelling and a significant decrease in cycle performance.
  • the electrolyte will also decompose on the surface of the positive electrode, especially in the high voltage system, the electrolyte will be more seriously decomposed on the surface of the positive electrode.
  • Decomposition of the electrolyte on the surface of the positive electrode consumes a limited amount of active lithium, resulting in capacity decay. When the excess electrolyte in the battery system is exhausted, the battery cycle will show a diving phenomenon. At the same time, the decomposition of the electrolyte on the surface of the positive electrode exacerbates the elution of the positive metal ions, which further leads to deterioration of the battery performance.
  • 201310046105.6 discloses an electrolyte containing a double bond phosphate compound, which effectively improves the high temperature storage and cycle performance of the battery, but we have found that a phosphate compound containing a double bond is in the electrolyte. It is unstable, especially the allyl-containing phosphate compound, and its content in the electrolyte is continuously lowered over time, which results in unsatisfactory battery performance.
  • the batteries in the above patents are still not ideal in high-temperature storage performance and cycle performance. At higher temperatures, decomposition of the electrolyte may occur and cause inflation, which poses a serious safety hazard, especially in high-voltage systems. The decomposition reaction of the electrolyte is intensified. Therefore, it is necessary to develop new additives to enter one. Improve the high temperature storage performance and high temperature cycle performance of lithium ion batteries.
  • the technical problem to be solved by the present invention is to provide a lithium ion battery nonaqueous electrolyte capable of improving high temperature storage and circulation performance, and further to provide a lithium ion battery including the lithium ion battery nonaqueous electrolyte.
  • a first aspect of the present invention provides a lithium ion battery nonaqueous electrolyte comprising an organic solvent, a lithium salt, and a phosphate compound.
  • the structural formula of the phosphate compound is:
  • R 1 , R 2 and R 3 are each independently selected from a hydrocarbon group having 1 to 4 carbon atoms, and at least one of R 1 , R 2 and R 3 is an unsaturated hydrocarbon group having a hydrazone bond.
  • a second aspect of the present invention provides a lithium ion battery comprising a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is the lithium ion battery nonaqueous electrolyte provided in the first aspect.
  • the lithium ion battery non-aqueous electrolyte provided by the present invention can form a stable passivation film on the surface of the negative electrode by adding a phosphate compound containing an unsaturated hydrazone bond, and can further prevent decomposition of the electrolyte.
  • the phosphate ester containing an unsaturated hydrazine bond can also form a protective film on the surface of the positive electrode, which can further prevent the electrolyte from being oxidatively decomposed on the surface of the positive electrode and suppress the dissolution of the positive electrode metal ion, especially when the charging voltage is equal to or greater than 4.35V. The effect is more obvious.
  • the phosphate compound containing a hydrazone bond can be stably present in an electrolyte as compared with a phosphate containing a double bond. Therefore, the lithium ion battery provided by the present invention has better high temperature storage performance and high temperature cycle performance.
  • the invention provides a nonaqueous electrolyte for a lithium ion battery, which comprises an organic solvent, a lithium salt and a phosphate compound, and the structural formula of the phosphate compound is:
  • R 1 , R 2 and R 3 are each independently selected from a hydrocarbon group having 1 to 4 carbon atoms, and at least one of R 1 , R 2 and R 3 is an unsaturated hydrocarbon group having a hydrazone bond.
  • R 2 is an ethynyl group.
  • R 2 in the phosphoric acid group is bonded to acetylene.
  • R 2 is a propynyl group.
  • R 2 in the phosphoric acid group is linked to propyne.
  • the phosphate compound accounts for 0.01% to 2% by weight of the total electrolyte.
  • VC vinylene carbonate
  • 1,3-propane sultone (1,3-PS) 1,3-propane sultone
  • FEC fluoroethylene carbonate
  • VEC vinyl vinyl carbonate
  • the film-forming additive can form a more stable SEI film on the surface of the graphite negative electrode, thereby significantly improving the cycle performance of the lithium ion battery.
  • the organic solvent is a cyclic carbonate or/and a chain carbonate selected from one or more of ethylene carbonate, propylene carbonate and butylene carbonate.
  • the chain carbonate is one or more selected from the group consisting of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and methyl propyl carbonate.
  • the present embodiment uses a mixture of a high dielectric constant cyclic carbonate organic solvent and a low viscosity chain carbonate organic solvent as a solvent for a lithium ion battery electrolyte, so that the organic solvent mixture is simultaneously It has high ionic conductivity, high dielectric constant and low viscosity.
  • the lithium salt is selected from the group consisting of LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) 3 and One or more of LiN(SO 2 F) 2 .
  • the present embodiment gives a specific range of the selection of the lithium salt, and the lithium salt is preferably a mixture of LiPF 6 or LiPF 6 and other lithium salts.
  • a lithium ion battery of the present invention comprises a positive electrode, a negative electrode and a separator interposed between the positive electrode and the negative electrode, and further comprises a nonaqueous electrolyte solution of the above lithium ion battery.
  • the positive electrode material of the positive electrode is selected from the group consisting of LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCo 1-y M y O 2 , LiNi 1-y M y O 2 , LiMn 2-y M y O 4 and LiNi one kind of 2 x Co y Mn z M 1 -xyz O , or two or more thereof, wherein, M is selected Fe, Co, Ni, Mn, Mg, Cu, Zn, Al, Sn, B, Ga, Cr, Sr One or more of V, Ti, and 0 ⁇ y ⁇ 1, 0 ⁇ x ⁇ 1, 0 ⁇ z ⁇ 1, x + y + z ⁇ 1.
  • the concentration is 1 mol/L, and then 0.5% of the compound 1 based on the total mass of the electrolyte is added (the compound 1, the compound 2 in the specific embodiment refers to the corresponding numbered compound listed in Table 1, below)
  • the positive active material lithium nickel cobalt manganese oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 , conductive carbon black Super-P and binder polyvinylidene fluoride (PVDF) were mixed at a mass ratio of 93:4:3, and then they were mixed.
  • Dispersion in N-methyl-2-pyrrolidone (NMP) gave a positive electrode slurry. The slurry was uniformly coated on both sides of the aluminum foil, dried, calendered and vacuum dried, and the aluminum lead wire was welded by an ultrasonic welder to obtain a positive electrode plate having a thickness of 120-150 ⁇ m.
  • the natural graphite, the conductive carbon black Super-P, the binder styrene butadiene rubber (SBR) and the carboxymethyl cellulose (CMC) are mixed at a mass ratio of 94:1:2.5:2.5, and then dispersed.
  • a negative electrode slurry was obtained.
  • the slurry was coated on both sides of the copper foil, dried, calendered and vacuum dried, and the nickel lead wire was welded by an ultrasonic welder to obtain a negative electrode plate having a thickness of 120-150 ⁇ m.
  • a polyethylene microporous film having a thickness of 20 ⁇ m is placed as a separator between the positive electrode plate and the negative electrode plate, and then a sandwich structure composed of a positive electrode plate, a negative electrode plate and a separator is wound, and the wound body is flattened and placed in a square aluminum.
  • the lead wires of the positive and negative electrodes are respectively welded to the corresponding positions of the cover plate, and the cover plate and the metal shell are welded together by a laser welding machine to obtain a battery core to be injected.
  • the electrolyte prepared above is injected into the cell through the injection hole, and the amount of the electrolyte is required to fill the gap in the cell. Then proceed according to the following steps: 0.05C constant current charging for 3min, 0.2C constant current charging for 5min, 0.5C constant current charging for 25min, after 1 hr, after shaping, sealing, and then further charging to 4.2V with constant current of 0.2C, leaving at room temperature After 24 hr, it was discharged at a constant current of 0.2 C to 3.0 V.
  • the battery was charged at a constant current of 1 C at room temperature to 4.2 V and then charged at a constant voltage until the current dropped to 0.1 C, and then discharged at a constant current of 1 C to 3.0 V.
  • the cycle was repeated for 300 weeks, and the discharge capacity of the first week was recorded. 300 weeks of discharge capacity, the capacity retention rate of the normal temperature cycle is calculated by the following formula:
  • Capacity retention rate discharge capacity at week 300 / discharge capacity at week 1 * 100%
  • the battery was placed in an oven at a constant temperature of 45 ° C, charged at a constant current of 1 C to 4.2 V and then charged at a constant voltage until the current dropped to 0.1 C, and then discharged at a constant current of 1 C to 3.0 V, thus circulating for 300 weeks, recording
  • the discharge capacity at the first week and the discharge capacity at the 300th week are calculated by the following formula:
  • Capacity retention rate discharge capacity at week 300 / discharge capacity at week 1 * 100%
  • the battery was charged at a constant current of 1 C at room temperature to 4.2 V and then charged at a constant voltage until the current dropped to 0.1 C.
  • the thickness of the battery was measured, and then the battery was placed in an oven at a constant temperature of 85 ° C for 4 hours, and the battery was allowed to cool to room temperature after being taken out.
  • calculate the thickness expansion ratio of the battery as follows:
  • Thickness expansion ratio (battery thickness after storage - battery thickness before storage) / battery thickness before storage * 100%
  • the data of the normal temperature cycle, the high temperature cycle and the high temperature storage obtained by the test were the same as those of the example 1, except that 0.5% of the compound 1 was replaced with 0.5% of the compound 2 in the preparation of the electrolyte.
  • the data of the normal temperature cycle, the high temperature cycle and the high temperature storage obtained by the test were the same as those of the example 1, except that 0.5% of the compound 1 was replaced with 0.5% of the compound 4 in the preparation of the electrolyte.
  • the data of the normal temperature cycle, the high temperature cycle and the high temperature storage obtained by the test were the same as those in the example 1, except that 0.5% of the compound 1 was replaced with 0.5% of the compound 5 in the preparation of the electrolyte.
  • the data of the normal temperature cycle, the high temperature cycle and the high temperature storage obtained by the test were the same as those in the case of the preparation of the electrolyte except that the compound 1 was not added.
  • the data of the normal temperature cycle, the high temperature cycle and the high temperature storage obtained by the test were the same as those in the example 1, except that 0.5% of the compound 1 was changed to 0.01% of the compound 1 in the preparation of the electrolyte.
  • the data of the normal temperature cycle, the high temperature cycle and the high temperature storage obtained by the test were the same as those in the example 1, except that 0.5% of the compound 1 was replaced with 1% of the compound 1 in the preparation of the electrolyte.
  • the data of the normal temperature cycle, the high temperature cycle and the high temperature storage obtained by the test were the same as those in the example 1, except that 0.5% of the compound 1 was changed to 2% of the compound 1 in the preparation of the electrolyte.
  • Example 2 The normal temperature cycle and high temperature were tested in the same manner as in Example 1 except that 0.5% of Compound 1 was replaced with 1% of vinyl vinyl carbonate (VEC) and 0.5% of Compound 1 in the preparation of the electrolyte.
  • VEC vinyl vinyl carbonate
  • Table 4 The data of circulation and high temperature storage are shown in Table 4.
  • the data of the normal temperature cycle, high temperature cycle and high temperature storage obtained by the test are the same as those in the first embodiment except that 0.5% of the compound 1 is replaced with 1% of vinyl vinyl carbonate (VEC) in the preparation of the electrolyte. 4.
  • VEC vinyl vinyl carbonate
  • Example 5 The same as in Example 1, except that 0.5% of Compound 1 was replaced with 1% of vinylene carbonate (VC) in the preparation of the positive electrode material LiNi 0.5 Co 0.2 Mn 0.3 O 2 for LiCoO 2 and the electrolytic solution.
  • VC vinylene carbonate
  • Example 2 The same as Example 1 except that 0.5% of Compound 1 was replaced with 1% of vinylene carbonate (VC) in the preparation of the positive electrode material LiNi 0.5 Co 0.2 Mn 0.3 O 2 for LiMn 2 O 4 and the electrolytic solution.
  • VC vinylene carbonate
  • the data of the normal temperature cycle, the high temperature cycle, and the high temperature storage obtained by the test are the same as those of the first embodiment except that the charge cut-off voltage is changed to 4.35 V.
  • Example 6 The normal temperature cycle and high temperature cycle were tested in the same manner as in Example 1, except that the positive electrode material LiNi 0.5 Co 0.2 Mn 0.3 O 2 was changed to LiCoO 2 and the charge cut-off potential was changed to 4.35 V, and the compound 1 was not added in the preparation of the electrolytic solution. And the data stored at high temperature are shown in Table 6.
  • the non-aqueous electrolyte solution for a lithium ion battery provided by the present invention can effectively improve the thermal stability of the SEI film at a high temperature, and the SEI film of the electrode surface of the lithium ion battery of the present invention has a high temperature condition. Good stability, good cycle performance and high temperature storage performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种锂离子电池非水电解液,包括有机溶剂、锂盐和磷酸酯类化合物。本发明还涉及一种锂离子电池。本发明的用于锂离子电池的非水电解液具有改善电池的高温储存性能及循环性能的有益效果。

Description

一种锂离子电池非水电解液及锂离子电池 技术领域
本发明涉及电池用电解液和使用该电解液的电池,特别涉及一种锂离子电池非水电解液及锂离子电池。
背景技术
近年来,随着电子技术的发展及市场需求,消费者对便携式电子产品如照相机、数码摄像机、移动电话、笔记本电脑等的体积、重量、功能及使用寿命提出了更高的要求。因此,开发与便携式电子产品相配套的电源产品,尤其是开发高能量密度、长寿命及高安全性的二次电池是行业发展的迫切需求。
与铅酸电池、镍镉电池、镍氢电池相比,锂离子电池因其能量密度大、工作电压高、寿命长、绿色环保等特点,广泛应用于便携式电子产品中。
锂离子电池主要由正、负极、电解液及隔膜组成。正极主要是含锂的过渡金属氧化物,负极主要是炭材料。由于锂离子电池的平均放电电压约为3.6-3.7V,需要选用在0-4.2V的充电/放电电压内稳定的电解液组分。为此,锂离子电池使用溶有锂盐的有机溶剂混合液作为电解液。优选的有机溶剂应该具有高的离子电导率,高的介电常数及低的粘度。然而,单一的有机溶剂很难同时满足这些要求,所以,一般将高介电常数的有机溶剂与低粘度的有机溶剂混合液作为锂离子电池电解液的溶剂。例如:锂离子电池通常使用包含环状碳酸酯溶剂(如碳酸亚乙酯)和线性碳酸酯溶剂(如碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯)的混合物作为溶剂,六氟磷酸锂作为溶质的电解液。
锂离子电池在首次充电过程中,电解液与碳阳极表面发生反应,产生烷基碳酸锂、Li2CO3、Li2O、LiOH等物质,从而在碳阳极表面形成一层钝化膜,该钝化膜称之为固体电解液界面(SEI)膜。由于不管是充电还是放电,锂离子必须通过这层SEI膜,所以SEI膜的性能决定了电池的许多性能(如循环性能,高温性能,倍率性能)。SEI膜在首次充电形成后,能够阻止电解液溶剂的进一步分解,并在随后的充放电循环中形成离子通道。然而,随着充放电的进行, 电极重复的膨胀和收缩SEI膜可能发生破裂或逐渐溶解,随之暴露的阳极继续与电解液发生反应,同时产生气体,从而增加电池的内压,并显著降低电池的循环寿命。尤其是电池在高温条件下储存及在高温条件下进行充放电循环,SEI膜更容易被破坏,从而导致电池鼓胀及循环性能明显下降。此外,在充放电过程中电解液也会在正极表面发生分解反应,尤其是在高电压体系中,电解液在正极表面分解会更加严重。电解液在正极表面分解会消耗有限的活性锂,导致容量衰减。当电池体系中富余的电解液被消耗殆尽时,电池循环会出现跳水现象。与此同时,电解液在正极表面分解会加剧正极金属离子的溶出,进一步导致电池性能的恶化。
由于SEI膜的质量对锂离子电池的高温储存性能及循环性能至关重要,因此通过调控来改善SEI膜的质量对实现高性能锂离子电池是十分必要的。为了解决这个问题,人们尝试在电解液中添加少量的添加剂来改善SEI膜,以期改善锂离子电池的性能。科研工作者经过努力开发了一系列成膜添加剂如碳酸亚乙烯酯(VC)、乙烯基碳酸乙烯酯(VEC)、氟代碳酸乙烯酯(FEC)等,它们能在石墨负极表面形成更稳定的SEI,从而显著提高了锂离子电池的循环性能。此外,日本松下电器产业株式会社在中国申请号00801010.2的专利公开了一种含(R1a)P=(O)(OR2a)(OR3a)(其中,R1a、R2a、R3a表示独立的碳原子数为7-12的脂肪族烃基)化合物的电解液,其有效地控制了随着充放电循环的进行而出现的放电容量下降和高温保存时电池特性下降的现象。韩国三星SDI株式会社在中国申请号200410001479.7专利中公开了一种含有(R1O)P=(OR2)(CH=C(R3)(R4))化合物的电解液,其有效地防止电池膨胀及提高了电池的可靠性。申请号为201310046105.6的中国专利中公开了一种含双键的磷酸酯化合物的电解液,其有效地提高电池的高温储存及循环性能,但我们研究发现,含双键的磷酸酯化合物在电解液中不稳定,尤其是含烯丙基的磷酸酯化合物,其在电解液中的含量随时间推移不断降低,这导致电池性能无法得到保证。
上述专利中的电池在高温储存性能及循环性能上仍不够理想,在较高的温度下仍会出现电解液的分解而导致气胀,从而带来严重的安全隐患,尤其是在高电压体系中,电解液的分解反应会加剧。因此有必要开发新的添加剂来进一 步提高锂离子电池的高温储存性能及高温循环性能。
发明内容
本发明所要解决的技术问题是:提供一种能够提高高温储存及循环性能的锂离子电池非水电解液,进一步提供包含所述锂离子电池非水电解液的锂离子电池。
为了解决上述技术问题,本发明第一方面提供一种锂离子电池非水电解液,包括有机溶剂、锂盐和磷酸酯类化合物。所述磷酸酯类化合物的结构式为:
Figure PCTCN2014089138-appb-000001
其中,R1、R2、R3分别独立地选自碳原子数为1-4的烃基,且R1、R2、R3中至少一个为含有叁键的不饱和烃基。
本发明第二方面提供一种锂离子电池,包括正极、负极和置于正极与负极之间的隔膜以及电解液,其中所述电解液为第一方面提供的锂离子电池非水电解液。
本发明的有益效果在于:
相对现有技术,本发明提供的锂离子电池非水电解液由于添加含不饱和叁键的磷酸酯化合物,能够在负极表面形成稳定的钝化膜,可以进一步阻止电解液的分解。此外含不饱和叁键的磷酸酯也能在正极表面形成保护膜,可以进一步阻止电解液在正极表面被氧化分解,同时抑制正极金属离子的溶出,尤其是在充电电压等于或大于4.35V时,其效果更加明显。与含双键的磷酸酯相比,含叁键的磷酸酯化合物能够在电解液中稳定存在。因此本发明的提供的锂离子电池具有更好的高温储存性能及高温循环性能。
具体实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式予 以说明。
本发明提供一种用于锂离子电池的非水电解液,包括有机溶剂、锂盐和磷酸酯类化合物,所述磷酸酯类化合物的结构式为:
Figure PCTCN2014089138-appb-000002
其中,R1、R2、R3分别独立地选自碳原子数为1-4的烃基,且R1、R2、R3中至少一个为含有叁键的不饱和烃基。
进一步的,所述R2为乙炔基。
由上述描述可知,本实施例的磷酸酯类化合物的结构中磷酸基团中R2与乙炔连接。
进一步的,所述R2为丙炔基。
由上述描述可知,本实施例的磷酸酯类化合物的结构中磷酸基团中R2与丙炔连接。
另将结构1所述的化合物中的示范性化合物在表1中示出,但不限制于此。
表1
Figure PCTCN2014089138-appb-000003
Figure PCTCN2014089138-appb-000004
进一步的,所述磷酸酯类化合物占电解液总重量的0.01%-2%。
由上述描述可知,当磷酸酯类化合物在电解液中的含量低于0.01%时,无法在电极表面形成有效的钝化膜,不能阻止溶剂分子在电极表面进一步分解。当磷酸酯类化合物在电解液中的含量高于2%时,在电极表面形成的钝化膜过厚,导致电池阻抗明显增加,从而导致电池性能恶化。
进一步的,还包括碳酸亚乙烯酯(VC)、1,3-丙烷磺内酯(1,3-PS)、氟代碳酸乙烯酯(FEC)和乙烯基碳酸乙烯酯(VEC)中的一种或两种以上。
由上述描述可知,所述成膜添加剂能在石墨负极表面形成更稳定的SEI膜,从而显著提高了锂离子电池的循环性能。
进一步的,所述有机溶剂为环状碳酸酯或/和链状碳酸酯,所述环状碳酸酯选自碳酸乙烯酯、碳酸丙烯酯和碳酸丁烯酯中的一种或两种以上,所述链状碳酸酯选自碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的一种或两种以上。
由上述描述可知,本实施例采用高介电常数的环状碳酸酯有机溶剂与低粘度的链状碳酸酯有机溶剂的混合液作为锂离子电池电解液的溶剂,使得该有机溶剂的混合液同时具有高的离子电导率、高的介电常数及低的粘度。
进一步的,所述锂盐选自LiPF6、LiBF4、LiSbF6、LiAsF6、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiC(SO2CF3)3和LiN(SO2F)2中的一种或两种以上。
由上述描述可知,本实施例给出锂盐的选取的具体范围,所述锂盐优选的是LiPF6或LiPF6与其它锂盐的混合物。
本发明的一种锂离子电池,包括正极、负极和置于正极与负极之间的隔膜,还包括上述锂离子电池非水电解液。
进一步的,所述正极的正极材料选自LiCoO2、LiNiO2、LiMn2O4、LiCo1-yMyO2、LiNi1-yMyO2、LiMn2-yMyO4和LiNixCoyMnzM1-x-y-zO2中的一种或两种以上,其中,M选自Fe、Co、Ni、Mn、Mg、Cu、Zn、Al、Sn、B、Ga、Cr、Sr、V和Ti中的一种或两种以上,且0≤y≤1,0≤x≤1,0≤z≤1,x+y+z≤1。
实施例1
1)电解液的制备
将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为EC:DEC:EMC=1:1:1进行混合,然后加入六氟磷酸锂(LiPF6)至摩尔浓度为1mol/L,再加入按电解液的总质量计0.5%的化合物1(具体实施方式中所指代的化合物1、化合物2……是指表1中所罗列的对应编号的化合物,下面各例同理)所示的磷酸酯化合物。
2)正极板的制备
按93:4:3的质量比混合正极活性材料锂镍钴锰氧化物LiNi0.5Co0.2Mn0.3O2,导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将它们分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,极板的厚度在120-150μm。
3)负极板的制备
按94:1:2.5:2.5的质量比混合负极活性材料改性天然石墨,导电碳黑Super-P,粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,极板的厚度在120-150μm。
4)电芯的制备
在正极板和负极板之间放置厚度为20μm的聚乙烯微孔膜作为隔膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入方形铝制金属壳中,将正负极的引出线分别焊接在盖板的相应位置上,并用激光焊接机将盖板和金属壳焊接为一体,得到待注液的电芯。
5)电芯的注液和化成
在露点控制在-40℃以下的手套箱中,将上述制备的电解液通过注液孔注入电芯中,电解液的量要保证充满电芯中的空隙。然后按以下步骤进行化成:0.05C恒流充电3min,0.2C恒流充电5min,0.5C恒流充电25min,搁置1hr后整形封口,然后进一步以0.2C的电流恒流充电至4.2V,常温搁置24hr后,以0.2C的电流恒流放电至3.0V。
6)常温循环性能测试
在室温下以1C的电流恒流充电至4.2V然后恒压充电至电流下降至0.1C,然后以1C的电流恒流放电至3.0V,如此循环300周,记录第1周的放电容量和第300周的放电容量,按下式计算常温循环的容量保持率:
容量保持率=第300周的放电容量/第1周的放电容量*100%
7)高温循环性能测试
将电池置于恒温45℃的烘箱中,以1C的电流恒流充电至4.2V然后恒压充电至电流下降至0.1C,然后以1C的电流恒流放电至3.0V,如此循环300周,记录第1周的放电容量和第300周的放电容量,按下式计算高温循环的容量保持率:
容量保持率=第300周的放电容量/第1周的放电容量*100%
8)高温储存性能测试
在室温下以1C的电流恒流充电至4.2V然后恒压充电至电流下降至0.1C,测量电池的厚度,然后将电池置于恒温85℃的烘箱中储存4h,取出后让电池冷却到室温,测量电池的厚度,按下式计算电池的厚度膨胀率:
厚度膨胀率=(储存后的电池厚度-储存前的电池厚度)/储存前的电池厚度*100%
实施例2
除了电解液的制备中将0.5%的化合物1换成0.5%的化合物2之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表2。
实施例3
除了电解液的制备中将0.5%的化合物1换成0.5%的化合物4之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表2。
实施例4
除了电解液的制备中将0.5%的化合物1换成0.5%的化合物5之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表2。
比较例1
除了电解液的制备中不添加化合物1之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表2。
表2
Figure PCTCN2014089138-appb-000005
由表2的数据可以看出,与不含添加剂的电解液相比,添加了磷酸酯化合物的电解液所制得的电池的常温循环性能、高温循环性能和高温储存性能均有明显提高。
实施例5
除了电解液的制备中将0.5%的化合物1换成0.01%的化合物1之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表3。
实施例6
除了电解液的制备中将0.5%的化合物1换成0.1%的化合物1之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表3。
实施例7
除了电解液的制备中将0.5%的化合物1换成1%的化合物1之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表3。
实施例8
除了电解液的制备中将0.5%的化合物1换成2%的化合物1之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表3。
表3
Figure PCTCN2014089138-appb-000006
从表3的数据可以看出,当化合物1在电解液中的添加量从0.01%提高到0.1%时,电池的常温循环性能、高温循环和高温储存性能逐渐提高,但是当添加量达到2%时,电池的常温循环性能和高温循环性能有所下降。
实施例9
除了电解液的制备中将0.5%的化合物1换成1%的碳酸亚乙烯酯(VC)与0.5%的化合物1的组合之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表4。
实施例10
除了电解液的制备中将0.5%的化合物1换成1%的氟代碳酸乙烯酯(FEC) 与0.5%的化合物1的组合之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表4。
实施例11
除了电解液的制备中将0.5%的化合物1换成1%的乙烯基碳酸乙烯酯(VEC)与0.5%的化合物1的组合之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表4。
比较例2
除了电解液的制备中将0.5%的化合物1换成1%的碳酸亚乙烯酯(VC)之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表4。
比较例3
除了电解液的制备中将0.5%的化合物1换成1%的氟代碳酸乙烯酯(FEC)之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表4。
比较例4
除了电解液的制备中将0.5%的化合物1换成1%的乙烯基碳酸乙烯酯(VEC)之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表4。
表4
Figure PCTCN2014089138-appb-000007
从表4的数据可以看出,在使用VC、FEC或VEC的基础上,进一步添加化合物1可以使电池获得更好的高温储存性能,同时常温循环性能和高温循环性能也有提高。
实施例12
除了将正极材料LiNi0.5Co0.2Mn0.3O2换成LiNi1/3Co1/3Mn1/3O2及电解液的制备中将0.5%的化合物1换成1%的碳酸亚乙烯酯(VC)与0.5%的化合物1的组合之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表5。
实施例13
除了将正极材料LiNi0.5Co0.2Mn0.3O2换成LiNi0.8Co0.15Al0.05O2及电解液的制备中将0.5%的化合物1换成1%的碳酸亚乙烯酯(VC)与0.5%的化合物1的组合之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表5。
实施例14
除了将正极材料LiNi0.5Co0.2Mn0.3O2换成LiCoO2及电解液的制备中将0.5%的化合物1换成1%的碳酸亚乙烯酯(VC)与0.5%的化合物1的组合之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表5。
实施例15
除了将正极材料LiNi0.5Co0.2Mn0.3O2换成LiMn2O4及电解液的制备中将0.5% 的化合物1换成1%的碳酸亚乙烯酯(VC)与0.5%的化合物1的组合之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表5。
比较例5
除了将正极材料LiNi0.5Co0.2Mn0.3O2换成LiNi1/3Co1/3Mn1/3O2及电解液的制备中将0.5%的化合物1换成1%的碳酸亚乙烯酯(VC)之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表5。
比较例6
除了将正极材料LiNi0.5Co0.2Mn0.3O2换成LiNi0.8Co0.15Al0.05O2及电解液的制备中将0.5%的化合物1换成1%的碳酸亚乙烯酯(VC)之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表5。
比较例7
除了将正极材料LiNi0.5Co0.2Mn0.3O2换成LiCoO2及电解液的制备中将0.5%的化合物1换成1%的碳酸亚乙烯酯(VC)之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表5。
比较例8
除了将正极材料LiNi0.5Co0.2Mn0.3O2换成LiMn2O4及电解液的制备中将0.5%的化合物1换成1%的碳酸亚乙烯酯(VC)之外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表5。
表5
Figure PCTCN2014089138-appb-000009
Figure PCTCN2014089138-appb-000010
从表5的数据可以看出,在以LiNi1/3Co1/3Mn1/3O2、LiNi0.8Co0.15Al0.05O2、LiCoO2、LiMn2O4为正极材料的锂离子电池中,添加化合物1也可以改善电池的高温储存性能,同时也能提高电池的常温循环性能和高温循环性能。
实施例16
除了将正极材料LiNi0.5Co0.2Mn0.3O2换成LiCoO2及充电截至电压变为4.35V以外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表6。
实施例17
除了将充电截至电压变为4.35V以外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表6。
比较例9
除了将正极材料LiNi0.5Co0.2Mn0.3O2换成LiCoO2和充电截至电位变为4.35V及电解液制备中不添加化合物1以外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表6。
比较例10
除了将充电截至电压变为4.35V及电解液制备中不添加化合物1以外,其它与实施例1相同,测试得到的常温循环、高温循环及高温储存的数据见表6。
表6
Figure PCTCN2014089138-appb-000011
从表6的数据可以看出,在以LiNi1/3Co1/3Mn1/3O2、LiCoO2为正极材料的高电压锂离子电池中,添加化合物1也可以明显改善电池的高温储存性能,同时也能提高电池的常温循环性能和高温循环性能。
综上所述,本发明提供的用于锂离子电池的非水电解液的可以有效提高SEI膜在高温下的热稳定性,本发明的锂离子电池的电极表面的SEI膜在高温条件下具有稳定性好的优点,具有良好的循环性能及高温储存性能。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种锂离子电池非水电解液,其特征在于,包括有机溶剂、锂盐和磷酸酯类化合物,所述磷酸酯类化合物的结构式为:
    Figure PCTCN2014089138-appb-100001
    其中,R1、R2、R3分别独立地选自碳原子数为1-4的烃基,且R1、R2、R3中至少一个为含有叁键的不饱和烃基。
  2. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述R2为乙炔基。
  3. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述R2为丙炔基。
  4. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述磷酸酯类化合物占电解液总重量的0.01%-2%。
  5. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,还包括碳酸亚乙烯酯、1,3-丙烷磺内酯、氟代碳酸乙烯酯和乙烯基碳酸乙烯酯中的一种或两种以上。
  6. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述有机溶剂为环状碳酸酯和链状碳酸酯的混合物,所述环状碳酸酯选自碳酸乙烯酯、碳酸丙烯酯和碳酸丁烯酯中的一种或两种以上,所述链状碳酸酯选自碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的一种或两种以上。
  7. 根据权利要求1所述的锂离子电池非水电解液,其特征在于,所述锂盐选自LiPF6、LiBF4、LiSbF6、LiAsF6、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiC(SO2CF3)3和LiN(SO2F)2中的一种或两种以上。
  8. 一种锂离子电池,包括正极、负极和置于正极与负极之间的隔膜,其特征在于,还包括权利要求1至7任意一项所述的锂离子电池非水电解液。
  9. 根据权利要求8所述的锂离子电池,其特征在于,所述正极选自LiCoO2、LiNiO2、LiMn2O4、LiCo1-yMyO2、LiNi1-yMyO2、LiMn2-yMyO4和LiNixCoyMnzM1-x-y-zO2中的一种或两种以上,其中,M选自Fe、Co、Ni、Mn、Mg、Cu、Zn、Al、Sn、B、Ga、 Cr、Sr、V和Ti中的一种或两种以上,且0≤y≤1,0≤x≤1,0≤z≤1,x+y+z≤1。
  10. 根据权利要求8或9所述的锂离子电池,其特征在于,所述锂离子电池的充电截止电压大于或等于4.35V。
PCT/CN2014/089138 2014-10-11 2014-10-22 一种锂离子电池非水电解液及锂离子电池 WO2016054843A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410534841.0A CN104300174A (zh) 2014-10-11 2014-10-11 一种锂离子电池非水电解液及锂离子电池
CN201410534841.0 2014-10-11

Publications (1)

Publication Number Publication Date
WO2016054843A1 true WO2016054843A1 (zh) 2016-04-14

Family

ID=52319816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089138 WO2016054843A1 (zh) 2014-10-11 2014-10-22 一种锂离子电池非水电解液及锂离子电池

Country Status (2)

Country Link
CN (1) CN104300174A (zh)
WO (1) WO2016054843A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513542A (ja) * 2015-11-04 2018-05-24 シェンヂェン キャプケム テクノロジー カンパニー リミテッドShenzhen Capchem Technology Co., Ltd. リチウムイオン電池用非水電解液及びリチウムイオン電池
EP3547432A4 (en) * 2016-11-25 2020-07-22 Shenzhen Capchem Technology Co., Ltd. LITHIUM-ION BATTERY
CN112310466A (zh) * 2019-07-31 2021-02-02 深圳新宙邦科技股份有限公司 锂离子电池非水电解液及包含该电解液的锂离子电池
CN113433027A (zh) * 2021-06-28 2021-09-24 中南大学 一种锂离子电池材料的性能预测方法
US20220059868A1 (en) * 2017-04-28 2022-02-24 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159321A (zh) * 2015-03-31 2016-11-23 比亚迪股份有限公司 一种锂离子电池非水电解液和锂离子电池
CN105140561A (zh) * 2015-07-08 2015-12-09 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN105161763A (zh) * 2015-08-03 2015-12-16 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN105140566A (zh) * 2015-08-03 2015-12-09 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN110247114A (zh) 2015-12-18 2019-09-17 深圳新宙邦科技股份有限公司 一种锂离子电池用电解液及锂离子电池
CN108110317A (zh) 2016-11-25 2018-06-01 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN108110319A (zh) * 2016-11-25 2018-06-01 惠州市宙邦化工有限公司 锂离子电池非水电解液及锂离子电池
CN106953118B (zh) * 2016-11-25 2020-01-07 惠州市宙邦化工有限公司 一种用于锂离子电池的非水电解液和锂离子电池
CN108110322A (zh) * 2016-11-25 2018-06-01 深圳新宙邦科技股份有限公司 一种用于锂离子电池的非水电解液及锂离子电池
US11362370B2 (en) 2016-11-25 2022-06-14 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium-ion battery and lithium-ion battery
CN108336404B (zh) * 2017-01-20 2020-07-10 比亚迪股份有限公司 一种锂离子电池非水电解液和锂离子电池
CN108808084B (zh) 2017-04-28 2020-05-08 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN108808065B (zh) 2017-04-28 2020-03-27 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN108808086B (zh) 2017-04-28 2020-03-27 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN108963336B (zh) * 2017-05-17 2020-03-27 深圳新宙邦科技股份有限公司 锂离子电池非水电解液及锂离子电池
CN108933292B (zh) 2017-05-27 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN109326823B (zh) 2017-07-31 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液及锂离子电池
CN109326824B (zh) 2017-07-31 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液及锂离子电池
CN109950620B (zh) * 2017-12-20 2021-05-14 深圳新宙邦科技股份有限公司 一种锂离子电池用非水电解液及锂离子电池
CN108470939A (zh) * 2018-03-31 2018-08-31 广东天劲新能源科技股份有限公司 一种大倍率耐高温的电解液及锂离子电池
CN110911743B (zh) * 2018-09-14 2021-10-15 多氟多新材料股份有限公司 一种锂离子电池电解液添加剂、锂离子电池电解液及锂离子电池
CN111224159A (zh) 2018-11-23 2020-06-02 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子电池
CN111354978A (zh) * 2020-03-09 2020-06-30 东莞维科电池有限公司 一种高电压三元锂离子电池电解液及高电压三元锂离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077029A (ja) * 2009-09-07 2011-04-14 Adeka Corp 非水電解液及び該電解液を用いた非水電解液二次電池
CN103038931A (zh) * 2010-08-31 2013-04-10 株式会社艾迪科 非水电解液二次电池
US20140272607A1 (en) * 2013-03-14 2014-09-18 Uchicago Argonne Llc Non-aqueous electrolyte for lithium-ion battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2353751A1 (en) * 2000-11-27 2002-05-27 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
JP5506030B2 (ja) * 2009-12-09 2014-05-28 株式会社デンソー 電池用非水電解液及び該電解液を用いた非水電解液二次電池
WO2012120597A1 (ja) * 2011-03-04 2012-09-13 株式会社デンソー 電池用非水電解液及び該電解液を用いた非水電解液二次電池
CN103594729B (zh) * 2013-11-28 2015-11-18 深圳新宙邦科技股份有限公司 一种用于锂离子电池的电解液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077029A (ja) * 2009-09-07 2011-04-14 Adeka Corp 非水電解液及び該電解液を用いた非水電解液二次電池
CN103038931A (zh) * 2010-08-31 2013-04-10 株式会社艾迪科 非水电解液二次电池
US20140272607A1 (en) * 2013-03-14 2014-09-18 Uchicago Argonne Llc Non-aqueous electrolyte for lithium-ion battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513542A (ja) * 2015-11-04 2018-05-24 シェンヂェン キャプケム テクノロジー カンパニー リミテッドShenzhen Capchem Technology Co., Ltd. リチウムイオン電池用非水電解液及びリチウムイオン電池
EP3547432A4 (en) * 2016-11-25 2020-07-22 Shenzhen Capchem Technology Co., Ltd. LITHIUM-ION BATTERY
US20220059868A1 (en) * 2017-04-28 2022-02-24 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
US11302956B2 (en) * 2017-04-28 2022-04-12 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
US11876169B2 (en) * 2017-04-28 2024-01-16 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolyte for lithium ion battery and lithium ion battery
CN112310466A (zh) * 2019-07-31 2021-02-02 深圳新宙邦科技股份有限公司 锂离子电池非水电解液及包含该电解液的锂离子电池
CN113433027A (zh) * 2021-06-28 2021-09-24 中南大学 一种锂离子电池材料的性能预测方法

Also Published As

Publication number Publication date
CN104300174A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2016054843A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2017020431A1 (zh) 一种锂离子电池非水电解液及锂离子电池
US10826123B2 (en) Lithium-ion battery electrolyte and lithium-ion battery
WO2020248567A1 (zh) 一种降低电池阻抗的锂二次电池电解液及其锂二次电池
WO2017084109A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2017004885A1 (zh) 一种锂离子电池非水电解液及锂离子电池
CN109585921B (zh) 一种锂离子电池非水电解液及锂离子电池
WO2017020430A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2016110123A1 (zh) 一种非水电解液及锂离子二次电池
CN103107363B (zh) 一种锂离子电池用非水电解液及其相应的锂离子电池
WO2017101141A1 (zh) 一种锂离子电池用电解液及锂离子电池
WO2018006565A1 (zh) 一种使用非水电解液的锂离子电池
CN103367804B (zh) 一种锂离子电池用非水电解液及使用该非水电解液的锂离子电池
US20220109191A1 (en) Non-aqueous electrolyte for a lithium ion battery and lithium ion battery
US10497975B2 (en) Lithium ion battery non-aqueous electrolyte and lithium ion battery
WO2021135920A1 (zh) 一种锂离子电池
WO2018006564A1 (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
CN113130992B (zh) 一种非水电解液及锂离子电池
WO2017020429A1 (zh) 一种高电压锂离子电池用非水电解液及锂离子电池
WO2017004820A1 (zh) 一种锂离子电池非水电解液及锂离子电池
US11489199B2 (en) Non-aqueous electrolyte for lithium ion battery and lithium ion battery
WO2020087667A1 (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
WO2021238052A1 (zh) 一种锂离子二次电池的电解液及其应用
WO2020135584A1 (zh) 一种电池电解液正极成膜添加剂及使用该添加剂的电解液和锂离子电池
JP2014067629A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903800

Country of ref document: EP

Kind code of ref document: A1