WO2017173743A1 - 一种锂离子电池用电解液及锂离子电池 - Google Patents

一种锂离子电池用电解液及锂离子电池 Download PDF

Info

Publication number
WO2017173743A1
WO2017173743A1 PCT/CN2016/091881 CN2016091881W WO2017173743A1 WO 2017173743 A1 WO2017173743 A1 WO 2017173743A1 CN 2016091881 W CN2016091881 W CN 2016091881W WO 2017173743 A1 WO2017173743 A1 WO 2017173743A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
carbonate
group
structural formula
compound
Prior art date
Application number
PCT/CN2016/091881
Other languages
English (en)
French (fr)
Inventor
石桥
林木崇
胡时光
张海玲
郭琦
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Priority to US16/084,929 priority Critical patent/US10826123B2/en
Publication of WO2017173743A1 publication Critical patent/WO2017173743A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of lithium ion battery technology, and in particular to an electrolyte for a lithium ion battery and a lithium ion battery.
  • non-aqueous electrolyte lithium-ion batteries have been used more and more in the 3C consumer electronics market.
  • the functions of digital products are increasingly rich and powerful, and the battery life is insufficient.
  • the development trend of 3C digital lithium-ion batteries is high energy density, and high-voltage lithium cobalt oxide materials are the mainstream solutions in the field of cathode materials for at least 5 years.
  • lithium cobaltate cathode material is unstable.
  • the metal Co ion dissolves in the positive electrode, causing the structure of the cathode material to collapse, and the dissolved Co ions are reduced at the anode to destroy the anode structure; in addition, as the cathode voltage increases
  • the electrolyte is decomposed in the positive electrode, which deteriorates the stability of the battery system, and finally causes a significant drop in battery performance. Therefore, with the continuous improvement of the charge cut-off voltage, high-voltage electrolyte has become a key factor restricting the development of high-voltage lithium cobalt oxide batteries.
  • electrolyte products of 4.4V lithium cobalt oxide battery system in the domestic and foreign markets.
  • These electrolyte products generally contain traditional film-forming additives such as fluoroethylene carbonate (FEC) and 1,3-propane sultone (1,3-PS), of which 1,3-PS is high and low temperature for balancing batteries.
  • Performance has a good effect.
  • 1,3-PS has a certain positive film forming effect, it can protect the positive electrode and inhibit the decomposition of the electrolyte, and at the same time, it has obvious negative film forming effect, which can improve the stability of the negative electrode.
  • the present invention provides an electrolyte for a lithium ion battery and a lithium ion battery, the additive of the electrolyte comprising a fluoroethylene carbonate, a saturated dinitrile compound or other unsaturated nitrile compound, and an unsaturated phosphate compound.
  • the additive combination can form an excellent SEI film on the negative electrode to stabilize the negative electrode; at the same time, a good protective film can be formed on the positive electrode to complex metal ions, thereby inhibiting metal ion elution and electrolyte solution.
  • the decomposition of the positive electrode significantly improves the high temperature storage performance of the battery.
  • an electrolyte for a lithium ion battery comprising a nonaqueous organic solvent, a lithium salt and an additive, the additive comprising:
  • R 1 is selected from the group consisting of unsaturated hydrocarbon groups having 3 to 6 carbon atoms
  • R 2 is selected from the group consisting of alkylene groups having 2 to 5 carbon atoms
  • R 3 , R 4 and R 5 are each independently selected from a hydrocarbon group having 1 to 4 carbon atoms, and at least one of R 3 , R 4 and R 5 is an unsaturated hydrocarbon group having a hydrazone bond.
  • the above additive (A) accounts for 1% to 10%, preferably 1% to 5%, based on the total mass of the above electrolyte.
  • the above saturated dinitrile compound accounts for the total electrolyte
  • the unsaturated nitrile compound represented by the above structural formula 1 accounts for 0.1% to 3%, preferably 0.2% to 2%, based on the total weight of the electrolyte solution, in an amount of from 1% to 5% by weight, preferably from 1% to 3%.
  • the above additive (C) accounts for 0.1% to 2%, preferably 0.2% to 1%, based on the total weight of the above electrolyte.
  • the above saturated dinitrile compound is selected from one or two of succinonitrile, glutaronitrile, adiponitrile, pimeliconitrile, subalcoonitrile, sebaconitrile and sebaconitrile. More than the above; the unsaturated nitrile compound represented by the above structural formula 1 is at least one selected from the group consisting of the compounds represented by the following structural formula 3 and structural formula 4:
  • the unsaturated phosphate compound represented by the above Structural Formula 2 is tripropargyl phosphate.
  • the above non-aqueous organic solvent is selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and methyl propyl carbonate.
  • the above lithium salt is selected from the group consisting of LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC (SO 2 ) One or more of CF 3 ) 3 and LiN(SO 2 F) 2 .
  • a lithium ion battery comprising a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and further comprising the electrolyte solution for a lithium ion battery of the first aspect.
  • the active material of the positive electrode is lithium cobaltate.
  • the additive combination in the electrolyte for a lithium ion battery of the present invention includes fluoroethylene carbonate, a saturated dinitrile compound or other unsaturated nitrile compound, and an unsaturated phosphate compound, and the presence of these additives in the same electrolyte system Can be passed through a negative effect that may be synergistic An excellent SEI film is formed to stabilize the negative electrode; at the same time, a good protective film can be formed on the positive electrode to complex metal ions, thereby inhibiting metal ion elution and decomposition of the electrolyte in the positive electrode, and significantly improving the high-temperature storage performance of the battery.
  • the present invention uses a combination of fluoroethylene carbonate (FEC), a saturated dinitrile compound or other unsaturated nitrile compound and an unsaturated phosphate compound as an additive to the electrolyte.
  • FEC fluoroethylene carbonate
  • a saturated dinitrile compound or other unsaturated nitrile compound saturated dinitrile compound or other unsaturated nitrile compound
  • an unsaturated phosphate compound unsaturated phosphate compound
  • the invention adds FEC, mainly in the formation of excellent SEI in the negative electrode, and ensures high cycle performance of the high voltage battery.
  • the content of FEC is preferably from 1% to 10%, more preferably from 1% to 5%, based on the total weight of the electrolyte.
  • the FEC content is less than 1%, it cannot form an excellent SEI in the negative electrode, and the cycle performance is not improved as much as possible; however, when the content exceeds 10%, it is easy to generate HF, LiF at a high temperature, which may deteriorate the battery. High temperature performance.
  • the invention adds saturated dinitrile compound, can cooperate with metal ions to reduce decomposition of electrolyte, inhibit metal ion elution, protect positive electrode and improve high temperature performance of battery; add unsaturated nitrile compound, in addition to network with metal ion In addition to cooperation, this type of compound can also form a film on the positive electrode, and has a complexing and film-forming effect to better improve the high-temperature performance of the battery.
  • the saturated dinitrile compound may be selected from one or more selected from the group consisting of succinonitrile, glutaronitrile, adiponitrile, pimeliconitrile, subalcoonitrile, sebaconitrile and sebaconitrile.
  • the unsaturated nitrile compound has the chemical structure shown in Structural Formula 1,
  • R 1 is selected from the group consisting of unsaturated hydrocarbon groups having 3 to 6 carbon atoms
  • R 2 is selected from the group consisting of alkylene groups having 2 to 5 carbon atoms.
  • the compound of Structural Formula 1 can be obtained by the following reaction route:
  • the mechanism of action of the compound represented by Structural Formula 1 is not well understood, but the inventors speculate that it may be that the molecular structure of the compound represented by Structural Formula 1 may contain an unsaturated carbon-carbon bond and a cyano group, and on the one hand, the carbon-carbon unsaturated bond may be in the charging process.
  • a polymerization reaction occurs, which has a positive film forming effect and suppresses oxidative decomposition of the electrolytic solution.
  • the cyano group in the structure has a positive electrode complexing function, can effectively complex metal ions, and suppress elution of metal ions.
  • the number of carbon atoms of the R 1 group has an important influence on the properties thereof, and the inventors have conducted intensive studies and found that R 1 is selected from an unsaturated hydrocarbon group having a carbon atom of 3 to 6 and can be remarkably obtained.
  • the above effects When R 1 is selected from an unsaturated hydrocarbon group having a carbon number of more than 6, the compound formed on the surface of the electrode is excessively resistant, and the effect of complexing the metal ion is lowered, which in turn lowers the high-temperature storage and cycle performance of the battery.
  • R 2 also has an important influence on the performance thereof, and R 2 is an alkylene group having 2 to 5 carbon atoms, and the above effects can be remarkably obtained.
  • the number of carbon atoms is more than 5, the resistance of the compound formed on the surface of the electrode is too large, and the effect of complexing metal ions is lowered, which in turn reduces the high-temperature storage and cycle performance of the battery.
  • the R 1 group is a linear or branched unsaturated hydrocarbon group, a straight chain such as an alkenyl group or an alkynyl group, and examples of a typical but non-limiting alkenyl group such as a propenyl group or an allyl group. , butenyl, pentenyl, hexenyl; examples of typical but non-limiting alkynyl groups such as propynyl, propargyl, butynyl, pentynyl, hexynyl.
  • the R 2 group is an alkylene group, which may be a linear or branched saturated alkylene group, or a branched or linear unsaturated alkylene group, and a typical but non-limiting example of a linear saturated alkylene group such as an ethylene group. , propylene, butylene, pentylene.
  • the unsaturated nitrile compound represented by Structural Formula 1 is selected from at least one of the following compounds of Structural Formula 3 and Structural Formula 4:
  • the content of the saturated dinitrile compound is preferably from 1% to 5%, more preferably from 1% to 3%, based on the total weight of the electrolyte; when the content is less than 1%, it is difficult to sufficiently exert the effect, and the content is higher than 5 When there is %, there may be adverse effects.
  • the content of the unsaturated nitrile compound represented by Structural Formula 1 is preferably from 0.1% to 3% by weight based on the total weight of the electrolyte.
  • the content of the unsaturated nitrile compound represented by Structural Formula 1 is from 0.2% to 2% based on the total mass of the electrolyte.
  • the saturated dinitrile compound and the unsaturated nitrile compound may be used singly or in combination.
  • the present invention adds at least one compound of the unsaturated phosphate compound represented by Structural Formula 2,
  • R 3 , R 4 and R 5 are each independently selected from a hydrocarbon group having 1 to 4 carbon atoms, and at least one of R 3 , R 4 and R 5 is an unsaturated hydrocarbon group having a hydrazone bond.
  • the unsaturated phosphate compound represented by Structural Formula 2 accounts for 0.1% to 2%, preferably 0.2% to 1%, based on the total weight of the above electrolyte.
  • the compound can form a film on the positive and negative electrodes, effectively protect the positive and negative electrodes, and improve the high temperature performance of the lithium ion battery, especially the high temperature cycle performance.
  • the content is less than 0.1%, the film forming effect of the positive and negative electrodes is poor, and the performance is not improved as much as possible; when the content is more than 2%, the film formation at the electrode interface is thick, significantly increase the battery impedance, Degrade battery performance.
  • the unsaturated phosphate compound represented by Structural Formula 2 is tripropargyl phosphate, that is, a compound represented by the following Structural Formula 5:
  • the non-aqueous organic solvent is selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and methyl propyl carbonate.
  • ethylene carbonate, propylene carbonate and butylene carbonate are cyclic carbonates, and dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and methylpropyl carbonate are chain carbonates.
  • a mixture of a high dielectric constant cyclic carbonate organic solvent and a low viscosity chain carbonate organic solvent is used as a solvent for a lithium ion battery electrolyte, so that the organic solvent mixture has high ionic conductivity and high at the same time. Dielectric constant and low viscosity.
  • the lithium salt is selected from the group consisting of LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC (SO 2 One or more of CF 3 ) 3 and LiN(SO 2 F) 2 are preferably a mixture of LiPF 6 or LiPF 6 and other lithium salts.
  • One embodiment of the present invention provides a lithium ion battery comprising a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and further includes an electrolyte solution for a lithium ion battery of the present invention.
  • the positive electrode material of the lithium ion battery of the present invention may be selected from the group consisting of LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCo 1-y M y O 2 , LiNi 1-y M y O 2 , LiMn 2-y M y O 4 and One or more of LiNi x Co y Mn z M 1-xyz O 2 , wherein M is selected from the group consisting of Fe, Co, Ni, Mn, Mg, Cu, Zn, Al, Sn, B, Ga, Cr, One or more of Sr, V and Ti, and 0 ⁇ y ⁇ 1, 0 ⁇ x ⁇ 1, 0 ⁇ z ⁇ 1, x + y + z ⁇ 1.
  • the active material of the positive electrode is lithium cobaltate (LiCoO 2 ).
  • the charge cutoff voltage of the lithium ion battery of the present invention can be made greater than 4.2 V and less than or equal to 4.5 V. In a preferred embodiment of the invention, the charge cutoff voltage is 4.4V.
  • the electrolyte for lithium ion batteries of the present invention ensures high cycle performance of a high voltage battery by a combination of fluoroethylene carbonate, a saturated dinitrile compound or other unsaturated nitrile compound and an unsaturated phosphate compound, and at the same time effectively improves High temperature storage performance of high voltage batteries.
  • the concentration was 1 mol/L, and 1% of FEC, 1% of succinonitrile, and 2% of tripropargyl phosphate were added as additives, based on the total mass of the electrolyte.
  • the cathode active material lithium cobalt oxide (LiCoO 2 ), the conductive carbon black Super-P and the binder polyvinylidene fluoride (PVDF) were mixed at a mass ratio of 93:4:3, and then dispersed in the N-methyl group.
  • NMP 2-pyrrolidone
  • a positive electrode slurry was obtained. The slurry was uniformly coated on both sides of the aluminum foil, dried, calendered and vacuum dried, and the aluminum lead wire was welded by an ultrasonic welder to obtain a positive electrode plate having a thickness of 120-150 ⁇ m.
  • the negative active material artificial graphite, conductive carbon black Super-P, binder styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) were mixed at a mass ratio of 94:1:2.5:2.5, and then dispersed.
  • SBR binder styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • a polyethylene microporous film having a thickness of 20 ⁇ m is placed as a separator between the positive electrode plate and the negative electrode plate, and then The sandwich structure composed of the positive electrode plate, the negative electrode plate and the separator is wound, and the wound body is flattened, placed in an aluminum plastic film packaging bag, and then baked at 85 ° C for 24 hr to obtain a battery core to be injected.
  • the electrolyte prepared above is injected into the cell, and the amount of the electrolyte is ensured to fill the voids in the cell. Then, the following steps were carried out: 0.05C constant current charging for 180min, 0.1C constant current charging for 240min, holding for 1 hr, vacuum shaping and sealing, and then further charging to 4.4V with a constant current of 0.2C, leaving at room temperature for 24hr, after 0.2C The current is constantly discharged to 3.0V.
  • the battery At normal temperature, the battery is charged to 4.4V with a constant current of 1C and then charged to a current of 0.1C at a constant voltage, and then discharged to 3.0V with a constant current of 1C.
  • This cycle is 500 weeks, and the discharge capacity of the first week is recorded. And the discharge capacity at week 500, calculate the capacity retention rate of the high temperature cycle as follows:
  • Capacity retention rate discharge capacity at week 500 / discharge capacity at week 1 * 100%
  • the formed battery was charged to 4.4 V at a normal temperature with a constant current of 1 C, and the initial thickness and initial discharge capacity of the battery were measured. Then, it was stored at 60 ° C for 30 days, and finally the battery was cooled to normal temperature and then the final thickness of the battery was measured, and the battery thickness expansion ratio was calculated; then, the battery retention capacity and recovery capacity were measured by discharging at 1 C to 3 V. Calculated as follows:
  • Battery capacity retention rate (%) retention capacity / initial capacity ⁇ 100%;
  • Battery capacity recovery rate (%) recovery capacity / initial capacity ⁇ 100%;
  • Battery thickness expansion ratio (%) (final thickness - initial thickness) / initial thickness ⁇ 100%.
  • the formed battery was charged to 4.4 V with a constant current of 1 C at 25 ° C, and then discharged to 3.0 V with a constant current of 1 C to record the discharge capacity. Then, 1C constant current and constant voltage were charged to 4.4V, and after being placed in an environment of -20 ° C for 12 hours, a constant current of 0.2 C was discharged to 3.0 V, and the discharge capacity was recorded.
  • the cycle obtained by the test was the same as in Example 1, except that the additive was replaced with 5% FEC, 1% succinonitrile, and 2% tripropargyl phosphate in the preparation of the electrolyte.
  • the performance, high temperature storage performance and low temperature performance data are shown in Table 2.
  • the additive was replaced with 5% FEC, 2% succinonitrile, 2% adiponitrile, 1% glutaronitrile, and 0.5% triacetylpropane phosphate in addition to the preparation of the electrolyte.
  • the data of the cycle performance, high-temperature storage performance and low-temperature performance obtained in the test were as shown in Table 2.
  • Example 2 As shown in Table 1, except that the additive was replaced with 5% FEC, 1% succinonitrile, and 1% adiponitrile in the preparation of the electrolyte, the cycle performance and high temperature were tested as in Example 1. The storage performance and low temperature performance data are shown in Table 2.
  • Table 1 shows the addition of the electrolyte additive in the above examples and comparative examples.
  • Table 2 shows the performance data of the above examples and comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种锂离子电池用电解液及锂离子电池,该电解液包括非水有机溶剂、锂盐和添加剂,其中添加剂包括:(A)氟代碳酸乙烯酯;(B)选自饱和二腈类化合物或结构式1所示的不饱和腈类化合物中的至少一种化合物,其中,R1选自碳原子数为3-6的不饱和烃基,R2选自碳原子数为2-5的亚烃基;(C)选自结构式2所示的不饱和磷酸酯化合物中的至少一种化合物,其中R3、R4、R5分别独立地选自碳原子数为1-4的烃基,且R3、R4、R5中至少一个为含有叁键的不饱和烃基。

Description

一种锂离子电池用电解液及锂离子电池 技术领域
本发明涉及锂离子电池技术领域,尤其涉及一种锂离子电池用电解液及锂离子电池。
背景技术
目前非水电解液锂离子电池已经越来越多的被用于3C消费类电子产品市场,随着科技的进步,数码产品的功能日益丰富强大,电池续航能力不足日益明显。3C类数码锂离子电池的发展趋势是高能量密度化,而高电压钴酸锂材料是未来至少5年内正极材料领域的主流解决方案。
但随着钴酸锂电压的升高,电池的各方面性能会明显劣化。主要是钴酸锂正极材料不稳定,随着电压升高,金属Co离子在正极溶出,造成正极材料结构坍塌,同时溶出的Co离子在负极还原,破坏负极结构;另外,随着正极电压升高,电解液在正极分解,使电池体系的稳定性变差,最终导致电池性能明显下降。所以,伴随着充电截止电压的不断提高,高电压电解液已经成为制约高电压钴酸锂电池发展的关键因素。
目前国内外市场上已经有一些4.4V钴酸锂电池体系的电解液产品。这些电解液产品中,一般含有传统成膜添加剂氟代碳酸乙烯酯(FEC)和1,3-丙烷磺酸内酯(1,3-PS),其中1,3-PS对平衡电池的高低温性能有很好的效果。因为1,3-PS具有一定的正极成膜作用,可以保护正极,抑制电解液分解,同时其有明显的负极成膜作用,可以提高负极的稳定性。另外,在一定范围内,1,3-PS含量越高,高温性能越好,且对电池的阻抗增长相对较小,不会对锂离子的动力学性能造成很大的影响。所以目前的高电压电解液一般均含有较多的1,3-PS。但根据欧盟的最新REACH法规,由于1,3-PS的致癌性,其将1,3-PS列入了最新的SVHC清单中,要求物品中1,3-PS的含量不超过0.1%。这就大大限制了1,3-PS在高电压电解液中的应用。
发明内容
本发明提供一种锂离子电池用电解液及锂离子电池,该电解液的添加剂包含氟代碳酸乙烯酯,饱和二腈类化合物或其它不饱和腈类化合物,以及不饱和磷酸酯化合物。在不包含磺酸酯化合物的情况下,该添加剂组合能在负极形成优良的SEI膜,稳定负极;同时可以在正极形成较好的保护膜,络合金属离子,从而抑制金属离子溶出和电解液在正极的分解,明显改善电池的高温存储性能。
根据本发明的第一方面,本发明提供一种锂离子电池用电解液,包括非水有机溶剂、锂盐和添加剂,上述添加剂包括:
(A)氟代碳酸乙烯酯;
(B)选自饱和二腈类化合物或结构式1所示的不饱和腈类化合物中的至少一种化合物,
Figure PCTCN2016091881-appb-000001
其中,R1选自碳原子数为3-6的不饱和烃基,R2选自碳原子数为2-5的亚烃基;
(C)选自结构式2所示的不饱和磷酸酯化合物中的至少一种化合物,
Figure PCTCN2016091881-appb-000002
其中R3、R4、R5分别独立地选自碳原子数为1-4的烃基,且R3、R4、R5中至少一个为含有叁键的不饱和烃基。
作为本发明的进一步改进的方案,上述添加剂(A)占上述电解液总重量的1%~10%,优选1%~5%。
作为本发明的进一步改进的方案,上述饱和二腈类化合物占上述电解液总 重量的1%~5%,优选1%~3%;上述结构式1所示的不饱和腈类化合物占上述电解液总重量的0.1%~3%,优选0.2%~2%。
作为本发明的进一步改进的方案,上述添加剂(C)占上述电解液总重量的0.1%~2%,优选0.2%~1%。
作为本发明的进一步改进的方案,上述饱和二腈类化合物选自丁二腈、戊二腈、己二腈、庚二腈、辛二腈、壬二腈和癸二腈中的一种或两种以上;上述结构式1所示的不饱和腈类化合物选自以下结构式3和结构式4所示的化合物中的至少一种:
Figure PCTCN2016091881-appb-000003
作为本发明的进一步改进的方案,上述结构式2所示的不饱和磷酸酯化合物为磷酸三炔丙酯。
作为本发明的进一步改进的方案,上述非水有机溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的一种或两种以上;优选为碳酸乙烯酯、碳酸二乙酯和碳酸甲乙酯的组合物。
作为本发明的进一步改进的方案,上述锂盐选自LiPF6、LiBF4、LiSbF6、LiAsF6、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiC(SO2CF3)3和LiN(SO2F)2中的一种或两种以上。
根据本发明的第二方面,本发明提供一种锂离子电池,包括正极、负极和置于上述正极与负极之间的隔膜,还包括第一方面的锂离子电池用电解液。
作为本发明的进一步优选方案,上述正极的活性物质为钴酸锂。
本发明的锂离子电池用电解液中的添加剂组合包括氟代碳酸乙烯酯,饱和二腈类化合物或其它不饱和腈类化合物,以及不饱和磷酸酯化合物,这些添加剂在同一电解液体系中的存在,能够通过一种可能是协同作用的效应,在负极 形成优良的SEI膜,稳定负极;同时可以在正极形成较好的保护膜,络合金属离子,从而抑制金属离子溶出和电解液在正极的分解,明显改善电池的高温存储性能。
具体实施方式
下面通过具体实施方式对本发明作进一步详细说明。
本发明组合使用氟代碳酸乙烯酯(FEC)、饱和二腈类化合物或其它不饱和腈类化合物以及不饱和磷酸酯化合物作为电解液的添加剂。
本发明加入FEC,主要是在负极可以形成优良的SEI,保证高电压电池具有优良的循环性能。FEC的含量优选占电解液总重量的1%~10%,更优选1%~5%。当FEC含量小于1%时,其不能在负极形成优良的SEI,对循环性能起不到应有的改善效果;但其含量超过10%时,其容易在高温下产生HF、LiF,会劣化电池高温性能。
本发明加入饱和二腈类化合物,可以与金属离子发生络合作用,降低电解液分解,抑制金属离子溶出,保护正极,提高电池高温性能;加入不饱和腈类化合物,除了能与金属离子发生络合作用之外,该类化合物还能在正极成膜,同时具有络合和成膜效果,更好地提高电池高温性能。
本发明中,饱和二腈类化合物可以选自选自丁二腈、戊二腈、己二腈、庚二腈、辛二腈、壬二腈和癸二腈中的一种或两种以上。不饱和腈类化合物具有结构式1所示的化学结构,
Figure PCTCN2016091881-appb-000004
其中,R1选自碳原子数为3-6的不饱和烃基,R2选自碳原子数为2-5的亚烃基。
结构式1所示的化合物可以采用如下反应途径得到:
Figure PCTCN2016091881-appb-000005
上述反应过程涉及的反应原理和工艺条件是本领域公知且成熟的,本领域技术人员能够容易地合成出本发明的化合物。
结构式1所示化合物其作用机理不十分清楚,但发明人推测可能是结构式1所示的化合物分子结构中由于同时含有不饱和碳碳键和氰基,一方面碳碳不饱和键可以在充电过程中在电极表面发生聚合反应,具有正极成膜效果,抑制电解液的氧化分解;另一方面,该结构中的氰基具有正极络合作用,可以有效络合金属离子,抑制金属离子的溶出。通过这两方面的协同作用,可以有效提高电池的高温存储性能和循环性能。
上述结构式1所示的化合物中,R1基团的碳原子数对其性能有重要影响,发明人经过深入研究发现,R1选自碳原子为3-6的不饱和烃基,能够显著地取得上述效果。当R1选自碳原子数大于6的不饱和烃基,在电极表面形成的化合物阻抗过大,且络合金属离子的效果降低,反而降低电池高温储存及循环性能。
发明人还发现,R2的取值对其性能也有重要影响,R2为碳原子数为2-5的亚烃基,能够显著地取得上述效果。当碳原子数大于5时,在电极表面形成的化合物阻抗过大,且络合金属离子的效果降低,反而降低电池高温储存及循环性能。
上述结构式1所示的化合物中,R1基团为直链或支链的不饱和烃基,直链如烯基或炔基,典型但非限定性的烯基的例子比如丙烯基、烯丙基、丁烯基、戊烯基、己烯基;典型但非限定性的炔基的例子比如丙炔基、炔丙基、丁炔基、戊炔基、己炔基。R2基团为亚烃基,可以是直链或支链的饱和亚烃基,也可以是支链或直链的不饱和亚烃基,典型但非限定性的直链饱和亚烃基例子比如亚乙基、亚丙基、亚丁基、亚戊基。
在本发明的一些实施例中,结构式1所示的不饱和腈类化合物选自以下结构式3和结构式4所示的化合物中的至少一种:
Figure PCTCN2016091881-appb-000006
本发明中,饱和二腈类化合物的含量优选地占电解液总重量的1%~5%,更优选1%~3%;含量低于1%时,难以充分发挥其效果,含量高于5%时,可能存在不良影响。结构式1所示的不饱和腈类化合物的含量优选地占电解液总重量的0.1%~3%。当低于0.1%时,络合金属离子效果不佳,从而难以充分提高电池的高温储存性能及循环性能,而超过3%时,可能在电极表面形成过厚的钝化膜,电池内阻太大,导致电池性能恶化。在本发明的一个更优选实施方案中,结构式1所示的不饱和腈类化合物的含量相对于电解液总质量为0.2%-2%。在本发明中,饱和二腈类化合物与不饱和腈类化合物可以分别单独使用,也可以组合使用两种化合物。
本发明加入结构式2所示的不饱和磷酸酯化合物中的至少一种化合物,
Figure PCTCN2016091881-appb-000007
其中R3、R4、R5分别独立地选自碳原子数为1-4的烃基,且R3、R4、R5中至少一个为含有叁键的不饱和烃基。
在本发明的一个优选实施方案中,结构式2所示的不饱和磷酸酯化合物占上述电解液总重量的0.1%~2%,优选0.2%~1%。该化合物能在正、负极成膜,有效地保护正、负极,提高锂离子电池的高温性能,特别是高温循环性能。当其含量小于0.1%时,其在正、负极的成膜效果较差,对性能起不到应有的改善作用;当其含量大于2%时,其在电极界面的成膜较厚,会严重增大电池阻抗, 劣化电池性能。
在本发明的一个优选实施例中,结构式2所示的不饱和磷酸酯化合物为磷酸三炔丙酯,即如下结构式5所示的化合物:
Figure PCTCN2016091881-appb-000008
在本发明的一个优选实施方案中,非水有机溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的一种或两种以上;更优选为碳酸乙烯酯、碳酸二乙酯和碳酸甲乙酯的组合物。
上述碳酸乙烯酯、碳酸丙烯酯和碳酸丁烯酯属于环状碳酸酯,而碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯属于链状碳酸酯。采用高介电常数的环状碳酸酯有机溶剂与低粘度的链状碳酸酯有机溶剂的混合液作为锂离子电池电解液的溶剂,使得该有机溶剂的混合液同时具有高的离子电导率、高的介电常数及低的粘度。
在本发明的一个优选实施方案中,锂盐选自LiPF6、LiBF4、LiSbF6、LiAsF6、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiC(SO2CF3)3和LiN(SO2F)2中的一种或两种以上,优选的是LiPF6或LiPF6与其它锂盐的混合物。
本发明的一个实施方案提供一种锂离子电池,包括正极、负极和置于正极与负极之间的隔膜,还包括本发明的锂离子电池用电解液。
本发明的锂离子电池的正极材料可以选自LiCoO2、LiNiO2、LiMn2O4、LiCo1-yMyO2、LiNi1-yMyO2、LiMn2-yMyO4和LiNixCoyMnzM1-x-y-zO2中的一种或两种以上,其中,M选自Fe、Co、Ni、Mn、Mg、Cu、Zn、Al、Sn、B、Ga、Cr、 Sr、V和Ti中的一种或两种以上,且0≤y≤1,0≤x≤1,0≤z≤1,x+y+z≤1。在本发明的一个优选实施例中,正极的活性物质为钴酸锂(LiCoO2)。
采用本发明的电解液,本发明的锂离子电池的充电截止电压能够做到大于4.2V而小于等于4.5V,在本发明的一个优选实施例中,充电截止电压为4.4V。
本发明的锂离子电池用电解液通过氟代碳酸乙烯酯、饱和二腈类化合物或其它不饱和腈类化合物以及不饱和磷酸酯化合物的组合,保证高电压电池获得优良的循环性能,同时有效改善高电压电池的高温存储性能。
以下通过具体实施例对本发明进行详细描述。应当理解,这些实施例仅是示例性的,并不构成对本发明保护范围的限制。
实施例1
1)电解液的制备
将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为EC:DEC:EMC=1:1:1进行混合,然后加入六氟磷酸锂(LiPF6)至摩尔浓度为1mol/L,再加入按电解液的总质量计1%的FEC,1%的丁二腈,以及2%的磷酸三炔丙酯作为添加剂。
2)正极板的制备
按93:4:3的质量比混合正极活性材料钴酸锂(LiCoO2),导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将它们分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,极板的厚度在120-150μm。
3)负极板的制备
按94:1:2.5:2.5的质量比混合负极活性材料人造石墨,导电碳黑Super-P,粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,极板的厚度在120-150μm。
4)电芯的制备
在正极板和负极板之间放置厚度为20μm的聚乙烯微孔膜作为隔膜,然后将 正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入铝塑膜包装袋,然后于85℃下烘烤24hr,得到待注液的电芯。
5)电芯的注液和化成
在露点控制在-40℃以下的手套箱中,将上述制备的电解液注入电芯中,电解液的量要保证充满电芯中的空隙。然后按以下步骤进行化成:0.05C恒流充电180min,0.1C恒流充电240min,搁置1hr后真空整形封口,然后进一步以0.2C的电流恒流充电至4.4V,常温搁置24hr后,以0.2C的电流恒流放电至3.0V。
6)常温循环性能测试
常温下,将电池以1C的电流恒流充电至4.4V然后恒压充电至电流下降至0.1C,然后以1C的电流恒流放电至3.0V,如此循环500周,记录第1周的放电容量和第500周的放电容量,按下式计算高温循环的容量保持率:
容量保持率=第500周的放电容量/第1周的放电容量*100%
7)高温储存性能测试
将化成后的电池在常温下用1C恒流恒压充至4.4V,测量电池初始厚度,初始放电容量。然后在60℃储存30天,最后等电池冷却至常温再测电池最终厚度,计算电池厚度膨胀率;之后以1C放电至3V测量电池的保持容量和恢复容量。计算公式如下:
电池容量保持率(%)=保持容量/初始容量×100%;
电池容量恢复率(%)=恢复容量/初始容量×100%;
电池厚度膨胀率(%)=(最终厚度-初始厚度)/初始厚度×100%。
8)低温性能测试
在25℃下,将化成后的电池用1C恒流恒压充至4.4V,然后用1C恒流放电至3.0V,记录放电容量。然后1C恒流恒压充至4.4V,置于-20℃的环境中搁置12h后,0.2C恒流放电至3.0V,记录放电容量。
-20℃的低温放电效率值=0.2C放电容量(-20℃)/1C放电容量(25℃)×100%。
实施例2
如表1所示,除了电解液的制备中将添加剂替换为1%的FEC,2%的丁二 腈,2%的己二腈,1%的戊二腈,以及0.2%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
实施例3
如表1所示,除了电解液的制备中将添加剂替换为5%的FEC,1%的丁二腈,以及2%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
实施例4
如表1所示,除了电解液的制备中将添加剂替换为5%的FEC,1%的丁二腈,1%的己二腈,以及1%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
实施例5
如表1所示,除了电解液的制备中将添加剂替换为5%的FEC,2%的丁二腈,2%的己二腈,1%的戊二腈,以及0.5%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
实施例6
如表1所示,除了电解液的制备中将添加剂替换为10%的FEC,1%的丁二腈,以及1%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
实施例7
如表1所示,除了电解液的制备中将添加剂替换为10%的FEC,1%的丁二腈,1%的己二腈,以及0.5%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
实施例8
如表1所示,除了电解液的制备中将添加剂替换为5%的FEC,0.1%的结构式3所示的化合物,以及0.5%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
实施例9
如表1所示,除了电解液的制备中将添加剂替换为5%的FEC,1%的结构式3所示的化合物,以及0.5%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
实施例10
如表1所示,除了电解液的制备中将添加剂替换为10%的FEC,3%的结构式3所示的化合物,以及0.5%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
实施例11
如表1所示,除了电解液的制备中将添加剂替换为10%的FEC,1%的结构式3所示的化合物,以及2%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
实施例12
如表1所示,除了电解液的制备中将添加剂替换为5%的FEC,1%的结构式4所示的化合物,以及0.5%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
实施例13
如表1所示,除了电解液的制备中将添加剂替换为1%的FEC,1%的丁二腈,1%的己二腈,0.5%的结构式3所示的化合物,以及0.2%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
实施例14
如表1所示,除了电解液的制备中将添加剂替换为5%的FEC,1%的丁二腈,1%的己二腈,1%的结构式3所示的化合物,以及1%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
实施例15
如表1所示,除了电解液的制备中将添加剂替换为10%的FEC,2%的丁二 腈,2%的己二腈,1%的戊二腈,2%的结构式3所示的化合物,以及0.5%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
对比例1
如表1所示,除了电解液的制备中将添加剂替换为5%的FEC以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
对比例2
如表1所示,除了电解液的制备中将添加剂替换为1%的磷酸三炔丙酯以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
对比例3
如表1所示,除了电解液的制备中将添加剂替换为1%的丁二腈,1%的己二腈以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
对比例4
如表1所示,除了电解液的制备中将添加剂替换为5%的FEC,1%的丁二腈,1%的己二腈以外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
对比例5
如表1所示,除了电解液的制备中将添加剂替换为5%的FEC,1%的丁二腈,1%的己二腈,以及2%的1,3-PS外,其它与实施例1相同,测试得到的循环性能、高温储存性能和低温性能的数据见表2。
表1示出了以上实施例和对比例中的电解液添加剂加入情况。
表1
Figure PCTCN2016091881-appb-000009
Figure PCTCN2016091881-appb-000010
Figure PCTCN2016091881-appb-000011
表2示出了以上实施例和对比例的性能数据。
表2
Figure PCTCN2016091881-appb-000012
Figure PCTCN2016091881-appb-000013
通过对比例和实施例的对比,发现FEC、饱和二腈类化合物或不饱和腈类化合物与磷酸三炔丙酯的组合能有效改善高温存储和循环性能,并且兼顾低温性能,各方面性能可以达到甚至优于含1,3-PS组合的性能水平。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种锂离子电池用电解液,其特征在于,包括非水有机溶剂、锂盐和添加剂,所述添加剂包括:
    (A)氟代碳酸乙烯酯;
    (B)选自饱和二腈类化合物或结构式1所示的不饱和腈类化合物中的至少一种化合物,
    其中,R1选自碳原子数为3-6的不饱和烃基,R2选自碳原子数为2-5的亚烃基;
    (C)选自结构式2所示的不饱和磷酸酯化合物中的至少一种化合物,
    Figure PCTCN2016091881-appb-100002
    其中R3、R4、R5分别独立地选自碳原子数为1-4的烃基,且R3、R4、R5中至少一个为含有叁键的不饱和烃基。
  2. 根据权利要求1所述的电解液,其特征在于,所述添加剂(A)占所述电解液总重量的1%~10%,优选1%~5%。
  3. 根据权利要求1所述的电解液,其特征在于,所述饱和二腈类化合物占所述电解液总重量的1%~5%,优选1%~3%;所述结构式1所示的不饱和腈类化合物占所述电解液总重量的0.1%~3%,优选0.2%~2%。
  4. 根据权利要求1所述的电解液,其特征在于,所述添加剂(C)占所述电解液总重量的0.1%~2%,优选0.2%~1%。
  5. 根据权利要求1-4任一项所述的电解液,其特征在于,所述饱和二腈类化合物选自丁二腈、戊二腈、己二腈、庚二腈、辛二腈、壬二腈和癸二腈中的一种或两种以上;所述结构式1所示的不饱和腈类化合物选自以下结构式3和 结构式4所示的化合物中的至少一种:
    Figure PCTCN2016091881-appb-100003
  6. 根据权利要求1-4任一项所述的电解液,其特征在于,所述结构式2所示的不饱和磷酸酯化合物为磷酸三炔丙酯。
  7. 根据权利要求1-4任一项所述的电解液,其特征在于,所述非水有机溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯和碳酸甲丙酯中的一种或两种以上;优选为碳酸乙烯酯、碳酸二乙酯和碳酸甲乙酯的组合物。
  8. 根据权利要求1-4任一项所述的电解液,其特征在于,所述锂盐选自LiPF6、LiBF4、LiSbF6、LiAsF6、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiC(SO2CF3)3和LiN(SO2F)2中的一种或两种以上。
  9. 一种锂离子电池,包括正极、负极和置于所述正极与负极之间的隔膜,其特征在于,还包括权利要求1至8任一项所述的锂离子电池用电解液。
  10. 根据权利要求9所述的锂离子电池,其特征在于,所述正极的活性物质为钴酸锂。
PCT/CN2016/091881 2016-04-08 2016-07-27 一种锂离子电池用电解液及锂离子电池 WO2017173743A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/084,929 US10826123B2 (en) 2016-04-08 2016-07-27 Lithium-ion battery electrolyte and lithium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610218844.2A CN105742707B (zh) 2016-04-08 2016-04-08 一种锂离子电池用电解液及锂离子电池
CN201610218844.2 2016-04-08

Publications (1)

Publication Number Publication Date
WO2017173743A1 true WO2017173743A1 (zh) 2017-10-12

Family

ID=56253026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091881 WO2017173743A1 (zh) 2016-04-08 2016-07-27 一种锂离子电池用电解液及锂离子电池

Country Status (3)

Country Link
US (1) US10826123B2 (zh)
CN (1) CN105742707B (zh)
WO (1) WO2017173743A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019192639A (ja) * 2018-04-23 2019-10-31 三菱ケミカル株式会社 非水系電解液及びそれを用いたエネルギーデバイス
CN112448030A (zh) * 2019-08-30 2021-03-05 中科邦汇新材料科技(东莞)有限公司 一种预锂化电解液及预锂化锂离子电池的制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742707B (zh) * 2016-04-08 2018-08-14 深圳新宙邦科技股份有限公司 一种锂离子电池用电解液及锂离子电池
CN108110319A (zh) * 2016-11-25 2018-06-01 惠州市宙邦化工有限公司 锂离子电池非水电解液及锂离子电池
CN108206299B (zh) * 2016-12-19 2020-10-09 宁德时代新能源科技股份有限公司 锂离子电池及其电解液
KR102531687B1 (ko) * 2017-11-07 2023-05-10 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
CN108321434A (zh) * 2018-03-23 2018-07-24 安普瑞斯(无锡)有限公司 一种高电压锂离子电池电解液
CN110048164B (zh) * 2019-05-16 2022-05-17 东莞维科电池有限公司 一种软包锂离子硅碳电池电解液及锂离子电池
CN113130993A (zh) * 2019-12-30 2021-07-16 深圳市研一新材料有限责任公司 一种电解液及其电化学装置
CN112786965B (zh) * 2020-12-30 2022-06-24 广东国光电子有限公司 一种电解液及使用该电解液的锂二次电池
CN113299973B (zh) * 2021-05-21 2023-01-31 珠海冠宇电池股份有限公司 一种锂离子电池及其应用
CN113451653A (zh) * 2021-08-17 2021-09-28 珠海冠宇电池股份有限公司 一种非水电解液及包括该非水电解液的锂离子电池
CN114300735B (zh) * 2021-11-26 2023-09-08 深圳新宙邦科技股份有限公司 锂二次电池
CN114400381A (zh) * 2022-02-23 2022-04-26 合肥国轩高科动力能源有限公司 一种电解液添加剂、含该添加剂的电解液和锂离子电池
CN115275103B (zh) * 2022-09-26 2023-01-06 比亚迪股份有限公司 锂电池及用电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269577A (zh) * 2014-09-29 2015-01-07 深圳新宙邦科技股份有限公司 一种高电压锂离子电池的电解液及高电压锂离子电池
CN105140566A (zh) * 2015-08-03 2015-12-09 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN105374980A (zh) * 2014-08-15 2016-03-02 中国科学院物理研究所 界面浸润的准固态碱金属电池、电池电极及电池制备方法
CN105428717A (zh) * 2015-12-18 2016-03-23 深圳新宙邦科技股份有限公司 一种锂离子电池用电解液及锂离子电池
CN105742707A (zh) * 2016-04-08 2016-07-06 深圳新宙邦科技股份有限公司 一种锂离子电池用电解液及锂离子电池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108033A (ja) * 1981-12-18 1983-06-28 Matsushita Electric Ind Co Ltd 磁気記録媒体
JPH02212550A (ja) * 1989-02-10 1990-08-23 Mitsubishi Kasei Corp 光学用成形材料
US6919141B2 (en) * 1998-10-22 2005-07-19 Wilson Greatbatch Technologies, Inc. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
US6743947B1 (en) * 1999-05-10 2004-06-01 The United States Of America As Represented By The Secretary Of The Army Electrochemically stable onium salts and electrolytes containing such for electrochemical capacitors
KR20090063441A (ko) * 2007-12-14 2009-06-18 삼성에스디아이 주식회사 리튬 이차 전지
CN102244296B (zh) * 2011-06-14 2016-06-22 东莞新能源科技有限公司 锂离子电池及其电解液
US10014525B2 (en) * 2013-01-29 2018-07-03 Osaka Soda Co., Ltd. Binder for battery electrode, and electrode and battery using same
CN103208654A (zh) * 2013-03-28 2013-07-17 东莞新能源科技有限公司 软包装锂离子二次电池用电解液及包含该电解液的电池
CN105428715B (zh) * 2015-11-04 2018-06-08 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374980A (zh) * 2014-08-15 2016-03-02 中国科学院物理研究所 界面浸润的准固态碱金属电池、电池电极及电池制备方法
CN104269577A (zh) * 2014-09-29 2015-01-07 深圳新宙邦科技股份有限公司 一种高电压锂离子电池的电解液及高电压锂离子电池
CN105140566A (zh) * 2015-08-03 2015-12-09 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN105428717A (zh) * 2015-12-18 2016-03-23 深圳新宙邦科技股份有限公司 一种锂离子电池用电解液及锂离子电池
CN105742707A (zh) * 2016-04-08 2016-07-06 深圳新宙邦科技股份有限公司 一种锂离子电池用电解液及锂离子电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019192639A (ja) * 2018-04-23 2019-10-31 三菱ケミカル株式会社 非水系電解液及びそれを用いたエネルギーデバイス
JP7399626B2 (ja) 2018-04-23 2023-12-18 三菱ケミカル株式会社 非水系電解液及びそれを用いたエネルギーデバイス
CN112448030A (zh) * 2019-08-30 2021-03-05 中科邦汇新材料科技(东莞)有限公司 一种预锂化电解液及预锂化锂离子电池的制备方法

Also Published As

Publication number Publication date
US10826123B2 (en) 2020-11-03
CN105742707B (zh) 2018-08-14
US20190089000A1 (en) 2019-03-21
CN105742707A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
US10826123B2 (en) Lithium-ion battery electrolyte and lithium-ion battery
WO2017020431A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2016054843A1 (zh) 一种锂离子电池非水电解液及锂离子电池
WO2017084109A1 (zh) 一种锂离子电池非水电解液及锂离子电池
CN111403807B (zh) 一种锂离子电池非水电解液及锂离子电池
CN108847501B (zh) 一种锂离子电池非水电解液及锂离子电池
WO2017101141A1 (zh) 一种锂离子电池用电解液及锂离子电池
WO2017020430A1 (zh) 一种锂离子电池非水电解液及锂离子电池
JP6533836B2 (ja) リチウムイオン電池用非水電解液及びリチウムイオン電池
WO2018006564A1 (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
CN109768327B (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
WO2021135921A1 (zh) 一种锂离子电池
US11489199B2 (en) Non-aqueous electrolyte for lithium ion battery and lithium ion battery
WO2017020429A1 (zh) 一种高电压锂离子电池用非水电解液及锂离子电池
WO2024055794A1 (zh) 一种锂离子电池
CN109390630B (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
CN107919498B (zh) 锂离子电池非水电解液及使用该电解液的锂离子电池
CN111384438B (zh) 一种锂离子电池非水电解液及锂离子电池
WO2022089128A1 (zh) 锂离子电池
CN111224159A (zh) 一种非水电解液及锂离子电池
CN110911744A (zh) 一种锂离子电池非水电解液及锂离子电池
CN111384391B (zh) 一种高镍锂离子电池
CN111725563B (zh) 一种锂离子电池非水电解液及锂离子电池
WO2023000889A1 (zh) 一种非水电解液及锂离子电池
WO2022213823A1 (zh) 一种锂离子电池非水电解液及锂离子电池

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897676

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897676

Country of ref document: EP

Kind code of ref document: A1