WO2016104488A1 - リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池 - Google Patents

リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池 Download PDF

Info

Publication number
WO2016104488A1
WO2016104488A1 PCT/JP2015/085797 JP2015085797W WO2016104488A1 WO 2016104488 A1 WO2016104488 A1 WO 2016104488A1 JP 2015085797 W JP2015085797 W JP 2015085797W WO 2016104488 A1 WO2016104488 A1 WO 2016104488A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
positive electrode
secondary battery
active material
electrode active
Prior art date
Application number
PCT/JP2015/085797
Other languages
English (en)
French (fr)
Inventor
淳一 影浦
寛之 栗田
裕一郎 今成
Original Assignee
住友化学株式会社
株式会社田中化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 株式会社田中化学研究所 filed Critical 住友化学株式会社
Priority to JP2016565526A priority Critical patent/JP6108141B2/ja
Priority to US15/538,401 priority patent/US11024847B2/en
Priority to KR1020177017131A priority patent/KR102430121B1/ko
Priority to CN201580069817.7A priority patent/CN107112528B/zh
Priority to EP15873056.4A priority patent/EP3240068B1/en
Publication of WO2016104488A1 publication Critical patent/WO2016104488A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery, and a lithium secondary battery.
  • This application claims priority based on Japanese Patent Application No. 2014-263116 for which it applied to Japan on December 25, 2014, and uses the content here.
  • the lithium-containing composite metal oxide is used as a positive electrode active material for a lithium secondary battery.
  • Lithium secondary batteries have already been put into practical use not only for small power sources for mobile phones and laptop computers, but also for medium and large power sources for automobiles and power storage.
  • Patent Document 1 discloses a lithium transition metal composite oxide represented by Li 1.00 Ni 0.33 Co 0.34 Mn 0.33 O 2 , A non-aqueous electrolyte secondary battery having a specific surface area of 0.7 m 2 / g and a crystallite size in the perpendicular direction of 104 planes obtained on the basis of an X-ray diffraction pattern obtained by an X-ray diffraction method is 800 mm A positive electrode active material is disclosed.
  • Patent Document 2 discloses a lithium transition metal composite represented by Li 1.15 (Ni 0.34 Co 0.33 Mn 0.33 ) 0.9682 Mg 0.001 Ca 0.03 Na 0.0008 O 2.
  • Patent Document 3 discloses a positive electrode active material for a lithium ion secondary battery represented by a general formula LiMO 2 (M is Co, Ni, etc.), and a microparticle crystallite constituting the positive electrode active material, A positive electrode active material for a lithium ion secondary battery that is three-dimensionally substantially isotropic is disclosed.
  • a lithium secondary battery obtained by using the above-described conventional lithium-containing composite metal oxide as a positive electrode active material has room for improvement in order to further improve battery performance such as discharge capacity.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a positive electrode active material for a lithium secondary battery that can achieve a higher discharge capacity than before. It is another object of the present invention to provide a positive electrode for a lithium secondary battery and a lithium secondary battery using such a positive electrode active material for a lithium secondary battery.
  • one embodiment of the present invention is a positive electrode active material for a lithium secondary battery including secondary particles formed by agglomerating primary particles that can be doped and dedoped with lithium ions, and includes CuK ⁇ rays.
  • Li [Li x (Ni a Co b Mn c M d ) 1-x ] O 2 (I) (Where 0 ⁇ x ⁇ 0.1, 0.7 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.2, 0 ⁇ d ⁇ 0.1, a + b + c + d 1, M is Fe, Cr, Ti, Mg, Al, Zr, Ca, Sc, V, Cr, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd And at least one metal selected from the group consisting of In, Sn, and Sn.)
  • the product of the 10% cumulative diameter (D 10 ) obtained from the particle size distribution measurement value and the heavy density is 17 or more and 25 g ⁇ ⁇ m / mL or less.
  • the BET specific surface area is preferably 0.1 m 2 / g or more and 1.0 m 2 / g or less.
  • the atomic ratio c / b of Mn to Co is preferably 0 ⁇ c / b ⁇ 1.3.
  • M is preferably Al.
  • one embodiment of the present invention provides a lithium secondary battery including the negative electrode and the positive electrode for a lithium secondary battery described above.
  • An object of the present invention is to provide a positive electrode active material for a lithium secondary battery that can achieve a higher discharge capacity than before. Moreover, the positive electrode for lithium secondary batteries and the lithium secondary battery using such a positive electrode active material for lithium secondary batteries can be provided.
  • it is a schematic diagram for demonstrating a crystallite size Comprising: The schematic diagram of 003 plane and 104 plane in a crystallite is shown.
  • it is a schematic diagram for demonstrating crystallite size Comprising: It is a schematic diagram which shows the relationship between crystallite size (alpha) which can be calculated from the peak A mentioned later, and crystallite size (beta) which can be calculated from the peak B mentioned later. is there.
  • Li [Li x (Ni a Co b Mn c M d ) 1-x ] O 2 (I) (Where 0 ⁇ x ⁇ 0.1, 0.7 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.2, 0 ⁇ d ⁇ 0.1, a + b + c + d 1, M is Fe, Cr, Ti, Mg, Al, Zr, Ca, Sc, V, Cr, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd And at least one metal selected from the group consisting of In, Sn, and Sn.)
  • M is Fe, Cr, Ti, Mg, Al, Zr, Ca, Sc, V, Cr, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd
  • the positive electrode active material for a lithium secondary battery of this embodiment has an ⁇ -NaFeO 2 type crystal structure represented by the following composition formula (I).
  • Li [Li x (Ni a Co b Mn c M d ) 1-x ] O 2 (I) (Where 0 ⁇ x ⁇ 0.1, 0.7 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.2, 0 ⁇ d ⁇ 0.1, a + b + c + d 1, M is Fe, Cr, Ti, Mg, Al, Zr, Ca, Sc, V, Cr, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd And at least one metal selected from the group consisting of In, Sn, and Sn.)
  • x is preferably 0.08 or less, more preferably 0.05 or less, and further preferably 0.03 or less. preferable.
  • a in the composition formula (I) is preferably 0.8 or more, preferably 0.85 or more, in order to obtain a lithium secondary battery having a high capacity. More preferably, it is 0.87 or more.
  • a is preferably 0.96 or less, more preferably 0.94 or less, and further preferably 0.92 or less.
  • the upper limit value and lower limit value of a can be arbitrarily combined.
  • “high cycle characteristics” means that the discharge capacity retention rate is high when the charge / discharge cycle is repeated.
  • b in the composition formula (I) is preferably 0.02 or more, more preferably 0.03 or more, and 0.04 or more. Is more preferable. Further, in the sense of obtaining a lithium secondary battery having high thermal stability, b is preferably 0.16 or less, more preferably 0.12 or less, and even more preferably 0.10 or less. .
  • the upper limit value and lower limit value of b can be arbitrarily combined.
  • c in the composition formula (I) is preferably 0.01 or more, and more preferably 0.02 or more. Further, in order to obtain a lithium secondary battery having high storage characteristics at a high temperature (for example, in an environment of 60 ° C.), c is preferably 0.15 or less, more preferably 0.10 or less, and More preferably, it is 08 or less.
  • the upper limit value and lower limit value of c can be arbitrarily combined.
  • the atomic ratio c / b of Mn to Co is 0 ⁇ c / b ⁇ 1.3. Preferably, it is 1.0 or less, more preferably 0.5 or less.
  • the atomic ratio c / b between Mn and Co is preferably 0.1 or more, more preferably 0.15 or more, and particularly preferably 0.2 or more.
  • the upper limit value and lower limit value of c / b can be arbitrarily combined.
  • M in the composition formula (I) is Fe, Cr, Ti, Mg, Al, Zr, Ca, Sc, V, Cr, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Tc, Ru. And at least one metal selected from the group consisting of Rh, Pd, Ag, Cd, In, and Sn.
  • d in the composition formula (I) is preferably more than 0, more preferably 0.001 or more, and More preferably, it is 005 or more.
  • a lithium secondary battery having a high discharge capacity at a high current rate it is preferably 0.08 or less, more preferably 0.04 or less, and further preferably 0.02 or less. preferable.
  • the upper limit value and the lower limit value of d can be arbitrarily combined.
  • M in the composition formula (I) is preferably Al, Mg, or Zr, and in the sense of obtaining a lithium secondary battery with high thermal stability, Mg or Al is preferable, and Al is particularly preferable.
  • the crystal structure of the positive electrode active material for a lithium secondary battery according to the present embodiment is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structures are P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, P-
  • the monoclinic crystal structure is P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, C2 / It belongs to any one space group selected from the group consisting of c.
  • the crystal structure is a hexagonal crystal structure belonging to the space group R-3m, or a monoclinic crystal belonging to C2 / m.
  • a crystal structure is particularly preferred.
  • the space group of the positive electrode active material for a lithium secondary battery of the present embodiment can be confirmed as follows.
  • powder X-ray diffraction measurement was performed using CuK ⁇ as a radiation source and a diffraction angle 2 ⁇ measurement range of 10 ° or more and 90 ° or less.
  • a belt analysis is performed to determine the crystal structure of the lithium-containing composite metal oxide and the space group in this crystal structure.
  • Rietveld analysis is a technique for analyzing the crystal structure of a material using diffraction peak data (diffraction peak intensity, diffraction angle 2 ⁇ ) in powder X-ray diffraction measurement of the material, and is a conventionally used technique. (See, for example, “Practice of Powder X-ray Analysis—Introduction to Rietveld Method”, published on February 10, 2002, edited by the Japan Society for Analytical Chemistry X-ray Analysis Research Meeting)
  • the crystallite size ⁇ at the peak A and the crystallite size ⁇ at the peak B of the positive electrode active material for a lithium secondary battery of this embodiment can be confirmed as follows.
  • powder X-ray diffraction measurement was performed using CuK ⁇ as a radiation source and a measurement range of a diffraction angle 2 ⁇ of 10 ° or more and 90 ° or less.
  • the peak corresponding to B is determined.
  • FIG. 2A shows a schematic diagram of the 003 plane and the 104 plane in the crystallite.
  • the crystallite size in the perpendicular direction of the 003 plane corresponds to the crystallite size ⁇
  • the crystallite size in the perpendicular direction of the 104 plane corresponds to the crystallite size ⁇
  • FIG. 2B is a schematic diagram showing the relationship between the crystallite size ⁇ that can be calculated from the peak A and the crystallite size ⁇ that can be calculated from the peak B. 2 indicates that the crystallite size ⁇ / ⁇ is larger than 1, indicating that the crystallite is anisotropically grown parallel to the z-axis in FIG.
  • the crystallite is in the z-axis direction with respect to the x-axis or y-axis in FIG. (In other words, the stacking proceeds in a direction parallel to the z-axis).
  • the present inventors have found that battery performance such as discharge capacity can be improved by adopting anisotropically grown crystallites as positive electrode active materials for lithium secondary batteries rather than isotropically grown crystallites. It was.
  • ⁇ / ⁇ is preferably more than 1.60, more preferably 1.70 or more, and 1.75 or more. Is more preferable.
  • ⁇ / ⁇ is preferably less than 2.40, more preferably 2.20 or less, and particularly preferably 2.10 or less.
  • the upper limit value and the lower limit value of ⁇ / ⁇ can be arbitrarily combined.
  • the crystallite size ⁇ is preferably 400 to 1200 ⁇ , more preferably 1100 ⁇ or less, still more preferably 1000 ⁇ or less, and 900 ⁇ or less. More preferably, it is particularly preferably 840 mm or less. In order to obtain a lithium secondary battery having a high charge capacity, the crystallite size ⁇ is more preferably 450 ⁇ or more, and further preferably 500 ⁇ or more.
  • the upper limit value and lower limit value of ⁇ can be arbitrarily combined.
  • the crystallite size ⁇ is preferably 600 ⁇ or less, more preferably 550 ⁇ or less, further preferably 500 ⁇ or less, and 450 ⁇ or less. Particularly preferred. In order to obtain a lithium secondary battery having a high charge capacity, the crystallite size ⁇ is preferably 200 ⁇ or more, more preferably 250 ⁇ or more, and further preferably 300 ⁇ or more. The upper limit value and lower limit value of ⁇ can be arbitrarily combined.
  • the particle form of the positive electrode active material for a lithium secondary battery of this embodiment is a secondary particle formed by agglomerating primary particles.
  • the average primary particle diameter is preferably 0.1 ⁇ m or more and 2.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 1.5 ⁇ m or less, and more preferably 0.1 ⁇ m or more in order to enhance the effect of the present invention. More preferably, it is 1.2 ⁇ m or less.
  • the average primary particle diameter can be measured by SEM observation.
  • the average secondary particle diameter of the secondary particles formed by agglomerating primary particles is 6 ⁇ m or more and 20 ⁇ m or less, and more preferably 8 ⁇ m or more and 17 ⁇ m or less in order to enhance the effect of the present invention. More preferably, it is as follows.
  • the “average secondary particle size” of the positive electrode active material for a lithium secondary battery refers to a value measured by the following method (laser diffraction scattering method).
  • 0.1 g of a powder of a positive electrode active material for a lithium secondary battery is put into 50 ml of a 0.2 mass% sodium hexametaphosphate aqueous solution to obtain a dispersion in which the powder is dispersed.
  • the particle size distribution of the obtained dispersion is measured using LA950 (Laser diffraction scattering particle size distribution measuring device) manufactured by Horiba, Ltd., and a volume-based cumulative particle size distribution curve is obtained.
  • the value of the particle diameter (D 50 ) viewed from the fine particle side at 50% accumulation was taken as the average secondary particle diameter of the positive electrode active material for lithium secondary batteries.
  • D 10 the particle size as seen from the microparticles side at 10% accumulates (D 10) of 10% cumulative diameter
  • cumulative particle size as seen from the microparticles side at 90% accumulates (D 90) 90% The diameter.
  • the 10% cumulative diameter (D 10 ) of the positive electrode active material for a lithium secondary battery of this embodiment is 4.0 ⁇ m or more from the viewpoint of improving the handleability (handling property) of the positive electrode active material for a lithium secondary battery. Is more preferably 5.0 ⁇ m or more, and particularly preferably 6.0 ⁇ m or more. Further, in order to obtain a lithium secondary battery having a high discharge capacity at a high current rate, it is preferably 10.0 ⁇ m or less, more preferably 9.0 ⁇ m or less, and particularly preferably 8.0 ⁇ m or less. .
  • the upper limit value and the lower limit value of (D 10 ) can be arbitrarily combined.
  • BET specific surface area of the lithium positive electrode active material for a secondary battery of the present embodiment is preferably less 0.1 m 2 / g or more 1.0 m 2 / g. Further, it is preferably less 0.12 m 2 / g or more 0.8 m 2 / g, more preferably not more than 0.15 m 2 / g or more 0.6 m 2 / g.
  • a lithium secondary battery having a high discharge capacity at a high current rate can be obtained.
  • the handleability of the positive electrode active material for lithium secondary battery (handling property) High lithium secondary battery can be obtained.
  • the tap bulk density of the positive electrode active material for a lithium secondary battery is preferably 2.0 g / mL or more in the sense of obtaining a lithium secondary battery having a high electrode density, and is 2.2 g / mL or more. It is more preferable that it is 2.3 g / mL or more.
  • it in order to obtain an electrode with high electrolyte impregnation property, it is preferably 3.5 g / mL or less, more preferably 3.2 g / mL or less, and 3.0 g / mL or less. More preferred.
  • the tap bulk density can be measured based on JIS R 1628-1997. In the present specification, the “heavy load density” corresponds to the tap bulk density in JIS R 1628-1997.
  • the positive electrode active material for a lithium secondary battery of the present embodiment has a product of 10% cumulative diameter (D 10 ) determined from the particle size distribution measurement value and the weight density of 17 to 25 g. -It is preferable that it is below ⁇ m / mL. According to the study by the present inventors, when the product of the 10% cumulative diameter (D 10 ) and the stacking density is in the predetermined range, a positive electrode active for a lithium secondary battery that can achieve a higher discharge capacity than the conventional one. It was found to be a substance.
  • the product of the 10% cumulative diameter (D 10 ) and the weight density is more preferably 18 g ⁇ ⁇ m / mL or more, and more than 18.8 g ⁇ ⁇ m / mL. It is more preferable. Further, it is more preferably 22 g ⁇ ⁇ m / mL or less, and particularly preferably 20 g ⁇ ⁇ m / mL or less.
  • the upper limit value and the lower limit value of the product of the 10% cumulative diameter (D 10 ) and the heavy density can be arbitrarily combined.
  • the positive electrode active material for a lithium secondary battery according to the present embodiment has a (104) diffraction peak when the diffraction peak is assigned as the space group R-3m ( 003)
  • the integrated intensity ratio of diffraction peaks is preferably 1 or more and 1.5 or less, more preferably 1.1 or more and 1.4 or less, and further preferably 1.15 or more and 1.3 or less. .
  • active materials may be mixed with the positive electrode active material for the lithium secondary battery of the present embodiment within a range not impairing the effects of the present embodiment.
  • metals other than lithium that is, Ni and Co, and Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe Metal containing at least one arbitrary metal selected from the group consisting of Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, and Sn
  • a metal complex compound a metal complex hydroxide or a metal complex oxide is preferable.
  • the metal complex compound can be produced by a generally known batch method or coprecipitation method.
  • the manufacturing method will be described in detail by taking a metal composite hydroxide containing nickel, cobalt, and manganese as an example.
  • a nickel salt solution, a cobalt salt solution, a manganese salt solution, and a complexing agent are reacted by a coprecipitation method, in particular, a continuous method described in JP-A-2002-201028, and Ni x Co y Mn z (OH) 2
  • a metal composite hydroxide represented by the formula (where x + y + z 1) is produced.
  • nickel salt which is the solute of the said nickel salt solution For example, any one of nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate can be used.
  • cobalt salt that is a solute of the cobalt salt solution for example, any one of cobalt sulfate, cobalt nitrate, and cobalt chloride can be used.
  • manganese salt that is a solute of the manganese salt solution for example, any one of manganese sulfate, manganese nitrate, and manganese chloride can be used.
  • the above metal salt is used in a proportion corresponding to the composition ratio of Ni x Co y Mn z (OH) 2 .
  • water is used as a solvent.
  • the complexing agent is capable of forming a complex with nickel, cobalt, and manganese ions in an aqueous solution.
  • an ammonium ion supplier (ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.), hydrazine, Examples include ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, and glycine.
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • the complexing agent When the complexing agent is continuously supplied to the reaction vessel in addition to the nickel salt solution, the cobalt salt solution, and the manganese salt solution, nickel, cobalt, and manganese react to form Ni x Co y Mn z (OH) 2. Is manufactured.
  • the temperature of the reaction vessel is controlled within a range of, for example, 10 ° C. or more and 60 ° C. or less, preferably 20 ° C. or more and 60 ° C. or less, and the pH value in the reaction vessel is, for example, pH 9 or more and pH 13 or less, preferably pH 10 or more and 13
  • the substance in the reaction vessel is appropriately stirred while being controlled within the following range.
  • the reaction can be carried out either batchwise or continuously, but can be carried out continuously using a reaction vessel provided with an overflow pipe described in JP-A-2-6340.
  • the obtained reaction precipitate is washed with water and then dried to isolate nickel cobalt manganese composite hydroxide as a nickel cobalt manganese composite compound. Moreover, you may wash
  • nickel cobalt manganese composite hydroxide is manufactured, but nickel cobalt manganese composite oxide may be prepared.
  • the average of the positive electrode active material for a lithium secondary battery finally obtained in the following steps by appropriately controlling the concentration of metal salt to be supplied to the reaction tank, the stirring speed, the reaction temperature, the reaction pH, the firing conditions described later, etc.
  • Various physical properties such as primary particle diameter, average secondary particle diameter, and BET specific surface area can be controlled.
  • the “light weight density” corresponds to the initial bulk density in JIS R 1628-1997.
  • bubbling with various gases for example, inert gas such as nitrogen, argon and carbon dioxide, air, oxygen and the like is used in combination. Also good. Since the reaction conditions depend on the size of the reaction tank to be used and the like, the reaction conditions may be optimized while monitoring various physical properties of the finally obtained positive electrode active material for a lithium secondary battery.
  • the metal composite oxide or metal composite hydroxide is dried and then mixed with a lithium salt.
  • the drying conditions are not particularly limited.
  • the metal composite oxide or the metal composite hydroxide is not oxidized / reduced (oxide ⁇ oxide, hydroxide ⁇ hydroxide), and the metal composite hydroxide is oxidized.
  • the conditions may be any of the conditions under which the metal composite oxide is reduced (oxides ⁇ hydroxides).
  • An inert gas such as nitrogen, helium, or an inert gas such as argon may be used for conditions where oxidation / reduction is not performed.
  • drying is performed in an oxygen or air atmosphere. Just do.
  • a reducing agent such as hydrazine or sodium sulfite may be used in an inert gas atmosphere.
  • the lithium salt any one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, or a mixture of two or more can be used. Classification may be appropriately performed after the metal composite oxide or metal composite hydroxide is dried. The above lithium salt and metal composite hydroxide are used in consideration of the composition ratio of the final object.
  • a lithium-nickel cobalt manganese composite oxide is obtained by firing a mixture of a nickel cobalt manganese composite hydroxide and a lithium salt. That is, a lithium-containing composite metal oxide is obtained.
  • dry air, an oxygen atmosphere, an inert atmosphere, or the like is used according to a desired composition, and a plurality of heating steps are performed if necessary.
  • ⁇ Mixing may be either dry mixing or wet mixing, but in consideration of simplicity, dry mixing is preferable.
  • the mixing device include a stirring mixer, a V-type mixer, a W-type mixer, a ribbon mixer, a drum mixer, and a ball mill. The mixing is preferably performed under conditions so that the aggregated particles are not crushed.
  • the firing temperature of the metal composite oxide or metal composite hydroxide and a lithium compound such as lithium hydroxide or lithium carbonate is not particularly limited, but is preferably 650 ° C. or higher and 850 ° C. or lower, more preferably 700 ° C.
  • the temperature is 850 ° C. or lower.
  • the firing temperature is lower than 650 ° C., the problem that the energy density (discharge capacity) and the high rate discharge performance are deteriorated easily occurs. In a region below this, there may be a structural factor that hinders the movement of Li.
  • the firing temperature exceeds 850 ° C.
  • the production performance such as difficulty in obtaining a lithium-containing composite metal oxide having a target composition due to the volatilization of Li, and the battery performance deteriorates due to the high density of particles. Problems are likely to occur.
  • the temperature exceeds 850 ° C.
  • the primary particle growth rate increases and the crystal particles of the lithium-containing composite metal oxide become too large.
  • the amount of Li deficiency locally increases and is considered to be structurally unstable.
  • the higher the temperature the more element substitution occurs between the site occupied by the Li element and the site occupied by the transition metal element. This suppresses the Li conduction path, thereby reducing the discharge capacity.
  • the firing temperature in the range of 700 ° C. or higher and 850 ° C. or lower, a battery having a particularly high energy density (discharge capacity) and excellent charge / discharge cycle performance can be produced.
  • the firing time is preferably 3 to 20 hours. If the firing time exceeds 20 hours, the battery performance may be substantially inferior due to the volatilization of Li. If the firing time is less than 3 hours, the crystal growth is poor and the battery performance tends to be poor.
  • the temperature for such preliminary firing is preferably in the range of 300 to 750 ° C. for 1 to 10 hours.
  • An example of the lithium secondary battery of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution disposed between the positive electrode and the negative electrode.
  • FIG. 1A is a schematic configuration diagram illustrating an example of an electrode group used in a lithium ion secondary battery
  • FIG. 1B is a schematic configuration diagram illustrating an example of a lithium ion secondary battery including the electrode group illustrated in FIG. 1A. is there.
  • the cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
  • a pair of separators 1 having a strip shape, a strip-like positive electrode 2 having a positive electrode lead 21 at one end, and a strip-like negative electrode 3 having a negative electrode lead 31 at one end, a separator 1, a positive electrode 2, and a separator 1 and negative electrode 3 are laminated in this order and wound to form electrode group 4.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
  • a shape of the lithium secondary battery having such an electrode group 4 a shape defined by IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. .
  • IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC)
  • cylindrical shape, square shape, etc. can be mentioned.
  • the lithium secondary battery is not limited to the above-described wound type configuration, and may have a stacked type configuration in which a stacked structure of a positive electrode, a separator, a negative electrode and a separator is repeatedly stacked.
  • Examples of the stacked lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode for a lithium secondary battery of the present embodiment is manufactured by first adjusting a positive electrode mixture containing a positive electrode active material for a lithium secondary battery, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector. be able to.
  • a carbon material can be used as the conductive material included in the positive electrode for the lithium secondary battery of the present embodiment.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Since carbon black is fine and has a large surface area, the addition of a small amount to the positive electrode mixture can increase the electrical conductivity inside the positive electrode for lithium secondary batteries and improve the charge / discharge efficiency and output characteristics. If too much is added, both the binding force between the positive electrode mixture and the positive electrode current collector by the binder and the binding force inside the positive electrode mixture are lowered, which causes an increase in internal resistance.
  • the proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material for a lithium secondary battery.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
  • thermoplastic resin As a binder which the positive electrode for lithium secondary batteries of this embodiment has, a thermoplastic resin can be used.
  • the thermoplastic resin include polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride.
  • fluororesins such as copolymers, propylene hexafluoride / vinylidene fluoride copolymers, tetrafluoroethylene / perfluorovinyl ether copolymers; polyolefin resins such as polyethylene and polypropylene.
  • thermoplastic resins may be used as a mixture of two or more.
  • a fluororesin and a polyolefin resin as a binder, the ratio of the fluororesin to the total positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of the polyolefin resin is 0.1% by mass or more and 2% by mass or less.
  • a positive electrode mixture having both high adhesion to the current collector and high bonding strength inside the positive electrode mixture can be obtained.
  • a band-shaped member made of a metal material such as Al, Ni, and stainless steel can be used as the positive electrode current collector included in the positive electrode for a lithium secondary battery of the present embodiment.
  • a material that is made of Al and formed into a thin film is preferable because it is easy to process and inexpensive.
  • Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure-molding the positive electrode mixture on the positive electrode current collector. Also, the positive electrode mixture is made into a paste using an organic solvent, and the resulting positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed, whereby the positive electrode current collector is bonded to the positive electrode current collector. A mixture may be supported.
  • usable organic solvents include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate And amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine
  • ether solvents such as tetrahydrofuran
  • ketone solvents such as methyl ethyl ketone
  • amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • the positive electrode for lithium secondary batteries can be manufactured.
  • the negative electrode included in the lithium secondary battery of this embodiment is only required to be capable of doping and dedoping lithium ions at a lower potential than the positive electrode for a lithium secondary battery, and the negative electrode mixture containing the negative electrode active material is a negative electrode current collector. Examples thereof include an electrode carried on a body and an electrode made of a negative electrode active material alone.
  • the negative electrode active material possessed by the negative electrode is a carbon material, a chalcogen compound (oxide, sulfide, etc.), a nitride, a metal or an alloy, and lithium ions are doped and dedoped at a lower potential than the positive electrode for a lithium secondary battery. Possible materials are mentioned.
  • Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies.
  • the oxide can be used as an anode active material, (wherein, x represents a positive real number) SiO 2, SiO, etc. formula SiO x oxides of silicon represented by; TiO 2, TiO, etc. formula TiO x (wherein , X is a positive real number); oxide of titanium represented by formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 ; Fe 3 O 4 , Fe 2 O 3 , FeO, etc. Iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO, etc.
  • Examples of sulfides that can be used as the negative electrode active material include titanium sulfides represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2, VS and other vanadium sulfides represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2 , FeS and other formulas FeS x (where x is a positive real number) Iron sulfide represented; Mo 2 S 3 , MoS 2 and the like MoS x (where x is a positive real number) Molybdenum sulfide; SnS 2, SnS and other formula SnS x (where, a sulfide of tin represented by x is a positive real number; a sulfide of tungsten represented by a formula WS x (where x is a positive real number) such as WS 2
  • Examples of the nitride that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is one or both of Ni and Co, and 0 ⁇ x ⁇ 3). And lithium-containing nitrides.
  • These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. These carbon materials, oxides, sulfides and nitrides may be crystalline or amorphous.
  • examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
  • Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn -Tin alloys such as Co, Sn-Ni, Sn-Cu, Sn-La; alloys such as Cu 2 Sb, La 3 Ni 2 Sn 7 ;
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil shape, for example.
  • the potential of the negative electrode hardly changes from the uncharged state to the fully charged state during charging (potential flatness is good), the average discharge potential is low, and the capacity retention rate when repeatedly charged and discharged is high.
  • a carbon material mainly composed of graphite such as natural graphite or artificial graphite is preferably used.
  • the shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
  • the negative electrode mixture may contain a binder as necessary.
  • the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
  • the negative electrode current collector of the negative electrode examples include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel. In particular, it is preferable to use Cu as a forming material and process it into a thin film from the viewpoint that it is difficult to make an alloy with lithium and it is easy to process.
  • Examples of the separator included in the lithium secondary battery of the present embodiment include a porous film, a nonwoven fabric, a woven fabric, and the like made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin, and a nitrogen-containing aromatic polymer. The material which has can be used. Moreover, a separator may be formed by using two or more of these materials, or a separator may be formed by laminating these materials.
  • separator examples include separators described in JP 2000-30686 A, JP 10-324758 A, and the like.
  • the thickness of the separator should be as thin as possible so that the mechanical strength can be maintained in that the volume energy density of the battery is increased and the internal resistance is reduced, preferably about 5 to 200 ⁇ m, more preferably about 5 to 40 ⁇ m. is there.
  • the electrolyte solution included in the lithium secondary battery of this embodiment contains an electrolyte and an organic solvent.
  • the electrolyte contained in the electrolyte includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide), lithium salt such as lower aliphatic carboxylic acid lithium salt, LiAlCl 4, and a mixture of two or more of these May be used.
  • BOB bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide)
  • lithium salt such as lower aliphatic
  • the electrolyte at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one kind.
  • Examples of the organic solvent contained in the electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di- Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyla Amides such as toamide; carbamates such as 3-methyl-2-oxazolidone;
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • a mixed solvent of a cyclic carbonate and an acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.
  • the electrolyte using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of the negative electrode. Even when a graphite material such as artificial graphite is used, it has many features that it is hardly decomposable.
  • an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent since the thermal stability of the obtained lithium secondary battery is increased.
  • a mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate is capable of capacity even when charging / discharging at a high current rate. Since the maintenance rate is high, it is more preferable.
  • a solid electrolyte may be used instead of the above electrolytic solution.
  • the solid electrolyte for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
  • maintained the nonaqueous electrolyte in the high molecular compound can also be used.
  • Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, Li 2 S-GeS 2 -P 2 S 5 inorganic solid electrolytes containing a sulfide, and the like, may be used a mixture of two or more thereof. By using these solid electrolytes, the thermal stability of the lithium secondary battery may be further improved.
  • the solid electrolyte when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
  • the positive electrode active material for a lithium secondary battery of the present invention having the above-described configuration can exhibit a higher discharge capacity than that of a conventional lithium secondary battery.
  • the positive electrode for lithium secondary batteries having the above-described structure has the positive electrode active material for lithium secondary batteries using the above-described lithium-containing composite metal oxide of the present embodiment, the lithium secondary battery is conventionally used. Can also exhibit a high discharge capacity.
  • the lithium secondary battery having the above-described configuration has the above-described positive electrode for a lithium secondary battery, it becomes a lithium secondary battery exhibiting a higher discharge capacity than before.
  • evaluation of a positive electrode active material for a lithium secondary battery and production evaluation of a positive electrode and a lithium secondary battery were performed as follows.
  • composition analysis of positive electrode active material for lithium secondary battery is conducted by dissolving the obtained lithium-containing composite metal oxide powder in hydrochloric acid and then inductively bonding The measurement was performed using a plasma emission analyzer (manufactured by SII Nanotechnology Inc., SPS3000).
  • the half width of the peak corresponding to the peak A and the half width of the peak corresponding to the peak B are obtained from the powder X-ray diffraction pattern, and the crystallite size ⁇ is obtained by the Scherrer equation. And ⁇ were calculated.
  • a paste-like positive electrode mixture was prepared by adding and kneading so as to have a composition of 5: 3 (mass ratio).
  • N-methyl-2-pyrrolidone was used as the organic solvent.
  • the obtained positive electrode mixture was applied to a 40 ⁇ m thick Al foil serving as a current collector and vacuum dried at 150 ° C. for 8 hours to obtain a positive electrode.
  • the electrode area of this positive electrode was 1.65 cm 2 .
  • the positive electrode for lithium secondary battery produced in “(2) Production of positive electrode for lithium secondary battery” is used as a part for coin type battery R2032 (Hosen Co., Ltd.).
  • the aluminum foil surface was placed downward on the lower lid, and a laminated film separator (a heat-resistant porous layer (thickness 16 ⁇ m) laminated on a polyethylene porous film) was placed thereon. 300 ⁇ l of electrolyte was injected here.
  • the electrolyte was 30:35:35 of ethylene carbonate (hereinafter sometimes referred to as EC), dimethyl carbonate (hereinafter sometimes referred to as DMC) and ethyl methyl carbonate (hereinafter sometimes referred to as EMC).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • the negative electrode is placed on the upper side of the laminated film separator, covered with a gasket, and caulked with a caulking machine to form a lithium secondary battery (coin-type battery R2032, hereinafter “coin-type”). This may be referred to as “half-cell”.
  • Example 1-1 Manufacture of positive electrode active material 1 for lithium secondary battery After putting water in the reaction tank provided with the stirrer and the overflow pipe, sodium hydroxide aqueous solution was added and liquid temperature was hold
  • this mixed raw material solution and ammonium sulfate aqueous solution are continuously added as a complexing agent to the reaction vessel, and a sodium hydroxide aqueous solution is added dropwise as needed so that the pH of the solution in the reaction vessel becomes 11.2.
  • nickel cobalt manganese aluminum composite hydroxide particles were obtained, washed with water after filtration, and dried at 100 ° C. to obtain nickel cobalt manganese aluminum composite hydroxide 1.
  • This nickel cobalt manganese aluminum composite hydroxide 1 had a BET specific surface area of 11.59 m 2 / g.
  • the crystallite sizes ⁇ and ⁇ calculated from the peak A and the peak B of the positive electrode active material 1 for a lithium secondary battery are 895 ⁇ and 502 ⁇ , respectively, and the ratio ⁇ / ⁇ between the crystallite size ⁇ and the crystallite size ⁇ is 1.78.
  • 10% cumulative volume particle size D 10 of the positive electrode active material 1 for a lithium secondary battery was 7.57Myuemu.
  • the BET specific surface area of the positive electrode active material 1 for a lithium secondary battery was 0.40 m 2 / g.
  • the tap bulk density was 2.50 g / ml.
  • a 10% cumulative volume particle size D 10 of the positive electrode active material 1 for a lithium secondary battery, the product of the tapped bulk density was 18.9g ⁇ ⁇ m / ml.
  • the Mn / Co composition of the positive electrode active material 1 for a lithium secondary battery was 0.29.
  • a coin-type half cell was prepared using the positive electrode active material 1 for a lithium secondary battery, and an initial charge / discharge test was performed.
  • the initial discharge capacity was 215 mAh / g.
  • the crystallite sizes ⁇ and ⁇ calculated from the peak A and the peak B of the positive electrode active material 2 for a lithium secondary battery are 694 ⁇ and 405 ⁇ , respectively, and the ratio ⁇ / ⁇ between the crystallite size ⁇ and the crystallite size ⁇ is 1.71.
  • 10% cumulative volume particle size D 10 of the positive electrode active material 2 for a lithium secondary battery was 6.85.
  • the BET specific surface area of the positive electrode active material 2 for a lithium secondary battery was 0.42 m 2 / g.
  • the tap bulk density was 2.55 g / ml.
  • a 10% cumulative volume particle size D 10 of the positive electrode active material 2 for a lithium secondary battery, the product of the tapped bulk density was 17.5g ⁇ ⁇ m / ml.
  • the Mn / Co composition of the positive electrode active material 2 for a lithium secondary battery was 0.29.
  • the crystallite sizes ⁇ and ⁇ calculated from the peak A and the peak B of the positive electrode active material 3 for a lithium secondary battery are 857 ⁇ and 472 ⁇ , respectively, and the ratio ⁇ / ⁇ between the crystallite size ⁇ and the crystallite size ⁇ is It was 1.82.
  • 10% cumulative volume particle size D 10 of the positive electrode active material 3 for a lithium secondary battery was 7.17Myuemu.
  • the BET specific surface area of the positive electrode active material 3 for a lithium secondary battery was 0.44 m 2 / g.
  • the tap bulk density was 2.46 g / ml.
  • a 10% cumulative volume particle size D 10 of the positive electrode active material 3 for a lithium secondary battery, the product of the tapped bulk density was 17.6g ⁇ ⁇ m / ml.
  • the Mn / Co composition of the positive electrode active material 3 for a lithium secondary battery was 0.29.
  • a coin-type half cell was prepared using the positive electrode active material 3 for a lithium secondary battery, and an initial charge / discharge test was performed.
  • the initial discharge capacity was 208 mAh / g.
  • Example 1-4 Production of Positive Electrode Active Material 4 for Lithium Secondary Battery Example 1 except that the temperature of the liquid in the reaction vessel was 55 ° C. and an aqueous sodium hydroxide solution was added dropwise so that the pH of the solution in the reaction vessel was 11.6. The same operation as 1 was performed to obtain nickel cobalt manganese aluminum composite hydroxide 2.
  • the nickel cobalt manganese aluminum composite hydroxide 2 had a BET specific surface area of 13.47 m 2 / g.
  • the crystallite sizes ⁇ and ⁇ calculated from the peak A and the peak B of the positive electrode active material 4 for a lithium secondary battery are 848 ⁇ and 493 ⁇ ⁇ ⁇ ⁇ , respectively, and the ratio ⁇ / ⁇ between the crystallite size ⁇ and the crystallite size ⁇ is 1.72.
  • 10% cumulative volume particle size D 10 of the positive electrode active material 4 for a lithium secondary battery was 7.10Myuemu.
  • the BET specific surface area of the positive electrode active material 4 for a lithium secondary battery was 0.24 m 2 / g.
  • the tap bulk density was 2.74 g / ml.
  • a 10% cumulative volume particle size D 10 of the positive electrode active material 4 for a lithium secondary battery, the product of the tapped bulk density was 19.5g ⁇ ⁇ m / ml.
  • the Mn / Co composition of the positive electrode active material 4 for a lithium secondary battery was 0.29.
  • Example 1 Production of Positive Electrode Active Material 5 for Lithium Secondary Battery Example 1 except that the temperature of the solution in the reaction vessel was set to 50 ° C. and an aqueous sodium hydroxide solution was added dropwise so that the pH of the solution in the reaction vessel was 11.9. The same operation as 1 was performed to obtain a nickel cobalt manganese aluminum composite hydroxide 3.
  • the nickel cobalt manganese aluminum composite hydroxide 3 had a BET specific surface area of 19.23 m 2 / g.
  • Time-baking was performed to obtain a pre-fired product 4.
  • the temporarily fired product 4 was fired at 760 ° C. for 10 hours in an oxygen atmosphere to obtain a positive electrode active material 5 for a lithium secondary battery.
  • the crystallite sizes ⁇ and ⁇ calculated from the peak A and the peak B of the positive electrode active material 5 for a lithium secondary battery are 732 ⁇ and 466 ⁇ , respectively, and the ratio ⁇ / ⁇ between the crystallite size ⁇ and the crystallite size ⁇ is 1.57.
  • 10% cumulative volume particle size D 10 of the positive electrode active material 5 for a lithium secondary battery was 7.14Myuemu.
  • the BET specific surface area of the positive electrode active material 5 for a lithium secondary battery was 0.34 m 2 / g.
  • the tap bulk density was 2.40 g / ml.
  • a 10% cumulative volume particle size D 10 of the positive electrode active material 5 for a lithium secondary battery, the product of the tapped bulk density was 17.1g ⁇ ⁇ m / ml.
  • the Mn / Co composition of the positive electrode active material 5 for a lithium secondary battery was 0.29.
  • a coin-type half cell was prepared using the positive electrode active material 5 for a lithium secondary battery, and an initial charge / discharge test was performed.
  • the initial discharge capacity was 179 mAh / g.
  • the crystallite sizes ⁇ and ⁇ calculated from the peak A and the peak B of the positive electrode active material 6 for a lithium secondary battery are 579 and 399 respectively, and the ratio ⁇ / ⁇ between the crystallite size ⁇ and the crystallite size ⁇ is 1.45.
  • 10% cumulative volume particle size D 10 of the positive electrode active material 6 for a lithium secondary battery was 6.65Myuemu.
  • the BET specific surface area of the positive electrode active material 6 for a lithium secondary battery was 0.28 m 2 / g.
  • the tap bulk density was 2.47 g / ml.
  • a 10% cumulative volume particle size D 10 of the positive electrode active material 6 for a lithium secondary battery, the product of the tapped bulk density was 16.4g ⁇ ⁇ m / ml.
  • the Mn / Co composition of the positive electrode active material 6 for a lithium secondary battery was 0.29.
  • Example 2-1 Manufacture of positive electrode active material 7 for lithium secondary battery After putting water in the reaction tank provided with the stirrer and the overflow pipe, the sodium hydroxide aqueous solution was added and liquid temperature was hold
  • this mixed raw material solution and aqueous ammonium sulfate solution are continuously added as a complexing agent to the reaction vessel, and a sodium hydroxide aqueous solution is added dropwise as needed so that the pH of the solution in the reaction vessel becomes 11.6.
  • nickel cobalt manganese aluminum composite hydroxide particles were obtained, washed with water after filtration, and dried at 100 ° C. to obtain nickel cobalt manganese aluminum composite hydroxide 4.
  • the nickel cobalt manganese aluminum composite hydroxide 4 had a BET specific surface area of 14.12 m 2 / g.
  • the crystallite sizes ⁇ and ⁇ calculated from the peak A and the peak B of the positive electrode active material 7 for a lithium secondary battery are 789 ⁇ and 479 ⁇ , respectively, and the ratio ⁇ / ⁇ between the crystallite size ⁇ and the crystallite size ⁇ is 1.65.
  • 10% cumulative volume particle size D 10 of the positive electrode active material 7 for a lithium secondary battery was 7.08Myuemu.
  • the BET specific surface area of the positive electrode active material 7 for a lithium secondary battery was 0.24 m 2 / g.
  • the tap bulk density was 2.71 g / ml.
  • a 10% cumulative volume particle size D 10 of the positive electrode active material 7 for a lithium secondary battery, the product of the tapped bulk density was 19.2g ⁇ ⁇ m / ml.
  • the Mn / Co composition of the positive electrode active material 7 for a lithium secondary battery was 1.25.
  • a coin-type half cell was prepared using the positive electrode active material 7 for a lithium secondary battery, and an initial charge / discharge test was performed.
  • the initial discharge capacity was 192 mAh / g.
  • Example 2 Production of Positive Electrode Active Material 8 for Lithium Secondary Battery Example 2 except that the temperature of the liquid in the reaction vessel was 50 ° C. and an aqueous sodium hydroxide solution was added dropwise so that the pH of the solution in the reaction vessel was 12.0 1 to obtain nickel cobalt manganese aluminum composite hydroxide 5.
  • the nickel cobalt manganese aluminum composite hydroxide 5 had a BET specific surface area of 17.99 m 2 / g.
  • the crystallite sizes ⁇ and ⁇ calculated from the peak A and the peak B of the positive electrode active material 8 for a lithium secondary battery are 615 ⁇ and 425 ⁇ , respectively, and the ratio ⁇ / ⁇ between the crystallite size ⁇ and the crystallite size ⁇ is 1.45.
  • the BET specific surface area of the positive electrode active material 8 for a lithium secondary battery was 0.25 m 2 / g.
  • the tap bulk density was 2.56 g / ml.
  • a 10% cumulative volume particle size D 10 of the lithium secondary battery positive electrode active material 8 was 17.2g ⁇ ⁇ m / ml.
  • the Mn / Co composition of the positive electrode active material 8 for a lithium secondary battery was 1.25.
  • a coin-type half cell was prepared using the positive electrode active material 8 for a lithium secondary battery, and an initial charge / discharge test was performed.
  • the initial discharge capacity was 180 mAh / g.
  • Example 3-1 Manufacture of positive electrode active material 9 for lithium secondary battery After putting water in the reaction tank provided with the stirrer and the overflow pipe, sodium hydroxide aqueous solution was added and liquid temperature was hold
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and an aluminum sulfate aqueous solution were mixed so that the atomic ratio of nickel atoms, cobalt atoms, and aluminum atoms was 83: 14: 3 to prepare a mixed raw material solution.
  • the mixed raw material solution and the ammonium sulfate aqueous solution are continuously added as a complexing agent to the reaction vessel, and a sodium hydroxide aqueous solution is added dropwise in a timely manner so that the pH of the solution in the reaction vessel becomes 12.0.
  • nickel cobalt aluminum composite hydroxide particles were obtained, washed with water after filtration, and dried at 100 ° C. to obtain nickel cobalt aluminum composite hydroxide 1.
  • the crystallite sizes ⁇ and ⁇ calculated from the peak A and the peak B of the positive electrode active material 9 for a lithium secondary battery are 1032 ⁇ and 537 ⁇ , respectively, and the ratio ⁇ / ⁇ between the crystallite size ⁇ and the crystallite size ⁇ is 1.92.
  • 10% cumulative volume particle size D 10 of the positive electrode active material 9 for a lithium secondary battery was 7.18Myuemu.
  • the BET specific surface area of the positive electrode active material 9 for a lithium secondary battery was 0.20 m 2 / g.
  • the tap bulk density was 2.65 g / ml.
  • a 10% cumulative volume particle size D 10 of the positive electrode active material 9 for a rechargeable lithium battery, the product of the tapped bulk density was 19.0g ⁇ ⁇ m / ml.
  • the Mn / Co composition of the positive electrode active material 9 for a lithium secondary battery was 0.00.
  • ⁇ / ⁇ is 1.65 to 1.92
  • ⁇ / ⁇ is 1.45 to 1.57

Abstract

 リチウムイオンをドープ・脱ドープ可能な一次粒子が凝集してなる二次粒子を含むリチウム二次電池用正極活物質であって、CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内のピークにおける結晶子サイズαと、2θ=44.4±1°の範囲内のピークにおける結晶子サイズβとの比α/βが1.60以上2.40以下であり、以下組成式(I)で表されるα-NaFeO型の結晶構造を有するリチウム二次電池用正極活物質。Li[Li(NiCoMn1-x]O・・・(I)(0≦x≦0.1、0.7<a<1、0<b<0.2、0≦c<0.2、0<d<0.1、a+b+c+d=1、MはFe等である。)

Description

リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
 本発明は、リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池に関するものである。本願は、2014年12月25日に、日本に出願された特願2014-263116号に基づき優先権を主張し、その内容をここに援用する。
 リチウム含有複合金属酸化物は、リチウム二次電池用正極活物質として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中・大型電源においても、実用化が進んでいる。
 従来のリチウム二次電池用正極活物質として、特許文献1にはLi1.00Ni0.33Co0.34Mn0.33で表されるリチウム遷移金属複合酸化物であって、BET比表面積が0.7m/gであり、X線回折法により得られたX線回折パターンを基にして求めた104面の垂線方向の結晶子サイズが800Åである非水電解液二次電池用正極活物質が開示されている。
 また、特許文献2にはLi1.15(Ni0.34Co0.33Mn0.330.9682Mg0.001Ca0.03Na0.0008で表されるリチウム遷移金属複合酸化物であって、X線回折法により得られたX線回折パターンを基にして求めた003面の垂線方向の結晶子サイズが1580Åである非水電解液二次電池用正極活物質が開示されている。
 さらに、特許文献3には、一般式LiMO(MはCo、Ni等)で表されるリチウムイオン二次電池用正極活物質であって、正極活物質を構成する微小粒子の結晶子が、立体的にほぼ等方的形状であるリチウムイオン二次電池用正極活物質が開示されている。
特開2004-335278号公報 特開2012-252964号公報 特開平10-308218号公報
 しかしながら、上記のような従来のリチウム含有複合金属酸化物を正極活物質として用いて得られるリチウム二次電池は、放電容量等の電池性能をさらに向上させるため、改良の余地がある。
 本発明はこのような事情に鑑みてなされたものであって、従来よりも高い放電容量を達成できるリチウム二次電池用正極活物質を提供することを目的とする。また、このようなリチウム二次電池用正極活物質を用いたリチウム二次電池用正極、リチウム二次電池を提供することを併せて目的とする。
 上記の課題を解決するため、本発明の一態様は、リチウムイオンをドープ・脱ドープ可能な一次粒子が凝集してなる二次粒子を含むリチウム二次電池用正極活物質であって、CuKα線を使用した粉末X線回折測定において、
 2θ=18.7±1°の範囲内のピークにおける結晶子サイズαと、
 2θ=44.4±1°の範囲内のピークにおける結晶子サイズβとの比α/βが1.60以上2.40以下であり、以下組成式(I)で表されるα-NaFeO型の結晶構造を有するリチウム二次電池用正極活物質を提供する。
  Li[Li(NiCoMn1-x]O ・・・(I)
 (ここで、0≦x≦0.1、0.7<a<1、0<b<0.2、0≦c<0.2、0<d<0.1、a+b+c+d=1、Mは、Fe、Cr、Ti、Mg、Al、Zr、Ca、Sc、V、Cr、Cu、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選ばれる少なくとも1種の金属である。)
 本発明の一態様においては、粒度分布測定値から求めた10%累積径(D10)と、重装密度の積が、17以上25g・μm/mL以下であることが好ましい。
 本発明の一態様においては、CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内のピークにおける結晶子サイズαが、400Å以上1200Å以下であることが好ましい。
 本発明の一態様においては、BET比表面積が0.1m/g以上1.0m/g以下であることが好ましい。
 本発明の一態様においては、上記式(I)において、MnとCoの原子比c/bが0<c/b<1.3であることが好ましい。
 本発明の一態様においては、MがAlであることが好ましい。
 また、本発明の一態様は、上述のリチウム二次電池用正極活物質を有するリチウム二次電池用正極を提供する。
 また、本発明の一態様は、負極、及び上述のリチウム二次電池用正極を有するリチウム二次電池を提供する。
 本発明によれば、従来よりも高い放電容量を達成できるリチウム二次電池用正極活物質を提供することを目的とする。また、このようなリチウム二次電池用正極活物質を用いたリチウム二次電池用正極、リチウム二次電池を提供することができる。
リチウムイオン二次電池に用いる電極群の一例を示す概略構成図である。 図1Aに示す電極群を含んでなるリチウムイオン二次電池の一例を示す概略構成図である。 本発明において、結晶子サイズを説明するための模式図であって、結晶子における003面及び104面の模式図を示す。 本発明において、結晶子サイズを説明するための模式図であって、後述するピークAから算出できる結晶子サイズαと、後述するピークBから算出できる結晶子サイズβとの関係を示す模式図である。
 [リチウム二次電池用正極活物質]
 本実施形態のリチウム二次電池用正極活物質は、リチウムイオンをドープ・脱ドープ可能な一次粒子が凝集してなる二次粒子を含むリチウム二次電池用正極活物質であって、CuKα線を使用した粉末X線回折測定において、
 2θ=18.7±1°の範囲内のピークにおける結晶子サイズαと、
 2θ=44.4±1°の範囲内のピークにおける結晶子サイズβとの比α/βが1.60以上2.40以下であり、以下組成式(I)で表されるα-NaFeO型の結晶構造を有する。
  Li[Li(NiCoMn1-x]O ・・・(I)
 (ここで、0≦x≦0.1、0.7<a<1、0<b<0.2、0≦c<0.2、0<d<0.1、a+b+c+d=1、Mは、Fe、Cr、Ti、Mg、Al、Zr、Ca、Sc、V、Cr、Cu、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選ばれる少なくとも1種の金属である。)
 以下、本実施形態のリチウム二次電池用正極活物質について、詳細に説明する。
 本実施形態のリチウム二次電池用正極活物質は、以下組成式(I)で表されるα-NaFeO型の結晶構造を有する。
 Li[Li(NiCoMn1-x]O ・・・(I)
 (ここで、0≦x≦0.1、0.7<a<1、0<b<0.2、0≦c<0.2、0<d<0.1、a+b+c+d=1、Mは、Fe、Cr、Ti、Mg、Al、Zr、Ca、Sc、V、Cr、Cu、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選ばれる少なくとも1種の金属である。)
 大気安定性が高いリチウム二次電池用正極活物質を得る意味で、xは0.08以下であることが好ましく、0.05以下であることがより好ましく、0.03以下であることがさらに好ましい。
 本実施形態のリチウム二次電池用正極活物質において、容量が高いリチウム二次電池を得る意味で、前記組成式(I)におけるaは0.8以上であることが好ましく、0.85以上であることがより好ましく、0.87以上であることがさらに好ましい。また、高いサイクル特性のリチウム二次電池を得る意味で、aは0.96以下であることが好ましく、0.94以下であることがより好ましく、0.92以下であることがさらに好ましい。
 aの上限値と下限値は任意に組み合わせることができる。
 本明細書において、「サイクル特性が高い」とは、充放電サイクルを繰り返した際の放電容量維持率が高いことを意味する。
 また、抵抗が低いリチウム二次電池を得る意味で、組成式(I)におけるbは0.02以上であることが好ましく、0.03以上であることがより好ましく、0.04以上であることがさらに好ましい。また、熱的安定性が高いリチウム二次電池を得る意味で、bは0.16以下であることが好ましく、0.12以下であることがより好ましく、0.10以下であることがさらに好ましい。
 bの上限値と下限値は任意に組み合わせることができる。
 また、サイクル特性が高いリチウム二次電池を得る意味で、組成式(I)におけるcは0.01以上であることが好ましく、0.02以上であることがより好ましい。また、高温(例えば60℃環境下)での保存特性が高いリチウム二次電池を得る意味で、cは0.15以下であることが好ましく、0.10以下であることがより好ましく、0.08以下であることがさらに好ましい。
 cの上限値と下限値は任意に組み合わせることができる。
 本発明においては、熱的安定性が高いリチウム二次電池を得る意味で、上記式(I)において、MnとCoの原子比c/bが0<c/b<1.3であることが好ましく、1.0以下であることがより好ましく、0.5以下であることが特に好ましい。また、MnとCoの原子比c/bが0.1以上であることが好ましく、0.15以上であることがより好ましく、0.2以上であることが特に好ましい。
 c/bの上限値と下限値は任意に組み合わせることができる。
 組成式(I)におけるMは、Fe、Cr、Ti、Mg、Al、Zr、Ca、Sc、V、Cr、Cu、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選ばれる少なくとも1種の金属である。
 リチウム二次電池用正極活物質のサイクル特性が高いリチウム二次電池を得る意味で、組成式(I)におけるdは0を超えることが好ましく、0.001以上であることがより好ましく、0.005以上であることがさらに好ましい。また、高い電流レートでの放電容量が高いリチウム二次電池を得る意味で、0.08以下であることが好ましく、0.04以下であることがより好ましく、0.02以下であることがさらに好ましい。
 dの上限値と下限値は任意に組み合わせることができる。
 また、サイクル特性が高いリチウム二次電池を得る意味で、組成式(I)におけるMは、Al、Mg又はZrであることが好ましく、熱的安定性が高いリチウム二次電池を得る意味では、Mg又はAlであることが好ましく、Alであることが特に好ましい。
(層状構造)
 まず、本実施形態のリチウム二次電池用正極活物質の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、P6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、C2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
 これらのうち、放電容量が高いリチウム二次電池を得る意味で、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
 本実施形態のリチウム二次電池用正極活物質の空間群は、次のようにして確認することができる。
 まず、リチウム二次電池用正極活物質について、CuKαを線源とし、かつ回折角2θの測定範囲を10°以上90°以下とする粉末X線回折測定を行い、次いでその結果をもとにリートベルト解析を行い、リチウム含有複合金属酸化物が有する結晶構造およびこの結晶構造における空間群を決定する。リートベルト解析は、材料の粉末X線回折測定における回折ピークのデータ(回折ピーク強度、回折角2θ)を用いて、材料の結晶構造を解析する手法であり、従来から使用されている手法である(例えば「粉末X線解析の実際-リートベルト法入門-」2002年2月10日発行、日本分析化学会X線分析研究懇談会編、参照)。
(結晶子サイズ)
 本実施形態のリチウム二次電池用正極活物質は、CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内のピーク(以下、ピークAと呼ぶこともある)における結晶子サイズαと2θ=44.6±1°の範囲内のピーク(以下、ピークBと呼ぶこともある)における結晶子サイズβとの比α/βが1.60以上2.40以下である。
 本実施形態のリチウム二次電池用正極活物質のピークAにおける結晶子サイズαおよびピークBにおける結晶子サイズβは、以下のようにして確認することが出来る。
 まず、本実施形態のリチウム二次電池用正極活物質について、CuKαを線源とし、かつ回折角2θの測定範囲を10°以上90°以下とする粉末X線回折測定を行い、ピークAおよびピークBに対応するピークを決定する。さらに、決定したそれぞれのピークの半値幅を算出し、Scherrer式 D=Kλ/Bcosθ (D:結晶子サイズ、K:Scherrer定数、B:ピーク半値幅)を用いることで結晶子サイズを算出することが出来る。該式により、結晶子サイズを算出することは従来から使用されている手法である(例えば「X線構造解析-原子の配列を決める-」2002年4月30日第3版発行、早稲田嘉夫、松原栄一郎著、参照)。以下にリチウム二次電池用正極活物質が空間群R-3mに帰属される六方晶型の結晶構造である場合を例に、図面を用いてより具体的に説明する。
 図2Aに、結晶子における003面及び104面の模式図を示す。図2A中、003面の垂線方向の結晶子サイズは結晶子サイズαに、104面の垂線方向の結晶子サイズは結晶子サイズβに相当する。
 図2Bは、ピークAから算出できる結晶子サイズαと、ピークBから算出できる結晶子サイズβとの関係を示す模式図である。
 結晶子サイズα/βの値が1よりも大きいほど、図2A中のz軸に対して平行に結晶子が異方成長したものであることを示し、α/βの値が1に近づくほど、結晶子が等方成長したものであることを示す。
 本実施形態のリチウム二次電池用正極活物質は、上記α/βが1.60以上2.40以下であるため、結晶子が図2A中のx軸あるいはy軸に対して、z軸方向に異方成長したもの(換言すれば、z軸に対して平行な方向に積層が進んだもの)である。本発明者らは、等方成長した結晶子よりも、異方成長した結晶子をリチウム二次電池用正極活物質に採用することにより、放電容量等の電池性能を向上させることができることを見出した。これは、z軸に平行な方向に異方成長した結晶子であると、扁平に異方成長した結晶子(例えば図2Aに示すy軸に対して平行な方向に結晶子が異方成長したもの)に比べて、結晶子の中心までの距離が短くなるため、充放電に伴うLiの移動が容易となると推察される。
 本実施形態においては、充電容量が高いリチウム二次電池を得る意味で、α/βは1.60を超えることが好ましく、1.70以上であることがより好ましく、1.75以上であることがさらに好ましい。また、α/βは2.40未満であることが好ましく、2.20以下であることがより好ましく、2.10以下であることが特に好ましい。
α/βの上限値と下限値は任意に組み合わせることができる。
 サイクル特性が高いリチウム二次電池を得る意味で、結晶子サイズαは、400Å以上、1200Å以下であることが好ましく、1100Å以下であることがより好ましく、1000Å以下であることがさらに好ましく、900Å以下であることがよりさらに好ましく、840Å以下であることが特に好ましい。また、充電容量が高いリチウム二次電池を得る意味で、結晶子サイズαは、450Å以上であることがより好ましく、500Å以上であることがさらに好ましい。
 前記αの上限値と下限値は任意に組み合わせることができる。
 サイクル特性が高いリチウム二次電池を得る意味で、結晶子サイズβは600Å以下であることが好ましく、550Å以下であることがより好ましく、500Å以下であることがさらに好ましく、450Å以下であることが特に好ましい。また、充電容量が高いリチウム二次電池を得る意味で、結晶子サイズβは、200Å以上であることが好ましく、250Å以上であることがより好ましく、300Å以上であることがさらに好ましい。
 前記βの上限値と下限値は任意に組み合わせることができる。
(粒子径)
 本実施形態のリチウム二次電池用正極活物質の粒子形態は、一次粒子が凝集して形成された二次粒子である。本実施形態において、平均一次粒子径は、本発明の効果を高める意味で、0.1μm以上2.0μm以下が好ましく、0.1μm以上1.5μm以下であることがより好ましく、0.1μm以上1.2μm以下であることが更に好ましい。平均一次粒子径は、SEM観察により、測定することができる。
 一次粒子が凝集して形成された二次粒子の平均二次粒子径は、6μm以上20μm以下であり、本発明の効果を高める意味で、8μm以上17μm以下であることがより好ましく、10μm以上16μm以下であることが更に好ましい。
 なお、本実施形態において、リチウム二次電池用正極活物質の「平均二次粒子径」とは、以下の方法(レーザー回折散乱法)によって測定される値を指す。
 まず、リチウム二次電池用正極活物質の粉末0.1gを、0.2質量%ヘキサメタリン酸ナトリウム水溶液50mlに投入し、該粉末を分散させた分散液を得る。得られた分散液について堀場製作所製LA950(レーザー回折散乱粒度分布測定装置)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径(D50)の値を、リチウム二次電池用正極活物質の平均二次粒子径とした。また、同様にして10%累積時の微小粒子側から見た粒子径(D10)を10%累積径とし90%累積時の微小粒子側から見た粒子径(D90)を90%累積径とした。
(10%累積径)
 本実施形態のリチウム二次電池用正極活物質の10%累積径(D10)は、リチウム二次電池用正極活物質の取扱い性(ハンドリング性)を向上させる観点から、4.0μm以上であることが好ましく、5.0μm以上であることがより好ましく、6.0μm以上であることが特に好ましい。
 また、高い電流レートにおける放電容量が高い、リチウム二次電池を得る意味で10.0μm以下であることが好ましく、9.0μm以下であることがより好ましく、8.0μm以下であることが特に好ましい。
 前記(D10)の上限値と下限値は任意に組み合わせることができる。
(BET比表面積)
 また、本実施形態のリチウム二次電池用正極活物質のBET比表面積は、0.1m/g以上1.0m/g以下であることが好ましい。
 また、0.12m/g以上0.8m/g以下であることが好ましく、0.15m/g以上0.6m/g以下であることがより好ましい。
 上記下限値以上とすることにより、高い電流レートにおける放電容量が高いリチウム二次電池を得ることができ、上記上限値以下とすることによりリチウム二次電池用正極活物質の取扱い性(ハンドリング性)が高いリチウム二次電池を得ることができる。
(タップかさ密度)
 本実施形態において、リチウム二次電池用正極活物質のタップかさ密度は、電極密度が高いリチウム二次電池を得る意味で、2.0g/mL以上であることが好ましく、2.2g/mL以上であることがより好ましく、2.3g/mL以上であることがより好ましい。また、電解液の含浸性が高い電極を得る意味で、3.5g/mL以下であることが好ましく、3.2g/mL以下であることがより好ましく、3.0g/mL以下であることがより好ましい。
 タップかさ密度はJIS R 1628-1997に基づいて測定することができる。
 なお、本明細書において、「重装密度」とは上記JIS R 1628-1997におけるタップかさ密度に該当する。
(10%累積径と重装密度との積)
 本発明の効果を高める意味で、本実施形態のリチウム二次電池用正極活物質は、粒度分布測定値から求めた10%累積径(D10)と、重装密度との積が17以上25g・μm/mL以下であることが好ましい。
 本発明者らの検討により、10%累積径(D10)と、重装密度との積が上記所定の範囲である場合に、従来よりも高い放電容量を達成できるリチウム二次電池用正極活物質であることが見出された。
 放電容量をより向上させる意味で、10%累積径(D10)と、重装密度との積は、18g・μm/mL以上であることがより好ましく、18.8g・μm/mL以上であることがより好ましい。また、22g・μm/mL以下であることがより好ましく、20g・μm/mL以下であることが特に好ましい。
 前記10%累積径(D10)と、重装密度との積の上限値と下限値は任意に組み合わせることができる。
(回折ピークの積分強度比)
 本実施形態のリチウム二次電池用正極活物質は、本発明の効果を高める意味で、粉末X線回折パターンにおいて、回折ピークを空間群R-3mとして帰属した場合の(104)回折ピークに対する(003)回折ピークの積分強度比が1以上1.5以下であることが好ましく、1.1以上1.4以下であることがより好ましく、1.15以上1.3以下であることが更に好ましい。
 また、本実施形態の効果を損なわない範囲で、本実施形態のリチウム二次電池用正極活物質に、他の活物質を混ぜ合わせてもよい。
[リチウム二次電池用正極活物質の製造方法]
 本実施形態において、リチウム二次電池用正極活物質を製造するにあたって、まず、リチウム以外の金属、すなわち、Ni及びCo、並びに、Mg、Al、Ca、Sc、Ti、V、Cr、Mn、Fe、Cu、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選ばれる少なくとも1種の任意金属を含む金属複合化合物を調製し、当該金属複合化合物を適当なリチウム塩と焼成することが好ましい。金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、リチウム含有複合金属酸化物の製造方法の一例を、金属複合化合物の製造工程と、リチウム含有複合金属酸化物の製造工程とに分けて説明する。
(金属複合化合物の製造工程)
 金属複合化合物は、通常公知のバッチ法又は共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
 まず共沈殿法、特に特開2002-201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、NiCoMn(OH)(式中、x+y+z=1)で表される金属複合水酸化物を製造する。
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れかを使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、及び塩化コバルトのうちの何れかを使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、及び塩化マンガンのうちの何れかを使用することができる。以上の金属塩は、上記NiCoMn(OH)の組成比に対応する割合で用いられる。また、溶媒として水が使用される。
 錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。
 沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム、水酸化カリウム)を添加する。
 上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、NiCoMn(OH)が製造される。反応に際しては、反応槽の温度が例えば10℃以上60℃以下、好ましくは20℃以上60℃以下の範囲内で制御され、反応槽内のpH値は例えばpH9以上pH13以下、好ましくはpH10以上13以下の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応はバッチ式および連続式のいずれでも行うことが出来るが、特開平2-6340号公報等に記載されたオーバーフローパイプを設けた反応槽を使用した連続式で行うことができる。
 以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケルコバルトマンガン複合化合物としてのニッケルコバルトマンガン複合水酸化物を単離する。また、必要に応じて弱酸水で洗浄してもよい。なお、上記の例では、ニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製してもよい。
 反応槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び後述する焼成条件等を適宜制御することにより、下記工程で最終的に得られるリチウム二次電池用正極活物質の平均一次粒子径、平均二次粒子径、BET比表面積等の各種物性を制御することができる。特に重装密度を軽装密度で除した値を好ましい範囲とするために、金属複合水酸化物が球状の二次粒子形態となるように調整することが好ましい。ここで前記「軽装密度」は、JIS R 1628-1997における初期かさ密度に該当する。また、より所望の粒子形態を実現するためには、上記の条件の制御に加えて、各種気体、例えば、窒素、アルゴン、二酸化炭素等の不活性ガス、空気、酸素等によるバブリングを併用してもよい。反応条件については、使用する反応槽のサイズ等にも依存することから、最終的に得られるリチウム二次電池用正極活物質の各種物性をモニタリングしつつ、反応条件を最適化すればよい。
(リチウム含有複合金属酸化物の製造工程)
 上記金属複合酸化物又は金属複合水酸化物を乾燥した後、リチウム塩と混合する。
 乾燥条件は、特に制限されないが、例えば、金属複合酸化物又は金属複合水酸化物が酸化・還元されない条件(酸化物→酸化物、水酸化物→水酸化物)、金属複合水酸化物が酸化される条件(水酸化物→酸化物)、金属複合酸化物が還元される条件(酸化物→水酸化物)のいずれの条件でもよい。酸化・還元がされない条件のためには、窒素、ヘリウム及びアルゴン等の希ガス等の不活性ガスを使用すればよく、金属複合水酸化物が酸化される条件では、酸素又は空気雰囲気下で乾燥を行えばよい。また、金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用すれば良い。リチウム塩としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、または、二つ以上を混合して使用することができる。
 金属複合酸化物又は金属複合水酸化物の乾燥後に、適宜分級を行っても良い。以上のリチウム塩と金属複合水酸化物とは、最終目的物の組成比を勘案して用いられる。例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム塩と当該金属複合水酸化物は、LiNiCoMn(式中、x+y+z=1)の組成比に対応する割合で用いられる。ニッケルコバルトマンガン複合水酸化物及びリチウム塩の混合物を焼成することによって、リチウム-ニッケルコバルトマンガン複合酸化物が得られる。すなわち、リチウム含有複合金属酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
 混合は、乾式混合、湿式混合のいずれによってもよいが、簡便性を考慮すると、乾式混合が好ましい。混合装置としては、攪拌混合機、V型混合機、W型混合機、リボン混合機、ドラムミキサー、ボールミル等の装置を挙げることができる。混合は、凝集粒子が粉砕されないように条件を設定することが好ましい。
 上記金属複合酸化物又は金属複合水酸化物と、水酸化リチウム、炭酸リチウム等のリチウム化合物との焼成温度としては、特に制限はないが、好ましくは650℃以上850℃以下、より好ましくは700℃以上850℃以下である。焼成温度が650℃を下回ると、エネルギー密度(放電容量)及び高率放電性能が低下するという問題を生じやすい。これ以下の領域ではLiの移動を妨げる構造的要因が内在している可能性がある。
 一方、焼成温度が850℃を上回ると、Liの揮発によって目標とする組成のリチウム含有複合金属酸化物が得られにくいなどの作製上の問題や、粒子の高密度化によって電池性能が低下するという問題が生じやすい。これは、850℃を上回ると、一次粒子成長速度が増加し、リチウム含有複合金属酸化物の結晶粒子が大きくなりすぎることに起因している。またそれに加えて、局所的にLi欠損量が増大して、構造的に不安定となっていることも原因ではないかと考えられる。さらに、高温になるほど、Li元素の占有するサイトと、遷移金属元素が占有してなるサイト間の元素置換が極度に生じる。これによりLi伝導パスが抑制されることによって放電容量は低下する。焼成温度を700℃以上850℃以下の範囲とすることによって、特に高いエネルギー密度(放電容量)を示し、充放電サイクル性能に優れた電池を作製できる。焼成時間は、3時間~20時間が好ましい。焼成時間が20時間を超えると、Liの揮発によって実質的に電池性能に劣る場合がある。
 焼成時間が3時間より少ないと、結晶の発達が悪く、電池性能が悪くなる傾向となる。なお、上記の焼成の前に、仮焼成を行うことも有効である。この様な仮焼成の温度は、300~750℃の範囲で、1~10時間行うことが好ましい。
[リチウム二次電池用正極、及びリチウム二次電池]
 次いで、リチウム二次電池の構成を説明しながら、上述したリチウム含有複合金属酸化物をリチウム二次電池用正極活物質として用いたリチウム二次電池用正極、及びこのリチウム二次電池用正極を有するリチウム二次電池について説明する。
 本実施形態のリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図1Aは、リチウムイオン二次電池に用いる電極群の一例を示す概略構成図であり、図1Bは、図1Aに示す電極群を含んでなるリチウムイオン二次電池の一例を示す概略構成図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
 次いで、図1Bに示すように、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、またはJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(またはシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 本実施形態のリチウム二次電池用正極は、まずリチウム二次電池用正極活物質、導電材及びバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
 本実施形態のリチウム二次電池用正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することによりリチウム二次電池用正極内部の導電性を高め、充放電効率及び出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
 正極合剤中の導電材の割合は、リチウム二次電池用正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
 本実施形態のリチウム二次電池用正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力及び正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
 本実施形態のリチウム二次電池用正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、リチウム二次電池用正極を製造することができる。
(負極)
 本実施形態のリチウム二次電池が有する負極は、リチウム二次電池用正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属または合金で、リチウム二次電池用正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
 負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維及び有機高分子化合物焼成体を挙げることができる。
 負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタンまたはバナジウムとを含有する金属複合酸化物;を挙げることができる。
 負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。
 負極活物質として使用可能な窒化物としては、LiN、Li3-xN(ここで、AはNi及びCoのいずれか一方または両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。
 これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質または非晶質のいずれでもよい。
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。
 負極活物質として使用可能な合金としては、Li-Al、Li-Ni、Li-Si、Li-Sn、Li-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu、Sn-Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性が良い)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性が良い)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、または微粉末の凝集体などのいずれでもよい。
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン及びポリプロピレンを挙げることができる。
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
 このような負極集電体に負極合剤を担持させる方法としては、リチウム二次電池用正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
 本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
 セパレータとしては、例えば特開2000-30686号公報、特開平10-324758号公報などに記載のセパレータを挙げることができる。セパレータの厚みは電池の体積エネルギー密度が上がり、内部抵抗が小さくなるという点で、機械的強度が保たれる限り薄くした方がよく、好ましくは5~200μm程度、より好ましくは5~40μm程度である。
(電解液)
 本実施形態のリチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、またはこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。
 また、電解液としては、得られるリチウム二次電池の熱安定性が高まるため、LiPFなどのフッ素を含むリチウム塩及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。
 上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖またはポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS-SiS、LiS-GeS、LiS-P、LiS-B、LiS-SiS-LiPO、LiS-SiS-LiSO、LiS-GeS-Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の熱安定性をより高めることができることがある。
 また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。
 以上のような構成の本発明のリチウム二次電池用正極活物質は、リチウム二次電池を従来よりも高い放電容量を示すものとすることができる。
 また、以上のような構成のリチウム二次電池用正極は、上述した本実施形態のリチウム含有複合金属酸化物を用いたリチウム二次電池用正極活物質を有するため、リチウム二次電池を従来よりも高い放電容量を示すものとすることができる。
 さらに、以上のような構成のリチウム二次電池は、上述したリチウム二次電池用正極を有するため、従来よりも高い放電容量を示すリチウム二次電池となる。
 次に、本発明を実施例によりさらに詳細に説明する。
 本実施例においては、リチウム二次電池用正極活物質の評価、正極およびリチウム二次電池の作製評価を、次のようにして行った。
(1)リチウム二次電池用正極活物質の評価
1.リチウム二次電池用正極活物質の組成分析
 後述の方法で製造されるリチウム含有複合金属酸化物の組成分析は、得られたリチウム含有複合金属酸化物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
2.リチウム二次電池用正極活物質の累積粒度の測定
 測定するリチウム含有複合金属酸化物の粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、該粉末を分散させた分散液を得た。得られた分散液について堀場製作所製LA950(レーザー回折散乱粒度分布測定装置)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得た。得られた累積粒度分布曲線において、微小粒子側から見て10%累積時の体積粒度を、D10とした。
3.リチウム二次電池用正極活物質の結晶子サイズ測定
 リチウム含有複合金属酸化物の粉末X線回折測定は、X線回折装置(X‘Pert PRO、PANalytical社)を用いて行った。得られたリチウム含有複合金属酸化物を専用の基板に充填し、CuKα線源を用いて、回折角2θ=10°~90°の範囲にて測定を行うことで、粉末X線回折図形を得た。粉末X線回折パターン総合解析ソフトウェアJADE5を用い、該粉末X線回折図形からピークAに対応するピークの半値幅およびピークBに対応するピークの半値幅を得て、Scherrer式により、結晶子サイズαおよびβを算出した。
4.リチウム二次電池用正極活物質のBET比表面積測定
 測定するリチウム含有複合金属酸化物の粉末1gを窒素雰囲気中、150℃で15分間乾燥させた後、マウンテック製Macsorbを用いて測定した。
5.リチウム二次電池用正極活物質の重装密度(以下、「タップかさ密度」と記載することがある)の測定
 重装密度はJIS R 1628-1997に基づいて測定した。
(2)正極の作製
 後述する製造方法で得られるリチウム含有複合金属酸化物(正極活物質)と導電材(アセチレンブラック)とバインダー(PVdF)とを、正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いた。
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、正極を得た。この正極の電極面積は1.65cmとした。
(3)リチウム二次電池(コイン型ハーフセル)の作製
 「(2)リチウム二次電池用正極の作製」で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm)したもの。)を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネート(以下、ECということがある。)とジメチルカーボネート(以下、DMCということがある。)とエチルメチルカーボネート(以下、EMCということがある。)の30:35:35(体積比)混合液にLiPF6を1モル/リットルとなるように溶解したもの(以下、LiPF6/EC+DMC+EMCと表すことがある。)を用いた。
 次に、負極としてリチウム金属を用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型電池R2032。以下、「コイン型ハーフセル」と称することがある。)を作製した。
(4)放電試験
 「(3)リチウム二次電池(コイン型ハーフセル)の作製」で作製したコイン型ハーフセルを用いて、以下に示す条件で放電試験を実施した。
<放電レート試験>
 試験温度:25℃
 充電最大電圧4.3V、充電時間8時間、充電電流0.2CA定電流定電圧充電
 放電最小電圧2.5V、定電流放電
 本明細書において、放電容量が190mAh/gを超えるものが「放電容量に優れる」とした。
(実施例1-1)
1.リチウム二次電池用正極活物質1の製造
 攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液と硫酸アルミニウム水溶液とを、ニッケル原子とコバルト原子とマンガン原子とアルミニウム原子との原子比が90:7:2:1となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、反応槽内の溶液のpHが11.2になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガンアルミニウム複合水酸化物粒子を得て、濾過後水洗し、100℃で乾燥することにより、ニッケルコバルトマンガンアルミニウム複合水酸化物1を得た。このニッケルコバルトマンガンアルミニウム複合水酸化物1のBET比表面積は、11.59m/gであった。
 以上のようにして得られたニッケルコバルトマンガンアルミニウム複合水酸化物1と水酸化リチウム粉末とをLi/(Ni+Co+Mn+Al)=1.03となるように秤量して混合した後、酸素雰囲気下725℃で10時間焼成し、目的のリチウム二次電池用正極活物質1を得た。
2.リチウム二次電池用正極活物質1の評価
 得られたリチウム二次電池用正極活物質1の組成分析を行い、組成式(I)に対応させたところ、x=0.01、a=0.90、b=0.07、c=0.02、d=0.01であった。 
 リチウム二次電池用正極活物質1のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ895Å、502Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.78であった。
 リチウム二次電池用正極活物質1の10%累積体積粒度D10は、7.57μmであった。
 リチウム二次電池用正極活物質1のBET比表面積は、0.40m/gであった。
 また、タップかさ密度は2.50g/mlであった。
 また、リチウム二次電池用正極活物質1の10%累積体積粒度D10と、タップかさ密度との積は、18.9g・μm/mlであった。
 リチウム二次電池用正極活物質1のMn/Co組成は0.29であった。
3.リチウム二次電池の電池評価
 リチウム二次電池用正極活物質1を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回放電容量は215mAh/gであった。
(実施例1-2)
1.リチウム二次電池用正極活物質2の製造
 ニッケルコバルトマンガンアルミニウム複合水酸化物1と水酸化リチウム粉末とをLi/(Ni+Co+Mn+Al)=1.03となるように秤量して混合した後、酸素雰囲気下600℃で5時間焼成し、仮焼成品1を得た。該仮焼成品1を、酸素雰囲気下725℃で10時間焼成しリチウム二次電池用正極活物質2を得た。
2.リチウム二次電池用正極活物質2の評価
 得られたリチウム二次電池用正極活物質2の組成分析を行い、組成式(I)に対応させたところ、x=0.02、a=0.90、b=0.07、c=0.02、d=0.01であった。 
 リチウム二次電池用正極活物質2のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ694Å、405Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.71であった。
 リチウム二次電池用正極活物質2の10%累積体積粒度D10は、6.85μmであった。
 リチウム二次電池用正極活物質2のBET比表面積は、0.42m/gであった。
 また、タップかさ密度は2.55g/mlであった。
 また、リチウム二次電池用正極活物質2の10%累積体積粒度D10と、タップかさ密度との積は、17.5g・μm/mlであった。
 リチウム二次電池用正極活物質2のMn/Co組成は0.29であった。
3.リチウム二次電池の電池評価
 リチウム二次電池用正極活物質2を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回放電容量は204mAh/gであった。
(実施例1-3)
1.リチウム二次電池用正極活物質3の製造
 ニッケルコバルトマンガンアルミニウム複合水酸化物1と水酸化リチウム粉末とをLi/(Ni+Co+Mn+Al)=1.03となるように秤量して混合した後、酸素雰囲気下600℃で5時間焼成し、仮焼成品2を得た。該仮焼成品2を、酸素雰囲気下750℃で10時間焼成しリチウム二次電池用正極活物質3を得た。
2.リチウム二次電池用正極活物質3の評価
 得られたリチウム二次電池用正極活物質3の組成分析を行い、組成式(I)に対応させたところ、x=0.02、a=0.90、b=0.07、c=0.02、d=0.01であった。 
 リチウム二次電池用正極活物質3のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ857Å、472Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.82であった。
 リチウム二次電池用正極活物質3の10%累積体積粒度D10は、7.17μmであった。
 リチウム二次電池用正極活物質3のBET比表面積は、0.44m/gであった。
 また、タップかさ密度は2.46g/mlであった。
 また、リチウム二次電池用正極活物質3の10%累積体積粒度D10と、タップかさ密度との積は、17.6g・μm/mlであった。
 リチウム二次電池用正極活物質3のMn/Co組成は0.29であった。
3.リチウム二次電池の電池評価
 リチウム二次電池用正極活物質3を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回放電容量は208mAh/gであった。
(実施例1-4)
1.リチウム二次電池用正極活物質4の製造
 反応槽内の液温を55℃とし、反応槽内の溶液のpHが11.6になるよう水酸化ナトリウム水溶液を適時滴下した以外は実施例1-1と同様の操作を行い、ニッケルコバルトマンガンアルミニウム複合水酸化物2を得た。このニッケルコバルトマンガンアルミニウム複合水酸化物2のBET比表面積は、13.47m/gであった。
 以上のようにして得られたニッケルコバルトマンガンアルミニウム複合水酸化物2と水酸化リチウム粉末とをLi/(Ni+Co+Mn+Al)=1.03となるように秤量して混合した後、酸素雰囲気下600℃で5時間焼成し、仮焼成品3を得た。該仮焼成品3を、酸素雰囲気下750℃で10時間焼成しリチウム二次電池用正極活物質4を得た。
2.リチウム二次電池用正極活物質4の評価
 得られたリチウム二次電池用正極活物質4の組成分析を行い、組成式(I)に対応させたところ、x=0.02、a=0.90、b=0.07、c=0.02、d=0.01であった。 
 リチウム二次電池用正極活物質4のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ848Å、493Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.72であった。
 リチウム二次電池用正極活物質4の10%累積体積粒度D10は、7.10μmであった。
 リチウム二次電池用正極活物質4のBET比表面積は、0.24m/gであった。
 また、タップかさ密度は2.74g/mlであった。
 また、リチウム二次電池用正極活物質4の10%累積体積粒度D10と、タップかさ密度との積は、19.5g・μm/mlであった。
 リチウム二次電池用正極活物質4のMn/Co組成は0.29であった。
3.リチウム二次電池の電池評価
 リチウム二次電池用正極活物質4を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回放電容量は196mAh/gであった。
(比較例1-1)
1.リチウム二次電池用正極活物質5の製造
 反応槽内の液温を50℃とし、反応槽内の溶液のpHが11.9になるよう水酸化ナトリウム水溶液を適時滴下した以外は実施例1-1と同様の操作を行い、ニッケルコバルトマンガンアルミニウム複合水酸化物3を得た。このニッケルコバルトマンガンアルミニウム複合水酸化物3のBET比表面積は、19.23m/gであった。
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物5と水酸化リチウム粉末とをLi/(Ni+Co+Mn+Al)=1.03となるように秤量して混合した後、酸素雰囲気下700℃で5時間焼成し、仮焼成品4を得た。該仮焼成品4を、酸素雰囲気下760℃で10時間焼成し、リチウム二次電池用正極活物質5を得た。
2.リチウム二次電池用正極活物質5の評価
 得られたリチウム二次電池用正極活物質5の組成分析を行い、組成式(I)に対応させたところ、x=0、a=0.90、b=0.07、c=0.02、d=0.01であった。 
 リチウム二次電池用正極活物質5のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ732Å、466Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.57であった。
 リチウム二次電池用正極活物質5の10%累積体積粒度D10は、7.14μmであった。
 リチウム二次電池用正極活物質5のBET比表面積は、0.34m/gであった。
 また、タップかさ密度は2.40g/mlであった。
 また、リチウム二次電池用正極活物質5の10%累積体積粒度D10と、タップかさ密度との積は、17.1g・μm/mlであった。
 リチウム二次電池用正極活物質5のMn/Co組成は0.29であった。
3.リチウム二次電池の電池評価
 リチウム二次電池用正極活物質5を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回放電容量は179mAh/gであった。
(比較例1-2)
1.リチウム二次電池用正極活物質6の製造
 ニッケルコバルトマンガンアルミニウム複合水酸化物3と水酸化リチウム粉末とをLi/(Ni+Co+Mn+Al)=1.03となるように秤量して混合した後、酸素雰囲気下700℃で5時間焼成し、仮焼成品5を得た。該仮焼成品5を、酸素雰囲気下725℃で10時間焼成し、リチウム二次電池用正極活物質6を得た。
2.リチウム二次電池用正極活物質6の評価
 得られたリチウム二次電池用正極活物質6の組成分析を行い、組成式(I)に対応させたところ、x=0.01、a=0.90、b=0.07、c=0.02、d=0.01であった。 
 リチウム二次電池用正極活物質6のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ579Å、399Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.45であった。
 リチウム二次電池用正極活物質6の10%累積体積粒度D10は、6.65μmであった。
 リチウム二次電池用正極活物質6のBET比表面積は、0.28m/gであった。
 また、タップかさ密度は2.47g/mlであった。
 また、リチウム二次電池用正極活物質6の10%累積体積粒度D10と、タップかさ密度との積は、16.4g・μm/mlであった。
 リチウム二次電池用正極活物質6のMn/Co組成は0.29であった。
3.リチウム二次電池の電池評価
 リチウム二次電池用正極活物質6を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回放電容量は182mAh/gであった。
(実施例2-1)
1.リチウム二次電池用正極活物質7の製造
 攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を55℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液と硫酸アルミニウム水溶液とを、ニッケル原子とコバルト原子とマンガン原子とアルミニウム原子との原子比が90:4:5:1となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、反応槽内の溶液のpHが11.6になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガンアルミニウム複合水酸化物粒子を得て、濾過後水洗し、100℃で乾燥することにより、ニッケルコバルトマンガンアルミニウム複合水酸化物4を得た。このニッケルコバルトマンガンアルミニウム複合水酸化物4のBET比表面積は、14.12m/gであった。
 以上のようにして得られたニッケルコバルトマンガンアルミニウム複合水酸化物4と水酸化リチウム粉末とをLi/(Ni+Co+Mn+Al)=1.03となるように秤量して混合した後、酸素雰囲気下600℃で5時間焼成し、仮焼成品6を得た。該仮焼成品6を、酸素雰囲気下775℃で10時間焼成し、目的のリチウム二次電池用正極活物質7を得た。
2.リチウム二次電池用正極活物質7の評価
 得られたリチウム二次電池用正極活物質1の組成分析を行い、組成式(I)に対応させたところ、x=0.01、a=0.90、b=0.04、c=0.05、d=0.01であった。 
 リチウム二次電池用正極活物質7のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ789Å、479Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.65であった。
 リチウム二次電池用正極活物質7の10%累積体積粒度D10は、7.08μmであった。
 リチウム二次電池用正極活物質7のBET比表面積は、0.24m/gであった。
 また、タップかさ密度は2.71g/mlであった。
 また、リチウム二次電池用正極活物質7の10%累積体積粒度D10と、タップかさ密度との積は、19.2g・μm/mlであった。
 リチウム二次電池用正極活物質7のMn/Co組成は1.25であった。
3.リチウム二次電池の電池評価
 リチウム二次電池用正極活物質7を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回放電容量は192mAh/gであった。
(比較例2-1)
1.リチウム二次電池用正極活物質8の製造
 反応槽内の液温を50℃とし、反応槽内の溶液のpHが12.0になるよう水酸化ナトリウム水溶液を適時滴下した以外は実施例2-1と同様の操作を行い、ニッケルコバルトマンガンアルミニウム複合水酸化物5を得た。このニッケルコバルトマンガンアルミニウム複合水酸化物5のBET比表面積は、17.99m/gであった。
 以上のようにして得られたニッケルコバルトマンガンアルミニウム複合水酸化物8と水酸化リチウム粉末とをLi/(Ni+Co+Mn+Al)=1.03となるように秤量して混合した後、酸素雰囲気下700℃で5時間焼成し、仮焼成品7を得た。該仮焼成品7を、酸素雰囲気下750℃で10時間焼成し、リチウム二次電池用正極活物質8を得た。
2.リチウム二次電池用正極活物質8の評価
 得られたリチウム二次電池用正極活物質8の組成分析を行い、組成式(I)に対応させたところ、x=0.02、a=0.90、b=0.04、c=0.05、d=0.01であった。 
 リチウム二次電池用正極活物質8のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ615Å、425Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.45であった。
 リチウム二次電池用正極活物質8の10%累積体積粒度D10は、6.72μmであった。
 リチウム二次電池用正極活物質8のBET比表面積は、0.25m/gであった。
 また、タップかさ密度は2.56g/mlであった。
 また、リチウム二次電池用正極活物質8の10%累積体積粒度D10と、タップかさ密度との積は、17.2g・μm/mlであった。
 リチウム二次電池用正極活物質8のMn/Co組成は1.25であった。
3.リチウム二次電池の電池評価
 リチウム二次電池用正極活物質8を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回放電容量は180mAh/gであった。
(実施例3-1)
1.リチウム二次電池用正極活物質9の製造
 攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸アルミニウム水溶液とを、ニッケル原子とコバルト原子とアルミニウム原子との原子比が83:14:3となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、反応槽内の溶液のpHが12.0になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトアルミニウム複合水酸化物粒子を得て、濾過後水洗し、100℃で乾燥することにより、ニッケルコバルトアルミニウム複合水酸化物1を得た。
 以上のようにして得られたニッケルコバルトアルミニウム複合水酸化物1と水酸化リチウム粉末とをLi/(Ni+Co+Al)=1.03となるように秤量して混合した後、酸素雰囲気下750℃で5時間焼成し、目的のリチウム二次電池用正極活物質9を得た。
2.リチウム二次電池用正極活物質9の評価
 得られたリチウム二次電池用正極活物質9の組成分析を行い、組成式(I)に対応させたところ、x=0、a=0.83、b=0.14、c=0.00、d=0.03であった。 
 リチウム二次電池用正極活物質9のピークA、ピークBから算出される結晶子サイズαおよびβは、それぞれ1032Å、537Åであり、結晶子サイズαと結晶子サイズβとの比α/βは1.92であった。
 リチウム二次電池用正極活物質9の10%累積体積粒度D10は、7.18μmであった。
 リチウム二次電池用正極活物質9のBET比表面積は、0.20m/gであった。
 また、タップかさ密度は2.65g/mlであった。
 また、リチウム二次電池用正極活物質9の10%累積体積粒度D10と、タップかさ密度との積は、19.0g・μm/mlであった。
 リチウム二次電池用正極活物質9のMn/Co組成は0.00であった。
3.リチウム二次電池の電池評価
 リチウム二次電池用正極活物質9を用いてコイン型ハーフセルを作製し、初回充放電試験を実施した。初回放電容量は191mAh/gであった。
 以下、表1に実施例および比較例の結果等をまとめて記載する。
[規則26に基づく補充 11.03.2016] 
Figure WO-DOC-TABLE-1
 評価の結果、α/βが1.65~1.92であり、異方成長した結晶子を用いた実施例のリチウム二次電池用正極活物質を用いたリチウム二次電池では、いずれも、α/βが1.45~1.57であり、異方成長が不十分の結晶子を用いた比較例のリチウム二次電池用正極活物質を用いたリチウム二次電池よりも高い放電容量を示した。
 1…セパレータ
 2…正極
 3…負極
 4…電極群
 5…電池缶
 6…電解液
 7…トップインシュレーター
 8…封口体
 10…リチウム二次電池
 21…正極リード
 31…負極リード

Claims (8)

  1.  リチウムイオンをドープ・脱ドープ可能な一次粒子が凝集してなる二次粒子を含むリチウム二次電池用正極活物質であって、
    CuKα線を使用した粉末X線回折測定において、
     2θ=18.7±1°の範囲内のピークにおける結晶子サイズαと、
     2θ=44.4±1°の範囲内のピークにおける結晶子サイズβとの比α/βが1.60以上2.40以下であり、以下組成式(I)で表されるα-NaFeO型の結晶構造を有するリチウム二次電池用正極活物質。
      Li[Li(NiCoMn1-x]O ・・・(I)
     (ここで、0≦x≦0.1、0.7<a<1、0<b<0.2、0≦c<0.2、0<d<0.1、a+b+c+d=1、Mは、Fe、Cr、Ti、Mg、Al、Zr、Ca、Sc、V、Cr、Cu、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、及びSnからなる群より選ばれる少なくとも1種の金属である。)
  2.  粒度分布測定値から求めた10%累積径(D10)と、重装密度の積が、17以上25g・μm/mL以下である、請求項1に記載のリチウム二次電池用正極活物質。
  3.  CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内のピークにおける結晶子サイズαが、400Å以上1200Å以下である、請求項1または2に記載のリチウム二次電池用正極活物質。
  4.  BET比表面積が0.1m/g以上1.0m/g以下である、請求項1から3のいずれか一項に記載のリチウム二次電池用正極活物質。
  5.  上記式(I)において、MnとCoの原子比c/bが0<c/b<1.3である、請求項1~4のいずれか一項に記載のリチウム二次電池用正極活物質。
  6.  MがAlである、請求項1~5のいずれか一項に記載のリチウム二次電池用正極活物質。
  7.  請求項1~6のいずれか一項に記載のリチウム二次電池用正極活物質を有するリチウム二次電池用正極。
  8.  請求項7に記載のリチウム二次電池用正極を有するリチウム二次電池。
PCT/JP2015/085797 2014-12-25 2015-12-22 リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池 WO2016104488A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016565526A JP6108141B2 (ja) 2014-12-25 2015-12-22 リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
US15/538,401 US11024847B2 (en) 2014-12-25 2015-12-22 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
KR1020177017131A KR102430121B1 (ko) 2014-12-25 2015-12-22 리튬 이차 전지용 정극 활물질, 리튬 이차 전지용 정극, 및 리튬 이차 전지
CN201580069817.7A CN107112528B (zh) 2014-12-25 2015-12-22 锂二次电池用正极活性物质、锂二次电池用正极和锂二次电池
EP15873056.4A EP3240068B1 (en) 2014-12-25 2015-12-22 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014263116 2014-12-25
JP2014-263116 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016104488A1 true WO2016104488A1 (ja) 2016-06-30

Family

ID=56150506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085797 WO2016104488A1 (ja) 2014-12-25 2015-12-22 リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池

Country Status (6)

Country Link
US (1) US11024847B2 (ja)
EP (1) EP3240068B1 (ja)
JP (1) JP6108141B2 (ja)
KR (1) KR102430121B1 (ja)
CN (1) CN107112528B (ja)
WO (1) WO2016104488A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181465A1 (ja) * 2017-03-31 2018-10-04 住友化学株式会社 リチウム複合金属酸化物の製造方法
WO2018234112A1 (en) 2017-06-23 2018-12-27 Umicore β-NICKEL HYDROXIDE DOPED WITH ALUMINUM
JP2019149371A (ja) * 2018-02-27 2019-09-05 株式会社Gsユアサ 非水電解質二次電池用正極活物質、正極活物質の製造に用いる前駆体の製造方法、正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
CN110225888A (zh) * 2017-01-27 2019-09-10 尤米科尔公司 高性能锂离子电池用正极活性物质及其制造方法
CN110651388A (zh) * 2017-06-28 2020-01-03 住友金属矿山株式会社 非水电解质二次电池用正极活性物质及其制造方法、以及非水电解质二次电池
US11532814B2 (en) 2016-12-26 2022-12-20 Sumitomo Chemical Company, Limited Lithium nickel cobalt composite oxide positive active material, positive electrode, and lithium secondary battery using the same
JP2023500220A (ja) * 2019-10-23 2023-01-05 エルジー・ケム・リミテッド 正極活物質、これを含む正極およびリチウム二次電池
JP7316903B2 (ja) 2018-12-27 2023-07-28 エルジー エナジー ソリューション リミテッド 二次電池用正極活物質及びその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579237B (zh) * 2017-09-13 2021-11-05 桑顿新能源科技(长沙)有限公司 一种三元正极材料制备方法及三元正极材料
JP6470380B1 (ja) * 2017-10-30 2019-02-13 住友化学株式会社 リチウム複合金属化合物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
CN109244365B (zh) * 2018-11-09 2021-12-07 万华化学集团股份有限公司 锂离子电池正极材料及其制备方法、正极和锂离子电池
CN110518232B (zh) * 2019-04-28 2020-12-15 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
CN112447965B (zh) * 2019-09-02 2022-01-11 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
CN112447966A (zh) * 2019-09-02 2021-03-05 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
BR112022019431A2 (pt) * 2020-03-27 2022-12-06 Univ Texas Materiais de cátodo de alta energia com baixo cobalto e sem cobalto para baterias de lítio
JP6976392B1 (ja) * 2020-09-04 2021-12-08 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極及びリチウム二次電池
KR20230085513A (ko) * 2021-12-07 2023-06-14 에스케이온 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122448A1 (ja) * 2010-03-29 2011-10-06 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質の前駆体、ならびに該正極活物質を用いた非水系電解質二次電池
JP2013120678A (ja) * 2011-12-07 2013-06-17 Jx Nippon Mining & Metals Corp リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP2013143358A (ja) * 2012-01-12 2013-07-22 Toyota Motor Corp リチウム二次電池
JP2013206552A (ja) * 2012-03-27 2013-10-07 Tdk Corp 活物質及びリチウムイオン二次電池
WO2014061653A1 (ja) * 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2014061654A1 (ja) * 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni複合酸化物粒子粉末並びに非水電解質二次電池
WO2014133064A1 (ja) * 2013-02-28 2014-09-04 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591195B2 (ja) 1997-03-07 2004-11-17 日亜化学工業株式会社 リチウムイオン二次電池用正極活物質
JP3614670B2 (ja) * 1998-07-10 2005-01-26 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法
JP3885764B2 (ja) 2003-05-08 2007-02-28 日亜化学工業株式会社 非水電解液二次電池用正極活物質
US9054374B2 (en) * 2005-05-17 2015-06-09 Sony Corporation Cathode active material, method of manufacturing the same and battery
KR20100114502A (ko) * 2007-12-22 2010-10-25 프리메트 프리시젼 머테리알스, 인크. 작은 입자의 전극 물질 조성물 및 그의 형성 방법
JP5490458B2 (ja) 2009-07-13 2014-05-14 日本化学工業株式会社 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
CN101853934A (zh) * 2010-06-01 2010-10-06 清华大学 锂离子电池正极材料及其制备方法
JP5730676B2 (ja) 2011-06-06 2015-06-10 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、ならびに、ニッケルコバルトマンガン複合水酸化物とその製造方法
JP6011838B2 (ja) * 2011-08-31 2016-10-19 トヨタ自動車株式会社 リチウム二次電池
KR102012304B1 (ko) 2012-02-16 2019-08-20 가부시키가이샤 지에스 유아사 비수 전해질 2차 전지용 활물질, 그 활물질의 제조 방법, 비수 전해질 2차 전지용 전극 및 비수 전해질 2차 전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122448A1 (ja) * 2010-03-29 2011-10-06 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質の前駆体、ならびに該正極活物質を用いた非水系電解質二次電池
JP2013120678A (ja) * 2011-12-07 2013-06-17 Jx Nippon Mining & Metals Corp リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP2013143358A (ja) * 2012-01-12 2013-07-22 Toyota Motor Corp リチウム二次電池
JP2013206552A (ja) * 2012-03-27 2013-10-07 Tdk Corp 活物質及びリチウムイオン二次電池
WO2014061653A1 (ja) * 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2014061654A1 (ja) * 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni複合酸化物粒子粉末並びに非水電解質二次電池
WO2014133064A1 (ja) * 2013-02-28 2014-09-04 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3240068A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11532814B2 (en) 2016-12-26 2022-12-20 Sumitomo Chemical Company, Limited Lithium nickel cobalt composite oxide positive active material, positive electrode, and lithium secondary battery using the same
CN110225888B (zh) * 2017-01-27 2022-09-09 尤米科尔公司 高性能锂离子电池用正极活性物质及其制造方法
CN110225888A (zh) * 2017-01-27 2019-09-10 尤米科尔公司 高性能锂离子电池用正极活性物质及其制造方法
WO2018181465A1 (ja) * 2017-03-31 2018-10-04 住友化学株式会社 リチウム複合金属酸化物の製造方法
JP2018172256A (ja) * 2017-03-31 2018-11-08 住友化学株式会社 リチウム複合金属酸化物の製造方法
KR20200022439A (ko) * 2017-06-23 2020-03-03 유미코아 알루미늄으로 도핑된 베타-니켈 수산화물
KR102346042B1 (ko) 2017-06-23 2021-12-31 유미코아 알루미늄으로 도핑된 베타-니켈 수산화물
WO2018234112A1 (en) 2017-06-23 2018-12-27 Umicore β-NICKEL HYDROXIDE DOPED WITH ALUMINUM
US11919783B2 (en) 2017-06-23 2024-03-05 Umicore Beta-nickel hydroxide doped with aluminum
CN110651388A (zh) * 2017-06-28 2020-01-03 住友金属矿山株式会社 非水电解质二次电池用正极活性物质及其制造方法、以及非水电解质二次电池
JP2019149371A (ja) * 2018-02-27 2019-09-05 株式会社Gsユアサ 非水電解質二次電池用正極活物質、正極活物質の製造に用いる前駆体の製造方法、正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JP7211137B2 (ja) 2018-02-27 2023-01-24 株式会社Gsユアサ 非水電解質二次電池用正極活物質、正極活物質の製造に用いる前駆体の製造方法、正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JP7316903B2 (ja) 2018-12-27 2023-07-28 エルジー エナジー ソリューション リミテッド 二次電池用正極活物質及びその製造方法
JP2023500220A (ja) * 2019-10-23 2023-01-05 エルジー・ケム・リミテッド 正極活物質、これを含む正極およびリチウム二次電池
JP7386988B2 (ja) 2019-10-23 2023-11-27 エルジー・ケム・リミテッド 正極活物質、これを含む正極およびリチウム二次電池

Also Published As

Publication number Publication date
KR20170095888A (ko) 2017-08-23
US20170358798A1 (en) 2017-12-14
EP3240068A1 (en) 2017-11-01
EP3240068B1 (en) 2020-04-01
JPWO2016104488A1 (ja) 2017-04-27
KR102430121B1 (ko) 2022-08-05
JP6108141B2 (ja) 2017-04-05
EP3240068A4 (en) 2018-05-23
CN107112528A (zh) 2017-08-29
US11024847B2 (en) 2021-06-01
CN107112528B (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
JP6108141B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
JP6412094B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6549565B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6726102B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6026679B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
KR102434549B1 (ko) 리튬 이차 전지용 정극 활물질 전구체, 리튬 이차 전지용 정극 활물질의 제조 방법
JP6871888B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018110256A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018043671A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
CN110461770B (zh) 锂金属复合氧化物的制造方法
WO2018181402A1 (ja) リチウムニッケル複合酸化物の製造方法
WO2017078136A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池
WO2018021453A1 (ja) リチウムニッケル複合酸化物の製造方法
JP6843732B2 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6360374B2 (ja) リチウム含有複合金属酸化物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565526

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177017131

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015873056

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15538401

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE