WO2018006565A1 - 一种使用非水电解液的锂离子电池 - Google Patents

一种使用非水电解液的锂离子电池 Download PDF

Info

Publication number
WO2018006565A1
WO2018006565A1 PCT/CN2016/113014 CN2016113014W WO2018006565A1 WO 2018006565 A1 WO2018006565 A1 WO 2018006565A1 CN 2016113014 W CN2016113014 W CN 2016113014W WO 2018006565 A1 WO2018006565 A1 WO 2018006565A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion battery
additive
electrolyte
carbonate
Prior art date
Application number
PCT/CN2016/113014
Other languages
English (en)
French (fr)
Inventor
石桥
林木崇
胡时光
张海玲
郭琦
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Priority to JP2018556843A priority Critical patent/JP6751158B2/ja
Priority to US16/085,541 priority patent/US20200303774A1/en
Publication of WO2018006565A1 publication Critical patent/WO2018006565A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of lithium ion battery technology, and more particularly to a lithium ion battery using LiFePO 4 as a positive electrode active material and including vinylene carbonate as a nonaqueous electrolyte additive.
  • Lithium-ion batteries have the characteristics of high specific energy, large specific power and long cycle life.
  • non-aqueous electrolyte lithium-ion batteries have been widely used in 3C consumer electronic products, and with the development of new energy vehicles, non-aqueous electrolytes Lithium-ion batteries are also becoming more common in the field of energy storage and power.
  • lithium-ion batteries With the wide application of lithium-ion batteries, the performance of lithium-ion batteries has higher requirements. In order to reduce the cost, lithium-ion batteries are required to have a higher cycle life; in order to improve the adaptability to the environment, lithium-ion batteries are required. Can balance high and low temperature performance.
  • the non-aqueous electrolyte is a key factor affecting the cycle life and high-temperature performance of the battery.
  • the additive in the non-aqueous electrolyte is particularly important for the performance of the high-low temperature performance and cycle life of the battery.
  • the practical non-aqueous electrolyte uses a conventional film-forming additive such as vinylene carbonate (VC) to ensure the cycle performance of the battery.
  • VC vinylene carbonate
  • the impedance of VC is large, and it is difficult to balance the low-temperature performance of the battery. As the market demands for battery life is getting higher and higher, the use of VC alone cannot meet the cycle life requirement.
  • the invention provides a lithium ion battery with long cycle life and high and low temperature performance of a battery, which is realized by the following technical solutions:
  • a lithium ion battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte of a lithium ion battery;
  • the active material of the positive electrode includes LiFePO 4 ;
  • the nonaqueous electrolyte of the lithium ion battery includes nonaqueous water
  • An organic solvent, a lithium salt, and an additive comprising at least (A) vinylene carbonate, and further comprising: (B) at least one of a compound represented by Structural Formula 1 and (C) fluorobenzene;
  • n is a natural number of 1 to 3
  • R 1 , R 2 , R 3 and R 4 are each independently selected from the group consisting of a hydrogen atom, a fluorine atom, and an alkyl group having 1 to 6 carbon atoms.
  • the above additive (A) accounts for 0.2% to 5%, preferably 0.5% to 3%, based on the total mass of the above electrolyte.
  • the above additive (B) accounts for 0.1% to 5%, preferably 0.5% to 3%, based on the total weight of the above electrolyte.
  • the above additive (C) accounts for 0.1% to 20%, preferably 1% to 10%, based on the total mass of the above electrolyte.
  • the compound represented by the above Structural Formula 1 is a vinyl sulfate or a 1,3-propanediol sulfate.
  • the non-aqueous organic solvent is selected from the group consisting of ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, vinyl sulfite, and sub One or more of propylene sulfate, diethyl sulfite, ⁇ -butyrolactone, dimethyl sulfoxide, ethyl acetate, methyl acetate, ethyl propionate, methyl propionate or tetrahydrofuran.
  • the above lithium salt is selected from the group consisting of LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC (SO 2 ) One or more of CF 3 ) 3 or LiN(SO 2 F) 2 .
  • the active material of the above negative electrode is artificial graphite.
  • the nonaqueous electrolyte used in the lithium ion battery of the present invention introduces a low-impedance additive (B) and/or fluorobenzene as an additive for promoting wetting, based on a film-forming additive vinylene carbonate (VC).
  • B low-impedance additive
  • VC film-forming additive vinylene carbonate
  • the positive electrode material of the lithium ion battery using the nonaqueous electrolyte of the present invention is selected from LiFePO 4 .
  • the nonaqueous electrolyte used in the lithium ion battery of the present invention uses vinylene carbonate (VC) as an additive, and at the same time, at least one of the compound represented by Structural Formula 1 and fluorobenzene is introduced as an additive, and they pass through the same system. Synergistically, the lithium ion battery nonaqueous electrolyte of the present invention has a long cycle life while being excellent in high and low temperature performance of the battery.
  • VC vinylene carbonate
  • the invention adds vinylene carbonate, can form a film on the negative electrode, protect the negative electrode, and improve the cycle life of the battery.
  • the content of the vinylene carbonate is preferably from 0.2% to 5%, more preferably from 0.5% to 3%, based on the total weight of the electrolyte. When the content of vinylene carbonate is less than 0.2%, the film formation is poor, and the performance is not improved as much as possible; when the content is more than 5%, the film formation at the electrode interface is thicker and will be seriously increased. Battery impedance, degrading battery performance.
  • the present invention adds the compound represented by Structural Formula 1,
  • n is a natural number of 1 to 3
  • R 1 , R 2 , R 3 and R 4 are each independently selected from the group consisting of a hydrogen atom, a fluorine atom and an alkyl group having 1 to 6 carbon atoms.
  • the compound represented by Structural Formula 1 can lower the impedance of the electrolyte, improve the low temperature performance and cycle performance of the battery, and has no adverse effect on high temperature performance.
  • the content of the compound represented by Structural Formula 1 is preferably from 0.1% to 5%, more preferably from 0.5% to 3%, based on the total weight of the electrolyte.
  • the effect of lowering the impedance of the electrolytic solution is not sufficiently significant, so that the effect of improving the low-temperature performance and the cycle performance of the battery is insufficient; when the content is more than 5%, the high-temperature property is side effect.
  • R 1 , R 2 , R 3 and R 4 in the compound represented by Structural Formula 1 are selected from a hydrogen atom, a fluorine atom or an alkyl group having 1 to 6 carbon atoms, they have substantially equivalent resistance properties.
  • an alkyl group having 6 or more carbon atoms is selected as a substituent, a significant change in impedance performance may occur, which is disadvantageous in reducing the impedance of the electrolytic solution. Therefore, in the present invention, an alkyl group having 6 or more carbon atoms is not selected as a substituent.
  • vinyl sulfate (DTD) is used as the compound represented by Structural Formula 1, and a good long cycle life can be obtained while the battery has excellent high-low temperature performance. Therefore, the compound represented by Structural Formula 1 may be one or more selected from the group consisting of vinyl sulfate and 1,3-propanediol sulfate; and vinyl sulfate is the most preferable compound of the present invention.
  • the addition of fluorobenzene as an additive can promote the infiltration of the electrolyte, improve the liquid retention, and improve the cycle performance of the battery.
  • the content of fluorobenzene is preferably from 0.1% to 20%, more preferably from 1% to 10%, based on the total weight of the electrolyte. When the content of fluorobenzene is less than 0.1%, the effect of promoting the infiltration of the electrolyte is not obvious; and when the content is more than 20%, the excess fluorobenzene will polymerize in the positive electrode, increasing the impedance of the battery and deteriorating the power of the battery.
  • the vinylene carbonate is present in an amount of from 0.2% to 5% by weight based on the total weight of the electrolyte; and the compound of Structural Formula 1 is present in an amount of from 0.1% to 5% by weight based on the total weight of the electrolyte.
  • the vinylene carbonate content is from 0.2% to 5% by weight based on the total weight of the electrolyte; and the fluorobenzene content is from 0.1% to 20% by weight based on the total weight of the electrolyte.
  • the content of vinylene carbonate is 0.2% to 5% by weight of the total electrolyte; the content of the compound represented by Structural Formula 1 is 0.1% to 5% by weight of the total electrolyte;
  • the content of fluorobenzene accounts for 0.1% to 20% of the total weight of the electrolyte.
  • the content ratio of the three additives is appropriate, the respective properties can be exerted as fully as possible, and a remarkable synergistic effect is produced, so that the cycle life and the high-low temperature performance of the battery are excellent.
  • the content of vinylene carbonate is 0.5% to 3% of the total weight of the electrolyte; the content of the compound represented by Structural Formula 1 is 0.5% to 3% of the total weight of the electrolyte;
  • the content of fluorobenzene accounts for 1% to 10% of the total weight of the electrolyte.
  • the non-aqueous organic solvent is selected from the group consisting of ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, vinyl sulfite, One or more of propylene sulfite, diethyl sulfite, ⁇ -butyrolactone, dimethyl sulfoxide, ethyl acetate, methyl acetate, ethyl propionate, methyl propionate or tetrahydrofuran.
  • the selection and amount of these non-aqueous organic solvents can be carried out in accordance with the usual choices in the art.
  • the lithium salt is selected from the group consisting of LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC (SO 2 One or more of CF 3 ) 3 and LiN(SO 2 F) 2 are preferably a mixture of LiPF 6 or LiPF 6 and other lithium salts.
  • the negative electrode material of the lithium ion battery of the present invention is preferably artificial graphite. Of course, other commonly used negative electrode materials can also be selected.
  • the concentration was 1 mol/L, and then 1% of vinylene carbonate (VC), 0.5% of vinyl sulfate (DTD), and 1% of fluorobenzene were added as an additive based on the total mass of the electrolyte.
  • the positive active material LiFePO 4 , conductive carbon black Super-P and binder polyvinylidene fluoride (PVDF) were mixed at a mass ratio of 93:4:3, and then dispersed in N-methyl-2-pyrrolidone (NMP) In the middle, a positive electrode slurry was obtained.
  • the slurry was uniformly coated on both sides of the aluminum foil, dried, calendered and vacuum dried, and the aluminum lead wire was welded by an ultrasonic welder to obtain a positive electrode plate having a thickness of 120-150 ⁇ m.
  • the negative active material artificial graphite, conductive carbon black Super-P, binder styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) were mixed at a mass ratio of 94:1:2.5:2.5, and then dispersed.
  • SBR binder styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • a polyethylene microporous film having a thickness of 20 ⁇ m is placed as a separator between the positive electrode plate and the negative electrode plate, and then a sandwich structure composed of a positive electrode plate, a negative electrode plate and a separator is wound, and the wound body is discharged into a 26650 aluminum shell cylinder. Then, it was baked at 85 ° C for 24 hr to obtain a cell to be injected.
  • the electrolyte prepared above is injected into the cell, and the amount of the electrolyte is ensured to fill the voids in the cell. Then proceed according to the following steps: 0.05C constant current charging for 120min, 0.3C constant current constant voltage charging to 3.6V, limiting current 0.02C, 0.5C constant current discharge to 2.0V.
  • the battery At normal temperature, the battery is charged at a constant current of 1 C to 3.6 V and then charged at a constant voltage until the current drops to 0.02 C, and then discharged at a constant current of 1 C to 2 V, thus circulating for 3000 weeks, and recording the discharge capacity of the first week and The discharge capacity at the 3000th week is calculated by the following formula:
  • Capacity retention rate discharge capacity at week 3000 / discharge capacity at week 1 * 100%
  • the formed battery was charged to 3.6 V at a normal temperature with a constant current of 1 C, and the initial discharge capacity of the battery was recorded. Then, after storing at 60 ° C for 30 days, after the battery was cooled, 1 C was discharged to 2.0 V, then 1 C constant current and constant voltage was charged at 3.6 V, and then 1 C was continuously discharged to 2.0 V, and the holding capacity and recovery capacity of the battery were recorded. Calculated as follows:
  • Battery capacity retention rate (%) retention capacity / initial capacity ⁇ 100%;
  • Battery capacity recovery rate (%) recovery capacity / initial capacity ⁇ 100%.
  • the formed battery was charged to 3.6 V with a constant current of 1 C at 25 ° C, and then discharged to 2.0 V with a constant current of 1 C, and the discharge capacity was recorded. Then, 1C constant current and constant voltage were charged to 3.6V, and after being placed in an environment of -20 ° C for 12 hours, the 1C constant current was discharged to 2.0 V, and the discharge capacity was recorded.
  • the low temperature discharge efficiency value at -20 ° C 1 C discharge capacity (-20 ° C) / 1 C discharge capacity (25 ° C) ⁇ 100%.
  • Example 1 As shown in Table 1, except that the additive was replaced with 2% of vinylene carbonate (VC), 1% of vinyl sulfate (DTD), and 5% of fluorobenzene in the preparation of the electrolytic solution, and Example 1 Phase Similarly, the data of the ambient temperature cycle performance, high temperature storage performance and low temperature performance obtained by the test are shown in Table 3.
  • VC vinylene carbonate
  • DTD vinyl sulfate
  • fluorobenzene fluorobenzene
  • Example 1 As shown in Table 1, except that the additive was replaced with 3% of vinylene carbonate (VC), 3% of vinyl sulfate (DTD), and 10% of fluorobenzene in the preparation of the electrolyte, and Example 1 Similarly, the data obtained by the test for ambient temperature performance, high temperature storage performance and low temperature performance are shown in Table 3.
  • VC vinylene carbonate
  • DTD vinyl sulfate
  • fluorobenzene 10%
  • Example 1 As shown in Table 1, except that the additive was replaced with 5% of vinylene carbonate (VC), 5% of vinyl sulphate (DTD), and 20% of fluorobenzene in the preparation of the electrolyte, and Example 1 Similarly, the data obtained by the test for ambient temperature performance, high temperature storage performance and low temperature performance are shown in Table 3.
  • VC vinylene carbonate
  • DTD vinyl sulphate
  • fluorobenzene 20%
  • Example 1 As shown in Table 1, except that the additive was replaced with 0.2% of vinylene carbonate (VC), 1% of vinyl sulfate (DTD), and 10% of fluorobenzene in the preparation of the electrolytic solution, and Example 1 Similarly, the data obtained by the test for ambient temperature performance, high temperature storage performance and low temperature performance are shown in Table 3.
  • VC vinylene carbonate
  • DTD vinyl sulfate
  • Example 1 As shown in Table 1, except that the additive was replaced with 0.5% of vinylene carbonate (VC), 1% of vinyl sulfate (DTD), and 10% of fluorobenzene in the preparation of the electrolytic solution, and Example 1 Similarly, the data obtained by the test for ambient temperature performance, high temperature storage performance and low temperature performance are shown in Table 3.
  • VC vinylene carbonate
  • DTD vinyl sulfate
  • Example 1 As shown in Table 1, except that the additive was replaced with 2% of vinylene carbonate (VC), 0.1% of vinyl sulfate (DTD), and 10% of fluorobenzene in the preparation of the electrolytic solution, and Example 1 Similarly, the data obtained by the test for ambient temperature performance, high temperature storage performance and low temperature performance are shown in Table 3.
  • Example 1 As shown in Table 1, except that the additive was replaced with 2% of vinylene carbonate (VC), 5% of vinyl sulfate (DTD), and 10% of fluorobenzene in the preparation of the electrolyte, and Example 1 Similarly, the data obtained by the test for ambient temperature performance, high temperature storage performance and low temperature performance are shown in Table 3.
  • VC vinylene carbonate
  • DTD vinyl sulfate
  • fluorobenzene fluorobenzene
  • Example 1 As shown in Table 1, except that the additive was replaced with 2% of vinylene carbonate (VC), 1% of vinyl sulfate (DTD), and 0.1% of fluorobenzene in the preparation of the electrolytic solution, and Example 1 Similarly, the data obtained by the test for ambient temperature performance, high temperature storage performance and low temperature performance are shown in Table 3.
  • VC vinylene carbonate
  • DTD vinyl sulfate
  • fluorobenzene fluorobenzene
  • Example 1 As shown in Table 1, except that the additive was replaced with 2% of vinylene carbonate (VC), 1% of vinyl sulfate (DTD), and 20% of fluorobenzene in the preparation of the electrolytic solution, and Example 1 Similarly, the data obtained by the test for ambient temperature performance, high temperature storage performance and low temperature performance are shown in Table 3.
  • VC vinylene carbonate
  • DTD vinyl sulfate
  • fluorobenzene As shown in Table 1, except that the additive was replaced with 2% of vinylene carbonate (VC), 1% of vinyl sulfate (DTD), and 20% of fluorobenzene in the preparation of the electrolytic solution, and Example 1 Similarly, the data obtained by the test for ambient temperature performance, high temperature storage performance and low temperature performance are shown in Table 3.
  • Example 2 As shown in Table 2, except that the additive was replaced with 2% of vinylene carbonate (VC) and 1% of 1,3-propanediol sulfate in the preparation of the electrolytic solution, the same temperature as in Example 1 was measured. The data of cycle performance, high temperature storage performance and low temperature performance are shown in Table 3.
  • VC vinylene carbonate
  • 1,3-propanediol sulfate 1,3-propanediol sulfate
  • Table 1 and Table 2 show the addition of the electrolyte additive in the above examples and comparative examples.
  • Example VC (%) DTD (%) Fluorobenzene (%) Example 1 1 0.5 1 Example 2 2 1 5 Example 3 3 3 10 Example 4 5 5 20 Example 5 0.2 1 10 Example 6 0.5 1 10 Example 7 2 0.1 10 Example 8 2 5 10 Example 9 2 - 10 Example 10 2 1 0.1 Example 11 2 1 20 Example 12 2 1 - Comparative example 1 2 - - Comparative example 2 - 1 - Comparative example 3 - - 10 Comparative example 4 - 1 10
  • Table 3 shows the performance data of the above examples and comparative examples.
  • the lithium ion battery nonaqueous electrolyte of the present invention has a long cycle life while being excellent in high and low temperature performance of the battery. This effect is not achievable with existing non-aqueous electrolytes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种使用非水电解液的锂离子电池,包括正极、负极、置于正极与负极之间的隔膜和锂离子电池非水电解液;正极的活性物质包括LiFePO4;锂离子电池非水电解液包括非水有机溶剂、锂盐和添加剂;添加剂至少包括(A)碳酸亚乙烯酯,同时还包括:(B)结构式1所示的化合物与(C)氟苯中的至少一种;其中n为1~3的自然数,R1、R2、R3、R4分别独立地选自氢原子、氟原子、碳原子数为1~6的烷基中的一种。所述锂离子电池,具有长循环寿命,同时电池的高低温性能优异。

Description

一种使用非水电解液的锂离子电池 技术领域
本发明涉及锂离子电池技术领域,尤其涉及一种以LiFePO4作为正极活性物质并且包括碳酸亚乙烯酯作为非水电解液添加剂的锂离子电池。
背景技术
锂离子电池具有比能量高、比功率大、循环寿命长等特点,目前非水电解液锂离子电池已经普遍应用于3C消费类电子产品领域,并且随着新能源汽车的发展,非水电解液锂离子电池在储能和动力领域也越来越普遍。
然而随着锂离子电池的广泛应用,对锂离子电池的性能有了更高的要求,为了降低成本,需要锂离子电池有更高的循环寿命;为了提高对环境的适应性,需要锂离子电池能够兼顾高低温性能等。
在非水电解液锂离子电池中,非水电解液是影响电池循环寿命和高低温性能的关键因素,特别地,非水电解液中的添加剂对电池高低温性能和循环寿命的发挥尤其重要。目前实用化的非水电解液,使用的是传统的成膜添加剂如碳酸亚乙烯酯(VC)来保证电池的循环性能。但VC的阻抗较大,难以兼顾电池的低温性能,且随着市场对电池寿命的要求越来越高,只使用VC已无法达到循环寿命的要求。
发明内容
本发明提供一种长循环寿命、兼顾电池的高低温性能的锂离子电池,其通过如下技术方案来实现:
一种锂离子电池,包括正极、负极、置于上述正极与负极之间的隔膜和锂离子电池非水电解液;上述正极的活性物质包括LiFePO4;上述锂离子电池非水电解液包括非水有机溶剂、锂盐和添加剂;上述添加剂至少包括(A)碳酸亚乙 烯酯,同时还包括:(B)结构式1所示的化合物与(C)氟苯中的至少一种;
Figure PCTCN2016113014-appb-000001
其中n为1~3的自然数,R1、R2、R3、R4分别独立地选自氢原子、氟原子、碳原子数为,1~6的烷基中的一种。
作为本发明的进一步改进的方案,上述添加剂(A)占上述电解液总重量的0.2%~5%,优选0.5%~3%。
作为本发明的进一步改进的方案,上述添加剂(B)占上述电解液总重量的0.1%~5%,优选0.5%~3%。
作为本发明的进一步改进的方案,上述添加剂(C)占上述电解液总重量的0.1%~20%,优选1%~10%。
作为本发明的进一步改进的方案,上述结构式1所示的化合物为硫酸乙烯酯或1,3-丙二醇硫酸酯。
作为本发明的进一步改进的方案,上述非水有机溶剂选自碳酸甲乙酯、碳酸二甲酯、碳酸二乙酯、碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、亚硫酸乙烯酯、亚硫酸丙烯酯、亚硫酸二乙酯、γ-丁内酯、二甲基亚砜、乙酸乙酯、乙酸甲酯、丙酸乙酯、丙酸甲酯或四氢呋喃中的一种或多种。
作为本发明的进一步改进的方案,上述锂盐选自LiPF6、LiBF4、LiSbF6、LiAsF6、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiC(SO2CF3)3或LiN(SO2F)2中的一种或两种以上。
作为本发明的进一步改进的方案,上述负极的活性物质为人造石墨。
本发明的锂离子电池所采用的非水电解液,在成膜添加剂碳酸亚乙烯酯(VC)的基础上引入低阻抗添加剂(B)和/或氟苯作为促进浸润的添加剂,能 明显降低电池的阻抗,提高电池的低温性能;同时明显改善电池的循环寿命。
具体实施方式
下面通过具体实施方式对本发明作进一步详细说明。
本发明的使用非水电解液的锂离子电池的正极材料选用LiFePO4。本发明的锂离子电池所采用的非水电解液,以碳酸亚乙烯酯(VC)作为添加剂,同时引入结构式1所示的化合物和氟苯中的至少一种作为添加剂,它们在同一体系内通过协同作用,使得本发明的锂离子电池非水电解液具有长循环寿命,同时电池的高低温性能优异。
本发明加入碳酸亚乙烯酯,能在负极成膜,保护负极,提高电池的循环寿命。碳酸亚乙烯酯的含量优选占电解液总重量的0.2%~5%,更优选0.5%~3%。当碳酸亚乙烯酯的含量小于0.2%时,成膜较差,对性能起不到应有的改善作用;当其含量大于5%时,其在电极界面的成膜较厚,会严重增大电池阻抗,劣化电池性能。
本发明加入结构式1所示的化合物,
其中n为1~3的自然数,R1、R2、R3、R4分别独立地选自氢原子、氟原子、碳原子数为1~6的烷基中的一种。
结构式1所示的化合物能够降低电解液的阻抗,改善电池的低温性能和循环性能,对高温性能又没有副作用。结构式1所示的化合物的含量优选占电解液总重量的0.1%~5%,更优选0.5%~3%。当结构式1所示的化合物的含量小于0.1%时,降低电解液的阻抗的效果不够明显,从而改善电池的低温性能和循环性能的效果不充分;当其含量大于5%时,对高温性能有副作用。
结构式1所示的化合物中的取代基R1、R2、R3、R4在氢原子、氟原子、碳原子数为1~6的烷基中选择时,具有基本上相当的阻抗性能,然而若是选择碳原子数为6以上的烷基作为取代基,可能造成阻抗性能的明显变化,不利于降低电解液的阻抗,因此本发明不选择碳原子数为6以上的烷基作为取代基。
在本发明的一个实施例中,以硫酸乙烯酯(DTD)作为结构式1所示的化合物,能够取得良好的长循环寿命,同时电池的高低温性能优异。因此,作为结构式1所示的化合物,可以选自硫酸乙烯酯、1,3-丙二醇硫酸酯中的一种或多种;硫酸乙烯酯是本发明最优选的化合物。
在本发明优选的技术方案中,加入氟苯作为添加剂,能够促进电解液的浸润,改善保液量,改善电池的循环性能。氟苯的含量优选占电解液总重量的0.1%~20%,更优选1%~10%。当氟苯的含量小于0.1%时,其促进电解液的浸润的效果不够明显;而当其含量大于20时%,多余的氟苯会在正极聚合,增大电池阻抗,劣化电池的功率。
在本发明的一个较优选的实施方案中,碳酸亚乙烯酯的含量占电解液总重量的0.2%~5%;结构式1所示的化合物的含量占电解液总重量的0.1%~5%。
在本发明的一个较优选的实施方案中,碳酸亚乙烯酯的含量占电解液总重量的0.2%~5%;氟苯的含量占电解液总重量的0.1%~20%。
在本发明的一个较优选的实施方案中,碳酸亚乙烯酯的含量占电解液总重量的0.2%~5%;结构式1所示的化合物的含量占电解液总重量的0.1%~5%;氟苯的含量占电解液总重量的0.1%~20%。在该实施方案中,三种添加剂的含量比例合适,能够尽可能充分地发挥各自的性能,并且产生明显的协同效应,因此循环寿命以及电池的高低温性能都非常优异。
在本发明的一个最优选的实施方案中,碳酸亚乙烯酯的含量占电解液总重量的0.5%~3%;结构式1所示的化合物的含量占电解液总重量的0.5%~3%;氟苯的含量占电解液总重量的1%~10%。
在本发明的一个优选实施方案中,非水有机溶剂选自碳酸甲乙酯、碳酸二甲酯、碳酸二乙酯、碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、亚硫酸乙烯酯、 亚硫酸丙烯酯、亚硫酸二乙酯、γ-丁内酯、二甲基亚砜、乙酸乙酯、乙酸甲酯、丙酸乙酯、丙酸甲酯或四氢呋喃中的一种或多种。这些非水有机溶剂的选择和用量可以按照本领域通常的选择进行。
在本发明的一个优选实施方案中,锂盐选自LiPF6、LiBF4、LiSbF6、LiAsF6、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiC(SO2CF3)3和LiN(SO2F)2中的一种或两种以上,优选的是LiPF6或LiPF6与其它锂盐的混合物。
本发明的锂离子电池的负极材料优选人造石墨。当然,也可以选择其它常用的负极材料。
以下通过具体实施例对本发明进行详细描述。应当理解,这些实施例仅是示例性的,并不构成对本发明保护范围的限制。
实施例1
1)电解液的制备
将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为EC:DEC:EMC=1:1:1进行混合,然后加入六氟磷酸锂(LiPF6)至摩尔浓度为1mol/L,再加入按电解液的总质量计1%的碳酸亚乙烯酯(VC),0.5%的硫酸乙烯酯(DTD),以及1%的氟苯作为添加剂。
2)正极板的制备
按93:4:3的质量比混合正极活性材料LiFePO4,导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将它们分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,极板的厚度在120-150μm。
3)负极板的制备
按94:1:2.5:2.5的质量比混合负极活性材料人造石墨,导电碳黑Super-P,粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,极板的厚度在120-150μm。
4)电芯的制备
在正极板和负极板之间放置厚度为20μm的聚乙烯微孔膜作为隔膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体放出26650铝壳圆柱中,然后于85℃下烘烤24hr,得到待注液的电芯。
5)电芯的注液和化成
在露点控制在-40℃以下的手套箱中,将上述制备的电解液注入电芯中,电解液的量要保证充满电芯中的空隙。然后按以下步骤进行化成:0.05C恒流充电120min,0.3C恒流恒压充电至3.6V,限制电流0.02C,0.5C恒流放电至2.0V。
6)常温循环性能测试
常温下,将电池以1C的电流恒流充电至3.6V然后恒压充电至电流下降至0.02C,然后以1C的电流恒流放电至2V,如此循环3000周,记录第1周的放电容量和第3000周的放电容量,按下式计算常温循环的容量保持率:
容量保持率=第3000周的放电容量/第1周的放电容量*100%
7)高温储存性能测试
将化成后的电池在常温下用1C恒流恒压充至3.6V,记录电池初始放电容量。然后在60℃储存30天后,等电池冷却后1C放电至2.0V,然后1C恒流恒压充电3.6V,再1C恒流放电至2.0V,记录电池的保持容量和恢复容量。计算公式如下:
电池容量保持率(%)=保持容量/初始容量×100%;
电池容量恢复率(%)=恢复容量/初始容量×100%。
8)低温性能测试
在25℃下,将化成后的电池用1C恒流恒压充至3.6V,然后用1C恒流放电至2.0V,记录放电容量。然后1C恒流恒压充至3.6V,置于-20℃的环境中搁置12h后,1C恒流放电至2.0V,记录放电容量。
-20℃的低温放电效率值=1C放电容量(-20℃)/1C放电容量(25℃)×100%。
实施例2
如表1所示,除了电解液的制备中将添加剂替换为2%的碳酸亚乙烯酯(VC),1%的硫酸乙烯酯(DTD),以及5%的氟苯以外,其它与实施例1相 同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
实施例3
如表1所示,除了电解液的制备中将添加剂替换为3%的碳酸亚乙烯酯(VC),3%的硫酸乙烯酯(DTD),以及10%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
实施例4
如表1所示,除了电解液的制备中将添加剂替换为5%的碳酸亚乙烯酯(VC),5%的硫酸乙烯酯(DTD),以及20%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
实施例5
如表1所示,除了电解液的制备中将添加剂替换为0.2%的碳酸亚乙烯酯(VC),1%的硫酸乙烯酯(DTD),以及10%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
实施例6
如表1所示,除了电解液的制备中将添加剂替换为0.5%的碳酸亚乙烯酯(VC),1%的硫酸乙烯酯(DTD),以及10%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
实施例7
如表1所示,除了电解液的制备中将添加剂替换为2%的碳酸亚乙烯酯(VC),0.1%的硫酸乙烯酯(DTD),以及10%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
实施例8
如表1所示,除了电解液的制备中将添加剂替换为2%的碳酸亚乙烯酯(VC),5%的硫酸乙烯酯(DTD),以及10%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
实施例9
如表1所示,除了电解液的制备中将添加剂替换为2%的碳酸亚乙烯酯 (VC),以及10%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
实施例10
如表1所示,除了电解液的制备中将添加剂替换为2%的碳酸亚乙烯酯(VC),1%的硫酸乙烯酯(DTD),以及0.1%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
实施例11
如表1所示,除了电解液的制备中将添加剂替换为2%的碳酸亚乙烯酯(VC),1%的硫酸乙烯酯(DTD),以及20%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
实施例12
如表1所示,除了电解液的制备中将添加剂替换为2%的碳酸亚乙烯酯(VC),1%的硫酸乙烯酯(DTD)以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
实施例13
如表2所示,除了电解液的制备中将添加剂替换为2%的碳酸亚乙烯酯(VC),1%的1,3-丙二醇硫酸酯,以及5%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
实施例14
如表2所示,除了电解液的制备中将添加剂替换为2%的碳酸亚乙烯酯(VC),0.1%的1,3-丙二醇硫酸酯,以及10%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
实施例15
如表2所示,除了电解液的制备中将添加剂替换为2%的碳酸亚乙烯酯(VC),5%的1,3-丙二醇硫酸酯,以及10%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
实施例16
如表2所示,除了电解液的制备中将添加剂替换为2%的碳酸亚乙烯酯(VC),1%的1,3-丙二醇硫酸酯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
对比例1
如表1所示,除了电解液的制备中将添加剂替换为2%的碳酸亚乙烯酯(VC)以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
对比例2
如表1所示,除了电解液的制备中将添加剂替换为1%的硫酸乙烯酯(DTD)以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
对比例3
如表1所示,除了电解液的制备中将添加剂替换为10%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
对比例4
如表1所示,除了电解液的制备中将添加剂替换为1%的硫酸乙烯酯(DTD),以及10%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
对比例5
如表2所示,除了电解液的制备中将添加剂替换为1%的1,3-丙二醇硫酸酯,以及10%的氟苯以外,其它与实施例1相同,测试得到的常温循环性能、高温储存性能和低温性能的数据见表3。
表1、表2示出了以上实施例和对比例中的电解液添加剂加入情况。 表1
实施例 VC(%) DTD(%) 氟苯(%)
实施例1 1 0.5 1
实施例2 2 1 5
实施例3 3 3 10
实施例4 5 5 20
实施例5 0.2 1 10
实施例6 0.5 1 10
实施例7 2 0.1 10
实施例8 2 5 10
实施例9 2 - 10
实施例10 2 1 0.1
实施例11 2 1 20
实施例12 2 1 -
对比例1 2 - -
对比例2 - 1 -
对比例3 - - 10
对比例4 - 1 10
表2
表3示出了以上实施例和对比例的性能数据。
表3
Figure PCTCN2016113014-appb-000004
通过对比例和实施例的对比,发现组合使用碳酸亚乙烯酯、硫酸乙烯酯/1,3- 丙二醇硫酸酯和氟苯作为添加剂,本发明的锂离子电池非水电解液具有长循环寿命,同时电池的高低温性能优异。这种效果是目前现有的非水电解液不能实现的。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (8)

  1. 一种锂离子电池,其特征在于,包括正极、负极、置于所述正极与负极之间的隔膜和锂离子电池非水电解液;所述正极的活性物质包括LiFePO4;所述锂离子电池非水电解液包括非水有机溶剂、锂盐和添加剂;所述添加剂至少包括(A)碳酸亚乙烯酯,同时还包括:(B)结构式1所示的化合物与(C)氟苯中的至少一种;
    Figure PCTCN2016113014-appb-100001
    其中n为1~3的自然数,R1、R2、R3、R4分别独立地选自氢原子、氟原子、碳原子数为1~6的烷基中的一种。
  2. 根据权利要求1所述的锂离子电池,其特征在于,所述添加剂(A)占所述电解液总重量的0.2%~5%,优选0.5%~3%。
  3. 根据权利要求1所述的锂离子电池,其特征在于,所述添加剂(B)占所述电解液总重量的0.1%~5%,优选0.5%~3%。
  4. 根据权利要求1所述的锂离子电池,其特征在于,所述添加剂(C)占所述电解液总重量的0.1%~20%,优选1%~10%。
  5. 根据权利要求1所述的锂离子电池,其特征在于,所述结构式1所示的化合物为硫酸乙烯酯或1,3-丙二醇硫酸酯。
  6. 根据权利要求1-5任一项所述的锂离子电池,其特征在于,所述非水有机溶剂选自碳酸甲乙酯、碳酸二甲酯、碳酸二乙酯、碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、亚硫酸乙烯酯、亚硫酸丙烯酯、亚硫酸二乙酯、γ-丁内酯、二甲基亚砜、乙酸乙酯、乙酸甲酯、丙酸乙酯、丙酸甲酯或四氢呋喃中的一种或多种。
  7. 根据权利要求1-5任一项所述的锂离子电池,其特征在于,所述锂 盐选自LiPF6、LiBF4、LiSbF6、LiAsF6、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiC(SO2CF3)3或LiN(SO2F)2中的一种或两种以上。
  8. 根据权利要求1-5任一项所述的锂离子电池,其特征在于,所述负极的活性物质为人造石墨。
PCT/CN2016/113014 2016-07-08 2016-12-29 一种使用非水电解液的锂离子电池 WO2018006565A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018556843A JP6751158B2 (ja) 2016-07-08 2016-12-29 非水電解液を用いたリチウムイオン電池
US16/085,541 US20200303774A1 (en) 2016-07-08 2016-12-29 Lithium ion battery using non-aqueous electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610536662.X 2016-07-08
CN201610536662.XA CN105977525A (zh) 2016-07-08 2016-07-08 一种使用非水电解液的锂离子电池

Publications (1)

Publication Number Publication Date
WO2018006565A1 true WO2018006565A1 (zh) 2018-01-11

Family

ID=56951371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113014 WO2018006565A1 (zh) 2016-07-08 2016-12-29 一种使用非水电解液的锂离子电池

Country Status (4)

Country Link
US (1) US20200303774A1 (zh)
JP (1) JP6751158B2 (zh)
CN (1) CN105977525A (zh)
WO (1) WO2018006565A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952184A (zh) * 2019-12-11 2021-06-11 通用汽车环球科技运作有限责任公司 使用电解质锂化金属阳极的方法
CN113904071A (zh) * 2021-09-28 2022-01-07 蜂巢能源科技有限公司 一种二次注液方法及其应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105977525A (zh) * 2016-07-08 2016-09-28 深圳新宙邦科技股份有限公司 一种使用非水电解液的锂离子电池
KR102276985B1 (ko) 2017-05-17 2021-07-12 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
US11961959B2 (en) 2017-07-31 2024-04-16 Tesla, Inc. Battery systems based on lithium difluorophosphate
CN110148776A (zh) * 2019-05-31 2019-08-20 广州天赐高新材料股份有限公司 一种降低电池阻抗的锂二次电池电解液及锂二次电池
CN112400249A (zh) * 2020-03-24 2021-02-23 宁德新能源科技有限公司 一种电解液及电化学装置
CN114122491A (zh) * 2020-08-31 2022-03-01 深圳新宙邦科技股份有限公司 锂离子电池
CN114122495A (zh) * 2020-08-31 2022-03-01 深圳新宙邦科技股份有限公司 锂离子电池
CN112635826B (zh) * 2020-11-30 2022-09-30 远景动力技术(江苏)有限公司 电解液添加剂、电解液及锂离子电池
CN113851637A (zh) * 2021-08-23 2021-12-28 合肥国轩高科动力能源有限公司 一种多官能团电解液添加剂、含该添加剂的电解液和锂离子电池
CN113903996B (zh) * 2021-09-28 2022-12-09 蜂巢能源科技有限公司 一种电解液体系及其应用
WO2023199942A1 (ja) * 2022-04-15 2023-10-19 株式会社Gsユアサ 非水電解質蓄電素子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189042A (ja) * 1996-12-25 1998-07-21 Mitsubishi Chem Corp リチウム二次電池用電解液
CN1428885A (zh) * 2001-12-26 2003-07-09 日本电池株式会社 非水电解质二次电池
CN101286573A (zh) * 2007-04-09 2008-10-15 比亚迪股份有限公司 一种电解液及含有该电解液的锂离子二次电池
CN104979588A (zh) * 2015-07-09 2015-10-14 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN105355970A (zh) * 2015-12-16 2016-02-24 东莞市杉杉电池材料有限公司 一种三元正极材料锂离子电池电解液及三元正极材料锂离子电池
CN105633465A (zh) * 2016-03-09 2016-06-01 华南师范大学 一种含硫酸乙烯酯添加剂的高压功能电解液及其制备与应用
CN105977525A (zh) * 2016-07-08 2016-09-28 深圳新宙邦科技股份有限公司 一种使用非水电解液的锂离子电池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011762A (ja) * 2003-06-20 2005-01-13 Tdk Corp リチウムイオン二次電池
WO2005074067A1 (ja) * 2004-02-02 2005-08-11 Ube Industries, Ltd. 非水電解液およびリチウム二次電池
JP2013218967A (ja) * 2012-04-11 2013-10-24 Panasonic Corp 非水電解質および非水電解質二次電池
WO2013188594A2 (en) * 2012-06-12 2013-12-19 A123 Systems, LLC Non-aqueous electrolytic rechargeable batteries for extended temperature range operation
JP2014170689A (ja) * 2013-03-04 2014-09-18 Mitsui Chemicals Inc 非水電解液及びリチウム二次電池
JP2015056312A (ja) * 2013-09-12 2015-03-23 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP6664148B2 (ja) * 2014-09-29 2020-03-13 Tdk株式会社 リチウムイオン二次電池
JP2016085836A (ja) * 2014-10-24 2016-05-19 Tdk株式会社 リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
CN105591149B (zh) * 2014-11-07 2021-01-05 A123系统有限责任公司 可充电电池及其电解质配方
CN104766995B (zh) * 2015-03-31 2017-03-15 宁德时代新能源科技股份有限公司 一种电解液添加剂及其在锂离子电池中的应用
CN105552439A (zh) * 2015-12-16 2016-05-04 东莞市杉杉电池材料有限公司 一种快速充电的锂离子电池电解液
CN105576283A (zh) * 2016-02-03 2016-05-11 东莞市凯欣电池材料有限公司 一种兼顾高低温性能的高电压电解液及使用该电解液的锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189042A (ja) * 1996-12-25 1998-07-21 Mitsubishi Chem Corp リチウム二次電池用電解液
CN1428885A (zh) * 2001-12-26 2003-07-09 日本电池株式会社 非水电解质二次电池
CN101286573A (zh) * 2007-04-09 2008-10-15 比亚迪股份有限公司 一种电解液及含有该电解液的锂离子二次电池
CN104979588A (zh) * 2015-07-09 2015-10-14 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN105355970A (zh) * 2015-12-16 2016-02-24 东莞市杉杉电池材料有限公司 一种三元正极材料锂离子电池电解液及三元正极材料锂离子电池
CN105633465A (zh) * 2016-03-09 2016-06-01 华南师范大学 一种含硫酸乙烯酯添加剂的高压功能电解液及其制备与应用
CN105977525A (zh) * 2016-07-08 2016-09-28 深圳新宙邦科技股份有限公司 一种使用非水电解液的锂离子电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952184A (zh) * 2019-12-11 2021-06-11 通用汽车环球科技运作有限责任公司 使用电解质锂化金属阳极的方法
CN113904071A (zh) * 2021-09-28 2022-01-07 蜂巢能源科技有限公司 一种二次注液方法及其应用
CN113904071B (zh) * 2021-09-28 2023-05-26 蜂巢能源科技有限公司 一种二次注液方法及其应用

Also Published As

Publication number Publication date
JP6751158B2 (ja) 2020-09-02
JP2019515444A (ja) 2019-06-06
US20200303774A1 (en) 2020-09-24
CN105977525A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2018006565A1 (zh) 一种使用非水电解液的锂离子电池
WO2017020431A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2022042373A1 (zh) 锂离子电池
WO2016054843A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2020248567A1 (zh) 一种降低电池阻抗的锂二次电池电解液及其锂二次电池
WO2017004885A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2017084109A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2019165795A1 (zh) 锂离子二次电池及其制备方法
WO2016110123A1 (zh) 一种非水电解液及锂离子二次电池
WO2017020430A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2017173743A1 (zh) 一种锂离子电池用电解液及锂离子电池
WO2017101141A1 (zh) 一种锂离子电池用电解液及锂离子电池
WO2018006564A1 (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
WO2022143189A1 (zh) 一种锂离子电池
WO2020238191A1 (zh) 一种降低电池阻抗的锂二次电池电解液及锂二次电池
WO2017075851A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2018094818A1 (zh) 锂离子电池非水电解液及锂离子电池
CN109768327B (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
WO2019128160A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2017020429A1 (zh) 一种高电压锂离子电池用非水电解液及锂离子电池
WO2017004820A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2020135584A1 (zh) 一种电池电解液正极成膜添加剂及使用该添加剂的电解液和锂离子电池
CN107919498B (zh) 锂离子电池非水电解液及使用该电解液的锂离子电池
WO2020042420A1 (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
CN112928328A (zh) 一种含有硅烷基磺酰胺化合物的锂离子电池电解液和锂离子二次电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018556843

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908069

Country of ref document: EP

Kind code of ref document: A1