WO2016104514A1 - 液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2016104514A1
WO2016104514A1 PCT/JP2015/085851 JP2015085851W WO2016104514A1 WO 2016104514 A1 WO2016104514 A1 WO 2016104514A1 JP 2015085851 W JP2015085851 W JP 2015085851W WO 2016104514 A1 WO2016104514 A1 WO 2016104514A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
formula
diamine
aligning agent
tetracarboxylic acid
Prior art date
Application number
PCT/JP2015/085851
Other languages
English (en)
French (fr)
Inventor
達也 結城
秀則 石井
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020177020223A priority Critical patent/KR102489700B1/ko
Priority to JP2016566393A priority patent/JP6597640B2/ja
Priority to CN201580076636.7A priority patent/CN107250901B/zh
Publication of WO2016104514A1 publication Critical patent/WO2016104514A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element which are preferably used for a liquid crystal display element for driving a horizontal electric field.
  • liquid crystal devices have been widely used as display units for personal computers, mobile phones, television receivers, and the like.
  • the liquid crystal device includes, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode that apply an electric field to the liquid crystal layer, an alignment film that controls the alignment of liquid crystal molecules in the liquid crystal layer, and a pixel A thin film transistor (TFT) for switching an electric signal supplied to the electrode is provided.
  • TFT thin film transistor
  • a vertical electric field method such as a TN method and a VA method
  • a horizontal electric field method such as an IPS method and an FFS method
  • a conventional electric field method in which a liquid crystal is driven by applying a voltage to the electrodes formed on the upper and lower substrates.
  • a liquid crystal display element having a wide viewing angle characteristic and capable of high-quality display.
  • the horizontal electric field type liquid crystal cell has excellent viewing angle characteristics, since there are few electrode parts formed in the substrate, if the voltage holding ratio of the liquid crystal alignment film is weak, sufficient voltage is not applied to the liquid crystal display Contrast decreases. In addition, if the stability of the liquid crystal alignment is small, the liquid crystal will not return to the initial state when the liquid crystal is driven for a long time, resulting in a decrease in contrast or afterimage. is there.
  • static electricity is likely to be accumulated in the liquid crystal cell, and charge is accumulated in the liquid crystal cell by application of positive and negative asymmetric voltages generated by driving, and these accumulated charges disturb the alignment of the liquid crystal, or as an afterimage It affects the display and significantly reduces the display quality of the liquid crystal element.
  • charges are accumulated by irradiating the liquid crystal cell with backlight light immediately after driving, and afterimages are generated even during short-time driving, and the size of flicker (flicker) changes during driving.
  • the liquid crystal alignment film is generally formed by printing a liquid crystal aligning agent, drying, firing and then rubbing, but in a horizontal electric field type liquid crystal cell, one side of the substrate is formed. Since the electrode structure is only on the substrate, the substrate has large irregularities, and an insulator such as silicon nitride may be formed on the substrate surface, which makes the liquid crystal alignment superior in printability compared to conventional alignment agents. There is a need for treatment agents. Furthermore, in order to improve the stability of the liquid crystal alignment, the rubbing treatment is performed more strongly than the conventional liquid crystal cell, so that peeling or rubbing due to the rubbing treatment is likely to occur, and these peeling and scratches reduce the display quality. There is a problem.
  • Patent Document 1 As a liquid crystal aligning agent excellent in printability and rubbing resistance and having little afterimage when used in such a lateral electric field drive liquid crystal element, Patent Document 1 includes an amic acid unit derived from an aromatic tetracarboxylic acid, A liquid crystal aligning agent containing both amic acid units derived from alicyclic tetracarboxylic acid by copolymerization or mixing is disclosed. Further, as a liquid crystal alignment agent for obtaining a liquid crystal alignment film having excellent liquid crystal alignment properties, alignment regulating power, rubbing resistance, etc., high voltage holding ratio, and reduced charge accumulation, Patent Document 2 discloses a film.
  • a liquid crystal aligning agent comprising: a low-resistance polyimide precursor having a volume resistivity of 1 ⁇ 10 10 to 1 ⁇ 10 14 ⁇ cm, and a highly-oriented polyimide precursor or polyimide having a specific structure
  • a liquid crystal display device using the liquid crystal aligning agent is disclosed.
  • the characteristics required for the liquid crystal alignment film are becoming strict, and it is difficult to satisfy all the required characteristics only with the conventional technology.
  • the present invention is particularly a lateral electric field drive capable of obtaining a liquid crystal alignment film having excellent stability of liquid crystal alignment, short afterimage erasing time, hardly causing peeling or rubbing by rubbing treatment, and small flicker change immediately after driving. It is an object of the present invention to provide a liquid crystal aligning agent that is excellent for an element.
  • the present inventors have arrived at the present invention that satisfies such problems, and the present invention has the following gist.
  • a polyimide precursor obtained by reacting a diamine component containing a diamine represented by the following formula (1) and a tetracarboxylic acid component, and a polyimide obtained by imidizing it.
  • a liquid crystal aligning agent characterized by containing.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a group represented by the following formula (2), at least one of which is represented by the formula (2).
  • A is a divalent group which is a single bond or a hydrocarbon group having 1 to 4 carbon atoms.
  • the liquid crystal aligning agent as described in said (1) whose diamine represented by said Formula (1) is diamine represented by following formula (3).
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a group represented by the following formula (2), at least one of which is represented by the formula (2).
  • A is a divalent group which is a single bond or a hydrocarbon group having 1 to 4 carbon atoms
  • X 1 and X 2 are each an independent divalent group. 1 and X 2 may include the structure of (1) above.
  • the liquid crystal aligning agent as described in said (2) whose diamine represented by said Formula (3) is a diamine represented by following formula (4).
  • R 1 , R 2 and A are as defined in formulas (1) and (2), and m and n are each independently 0 to 3). 4).
  • a liquid crystal alignment film obtained by using any one of the liquid crystal aligning agents described in 1 to 3 above. 5.
  • a liquid crystal display device comprising the liquid crystal alignment film as described in 4 above.
  • the liquid crystal display element for driving a horizontal electric field which is provided with the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention, is particularly excellent in the stability of liquid crystal alignment, has a short afterimage erasing time, and causes peeling or rubbing scraping due to rubbing treatment. It has excellent characteristics that it is difficult to change and flicker changes immediately after driving.
  • the diamine contained in the diamine component used for obtaining the liquid crystal aligning agent of the present invention is a diamine having in its molecule a structure represented by the following formula (1).
  • R 1 , R 2 and A are as defined above. Among them, R 1 and R 2 are both represented by the formula (2).
  • R 1 and R 2 are both represented by the formula (2).
  • A is preferably a single bond.
  • the group of the formula (2) is a t-butoxycarbonyl group (also referred to as a Boc group in the present invention).
  • the diamine having the structure represented by the above formula (1) in the molecule may be any diamine as long as the requirement is satisfied.
  • a preferred example thereof is a diamine represented by the following formula (3).
  • R 1 and R 2 are the same as those in the formula (1) including each preferable one.
  • X 1 and X 2 are each an independent divalent group, 1 and X 2 may include the structure of (1) above.
  • the diamine having the structure represented by the above formula (3) in the molecule may be any diamine as long as the requirement is satisfied.
  • a preferred example thereof is a diamine represented by the following formula (4).
  • R 1 and R 2 are the same as those in formula (1), including preferred examples thereof.
  • n and n are each independently an integer of 0 to 3, and are preferably 0 or 1 and more preferably 1 from the viewpoint of availability of raw materials.
  • the amino group (—NH 2 ) in each benzene ring may be in any position of ortho, meta, or para with respect to the bonding position of the alkylene group. From the viewpoint of polymerization reactivity, the meta or para position is preferred, and the para position is more preferred.
  • Boc is a group represented by the following.
  • the specific polymer (A) is a polyimide precursor obtained by reacting a diamine component containing a diamine having a structure represented by the above formula (1) with a tetracarboxylic acid component, or the polyimide precursor is an imide. It is at least one polymer selected from the group consisting of converted polyimides.
  • the polyimide precursor includes a polyamic acid or a polyamic acid ester and is represented by the following formula [A].
  • R 1 is a tetravalent organic group
  • R 2 is a divalent organic group
  • a 1 and A 2 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • a 3 and A 4 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, or an alkynyl group having 1 to 10 carbon atoms, and these groups are (It may have a substituent.
  • N represents a positive integer.
  • diamine component examples include diamines having two primary or secondary amino groups in the molecule, which contain a diamine having a structure represented by the formula (1) (also referred to as a specific diamine).
  • diamine component examples include diamines having two primary or secondary amino groups in the molecule, which contain a diamine having a structure represented by the formula (1) (also referred to as a specific diamine).
  • tetracarboxylic acid component examples include tetracarboxylic acid, tetracarboxylic dianhydride, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide. Also referred to as a tetracarboxylic acid component.
  • the polyamic acid in which A 1 and A 2 in the formula [A] are hydrogen atoms includes a diamine having two primary or secondary amino groups in the molecule, a tetracarboxylic acid compound, and a tetracarboxylic dianhydride. Alternatively, it can be obtained by reacting with tetracarboxylic acid dihalide.
  • the polyamic acid alkyl ester in which A 1 and A 2 in the formula [A] are alkyl groups having 1 to 5 carbon atoms reacts the diamine with a tetracarboxylic acid dialkyl ester or a tetracarboxylic acid dialkyl ester dihalide. Can be obtained.
  • the content of the specific diamine is preferably 10 to 100 mol%, more preferably 15 to 80 mol%, based on 100 mol% of all diamine components used for obtaining the specific polymer (A).
  • the total diamine component preferably contains a diamine represented by the following formula [2-1] (also referred to as a second diamine) together with the specific diamine.
  • X 1 is at least one selected from structures represented by the following formulas [2a-1] to [2a-9].
  • n represents an integer of 1 to 5
  • n represents an integer of 1 to 4.
  • a 5 and A 6 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • X 1 of the diamine in the formula [2-1] represents the formula [2a-1], the formula [2a-3], the formula [2a-4], or the formula [2a-6] from the viewpoint of liquid crystal alignment.
  • Formula [2a-9] is preferred. More preferred is formula [2a-3], formula [2a-6], formula [2a-8], or formula [2a-9].
  • the content of the second diamine is preferably 10 to 90 mol%, more preferably 20 to 85 mol%, in 100 mol% of all diamine components.
  • the second diamine is soluble in the solvent of the specific polymer (A), applicability of the liquid crystal aligning agent, liquid crystal alignment in the case of a liquid crystal alignment film, voltage holding ratio, accumulated charge, etc. Even if it mixes 1 type or 2 or more types, it can be used.
  • diamine component for obtaining the specific polymer (A) other diamines can be used together with the specific diamine and the second diamine as long as the effects of the present invention are not impaired.
  • Other diamines include 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, m-phenylenediamine, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy- 4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4 ' -Biphenyl, 3,3'-trifluoromethyl-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-dia
  • tetracarboxylic acid component for obtaining the specific polymer (A) a tetracarboxylic dianhydride represented by the following formula (5) is preferable.
  • Carboxylic acid dihalides, tetracarboxylic acid dialkyl esters or tetracarboxylic acid dialkyl ester dihalides can also be used. In the present invention, these are collectively referred to as a first tetracarboxylic acid component.
  • Z 1 to Z 4 each independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a benzene ring.
  • Z 5 and Z 6 each independently represent a hydrogen atom or a methyl group.
  • Z 1 in the formula [5] is represented by the formula [5a], the formula [5c] to [5g], the formula [5k] to the formula [5a] from the viewpoint of ease of synthesis and polymerization reactivity when producing a polymer.
  • Formula [5m] or formula [5p] is preferred, and formula [5a], formula [5e], formula [5f], formula [5l], formula [5m] or formula [5p] is more preferred. Particularly preferred from the viewpoint of liquid crystal orientation is the formula [3a] or the formula [5m].
  • Z 1 to Z 4 are preferably hydrogen atoms.
  • the first tetracarboxylic acid component is preferably from 30 to 100 mol%, more preferably from 50 to 100 mol%, particularly preferably from 100 mol% of all tetracarboxylic acid components for obtaining the specific polymer (A). 70 to 100 mol%.
  • the first tetracarboxylic acid component is a property such as solubility of the specific polymer (A) in a solvent, applicability of a liquid crystal aligning agent, liquid crystal alignment in a liquid crystal alignment film, voltage holding ratio, accumulated charge, etc. Depending on the situation, one kind or a mixture of two or more kinds may be used.
  • tetracarboxylic acid component for obtaining the specific polymer (A) does not impair the effects of the present invention
  • other tetracarboxylic acid components other than the first tetracarboxylic acid component can be used.
  • examples of other tetracarboxylic acid components include the following tetracarboxylic acid compounds, tetracarboxylic dianhydrides, tetracarboxylic acid dihalides, tetracarboxylic acid dialkyl esters, and tetracarboxylic acid dialkyl ester dihalides.
  • the specific polymer (B) of the present invention is a polyimide precursor obtained by reacting a diamine component (excluding a diamine having a structure represented by the above formula (1)) and a tetracarboxylic acid component, or the polyimide precursor. It is at least one polymer selected from the group consisting of polyimides with imidized bodies.
  • the polyimide precursor includes a polyamic acid or a polyamic acid ester.
  • X 2 is at least one selected from structures represented by the following formulas [4a-1] to [4a-7].
  • a 9 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • n represents an integer of 1 to 5.
  • n represents an integer of 1 to 4.
  • a 7 and A 8 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • X 2 of the diamine in the formula [4-1] is represented by the formula [4a-2] to the formula [4a-4], the formula [4a-6], or the formula [4a-7] from the viewpoint of voltage holding ratio. Is preferred.
  • the formula [4a-3], the formula [4a-4], or the formula [4a-7] is more preferable.
  • the third diamine is preferably 20 to 100 mol%, more preferably 40 to 100 mol%, still more preferably 60 to 100 mol% in 100 mol% of the total diamine components for obtaining the specific polymer (B). %.
  • the third diamine has a solubility in the solvent of the specific polymer (B), a coating property of the liquid crystal aligning agent, a liquid crystal alignment property in the case of a liquid crystal alignment film, a voltage holding ratio, an accumulated charge, and the like.
  • One kind or two or more kinds can be mixed and used.
  • diamine component for obtaining the specific polymer (B) other diamines (also referred to as other diamines) can be used together with the third diamine as long as the effects of the present invention are not impaired. Specific examples thereof are the same as the specific examples of other diamines mentioned for obtaining the specific polymer (A).
  • the tetracarboxylic acid component for obtaining the specific polymer (B) is preferably a tetracarboxylic dianhydride represented by the following formula [6].
  • a tetracarboxylic dianhydride represented by the formula [6] not only the tetracarboxylic dianhydride represented by the formula [6] but also a tetracarboxylic acid or a tetracarboxylic acid dihalide which is a tetracarboxylic acid derivative thereof can be used.
  • these tetracarboxylic dianhydrides or derivatives thereof are collectively referred to as a second tetracarboxylic acid component.
  • Z 2 in Formula [6] is the same as defined in Formula [5] above, including preferred embodiments.
  • the second tetracarboxylic acid component in the specific polymer (B) is preferably 30 to 100 mol%, more preferably 50 to 100 mol%, particularly preferably 70 to 100 mol in 100 mol% of all tetracarboxylic acid components. Mol%.
  • the second tetracarboxylic acid component is a property such as the solubility of the specific polymer (B) in the solvent, the coating property of the liquid crystal aligning agent, the orientation of the liquid crystal when it is used as the liquid crystal alignment film, the voltage holding ratio, the accumulated charge, etc. Depending on the situation, one kind or a mixture of two or more kinds may be used.
  • the total tetracarboxylic acid component for obtaining the specific polymer (B) other tetracarboxylic acid components other than the second tetracarboxylic acid component can be used as long as the effects of the present invention are not impaired.
  • Specific examples of such other tetracarboxylic acid components include the same specific examples as the other diamines exemplified as other tetracarboxylic acid components for obtaining the specific polymer (A).
  • At least one of the tetracarboxylic acid component in the specific polymer (A) and the tetracarboxylic acid component in the specific polymer (B) must contain an aliphatic tetracarboxylic acid derivative.
  • the content of the aliphatic tetracarboxylic acid derivative is 20 to 100 mol%, preferably 50 to 100 mol%, based on 100 mol% of all tetracarboxylic acid components.
  • the manufacturing method of a specific polymer (A) and a specific polymer (B)> is usually obtained by reacting a diamine component and a tetracarboxylic acid component.
  • a tetracarboxylic acid component selected from the group consisting of tetracarboxylic dianhydrides and derivatives of the tetracarboxylic acid is reacted with a diamine component consisting of one or more diamines.
  • a method of obtaining a polyamic acid is usually obtained by reacting a diamine component and a tetracarboxylic acid component.
  • polycarboxylic acid is obtained by polyaddition of tetracarboxylic dianhydride and primary or secondary diamine
  • polycarboxylic acid is obtained by polycondensation of tetracarboxylic acid and primary or secondary diamine.
  • a method of polycondensation of a tetracarboxylic acid dihalide and a primary or secondary diamine to obtain a polyamic acid is obtained by polyaddition of tetracarboxylic dianhydride and primary or secondary diamine.
  • a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine, a tetracarboxylic acid dihalide obtained by halogenating a carboxylic acid group and a primary a method of polycondensation with a secondary diamine or a method of converting a carboxy group of a polyamic acid into an ester is used.
  • polyimide a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
  • the reaction of the diamine component and the tetracarboxylic acid component is usually performed in a solvent.
  • the solvent used at that time is not particularly limited as long as the produced polyimide precursor is soluble. Although the specific example of the solvent used for reaction below is given, it is not limited to these examples. Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done.
  • the solvent solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3]. Can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms.
  • solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced
  • diamine components or tetracarboxylic acid components when reacting using a plurality of diamine components or tetracarboxylic acid components, they may be reacted in a premixed state, individually or sequentially, or further individually reacted low molecular weight substances. May be mixed and reacted to form a polymer.
  • the polymerization temperature can be selected from -20 to 150 ° C., but is preferably in the range of ⁇ 5 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial reaction is carried out at a high concentration, and then a solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor formed increases as the molar ratio approaches 1.0.
  • Polyimide is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate (also referred to as imidation rate) of the amic acid group is not necessarily 100%. It can be adjusted as desired.
  • the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is, or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature when the polyimide precursor is thermally imidized in a solution is 100 to 400 ° C., preferably 120 to 250 ° C., and a method of removing water generated by the imidation reaction from the system is preferable.
  • the catalytic imidation of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amidic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amido group. 30 mole times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has a basicity suitable for advancing the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. In particular, it is preferable to use acetic anhydride because purification after completion of the reaction is easy.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be recovered by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the solvent at this time include alcohols, ketones, hydrocarbons and the like. It is preferable to use three or more kinds of solvents selected from these, since the purification efficiency is further increased.
  • More specific methods for producing the polyamic acid alkyl ester of the present invention are shown in the following (1) to (3).
  • (1) Method of producing by polyamic acid esterification reaction Polyamic acid is produced from a diamine component and a tetracarboxylic acid component, and the carboxy group (COOH group) is subjected to a chemical reaction, that is, an esterification reaction.
  • This is a method for producing an alkyl ester.
  • the esterification reaction is a method in which a polyamic acid and an esterifying agent are reacted at ⁇ 20 to 150 ° C. (preferably 0 to 50 ° C.) for 30 minutes to 24 hours (preferably 1 to 4 hours) in the presence of a solvent. is there.
  • the esterifying agent is preferably one that can be easily removed after the esterification reaction.
  • N N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl -3-p-tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the amount of the esterifying agent used is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit. Of these, 2 to 4 molar equivalents are preferred.
  • the solvent used for the esterification reaction examples include a solvent used for the reaction of the diamine component and the tetracarboxylic acid component from the viewpoint of solubility of the polyamic acid in the solvent.
  • a solvent used for the reaction of the diamine component and the tetracarboxylic acid component from the viewpoint of solubility of the polyamic acid in the solvent.
  • N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone is preferable.
  • These solvents may be used alone or in combination of two or more.
  • the concentration of the polyamic acid in the solvent in the esterification reaction is preferably 1 to 30% by mass from the viewpoint that the polyamic acid does not easily precipitate. Among these, 5 to 20% by mass is preferable.
  • the diamine component and tetracarboxylic acid diester dichloride are ⁇ 20 to 150 ° C. (preferably in the presence of a base and a solvent) (0 to 50 ° C.) for 30 minutes to 24 hours (preferably 1 to 4 hours).
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used. Of these, pyridine is preferable because the reaction proceeds gently.
  • the amount of the base used is preferably an amount that can be easily removed after the reaction, and is preferably 2 to 4 moles relative to the tetracarboxylic acid diester dichloride. Of these, 2 to 3 moles are more preferred.
  • the solvent examples include a solvent used for the reaction of the diamine component and the tetracarboxylic acid component from the viewpoint of solubility of the obtained polymer, that is, the polyamic acid alkyl ester in the solvent.
  • a solvent used for the reaction of the diamine component and the tetracarboxylic acid component from the viewpoint of solubility of the obtained polymer, that is, the polyamic acid alkyl ester in the solvent.
  • N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone is preferable.
  • These solvents may be used alone or in combination of two or more.
  • the concentration of the polyamic acid alkyl ester in the solvent in the reaction is preferably 1 to 30% by mass from the viewpoint that precipitation of the polyamic acid alkyl ester hardly occurs. Among these, 5 to 20% by mass is preferable.
  • the solvent used for preparing the polyamic acid alkyl ester is dehydrated as much as possible. Furthermore, the reaction is preferably performed in a nitrogen atmosphere to prevent outside air from being mixed.
  • Condensation agents include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazinyl Methylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like can be used.
  • the amount of the condensing agent used is preferably 2 to 3 moles, and more preferably 2 to 2.5 moles, based on
  • tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the base used is preferably an amount that can be easily removed after the polycondensation reaction, preferably 2 to 4 times by mole, more preferably 2 to 3 times by mole with respect to the diamine component.
  • the solvent used for the polycondensation reaction include a solvent used for the reaction of the diamine component and the tetracarboxylic acid component from the viewpoint of the solubility of the resulting polymer, that is, the polyamic acid alkyl ester, in the solvent.
  • N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone is preferable.
  • These solvents may be used alone or in combination of two or more.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the amount of Lewis acid used is preferably 0.1 to 10 times the mole of the diamine component. Among these, 2.0 to 3.0 moles are preferable.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like.
  • the polymer deposited in the solvent is preferably washed with the solvent several times for the purpose of removing the additives and catalysts used above. After washing, filtration and recovery, the polymer can be dried at normal temperature or reduced pressure at room temperature or with heating.
  • the impurities in the polymer can be reduced by re-dissolving the polymer recovered by precipitation in a solvent and repeating the operation of re-precipitation recovery 2 to 10 times.
  • the production method of (2) or (3) above is preferable for the polyamic acid alkyl ester.
  • the liquid crystal aligning agent of this invention is a coating solution for forming a liquid crystal aligning film (it is also called a resin film), and contains a specific polymer (A), a specific polymer (B), and an organic solvent.
  • the ratio of the specific polymer (B) in the liquid crystal aligning agent is preferably 10 to 900 parts by mass with respect to 100 parts by mass of the specific polymer (A). Among these, 25 to 700 parts by mass is preferable, and 50 to 500 parts by mass is more preferable. Most preferred is 100 to 400 parts by weight.
  • All the polymer components in the liquid crystal aligning agent of the present invention may all be the specific polymers (A) and (B) of the present invention, or other polymers may be mixed.
  • Other polymers include polyimide precursors and polyimides that do not have the specific structure (1A), specific structure (1B), and specific structure (2).
  • a cellulose polymer, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, polysiloxane, and the like are also included.
  • the content of the other polymer is 0.5 to 15 parts by mass with respect to 100 parts by mass in total of the specific polymers (A) and (B). Of these, 1 to 10 parts by mass is preferable.
  • the content of the organic solvent in the liquid crystal aligning agent is preferably 70 to 99.9% by mass. This content can be appropriately changed depending on the application method of the liquid crystal aligning agent and the film thickness of the target liquid crystal alignment film.
  • the organic solvent used for the liquid crystal aligning agent is not particularly limited as long as it contains a solvent (also referred to as a good solvent) that dissolves the specific polymer (A) and the specific polymer (B). Although the specific example of a good solvent is given to the following, it is not limited to these examples.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyrolactone is preferably used.
  • the solubility of the specific polymer (A) and the specific polymer (B) in the solvent is high, it is preferable to use the solvent represented by the formula [D-1] to the formula [D-3].
  • the good solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
  • the liquid crystal aligning agent of the present invention uses a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied.
  • a solvent also referred to as a poor solvent
  • it can be used.
  • a poor solvent is given to the following, it is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propaned
  • 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or dipropylene glycol dimethyl ether is preferably used.
  • These poor solvents are preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass with respect to the total solvent contained in the liquid crystal aligning agent.
  • the liquid crystal aligning agent of the present invention has at least one substituent selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxy group, a hydroxyalkyl group and a lower alkoxyalkyl group. It is preferable to contain the crosslinkable compound which has, or the crosslinkable compound which has a polymerizable unsaturated bond. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetraglycidyl- 1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy) -1- Trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl, trig Sidyl-p-
  • the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4A]. Specific examples include crosslinkable compounds represented by the formulas [4a] to [4k] described on pages 58 to 59 of International Publication No. WO2011 / 132751 (published 2011.10.27).
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5A]. Specific examples include crosslinkable compounds of the formulas [5-1] to [5-42] described on pages 76 to 82 of International Publication No. WO2012 / 014898 (2012.2.2 publication).
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxy group and an alkoxy group include an amino resin having a hydroxy group or an alkoxy group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • an amino resin having a hydroxy group or an alkoxy group such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • -Formaldehyde resin, succinylamide-formaldehyde resin, ethyleneurea-formaldehyde resin and the like Specifically, a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group and / or an alkoxymethyl group can be used.
  • the melamine derivative or benzoguanamine derivative can exist as a dimer or a
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • Eight substituted MW-30 (above, manufactured by Sanwa Chemical Co., Ltd.), Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712, etc., methoxymethylated melamine, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, and 254, butoxymethylated melamine such as Cymel 506 and 508, carboxymethyl-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 and the like Methoxymethylated ethoxymethyl Benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine
  • glycoluril examples include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, methoxymethylolated glycoluril such as Powderlink 1174, and the like.
  • Examples of the benzene or phenolic compound having a hydroxy group or an alkoxy group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like. More specifically, International Publication WO2011 / 132751. (2011.10.27), pages 62 to 66, and crosslinkable compounds represented by the formulas [6-1] to [6-48].
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane and glycerin polyglycidyl ether poly (meth) acrylate; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meta ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (me ) Acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) ) Acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycid
  • E 1 represents at least one ring selected from the group consisting of cyclohexane ring, bicyclohexane ring, benzene ring, biphenyl ring, terphenyl ring, naphthalene ring, fluorene ring, anthracene ring and phenanthrene ring.
  • E 2 represents at least one group selected from the group consisting of the following formulas [7a] and [7b], and n represents an integer of 1 to 4.
  • the said compound is an example of a crosslinkable compound, It is not limited to these.
  • the crosslinkable compound used for the liquid crystal aligning agent of this invention may be 1 type, or may combine 2 or more types.
  • the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components.
  • the amount is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all the polymer components. More preferred is 1 to 50 parts by mass.
  • a liquid crystal aligning agent can contain the compound which improves the uniformity and the surface smoothness of the film thickness of the liquid crystal aligning film at the time of apply
  • the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.) and the like.
  • the ratio of the surfactant used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent.
  • the liquid crystal aligning agent is published on pages 69 to 73 of International Publication No. WO2011 / 132751 (published 2011.10.27) as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge release of the device. It is also possible to add nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156].
  • the amine compound may be added directly to the liquid crystal aligning agent, but it is preferable to add the amine compound after forming a solution with a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass with an appropriate solvent.
  • solvents are not particularly limited as long as they are solvents capable of dissolving the specific polymer (A) and the specific polymer (B) described above.
  • liquid crystal aligning agent of the present invention in addition to the above-mentioned poor solvent, crosslinkable compound, resin film or liquid crystal aligning film thickness uniformity and surface smoothness improving compound, and a compound promoting charge release, as long as the effect of the present invention is not impaired, a dielectric or conductive material for changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film may be added.
  • the liquid crystal alignment film is a film obtained by applying the liquid crystal aligning agent to a substrate, drying, and baking.
  • the substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate. In that case, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode or the like for driving the liquid crystal is formed in terms of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, screen printing, offset printing, flexographic printing, inkjet method, and the like are common. As other coating methods, there are a dipping method, a roll coater method, a slit coater method, a spinner method, a spray method, and the like, and these may be used according to the purpose.
  • the solvent can be evaporated to form a liquid crystal aligning film by a heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven or the like.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent.
  • the thickness of the liquid crystal alignment film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so that it is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • Examples of the method for aligning the obtained liquid crystal alignment film include the rubbing method and the photo-alignment method, but the rubbing method is preferable.
  • the photo-alignment treatment method the surface of the liquid crystal alignment film is irradiated with radiation deflected in a certain direction, and in some cases, a heat treatment is performed at a temperature of 150 to 250 ° C. A liquid crystal alignment ability).
  • the radiation ultraviolet rays or visible rays having a wavelength of 100 to 800 nm can be used. Among these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and ultraviolet rays having a wavelength of 200 to 400 nm are more preferable.
  • the substrate having the liquid crystal alignment film may be irradiated with radiation while being heated at 50 to 250 ° C.
  • the irradiation dose is preferably 1 to 10,000 mJ / cm 2 . Of these, 100 to 5,000 mJ / cm 2 is preferable.
  • the liquid crystal alignment film thus manufactured can stably align liquid crystal molecules in a certain direction.
  • the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using water or a solvent.
  • the solvent to be used is not particularly limited as long as it is a solvent that dissolves a decomposition product generated from the liquid crystal alignment film by irradiation with radiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like.
  • water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate is preferable from the viewpoint of versatility and solvent safety. More preferred is water, 1-methoxy-2-propanol or ethyl lactate.
  • These solvents may be used alone or in combination of two or more.
  • Examples of the contact treatment in the present invention include immersion treatment and spray treatment (also referred to as spray treatment).
  • the treatment time in these treatments is preferably 10 seconds to 1 hour from the viewpoint of efficiently dissolving the decomposition products generated from the liquid crystal alignment film by radiation.
  • the temperature of the solvent during the contact treatment may be warm or normal, but is preferably 10 to 80 ° C. Of these, 20 to 50 ° C. is preferable. From the viewpoint of the solubility of the decomposition product, ultrasonic treatment or the like may be further performed as necessary.
  • rinsing also referred to as rinsing
  • a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, or baking of the liquid crystal alignment film.
  • rinsing and firing may be performed.
  • the firing temperature is preferably 150 to 300 ° C. Of these, 180 to 250 ° C. is preferable. More preferably, the temperature is 200 to 230 ° C.
  • the firing time is preferably 10 seconds to 30 minutes. Among these, 1 to 10 minutes is preferable.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film of a horizontal electric field type liquid crystal display element such as an IPS mode or an FFS mode, and is particularly useful for an FFS mode liquid crystal display element.
  • the liquid crystal display device of the present invention is a device in which a liquid crystal cell is prepared by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent, and the liquid crystal cell is used as an element.
  • a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT is provided in each pixel portion constituting the image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate, the other substrate is overlapped with one substrate so that the liquid crystal alignment film faces each other, and the periphery is a sealing agent. Glue with.
  • spacers for controlling the gap between the substrates are also sprayed on the in-plane portion where no sealant is provided. It is preferable to provide an opening that can be filled with liquid crystal from the outside in part of the sealant.
  • a liquid crystal material is injected into a space surrounded by the two substrates and the sealant through an opening provided in the sealant.
  • the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • the liquid crystal material either a positive liquid crystal material or a negative liquid crystal material may be used.
  • a polarizing plate is installed. Specifically, it is preferable to attach a pair of polarizing plates to the surfaces of the two substrates opposite to the liquid crystal layer.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyllactone
  • BCS butyl cellosolve
  • DBOP diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate
  • LS-4668 3- Glycidoxypropyltriethoxysilane
  • the imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and a peak integrated value of this proton and a proton peak integrated derived from NH of an amide group appearing near 9.5 to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH of an amide group
  • y is a peak integrated value of a reference proton
  • is a reference proton for one NH proton of an amide group in the case of polyamic acid (imidation rate is 0%). Is the number ratio.
  • the liquid crystal aligning agent is filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, dried on an 80 ° C. hot plate for 5 minutes, and then baked at 230 ° C. for 20 minutes.
  • a 100 nm polyimide film was obtained.
  • This polyimide film was rubbed once with a rayon cloth (roll diameter 120 mm, rotation speed 1000 rpm, moving speed 20 mm / sec, pushing amount 0.4 mm).
  • the surface of the film was observed using a confocal laser microscope, and was scraped at a magnification of 100 times to observe the presence of scraps and the presence of scratches.
  • the evaluation was defined as “good” when the scraped scraps and scratches were hardly seen, and defined as “bad” when the scraped scraps and rubbing scratches were observed.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • a SiN (silicon nitride) film formed by a CVD (Chemical Vapor Deposition) method is formed as a second layer on the counter electrode of the first layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements having a bent central portion.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is configured by arranging a plurality of bent-shaped electrode elements having a bent central portion, the shape of each pixel is not a rectangular shape, and the central portion is similar to the electrode element. It has a shape similar to that of a bold-faced koji that bends at Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film to be described later is used as a reference, in the first region of the pixel, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise), and in the second region of the pixel The electrode elements of the pixel electrode are formed at an angle of ⁇ 10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • membrane are formed into a back surface as an opposing board
  • Each glass substrate having a spacer was spin-coated.
  • the polyimide film is rubbed with a rayon cloth in a predetermined rubbing direction (roll diameter 120 mm, rotation speed 500 rpm, moving speed 30 mm / sec, pushing amount 0.3 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. And dried at 80 ° C. for 10 minutes.
  • a liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into the empty cell at room temperature, and the injection port was sealed to obtain an anti-parallel alignment liquid crystal cell.
  • the obtained liquid crystal cell constitutes an FFS mode liquid crystal display element. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
  • the afterimage was evaluated using the following optical system and the like.
  • the prepared liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the LED backlight is turned on with no voltage applied, so that the brightness of transmitted light is minimized.
  • the arrangement angle of the liquid crystal cell was adjusted.
  • a VT curve voltage-transmittance curve
  • an AC voltage of 30 Hz with a relative transmittance of 23% was applied to drive the liquid crystal cell, while simultaneously applying a DC voltage of 1 V and driving for 60 minutes. Thereafter, the applied DC voltage value was set to 0 V, and only the application of the DC voltage was stopped, and the device was further driven for 30 minutes in this state.
  • the afterimage evaluation was defined as “good” when the relative transmittance decreased to 30% or less by the time 60 minutes passed from the start of application of the DC voltage. When it took 60 minutes or more for the relative transmittance to drop to 30% or less, it was defined as “bad” and evaluated.
  • the afterimage evaluation was performed under temperature conditions where the temperature of the liquid crystal cell was 23 ° C.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second area was compared with the first area, and a similar angle ⁇ was calculated.
  • the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell.
  • the afterimage was evaluated using the following optical system and the like.
  • the prepared liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the LED backlight is turned on with no voltage applied, so that the luminance of transmitted light is minimized.
  • the arrangement angle of the liquid crystal cell was adjusted.
  • a VT curve voltage-transmittance curve
  • the LED backlight that has been turned on is temporarily turned off, left unlit for 72 hours, and then turned on again.
  • An AC voltage with a frequency of 30 Hz is applied so that the relative transmittance becomes 23% simultaneously with the start of lighting of the backlight.
  • the liquid crystal cell was driven for 60 minutes to track the flicker amplitude.
  • the flicker amplitude is a data collection / data logger switch unit 34970A (Agilent technologies) that connects the transmitted light of the LED backlight that has passed through the two polarizing plates and the liquid crystal cell therebetween, via a photodiode and an IV conversion amplifier. ).
  • the flicker level was calculated by the following formula.
  • Flicker level (%) ⁇ flicker amplitude / (2 ⁇ z) ⁇ ⁇ 100
  • z is a value obtained by reading the luminance when driven by an AC voltage with a frequency of 30 Hz at which the relative transmittance is 23% by the data collection / data logger switch unit 34970A.
  • the evaluation of the flicker level is defined as “good” when the flicker level is maintained at less than 3% by 60 minutes after the start of lighting of the LED backlight and application of the AC voltage. went. When the flicker level reached 3% or more in 60 minutes, it was defined as “bad” and evaluated.
  • the evaluation of the flicker level by the above-described method was performed under temperature conditions where the temperature of the liquid crystal cell was 23 ° C.
  • This polyamic acid ester solution was put into methanol ⁇ 630 g ⁇ , and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. 3 g of this polyamic acid ester powder was placed in an Erlenmeyer flask, and 11 g of NMP and 11 g of GBL were added to obtain a polyamic acid ester solution (PAE-1).
  • Example 1 5.0 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was collected, and 8.6 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 10 was added thereto, and the mixture was stirred. 1.8 g of NMP solution containing 12.3 g of NMP, 12 g of BCS, and 1 wt% of LS-4668 was added, and the mixture was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-1).
  • Example 2 5.4 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 was collected, and 8.6 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 10 was added thereto, and the mixture was stirred. 1.8 g of NMP solution containing 12 g of NMP, 12 g of BCS, and 1% by weight of LS-4668 was added, and the mixture was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-2).
  • Q-2 liquid crystal alignment agent
  • Example 3 5.7 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 3 was collected, and 8.6 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 10 was added thereto, while stirring. 1.8 g of an NMP solution containing 11.7 g of NMP, 12 g of BCS, and 1% by weight of LS-4668 was added, and the mixture was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-3).
  • Example 4 5.4 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 4 was fractionated, and 8.6 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 10 was added thereto, while stirring. 1.8 g of NMP solution containing 12 g of NMP, 12 g of BCS, and 1% by weight of LS-4668 was added, and the mixture was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-4).
  • Example 5 7.2 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 5 was collected, and 7.3 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 10 was added thereto, and the mixture was stirred. 1.8 g of NMP solution containing 12 g of NMP, 12 g of BCS and 1 wt% of LS-4668 was added, and the mixture was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-5).
  • Example 6 5.3 g of the polyamic acid solution (PAA-6) obtained in Synthesis Example 6 was collected, and 8.6 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 10 was added thereto, and the mixture was stirred. 1.8 g of NMP solution containing 12 g of NMP, 12 g of BCS, and 1 wt% of LS-4668 was added, and the mixture was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-6).
  • Example 7 5.6 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 7 was collected, and 8.6 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 10 was added thereto, while stirring. 1.8 g of NMP solution containing 12 g of NMP, 12 g of BCS, and 1% by weight of LS-4668 was added, and the mixture was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-7).
  • Example 8 10.5 g of the polyamic acid solution (PAA-12) obtained in Synthesis Example 13 was added to 4.2 g of the polyimide solution (SPI-1) obtained in Synthesis Example 8, and 11.5 g of NMP was added while stirring. 10 g of BCS and 1.8 g of an NMP solution containing 1% by weight of LS-4668 were added, and the mixture was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-8).
  • PAA-12 polyamic acid solution obtained in Synthesis Example 13
  • 10 g of BCS and 1.8 g of an NMP solution containing 1% by weight of LS-4668 were added, and the mixture was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-8).
  • Example 9 10.5 g of the polyamic acid solution (PAA-12) obtained in Synthesis Example 13 is added to 4.2 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 9, and NMP is added to 11.1 g with stirring. 5 g, 10 g of BCS, and 1.8 g of NMP solution containing 1 wt% of LS-4668 were added, and the mixture was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-9).
  • Example 10 5.4 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 was collected, and 10.5 g of the polyamic acid solution (PAA-10) obtained in Synthesis Example 11 was added thereto, while stirring. 1.8 g of NMP solution containing 10.5 g of NMP, 12 g of BCS, and 1 wt% of LS-4668 was added, and the mixture was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-10).
  • Example 11 5.4 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 was collected, and 10.3 g of the polyamic acid solution (PAA-11) obtained in Synthesis Example 12 was added thereto, while stirring. 1.8 g of NMP solution containing 10.7 g of NMP, 12 g of BCS, and 1 wt% of LS-4668 was added, and the mixture was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-11).
  • the liquid crystal alignment films of the examples have good results in any of evaluation of rubbing resistance, evaluation of afterimage erasing time, evaluation of stability of liquid crystal alignment, and evaluation of flicker level immediately after driving.
  • the liquid crystal alignment films prepared in Comparative Examples 1 and 2 gave poor results in any of the above evaluation items.
  • a liquid crystal display element having a liquid crystal alignment film formed from the liquid crystal alignment agent of the present invention is particularly useful for personal computers, mobile phones, television receivers and the like that employ a lateral electric field driving method.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

 液晶配向の安定性に優れ、残像消去時間が短く、ラビング削れを起こしにくく、駆動直後からのフリッカーの変化が小さい、特に横電界駆動素子用の液晶配向剤の提供。 式(1)で表されるジアミンを含有するジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体、及びそれをイミド化して得られるポリイミドからなる群から選ばれる少なくとも1つである特定重合体(A)と、ジアミン成分(上記式(1)で表されるジアミンを除く)とテトラカルボン酸成分とを反応させて得られるポリアミド酸である特定重合体(B)と、を含有する。(R及びRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基又は下記式(2)で表される基であり、その少なくとも一方は、式(2)で表される基である。式(2)中、Aは単結合又は炭素数1~4の炭化水素基である2価の基である。)

Description

液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、横電界駆動用液晶表示素子に好適な用いられる液晶配向剤、液晶配向膜、及び液晶表示素子に関する。
 従来から液晶装置は、パーソナルコンピュータや携帯電話、テレビジョン受像機等の表示部として幅広く用いられている。液晶装置は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。
 液晶分子の駆動方式としては、TN方式、VA方式等の縦電界方式や、IPS方式、FFS方式等の横電界方式が知られている。一般に、基板の片側のみに電極を形成させ、基板と平行方向に電界を印加する横電界方式では、従来の上下基板に形成された電極に、電圧を印加して液晶を駆動させる縦電界方式と比べ、広い視野角特性を有し、また高品位な表示が可能な液晶表示素子として知られている。
 横電界方式の液晶セルは視野角特性に優れているものの、基板内に形成される電極部分が少ないために、液晶配向膜の電圧保持率が弱いと、液晶に十分な電圧がかからず表示コントラストが低下する。また、液晶配向の安定性が小さいと、液晶を長時間駆動させた際に、液晶が初期の状態に戻らなくなり、コントラストが低下したり残像の原因となるため、液晶配向の安定性が重要である。また、静電気が液晶セル内に蓄積されやすく、駆動によって生じる正負非対称電圧の印加によっても液晶セル内に電荷が蓄積され、これらの蓄積された電荷が液晶の配向を乱したり、或いは、残像として表示に影響を与え、液晶素子の表示品位を著しく低下させる。また、駆動直後にバックライト光が液晶セルに照射されることによっても電荷が蓄積され、短時間の駆動でも残像が発生したり、駆動中にフリッカー(ちらつき)の大きさが変化していく等の問題を生じてしまう。
 一方、液晶配向膜は、液晶配向剤を印刷し、乾燥して、焼成を行った後に、ラビング処理を行って形成されるのが一般的であるが、横電界方式液晶セルでは、基板の片側のみに電極構造を有するため基板の凹凸が大きく、また、窒化珪素等の絶縁体が基板表面に形成されていることもあり、従来の配向剤と比較して、より印刷性に優れた液晶配向処理剤が求められている。更には、液晶配向の安定性を向上させるために、従来の液晶セルよりも強くラビング処理を施すことから、ラビング処理による剥離やラビング削れを引き起こしやすく、これらの剥がれや傷が表示品位を低下させる問題点がある。
 このような横電界駆動液晶素子に用いた際、印刷性や耐ラビング性に優れ、かつ残像が少ない液晶配向剤として、特許文献1には、芳香族テトラカルボン酸に由来するアミック酸単位と、脂環式テトラカルボン酸に由来するアミック酸単位の両方を共重合又は混合により含有する液晶配向剤が開示されている。また、液晶配向性、配向規制力、ラビング耐性等に優れ、電圧保持率が高く、なおかつ、電荷蓄積を低減した液晶配向膜を得るための液晶配向剤として、特許文献2には、膜とした時の体積抵抗率が1×1010~1×1014Ωcmである低抵抗のポリイミド前駆体と、特定構造を有する高配向のポリイミド前駆体又はポリイミドとを含有することを特徴とする液晶配向剤、及び、この液晶配向剤を用いた液晶表示素子が開示されている。
 しかしながら、液晶表示素子の高性能化に伴い、液晶配向膜に要求される特性も厳しくなってきており、従来の技術のみでは全ての要求特性を満足することは難しい。
国際公開公報WO02/33481号パンフレット 国際公開公報WO2004/53583号パンフレット
 本発明は、液晶配向の安定性に優れ、残像消去時間が短く、ラビング処理による剥離やラビング削れを起こしにくく、駆動直後からのフリッカーの変化が小さい液晶配向膜を得ることのできる特に横電界駆動素子用に優れる液晶配向剤を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、かかる課題を満たす本発明に到達したものであり、本発明は、下記を要旨とするものである。
1.下記式(1)で表されるジアミンを含有するジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体、及びそれをイミド化して得られるポリイミドからなる群から選ばれる少なくとも1つである特定重合体(A)と、
 ジアミン成分(式(1)で表されるジアミンを除く)とテトラカルボン酸成分とを反応させて得られるポリアミド酸である特定重合体(B)と、
 を含有することを特徴とする液晶配向剤。
Figure JPOXMLDOC01-appb-C000010
(R及びRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基又は下記式(2)で表される基であり、その少なくとも一方は、式(2)で表される基である。式(2)中、Aは単結合又は炭素数1~4の炭化水素基である2価の基である。)
Figure JPOXMLDOC01-appb-C000011
2.前記式(1)で表されるジアミンが、下記式(3)で表されるジアミンである上記(1)に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000012
(R及びRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基又は下記式(2)で表される基であり、その少なくとも一方は、式(2)で表される基である。式(2)中、Aは単結合又は炭素数1~4の炭化水素基である2価の基である。X及びXはそれぞれ独立した2価の基である。X及びXには上記(1)の構造を含んでも良い。)
Figure JPOXMLDOC01-appb-C000013
3.前記式(3)で表されるジアミンが、下記式(4)で表されるジアミンである上記(2)に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000014
(R、R及びAは、式(1)及び(2)と同義であり、m及びnは、それぞれ独立に、0~3である。)
4.上記1~3に記載されるいずれかの液晶配向剤を用いて得られる液晶配向膜。
5.上記4に記載の液晶配向膜を具備する液晶表示素子。
 本発明の液晶配向剤から得られる液晶配向膜を備える、特に横電界駆動用液晶表示素子は、液晶配向の安定性に優れ、残像消去時間が短く、ラビング処理による剥離やラビング削づれ現象を起こしにくく、駆動直後からのフリッカーの変化が小さい優れた特性を有する。
<ジアミン>
 本発明の液晶配向剤を得るために使用されるジアミン成分に含有されるジアミンは、下記式(1)で表される構造を分子中に有するジアミンである。
Figure JPOXMLDOC01-appb-C000015
(式(1)及び(2)中、R、R及びAは、上記で定義したとおりである。なかでも、R及びRは、その少なくとも一方、又は両方とも、式(2)で表される基が好ましく、ラビング時の配向膜強度の観点から、R及びRのどちらか一方のみが、式(2)で表される基であるのが好ましい。
Aは、好ましくは単結合である。ここで、Aが単結合の場合、式(2)の基は、t-ブトキシカルボニル基(本発明では、Boc基ともいう。)である
Figure JPOXMLDOC01-appb-C000016
 上記式(1)で表される構造を分子内に有するジアミンは、かかる要件を満足する限り、いずれのジアミンでもよい。その好ましい例として、下記式(3)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000017
(式[1]中、R及びRは、それぞれの好ましいものも含めて、式(1)における場合と同じである。X及びXはそれぞれ独立した2価の基であり、X及びXには上記(1)の構造を含んでも良い。)
上記式(3)で表される構造を分子内に有するジアミンは、かかる要件を満足する限り、いずれのジアミンでもよい。その好ましい例として、下記式(4)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000018
 式(4)中、R及びRは、それぞれの好ましいものも含めて、式(1)における場合と同じである。m、nは、それぞれ独立に、0~3の整数であり、原料入手の容易性から、好ましくは0又は1であり、より好ましくは1である。
 また、式(4)中、それぞれのベンゼン環におけるアミノ基(-NH)は、アルキレン基の結合位置に対して、オルト、メタ、又はパラのいずれの位置でもよいが、合成の容易性、及び重合反応性の点から、メタ、又はパラの位置が好ましく、パラの位置がより好ましい。
 式(4)で表されるジアミンの例としては、好ましくは、以下の化合物が挙げられる。なお、以下に例示される化合物の式において、Bocは下記で表される基である。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
<特定重合体(A)>
 特定重合体(A)は、上記した式(1)で表される構造を有するジアミンを含有するジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体、又は該ポリイミド前駆体をイミド化したポリイミドであるからなる群から選ばれる少なくとも1種の重合体である。ポリイミド前駆体には、ポリアミド酸又はポリアミド酸エステル等が含まれ、下記式[A]で表される。
Figure JPOXMLDOC01-appb-C000022
(式、Rは4価の有機基であり、Rは2価の有機基であり、A及びAは、それぞれ独立して、水素原子又は炭素数1~5のアルキル基を示す。A及びAは、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルケニル基、又は炭素数1~10のアルキニル基であり、これらの基は置換基を有してもよい。nは正の整数を示す。)
 前記ジアミン成分としては、式(1)で表される構造を有するジアミン(特定ジアミンともいう。)を含有する、分子内に1級又は2級のアミノ基を2個有するジアミンが挙げられる。
 前記テトラカルボン酸成分としては、テトラカルボン酸、テトラカルボン酸二無水物、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドが挙げられ、本発明では、これらを総称してテトラカルボン酸成分ともいう。
 式[A]中のA及びAが水素原子であるポリアミド酸は、前記分子内に1級又は2級のアミノ基を2個有するジアミンと、テトラカルボン酸化合物、テトラカルボン酸二無水物又はテトラカルボン酸ジハライドとを反応させることで得られる。
 式[A]中のA及びAが炭素数1~5のアルキル基であるポリアミド酸アルキルエステルは、前記ジアミンと、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドとを反応させることで得られる。
 特定ジアミンの含有量は、特定重合体(A)を得るために使用される全ジアミン成分100モル%中、10~100モル%が好ましく、15~80モル%より好ましい。上記全ジアミン成分には、特定ジアミンとともに、下記式[2-1]で表されるジアミン(第2のジアミンともいう)が含有されることが好ましい。
Figure JPOXMLDOC01-appb-C000023
 式[2-1]中、Xは下記式[2a-1]~式[2a-9]で示される構造から選ばれる少なくとも1つである。
Figure JPOXMLDOC01-appb-C000024
 上記式[2a-6]中、nは1~5の整数、式[2a-7]中、nは1~4の整数を示す。
 式[2-1]中、A及びAは、それぞれ独立して、水素原子又は炭素数1~5のアルキル基を示す。
 式[2-1]中のジアミンのXは、液晶配向性の点から、式[2a-1]、式[2a-3]、式[2a-4]、又は式[2a-6]~式[2a-9]が好ましい。より好ましくは、式[2a-3]、式[2a-6]、式[2a-8]、又は式[2a-9]である。
 第2のジアミンの含有量は、全ジアミン成分100モル%中、10~90モル%が好ましく、より好ましくは20~85モル%である。
 第2のジアミンは、特定重合体(A)の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶配向性、電圧保持率、蓄積電荷等の特性に応じて、1種類又は2種類以上を混合しても使用できる。
 特定重合体(A)を得るためにジアミン成分としては、本発明の効果を損なわない限りにおいて、特定ジアミン及び第2のジアミンとともに、その他のジアミンを用いることもできる。
 その他のジアミンとして、2,4-ジメチル-m-フェニレンジアミン、2,6-ジアミノトルエン、m-フェニレンジアミン、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、又はこれらのアミノ基が2級のアミノ基であるジアミンが挙げられる。その他ジアミンは1種類又は2種類以上を混合しても使用できる。
 特定重合体(A)を得るためのテトラカルボン酸成分としては、下記式(5)で表されるテトラカルボン酸二無水物が好ましいが、それだけでなく、その誘導体である、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル又はテトラカルボン酸ジアルキルエステルジハライドを用いることもできる。本発明では、これらを総称して第1のテトラカルボン酸成分ともいう。
Figure JPOXMLDOC01-appb-C000025
(Yは下記式[5a]~式[5q]からなる群から選ばれる少なくとも1種を示す。)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 式[5a]中、Z~Zは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子又はベンゼン環を示す。
 式[5g]中、Z及びZは、それぞれ独立して、水素原子又はメチル基を示す。
 式[5]中のZは、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[5a]、式[5c]~[5g]、式[5k]~式[5m]又は式[5p]が好ましく、より好ましくは、式[5a]、式[5e]、式[5f]、式[5l]、式[5m]又は式[5p]である。液晶配向性の観点から、特に好ましいのは、式[3a]又は式[5m]であり、式[5a]中、Z~Zは水素原子が好ましい。
 第1のテトラカルボン酸成分は、特定重合体(A)を得るための全テトラカルボン酸成分100モル%中、30~100モル%が好ましく、50~100モル%がより好ましく、特に好ましくは、70~100モル%である。
 第1のテトラカルボン酸成分は、特定重合体(A)の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷等の特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 特定重合体(A)を得るためのテトラカルボン酸成分は、本発明の効果を損なわない限りにおいて、第1のテトラカルボン酸成分以外のその他のテトラカルボン酸成分を使用できる。その他のテトラカルボン酸成分としては、下記するテトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル又はテトラカルボン酸ジアルキルエステルジハライドが挙げられる。
 具体的には、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸等が挙げられる。その他のテトラカルボン酸成分は、1種又は2種以上を混合して使用することもできる。
<特定重合体(B)>
 本発明の特定重合体(B)は、ジアミン成分(上記式(1)で表される構造を有するジアミンを除く)とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体、又は該ポリイミド前駆体をイミド化したポリイミドであるからなる群から選ばれる少なくとも1種の重合体である。ポリイミド前駆体には、ポリアミド酸又はポリアミド酸エステル等が含まれである。
 特定重合体(B)を得るためのジアミン成分は、下記式[4-1]で表されるその他のジアミン(第3のジアミンともいう。)を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000028
 式[4-1]中、Xは下記式[4a-1]~式[4a-7]で示される構造から選ばれる少なくとも1つである。
Figure JPOXMLDOC01-appb-C000029

 式[4a-4]中、Aは水素原子又は炭素数1~5のアルキル基を示す。式[4a-5]中、nは1~5の整数を示す。式[4a-6]中、nは1~4の整数を示す。)
 式[4-1]中、A及びAは、それぞれ独立して、水素原子又は炭素数1~5のアルキル基を示す。
 式[4-1]中のジアミンのXとしては、電圧保持率の観点から、式[4a-2]~式[4a-4]、式[4a-6]、又は式[4a-7]が好ましい。より好ましいのは、式[4a-3]、式[4a-4]、又は式[4a-7]である。
 第3のジアミンは、特定重合体(B)を得るための全ジアミン成分100モル%中、20~100モル%が好ましく、より好ましくは40~100モル%であり、更に好ましくは60~100モル%である。
 第3のジアミンは、特定重合体(B)の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶配向性、電圧保持率、蓄積電荷等の特性に応じて、1種類又は2種類以上を混合しても使用できる。
 特定重合体(B)を得るためのジアミン成分としては、本発明の効果を損なわない限りにおいて、第3のジアミンとともに、その他のジアミン(その他ジアミンともいう)を用いることもできる。その具体例としては、特定重合体(A)を得るための挙げたその他のジアミンの具体例と同じものが挙げられる。
 特定重合体(B)を得るためのテトラカルボン酸成分としては、下記式[6]で表されるテトラカルボン酸二無水物が好ましい。その際、式[6]で表されるテトラカルボン酸二無水物だけでなく、そのテトラカルボン酸誘導体であるテトラカルボン酸、又はテトラカルボン酸ジハライドを用いることもできる。本発明では、これらのテトラカルボン酸二無水物又はその誘導体を総称して第2テトラカルボン酸成分ともいう。
Figure JPOXMLDOC01-appb-C000030

(式[6]中のZは、好ましい態様も含めて上記した式[5]の定義と同じである。)
 特定重合体(B)における第2のテトラカルボン酸成分は、全テトラカルボン酸成分100モル%中、30~100モル%が好ましく、50~100モル%がより好ましく、特に好ましくは、70~100モル%である。
 第2のテトラカルボン酸成分は、特定重合体(B)の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷等の特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 特定重合体(B)を得るための全テトラカルボン酸成分には、本発明の効果を損なわない限りにおいて、第2テトラカルボン酸成分以外のその他のテトラカルボン酸成分を用いることもできる。かかるその他のテトラカルボン酸成分の具体例としては、特定重合体(A)を得るためのその他のテトラカルボン酸成分として例示したその他のジアミンの具体例と同じものが挙げられる。
 電圧保持率・ラビング耐性の観点から、特定重合体(A)におけるテトラカルボン酸成分、及び特定重合体(B)におけるテトラカルボン酸成分の少なくとも一方には、脂肪族テトラカルボン酸誘導体が含まれることが好ましい。
 脂肪族テトラカルボン酸誘導体の含有量は、全テトラカルボン酸成分100モル%に対して、20~100モル%、好ましくは50~100モル%である。
<特定重合体(A)及び特定重合体(B)の製造方法>
 これらの重合体を製造する方法は、通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。一般的には、テトラカルボン酸二無水物及びそのテトラカルボン酸の誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種又は複数種のジアミンからなるジアミン成分とを反応させて、ポリアミド酸を得る方法が挙げられる。具体的には、テトラカルボン酸二無水物と1級又は2級のジアミンとを重付加させてポリアミド酸を得る方法、テトラカルボン酸と1級又は2級のジアミンとを重縮合させてポリアミド酸を得る方法、又はテトラカルボン酸ジハライドと1級又は2級のジアミンとを重縮合させてポリアミド酸を得る方法が用いられる。
 ポリアミド酸アルキルエステルを得るためには、カルボン酸基をジアルキルエステル化したテトラカルボン酸と1級又は2級のジアミンとを重縮合させる方法、カルボン酸基をハロゲン化したテトラカルボン酸ジハライドと1級又は2級のジアミンとを重縮合させる方法、又はポリアミド酸のカルボキシ基をエステルに変換する方法が用いられる。
 ポリイミドを得るには、前記のポリアミド酸又はポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
 ジアミン成分とテトラカルボン酸成分との反応は、通常、溶媒中で行う。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる溶媒の具体例を挙げるが、これらの例に限定されない。
 例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記式[D-1]~式[D-3]で表される溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000031
(式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。)
 これらの溶媒は単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は、重合反応を阻害し、更には、生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
 ジアミン成分とテトラカルボン酸成分とを溶媒中で反応させる際には、ジアミン成分を溶媒に分散或いは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は溶媒に分散或いは溶解させて添加する方法、逆にテトラカルボン酸成分を溶媒に分散、或いは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを交互に添加する方法等が挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合反応させ重合体としてもよい。
 その際の重合温度は、-20~150℃の任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。
 また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加できる。
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
 ポリイミドは、前記のポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方法が好ましい。ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。
 塩基性触媒の量は、アミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミド酸基の1~50モル倍、好ましくは3~30モル倍である。
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
 酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができる。特に、無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としては、メタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水等を挙げることができる。溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧或いは減圧下で、常温或いは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられる。これら中から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。
 本発明のポリアミド酸アルキルエステルを製造するための、より具体的な方法を下記(1)~(3)に示す。
(1)ポリアミド酸のエステル化反応で製造する方法
 ジアミン成分とテトラカルボン酸成分とからポリアミド酸を製造し、そのカルボキシ基(COOH基)に、化学反応、すなわち、エステル化反応を行い、ポリアミド酸アルキルエステルを製造する方法である。
 エステル化反応は、ポリアミド酸とエステル化剤を溶媒の存在下で、-20~150℃(好ましくは0~50℃)において、30分~24時間(好ましくは1~4時間)反応させる方法である。
 前記エステル化剤としては、エステル化反応後に、容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド等が挙げられる。エステル化剤の使用量は、ポリアミド酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。なかでも、2~4モル当量が好ましい。
 前記エステル化反応に用いる溶媒としては、ポリアミド酸の溶媒への溶解性の点から、前記ジアミン成分とテトラカルボン酸成分との反応に用いる溶媒が挙げられる。なかでも、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンが好ましい。これら溶媒は、1種又は2種以上を混合して用いてもよい。
 前記エステル化反応における溶媒中のポリアミド酸の濃度は、ポリアミド酸の析出が起こりにくい点から、1~30質量%が好ましい。なかでも、5~20質量%が好ましい。
(2)ジアミン成分とテトラカルボン酸ジエステルジクロリドとの反応で製造する方法
 具体的には、ジアミン成分とテトラカルボン酸ジエステルジクロリドとを、塩基と溶媒の存在下で、-20~150℃(好ましくは0~50℃)において、30分~24時間(好ましくは1~4時間)反応させる方法である。
 塩基は、ピリジン、トリエチルアミン、4-ジメチルアミノピリジン等を用いることができる。なかでも、反応が穏和に進行するため、ピリジンが好ましい。塩基の使用量は、反応後に、容易に除去できる量が好ましく、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。なかでも、2~3倍モルがより好ましい。
 溶媒には、得られる重合体、すなわち、ポリアミド酸アルキルエステルの溶媒への溶解性の点から、前記ジアミン成分とテトラカルボン酸成分との反応に用いる溶媒が挙げられる。なかでも、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンが好ましい。これらの溶媒は、1種又は2種以上を混合して用いてもよい。
 反応における溶媒中のポリアミド酸アルキルエステルの濃度は、ポリアミド酸アルキルエステルの析出が起こりにくい点から、1~30質量%が好ましい。なかでも、5~20質量%が好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミド酸アルキルエステルの作製に用いる溶媒は、できるだけ脱水されていることが好ましい。更に、反応は窒素雰囲気中で行い、外気の混入を防ぐのが好ましい。
(3)ジアミン成分とテトラカルボン酸ジエステルとの反応で製造する方法
 具体的には、ジアミン成分とテトラカルボン酸ジエステルとを、縮合剤、塩基及び溶媒の存在下で、0~150℃(好ましくは0~100℃)において、30分~24時間(好ましくは3~15時間)重縮合反応させる方法である。
 縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル等を用いることができる。縮合剤の使用量は、テトラカルボン酸ジエステルに対して、2~3倍モルが好ましく、特に、2~2.5倍モルが好ましい。
 塩基には、ピリジン、トリエチルアミン等の3級アミンを用いることができる。塩基の使用量は、重縮合反応後に、容易に除去できる量が好ましく、ジアミン成分に対して、2~4倍モルが好ましく、2~3倍モルがより好ましい。
 重縮合反応に用いる溶媒は、得られる重合体、すなわち、ポリアミド酸アルキルエステルの溶媒への溶解性の点から、前記ジアミン成分とテトラカルボン酸成分との反応に用いる溶媒が挙げられる。なかでも、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンが好ましい。これら溶媒は、1種又は2種以上を混合して用いてもよい。
 また、重縮合反応においては、ルイス酸を添加剤として加えることで、反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウム等のハロゲン化リチウムが好ましい。ルイス酸の使用量は、ジアミン成分に対して、0.1~10倍モルが好ましい。なかでも、2.0~3.0倍モルが好ましい。
 上記(1)~(3)の手法で得られたポリアミド酸アルキルエステルの溶液から、ポリアミド酸アルキルエステルを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としては、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等を挙げることができる。溶媒に投入して沈殿させた重合体は、前記で使用した添加剤、触媒類を除去することを目的に、上記溶媒で、複数回洗浄操作を行うことが好ましい。洗浄し、ろ過して回収した後、重合体は常圧或いは減圧下、常温或いは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すことにより、重合体中の不純物を少なくすることができる。
 ポリアミド酸アルキルエステルは、前記(2)又は(3)の製造方法が好ましい。
<液晶配向剤>
 本発明の液晶配向剤は、液晶配向膜(樹脂被膜ともいう)を形成するための塗布溶液であり、特定重合体(A)、特定重合体(B)及び有機溶媒を含有する。
 液晶配向剤における特定重合体(B)の割合は、特定重合体(A)100質量部に対して、10~900質量部が好ましい。中でも、25~700質量部が好ましく、より好ましいのは、50~500質量部である。最も好ましいのは100~400質量部である。
 本発明の液晶配向剤における全ての重合体成分は、全てが本発明の特定重合体(A)及び(B)であってもよく、それ以外の他の重合体が混合されていても良い。それ以外の重合体としては、特定構造(1A)、特定構造(1B)及び特定構造(2)を持たないポリイミド前駆体及びポリイミドが挙げられる。更には、セルロース系重合体、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミド、ポリシロキサン等も挙げられる。その際、それ以外の他の重合体の含有量は、特定重合体(A)及び(B)の合計100質量部に対して、0.5~15質量部である。なかでも、1~10質量部が好ましい。
 また、液晶配向剤中の有機溶媒の含有量は、70~99.9質量%であることが好ましい。この含有量は、液晶配向剤の塗布方法や目的とする液晶配向膜の膜厚によって、適宜変更することができる。
 液晶配向剤に用いる有機溶媒は、特定重合体(A)及び特定重合体(B)を溶解させる溶媒(良溶媒ともいう)を含有すれば特に限定されない。下記に、良溶媒の具体例を挙げるが、これらの例に限定されない。
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン等を挙げることができる。
 なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチロラクトンを用いることが好ましい。
 更に、特定重合体(A)及び特定重合体(B)の溶媒への溶解性が高い場合は、前記式[D-1]~式[D-3]で表される溶媒を用いることが好ましい。
 本発明の液晶配向剤における良溶媒は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましい。なかでも、20~90質量%が好ましい。より好ましいのは、30~80質量%である。
 本発明の液晶配向剤は、本発明の効果を損なわない限り、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を用いることができる。下記に、貧溶媒の具体例を挙げるが、これらの例に限定されない。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、前記式[D-1]~[D-3]で表される溶媒等を挙げることができる。
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテルを用いることが好ましい。
 これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。
 本発明の液晶配向剤は、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシ基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を含有することが好ましい。これら置換基や重合性不飽和結合は、架橋性化合物中に2個以上有する必要がある。
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン、1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノール等が挙げられる。
 オキセタン基を有する架橋性化合物は、下記式[4A]で示すオキセタン基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000032
 具体的には、国際公開公報WO2011/132751(2011.10.27公開)の58~59頁に掲載の式[4a]~[4k]で表される架橋性化合物が挙げられる。
 シクロカーボネート基を有する架橋性化合物としては、下記式[5A]で表されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000033
 具体的には、国際公開公報WO2012/014898(2012.2.2公開)の76~82頁に掲載される式[5-1]~[5-42]の架橋性化合物が挙げられる。
 ヒドロキシ基及びアルコキシ基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシ基又はアルコキシ基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂、エチレン尿素-ホルムアルデヒド樹脂等が挙げられる。具体的には、アミノ基の水素原子が、メチロール基及び/又はアルコキシメチル基で置換されたメラミン誘導体、ベンゾグアナミン誘導体、又はグリコールウリルを用いることができる。このメラミン誘導体又はベンゾグアナミン誘導体は、2量体又は3量体として存在することも可能である。これらは、トリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものが好ましい。
 このようなメラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)、サイメル300、301、303、350、370、771、325、327、703、712等のメトキシメチル化メラミン、サイメル235、236、238、212、253、254等のメトキシメチル化ブトキシメチル化メラミン、サイメル506、508等のブトキシメチル化メラミン、サイメル1141のようなカルボキシ基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシ基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)等が挙げられる。
 また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリル等、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。
 ヒドロキシ基又はアルコキシ基を有するベンゼン又はフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン、2,6-ジヒドロキシメチル-p-tert-ブチルフェノール等が挙げられる。
 より具体的には、国際公開公報WO2011/132751.(2011.10.27公開)の62~66頁に掲載される、式[6-1]~[6-48]で表される架橋性化合物が挙げられる。
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する架橋性化合物;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート等の重合性不飽和基を分子内に2個有する架橋性化合物;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル、N-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物;等が挙げられる。
 更に、下記式[7A]で表される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000034
(式[7A]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環及びフェナントレン環からなる群から選ばれる少なくとも1つの環を示し、Eは下記式[7a]及び[7b]からなる群から選ばれる少なくとも1つの基を示し、nは1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000035
 上記化合物は架橋性化合物の一例であり、これらに限定されない。また、本発明の液晶配向剤に用いる架橋性化合物は、1種類でも、2種類以上組み合わせてもよい。
 架橋性化合物の含有量は、すべての重合体成分100質量部に対して、0.1~150質量部であることが好ましい。なかでも、架橋反応が進行し目的の効果を発現させるためには、全ての重合体成分100質量部に対して0.1~100質量部が好ましい。より好ましいのは、1~50質量部である。
 液晶配向剤は、本発明の効果を損なわない限り、液晶配向剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を含有することができる。
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤等が挙げられる。
 より具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)等が挙げられる。
 界面活性剤の使用割合は、液晶配向剤に含有される全ての重合体成分100質量部に対し、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 更に、液晶配向剤には、液晶配向膜中の電荷移動を促進して素子の電荷抜けを促進させる化合物として、国際公開公報WO2011/132751(2011.10.27公開)の69~73頁に掲載される、式[M1]~[M156]で表される窒素含有複素環アミン化合物を添加することもできる。このアミン化合物は、液晶配向剤に直接添加しても構わないが、適当な溶媒で、濃度0.1~10質量%、好ましくは1~7質量%の溶液にしてから添加することが好ましい。これらの溶媒は、上述した特定重合体(A)及び特定重合体(B)を溶解させる溶媒であれば特に限定されない。
 本発明の液晶配向剤には、上記の貧溶媒、架橋性化合物、樹脂被膜又は液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物、及び電荷抜けを促進させる化合物の他に、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性等の電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
<液晶配向膜及び液晶表示素子>
 液晶配向膜は、前記液晶配向剤を基板に塗布し、乾燥し、焼成して得られる膜である。
 液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO(Indium Tin Oxide)電極等が形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法等が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法等があり、目的に応じてこれらを用いてもよい。
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段により、溶媒を蒸発させて液晶配向膜とすることができる。
 液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために、50~120℃で1~10分焼成し、その後、150~300℃で、5~120分焼成する条件が挙げられる。
 焼成後の液晶配向膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmであることが好ましく、10~200nmがより好ましい。
 得られた液晶配向膜を配向処理する方法としては、前記ラビング処理法、光配向処理法等が挙げられるが、ラビング処理法が好ましい。
 光配向処理法の具体例としては、前記液晶配向膜の表面に、一定方向に偏向された放射線を照射し、場合によっては、更に150~250℃の温度で加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、100~400nmの波長を有する紫外線が好ましく、より好ましくは、200~400nmの波長を有する紫外線である。
 また、液晶配向性を改善するために、液晶配向膜を有する基板を50~250℃で加熱しながら、放射線を照射してもよい。放射線の照射量は、1~10,000mJ/cmが好ましい。なかでも、100~5,000mJ/cmが好ましい。このようにして製造された液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 更に、偏光された放射線を照射した液晶配向膜に、水や溶媒を用いて、接触処理をすることもできる。使用する溶媒としては、放射線の照射によって液晶配向膜から生成した分解物を溶解する溶媒であれば、特に限定されない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシル等が挙げられる。なかでも、汎用性や溶媒の安全性の点から、水、2-プロパンール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましい。より好ましいのは、水、1-メトキシ-2-プロパノール又は乳酸エチルである。これらの溶媒は、1種類であってもよく、2種類以上組み合わせてもよい。
 本発明における接触処理としては、浸漬処理や噴霧処理(スプレー処理ともいう)が挙げられる。これらの処理における処理時間は、放射線によって液晶配向膜から生成した分解物を効率的に溶解させる点から、10秒~1時間が好ましい。なかでも、1~30分間浸漬処理をすることが好ましい。また、前記接触処理時の溶媒の温度は、常温でも加温してもよいが、好ましくは、10~80℃である。なかでも、20~50℃が好ましい。分解物の溶解性の点から、必要に応じて、超音波処理等を、更に行ってもよい。
 前記接触処理の後に、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等の低沸点溶媒によるすすぎ(リンスともいう)や液晶配向膜の焼成を行うことが好ましい。その際、リンスと焼成のどちらか一方を行っても、両方を行ってもよい。焼成の温度は、150~300℃であることが好ましい。なかでも、180~250℃が好ましい。より好ましいのは、200~230℃である。また、焼成の時間は、10秒~30分が好ましい。なかでも、1~10分が好ましい。
 本発明の液晶配向膜は、IPS方式やFFS方式等の横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子に有用である。本発明の液晶表示素子は、上記液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して素子としたものである。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT等のスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えば、ITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。次に、前記のような条件で、各基板の上に液晶配向膜を形成し、一方の基板に他方の基板を、互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておくことが好ましい。また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておくことが好ましい。
 その後、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入する。次いで、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。
 液晶材料としては、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に、一対の偏光板を貼り付けることが好ましい。
 本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。実施例、比較例で使用した化合物の略号、及び特性評価の方法は以下のとおりである。
Figure JPOXMLDOC01-appb-C000036
NMP:N-メチル-2-ピロリドン、GBL:γ―ブチルラクトン、BCS:ブチルセロソルブ、DBOP:ジフェニル(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホナート、LS-4668:3-グリシドキシプロピルトリエトキシシラン
<粘度測定>
 ポリアミド酸溶液について、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)にて25℃の粘度を測定した。
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05質量%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液の500MHzのプロトンNMRを、測定装置(日本電子データム社製、JNW-ECA500)にて測定した。
 イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド基のNHに由来するプロトンピーク積算値とを用い以下の式によって求めた。
  イミド化率(%)=(1-α・x/y)×100
 式中、xはアミド基のNH由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド基のNHプロトン1個に対する基準プロトンの個数割合である。
<ラビング耐性評価>
 液晶配向剤を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、230℃で20分間焼成して、膜厚100nmのポリイミド膜を得た。このポリイミド膜をレーヨン布で1回ラビング(ロール径120mm、回転数1000rpm、移動速度20mm/sec、押し込み量0.4mm)した。この膜表面を、共焦点レーザー顕微鏡を用いて表面状態を観察し、倍率100倍で削れカスの有無と傷の有無を観察した。削れカスや傷がほとんど見られないものを「良好」と定義して評価し、多くの削れカスやラビング傷が見られるものは「不良」と定義して評価した。
<液晶表示素子の作製>
 初めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO(Indium-Zinc-Oxide)電極が形成されている。第1層目の対向電極の上には第2層目として、CVD(Chemical Vapor Deposition)法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
 第3層目の画素電極は、中央部分が屈曲した、くの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲した、くの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では、画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では、画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
 次に、得られた液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と、対向基板として裏面にITO膜が成膜されており、かつ高さ4μmの柱状のスペーサーを有するガラス基板のそれぞれにスピンコートした。次いで、80℃のホットプレート上で5分間乾燥後、230℃で20分間焼成して、膜厚60nmの塗膜として、各基板上にポリイミド膜を得た。このポリイミド膜上を、所定のラビング方向で、レーヨン布によりラビング(ロール径120mm、回転数500rpm、移動速度30mm/sec、押し込み量0.3mm)した後、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。
 その後、上記液晶配向膜付きの2種類の基板を用いて、それぞれのラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが3.8μmの空セルを作製した。この空セルに、液晶(MLC-2041、メルク社製)を常温で真空注入した後、注入口を封止して、アンチパラレル配向の液晶セルとした。得られた液晶セルは、FFSモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから各評価に使用した。
<残像消去時間の評価>
 以下の光学系等を用いて残像の評価を行った。
 作製した液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でLEDバックライトを点灯させておき、透過光の輝度が最も小さくなるように、液晶セルの配置角度を調整した。
 次に、この液晶セルに周波数30Hzの交流電圧を印加しながら、V-Tカーブ(電圧-透過率曲線)を測定し、相対透過率が23%となる交流電圧を駆動電圧として算出した。
 残像評価では、相対透過率が23%となる周波数30Hzの交流電圧を印加して、液晶セルを駆動させながら、同時に1Vの直流電圧を印加し、60分間駆動させた。その後、印加直流電圧値を0Vにして直流電圧の印加のみを停止し、その状態で更に30分駆動した。
 残像評価は、直流電圧の印加を開始した時点から60分間が経過するまでに、相対透過率が30%以下に低下した場合に、「良好」と定義して評価を行った。相対透過率が30%以下に低下するまでに60分間以上を要した場合には、「不良」と定義して評価した。
 残像評価は、液晶セルの温度が23℃の状態の温度条件下で行った。
<液晶配向の安定性評価>
 この液晶セルを用い、60℃の恒温環境下、周波数30Hzで10VPPの交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間を短絡させた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δ値の平均値を液晶セルの角度Δとして算出した。この液晶セルの角度Δの値が0.2度を越える場合には、「不良」と定義し評価した。この液晶セルの角度Δの値が0.2度を越えない場合には、「良好」と定義し評価した。
<駆動直後のフリッカーレベルの評価>
 以下の光学系等を用いて残像の評価を行った。
 作製した液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でLEDバックライトを点灯させておき、透過光の輝度が最も小さくなるように、液晶セルの配置角度を調整した。次に、この液晶セルに周波数30Hzの交流電圧を印加しながら、V-Tカーブ(電圧-透過率曲線)を測定し、相対透過率が23%となる交流電圧を駆動電圧として算出した。
 フリッカーレベルの測定では、点灯させておいたLEDバックライトを一旦消灯して72時間遮光放置した後に再度点灯し、バックライト点灯開始と同時に相対透過率が23%となる周波数30Hzの交流電圧を印加して、液晶セルを60分間駆動させてフリッカー振幅を追跡した。フリッカー振幅は、2枚の偏光板及びその間の液晶セルを通過したLEDバックライトの透過光を、フォトダイオード及びI-V変換アンプを介して接続されたデータ収集/データロガースイッチユニット34970A(Agilent technologies社製)で読み取った。フリッカーレベルは以下の数式で算出した。
  フリッカーレベル(%)={フリッカー振幅/(2×z)}×100
上記式において、zは、相対透過率が23%となる周波数30Hzの交流電圧で駆動した際の輝度を、データ収集/データロガースイッチユニット34970Aで読み取った値である。
 フリッカーレベルの評価は、LEDバックライトの点灯及び交流電圧の印加を開始した時点から60分間が経過するまでに、フリッカーレベルが3%未満を維持した場合に、「良好」と定義して評価を行った。60分間でフリッカーレベルが3%以上に達した場合には、「不良」と定義して評価した。上述した方法によるフリッカーレベルの評価は、液晶セルの温度が23℃の状態の温度条件下で行った。
<重合体の合成>
[合成例1]
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに、DA-1を0.836g(2.1mmol)及びDA-2を1.46g(4.9mmol)加えた後、NMP26.0gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-1を1.45g(6.6mmol)加え、NMPを7.7g加えた後、更に50℃条件下にて、12時間攪拌することで、濃度(樹脂固形分濃度であり、以下同じ)12質量%のポリアミド酸溶液(PAA-1、粘度:170mPa・s)得た。
[合成例2]
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに、DA-1を2.59g(6.5mmol)及びDA-2を1.04g(3.5mmol)を加えた後、NMP33.0gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-1を2.07g(9.5mmol)加え、NMPを8.4g加えた後、更に50℃条件下にて、12時間攪拌することで、濃度12質量%のポリアミド酸溶液(PAA-2、粘度:244mPa・s)を得た。
[合成例3]
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに、DA-1を3.18g(8.0mmol)及びDA-2を0.59g(2.0mmol)加えた後、NMP33.0gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-1を2.05g(9.5mmol)加え、NMPを9.7g加えた後、更に50℃条件下にて、12時間攪拌することで、濃度12質量%のポリアミド酸溶液(PAA-3、粘度:347mPa・s)を得た。
[合成例4]
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに、DA-1を2.59g(6.5mmol)及びDA-2を1.04g(3.5mmol)加えた後、NMP33.0gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-1を1.41g(6.5mmol)加え、CA-2を0.58g(3.0mmol)加え、NMPを8.4g加えた後、更に50℃条件下にて、12時間攪拌することで、濃度12質量%のポリアミド酸溶液(PAA-4、粘度:275mPa・s)を得た。このポリアミド酸溶液のであった。
[合成例5]
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに、DA-1を2.23g(5.6mmol)及びDA-2を0.42g(1.4mmol)加えた後、NMP25.0gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-1を1.95g(6.6mmol)加え、NMPを6.3g加えた後、更に50℃条件下にて、12時間攪拌することで、濃度12質量%のポリアミド酸溶液(PAA-5、粘度:196mPa・s)を得た。
[合成例6]
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに、DA-1を1.59g(4.0mmol)、DA-2を1.19g(4.0mmol)、及びDA-3を0.79g(2.0mmol)加えた後、NMP33.0gを加え、窒素を送りながら撹拌し、溶解させた。このジアミン溶液を撹拌しながら、CA-1を2.09g(9.5mmol)加え、NMPを9.6g加えた後、更に50℃条件下にて、12時間攪拌することで、濃度12質量%のポリアミド酸溶液(PAA-6、粘度:325mPa・s)を得た。
[合成例7]
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに、DA-1を1.59g(4.0mmol)、DA-2を1.19g(4.0mmol)及びDA-4を0.78g(2.0mmol)加えた後、NMP33.0gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-1を2.09g(9.5mmol)加え、NMPを9.9g加えた後、更に50℃条件下にて、12時間攪拌することで、濃度12質量%のポリアミド酸溶液(PAA-7、粘度:306mPa・s)を得た。
[合成例8]
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに、DA-11.15g(3.0mmol)、DA-5を3.42g(14.0mmol)、及びDA-4を1.67g(3.0mmol)加えた後、NMP22.8gを加え、窒素を送りながら撹拌し、溶解させた。このジアミン溶液を撹拌しながら、CA-2を0.96g(4.9mmol)及びCA-4を2.57g(13.0mmol)加え、NMPを17.0g加えた後、更に室温条件下にて、12時間攪拌することで、濃度20質量%のポリアミド酸溶液(PAA-8、粘度:1280mPa・s)を得た。
 このポリアミド酸溶液(PAA-8)40.0gを分取し、NMPを83.0g加えた後、無水酢酸を3.90g及びピリジンを1.81g加え、50℃で2時間20分反応させた。この反応溶液をメタノール450gに注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥し、ポリイミドの粉末を得た。このポリイミドのイミド化率は57%であった。得られたポリイミド粉末5.0gにNMP28gを加えて、50℃にて20hr攪拌して溶解させることで、ポリイミド溶液(SPI-1)を得た。
[合成例9]
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに、CE-13.41g(12.4mmol)を投入し、更にNMP72gを加え、攪拌し、溶解させた。次いで、トリエチルアミン(4.19g、41.4mmol)、DA-1(2.07g、7.8mmol)、及びDA-5(1.26g、5.2mmol)を加えて攪拌した。この溶液を攪拌しながら、DBOP(10.3g、26.9mmol)を添加し、更にNMPを10g加え、室温で12時間撹拌して、ポリアミド酸エステルの溶液を得た。このポリアミド酸エステル溶液をメタノール{630g}中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度100℃で減圧乾燥し、ポリアミド酸エステルの粉末を得た。このポリアアミド酸エステル粉末3gを三角フラスコに取り、NMP11g及びGBL11gを加えて、ポリアミド酸エステル溶液(PAE-1)を得た。
[合成例10]
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに、DA-2(4.47g、15mmol)及びDA-6(1.50g、10mmol)を加えた後、NMP50gを加え、窒素を送りながら撹拌し、溶解させた。このジアミン溶液を撹拌しながら、CA-2を4.75g(24.2mmol)加え、更にNMPを10.8g加えた後、室温にて12時間攪拌することで、濃度15質量%のポリアミド酸溶液(PAA-11、粘度:600mPa・s)を得た。
[合成例11]
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに、DA-2(2.68g、9.0mmol)、DA-6(0.90g、6.0mmol)を加えた後、NMP30gを加え、窒素を送りながら撹拌し、溶解させた。このジアミン溶液を撹拌しながら、CA-2を1.76g(9.0mmol)及びCA-3を1.54g(5.25mmol)加え、更にNMPを9g加えた後、室温にて12時間攪拌することで、濃度12質量%のポリアミド酸溶液(PAA-10、粘度:375mPa・s)得た。
[合成例12]
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに、DA-2(4.65g、15.6mmol)、DA-5(1.27g、5.2mmol)、及びDA-6(0.78g、5.2mmol)を加えた後、NMP74.7gを加え、窒素を送りながら撹拌し、溶解させた。このジアミン溶液を撹拌しながら、CA-2を4.84g(23.4mmol)加え、更にNMPを10g加えた後、室温にて12時間攪拌することで、濃度12質量%のポリアミド酸溶液(PAA-11、粘度:300mPa・s)を得た。
[合成例13]
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに、DA-5(0.48g、2.0mmol)及びDA-8(1.59g、8.0mmol)を加えた後、NMP17gを加え、窒素を送りながら撹拌し、溶解させた。このジアミン溶液を撹拌しながら、CA-1(1.09g、5.0mmol)、及びCA-2(0.82g、4.3mmol)を加え、更にNMPを5.9g加えた後、室温にて12時間攪拌することで、濃度15質量%のポリアミド酸溶液(PAA-12、粘度:655mPa・s)を得た。
[合成例14]
 撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコに、DA-2(2.98g,10.0mmol)を加えた後、NMP44.7gを加え、窒素を送りながら撹拌し、溶解させた。このジアミン溶液を撹拌しながら、CA-1(2.02g,9.3mmol)を加え、更にNMPを5.0g加えた後、50℃条件下にて、12時間攪拌して、濃度10質量%のポリアミド酸溶液(PAA-13、粘度:140mPa・s)を得た。
[合成例15]
 撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコに、DA-4(6.68g、12.0mmol)、及びDA-5(6.84g、28.0mmol)を加えた後、NMP57.6gを加え、窒素を送りながら撹拌し、溶解させた。このジアミン溶液を撹拌しながら、CA-2(2.26g,11.5mmol)、及びCA-4(5.15g、26.0mmol)を加え、更にNMPを13.2g加えた後、室温条件下にて、12時間攪拌して、濃度20質量%のポリアミド酸溶液(PAA-14、粘度:1180mPa・s)を得た。
 このポリアミド酸溶液(PAA-14)を40.0g分取し、NMPを83.0g加えた後、無水酢酸を3.90g、及びピリジンを1.81g加え、50℃で2時間20分反応させた。この反応溶液をメタノール450gに注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥し、ポリイミドの粉末を得た。このポリイミドのイミド化率は65%であった。得られたポリイミド粉末5.0gにNMP28gを加えて、50℃にて、20hr攪拌して溶解させることで、ポリイミド溶液(SPI-2)を得た。
 上記の合成例1~15で得られるポリアミド酸(PAA)、ポリアミド酸エステル(PAE)及びポリイミド(SPI)の製造に使用された原料のジアミン、その使用量(ミリモル)、テトラカルボン酸誘導体、及びその使用量(ミリモル)をまとめて示すと、以下の表1のとおりである。なお、表1中、TEAは、トリエチルアミンを表す。
Figure JPOXMLDOC01-appb-T000037
[実施例1]
 合成例1で得られたポリアミド酸溶液(PAA-1)を5.0g分取し、そこに合成例10で得られたポリアミド酸溶液(PAA-9)を8.6g加え、攪拌しながら、NMPを12.3g、BCSを12g、及びLS-4668を1重量%含むNMP溶液を1.8g加え、更に室温で2時間撹拌し、液晶配配向剤(Q-1)を得た。
[実施例2]
 合成例2で得られたポリアミド酸溶液(PAA-2)を5.4g分取し、そこに合成例10で得られたポリアミド酸溶液(PAA-9)を8.6g加え、攪拌しながら、NMPを12g、BCSを12g、及びLS-4668を1重量%含むNMP溶液を1.8g加え、更に室温で2時間撹拌し、液晶配配向剤(Q-2)を得た。
[実施例3]
 合成例3で得られたポリアミド酸溶液(PAA-3)を5.7g分取し、そこに合成例10で得られたポリアミド酸溶液(PAA-9)を8.6g加え、攪拌しながら、NMPを11.7g、BCSを12g、及びLS-4668を1重量%含むNMP溶液を1.8g加え、更に室温で2時間撹拌し、液晶配配向剤(Q-3)を得た。
[実施例4]
 合成例4で得られたポリアミド酸溶液(PAA-4)を5.4g分取し、そこに合成例10で得られたポリアミド酸溶液(PAA-9)を8.6g加え、攪拌しながら、NMPを12g、BCSを12g、及びLS-4668を1重量%含むNMP溶液を1.8g加え、更に室温で2時間撹拌し液晶配配向剤(Q-4)を得た。
[実施例5]
 合成例5で得られたポリアミド酸溶液(PAA-5)を7.2g分取し、そこに合成例10で得られたポリアミド酸溶液(PAA-9)を7.3g加え、攪拌しながら、NMPを12g、BCSを12g、LS-4668を1重量%含むNMP溶液を1.8g加え、更に室温で2時間撹拌し液晶配配向剤(Q-5)を得た。
[実施例6]
 合成例6で得られたポリアミド酸溶液(PAA-6)を5.3g分取し、そこに合成例10で得られたポリアミド酸溶液(PAA-9)を8.6g加え、攪拌しながら、NMPを12g、BCSを12g、及びLS-4668を1重量%含むNMP溶液を1.8g加え、更に室温で2時間撹拌し、液晶配配向剤(Q-6)を得た。
[実施例7]
 合成例7で得られたポリアミド酸溶液(PAA-7)を5.6g分取し、そこに合成例10で得られたポリアミド酸溶液(PAA-9)を8.6g加え、攪拌しながら、NMPを12g、BCSを12g、及びLS-4668を1重量%含むNMP溶液を1.8g加え、更に室温で2時間撹拌し、液晶配配向剤(Q-7)を得た。
[実施例8]
 合成例8にて得られたポリイミド溶液(SPI-1)4.2gに合成例13で得られたポリアミド酸溶液(PAA-12)を10.5g加え、攪拌しながら、NMPを11.5g、BCSを10g、及びLS-4668を1重量%含むNMP溶液を1.8g加え、更に室温で2時間撹拌し、液晶配配向剤(Q-8)を得た。
[実施例9]
 合成例9にて得られたポリアミド酸エステル溶液(PAE-1)4.2gに合成例13で得られたポリアミド酸溶液(PAA-12)を10.5g加え、攪拌しながら、NMPを11.5g、BCSを10g、及びLS-4668を1重量%含むNMP溶液を1.8g加え、更に室温で2時間撹拌し、液晶配配向剤(Q-9)を得た。
[実施例10]
 合成例2で得られたポリアミド酸溶液(PAA-2)を5.4g分取し、そこに合成例11で得られたポリアミド酸溶液(PAA-10)を10.5g加え、攪拌しながら、NMPを10.5g、BCSを12g、及びLS-4668を1重量%含むNMP溶液を1.8g加え、更に室温で2時間撹拌し、液晶配配向剤(Q-10)を得た。
[実施例11]
 合成例2で得られたポリアミド酸溶液(PAA-2)を5.4g分取し、そこに合成例12で得られたポリアミド酸溶液(PAA-11)を10.3g加え、攪拌しながら、NMPを10.7g、BCSを12g、及びLS-4668を1重量%含むNMP溶液を1.8g加え、更に室温で2時間撹拌し、液晶配配向剤(Q-11)を得た。
[比較例1]
 合成例14で得られたポリアミド酸溶液(PAA-13)を5.5g分取し、そこに合成例10で得られたポリアミド酸溶液(PAA-9)を8.3g加え、攪拌しながら、NMPを12g、BCSを12g、及びLS-4668を1重量%含むNMP溶液を1.8g加え、更に室温で2時間撹拌し、液晶配配向剤(Q-12)を得た。
[比較例2]
 比較合成例2で得られたポリイミド溶液(SPI-2)を4.2g分取し、そこに合成例13で得られたポリアミド酸溶液(PAA-12)を8.3g加え、攪拌しながら、NMPを12g、BCSを12g、及びLS-4668を1重量%含むNMP溶液を1.8g加え、更に室温で2時間撹拌し、液晶配向剤(Q-13)を得た。
 実施例1~11及び比較例1、2で得られた液晶配向剤について、上記した、ラビング耐性評価、残像消去時間の評価、液晶配向の安定性評価、及び駆動直後のフリッカーレベルの評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000038
 上記の表2からわかるように、実施例の液晶配向膜は、ラビング耐性評価、残像消去時間の評価、液晶配向の安定性評価、及び駆動直後のフリッカーレベルの評価のいずれにおいても、良好な結果を示したが、比較例1、2で作製した液晶配向膜は、上記評価項目のいずれかにおいて、不良な結果が得られた。
 本発明の液晶配向剤から形成される液晶配向膜を有する液晶表示素子は、特に、横電界駆動方式を採用した、パーソナルコンピュータ、携帯電話、テレビジョン受像機等に広く有用である。
 なお、2014年12月22日に出願された日本特許出願2014-259248号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (13)

  1.  下記式(1)で表されるジアミンを含有するジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体、及びそれをイミド化して得られるポリイミドからなる群から選ばれる少なくとも1つである特定重合体(A)と、
     ジアミン成分(式(1)で表されるジアミンを除く)とテトラカルボン酸成分とを反応させて得られるポリアミド酸である特定重合体(B)と、
     を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (R及びRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基又は下記式(2)で表される基であり、その少なくとも一方は、式(2)で表される基である。式(2)中、Aは単結合又は炭素数1~4の炭化水素基である2価の基である。)
    Figure JPOXMLDOC01-appb-C000002
  2.  前記式(1)で表されるジアミンが、下記式(3)で表されるジアミンである請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    (R及びRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基又は下記式(2)で表される基であり、その少なくとも一方は、式(2)で表される基である。式(2)中、Aは単結合又は炭素数1~4の炭化水素基である2価の基である。X及びXはそれぞれ独立した2価の基である。X及びXには上記(1)の構造を含んでも良い。)
    Figure JPOXMLDOC01-appb-C000004
  3.  前記式(3)で表されるジアミンが、下記式(4)で表されるジアミンである請求項2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    (R、R及びAは、式(1)及び(2)と同義であり、m及びnは、それぞれ独立に、0~3である。)
  4.  前記特定重合体(A)を得るための全ジアミン成分の100モル%中、式(1)で表されるジアミンが、10~100モル%含有される、請求項1~3のいずれか1項に記載の液晶配向剤。
  5.  前記特定重合体(A))を得るための全ジアミン成分の100モル%中、下記式[2-1]で表されるジアミンが、10~90モル%含有される、請求項1~4のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006

    (式[2-1]中、Xは下記式[2a-1]~式[2a-9]で示される構造から選ばれる少なくとも1つである。)
    Figure JPOXMLDOC01-appb-C000007

    (式[2a-6]中、nは1~5の整数、式[2a-7]中、nは1~4の整数を示す。式[2-1]中、A及びAは、それぞれ独立して、水素原子又は炭素数1~5のアルキル基を示す。)
  6.  前記特定重合体(B)を得るための全ジアミン成分の100モル%中、下記式[4-1]で表されるジアミンが10~90モル%含有される、請求項1~5のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
    (式[4-1]中、Xは下記式[4a-1]~式[4a-7]で示される構造から選ばれる少なくとも1つである。)
    Figure JPOXMLDOC01-appb-C000009

    (式[4a-4]中、Aは水素原子又は炭素数1~5のアルキル基を示し、A及びAは、それぞれ独立して、水素原子又は炭素数1~5のアルキル基を示す。式[4a-5]中、nは1~5の整数を示す。式[4a-6]中、nは1~4の整数を示す。)
  7.  前記特定重合体(A)又は前記特定重合体(B)を得るためのテトラカルボン酸成分が、テトラカルボン酸、テトラカルボン酸二無水物、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドである、請求項1~6のいずれか1項に記載の液晶配向剤。
  8.  前記特定重合体(A)の100質量部に対して、前記特定重合体(B)が10~900質量部含有される、請求項1~7のいずれか1項に記載の液晶配向剤。
  9.  前記特定重合体(A)の原料であるテトラカルボン酸成分、及び前記特定重合体(B)の原料であるテトラカルボン酸成分のうちの少なくとも一方が、芳香族テトラカルボン酸誘導体を含有する、請求項1~8のいずれか1項に記載の液晶配向剤。
  10.  前記特定重合体(A)及び前記特定重合体(B)を溶解する有機溶媒が70~99.9質量%含有される、請求項1~9のいずれか1項に記載の液晶配向剤。
  11.  請求項1~10のいずれか1項に記載の横電界駆動素子用の液晶配向剤。
  12.  請求項1~11のいずれかに記載の液晶配向剤を用いて得られる液晶配向膜。
  13.  請求項12に記載の液晶配向膜を具備する液晶表示素子。
PCT/JP2015/085851 2014-12-22 2015-12-22 液晶配向剤、液晶配向膜及び液晶表示素子 WO2016104514A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177020223A KR102489700B1 (ko) 2014-12-22 2015-12-22 액정 배향제, 액정 배향막 및 액정 표시 소자
JP2016566393A JP6597640B2 (ja) 2014-12-22 2015-12-22 液晶配向剤、液晶配向膜及び液晶表示素子
CN201580076636.7A CN107250901B (zh) 2014-12-22 2015-12-22 液晶取向剂、液晶取向膜和液晶表示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014259248 2014-12-22
JP2014-259248 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016104514A1 true WO2016104514A1 (ja) 2016-06-30

Family

ID=56150530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085851 WO2016104514A1 (ja) 2014-12-22 2015-12-22 液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP6597640B2 (ja)
KR (1) KR102489700B1 (ja)
CN (1) CN107250901B (ja)
TW (1) TWI701270B (ja)
WO (1) WO2016104514A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013532A (ja) * 2016-07-19 2018-01-25 株式会社ジャパンディスプレイ 光配向膜用ワニス及び液晶表示装置
WO2018047872A1 (ja) * 2016-09-07 2018-03-15 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018066607A1 (ja) * 2016-10-06 2018-04-12 日産化学工業株式会社 ジアミン、重合体、液晶配向剤、液晶配向膜及び液晶表示素子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108587648B (zh) * 2017-12-05 2020-06-26 中节能万润股份有限公司 一种液晶取向剂、液晶取向膜以及液晶显示元件
JP7311047B2 (ja) * 2020-07-17 2023-07-19 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
TWI773190B (zh) * 2021-03-12 2022-08-01 士峰科技股份有限公司 二胺化合物及其製備方法
CN117866199B (zh) * 2024-03-11 2024-05-28 烟台三月科技有限责任公司 一种液晶取向剂、液晶取向膜及其液晶显示元件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144955A (ja) * 2008-10-29 2014-08-14 Nissan Chem Ind Ltd 新規なジアミン化合物
JP2014237839A (ja) * 2009-03-10 2014-12-18 日産化学工業株式会社 ポリイミド前駆体、及びポリイミド

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181829A (ja) * 1985-02-06 1986-08-14 Hitachi Ltd 低熱膨張性樹脂材料
GB2174399B (en) * 1985-03-10 1988-05-18 Nitto Electric Ind Co Colorless transparent polyimide shaped articles and their production
JPH05203952A (ja) * 1992-01-23 1993-08-13 Japan Synthetic Rubber Co Ltd 液晶配向剤
TW556029B (en) 2000-10-16 2003-10-01 Nissan Chemical Ind Ltd Aligning agent for liquid crystal for in-plane switching, liquid-crystal alignment film, and liquid-crystal display element
US20060142538A1 (en) 2002-12-11 2006-06-29 Nissan Chemical Industries, Ltd. Liquid crystal orientating agent and liquid crystal display element using it
TWI406838B (zh) * 2006-08-04 2013-09-01 Jnc Corp 二胺、液晶配向劑、液晶配向膜和液晶顯示裝置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144955A (ja) * 2008-10-29 2014-08-14 Nissan Chem Ind Ltd 新規なジアミン化合物
JP2014237839A (ja) * 2009-03-10 2014-12-18 日産化学工業株式会社 ポリイミド前駆体、及びポリイミド

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10947345B2 (en) 2016-07-19 2021-03-16 Japan Display Inc. Varnish for photo alignment film and liquid crystal display device
CN107632461A (zh) * 2016-07-19 2018-01-26 株式会社日本显示器 光取向膜用清漆及液晶显示装置
US11384204B2 (en) 2016-07-19 2022-07-12 Japan Display Inc. Varnish for photo alignment film and liquid crystal display device
JP7076939B2 (ja) 2016-07-19 2022-05-30 株式会社ジャパンディスプレイ 光配向膜用ワニス及び液晶表示装置
JP2018013532A (ja) * 2016-07-19 2018-01-25 株式会社ジャパンディスプレイ 光配向膜用ワニス及び液晶表示装置
CN109952530B (zh) * 2016-09-07 2022-04-19 日产化学株式会社 液晶取向剂、液晶取向膜及液晶表示元件
CN109952530A (zh) * 2016-09-07 2019-06-28 日产化学株式会社 液晶取向剂、液晶取向膜及液晶表示元件
JPWO2018047872A1 (ja) * 2016-09-07 2019-06-24 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR20190050811A (ko) * 2016-09-07 2019-05-13 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
WO2018047872A1 (ja) * 2016-09-07 2018-03-15 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
TWI801351B (zh) * 2016-09-07 2023-05-11 日商日產化學工業股份有限公司 液晶配向劑、液晶配向膜及液晶顯示元件
JP7299556B2 (ja) 2016-09-07 2023-06-28 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR102554992B1 (ko) * 2016-09-07 2023-07-12 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
JPWO2018066607A1 (ja) * 2016-10-06 2019-08-08 日産化学株式会社 ジアミン、重合体、液晶配向剤、液晶配向膜及び液晶表示素子
WO2018066607A1 (ja) * 2016-10-06 2018-04-12 日産化学工業株式会社 ジアミン、重合体、液晶配向剤、液晶配向膜及び液晶表示素子

Also Published As

Publication number Publication date
KR102489700B1 (ko) 2023-01-17
CN107250901B (zh) 2020-09-25
TWI701270B (zh) 2020-08-11
TW201700538A (zh) 2017-01-01
KR20170097170A (ko) 2017-08-25
CN107250901A (zh) 2017-10-13
JPWO2016104514A1 (ja) 2017-09-28
JP6597640B2 (ja) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6597307B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP6597640B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP2018083943A (ja) 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
TWI669344B (zh) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6299977B2 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子
JP6331028B2 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子
JP2018087343A (ja) 重合体
JP6465159B2 (ja) 新規なジアミン化合物、ポリイミド前駆体及びポリイミド
JP6079627B2 (ja) 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
JP6281568B2 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JPWO2014061781A1 (ja) 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
WO2015046373A1 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
JPWO2014119682A1 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2013115387A1 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP6638886B2 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2017094786A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JPWO2018122936A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP6776897B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566393

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177020223

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15873082

Country of ref document: EP

Kind code of ref document: A1