WO2017094786A1 - 液晶配向剤、液晶配向膜、及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜、及び液晶表示素子 Download PDF

Info

Publication number
WO2017094786A1
WO2017094786A1 PCT/JP2016/085587 JP2016085587W WO2017094786A1 WO 2017094786 A1 WO2017094786 A1 WO 2017094786A1 JP 2016085587 W JP2016085587 W JP 2016085587W WO 2017094786 A1 WO2017094786 A1 WO 2017094786A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
aligning agent
component
Prior art date
Application number
PCT/JP2016/085587
Other languages
English (en)
French (fr)
Inventor
玲久 小西
新平 新津
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201680080402.4A priority Critical patent/CN108604028A/zh
Priority to KR1020187018490A priority patent/KR20180087396A/ko
Priority to JP2017554148A priority patent/JPWO2017094786A1/ja
Publication of WO2017094786A1 publication Critical patent/WO2017094786A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.
  • a liquid crystal display element used for a liquid crystal television, a liquid crystal display, or the like is usually provided with a liquid crystal alignment film for controlling the alignment (also referred to as alignment) state of liquid crystals.
  • the liquid crystal alignment film is subjected to a treatment for aligning the liquid crystal on the surface of a resin film (for example, a polyamic acid or a polyamic acid ester or a polyimide film obtained by imidizing them) formed on the electrode substrate. It is made with.
  • the resin film is rubbed in one direction with a cloth such as cotton, nylon or polyester, and the alignment state of the liquid crystal is controlled by irradiating polarized ultraviolet rays.
  • a photo-alignment processing method is known.
  • the photo-alignment treatment method has an advantage that it can be produced by an industrially simple manufacturing process.
  • IPS In-Plane Switching
  • FFS fringe field switching
  • the contrast and viewing angle of the liquid crystal display element are higher than those of a liquid crystal alignment film obtained by a rubbing treatment method. It is possible to improve the performance of the liquid crystal display element, such as an improvement in characteristics. For this reason, the photo-alignment treatment method is particularly attracting attention as a future liquid crystal alignment treatment method.
  • Non-patent Document 1 As liquid crystal alignment treatment methods using the photo-alignment treatment method, those utilizing a photoisomerization reaction, those utilizing a photocrosslinking reaction, and those utilizing a photodecomposition reaction have been proposed (Non-patent Document 1). reference).
  • Patent Document 1 it is proposed that a resin film made of a polyimide resin having an alicyclic structure such as a cyclobutane ring in the main chain is used for the photo-alignment treatment method.
  • a polyimide resin is used for a liquid crystal alignment film of a photo-alignment method, its usefulness is expected because it has higher heat resistance than that of other resins.
  • the present invention achieves both a liquid crystal alignment property, a liquid crystal alignment control force, a component with high stability of liquid crystal alignment, and suppression of charge accumulation by asymmetrical AC drive and quick relaxation of residual charge accumulated by a DC voltage.
  • a liquid crystal aligning agent that contains a component and suppresses charge accumulation by asymmetrical AC driving, quickly relaxes residual charges accumulated by DC voltage, and further suppresses an afterimage caused by AC driving.
  • an object of the present invention is to provide a liquid crystal alignment film obtained from the liquid crystal alignment agent and a liquid crystal display device having the liquid crystal alignment film.
  • the present inventor has found that a liquid crystal aligning agent containing a specific structure is extremely effective for achieving the above object, and has completed the present invention. That is, the present invention has the following gist.
  • the liquid crystal aligning agent characterized by containing the following (A) component and the following (B) component.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a heat-leaving group that is replaced with a hydrogen atom by heat, and at least one of them.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a carbon atom having a substituent of 1 (A monovalent hydrocarbon group of ⁇ 20.
  • D is a thermally desorbable group that is replaced by a hydrogen atom by heat.
  • B component a tetracarboxylic dianhydride component containing a tetracarboxylic dianhydride represented by the following formula (B-1), a diamine containing a diamine represented by (B-2), Polyamic acid obtained by polycondensation reaction.
  • R 5 is a hydrogen atom or a COOH group.
  • B 1 to B 2 each independently have a hydrogen atom or a carbon number of 1 to 10 which may have a substituent.
  • liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, the liquid crystal orientation is good, the charge accumulation due to the asymmetry of AC driving is suppressed, the residual charge accumulated by the DC voltage is quickly relaxed, and the afterimage due to AC driving can be suppressed.
  • a liquid crystal alignment film can be obtained.
  • it is useful for a liquid crystal alignment film for photo-alignment treatment obtained by irradiating polarized radiation.
  • a liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability, and is suitably used for a large-screen high-definition liquid crystal television, a small and medium-sized car navigation system, a smartphone, and the like. can do.
  • the component (A) contained in the liquid crystal aligning agent of the present invention includes a tetracarboxylic dianhydride component, a diamine having the structure of the following formula [A-1], and a diamine having the structure of the following formula [A-2] And at least one polymer selected from a polyimide precursor obtained by using a diamine component containing at least one diamine selected from: (hereinafter also referred to as a specific polymer (A)).
  • R 1 , R 2 , and A are as defined above. Of these, at least one or both of R 1 and R 2 are preferably a heat-eliminable group that can be replaced with a hydrogen atom by heat.
  • the heat-leaving group is an amino-protecting group, and its structure is not particularly limited as long as it is a functional group that can be replaced by a hydrogen atom by heat.
  • the thermally desorbable group is preferably not desorbed at room temperature, preferably 80 ° C. or higher, more preferably 100 ° C. or higher.
  • the upper limit of the thermal desorption temperature is preferably 300 ° C, more preferably 250 ° C.
  • As the thermal leaving group a group represented by the following formula (1) is preferable.
  • A is preferably a single bond.
  • the group of the formula (1) is a t-butoxycarbonyl group (also referred to as a Boc group in the present invention).
  • the diamine having the structure represented by the above formula [A-1] in the molecule may be any diamine as long as it satisfies such requirements.
  • a preferred example thereof is a diamine represented by the following formula [A-1-1].
  • R 1 and R 2 are the same as in the formula [A-1], including preferred examples thereof.
  • m and n are each independently an integer of 0 to 3, and are preferably 0 or 1 and more preferably 1 from the viewpoint of availability of raw materials.
  • the amino group (—NH 2 ) in each benzene ring may be any of ortho, meta, or para with respect to the bonding position of the alkylene group. From the viewpoint of ease of polymerization and polymerization reactivity, the meta position or the para position is preferable, and the para position is more preferable.
  • Preferred examples of the diamine represented by the formula [A-1-1] include the following.
  • Boc is a group represented by the following.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. is there.
  • a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group is preferable, and a hydrogen atom or a methyl group is particularly preferable.
  • D is a thermally leaving group that is replaced by a hydrogen atom by the heat described above.
  • the temperature at which the thermally desorbable group thermally desorbs, and specific examples thereof are also as described above. From the viewpoint of elimination temperature, D is particularly preferably a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group.
  • a 1 and A 5 are each independently a single bond or an alkylene group having 1 to 5 carbon atoms, and are preferably a single bond or a methylene group from the viewpoint of reactivity with a functional group in the sealant.
  • a 2 and A 4 are alkylene groups having 1 to 5 carbon atoms, preferably a methylene group or an ethylene group.
  • a 3 is an alkylene group having 1 to 6 carbon atoms or a cycloalkylene group, and a methylene group or an ethylene group is preferable from the viewpoint of reactivity with a functional group in the sealant.
  • B 1 and B 2 are each independently a single bond, —O—, —NH—, —NMe—, —C ( ⁇ O) —, —C ( ⁇ O) O—, —C ( ⁇ O) NH—, —C ( ⁇ O) NMe—, —OC ( ⁇ O) —, —NHC ( ⁇ O) —, or —N (Me) C ( ⁇ O) —.
  • a single bond or —O— is preferable.
  • D 1 is the above-described heat-eliminable group, which is a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group, and is preferably a tert-butoxycarbonyl group from the viewpoint of deprotection temperature.
  • a is 0 or 1;
  • diamine represented by the formula [A-2-2] include the following formulas (1-1) to (1-21). In these formulas, the description of the amino groups at both ends bonded to the phenyl ring is omitted.
  • Me represents a methyl group
  • D 2 represents a tert-butoxycarbonyl group.
  • the formulas (1-1) to (1-4) are more preferable, and the formula (1-1) is particularly preferable.
  • the use amount of at least one diamine selected from the diamine having the structure represented by the formula [A-1] and the diamine having the structure represented by the formula [A-2] is the specific polymer of the present invention. It is preferably 5 to 80 mol%, more preferably 10 to 50 mol%, based on the total diamine component used in the production of
  • the diamine component used for the component (A) contained in the liquid crystal aligning agent of the present invention is at least one selected from diamines having a structure represented by the above formulas [A-1] and [A-2].
  • Other diamines also referred to as other diamines
  • diamines used in the component (A) contained in the liquid crystal aligning agent of the present invention are the solubility of the component (A) in the solvent, the coating property of the liquid crystal aligning agent, the liquid crystal aligning property when used as a liquid crystal aligning film, Depending on the characteristics such as voltage holding ratio and accumulated charge, one kind or a mixture of two or more kinds may be used.
  • tetracarboxylic acid component for producing the component (A) contained in the liquid crystal aligning agent of the present invention it is preferable to use a tetracarboxylic dianhydride represented by the following formula [4].
  • a tetracarboxylic dianhydride represented by the following formula [4] not only the specific tetracarboxylic dianhydride represented by the formula [4] but also the tetracarboxylic acid derivative tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester or tetracarboxylic acid dialkyl ester dihalide Can also be used (tetracarboxylic dianhydride and derivatives thereof are collectively referred to as a specific tetracarboxylic acid component).
  • Z represents at least one structure selected from the following formulas [4a] to [4q].
  • Z 1 to Z 4 each independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a benzene ring.
  • Z 5 and Z 6 each independently represent a hydrogen atom or a methyl group.
  • Z is represented by the formula [4a], the formula [4c] to the formula [4g], the formula [4k] to the formula [4m] or the formula [4a], formula [4c] to formula [4g], or
  • a structure represented by the formula [4p] is preferable.
  • a structure represented by formula [4a], formula [4e] to formula [4g], formula [4l], formula [4m] or formula [4p] is more preferable.
  • Particularly preferred is a structure represented by [4a], [4e], [4f], [4l], [4m] or [4p].
  • the formula [4a] is preferably the following formula [4a-1] or formula [4a-2].
  • the specific tetracarboxylic acid component in the specific polymer (A) is preferably 50 mol% to 100 mol% in 100 mol% of all tetracarboxylic acid components. Of these, 70 mol% to 100 mol% is preferable. More preferred is 80 mol% to 100 mol%.
  • the specific tetracarboxylic acid component of the present invention includes the solubility of the specific polymer (A) of the present invention in a solvent, the applicability of a liquid crystal aligning agent, the liquid crystal alignment, the voltage holding ratio, and the accumulation when used as a liquid crystal alignment film. One type or two or more types can be used depending on characteristics such as charge.
  • tetracarboxylic acid components other than the specific tetracarboxylic acid component can also be used for the polyimide polymer of the specific polymer (A).
  • tetracarboxylic acid components include the following tetracarboxylic acids, or acid dianhydrides, acid dihalides, acid dialkyl esters, and acid dialkyl ester dihalides.
  • the other tetracarboxylic acid components include the solubility of the specific polymer (A) of the present invention in a solvent, the coating property of a liquid crystal aligning agent, the liquid crystal aligning property when the liquid crystal aligning film is used, the voltage holding ratio, the accumulated charge, etc. Depending on the characteristics, one kind or a mixture of two or more kinds may be used.
  • the component (B) contained in the liquid crystal aligning agent of the present invention includes a tetracarboxylic dianhydride component containing a tetracarboxylic dianhydride represented by the following formula (B-1) and a formula (B-2) It is a polyamic acid (it is also called a specific polymer (B)) obtained from the diamine component containing the diamine represented by these.
  • R 5 is a group selected from a hydrogen atom or a COOH group
  • B 1 to B 2 are each independently a hydrogen atom or a carbon number of 1 to 10 which may have a substituent.
  • the use ratio of the tetracarboxylic dianhydride represented by the formula (B-1) is preferably 10 to 100 mol%, more preferably 30 to 100 mol% with respect to the total tetracarboxylic dianhydride component.
  • the mol% is more preferably 50 to 100 mol%.
  • the specific polymer (B) in the present invention uses a tetracarboxylic dianhydride represented by the following formula (B-3) in addition to the tetracarboxylic dianhydride represented by the above formula (B-1). May be.
  • X is a tetravalent organic group, and specific examples include structures of the following formulas (X-1) to (X-43).
  • R 3 to R 6 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group, and more preferably a hydrogen atom or a methyl group.
  • the tetracarboxylic dianhydride is preferably at least one tetracarboxylic acid selected from the group consisting of a structure represented by the following formula (B-4) from the viewpoint of availability.
  • (X 1 is at least one selected from the group consisting of structures represented by the above formulas (X-1) to (X-14).)
  • R 1 is a group selected from a hydrogen atom or a COOH group, and a hydrogen atom is particularly preferable.
  • B 1 and B 2 are each independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group or alkynyl group having 1 to 10 carbon atoms. Of these, a hydrogen atom is preferable.
  • the proportion of the diamine represented by the formula (B-2) in the specific polymer (B) is preferably 10 to 100 mol%, more preferably 30 to 70 mol%, based on the total diamine component. More preferably, it is 20 to 50 mol%.
  • a diamine represented by the following formula (B-4) may be used as the specific polymer (B) in the present invention.
  • Y 2 in the formula (B-4) is a divalent organic group, and two or more kinds of organic groups may be mixed. Specific examples thereof include the following Y-1 to Y-100.
  • B 1 and B 2 in formula (B-4), including preferred examples, are the same definition as B 1 and B 2 in formula (B-2).
  • Y 2 is preferably a highly linear diamine in order to obtain good liquid crystal alignment, and Y-7, Y-21, Y-22, Y-23, Y-25, Y-26. Y-27, Y-43, Y-44, Y-45, Y-46, Y-48, Y-63, Y-71, Y-73, Y-74, Y-75, or Y-76.
  • Diamine is more preferred.
  • the proportion of the diamine represented by the formula (B-4) is preferably 20 to 80 mol%, more preferably 50 to 80 mol%, based on the total diamine component.
  • the method for producing the specific polymer (A) and the specific polymer (B) is not particularly limited.
  • a polycondensation reaction of at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic dianhydride and its tetracarboxylic acid derivative and a diamine component consisting of one or more diamines is obtained.
  • tetracarboxylic dianhydride and primary or secondary diamine are polycondensed to obtain polyamic acid
  • tetracarboxylic acid and primary or secondary diamine are subjected to dehydration polycondensation reaction.
  • a method of obtaining a polyamic acid or a method of polycondensing a tetracarboxylic acid dihalide and a primary or secondary diamine to obtain a polyamic acid is used.
  • the reaction of the diamine component and the tetracarboxylic acid component is usually carried out in a solvent with the diamine component and the tetracarboxylic acid component.
  • the solvent used at that time is not particularly limited as long as the produced polyimide precursor is soluble. Although the specific example of the solvent used for reaction below is given, it is not limited to these examples.
  • Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done. Further, when the solvent solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3]. Can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D 3 represents an alkyl group having 1 to 4 carbon atoms.
  • These solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced
  • the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • the polyimide of the present invention is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate of the amic acid group (also referred to as imidization rate) is not necessarily 100%. It can be arbitrarily adjusted according to the purpose.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalyst imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature when the polyimide precursor is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalytic imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C. it can.
  • the amount of the basic catalyst is 0.5 mol times to 30 mol times, preferably 2 mol times to 20 mol times of the amic acid groups, and the amount of the acid anhydride is 1 mol times to 50 mol times of the amic acid groups, The amount is preferably 3 mole times to 30 mole times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine.
  • pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like.
  • use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating. Further, when the polymer collected by precipitation is redissolved in a solvent and then re-precipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • Examples of the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
  • the liquid crystal aligning agent of this invention is a coating solution for forming a liquid crystal aligning film, and is a coating solution for forming the liquid crystal aligning film containing a specific polymer (A), a specific polymer (B), and a solvent. is there.
  • the ratio of the specific polymer (A) and the specific polymer (B) in the liquid crystal aligning agent of the present invention is 10 to 900 parts by mass of the specific polymer (B) with respect to 100 parts of the specific polymer (A). preferable. Among these, 25 to 400 parts by mass is preferable, and 40 to 250 parts by mass is more preferable. Most preferred is 100 to 250 parts by weight.
  • All the polymer components in the liquid crystal aligning agent of the present invention may all be the specific polymer (A) and the specific polymer (B) of the present invention, and other polymers are mixed. Also good.
  • Other polymers include polyimide precursors and polyimides that do not have the specific structure (1A), specific structure (1B) and specific structure (2) of the present invention.
  • a cellulose polymer, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, polysiloxane, or the like is also included. At that time, the content of the other polymer is 0.5 to 15 parts by mass with respect to 100 parts by mass of the specific polymer including the specific polymer (A) and the specific polymer (B). is there.
  • the content of the solvent in the liquid crystal aligning agent is preferably 70 to 99.9% by mass. This content can be appropriately changed depending on the application method of the liquid crystal aligning agent and the film thickness of the target liquid crystal alignment film.
  • the solvent used for the liquid crystal aligning agent of this invention will not be specifically limited if it is a solvent (it is also called a good solvent) in which a specific polymer (A) and a specific polymer (B) are dissolved.
  • a good solvent is also called to the following, it is not limited to these examples.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and ⁇ -butyrolactone are preferable.
  • the solubility of the specific polymer (A) and the specific polymer (B) in the solvent is high, it is preferable to use the solvents represented by the formulas [D-1] to [D-3].
  • the good solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
  • the liquid crystal aligning agent of this invention can use the solvent (it is also called a poor solvent) which improves the coating property and surface smoothness of a liquid crystal aligning film at the time of apply
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propan
  • 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or dipropylene glycol dimethyl ether is preferably used.
  • These poor solvents are preferably 1 to 80% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 10 to 80% by mass is preferable. More preferred is 20 to 70% by mass.
  • the liquid crystal aligning agent of the present invention includes at least one substituent selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. It is preferable to introduce a crosslinkable compound having a crosslinkable compound or a crosslinkable compound having a polymerizable unsaturated bond. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-amin
  • the crosslinkable compound having an oxetane group is a compound having at least two oxetane groups represented by the following formula [4A]. Specific examples include crosslinkable compounds represented by the formulas [4a] to [4k] described in the paragraphs 58 to 59 of the international publication WO2011 / 132751 (published 2011.10.27).
  • the crosslinkable compound having a cyclocarbonate group is a compound having at least two cyclocarbonate groups represented by the following formula [5A]. Specifically, crosslinkable compounds represented by the formulas [5-1] to [5-42] described in the paragraphs 76 to 82 of International Publication No. WO2012 / 014898 (published in 2012.2.2) are listed. It is done.
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used.
  • the melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • Examples of the benzene or phenolic crosslinkable compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4- Examples thereof include bis (sec-butoxymethyl) benzene and 2,6-dihydroxymethyl-p-tert-butylphenol. More specifically, International Publication WO2011 / 132751. (2011.10.27), pages 62 to 66, and crosslinkable compounds represented by the formulas [6-1] to [6-48].
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl
  • a compound represented by the following formula [7A] can also be used.
  • E 1 represents cyclohexane ring, bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, a group selected from the group consisting of an anthracene ring or phenanthrene ring
  • E 2 represents a group selected from the following formula [7a] or [7b]
  • n represents an integer of 1 to 4.
  • the said compound is an example of a crosslinkable compound, It is not limited to these.
  • the crosslinkable compound used for the liquid crystal aligning agent of this invention may be 1 type, or may combine 2 or more types.
  • the content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components.
  • the amount is preferably 0.1 to 100 parts by weight, more preferably 1 to 50 parts by weight with respect to 100 parts by weight of all polymer components. is there.
  • the liquid crystal aligning agent of this invention can use the compound which improves the uniformity of the film thickness of a liquid crystal aligning film at the time of apply
  • the liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate to which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is used from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • a method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of performing screen printing, offset printing, flexographic printing, an inkjet method, or the like is common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose.
  • the solvent can be evaporated by a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven to form a liquid crystal alignment film.
  • a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven to form a liquid crystal alignment film.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • a condition of baking at 50 to 120 ° C. for 1 to 10 minutes and then baking at 150 to 300 ° C. for 5 to 120 minutes is mentioned in order to sufficiently remove the contained solvent.
  • the thickness of the liquid crystal alignment film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so that it is preferably 5 to 300 nm. Of these, 10 to 200 nm is preferable.
  • Examples of the method for aligning the liquid crystal alignment film include the rubbing method and the optical alignment method.
  • the surface of the liquid crystal alignment film is irradiated with radiation deflected in a certain direction, and in some cases, further subjected to heat treatment at a temperature of 150 to 250 ° C. And a method of imparting a function).
  • the radiation ultraviolet rays or visible rays having a wavelength of 100 to 800 nm can be used. Among these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and ultraviolet rays having a wavelength of 200 to 400 nm are more preferable.
  • the substrate coated with the liquid crystal alignment film may be irradiated with radiation while heating at 50 to 250 ° C.
  • the radiation dose is preferably 1 2 to 10,000 mJ / cm 2 and more preferably 100 to 5,000 mJ / cm 2 .
  • the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using water or a solvent.
  • the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated from the liquid crystal alignment film by irradiation with radiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples thereof include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate or cyclohexyl acetate.
  • water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate is preferable from the viewpoint of versatility and solvent safety, and water, 1-methoxy-2-propanol or ethyl lactate is more preferable. It is.
  • These solvents may be used alone or in combination of two or more.
  • Examples of the contact treatment in the present invention that is, treatment of water or a solvent on the liquid crystal alignment film irradiated with polarized radiation include immersion treatment and spray treatment (also referred to as spray treatment).
  • the treatment time in these treatments is preferably 10 seconds to 1 hour from the viewpoint of efficiently dissolving the decomposition products generated from the liquid crystal alignment film by radiation.
  • the immersion treatment is preferably performed for 1 minute to 30 minutes.
  • the solvent used in the contact treatment may be warmed up at room temperature or preferably 10 to 80 ° C. Of these, 20 to 50 ° C. is preferable.
  • ultrasonic treatment or the like may be performed as necessary.
  • rinsing also referred to as rinsing
  • a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, or methyl ethyl ketone
  • baking may be performed.
  • the firing temperature is preferably 150300 ° C. Of these, 180 to 250 ° C. is preferable, and 200 to 230 ° C. is more preferable.
  • the firing time is preferably 10 seconds to 30 minutes, more preferably 1 to 10 minutes.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film of a horizontal electric field type liquid crystal display element such as an IPS mode or an FFS mode, and particularly useful as a liquid crystal alignment film of an FFS mode liquid crystal display element.
  • a liquid crystal cell was prepared by a known method, and the liquid crystal cell was used as a liquid crystal display element. Is.
  • a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • TFT Thin Film Transistor
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate, the other substrate is overlapped with one substrate so that the liquid crystal alignment film faces each other, and the periphery is sealed with a sealant. Glue.
  • a spacer is usually mixed in the sealant.
  • spacers for controlling the substrate gap are also sprayed on the in-plane portion where no sealant is provided.
  • a part of the sealant is provided with an opening that can be filled with liquid crystal from the outside.
  • a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent. Thereafter, the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • the liquid crystal material either a positive liquid crystal material or a negative liquid crystal material may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyl lactone
  • BCS butyl cellosolve
  • DA-1 1,2-bis (4-aminophenoxy) ethane
  • DA-2 Refer to the following formula (DA-2), DA-3: 4,4′-diaminodiphenylamine, DA-4: p-phenylenediamine, DA-5: 3,5-diaminobenzoic acid
  • DA-6 1,2-bis (4-aminophenoxy) methane
  • DAH-1 1,2,3,4-cyclobutanetetra Carboxylic dianhydride
  • DAH-2 see formula (DAH-2) below
  • DAH-3 see formula (DAH-3) below
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) is 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparation of calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000
  • the imidation ratio of polyimide was measured as follows. 20 mg of polyimide powder is put into an NMR sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)) and deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture) (0.53 ml) ) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • a liquid crystal cell having a configuration of a fringe field switching (hereinafter referred to as FFS) mode liquid crystal display element is manufactured.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • an ITO electrode having a solid pattern constituting a counter electrode as a first layer is formed.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an ITO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a dogleg shape whose central portion is bent.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the irradiation direction of linearly polarized light is used as a reference, the electrode element of the pixel electrode is formed at an angle of + 10 ° (clockwise) in the first region of the pixel, and the electrode of the pixel electrode is formed in the second region of the pixel. The elements are formed at an angle of -10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • the prepared substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 ⁇ m on which an ITO film is formed on the back surface It applied by spin coat application. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in an IR oven at 230 ° C. for 15 minutes to form a coating film having a thickness of 100 nm. This coating surface was subjected to alignment treatment such as rubbing and polarized ultraviolet irradiation to obtain a substrate with a liquid crystal alignment film.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing. Liquid crystal MLC-7026-100 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
  • a liquid crystal cell having the same structure as the liquid crystal cell used for the above-described afterimage evaluation was prepared. Using this liquid crystal cell, an AC voltage of ⁇ 7 V was applied for 120 hours at a frequency of 60 Hz in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day. After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second area was compared with the first area, and a similar angle ⁇ was calculated.
  • the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell, and AC drive image sticking ⁇ was less than 0.1 as “good”, and more than that was “bad”.
  • a liquid crystal aligning agent is spin-coated on a glass substrate with a transparent electrode, dried for 2 minutes on a hot plate at 80 ° C., and baked for 15 minutes in an IR oven at 230 ° C. to form an imidized film having a thickness of 100 nm. Obtained.
  • This coating surface was subjected to an alignment treatment to obtain a substrate with a liquid crystal alignment film.
  • Two substrates with such a liquid crystal alignment film are prepared, and a 6 ⁇ m spacer is sprayed on the liquid crystal alignment film surface of one of the substrates, and then the two substrates are combined so that the alignment is antiparallel.
  • the periphery was sealed and the empty cell having a cell gap of 6 ⁇ m was produced.
  • Liquid crystal (MLC-7026-100, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, and the inlet was sealed to obtain a liquid crystal cell.
  • the liquid crystal cell was aged for 5 days under white light.
  • the voltage holding ratio of the liquid crystal cell was measured as follows. A voltage of 1 V was applied for 60 ⁇ s, and the voltage after 5 s was measured to calculate the fluctuation from the initial value as the voltage holding ratio. During the measurement, the temperature of the liquid crystal cell was set to 60 ° C., and the measurement was performed. At this time, a voltage holding ratio of 60% or more was judged “good” and a voltage holding ratio of less than “good”.
  • a polyimide resin powder (SPI-1) was obtained by taking 32.70 g of the obtained polyimide resin powder in a 200 ml sample tube containing a stir bar, adding 239.8 g of NMP, and stirring and dissolving at 70 ° C. for 20 hours.
  • Example 1 In a 50 mL Erlenmeyer flask containing a stir bar, 1.84 g of the polyimide solution (SPI-1) obtained in Synthesis Example 2 and 3.89 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were taken. 1.92 g of NMP, 1.89 g of GBL and 2.40 g of BCS were added and stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-1).
  • SPI-1 polyimide solution obtained in Synthesis Example 2
  • Example 2 In a 50 mL Erlenmeyer flask containing a stir bar, 1.84 g of the polyimide solution (SPI-1) obtained in Synthesis Example 2 and 3.82 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 4 were taken. 1.95 g of NMP, 1.92 g of GBL and 2.40 g of BCS were added and stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-2).
  • SPI-1 polyimide solution obtained in Synthesis Example 2
  • Example 3 In a 50 mL Erlenmeyer flask containing a stir bar, 2.77 g of the polyimide solution (SPI-1) obtained in Synthesis Example 2 and 4.32 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 6 were taken. 3.73 g of NMP, 3.59 g of GBL and 3.60 g of BCS were added, and the mixture was stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-4).
  • SPI-1 polyimide solution obtained in Synthesis Example 2
  • Example 4 After the liquid crystal aligning agent (AL-1) obtained in Example 1 is filtered through a 1.0 ⁇ m filter, the prepared substrate with electrodes and a columnar spacer having a height of 4 ⁇ m on which an ITO film is formed on the back surface. It apply
  • An attached substrate was obtained.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-7026-100 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left overnight. As a result of performing afterimage evaluation by long-term alternating current driving for this FFS driving liquid crystal cell, the value of the angle ⁇ of this liquid crystal cell after long-term alternating current driving was 0.1 degrees or less, which was favorable.
  • Example 5 An FFS drive liquid crystal cell was produced in the same manner as in Example 4 except that the liquid crystal aligning agent (AL-2) obtained in Example 2 was used. As a result of performing afterimage evaluation by long-term alternating current driving for this FFS driving liquid crystal cell, the value of the angle ⁇ of this liquid crystal cell after long-term alternating current driving was 0.1 degrees or less, which was favorable.
  • Example 6 An FFS drive liquid crystal cell was produced in the same manner as in Example 4 except that the liquid crystal aligning agent (AL-4) obtained in Example 3 was used. As a result of performing afterimage evaluation by long-term alternating current driving for this FFS driving liquid crystal cell, the value of the angle ⁇ of this liquid crystal cell after long-term alternating current driving was 0.1 degrees or less, which was favorable.
  • a voltage of 1 V was applied to the liquid crystal cell for 60 ⁇ s, and the voltage after 5 s was measured to obtain the fluctuation from the initial value as the voltage holding ratio.
  • the temperature of the liquid crystal cell was set to 60 ° C., and the measurement was performed. At this time, the voltage holding ratio was 60% or more, which was good.
  • Example 8 A liquid crystal cell was produced in the same manner as in Example 7 except that the liquid crystal aligning agent (AL-2) obtained in Example 2 was used. A voltage of 1 V was applied to the liquid crystal cell for 60 ⁇ s, and the voltage after 5 s was measured to obtain the fluctuation from the initial value as the voltage holding ratio. In the above measurement, the temperature of the liquid crystal cell was set to 60 ° C., and the measurement was performed. At this time, the voltage holding ratio was 60% or more, which was good.
  • the liquid crystal aligning agent A voltage of 1 V was applied to the liquid crystal cell for 60 ⁇ s, and the voltage after 5 s was measured to obtain the fluctuation from the initial value as the voltage holding ratio.
  • the temperature of the liquid crystal cell was set to 60 ° C., and the measurement was performed. At this time, the voltage holding ratio was 60% or more, which was good.
  • Example 9 A liquid crystal cell was produced in the same manner as in Example 7 except that the liquid crystal aligning agent (AL-4) obtained in Example 3 was used. A voltage of 1 V was applied to the liquid crystal cell for 60 ⁇ s, and the voltage after 5 s was measured to obtain the fluctuation from the initial value as the voltage holding ratio. In the above measurement, the temperature of the liquid crystal cell was set to 60 ° C., and the measurement was performed. At this time, the voltage holding ratio was 60% or more, which was good. (Comparative Example 5) A liquid crystal cell was produced in the same manner as in Example 7 except that the liquid crystal aligning agent (AL-3) obtained in Comparative Example 1 was used.
  • a voltage of 1 V was applied to the liquid crystal cell for 60 ⁇ s, and the voltage after 5 s was measured to obtain the fluctuation from the initial value as the voltage holding ratio.
  • the temperature of the liquid crystal cell was set to 60 ° C., and the measurement was performed. At this time, the voltage holding ratio was less than 60%, which was poor.
  • Example 6 A liquid crystal cell was produced in the same manner as in Example 7 except that the liquid crystal aligning agent (AL-5) obtained in Comparative Example 2 was used. The voltage of the liquid crystal cell 1V was applied for 60 ⁇ s, and the voltage after 5 s was measured to obtain the fluctuation from the initial value as the voltage holding ratio. In the above measurement, the temperature of the liquid crystal cell was set to 60 ° C., and the measurement was performed. At this time, the voltage holding ratio was less than 60%, which was poor.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention is particularly useful as a liquid crystal alignment film for an IPS drive type or FFS drive type liquid crystal display device or a liquid crystal television.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

交流駆動の非対称化による電荷蓄積の抑制、直流電圧により蓄積した残留電荷の早い緩和、交流駆動による残像を抑制する、特に光配向処理に適した液晶配向膜を形成するための液晶配向剤の提供。 下記(A)、(B)成分を含有する液晶配向剤。 (A)成分:テトラカルボン酸二無水物成分と、下記式[A-1]の構造を有するジアミン及び下記式[A-2]の構造を有するジアミンから選ばれる少なくとも1種のジアミンを含有するジアミン成分を用いて得られるポリイミド前駆体及びポリイミドから選ばれる少なくとも1種の重合体。 (B)成分:式(B-1)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物と式(B-2)で表されるジアミンを含むジアミンから得られるポリアミック酸。 (式中の記号の定義は、明細書中に記載の通りである。)

Description

液晶配向剤、液晶配向膜、及び液晶表示素子
 本発明は、液晶配向剤、この液晶配向剤から得られる液晶配向膜及びこの液晶配向膜を使用した液晶表示素子に関するものである。
 液晶テレビ、液晶ディスプレイ等に用いられる液晶表示素子は、通常、液晶の配列(配向ともいう)状態を制御するための液晶配向膜が素子内に設けられている。
 液晶配向膜は、電極基板上に形成された樹脂被膜(例えばポリアミド酸やポリアミド酸エステル、それらをイミド化したポリイミドの膜が挙げられる。)の表面に、液晶を配向させる為の処理を施すことで作製される。
 液晶を配向させる為の処理としては、樹脂被膜を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理法と、偏光された紫外線を照射することにより、液晶の配向状態を制御する光配向処理法が知られている。
 光配向処理法は、工業的にも簡便な製造プロセスで生産できる利点がある。特に、IPS(In-Plane Switching)駆動方式やフリンジフィールドスイッチング(FFSともいう)駆動方式の液晶表示素子においては、ラビング処理法で得られる液晶配向膜に比べて、液晶表示素子のコントラストや視野角特性の向上が期待できるなど液晶表示素子の性能を向上させることが可能である。そのため、光配向処理法は、今後の液晶配向処理方法として、特に注目されている。
 光配向処理法を用いた液晶配向処理方法は、光異性化反応を利用したもの、光架橋反応を利用したもの、さらに、光分解反応を利用したものなどが提案されている(非特許文献1参照)。
 特許文献1では、主鎖にシクロブタン環などの脂環構造を有するポリイミド系樹脂から成る樹脂被膜を光配向処理法に用いることが提案されている。特に、ポリイミド系樹脂を光配向法の液晶配向膜に用いた場合、他の樹脂のものに比べて高い耐熱性を有することからその有用性が期待されている。
 一方、IPS駆動方式やFFS駆動方式の液晶表示素子には、直流電圧により蓄積する残留電荷、交流駆動による残像の他、その構造特有の問題として、交流駆動の非対称化による電荷蓄積が問題として挙げられる。
 これらの問題を解決する液晶配向膜を得る方法として、液晶配向性に優れ、液晶の配向規制力が強い成分と交流駆動の非対称化による電荷蓄積の抑制と直流電圧により蓄積した残留電荷の早い緩和を両立する成分とをブレンドした液晶配向剤が提案されている(特許文献2参照)。しかし、かかる液晶配向剤は、特に、光配向処理法においては、必ずしも上記課題を解決するものではなかった。
日本国特開平9-297313号公報 WO2015/060357号公報
「液晶光配向膜」機能性材料 1997年11月号 Vol.17 No.11 13-22ページ
 本発明は、液晶配向性、液晶の配向規制力に優れ、液晶配向の安定性が高い成分と、交流駆動の非対称化による電荷蓄積の抑制と直流電圧により蓄積した残留電荷の早い緩和を両立する成分とを含有し、交流駆動の非対称化による電荷蓄積の抑制、直流電圧により蓄積した残留電荷の早い緩和、さらには交流駆動による残像を抑制する液晶配向膜が得られる液晶配向剤を提供することを目的とする。
 加えて、本発明は、上記の液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子を提供することを目的とする。
 本発明者は、鋭意研究を行った結果、特定の構造を含有する液晶配向剤が上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。すなわち、本発明は以下の要旨を有するものである。
 1.下記(A)成分、及び下記(B)成分を含有することを特徴とする液晶配向剤。
 (A)成分:テトラカルボン酸二無水物成分と、下記式[A-1]の構造を有するジアミン及び下記式[A-2]の構造を有するジアミンからなる群から選ばれる少なくとも1種のジアミンを含有するジアミン成分と、を重縮合反応させて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。
Figure JPOXMLDOC01-appb-C000009
(式[A-1]中、R、Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、又は熱により水素原子に置き換わる熱脱離性基であり、その少なくとも一方は上記熱脱離性基である。式[A-2]中、R、R、R及びRは、それぞれ独立して、水素原子又は置換基を有してもよい炭素数1~20の1価の炭化水素基である。Dは熱により水素原子に置き換わる熱脱離性基である。)
 (B)成分:下記式(B-1)で表されるテトラカルボン酸二無水物を含有するテトラカルボン酸二無水物成分と、(B-2)で表されるジアミンを含有するジアミンと、を重縮合反応させて得られるポリアミック酸。
Figure JPOXMLDOC01-appb-C000010
(式(B-2)中、Rは水素原子又はCOOH基である。B~Bはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10を有する、アルキル基、アルケニル基若しくはアルキニル基である。)
 本発明の液晶配向剤を用いることで、液晶配向性が良好であり、交流駆動の非対称化による電荷蓄積を抑制し、直流電圧により蓄積した残留電荷の緩和が早く、交流駆動による残像を抑制出来る液晶配向膜を得ることができる。特に、偏光された放射線を照射して得られる光配向処理法用の液晶配向膜に対して有用である。
 本発明の液晶配向剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビや中小型のカーナビゲーションシステムやスマートフォンなどに好適に使用することができる。
<(A)成分>
 本発明の液晶配向剤に含有される(A)成分は、テトラカルボン酸二無水物成分と、下記式[A-1]の構造を有するジアミン及び下記式[A-2]の構造を有するジアミンから選ばれる少なくとも1種のジアミンを含有するジアミン成分を用いて得られるポリイミド前駆体及びポリイミドから選ばれる少なくとも1種の重合体(以下、特定重合体(A)とも称する)である。
Figure JPOXMLDOC01-appb-C000011
 式[A-1]中、R、R、及びAは、上記で定義したとおりである。
 なかでも、R及びRは、その少なくとも一方、又は両方とも、熱により水素原子に置き換わる熱脱離性基が好ましい。該熱脱離性基は、アミノ基の保護基であり、熱により水素原子に置き換わる官能基であれば、その構造は特に限定されない。熱脱離性基は、室温において脱離しないことが好ましく、好ましくは80℃以上、より好ましくは100℃以上で熱脱離するのが好ましい。熱脱離する温度の上限は好ましくは300℃、より好ましくは250℃であるのが好ましい。
 上記熱脱離性基としては、下記式(1)で表される基が好ましい。式(1)中、Aは、好ましくは単結合である。ここで、Aが単結合の場合、式(1)の基は、t-ブトキシカルボニル基(本発明では、Boc基ともいう。)である。
Figure JPOXMLDOC01-appb-C000012
 上記式[A-1]で表される構造を分子内に有するジアミンは、かかる要件を満足する限り、いずれのジアミンでもよい。その好ましい例として、下記式[A-1-1]で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000013

 上記式[A-1-1]中、R及びRは、それぞれの好ましいものも含めて、式[A-1]における場合と同じである。m、nは、それぞれ独立に、0~3の整数であり、原料入手の容易性から、好ましくは0又は1であり、より好ましくは1である。
 また、式[A-1-1]中、それぞれのベンゼン環におけるアミノ基(-NH)は、アルキレン基の結合位置に対して、オルト、メタ、又はパラのいずれでも位置もよいが、合成の容易性、及び重合反応性の点から、メタ位、又はパラ位が好ましく、パラ位がより好ましい。
 式[A-1-1]で表されるジアミンの例としては、好ましくは、以下のものが挙げられる。なお、以下に例示される式において、Bocは下記で表される基である。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 式[A-2]において、R、R、R及びRは、それぞれ独立して、水素原子又は置換基を有してもよい炭素数1~20の1価の炭化水素基である。特に、嵩高い置換基であると液晶配向性を低下させる可能性があるため、水素原子、炭素数1~6アルキル基、又はフェニル基が好ましく、水素原子、又はメチル基が特に好ましい。
 Dは、上記の熱により水素原子に置き換わる熱脱離性基である。該熱脱離性基の熱脱離する温度、及び具体例も上記したとおりである。Dは、脱離する温度の点から、tert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基であることが特に好ましい。
 上記式[A-2]で表される構造を有するジアミンとしては、なかでも、下記式[A-2-1]で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000017
 なかでも、下記式[A-2-2]で表される場合には、得られる液晶配向膜の液晶配向性が高くなるので特に好ましい。
Figure JPOXMLDOC01-appb-C000018
 A及びAは、それぞれ独立して、単結合、又は炭素数1~5のアルキレン基であり、シール剤中の官能基との反応性の点から、単結合又はメチレン基が好ましい。A及びAは、炭素数1~5のアルキレン基であり、好ましくは、メチレン基、又はエチレン基である。
 Aは、炭素数1~6のアルキレン基、又はシクロアルキレン基であり、シール剤中の官能基との反応性の点から、メチレン基又はエチレン基が好ましい。
 B及びBは、それぞれ独立して、単結合、-O-、 -NH-、 -NMe-、 -C(=O)-、-C(=O)O-、 -C(=O)NH-、 -C(=O)NMe-、 -OC(=O)-、 -NHC(=O)-、 又は、-N(Me)C(=O)-であり、得られる液晶配向膜の液晶配向性の点から、単結合、又は、-O-が好ましい。
 Dは、上記した熱脱離性基であり、tert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基であり、脱保護する温度の点から、tert-ブトキシカルボニル基が好ましい。aは0又は1である。
 式[A-2-2]で表されるジアミンの具体例としては、下記式(1-1)~式(1-21)が挙げられる。なお、これらの式では、フェニル環に結合する両端のアミノ基の記載は省略されている。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 式(1-1)~(1-21)において、Meはメチル基を表し、Dはtert-ブトキシカルボニル基を表す。
 中でも、式(1-1)~(1-4)がより好ましく、式(1-1)が特に好ましい。
 上記式[A-1]で表される構造を有するジアミン及び上記式[A-2]で表される構造を有するジアミンから選ばれる少なくとも1種のジアミンの使用量は、本発明の特定重合体の製造に使用される全ジアミン成分に対して、好ましくは5~80モル%、より好ましくは10~50モル%である。
 本発明の液晶配向剤に含有される(A)成分に用いられるジアミン成分としては、上記式[A-1]及び[A-2]で表される構造を有するジアミンから選ばれる少なくとも1種のジアミンとともに、その他のジアミン(その他ジアミンともいう)を用いることもできる。
 具体的には、2,4-ジメチル-m-フェニレンジアミン、2,6-ジアミノトルエン、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン又は1,12-ジアミノドデカン、さらに、これらのアミノ基が2級のアミノ基であるジアミンが挙げられる。
 本発明の液晶配向剤中に含有される(A)成分に用いられるその他ジアミンは(A)成分の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種又は2種以上を混合して使用することもできる。
 本発明の液晶配向剤に含有される(A)成分を作製するためのテトラカルボン酸成分としては、下記式[4]で示されるテトラカルボン酸二無水物を用いることが好ましい。その際、式[4]で示される特定テトラカルボン酸二無水物だけでなく、そのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル又はテトラカルボン酸ジアルキルエステルジハライドを用いることもできる(テトラカルボン酸二無水物及び前記のその誘導体を総称して特定テトラカルボン酸成分ともいう)。
Figure JPOXMLDOC01-appb-C000021
 Zは、下記式[4a]~式[4q]から選ばれる少なくとも1種の構造を示す。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 Z~Zは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子又はベンゼン環を示す。Z及びZは、それぞれ独立して、水素原子又はメチル基を示す。
 Zとしては、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[4a]、式[4c]~式[4g]、式[4k]~式[4m]又は式[4p]で示される構造が好ましい。より好ましいのは、式[4a]、式[4e]~式[4g]、式[4l]、式[4m]又は式[4p]で示される構造である。特に好ましいのは、[4a]、式[4e]、式[4f]、式[4l]、式[4m]又は式[4p]で示される構造である。
 式[4a]は、下記式[4a-1]又は式[4a-2]が好ましい。
Figure JPOXMLDOC01-appb-C000024
 特定重合体(A)における特定テトラカルボン酸成分は、すべてのテトラカルボン酸成分100モル%中、50モル%~100モル%であることが好ましい。なかでも、70モル%~100モル%が好ましい。より好ましいのは、80モル%~100モル%である。
 本発明の特定テトラカルボン酸成分は、本発明の特定重合体(A)の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種又は2種以上も使用できる。
 特定重合体(A)のポリイミド系重合体には、特定テトラカルボン酸成分以外のその他のテトラカルボン酸成分を用いることもできる。
 その他のテトラカルボン酸成分としては、以下に記載するテトラカルボン酸、又はその酸二無水物、酸ジハライド、酸ジアルキルエステル、酸ジアルキルエステルジハライドなどが挙げられる。
 1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸又は1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸など。
 上記その他のテトラカルボン酸成分は、本発明の特定重合体(A)の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種又は2種以上を混合して使用することもできる。
<(B)成分>
 本発明の液晶配向剤に含有される(B)成分は、下記式(B-1)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と下記式(B-2)で表されるジアミンを含むジアミン成分から得られるポリアミック酸(特定重合体(B)とも称する)である。
Figure JPOXMLDOC01-appb-C000025
 式(B-2)中、Rは水素原子又はCOOH基から選ばれる基であり、B~Bはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。
 式(B-1)で表されるテトラカルボン酸二無水物の割合は、少なすぎると、本発明の効果が得られない。よって、式(B-1)で表されるテトラカルボン酸二無水物の使用割合は、全テトラカルボン酸二無水物成分に対して、10~100モル%が好ましく、より好ましくは、30~100モル%、さらに好ましくは、50~100モル%である。
 本発明における特定重合体(B)は、上記式(B-1)で表されるテトラカルボン酸二無水物以外に、下記式(B-3)で表されるテトラカルボン酸二無水物を用いてもよい。
Figure JPOXMLDOC01-appb-C000026
 式(B-3)中、Xは4価の有機基であり、具体的例としては、下記式(X-1)~(X-43)の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 式(X-1)中、R~Rは、それぞれ独立して水素原子、炭素数1~6のアルキル基、又はフェニル基であり、水素原子、又はメチル基がより好ましい。
 テトラカルボン酸二無水物としては、入手性の観点から、下記式(B-4)で表される構造からなる群から選ばれる少なくとも1種のテトラカルボン酸であることが好ましい。
Figure JPOXMLDOC01-appb-C000030
(Xは上記式(X-1)~(X-14)で表される構造からなる群から選ばれる少なくとも1種である。)
 式(B-2)において、Rは水素原子又はCOOH基から選ばれる基であり、特に、水素原子が好ましい。
 B及びBはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。なかでも水素原子が好ましい。
 式(B-2)の具体例を下記するが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000031
 特定重合体(B)における式(B-2)で表されるジアミンの使用割合は、全ジアミン成分に対して、10~100モル%であることが好ましく、より好ましくは30~70モル%、さらに好ましくは20~50モル%である。
 本発明における特定重合体(B)は、上記式(B-2)で表されるジアミン以外に、下記式(B-4)で表されるジアミンを用いてもよい。式(B-4)におけるYは、2価の有機基であり、2種類以上の有機基が混在していてもよい。その具体例を示すならば、下記のY-1~Y-100が挙げられる。式(B-4)におけるB及びBは好ましい例も含めて、式(B-2)のB及びBにおける同じ定義である。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 Yとしては、なかでも、良好な液晶配向性を得るためには、直線性の高いジアミンが好ましく、Y-7、Y-21、Y-22、Y-23、Y-25、Y-26、Y-27、Y-43、Y-44、Y-45、Y-46、Y-48、Y-63、Y-71、Y-73、Y-74、Y-75、又はY-76のジアミンがより好ましい。
 式(B-4)で表されるジアミンの使用割合は、全ジアミン成分に対して、20~80モル%が好ましく、より好ましくは50~80モル%である。
<特定重合体(A)、(B)の製造方法>
 本発明において、特定重合体(A)及び特定重合体(B)を作製するための方法は特に限定されない。一般的には、テトラカルボン酸二無水物及びそのテトラカルボン酸の誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種又は複数種のジアミンからなるジアミン成分とを重縮合反応させて、ポリアミド酸を得る方法が挙げられる。具体的には、テトラカルボン酸二無水物と1級又は2級のジアミンとを重縮合させてポリアミド酸を得る方法、テトラカルボン酸と1級又は2級のジアミンとを脱水重縮合反応させてポリアミド酸を得る方法又はテトラカルボン酸ジハライドと1級又は2級のジアミンとを重縮合させてポリアミド酸を得る方法が用いられる。
 ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを溶媒中で行う。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる溶媒の具体例を挙げるが、これらの例に限定されるものではない。
 例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記式[D-1]~式[D-3]で示される溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000039
 Dは炭素数1~3のアルキル基を示し、Dは炭素数1~3のアルキル基を示し、Dは炭素数1~4のアルキル基を示す。
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
 ジアミン成分とテトラカルボン酸成分とを溶媒中で反応させる際には、ジアミン成分を溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸成分を溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、予め混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ重合体としてもよい。その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50%、より好ましくは5~30%である。反応初期は高濃度で行い、その後、溶媒を追加できる。
 重縮合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
 本発明のポリイミドは前記のポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20℃~250℃、好ましくは0℃~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5モル倍~30モル倍、好ましくは2モル倍~20モル倍であり、酸無水物の量はアミド酸基の1モル倍~50モル倍、好ましくは3モル倍~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン又はトリオクチルアミンなどを挙げることができ、なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸又は無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類又は炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。
<液晶配向剤>
 本発明の液晶配向剤は、液晶配向膜を形成するための塗布溶液であり、特定重合体(A)、特定重合体(B)及び溶媒を含有する液晶配向膜を形成するための塗布溶液である。
 本発明の液晶配向剤における特定重合体(A)と特定重合体(B)の割合は、特定重合体(A)100部に対して、特定重合体(B)は、10~900質量部が好ましい。なかでも、25~400質量部が好ましく、より好ましいのは、40~250質量部である。最も好ましいのは、100~250質量部である。
 本発明の液晶配向剤におけるすべての重合体成分は、すべてが本発明の特定重合体(A)及び特定重合体(B)であってもよく、それ以外の他の重合体が混合されていてもよい。それ以外の重合体としては、本発明の特定構造(1A)、特定構造(1B)及び特定構造(2)を持たないポリイミド前駆体及びポリイミドが挙げられる。さらには、セルロース系重合体、アクリル重合体、メタクリル重合体、ポリスチレン、ポリアミド又はポリシロキサンなども挙げられる。その際、それ以外の他の重合体の含有量は、特定重合体(A)及び特定重合体(B)とを合わせた特定重合体100質量部に対して、0.5~15質量部である。なかでも、1~10質量部が好ましい。
 また、液晶配向剤中の溶媒の含有量は、70~99.9質量%であることが好ましい。この含有量は、液晶配向剤の塗布方法や目的とする液晶配向膜の膜厚によって、適宜変更することができる。
 本発明の液晶配向剤に用いる溶媒は、特定重合体(A)及び特定重合体(B)を溶解させる溶媒(良溶媒ともいう)であれば特に限定されない。下記に、良溶媒の具体例を挙げるが、これらの例に限定されるものではない。
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン又は4-ヒドロキシ-4-メチル-2-ペンタノンなどを挙げることができる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトンが好ましい。
 さらに、特定重合体(A)及び特定重合体(B)の溶媒への溶解性が高い場合は、前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。
 本発明の液晶配向剤における良溶媒は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましい。なかでも、20~90質量%が好ましい。より好ましいのは、30~80質量%である。
 本発明の液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を用いることができる。下記に、貧溶媒の具体例を挙げるが、これらの例に限定されるも
のではない。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル又は前記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテルを用いることが好ましい。
 これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1~80質量%であることが好ましい。なかでも、10~80質量%が好ましい。より好ましいのは20~70質量%である。
 本発明の液晶配向剤には、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を導入することが好ましい。これら置換基や重合性不飽和結合は、架橋性化合物中に2個以上有する必要がある。
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン又は1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。
 オキセタン基を有する架橋性化合物は、下記式[4A]で示すオキセタン基を少なくとも2個有する化合物である。
Figure JPOXMLDOC01-appb-C000040
 具体的には、国際公開公報WO2011/132751(2011.10.27公開)の58項~59項に掲載される式[4a]~式[4k]で示される架橋性化合物が挙げられる。
 シクロカーボネート基を有する架橋性化合物としては、下記式[5A]で示されるシクロカーボネート基を少なくとも2個有する化合物である。
Figure JPOXMLDOC01-appb-C000041
 具体的には、国際公開公報WO2012/014898(2012.2.2公開)の76項~82項に掲載される式[5-1]~式[5-42]で示される架橋性化合物が挙げられる。
 ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基又はアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂又はエチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基又はアルコキシメチル基又はその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、又はグリコールウリルを用いることができる。このメラミン誘導体又はベンゾグアナミン誘導体は、2量体又は3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものが好ましい。
 このようなメラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリルなど、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。
 ヒドロキシル基又はアルコキシル基を有するベンゼン又はフェノール性架橋性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン又は2,6-ジヒドロキシメチル-p-tert-ブチルフェノールなどが挙げられる。
 より具体的には、国際公開公報WO2011/132751.(2011.10.27公開)の62頁~66頁に掲載される、式[6-1]~式[6-48]で示される架橋性化合物が挙げられる。
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン又はグリセリンポリグリシジルエーテルポリ(メタ)アクリレートなどの重合性不飽和基を分子内に3個有する架橋性化合物、さらに、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート又はヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する架橋性化合物、加えて、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル又はN-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物などが挙げられる。
 また、下記式[7A]で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000042
(式[7A]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環又はフェナントレン環からからなる群から選ばれる基を示し、Eは下記式[7a]又は式[7b]から選ばれる基を示し、nは1~4の整数を示す)。
Figure JPOXMLDOC01-appb-C000043
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の液晶配向剤に用いる架橋性化合物は、1種類でも、2種類以上組み合わせてもよい。
 本発明の液晶配向剤における、架橋性化合物の含有量は、すべての重合体成分100質量部に対して、0.1~150質量部が好ましい。なかでも、架橋反応が進行し目的の効果を発現させるためには、すべての重合体成分100質量部に対して0.1~100質量部が好ましく、より好ましいのは、1~50質量部である。
 本発明の液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。
<液晶配向膜・液晶表示素子>
 本発明の液晶配向膜は、前記液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法などがあり、目的に応じてこれらを用いてもよい。
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させて液晶配向膜とすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために50~120℃で1~10分焼成し、その後、150~300℃で5~120分焼成する条件が挙げられる。焼成後の液晶配向膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmであることが好ましい。なかでも、10~200nmが好ましい。
 液晶配向膜を配向処理する方法としては、前記ラビング処理法、光配向処理法などが挙げられる。
 光配向処理法の具体例としては、液晶配向膜の表面に、一定方向に偏向された放射線を照射し、場合によってはさらに150~250℃の温度で加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、100~400nmの波長を有する紫外線が好ましく、より好ましくは、200~400nmの波長を有する紫外線である。
 また、液晶配向性を改善するために、液晶配向膜が塗膜された基板を50~250℃で加熱しながら、放射線を照射してもよい。また、前記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmが好ましい。
 さらに、本発明では、偏光された放射線を照射した液晶配向膜に、水や溶媒を用いて、接触処理をすることもできる。接触処理に使用する溶媒としては、放射線の照射によって液晶配向膜から生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル又は酢酸シクロヘキシルなどが挙げられる。なかでも、汎用性や溶媒の安全性の点から、水、2-プロパンール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましく、より好ましいのは、水、1-メトキシ-2-プロパノール又は乳酸エチルである。これらの溶媒は、1種類でも、2種類以上組み合わせてもよい。
 本発明における前記接触処理、すなわち、偏光された放射線を照射した液晶配向膜に水や溶媒を処理としては、浸漬処理や噴霧処理(スプレー処理ともいう)が挙げられる。これらの処理における処理時間は、放射線によって液晶配向膜から生成した分解物を効率的に溶解させる点から、10秒~1時間であることが好ましい。なかでも、1分~30分間浸漬処理をすることが好ましい。また、前記接触処理時の溶媒は、常温でも加温しても良いが、好ましくは、10~80℃である。なかでも、20~50℃が好ましい。加えて、分解物の溶解性の点から、必要に応じて、超音波処理などを行っても良い。
 前記接触処理の後に、水、メタノール、エタノール、2-プロパノール、アセトン又はメチルエチルケトンなどの低沸点溶媒によるすすぎ(リンスともいう)や液晶配向膜の焼成を行うことが好ましい。その際、リンスと焼成のどちらか一方、又は、両方を行っても良い。焼成の温度は、150300℃であることが好ましい。なかでも、180~250℃が好ましく、より好ましいのは、200~230℃である。また、焼成の時間は、10秒~30分が好ましく、1~10分がより好ましい。
 本発明の液晶配向膜は、IPS方式やFFS方式などの横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。
 本発明の液晶表示素子は、本発明の液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して液晶表示素子としたものである。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。次に、前記のような条件で、各基板の上に液晶配向膜を形成し、一方の基板に他方の基板を互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサを混入しておく。また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。
 その後、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。液晶材料としては、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。以下に、で使用した化合物の略号、及び各特性の測定方法は、以下のとおりである。
NMP:N-メチル-2-ピロリドン、GBL:γ-ブチルラクトン
BCS:ブチルセロソルブ、
DA-1:1,2-ビス(4-アミノフェノキシ)エタン
DA-2:下記式(DA-2)参照、
DA-3:4,4’-ジアミノジフェニルアミン、
DA-4:p-フェニレンジアミン、DA-5:3,5-ジアミノ安息香酸
DA-6:1,2-ビス(4-アミノフェノキシ)メタン
DAH-1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
DAH-2:下記式(DAH-2)参照、DAH-3:下記式(DAH-3)参照
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
H NMR]
装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)INOVA-400(Varian製)400MHz
溶媒:重水素化ジメチルスルホキシド(DMSO-d))
標準物質:テトラメチルシラン(TMS)
積算回数:8、又は、32
[粘度]
 合成例において、ポリイミド及びポリアミック酸溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量]
 GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、及びポリエチレンオキシド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp) 約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルについて別々に行った。
[イミド化率の測定]
 ポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
  イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
[液晶セルの作製]
 フリンジフィールドスィッチング(Fringe Field Switching:以下、FFSという)モード液晶表示素子の構成を備えた液晶セルを作製する。
 初めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
 第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、直線偏光の照射方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
 次に、得られた液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃のIR式オーブンで15分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面にラビングや偏光紫外線照射などの配向処理を施し、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-7026-100(メルク株式会社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから各評価に使用した。
[長期交流駆動による残像評価]
 上記した残像評価に使用した液晶セルと同様の構造の液晶セルを準備した。
 この液晶セルを用い、60℃の恒温環境下、周波数60Hzで±7Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δ値の平均値を液晶セルの角度Δとして算出し、交流駆動焼き付きΔが0.1未満を「良好」とし、それ以上を「不良」とした。
[電圧保持率]
 液晶配向剤を透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で2分間の乾燥、230℃のIR式オーブンで15分間の焼成を経て膜厚100nmのイミド化した膜を得た。この塗膜面に配向処理を施し、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板の配向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC-7026-100、メルク株式会社製)を常温で真空注入し、注入口を封止して液晶セルとした。この液晶セルを白色光下に5日間置いてエージングした。
 上記液晶セルの電圧保持率の測定は以下のようにして行った。
 1Vの電圧を60μs間印加し、5s後の電圧を測定することで、初期値からの変動を電圧保持率として計算した。測定の際、液晶セルの温度を60℃とし、測定を行った。この時、電圧保持率が60%以上のものを「良好」それ未満のものを「不良」とした。
(合成例1)
 撹拌装置付き及び窒素導入管付きの1000mL四つ口フラスコに、1,2-ビス(4-アミノフェノキシ)エタンを42.75g(175mmol)、 DA-2を59.7g(175mmol)取り、NMPを586g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を74.53g(332.5mmol)添加し、更に固形分濃度が18質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-1)の溶液(粘度:832mPa・s)を得た。
(合成例2)
 撹拌装置付き及び窒素導入管付きの1000ml四つ口フラスコに得られたポリアミック酸溶液(PAA-1)を200g取り、NMPを100g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を21.78g、ピリジンを2.81g加えて、60℃で3時間加熱し、化学イミド化を行った。得られた反応液を624.2gのメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、624.2gのメタノールで3回洗浄し、1248gのメタノールで2回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末を得た。このポリイミド樹脂のイミド化率は、68%、分子量はMn=9189、Mw=18252であった。
 撹拌子を入れた200mlサンプル管に得られたポリイミド樹脂粉末32.70gを取り、NMPを239.8g加え、70℃で20時間撹拌し溶解させて、ポリイミド溶液(SPI-1)を得た。
(合成例3)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-3を4.30g(21.6mmol)及びDA-4を0.58g(5.4mmol)取り、NMPとGBLの1:1混合溶媒を73.65g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDAH-2を7.67g(26.06mmol)添加し、更に固形分濃度が12重量%になるようにNMPとGBLの1:1混合溶媒を加え、室温で20時間撹拌してポリアミック酸(PAA-2)の溶液(粘度:980mPa・s)を得た。
(合成例4)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-3を2.07g(10.4mmol)及びDA-5を0.40g(2.6mmol)取り、NMPとGBLの1:1混合溶媒を31.52g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDAH-2を3.67g(12.5mmol)添加し、更に固形分濃度が12重量%になるようにNMPとGBLの1:1混合溶媒を加え、室温で20時間撹拌してポリアミック酸(PAA-3)の溶液(粘度:830mPa・s)を得た。
(合成例5)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-3を2.39g(12.0mmol)取り、NMPとGBLの1:1混合溶媒を34.12g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDAH-2を3.42g(11.6mmol)添加し、更に固形分濃度が12重量%になるようにNMPとGBLの1:1混合溶媒を加え、室温で20時間撹拌してポリアミック酸(PAA-4)の溶液(粘度:1050mPa・s)を得た。
(合成例6)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-6を5.71g(24.8mmol)及びDA-4を0.67g(6.2mmol)取り、NMPとGBLの1:1混合溶媒を25.19g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDAH-3を2.33g(9.3mmol)添加し、5時間室温で撹拌した。その後DAH-2を6.13g(20.8mmol)添加し、更に固形分濃度が15重量%になるようにNMPとGBLの1:1混合溶媒を加え、室温で20時間撹拌してポリアミック酸(PAA-5)の溶液(粘度:867mPa・s)を得た。
(合成例7)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-6を7.14g(31.0mmol)取り、NMPとGBLの1:1混合溶媒を61.86加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDAH-3を2.33g(9.3mmol)添加し、5時間室温で撹拌した。その後DAH-2を6.13g(20.83mmol)添加し、更に固形分濃度が15重量%になるようにNMPとGBLの1:1混合溶媒を加え、室温で20時間撹拌してポリアミック酸(PAA-6)の溶液(粘度:787mPa・s)を得た。
(実施例1)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(SPI-1)を1.84g、合成例3で得られたポリアミック酸溶液(PAA-2)を3.89g取り、NMPを1.92g、GBLを1.89g、BCSを2.40g加え、マグネチックスターラーで終夜撹拌し液晶配向剤(AL-1)を得た。
(実施例2)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(SPI-1)を1.84g、合成例4で得られたポリアミック酸溶液(PAA-3)を3.82g取り、NMPを1.95g、GBLを1.92g、BCSを2.40g加え、マグネチックスターラーで終夜撹拌し液晶配向剤(AL-2)を得た。
(実施例3)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(SPI-1)を2.77g、合成例6で得られたポリアミック酸溶液(PAA-5)を4.32g取り、NMPを3.73g、GBLを3.59g、BCSを3.60g加え、マグネチックスターラーで終夜撹拌し液晶配向剤(AL-4)を得た。
(比較例1)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(SPI-1)を1.84g、合成例4で得られたポリアミック酸溶液(PAA-4)を3.96g取り、NMPを1.89g、GBLを1.85g、BCSを2.40g加え、マグネチックスターラーで終夜撹拌し液晶配向剤(AL-3)を得た。
(比較例2)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(SPI-1)を2.77g、合成例4で得られたポリアミック酸溶液(PAA-6)を4.32g取り、NMPを3.73g、GBLを3.58g、BCSを3.60g加え、マグネチックスターラーで終夜撹拌し液晶配向剤(AL-5)を得た。
(実施例4)
 実施例1で得られた液晶配向剤(AL-1)を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃のIR式オーブンで15分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を0.2J/cm照射した。この基板を、25℃のイソプロパノール/純水=50/50溶液に5分間浸漬させ、次いで25℃の純水に1分間浸漬させ、230℃のIR式オーブンで15分間乾燥させて、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-7026-100(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置した。
 このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した結果、長期交流駆動後におけるこの液晶セルの角度Δの値は、0.1度以下であり、良好であった。
(実施例5)
 実施例2で得られた液晶配向剤(AL-2)を用いた以外は、実施例4と同様の方法でFFS駆動液晶セルを作製した。
 このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した結果、長期交流駆動後におけるこの液晶セルの角度Δの値は、0.1度以下であり、良好であった。
(実施例6)
 実施例3で得られた液晶配向剤(AL-4)を用いた以外は、実施例4と同様の方法でFFS駆動液晶セルを作製した。
このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した結果、長期交流駆動後におけるこの液晶セルの角度Δの値は、0.1度以下であり、良好であった。
(比較例3)
 比較例1で得られた液晶配向剤(AL-3)を用いた以外は、実施例4と同様の方法でFFS駆動液晶セルを作製した。
 このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した結果、長期交流駆動後におけるこの液晶セルの角度Δの値は、0.1度以上であり、不良であった。
(比較例4)
 比較例2で得られた液晶配向剤(AL-5)を用いた以外は、実施例4と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した結果、長期交流駆動後におけるこの液晶セルの角度Δの値は、0.1度以上であり、不良であった。
(実施例7)
 実施例1で得られた液晶配向剤(AL-1)を透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で2分間の乾燥、230℃のIR式オーブンで15分間の焼成を経て膜厚100nmのイミド化した膜を得た。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を0.2J/cm照射した。この基板を、25℃のイソプロパノール/純水=50/50溶液に5分間浸漬させ、次いで25℃の純水に1分間浸漬させ、230℃のIR式オーブンで15分間乾燥させて、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサーを散布した後、2枚の基板の配向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。この空セルに液晶(MLC-7026-100、メルク株式会社製)を常温で真空注入し、注入口を封止して液晶セルとした。この液晶セルを白色光下に5日間置いてエージングした。
 上記液晶セルに1Vの電圧を60μs間印加し、5s後の電圧を測定することで、初期値からの変動を電圧保持率として求めた。上記測定の際、液晶セルの温度を60℃とし、測定を行った。この時、電圧保持率は60%以上であり、良好であった。
(実施例8)
 実施例2で得られた液晶配向剤(AL-2)を用いた以外は実施例7と同様の方法で液晶セルを作製した。上記液晶セルに1Vの電圧を60μs間印加し、5s後の電圧を測定することで、初期値からの変動を電圧保持率として求めた。上記測定の際、液晶セルの温度を60℃とし、測定を行った。この時、電圧保持率は60%以上であり、良好であった。
(実施例9)
 実施例3で得られた液晶配向剤(AL-4)を用いた以外は実施例7と同様の方法で液晶セルを作製した。
 上記液晶セルに1Vの電圧を60μs間印加し、5s後の電圧を測定することで、初期値からの変動を電圧保持率として求めた。上記測定の際、液晶セルの温度を60℃とし、測定を行った。この時、電圧保持率は60%以上であり、良好であった。
(比較例5)
 比較例1で得られた液晶配向剤(AL-3)を用いた以外は実施例7と同様の方法で液晶セルを作製した。
 上記液晶セルに1Vの電圧を60μs間印加し、5s後の電圧を測定することで、初期値からの変動を電圧保持率として求めた。上記測定の際、液晶セルの温度を60℃とし、測定を行った。この時、電圧保持率は60%未満であり、不良であった。
(比較例6)
 比較例2で得られた液晶配向剤(AL-5)を用いた以外は実施例7と同様の方法で液晶セルを製成した。
 上記液晶セル1Vの電圧を60μs間印加し、5s後の電圧を測定することで、初期値からの変動を電圧保持率として求めた。上記測定の際、液晶セルの温度を60℃とし、測定を行った。この時、電圧保持率は60%未満であり、不良であった。
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
 本発明の液晶配向剤から得られる液晶配向膜は、IPS駆動方式やFFS駆動方式の液晶表示素子や液晶テレビの液晶配向膜として特に有用である。
 なお、2015年11月30日に出願された日本特許出願2015-233844号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (12)

  1.  下記(A)成分、及び下記(B)成分を含有することを特徴とする液晶配向剤。
     (A)成分:テトラカルボン酸二無水物成分と、下記式[A-1]の構造を有するジアミン及び下記式[A-2]の構造を有するジアミンからなる群から選ばれる少なくとも1種のジアミンを含有するジアミン成分と、を重縮合反応させて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式[A-1]中、R、Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、又は熱により水素原子に置き換わる熱脱離性基であり、その少なくとも一方は上記熱脱離性基である。式[A-2]中、R、R、R及びRは、それぞれ独立して、水素原子又は置換基を有してもよい炭素数1~20の1価の炭化水素基である。Dは熱により水素原子に置き換わる熱脱離性基である。)
     (B)成分:下記式(B-1)で表されるテトラカルボン酸二無水物を含有するテトラカルボン酸二無水物成分と、(B-2)で表されるジアミンを含有するジアミンと、を重縮合反応させて得られるポリアミック酸。
    Figure JPOXMLDOC01-appb-C000002
    (式(B-2)中、Rは水素原子又はCOOH基である。B~Bはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10を有する、アルキル基、アルケニル基若しくはアルキニル基である。)
  2.  前記式[A-1]の構造を有するジアミンが、下記式[A-1-1]で表され、前記式[A-2]の構造を有するジアミンが、下記式[A-2-1]で表される、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003

    (R及びRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、又は熱により水素原子に置き換わる熱脱離性基であり、かつその少なくとも一方は熱により水素原子に置き換わる熱脱離性基である。m、nはそれぞれ独立に、0~3である。但し、式(1)中、Aは単結合又は炭素数1~4の炭化水素基からなる2価の基である。)
    Figure JPOXMLDOC01-appb-C000004

    (A、Aは、それぞれ独立して、単結合、又は炭素数1~5のアルキレン基である。A及びAは、炭素数1~5のアルキレン基である。Aは、炭素数1~6のアルキレン基、又はシクロアルキレン基である。B、Bは、それぞれ独立して、単結合、-O-、 -NH-、 -NMe-、 -C(=O)-、-C(=O)O-、 -C(=O)NH-、 -C(=O)NMe-、 -OC(=O)-、 -NHC(=O)-、 又は-N(Me)C(=O)-である。Dは、熱により水素原子に置き換わる熱脱離性基である。aは0又は1である。)
  3.  前記(A)成分の原料であるテトラカルボン酸二無水物成分が、下記式[4]で示されるテトラカルボン酸二無水物である請求項1又は2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    (Zは、下記式[4a]~式[4q]からなる群から選ばれる少なくとも1種の構造を示す。)
    Figure JPOXMLDOC01-appb-C000006
    (式[4a]中、Z~Zは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子又はベンゼン環を示す。式[4g]中、Z及びZは、それぞれ独立して、水素原子又はメチル基を示す。)
  4.  前記式[4]中のZが、式[4a]、式[4e]~式[4g]、式[4l]、式[4m]、及び式[4p]からなる群から選ばれる少なくとも1種である請求項3に記載の液晶配向剤。
  5.  前記熱脱離性基が、下記式(1)で表される基である請求項1~4のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000007
    (Aは単結合又は炭素数1~4の炭化水素基である。)
  6.  前記式(B)成分において、式(B-1)で表されるテトラカルボン酸二無水物が、テトラカルボン酸二無水物成分に対して、10~100モル%含まれる請求項1~5のいずれか1項に記載の液晶配向剤。
  7.  前記(B)成分において、式(B-2)で表されるジアミンが、ジアミン成分に対して、10~100モル%含まれる請求項1~6のいずれか1項に記載の液晶配向剤。
  8.  前記式(B-2)で表されるジアミンが、下記式で表されるジアミンからなる群から選ばれる少なくとも1種である請求項1~7のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
  9.  前記(B)成分が、前記(A)成分100質量部に対して、40~400質量部である、請求項1~8のいずれか1項に記載の液晶配向剤。
  10.  光配向処理用の液晶配向膜を形成するための請求項9に記載の液晶配向剤。
  11.  請求項1~10のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。
  12.  請求項11に記載の液晶配向膜を有する液晶表示素子。
PCT/JP2016/085587 2015-11-30 2016-11-30 液晶配向剤、液晶配向膜、及び液晶表示素子 WO2017094786A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680080402.4A CN108604028A (zh) 2015-11-30 2016-11-30 液晶取向剂、液晶取向膜和液晶表示元件
KR1020187018490A KR20180087396A (ko) 2015-11-30 2016-11-30 액정 배향제, 액정 배향막, 및 액정 표시 소자
JP2017554148A JPWO2017094786A1 (ja) 2015-11-30 2016-11-30 液晶配向剤、液晶配向膜、及び液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015233844 2015-11-30
JP2015-233844 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017094786A1 true WO2017094786A1 (ja) 2017-06-08

Family

ID=58797344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085587 WO2017094786A1 (ja) 2015-11-30 2016-11-30 液晶配向剤、液晶配向膜、及び液晶表示素子

Country Status (5)

Country Link
JP (1) JPWO2017094786A1 (ja)
KR (1) KR20180087396A (ja)
CN (1) CN108604028A (ja)
TW (1) TW201734088A (ja)
WO (1) WO2017094786A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7414006B2 (ja) 2018-11-19 2024-01-16 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058384A (zh) * 2021-11-26 2022-02-18 深圳市道尔顿电子材料有限公司 一种聚酰亚胺光取向剂溶液及其制备方法和光取向膜、液晶盒

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060360A1 (ja) * 2013-10-23 2015-04-30 日産化学工業株式会社 熱脱離性基を有するポリイミド前駆体及び/又はポリイミドを含む液晶配向剤
WO2015060366A1 (ja) * 2013-10-23 2015-04-30 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (ja) 1996-03-05 2007-03-14 日産化学工業株式会社 液晶配向処理方法
JP5434490B2 (ja) * 2008-12-01 2014-03-05 Jnc株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
CN102893209B (zh) * 2010-03-15 2015-05-06 日产化学工业株式会社 含有聚酰胺酸酯的液晶取向剂和液晶取向膜
JP6582988B2 (ja) * 2013-10-23 2019-10-02 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶配向素子
KR102275484B1 (ko) 2013-10-23 2021-07-08 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 및 액정 표시 소자

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060360A1 (ja) * 2013-10-23 2015-04-30 日産化学工業株式会社 熱脱離性基を有するポリイミド前駆体及び/又はポリイミドを含む液晶配向剤
WO2015060366A1 (ja) * 2013-10-23 2015-04-30 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7414006B2 (ja) 2018-11-19 2024-01-16 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Also Published As

Publication number Publication date
JPWO2017094786A1 (ja) 2018-09-27
KR20180087396A (ko) 2018-08-01
TW201734088A (zh) 2017-10-01
CN108604028A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
JP6597307B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP6504377B2 (ja) 重合体
JP6919574B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP6512417B2 (ja) 組成物および樹脂被膜
WO2015060358A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP5930239B2 (ja) 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
JP6281567B2 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP6331028B2 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子
JP6079627B2 (ja) 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
JP6052171B2 (ja) 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2016104514A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6281568B2 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2014119682A1 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP5930238B2 (ja) 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
JP2017072729A (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2017094786A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2015152014A1 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2018122936A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP6776897B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554148

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187018490

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16870723

Country of ref document: EP

Kind code of ref document: A1