WO2014133064A1 - 正極活物質、正極材料、正極および非水電解質二次電池 - Google Patents

正極活物質、正極材料、正極および非水電解質二次電池 Download PDF

Info

Publication number
WO2014133064A1
WO2014133064A1 PCT/JP2014/054830 JP2014054830W WO2014133064A1 WO 2014133064 A1 WO2014133064 A1 WO 2014133064A1 JP 2014054830 W JP2014054830 W JP 2014054830W WO 2014133064 A1 WO2014133064 A1 WO 2014133064A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
battery
secondary battery
Prior art date
Application number
PCT/JP2014/054830
Other languages
English (en)
French (fr)
Inventor
加世田 学
井深 重夫
谷崎 博章
幸大 長野
健太 上井
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201480011338.5A priority Critical patent/CN105027336A/zh
Priority to JP2015503009A priority patent/JP6075440B2/ja
Priority to KR1020157023419A priority patent/KR20150121010A/ko
Priority to EP14756529.5A priority patent/EP2963708B1/en
Priority to US14/771,106 priority patent/US9537148B2/en
Publication of WO2014133064A1 publication Critical patent/WO2014133064A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode active material, a positive electrode material, a positive electrode, and a nonaqueous electrolyte secondary battery.
  • a nonaqueous electrolyte secondary battery generally includes a positive electrode obtained by applying a positive electrode active material or the like to a current collector, and a negative electrode obtained by applying a negative electrode active material or the like to a current collector. It has the structure connected through the electrolyte layer holding electrolyte gel. Then, when ions such as lithium ions are occluded / released in the electrode active material, a charge / discharge reaction of the battery occurs.
  • non-aqueous electrolyte secondary batteries with a low environmental load are being used not only for portable devices, but also for power supply devices for electric vehicles such as hybrid vehicles (HEV), electric vehicles (EV), and fuel cell vehicles. .
  • HEV hybrid vehicles
  • EV electric vehicles
  • fuel cell vehicles fuel cell vehicles.
  • Non-aqueous electrolyte secondary batteries intended for application to electric vehicles are required to have high output and high capacity.
  • a positive electrode active material used for a positive electrode of a non-aqueous electrolyte secondary battery for an electric vehicle a lithium-cobalt composite oxide that is a layered composite oxide can obtain a high voltage of 4V and has a high energy density. Since it has, it has already been widely put into practical use.
  • cobalt which is a raw material, is scarce in terms of resources and is expensive, there is anxiety in terms of supply of raw materials, considering the possibility that demand will increase significantly in the future. In addition, the price of cobalt raw materials may rise. Therefore, a composite oxide having a low cobalt content is desired.
  • the lithium nickel composite oxide has a layered structure like the lithium cobalt composite oxide, is cheaper than the lithium cobalt composite oxide, and is comparable to the lithium cobalt composite oxide in theoretical discharge capacity. From such a viewpoint, the lithium nickel composite oxide is expected to be able to constitute a practical large-capacity battery.
  • lithium nickel composite oxide such as a lithium nickel composite oxide as a positive electrode active material
  • the composite Charging / discharging is performed by desorption / insertion of lithium ions into the oxide.
  • the composite oxide contracts and expands as lithium ions are desorbed and inserted, resulting in a large capacity decrease due to repeated charging and discharging cycles due to factors such as the collapse of the crystal structure. In such a case, there is a problem that the capacity drop becomes significant.
  • an object of the present invention is to provide a means capable of suppressing a decrease in capacity when used for a long time in a non-aqueous electrolyte secondary battery and improving cycle characteristics.
  • the composite oxide containing lithium and nickel which is a positive electrode active material for a non-aqueous electrolyte secondary battery, has a structure of secondary particles formed by aggregation of primary particles, and the average particle size of the primary particles.
  • the above problem can be solved by controlling the value of the above to a specific range and satisfying the predetermined relationship between the average particle diameter of the primary particles and the standard deviation of the average particle diameter of the primary particles.
  • the headline and the present invention have been completed.
  • the positive electrode active material for nonaqueous electrolyte secondary batteries which consists of complex oxide containing lithium and nickel is provided.
  • the positive electrode active material has a configuration of secondary particles formed by agglomerating primary particles, the average particle size (D1) of the primary particles is 0.9 ⁇ m or less, and the average particle size (D1) of the primary particles.
  • the standard deviation ( ⁇ ) of the average particle diameter (D1) of the primary particles is characterized by satisfying the relationship of D / ⁇ 2 ⁇ 24.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a core-shell type positive electrode material.
  • FIG. 6 is a schematic cross-sectional view showing another embodiment of a core-shell type positive electrode material.
  • 1 is a schematic cross-sectional view showing a basic configuration of a non-aqueous electrolyte lithium ion secondary battery that is not a flat (stacked) bipolar type, which is an embodiment of a nonaqueous electrolyte lithium ion secondary battery. It is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of a secondary battery
  • a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a composite oxide containing lithium and nickel, and has a structure of secondary particles obtained by agglomerating primary particles.
  • the average particle diameter (D1) of the primary particles is 0.9 ⁇ m or less, the average particle diameter (D1) of the primary particles, and the standard deviation ( ⁇ ) of the average particle diameter (D1) of the primary particles,
  • a positive electrode active material for a non-aqueous electrolyte secondary battery that satisfies a relationship of D / ⁇ 2 ⁇ 24.
  • the amount of contraction-expansion displacement of the active material particles can be originally reduced because the average particle diameter (D1) of the primary particles is small. Moreover, the dispersion
  • the composite oxide containing lithium and nickel when charging / discharging is performed by lithium ions being desorbed / inserted, the lithium ions are desorbed / inserted. Thus, the composite oxide contracts and expands. For this reason, there has been a problem that due to factors such as the collapse of the crystal structure, a large capacity drop occurs as the charge / discharge cycle is repeated, and the capacity drop (decrease in cycle characteristics) becomes significant when the battery is used for a long time.
  • a laminated structure battery particularly a battery for vehicle use, is different from a battery generally used for a mobile phone or a mobile personal computer, and therefore, there is a concern that a large temperature difference is generated between the inside and outside of the laminate. It is considered that the temperature of the laminated structure battery is most likely to rise inside the lamination direction, and the temperature decreases due to heat radiation from the exterior as it goes toward the end.
  • a positive electrode material having a layered rock salt structure such as a lithium-nickel composite oxide has a temperature dependency in the reaction, and the crystal structure is likely to collapse as the temperature rises.
  • the present inventors have considered in-vehicle batteries with such strict requirements in mind, and examined lithium nickel-based composite oxides that can be used for secondary batteries having high volumetric energy density while improving cycle characteristics. Went.
  • the average particle size (D1) of primary particles, and the average particle size (D1) of primary particles and primary particles It was found that by controlling the relationship between the average particle diameter (D1) and the standard deviation ( ⁇ ) within a predetermined range, a positive electrode active material excellent in cycle characteristics can be provided while suppressing a decrease in volume energy density. Is.
  • the positive electrode active material which concerns on this form consists of complex oxide containing lithium and nickel
  • the composition is not specifically limited.
  • a typical example of a composite oxide containing lithium and nickel is lithium nickel composite oxide (LiNiO 2 ).
  • a composite oxide in which some of the nickel atoms of the lithium nickel composite oxide are substituted with other metal atoms is more preferable.
  • a lithium-nickel-manganese-cobalt composite oxide hereinafter simply referred to as “NMC composite” is preferable.
  • oxide (Also referred to as “oxide”) has a layered crystal structure in which a lithium atomic layer and a transition metal (Mn, Ni, and Co are arranged in order) are alternately stacked via an oxygen atomic layer.
  • a lithium atomic layer Li atomic layer
  • a transition metal Mn, Ni, and Co are arranged in order
  • One Li atom is contained per atom, and the amount of Li that can be taken out is twice that of the spinel-type lithium manganese oxide, that is, the supply capacity is doubled, so that a high capacity can be obtained.
  • LiNiO 2 since it has higher thermal stability than LiNiO 2 , it is particularly advantageous among the nickel-based composite oxides used as the positive electrode active material.
  • the NMC composite oxide includes a composite oxide in which a part of the transition metal element is substituted with another metal element.
  • Other elements in that case include Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, Fe, B, Ga, In, Si, Mo, Y, Sn, V, Cu , Ag, Zn, etc., preferably Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, more preferably Ti, Zr, P, Al, Mg, From the viewpoint of improving cycle characteristics, Ti, Zr, Al, Mg, and Cr are more preferable.
  • a represents the atomic ratio of Li
  • b represents the atomic ratio of Ni
  • c represents the atomic ratio of Co
  • d represents the atomic ratio of Mn
  • x represents the atomic ratio of M. Represents. From the viewpoint of cycle characteristics, it is preferable that 0.4 ⁇ b ⁇ 0.6 in the general formula (1).
  • the composition of each element can be measured by, for example, inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • Ni nickel
  • Co cobalt
  • Mn manganese
  • Ti or the like partially replaces the transition metal in the crystal lattice. From the viewpoint of cycle characteristics, it is preferable that a part of the transition element is substituted with another metal element, and it is particularly preferable that 0 ⁇ x ⁇ 0.3 in the general formula (1). Since at least one selected from the group consisting of Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, and Cr is dissolved, the crystal structure is stabilized. It is considered that the battery capacity can be prevented from decreasing even if the above is repeated, and that excellent cycle characteristics can be realized.
  • the present inventors charge and discharge the above-mentioned charge and discharge when the metal composition of nickel, manganese and cobalt is not uniform, for example, LiNi 0.5 Mn 0.3 Co 0.2 O 2. It has been found that the influence of strain / cracking of the complex oxide at the time increases. This is presumably because the stress applied to the inside of the particles during expansion and contraction is distorted and cracks are more likely to occur in the composite oxide due to the non-uniform metal composition. Therefore, for example, a complex oxide having a rich Ni abundance ratio (for example, LiNi 0.8 Mn 0.1 Co 0.1 O 2 ) or a complex oxide having a uniform ratio of Ni, Mn, and Co.
  • a complex oxide having a rich Ni abundance ratio for example, LiNi 0.8 Mn 0.1 Co 0.1 O 2
  • a complex oxide having a uniform ratio of Ni, Mn, and Co for example, LiNi 0.8 Mn 0.1 Co 0.1 O 2
  • the positive electrode active material according to the present embodiment has a secondary particle configuration in which primary particles are aggregated.
  • the average particle diameter (D1) of the said primary particle shall be 0.9 micrometer or less.
  • the average particle diameter (D1) of the primary particles and the standard deviation ( ⁇ ) of the average particle diameter (D1) of the primary particles satisfy the relationship of D / ⁇ 2 ⁇ 24.
  • D1 and ⁇ variations in D1 can be suppressed.
  • the refinement (cracking) of the secondary particles due to the collapse of the crystal structure due to the contraction-expansion of the active material is suppressed.
  • a non-aqueous electrolyte secondary battery having a reduced capacity when used for a long time and having excellent cycle characteristics is provided.
  • the technical scope of the present invention is not limited by this mechanism.
  • the average particle diameter (D1) of the primary particles is preferably 0.20 to 0.6 ⁇ m, more preferably 0.25 to 0.5 ⁇ m.
  • the average particle diameter (D2) of the secondary particles is preferably 5 to 20 ⁇ m, more preferably 5 to 15 ⁇ m. Further, the value of these ratios (D2 / D1) is preferably larger than 11, more preferably 15 to 50, and further preferably 25 to 40.
  • the primary particles constituting the lithium nickel composite oxide usually have a hexagonal crystal structure having a layered structure, but the crystallite size has a correlation with the size of D1. Yes.
  • crystallite means the largest group that can be regarded as a single crystal, and can be measured by a method of refining the crystal structure parameters from the diffraction intensity obtained by powder X-ray diffraction measurement or the like.
  • a crystallite diameter Preferably it is 1 micrometer or less, More preferably, it is 0.55 micrometer or less, More preferably, it is 0.4 micrometer or less.
  • the tap density of the positive electrode active material according to this embodiment is preferably 2.0 g / cm 3 or more, more preferably 2.3 g / cm 3 or more, and further preferably 2.4 to 2.9 g / cm 3. It is. By setting it as such a structure, the high density of the primary particle which comprises the secondary particle of a positive electrode active material is fully ensured, and the improvement effect of cycling characteristics can also be maintained.
  • the BET specific surface area of the positive electrode active material according to this embodiment is preferably 0.1 to 1.0 m 2 / g, more preferably 0.3 to 1.0 m 2 / g, and particularly preferably 0. .3 to 0.7 m 2 / g.
  • the specific surface area of the active material is in such a range, the reaction area of the active material is ensured and the internal resistance of the battery is reduced, so that the occurrence of polarization during the electrode reaction can be minimized.
  • the diffraction peak intensity ratio ((003) / (104)) is obtained by the diffraction peak of (104) plane and the diffraction peak of (003) plane obtained by powder X-ray diffraction measurement. Is preferably 1.28 or more, more preferably 1.35 to 2.1.
  • the diffraction peak integrated intensity ratio ((003) / (104)) is preferably 1.05 or more, more preferably 1.08 or more, and further preferably 1.10 to 1.45. is there. These rules are preferable for the following reasons. That is, the lithium nickel composite oxide has a layered rock salt structure in which a Li + layer and a Ni 3+ layer exist between oxygen layers.
  • Ni 3+ is easily reduced to Ni 2+, and because substantially equal to the Ni 2+ ion radius (0.83 ⁇ ) is Li + ion radius (0.90 ⁇ ), Ni to Li + defect occurring during active material synthesized 2+ tends to be mixed.
  • Ni 2+ is mixed into the Li + site, a locally electrochemically inactive structure is formed and Li + diffusion is prevented. For this reason, when an active material with low crystallinity is used. Battery charge / discharge capacity may decrease and durability may decrease.
  • the above definition is used as an index of the crystallinity.
  • the ratio of the intensity of diffraction peaks of the (003) plane and the (104) plane and the ratio of the integrated intensity of the diffraction peaks by crystal structure analysis using X-ray diffraction. was used.
  • these parameters satisfy the above-mentioned rules, defects in the crystal are reduced, and a decrease in battery charge / discharge capacity and a decrease in durability can be suppressed.
  • Such crystallinity parameters can be controlled by the raw material, composition, firing conditions, and the like.
  • the positive electrode active material according to the present embodiment it is considered that since the distortion of the structure due to the expansion and contraction associated with the charge / discharge cycle can be suppressed, the peeling of the particles due to the expansion and contraction of the portion having a high temperature load can be suppressed. Therefore, even in a battery that is assumed to be used for a long period of time, such as a laminated vehicle battery, a decrease in capacity due to long-term use is suppressed.
  • the lithium nickel-based composite oxide such as the NMC composite oxide according to the present embodiment can be prepared by selecting various known methods such as a coprecipitation method and a spray drying method.
  • the coprecipitation method is preferably used because the complex oxide according to this embodiment is easy to prepare.
  • a method for synthesizing the NMC composite oxide for example, a method described in JP 2011-105588 A (corresponding to US Patent Application Publication No. 2013/045421 incorporated in its entirety by reference) It can be obtained by producing a nickel-cobalt-manganese composite oxide by a coprecipitation method, and then mixing the nickel-cobalt-manganese composite oxide with a lithium compound and baking. This will be specifically described below.
  • the raw material compound of the composite oxide for example, Ni compound, Mn compound and Co compound is dissolved in an appropriate solvent such as water so as to have a desired composition of the active material.
  • the Ni compound, Mn compound, and Co compound include sulfates, nitrates, carbonates, acetates, oxalates, oxides, hydroxides, and halides of the metal elements.
  • Specific examples of the Ni compound, Mn compound, and Co compound include, but are not limited to, nickel sulfate, cobalt sulfate, manganese sulfate, nickel acetate, cobalt acetate, and manganese acetate.
  • Ti, Zr, Nb as a metal element that substitutes a part of the layered lithium metal composite oxide constituting the active material so as to have a desired active material composition.
  • W, P, Al, Mg, V, Ca, Sr, and a compound containing at least one metal element such as Cr may be further mixed.
  • the coprecipitation reaction can be performed by neutralization and precipitation reaction using the above raw material compound and an alkaline solution.
  • the metal composite hydroxide and metal composite carbonate containing the metal contained in the said raw material compound are obtained.
  • the alkaline solution for example, an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia or the like can be used, but sodium hydroxide, sodium carbonate or a mixed solution thereof is preferably used for the neutralization reaction. .
  • an aqueous ammonia solution or an ammonium salt is preferably used for the complex reaction.
  • the addition amount of the alkaline solution used for the neutralization reaction may be an equivalent ratio of 1.0 with respect to the neutralized content of all the metal salts contained, but it is preferable to add the alkali excess together for pH adjustment.
  • the addition amount of the aqueous ammonia solution or ammonium salt used for the complex reaction is preferably such that the ammonia concentration in the reaction solution is in the range of 0.01 to 2.00 mol / l.
  • the pH of the reaction solution is preferably controlled in the range of 10.0 to 13.0.
  • the reaction temperature is preferably 30 ° C. or higher, more preferably 30 to 60 ° C.
  • the composite hydroxide obtained by the coprecipitation reaction is then preferably suction filtered, washed with water and dried.
  • the particle size of the composite hydroxide can be controlled by adjusting the conditions (stirring time, alkali concentration, etc.) for carrying out the coprecipitation reaction, which is the secondary electrode of the positive electrode active material finally obtained. It affects the average particle size (D2) of the particles.
  • the nickel-cobalt-manganese composite hydroxide is mixed with a lithium compound and fired to obtain a lithium-nickel-manganese-cobalt composite oxide.
  • the Li compound include lithium hydroxide or a hydrate thereof, lithium peroxide, lithium nitrate, and lithium carbonate.
  • the firing process may be performed in one stage, but is preferably performed in two stages (temporary firing and main firing).
  • a composite oxide can be obtained efficiently by two-stage firing.
  • the pre-baking conditions are not particularly limited, and differ depending on the lithium raw material, so that it is difficult to uniquely define them.
  • the factors for controlling D1 and ⁇ (and hence D1 / ⁇ 2 ) and the crystallite diameter are particularly the firing temperature and firing time during firing (temporary firing and main firing in the case of two stages). It is important to adjust D1 and ⁇ (D1 / ⁇ 2 ) and the crystallite diameter by adjusting them based on the following tendency. That is, when the firing time is lengthened, D1, ⁇ , and crystallite diameter increase.
  • the temperature rising rate is preferably 1 to 20 ° C./min from room temperature.
  • the atmosphere is preferably in air or in an oxygen atmosphere.
  • the pre-baking temperature is preferably 500 to 900 ° C., more preferably 600 to 800 ° C., further preferably 650. ⁇ 750 ° C.
  • the pre-baking time is preferably 0.5 to 10 hours, more preferably 4 to 6 hours.
  • the conditions for the main firing are not particularly limited, but the rate of temperature rise is preferably from room temperature to 1 to 20 ° C./min.
  • the atmosphere is preferably in air or in an oxygen atmosphere.
  • the firing temperature is preferably 800 to 1200 ° C., more preferably 850 to 1100 ° C., and further preferably 900 to 1050. ° C.
  • the pre-baking time is preferably 1 to 20 hours, more preferably 8 to 12 hours.
  • a method of previously mixing with nickel, cobalt, manganate Any means such as a method of adding nickel, cobalt and manganate simultaneously, a method of adding to the reaction solution during the reaction, a method of adding to the nickel-cobalt-manganese composite oxide together with the Li compound may be used.
  • the composite oxide of the present invention can be produced by appropriately adjusting the reaction conditions such as the pH of the reaction solution, the reaction temperature, the reaction concentration, the addition rate, and the stirring time.
  • the core portion including the positive electrode active material according to the first embodiment described above and the shell portion including a lithium-containing composite oxide different from the positive electrode active material.
  • a core-shell type positive electrode material for a non-aqueous electrolyte secondary battery is provided.
  • FIG. 1A is a schematic cross-sectional view of an active material particle showing an embodiment of a core-shell type positive electrode material, showing a core-shell structure with different active material materials in the inside of the particle.
  • 1 is a shell part of positive electrode material
  • 2 is a core part of positive electrode material
  • 3 is positive electrode material.
  • Such a core-shell structure further improves the cycle characteristics of the nonaqueous electrolyte secondary battery.
  • the particles of the NMC composite oxide after the cycle endurance test were analyzed, a decrease in Ni valence was confirmed only in the particle surface layer portion.
  • the present inventors set a hypothesis that Ni may be deactivated in the particle surface layer portion and may not substantially contribute to charge / discharge.
  • the core part may be a single layer (single layer) or may be composed of two or more layers.
  • the aspect in which the core part is composed of two or more layers includes (1) a structure in which a plurality of concentric layers are laminated from the surface of the core part toward the center part, and (2) continuous from the surface of the core part toward the center part.
  • a structure in which the content is changed is also included.
  • the performance such as capacity and output increases from the surface of the core toward the center. Or it can be changed (functional gradient) to decrease.
  • what can be manufactured with the granulation technique using 2 or more types of materials may be contained.
  • a sea-island structure in which different materials are scattered and arranged in an island shape in the matrix material may be used.
  • (4) a structure in which different materials are arranged for each hemispherical portion of the core particle may be used.
  • a secondary particle (aggregation) structure in which fine particle groups made of different materials are gathered together, consolidated, and granulated may be used.
  • a structure in which the above (1) to (5) are appropriately combined can be mentioned. From the viewpoint of ease of manufacturing, reduction in the number of materials and manufacturing man-hours (reduction in materials and manufacturing costs), etc., it is desirable to configure with one layer (single layer).
  • the shape of the core part is not particularly limited, and examples thereof include a spherical shape, a cubic shape, a rectangular parallelepiped shape, an elliptical spherical shape, a needle shape, a plate shape, a square shape, a columnar shape, and an indefinite shape. Spherical and elliptical spheres are preferred.
  • the shell portion may be formed on the outer side (outer layer) of the core portion, and may be one layer (single layer) or may be composed of two or more layers.
  • the shell portion is not limited to a form covering the entire core part, and may be a form covering a part (that is, the shell part complex oxide is arranged to be scattered on the core part complex oxide surface). And a part of the surface of the core part may be left exposed).
  • the shell portion may be arranged in a layer so as to cover the entire surface of the core portion (see FIG. 1A), or the entire surface of the core portion is covered with a large number of fine particles (powder) (attachment). (See FIG. 1B).
  • Examples of the configuration in which the shell part is composed of two or more layers include the structures (1) to (5) described in the core part.
  • the lithium composite oxide contained in the shell portion is not particularly limited as long as it is a lithium-containing composite oxide different from the positive electrode active material according to the first embodiment of the present invention described above.
  • LiMn Lithium manganate having a composition different from the positive electrode active material according to the first embodiment described above for example, lithium manganate having a spinel structure such as 2 O 4, lithium manganate such as LiMnO 2 and Li 2 MnO 3) NMC composite oxide
  • lithium cobaltate such as LiCoO 2
  • lithium nickel oxide such as LiNiO 2
  • lithium-iron oxides such as LiFeO 2
  • a lithium nickel composite oxide for example, NMC composite oxide
  • lithium nickelate lithium nickelate
  • spinel manganese positive electrode active material having a composition different from that of the positive electrode active material according to the first embodiment described above.
  • NMC composite oxide having a composition different from that of the positive electrode active material according to the first embodiment preferably, general formula (2): Li a ′ Ni b ′ Co c ′ Mn d ′ M x ′ O 2 (where a ′, b ′, c ′, d ′, and x ′ are 0.9 ⁇ a ′ ⁇ 1.2, 0 ⁇ b ′ ⁇ 1, 0 ⁇ c ′ ⁇ 0.
  • M is selected from Ti, Zr, Nb, W, P, Al, Mg, V, Ca, and Sr It is more preferable that the element is represented by the formula:
  • the positive electrode active material contained in the core portion is the general formula (1), wherein b, c, and d are 0.49 ⁇ b ⁇ 0.51, 0.29 ⁇ c ⁇ 0.31, 0.19 ⁇ . It is a composite oxide in which d ⁇ 0.21, and the composite oxide contained in the shell portion is preferably a lithium nickel composite oxide having a composition different from that of the positive electrode active material according to the first embodiment described above.
  • the NMC composite oxide having a composition different from that of the positive electrode active material according to the first embodiment described above is more preferable.
  • the shell part may be used alone or in combination of two or more.
  • the active material may be used alone for each layer, or two or more types may be mixed and used.
  • the shell part is preferably 1 to 30% by weight and more preferably 1 to 15% by weight with respect to 100% by weight of the core part.
  • a positive electrode material having a core-shell structure can be manufactured by a method described in JP-A-2007-213866.
  • a positive electrode material comprising the positive electrode active material according to the first aspect of the present invention described above and a spinel manganese positive electrode active material in a mixed state.
  • the inventors of the present application have found that the NMC composite oxide has a large voltage drop during high-power discharge at a low temperature, and there is a problem that the output of the vehicle is insufficient in a cold region, for example.
  • the inventors have found that mixing with a spinel-based manganese positive electrode active material causes little voltage drop during high-power discharge at low temperatures, for example, less vehicle output even in cold regions.
  • the positive electrode active material according to the first aspect of the present invention, the core-shell type positive electrode material, and the positive electrode according to the first aspect are formed on the surface of the positive electrode current collector.
  • a positive electrode in which a positive electrode active material layer containing at least one selected from the group consisting of positive electrode materials obtained by mixing an active material and a spinel manganese positive electrode active material is formed.
  • the positive electrode active material according to the first aspect of the present invention is used with respect to 100% by weight of the material that can function as the positive electrode active material contained in the positive electrode active material layer.
  • the total content of materials selected from the group consisting of positive electrode materials obtained by mixing the positive electrode active material and the spinel manganese positive electrode active material according to the embodiment is preferably 80 to 100% by weight, and 95 to 100% by weight More preferably, it is more preferably 100% by weight.
  • the positive electrode active material layer may contain other additives such as a conductive additive, a binder, an electrolyte (polymer matrix, ion conductive polymer, electrolyte, etc.), and a lithium salt to enhance ionic conductivity as necessary.
  • a conductive additive such as aluminum silicate, aluminum silicate, magnesium silicate, magnesium silicate, magnesium silicate, magnesium silicate, magnesium silicate, magnesium silicate, magnesium silicate, magnesium, magnesium, magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium
  • the content of a material that can function as a positive electrode active material is preferably 85 to 99.5% by weight.
  • binder Although it does not specifically limit as a binder used for a positive electrode active material layer, for example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC) and its salts, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR) ), Isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and hydrogenated product thereof.
  • Thermoplastic polymers such as products, polyvinylidene fluoride (P
  • the amount of the binder contained in the positive electrode active material layer is not particularly limited as long as it is an amount capable of binding the active material, but preferably 0.5 to 15% by weight with respect to the active material layer. More preferably, it is 1 to 10% by weight.
  • the positive electrode active material layer further contains other additives such as a conductive additive, an electrolyte (polymer matrix, ion conductive polymer, electrolytic solution, etc.), and a lithium salt for improving ion conductivity, as necessary.
  • the conductive assistant means an additive blended to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer.
  • the conductive auxiliary agent include carbon materials such as carbon black such as ketjen black and acetylene black, graphite, and carbon fiber.
  • electrolyte salt examples include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
  • Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
  • the compounding ratio of the components contained in the positive electrode active material layer and the negative electrode active material layer described later is not particularly limited.
  • the blending ratio can be adjusted by appropriately referring to known knowledge about lithium ion secondary batteries.
  • the thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to. As an example, the thickness of each active material layer is about 2 to 100 ⁇ m.
  • a nonaqueous electrolyte secondary battery having a power generation element including the positive electrode described above, a negative electrode in which a negative electrode active material layer is formed on the surface of a negative electrode current collector, and a separator. Is provided.
  • non-aqueous electrolyte lithium ion secondary battery will be described as a preferred embodiment of the non-aqueous electrolyte secondary battery, but is not limited to the following embodiment.
  • the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
  • FIG. 2 is a schematic cross-sectional view schematically showing the basic structure of a non-aqueous electrolyte lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”) that is not a flat (stacked) bipolar type.
  • the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a battery exterior material 29 that is an exterior body.
  • the power generation element 21 has a configuration in which a positive electrode, a separator 17, and a negative electrode are stacked.
  • the separator 17 contains a nonaqueous electrolyte (for example, a liquid electrolyte).
  • the positive electrode has a structure in which the positive electrode active material layer 13 is disposed on both surfaces of the positive electrode current collector 11.
  • the negative electrode has a structure in which the negative electrode active material layers 15 are disposed on both surfaces of the negative electrode current collector 12.
  • the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto are opposed to each other with a separator 17 therebetween.
  • the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 2 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
  • the positive electrode active material layer 13 is disposed on only one side of the outermost positive electrode current collector located on both outermost layers of the power generation element 21, but active material layers may be provided on both sides. That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector.
  • the arrangement of the positive electrode and the negative electrode is reversed from that in FIG. 2 so that the outermost negative electrode current collector is positioned on both outermost layers of the power generation element 21, and the outermost negative electrode current collector is disposed on one or both surfaces.
  • a negative electrode active material layer may be disposed.
  • the positive electrode current collector 11 and the negative electrode current collector 12 are each provided with a positive electrode current collector plate (tab) 25 and a negative electrode current collector plate (tab) 27 that are electrically connected to the respective electrodes (positive electrode and negative electrode). It has the structure led out of the battery exterior material 29 so that it may be pinched
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode, respectively, via a positive electrode lead and a negative electrode lead (not shown) as necessary. Or resistance welding or the like.
  • FIG. 2 illustrates a flat battery (stacked battery) that is not a bipolar battery, but a positive electrode active material layer that is electrically coupled to one surface of the current collector and the opposite side of the current collector.
  • a bipolar battery including a bipolar electrode having a negative electrode active material layer electrically coupled to the surface.
  • one current collector also serves as a positive electrode current collector and a negative electrode current collector.
  • the negative electrode active material layer contains an active material, and other additives such as a conductive additive, a binder, an electrolyte (polymer matrix, ion conductive polymer, electrolyte, etc.), and a lithium salt to enhance ionic conductivity as necessary.
  • a conductive additive such as a conductive additive, a binder, an electrolyte (polymer matrix, ion conductive polymer, electrolyte, etc.), and a lithium salt to enhance ionic conductivity as necessary.
  • An agent is further included.
  • Other additives such as conductive assistants, binders, electrolytes (polymer matrix, ion conductive polymers, electrolytes, etc.) and lithium salts for improving ion conductivity are those described in the above positive electrode active material layer column. It is the same.
  • the negative electrode active material layer preferably contains at least an aqueous binder.
  • a water-based binder has a high binding power.
  • it is easy to procure water as a raw material and since steam is generated at the time of drying, the capital investment in the production line can be greatly suppressed, and the environmental load can be reduced. There is.
  • the water-based binder refers to a binder using water as a solvent or a dispersion medium, and specifically includes a thermoplastic resin, a polymer having rubber elasticity, a water-soluble polymer, or a mixture thereof.
  • the binder using water as a dispersion medium refers to a polymer that includes all expressed as latex or emulsion and is emulsified or suspended in water.
  • kind a polymer latex that is emulsion-polymerized in a system that self-emulsifies.
  • water-based binders include styrene polymers (styrene-butadiene rubber, styrene-vinyl acetate copolymer, styrene-acrylic copolymer, etc.), acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, ) Acrylic polymers (polyethyl acrylate, polyethyl methacrylate, polypropyl acrylate, polymethyl methacrylate (methyl methacrylate rubber), polypropyl methacrylate, polyisopropyl acrylate, polyisopropyl methacrylate, polybutyl acrylate, polybutyl methacrylate, polyhexyl acrylate , Polyhexyl methacrylate, polyethylhexyl acrylate, polyethylhexyl methacrylate, polylauryl acrylate, polylauryl meta Acrylate, etc.), polytyren
  • the aqueous binder may contain at least one rubber binder selected from the group consisting of styrene-butadiene rubber, acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, and methyl methacrylate rubber from the viewpoint of binding properties. preferable. Furthermore, it is preferable that the water-based binder contains styrene-butadiene rubber because of good binding properties.
  • Water-soluble polymers suitable for use in combination with styrene-butadiene rubber include polyvinyl alcohol and modified products thereof, starch and modified products thereof, cellulose derivatives (such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, and salts thereof), polyvinyl Examples include pyrrolidone, polyacrylic acid (salt), or polyethylene glycol. Among them, it is preferable to combine styrene-butadiene rubber and carboxymethyl cellulose (salt) as a binder.
  • the content of the aqueous binder is preferably 80 to 100% by weight, preferably 90 to 100% by weight, and preferably 100% by weight.
  • the negative electrode active material examples include carbon materials such as graphite (graphite), soft carbon, and hard carbon, lithium-transition metal composite oxides (for example, Li 4 Ti 5 O 12 ), metal materials, lithium alloy negative electrode materials, and the like. Is mentioned. In some cases, two or more negative electrode active materials may be used in combination. Preferably, from the viewpoint of capacity and output characteristics, a carbon material or a lithium-transition metal composite oxide is used as the negative electrode active material. Of course, negative electrode active materials other than those described above may be used.
  • the average particle diameter of the negative electrode active material is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m from the viewpoint of increasing the output.
  • the separator has a function of holding an electrolyte and ensuring lithium ion conductivity between the positive electrode and the negative electrode, and a function as a partition wall between the positive electrode and the negative electrode.
  • separator examples include a separator made of a porous sheet made of a polymer or fiber that absorbs and holds the electrolyte and a nonwoven fabric separator.
  • a microporous (microporous film) can be used as the separator of the porous sheet made of polymer or fiber.
  • the porous sheet made of the polymer or fiber include polyolefins such as polyethylene (PE) and polypropylene (PP); a laminate in which a plurality of these are laminated (for example, three layers of PP / PE / PP) And a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • PE polyethylene
  • PP polypropylene
  • a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • the thickness of the microporous (microporous membrane) separator cannot be uniquely defined because it varies depending on the intended use. For example, in applications such as secondary batteries for driving motors such as electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV), it is 4 to 60 ⁇ m in a single layer or multiple layers. Is desirable.
  • the fine pore diameter of the microporous (microporous membrane) separator is desirably 1 ⁇ m or less (usually a pore diameter of about several tens of nm).
  • nonwoven fabric separator cotton, rayon, acetate, nylon, polyester; polyolefins such as PP and PE; conventionally known ones such as polyimide and aramid are used alone or in combination.
  • the bulk density of the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated electrolyte.
  • the thickness of the nonwoven fabric separator may be the same as that of the electrolyte layer, and is preferably 5 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the separator includes an electrolyte.
  • the electrolyte is not particularly limited as long as it can exhibit such a function, but a liquid electrolyte or a gel polymer electrolyte is used.
  • a gel polymer electrolyte By using the gel polymer electrolyte, the distance between the electrodes is stabilized, the occurrence of polarization is suppressed, and the durability (cycle characteristics) is improved.
  • the liquid electrolyte functions as a lithium ion carrier.
  • the liquid electrolyte constituting the electrolytic solution layer has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer.
  • organic solvent include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • ethyl methyl carbonate ethyl methyl carbonate.
  • Li (CF 3 SO 2) 2 N Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF such 6, LiCF 3 SO 3
  • a compound that can be added to the active material layer of the electrode can be similarly employed.
  • the liquid electrolyte may further contain additives other than the components described above.
  • additives include, for example, vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate, phenyl vinylene carbonate, diphenyl vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, vinyl ethylene carbonate, 1,2-divinyl ethylene carbonate.
  • vinylene carbonate, methyl vinylene carbonate, and vinyl ethylene carbonate are preferable, and vinylene carbonate and vinyl ethylene carbonate are more preferable.
  • These cyclic carbonates may be used alone or in combination of two or more.
  • the gel polymer electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer.
  • a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and the ion conductivity between the layers is easily cut off.
  • ion conductive polymer used as the matrix polymer (host polymer) examples include polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene glycol (PEG), polyacrylonitrile (PAN), polyvinylidene fluoride-hexafluoropropylene ( PVdF-HEP), poly (methyl methacrylate (PMMA), and copolymers thereof.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • PEG polyethylene glycol
  • PAN polyacrylonitrile
  • PVdF-HEP polyvinylidene fluoride-hexafluoropropylene
  • PMMA methyl methacrylate
  • the matrix polymer of gel electrolyte can express excellent mechanical strength by forming a crosslinked structure.
  • thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator.
  • a polymerization treatment may be performed.
  • the separator is preferably a separator in which a heat-resistant insulating layer is laminated on a porous substrate (a separator with a heat-resistant insulating layer).
  • the heat-resistant insulating layer is a ceramic layer containing inorganic particles and a binder.
  • a highly heat-resistant separator having a melting point or a heat softening point of 150 ° C. or higher, preferably 200 ° C. or higher is used.
  • the separator is less likely to curl in the battery manufacturing process due to the effect of suppressing thermal shrinkage and high mechanical strength.
  • the inorganic particles in the heat resistant insulating layer contribute to the mechanical strength and heat shrinkage suppressing effect of the heat resistant insulating layer.
  • the material used as the inorganic particles is not particularly limited. Examples thereof include silicon, aluminum, zirconium, titanium oxides (SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 ), hydroxides and nitrides, and composites thereof. These inorganic particles may be derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine and mica, or may be artificially produced. Moreover, only 1 type may be used individually for these inorganic particles, and 2 or more types may be used together. Of these, silica (SiO 2 ) or alumina (Al 2 O 3 ) is preferably used, and alumina (Al 2 O 3 ) is more preferably used from the viewpoint of cost.
  • the basis weight of the heat-resistant particles is not particularly limited, but is preferably 5 to 15 g / m 2 . If it is this range, sufficient ion conductivity will be acquired and it is preferable at the point which maintains heat resistant strength.
  • the binder in the heat-resistant insulating layer has a role of adhering the inorganic particles and the inorganic particles to the resin porous substrate layer. With the binder, the heat-resistant insulating layer is stably formed, and peeling between the porous substrate layer and the heat-resistant insulating layer is prevented.
  • the binder used for the heat-resistant insulating layer is not particularly limited.
  • a compound such as butadiene rubber, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), or methyl acrylate can be used as a binder.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVF polyvinyl fluoride
  • methyl acrylate methyl acrylate
  • PVDF polyvinylidene fluoride
  • these compounds only 1 type may be used independently and 2 or more types may be used together.
  • the binder content in the heat resistant insulating layer is preferably 2 to 20% by weight with respect to 100% by weight of the heat resistant insulating layer.
  • the binder content is 2% by weight or more, the peel strength between the heat-resistant insulating layer and the porous substrate layer can be increased, and the vibration resistance of the separator can be improved.
  • the binder content is 20% by weight or less, the gaps between the inorganic particles are appropriately maintained, so that sufficient lithium ion conductivity can be ensured.
  • the thermal contraction rate of the separator with a heat-resistant insulating layer is preferably 10% or less for both MD and TD after holding for 1 hour at 150 ° C. and 2 gf / cm 2 .
  • examples of the metal include aluminum, nickel, iron, stainless steel, titanium, copper, and other alloys.
  • a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used.
  • covered on the metal surface may be sufficient.
  • aluminum, stainless steel, and copper are preferable from the viewpoints of electronic conductivity and battery operating potential.
  • the size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used. There is no particular limitation on the thickness of the current collector.
  • the thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the material which comprises a current collector plate (25, 27) is not restrict
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 may be made of the same material or different materials.
  • the battery outer case 29 a known metal can case can be used, and a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used.
  • a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used as the laminate film, but the laminate film is not limited thereto.
  • a laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV.
  • the exterior body is more preferably an aluminate laminate.
  • FIG. 3 is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of the secondary battery.
  • the flat lithium ion secondary battery 50 has a rectangular flat shape, and a positive electrode tab 58 and a negative electrode tab 59 for taking out electric power are drawn out from both sides thereof.
  • the power generation element 57 is encased by the battery outer packaging material 52 of the lithium ion secondary battery 50, and the periphery thereof is heat-sealed. The power generation element 57 is sealed with the positive electrode tab 58 and the negative electrode tab 59 pulled out to the outside.
  • the power generation element 57 corresponds to the power generation element 21 of the lithium ion secondary battery 10 illustrated in FIG. 2 described above.
  • the power generation element 57 is formed by laminating a plurality of single battery layers (single cells) 19 including a positive electrode (positive electrode active material layer) 13, an electrolyte layer 17, and a negative electrode (negative electrode active material layer) 15.
  • the lithium ion secondary battery is not limited to a stacked flat shape.
  • the wound lithium ion secondary battery may have a cylindrical shape, or may have a shape that is a flattened rectangular shape by deforming such a cylindrical shape.
  • a laminate film may be used for the exterior material, and the conventional cylindrical can (metal can) may be used, for example, It does not restrict
  • the power generation element is covered with an aluminum laminate film. With this configuration, weight reduction can be achieved.
  • the tabs 58 and 59 shown in FIG. 3 are not particularly limited.
  • the positive electrode tab 58 and the negative electrode tab 59 may be drawn out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of parts and taken out from each side, as shown in FIG. It is not limited to.
  • a terminal may be formed using a cylindrical can (metal can).
  • the battery storage space is about 170L. Since auxiliary devices such as cells and charge / discharge control devices are stored in this space, the storage efficiency of a normal cell is about 50%. The efficiency of loading cells into this space is a factor that governs the cruising range of electric vehicles. If the size of the single cell is reduced, the loading efficiency is impaired, so that the cruising distance cannot be secured.
  • the battery structure in which the power generation element is covered with the exterior body is preferably large.
  • the length of the short side of the laminated cell battery is preferably 100 mm or more. Such a large battery can be used for vehicle applications.
  • the length of the short side of the laminated cell battery refers to the side having the shortest length.
  • the upper limit of the short side length is not particularly limited, but is usually 400 mm or less.
  • volume energy density and rated discharge capacity In a general electric vehicle, a travel distance (cruising range) by a single charge is 100 km. Considering such a cruising distance, the volume energy density of the battery is preferably 157 Wh / L or more, and the rated capacity is preferably 20 Wh or more.
  • the ratio of the battery area (projected area of the battery including the battery outer package) to the rated capacity is 5 cm 2 / Ah or more, and the rated capacity is 3 Ah or more.
  • the battery area per unit capacity is large, the problem of deterioration of battery characteristics (cycle characteristics) due to the collapse of the crystal structure accompanying the expansion and contraction of the active material is more likely to become apparent.
  • the nonaqueous electrolyte secondary battery according to the present embodiment is a battery having a large size as described above from the viewpoint that the merit due to the expression of the effects of the present invention is greater.
  • the aspect ratio of the rectangular electrode is preferably 1 to 3, and more preferably 1 to 2.
  • the electrode aspect ratio is defined as the aspect ratio of the rectangular positive electrode active material layer.
  • the assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
  • a small assembled battery that can be attached and detached by connecting a plurality of batteries in series or in parallel. Then, a plurality of small assembled batteries that can be attached and detached are connected in series or in parallel to provide a large capacity and large capacity suitable for vehicle drive power supplies and auxiliary power supplies that require high volume energy density and high volume output density.
  • An assembled battery having an output can also be formed. How many batteries are connected to make an assembled battery, and how many small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the mounted vehicle (electric vehicle) It may be determined according to the output.
  • the nonaqueous electrolyte secondary battery of the present invention maintains a discharge capacity even when used for a long period of time, and has good cycle characteristics. Furthermore, the volume energy density is high. Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the nonaqueous electrolyte secondary battery can be suitably used as a vehicle power source, for example, a vehicle driving power source or an auxiliary power source.
  • a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle.
  • a plug-in hybrid electric vehicle having a long EV mileage or an electric vehicle having a long charge mileage can be formed by mounting such a battery.
  • a car a hybrid car, a fuel cell car, an electric car (four-wheeled vehicles (passenger cars, trucks, buses, commercial vehicles, light cars, etc.) This is because it can be used for motorcycles (including motorcycles) and tricycles) to provide a long-life and highly reliable automobile.
  • the application is not limited to automobiles.
  • it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.
  • Example 1 Preparation of positive electrode active material Sodium hydroxide and ammonia were continuously supplied to an aqueous solution (1 mol / L) in which nickel sulfate, cobalt sulfate, and manganese sulfate were dissolved at 60 ° C. to adjust the pH to 11.3. Then, a metal composite hydroxide in which nickel, manganese and cobalt were dissolved at a molar ratio of 50:30:20 by a coprecipitation method was prepared.
  • the metal composite hydroxide and lithium carbonate were weighed so that the ratio of the total number of moles of metals other than Li (Ni, Co, Mn) and the number of moles of Li was 1: 1, and then mixed well.
  • the temperature was raised at a rate of temperature increase of 5 ° C./min, calcined at 900 ° C. for 2 hours in an air atmosphere, then heated at a rate of temperature increase of 3 ° C./min.
  • NMC composite oxide LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) was obtained.
  • the average particle diameter (D1) and crystallite diameter of the primary particles were measured, and the standard deviation ( ⁇ ) and ⁇ 2 of D1 were calculated from the value of D1 by calculation.
  • the measurement of D1 cuts out the cross section of the obtained NMC complex oxide using FIB (focused ion beam; Focused Ion Beam), and image
  • FIB focused ion beam; Focused Ion Beam
  • the tap density was measured as the powder packing density after putting the sample powder into a 10 mL glass graduated cylinder and tapping 200 times.
  • the BET specific surface area was measured by a BET one-point method using a continuous flow method using an AMS8000 type automatic powder specific surface area measuring apparatus (manufactured by Okura Riken), using nitrogen as an adsorption gas and helium as a carrier gas. .
  • the powder sample is heated and deaerated with a mixed gas at a temperature of 150 ° C., then cooled to liquid nitrogen temperature to adsorb the nitrogen / helium mixed gas, and then heated to room temperature with water.
  • the adsorbed nitrogen gas was desorbed, the amount was detected by a heat conduction detector, and the specific surface area of the sample was calculated from this.
  • the positive electrode obtained in (2) above was punched into a disk shape having a diameter of 14 mm in a glove box under an argon atmosphere to obtain a positive electrode for a coin cell.
  • a metal lithium punched into a disk shape having a diameter of 15 mm was used.
  • an electrolytic solution a solution in which 1.0 M LiPF 6 was dissolved in a mixed solvent (volume ratio 1: 1) of ethylene carbonate (EC) and dimethyl carbonate (DMC) was prepared.
  • a positive electrode and a negative electrode were laminated via a separator (material: polypropylene, thickness: 25 ⁇ m), placed in a coin cell container, injected with an electrolytic solution, and covered with an upper lid to produce an evaluation coin cell.
  • the prepared battery is left for 24 hours, and after the open circuit voltage (OCV) is stabilized, the current density with respect to the positive electrode is set to 0.2 mA / cm 2 and charged to a cutoff voltage of 4.25 V to obtain an initial charge capacity.
  • the capacity when the battery was discharged to a cutoff voltage of 3.0 V after 1 hour of rest was defined as the initial discharge capacity.
  • the capacity maintenance rate after repeating this charge / discharge cycle 200 times was determined and evaluated as cycle durability.
  • Example 2 An NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) was synthesized by the same method as in Example 1 except that the main firing conditions were 930 ° C. and 12 hours, A coin cell was produced, and each physical property evaluation and battery evaluation were performed. The results are shown in Table 1 below.
  • Example 3 A NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) was synthesized by the same method as in Example 1 except that the main firing conditions were 935 ° C. and 12 hours, A coin cell was produced, and each physical property evaluation and battery evaluation were performed. The results are shown in Table 1 below.
  • Example 4 A NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) was synthesized by the same method as in Example 1 except that the main firing conditions were 940 ° C. and 12 hours, A coin cell was produced, and each physical property evaluation and battery evaluation were performed. The results are shown in Table 1 below.
  • Example 5 A NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) was synthesized by the same method as in Example 1 except that the main firing conditions were 940 ° C. and 15 hours, A coin cell was produced, and each physical property evaluation and battery evaluation were performed. The results are shown in Table 1 below.
  • Example 6 An NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) was synthesized by the same method as in Example 1 except that the main firing conditions were 950 ° C. and 12 hours, A coin cell was produced, and each physical property evaluation and battery evaluation were performed. The results are shown in Table 1 below.
  • Example 7 An NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) was synthesized by the same method as in Example 1 except that the main firing conditions were 980 ° C. and 12 hours, A coin cell was produced, and each physical property evaluation and battery evaluation were performed. The results are shown in Table 1 below.
  • Example 1 An NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) was synthesized by the same method as in Example 1 except that the main firing conditions were 1000 ° C. and 10 hours. A coin cell was produced, and each physical property evaluation and battery evaluation were performed. The results are shown in Table 1 below.
  • Example 2 An NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) was synthesized by the same method as in Example 1 except that the main firing conditions were 1000 ° C. and 20 hours, A coin cell was produced, and each physical property evaluation and battery evaluation were performed. The results are shown in Table 1 below.
  • Example 8 Electrolytic manganese dioxide and aluminum hydroxide were mixed and heat-treated at 750 ° C. to obtain manganese sesquioxide, and then lithium carbonate was added and mixed so that the Li / (Mn + Al) molar ratio was 0.55, at 850 ° C. Calcination for 20 hours gave lithium spinel manganate.
  • the spinel was adjusted so that the weight percentage was 5% by weight with respect to 100% by weight of the NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) produced in the same manner as in Example 1.
  • Lithium manganate was mixed and mechanically treated for 1 hour using a pulverizer. Thereafter, it is fired again at 920 ° C. for 10 hours in an air atmosphere, and 5 wt% of spinel lithium manganate is formed on the surface of the secondary particles of LiNi 0.50 Mn 0.30 Co 0.20 O 2 serving as the core.
  • a coated Li—Ni composite oxide particle powder was obtained.
  • Example 9 Sodium hydroxide and ammonia are supplied to an aqueous solution in which nickel sulfate, cobalt sulfate and manganese sulfate are dissolved, and are dissolved at a molar ratio of nickel, cobalt and manganese of 1/3: 1/3: 1/3 by a coprecipitation method.
  • a metal composite hydroxide was prepared. The metal composite hydroxide and lithium carbonate were weighed so that the ratio of the total number of moles of metals other than Li (Ni, Co, Mn) to the number of moles of Li was 1: 1, The mixture was mixed, heated at a heating rate of 5 ° C./min, fired at 920 ° C.
  • LiNi 1 was adjusted so that the weight percentage was 5% by weight.
  • / 3 Mn 1/3 Co 1/3 O 2 was mixed, and mechanical treatment was performed for 30 minutes using a pulverizer. After that, it is fired again at 930 ° C. for 10 hours in an air atmosphere, and LiNi 1/3 Mn 1/3 Co is formed on the secondary particle surface of LiNi 0.50 Mn 0.30 Co 0.20 O 2 that becomes the core.
  • a Li—Ni composite oxide particle powder coated with 5% by weight of 1/3 O 2 was obtained.
  • the core-shell type positive electrode in which a shell made of lithium spinel manganate or LiNi 1/3 Mn 1/3 Co 1/3 O 2 is formed around the core made of the positive electrode active material according to the present invention.
  • the capacity retention rate after 200 cycles is higher than that in Example 1, and thus it can be seen that the cycle durability is even more excellent.
  • the DSC heat generation start temperature is also increased as compared with Example 1, it can be seen that the effect excellent in thermal stability can be exhibited.
  • Example 10 A mixture of NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) produced in the same manner as in Example 1 and spinel lithium manganate produced in the same manner as in Example 8 was used as the positive electrode active material. Using. At this time, the mixing ratio of the active material was 90:10 (weight ratio of NMC composite oxide: lithium spinel manganate). Except for this, an evaluation coin cell was prepared in the same manner as in Example 1, the capacity retention rate after 200 cycles was determined, and the cycle durability was evaluated.
  • the obtained coin cell was charged at a constant voltage constant current of 0.4 mA / cm 2 with an upper limit voltage of 4.25 V under a temperature condition of ⁇ 20 ° C., and then subjected to constant current discharge up to a discharge end voltage of 3.0 V. It was. Thereafter, constant current charging was performed on the same coin cell under the condition of current 4.0 mA / cm 2 , and constant current discharging up to a final discharge voltage of 3.0 V was performed. Then, by calculating the ratio of the capacity when charging and discharging were performed at a current 4.0 mA / cm 2 for capacity when charging and discharging were performed at a current 0.4 mA / cm 2, the low-temperature load characteristics ( -20 ° C output characteristics). These results are shown in Table 3 below.
  • Example 11 The mixing ratio of the mixture of NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) and lithium spinel manganate is set to 70:30 (weight ratio of NMC composite oxide: lithium spinel manganate). Except for the above, an evaluation coin cell was prepared in the same manner as in Example 10, the capacity retention rate after 200 cycles was determined, and the cycle durability was evaluated. Further, the low temperature load characteristic ( ⁇ 20 ° C. output characteristic) was evaluated in the same manner as described above. These results are shown in Table 3 below.
  • Example 12 The mixing ratio of the mixture of NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) and lithium spinel manganate is 30:70 (weight ratio of NMC composite oxide: lithium spinel manganate) Except for the above, an evaluation coin cell was prepared in the same manner as in Example 10, the capacity retention rate after 200 cycles was determined, and the cycle durability was evaluated. Further, the low temperature load characteristic ( ⁇ 20 ° C. output characteristic) was evaluated in the same manner as described above. These results are shown in Table 3 below.
  • Example 13 95 parts by mass of alumina particles (BET specific surface area: 5 m 2 / g, average particle diameter 2 ⁇ m) as inorganic particles and carboxymethyl cellulose as binder (moisture content per binder mass: 9.12% by mass, manufactured by Nippon Paper Chemicals Co., Ltd.)
  • An aqueous solution in which 5 parts by mass of Sunrose (registered trademark) MAC series) was uniformly dispersed in water was prepared. This aqueous solution was coated on both surfaces of a polyethylene (PE) microporous film (film thickness: 2 ⁇ m, porosity: 55%) using a gravure coater. Subsequently, drying was performed at 60 ° C.
  • PE polyethylene
  • a separator with a heat-resistant insulating layer which was a multilayer porous film having a total film thickness of 25 ⁇ m, in which a heat-resistant insulating layer was formed on both sides of the porous film by 3.5 ⁇ m was produced.
  • the basis weight of the heat-resistant insulating layer at this time was 9 g / m 2 in total on both sides.
  • a power generation element was produced by alternately laminating (positive electrode 20 layers, negative electrode 21 layers) via layered separators. The obtained power generation element was placed in a bag made of an aluminum laminate sheet as an exterior, and an electrolytic solution was injected.
  • the electrolytic solution a solution in which 1.0 M LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (volume ratio 1: 1) was used.
  • the test cell As an evaluation of the characteristics of the separator incorporated in the obtained test cell, the test cell was left in a thermostatic bath at 150 ° C. for 1 hour, and the shrinkage rate of the separator was measured to evaluate the heat resistance characteristics. The thermal shrinkage rate is measured by leaving the test cell in a thermostatic bath at 150 ° C. for 1 hour and taking out the separator to measure the length of the separator. It was. Further, as a reliability test of the obtained test cell, the battery was left in a thermostat at 150 ° C., and the time until the battery function was lost was measured, and a reliability test at a high temperature was performed. The measurement results of the heat shrinkage rate and the results of the reliability test are shown in Table 4 below. The rated capacity of the battery thus produced was 56.6 Ah, and the ratio of the battery area to the rated capacity was 13.0 cm 2 / Ah.
  • Example 14 A separator with a heat-resistant insulating layer was obtained in the same manner as in Example 13 except that the coating gap of the gravure coater was changed and the basis weight of the heat-resistant insulating layer was adjusted to be 13 g / m 2 in total on both sides. Thus, the thermal contraction rate of the separator was measured. The measurement results are shown in Table 4 below.
  • Example 14 Further, a test cell was produced in the same manner as in Example 13 except that the obtained separator with a heat-resistant insulating layer was used, and reliability was evaluated in the same manner. The results are shown in Table 4 below.
  • Example 15 A separator with a heat-resistant insulating layer was obtained in the same manner as in Example 13 except that the coating gap of the gravure coater was changed so that the basis weight of the heat-resistant insulating layer was adjusted to 15 g / m 2 in total. Thus, the thermal contraction rate of the separator was measured. The measurement results are shown in Table 4 below.
  • Example 14 Further, a test cell was produced in the same manner as in Example 13 except that the obtained separator with a heat-resistant insulating layer was used, and reliability was evaluated in the same manner. The results are shown in Table 4 below.
  • Example 16 A separator with a heat-resistant insulating layer was obtained in the same manner as in Example 13 except that the coating gap of the gravure coater was changed so that the basis weight of the heat-resistant insulating layer was adjusted to 17 g / m 2 in total on both sides. Thus, the thermal contraction rate of the separator was measured. The measurement results are shown in Table 4 below.
  • Example 14 Further, a test cell was produced in the same manner as in Example 13 except that the obtained separator with a heat-resistant insulating layer was used, and reliability was evaluated in the same manner. The results are shown in Table 4 below.
  • Example 17 A separator with a heat-resistant insulating layer was obtained in the same manner as in Example 13 except that the coating gap of the gravure coater was changed and the basis weight of the heat-resistant insulating layer was adjusted to be 5 g / m 2 on both sides. Thus, the thermal contraction rate of the separator was measured. The measurement results are shown in Table 4 below.
  • Example 14 Further, a test cell was produced in the same manner as in Example 13 except that the obtained separator with a heat-resistant insulating layer was used, and reliability was evaluated in the same manner. The results are shown in Table 4 below.
  • Example 18 A separator with a heat-resistant insulating layer was obtained in the same manner as in Example 13 except that the coating gap of the gravure coater was changed and the basis weight of the heat-resistant insulating layer was adjusted to be 2 g / m 2 in total on both sides. Thus, the thermal contraction rate of the separator was measured. The measurement results are shown in Table 4 below.
  • Example 14 Further, a test cell was produced in the same manner as in Example 13 except that the obtained separator with a heat-resistant insulating layer was used, and reliability was evaluated in the same manner. The results are shown in Table 4 below.
  • Example 19 In Example 13, the obtained power generation element was spirally wound to produce a wound electrode group. Next, the wound electrode group thus obtained was crushed into a flat shape, placed in an aluminum outer can having a thickness of 6 mm, a height of 50 mm, and a width of 34 mm. A test cell, which is a battery, was fabricated and subjected to a reliability test. The results are shown in Table 4 below.
  • Example 20 In Example 19, a polyethylene (PE) microporous film, which is a porous substrate before forming a heat-resistant insulating layer of a separator with a heat-resistant insulating layer, was prepared as a separator as it was, and the heat shrinkage rate was measured in the same manner. In addition, a test cell was produced using the separator in the same manner as in Example 13 described above, and a reliability test was performed. These results are shown in Table 4 below.
  • PE polyethylene
  • Example 21 In Example 13, a polyethylene (PE) microporous film, which is a porous substrate before forming the heat-resistant insulating layer of the separator with a heat-resistant insulating layer, was directly prepared as a separator, and the thermal shrinkage rate was measured in the same manner. In addition, a test cell was produced using the separator in the same manner as in Example 13 described above, and a reliability test was performed. These results are shown in Table 4 below.
  • PE polyethylene

Abstract

【課題】非水電解質二次電池において、長期間使用した場合の容量低下を抑制し、サイクル特性を向上させうる手段を提供すること。 【解決手段】リチウムとニッケルとを含有する複合酸化物からなる非水電解質二次電池用正極活物質において、一次粒子が凝集してなる二次粒子の構成とし、一次粒子の平均粒子径(D1)を0.9μm以下とし、一次粒子の平均粒子径(D1)と、一次粒子の平均粒子径(D1)の標準偏差(σ)とが、D/σ≧24の関係を満たすようにする。

Description

正極活物質、正極材料、正極および非水電解質二次電池
 本発明は、正極活物質、正極材料、正極および非水電解質二次電池に関する。
 現在、携帯電話などの携帯機器向けに利用される、リチウムイオン二次電池をはじめとする非水電解質二次電池が商品化されている。非水電解質二次電池は、一般的に、正極活物質等を集電体に塗布した正極と、負極活物質等を集電体に塗布した負極とが、セパレータに非水電解液または非水電解質ゲルを保持した電解質層を介して接続された構成を有している。そして、リチウムイオン等のイオンが電極活物質中に吸蔵・放出されることにより、電池の充放電反応が起こる。
 ところで、近年、地球温暖化に対処するために二酸化炭素量を低減することが求められている。そこで、環境負荷の少ない非水電解質二次電池は、携帯機器等だけでなく、ハイブリッド自動車(HEV)、電気自動車(EV)、および燃料電池自動車等の電動車両の電源装置にも利用されつつある。
 電動車両への適用を指向した非水電解質二次電池は、高出力および高容量であることが求められる。電動車両用の非水電解質二次電池の正極に使用する正極活物質としては、層状複合酸化物であるリチウムコバルト複合酸化物が、4V級の高電圧を得ることができ、かつ高いエネルギー密度を有することから、既に広く実用化されている。しかし、その原料であるコバルトは、資源的にも乏しく高価であるため、今後も大幅に需要が拡大してゆく可能性を考えると、原料供給の面で不安がある。また、コバルトの原料価格が高騰する可能性もある。そこで、コバルトの含有比率の少ない複合酸化物が望まれている。
 リチウムニッケル複合酸化物は、リチウムコバルト複合酸化物と同様に層状構造を有し、リチウムコバルト複合酸化物と比較して安価であり、また、理論放電容量においてもリチウムコバルト複合酸化物に匹敵する。このような観点から、リチウムニッケル複合酸化物は、実用的な大容量の電池を構成できるものとして期待されている。
 リチウムニッケル複合酸化物のようなリチウムとニッケルとを含有する複合酸化物(以下、単に「リチウムニッケル系複合酸化物」とも称する)を正極活物質に用いたリチウムイオン二次電池においては、当該複合酸化物にリチウムイオンが脱離・挿入されることにより充電・放電が行われる。このとき、リチウムイオンの脱離・挿入に伴ってこの複合酸化物が収縮-膨張するため、結晶構造の崩壊等の要因から、充放電サイクルを重ねるにつれて大きな容量低下を生じ、電池を長期間使用した場合の容量低下が著しくなるといった問題があった。
 かような課題に鑑み、例えば、特開2001-85006号公報では、放電容量およびサイクル特性の向上を目的として、リチウムニッケル複合酸化物において、二次粒子を構成する一次粒子を比較的大きなもので構成する技術が提案されている。
 しかしながら、特許文献1に記載の技術においてもサイクル特性の向上は十分なものではなかった。
 そこで、本発明の目的は、非水電解質二次電池において、長期間使用した場合の容量低下を抑制し、サイクル特性を向上させうる手段を提供することである。
 本発明者らは、鋭意研究を積み重ねた。その結果、非水電解質二次電池用正極活物質であるリチウムとニッケルとを含有する複合酸化物を、一次粒子が凝集してなる二次粒子の構成とし、かつ、当該一次粒子の平均粒子径の値を特定の範囲に制御し、かつ、当該一次粒子の平均粒子径と当該一次粒子の平均粒子径の標準偏差とが所定の関係を満たすようにすることで上記課題が解決されうることを見出し、本発明を完成させるに至った。
 すなわち、本発明の一形態によれば、リチウムとニッケルとを含有する複合酸化物からなる非水電解質二次電池用正極活物質が提供される。当該正極活物質は、一次粒子が凝集してなる二次粒子の構成を有し、当該一次粒子の平均粒子径(D1)が0.9μm以下であり、当該一次粒子の平均粒子径(D1)と、当該一次粒子の平均粒子径(D1)の標準偏差(σ)とが、D/σ≧24の関係を満たす点に特徴を有する。
コア-シェル型正極材料の一実施形態を示す断面概略図である。 コア-シェル型正極材料の他の一実施形態を示す断面概略図である。 非水電解質リチウムイオン二次電池の一実施形態である、扁平型(積層型)の双極型でない非水電解質リチウムイオン二次電池の基本構成を示す断面概略図である。 二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である
 本発明の一形態によれば、リチウムとニッケルとを含有する複合酸化物からなる非水電解質二次電池用正極活物質であって、一次粒子が凝集してなる二次粒子の構成を有し、前記一次粒子の平均粒子径(D1)が0.9μm以下であり、前記一次粒子の平均粒子径(D1)と、前記一次粒子の平均粒子径(D1)の標準偏差(σ)とが、D/σ≧24の関係を満たす、非水電解質二次電池用正極活物質が提供される。本形態に係る非水電解質二次電池用正極活物質によれば、一次粒子の平均粒子径(D1)が小さいことで活物質粒子の収縮-膨張の変位量をそもそも小さくすることができる。また、一次粒子の平均粒子径(D1)と一次粒子の平均粒子径(D1)の標準偏差(σ)とが上記所定の関係を満たすことで、D1のばらつきが抑えられる。これにより、活物質の収縮-膨張に起因する結晶構造の崩壊等による二次粒子の微細化(割れ)が抑制される。その結果、長期間使用した場合の容量低下が少なく、サイクル特性に優れる非水電解質二次電池が提供されうる。
 ここで、上述したように、リチウムとニッケルとを含有する複合酸化物においては、リチウムイオンが脱離・挿入されることにより充電・放電が行われる際に、リチウムイオンの脱離・挿入に伴って、複合酸化物が収縮-膨張する。このため、結晶構造の崩壊等の要因から、充放電サイクルを重ねるにつれて大きな容量低下を生じ、電池を長期間使用した場合の容量低下(サイクル特性の低下)が著しくなるといった問題があった。
 このようなサイクル特性の低下は、積層構造電池、特に車載用電池において一層顕著となる。積層構造電池、特に車載用電池では一般に携帯電話やモバイルパソコンに用いられる電池と異なり大型ゆえ、積層内部と外部とで大きな温度差が生まれることが懸念される。積層構造電池は積層方向内部が最も温度が上がりやすく、端部に向かうに従い、外装からの放熱により温度が低下すると考えられる。リチウムニッケル系複合酸化物のような層状岩塩型構造を有する正極材料は、反応に温度依存性があり、温度上昇に伴い、結晶構造の崩壊が起きやすくなる。これは、温度が上昇するにつれてリチウムの挿入・脱離反応が進行しやすくなるのに伴い、複合酸化物の収縮-膨張頻度が高くなるためと考えられる。つまり、積層型電池では、積層方向に温度ムラが生じやすいため、正極材料の膨張収縮度合いにも不均一性が生じる。電池が長期間使用されるようになると、温度負荷の高い部分には、正極活物質材料の膨張・収縮による粒子の剥がれが生じやすくなり、これにより、電池容量が低下するものと考えられる。
 さらに、かような複合酸化物を非水電解質二次電池、特に車載用電池に適用する場合、従来の電気・携帯電子機器用途から桁違いの長寿命化が必要となってくる。例えば、従来の電気・携帯電子機器用途ではせいぜい500サイクル程度で十分であるが、車載用電池では、1000~1500サイクルというサイクル数においても、一定以上の容量が維持されることが必要となる。このような長期サイクルに耐えうるリチウムニッケル系複合酸化物についてはこれまで十分に検討されていなかった。
 加えて、非水電解質二次電池が車両の動力源などとして用いられる場合、航続距離をさらに長くするために高い体積エネルギー密度を有していることが必要である。
 本発明者らは、このような厳しい要求を伴う車載用電池を念頭におき、サイクル特性を向上させつつ、高い体積エネルギー密度を有する二次電池に用いることができるリチウムニッケル系複合酸化物の検討を行った。
 その結果、一次粒子が凝集してなる二次粒子の構成を有するリチウムニッケル系複合酸化物において、一次粒子の平均粒子径(D1)の値、および一次粒子の平均粒子径(D1)と一次粒子の平均粒子径(D1)の標準偏差(σ)との関係を所定の範囲に制御することで、体積エネルギー密度の低下を抑えつつ、サイクル特性に優れる正極活物質が提供されることを見出したものである。
 本形態に係る正極活物質は、リチウムとニッケルとを含有する複合酸化物からなるものである限り、その組成は具体的に限定されない。リチウムとニッケルとを含有する複合酸化物の典型的な例としては、リチウムニッケル複合酸化物(LiNiO)が挙げられる。ただし、リチウムニッケル複合酸化物のニッケル原子の一部が他の金属原子で置換された複合酸化物がより好ましく、好ましい例として、リチウム-ニッケル-マンガン-コバルト複合酸化物(以下、単に「NMC複合酸化物」とも称する)は、リチウム原子層と遷移金属(Mn、NiおよびCoが秩序正しく配置)原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を持ち、遷移金属Mの1原子あたり1個のLi原子が含まれ、取り出せるLi量が、スピネル系リチウムマンガン酸化物の2倍、つまり供給能力が2倍になり、高い容量を持つことができる。加えて、LiNiOより高い熱安定性を有しているため、正極活物質として用いられるニッケル系複合酸化物の中でも特に有利である。
 本明細書において、NMC複合酸化物は、遷移金属元素の一部が他の金属元素により置換されている複合酸化物も含む。その場合の他の元素としては、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Cr、Fe、B、Ga、In、Si、Mo、Y、Sn、V、Cu、Ag、Znなどが挙げられ、好ましくは、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crであり、より好ましくは、Ti、Zr、P、Al、Mg、Crであり、サイクル特性向上の観点から、さらに好ましくは、Ti、Zr、Al、Mg、Crである。
 NMC複合酸化物は、理論放電容量が高いことから、好ましくは、一般式(1):LiNiMnCo(但し、式中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3、b+c+d=1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crから選ばれる元素で少なくとも1種類である)で表される組成を有する。ここで、aは、Liの原子比を表し、bは、Niの原子比を表し、cは、Coの原子比を表し、dは、Mnの原子比を表し、xは、Mの原子比を表す。サイクル特性の観点からは、一般式(1)において、0.4≦b≦0.6であることが好ましい。なお、各元素の組成は、例えば、誘導結合プラズマ(ICP)発光分析法により測定できる。
 一般に、ニッケル(Ni)、コバルト(Co)およびマンガン(Mn)は、材料の純度向上および電子伝導性向上という観点から、容量および出力特性に寄与することが知られている。Ti等は、結晶格子中の遷移金属を一部置換するものである。サイクル特性の観点からは、遷移元素の一部が他の金属元素により置換されていることが好ましく、特に一般式(1)において0<x≦0.3であることが好ましい。Ti、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種が固溶することにより結晶構造が安定化されるため、その結果、充放電を繰り返しても電池の容量低下が防止でき、優れたサイクル特性が実現し得ると考えられる。
 NMC複合酸化物において、本発明者らは、例えば、LiNi0.5Mn0.3Co0.2のように、ニッケル、マンガンおよびコバルトの金属組成が不均一であると、上記充放電時の複合酸化物のひずみ/割れの影響が大きくなることを見出した。これは、金属組成が不均一であるために、膨張収縮時に粒子内部にかかる応力にひずみが生じ、複合酸化物に割れがより生じやすくなるためであると考えられる。したがって、例えば、Niの存在比がリッチである複合酸化物(例えば、LiNi0.8Mn0.1Co0.1)や、Ni、MnおよびCoの存在比率が均一である複合酸化物(例えば、LiNi0.3Mn0.3Co0.3)と比較して、長期サイクル特性の低下が顕著となる。一方、本形態に係る構成とすることにより、LiNi0.5Mn0.3Co0.2のように金属組成が不均一である複合酸化物においても、驚くべきことに、サイクル特性が改善されることを見出した。
 したがって、一般式(1)において、b、cおよびdが、0.44≦b≦0.51、0.27≦c≦0.31、0.19≦d≦0.26である複合酸化物の正極活物質であると、本願発明の効果が顕著に得られることから好ましい。
 本形態に係る正極活物質は、一次粒子が凝集してなる二次粒子の構成を有している。そして、当該一次粒子の平均粒子径(D1)は0.9μm以下とされている。かような構成とすることで、活物質粒子の収縮-膨張の変位量を小さくすることができる。また、当該一次粒子の平均粒子径(D1)と、当該一次粒子の平均粒子径(D1)の標準偏差(σ)とは、D/σ≧24の関係を満たす。D1とσとがこのような関係を満たすことで、D1のばらつきが抑えられる。これにより、活物質の収縮-膨張に起因する結晶構造の崩壊等による二次粒子の微細化(割れ)が抑制される。その結果、長期間使用した場合の容量低下が少なく、サイクル特性に優れる非水電解質二次電池が提供されるものと推測される。ただし、このメカニズムによって本発明の技術的範囲は何ら制限されることはない。
 一次粒子の平均粒子径(D1)は、好ましくは0.20~0.6μmであり、より好ましくは0.25~0.5μmである。また、二次粒子の平均粒子径(D2)は、好ましくは5~20μmであり、より好ましくは5~15μmである。さらに、これらの比の値(D2/D1)は、11より大きいことが好ましく、より好ましくは15~50であり、さらに好ましくは25~40である。なお、リチウムニッケル系複合酸化物を構成する一次粒子は通常、層状構造を有する六方晶系の結晶構造を有しているが、その結晶子径の大小はD1の大小と相関性を有している。ここで「結晶子」とは、単結晶とみなせる最大の集まりを意味し、粉末X線回折測定などにより得られた回折強度から、結晶の構造パラメータを精密化する方法により測定が可能である。結晶子径の具体的な値について特に制限はないが、好ましくは1μm以下であり、より好ましくは0.55μm以下であり、さらに好ましくは0.4μm以下である。かような構成とすることで、活物質の膨張収縮時の変位量をよりいっそう低減することが可能となり、充放電の繰り返しに伴う二次粒子の微細化(割れ)の発生が抑制され、サイクル特性のよりいっそうの向上に寄与しうる。なお、結晶子径の値の下限値について特に制限はないが、通常は0.02μm以上である。ここで、本明細書において、リチウムニッケル系複合酸化物におけるD1、D2および結晶子径の値は、後述する実施例の欄に記載の手法により測定した値を採用するものとする。
 本形態に係る正極活物質のタップ密度は、好ましくは2.0g/cm以上であり、より好ましくは2.3g/cm以上であり、さらに好ましくは2.4~2.9g/cmである。かような構成とすることで、正極活物質の二次粒子を構成する一次粒子の高い緻密性が十分に確保され、サイクル特性の改善効果も維持されうる。
 また、本形態に係る正極活物質のBET比表面積は、好ましくは0.1~1.0m/gであり、より好ましくは0.3~1.0m/gであり、特に好ましくは0.3~0.7m/gである。活物質の比表面積がかような範囲にあることで、活物質の反応面積が確保され、電池の内部抵抗が小さくなることから、電極反応時の分極発生を最小限に抑えることができる。
 さらに、本形態に係る正極活物質について、粉末X線回折測定により得られる(104)面の回折ピークと(003)面の回折ピークとが、回折ピーク強度比((003)/(104))として1.28以上であることが好ましく、より好ましくは1.35~2.1である。また、回折ピーク積分強度比((003)/(104))としては1.05以上であることが好ましく、1.08以上であることがより好ましく、さらに好ましくは1.10~1.45である。これらの規定が好ましいのは以下の理由による。すなわち、リチウムニッケル系複合酸化物は、酸素層の間にLi層、Ni3+層が存在する層状岩塩構造を有している。しかしながら、Ni3+はNi2+に還元されやすく、またNi2+のイオン半径(0.83Å)はLiのイオン半径(0.90Å)とほぼ等しいため、活物質合成時に生じるLi欠損部にNi2+が混入しやすくなる。LiサイトにNi2+が混入すると、局所的に電気化学的に不活性な構造ができるとともに、Liの拡散を妨げるようになる。このため、結晶性の低い活物質を用いた場合には。電池充放電容量の減少や耐久性が低下する可能性がある。この結晶性の高さの指標として、上記の規定が用いられるのである。ここでは、結晶性を定量化する方法として、上述したようにX線回折を用いた結晶構造解析による(003)面と(104)面の回折ピークの強度の比と回折ピークの積分強度の比を用いた。これらのパラメータが上記の規定を満たすことで、結晶内の欠陥が少なくなり、電池充放電容量の減少や耐久性の低下を抑えることができる。なお、このような結晶性のパラメータは、原料、組成や焼成条件などによって制御されうる。
 本形態に係る正極活物質によれば、充放電サイクルに伴う膨張収縮による構造のゆがみを抑制できるため、温度負荷の高い部分の膨張・収縮による粒子の剥がれが抑制できるものと考えられる。したがって、積層構造型の車載用電池のように長期間使用されることが前提の電池においても、長期間使用による容量の低下が抑制される。
 本形態に係るNMC複合酸化物などのリチウムニッケル系複合酸化物は、共沈法、スプレードライ法など、種々公知の方法を選択して調製することができる。本形態に係る複合酸化物の調製が容易であることから、共沈法を用いることが好ましい。具体的に、NMC複合酸化物の合成方法としては、例えば、特開2011-105588号(参照により全体として組み入れられる米国特許出願公開第2013/045421号明細書に対応)に記載の方法のように、共沈法によりニッケル-コバルト-マンガン複合酸化物を製造した後、ニッケル-コバルト-マンガン複合酸化物と、リチウム化合物とを混合して焼成することにより得ることができる。以下、具体的に説明する。
 複合酸化物の原料化合物、例えば、Ni化合物、Mn化合物およびCo化合物を、所望の活物質材料の組成となるように水などの適当な溶媒に溶解させる。Ni化合物、Mn化合物およびCo化合物としては、例えば、当該金属元素の硫酸塩、硝酸塩、炭酸塩、酢酸塩、シュウ酸塩、酸化物、水酸化物、ハロゲン化物などが挙げられる。Ni化合物、Mn化合物およびCo化合物として具体的には、例えば、硫酸ニッケル、硫酸コバルト、硫酸マンガン、酢酸ニッケル、酢酸コバルト、酢酸マンガンなどが挙げられるが、これらに制限されるものではない。この過程で、必要に応じて、さらに所望の活物質の組成になるように、活物質を構成する層状のリチウム金属複合酸化物の一部を置換する金属元素として、例えば、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCr等の少なくとも1種の金属元素を含む化合物をさらに混入させてもよい。
 上記原料化合物とアルカリ溶液とを用いた中和、沈殿反応により共沈反応を行うことができる。これにより、上記原料化合物に含まれる金属を含有する金属複合水酸化物、金属複合炭酸塩が得られる。アルカリ溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア等の水溶液を用いることができるが、中和反応用に水酸化ナトリウム、炭酸ナトリウム又はそれらの混合溶液を用いることが好ましい。加えて、錯体反応用にアンモニア水溶液やアンモニウム塩を用いることが好ましい。
 中和反応に用いるアルカリ溶液の添加量は、含有する全金属塩の中和分に対して当量比1.0でよいが、pH調整のためにアルカリ過剰分を合わせて添加することが好ましい。
 錯体反応に用いるアンモニア水溶液やアンモニウム塩の添加量は、反応液中のアンモニア濃度が0.01~2.00mol/lの範囲で添加することが好ましい。反応溶液のpHは10.0~13.0の範囲に制御することが好適である。また、反応温度は30℃以上が好ましく、より好ましくは30~60℃である。
 共沈反応で得られた複合水酸化物は、その後、吸引ろ過し、水洗して、乾燥することが好ましい。なお、共沈反応を行う際の条件(攪拌時間、アルカリ濃度など)を調節することで、複合水酸化物の粒子径を制御することができ、これが最終的に得られる正極活物質の二次粒子の平均粒子径(D2)に影響する。
 次いで、ニッケル-コバルト-マンガン複合水酸化物をリチウム化合物と混合して焼成することによりリチウム-ニッケル-マンガン-コバルト複合酸化物を得ることができる。Li化合物としては、例えば、水酸化リチウムまたはその水和物、過酸化リチウム、硝酸リチウム、炭酸リチウム等がある。
 焼成処理は、1段階であってもよいが、2段階(仮焼成および本焼成)で行うことが好ましい。2段階の焼成により、効率よく複合酸化物を得ることができる。仮焼成条件としては、特に限定されるものではなく、リチウム原料によっても異なるため一義的に規定することは困難である。ここで、特にD1およびσ(ひいてはD1/σ)並びに結晶子径を制御するための因子としては、焼成(2段階の場合には仮焼成および本焼成)時の焼成温度および焼成時間が特に重要であり、これらを以下のような傾向に基づき調節することで、D1およびσ(D1/σ)並びに結晶子径を制御することが可能である。すなわち、焼成時間を長くすると、D1、σおよび結晶子径は大きくなる。また、焼成温度を高くすると、D1、σおよび結晶子径は大きくなる。なお、昇温速度は室温から1~20℃/分であることが好ましい。また、雰囲気は、空気中ないし酸素雰囲気下であることが好ましい。ここで、Li原料に炭酸リチウムを用いて、NMC複合酸化物を合成する場合において、仮焼成温度は、好ましくは500~900℃であり、より好ましくは600~800℃であり、さらに好ましくは650~750℃である。さらに、仮焼成時間は、好ましくは0.5~10時間であり、より好ましくは4~6時間である。一方、本焼成の条件についても特に限定されるものではないが、昇温速度は室温から1~20℃/分であることが好ましい。また、雰囲気は、空気中ないし酸素雰囲気下であることが好ましい。また、Li原料に炭酸リチウムを用いて、NMC複合酸化物を合成する場合において、焼成温度は、好ましくは800~1200℃であり、より好ましくは850~1100℃であり、さらに好ましくは900~1050℃である。さらに、仮焼成時間は、好ましくは1~20時間であり、より好ましくは8~12時間である。
 必要に応じて、活物質材料を構成する層状のリチウム金属複合酸化物の一部を置換する金属元素を微量添加する場合、該方法としては、あらかじめニッケル、コバルト、マンガン酸塩と混合する方法、ニッケル、コバルト、マンガン酸塩と同時に添加する方法、反応途中で反応溶液に添加する方法、Li化合物とともにニッケル-コバルト-マンガン複合酸化物に添加する方法などいずれの手段を用いても構わない。
 本発明の複合酸化物は、反応溶液のpH、反応温度、反応濃度、添加速度、攪拌時間などの反応条件を適宜調整することにより製造することができる。
 本形態に係る正極活物質の一実施形態によれば、上述した第一の形態に係る正極活物質を含むコア部と、前記正極活物質と異なるリチウム含有複合酸化物を含むシェル部と、を有するコア-シェル型の非水電解質二次電池用正極材料が提供される。
 図1Aは、コア-シェル型正極材料の一実施形態であって、粒子内が異なる活物質材料によりコア-シェル型構造となっている様子を表した活物質粒子の断面模式図である。図1Aおよび図1Bにおいて、1は正極材料のシェル部、2は正極材料のコア部、3は正極材料を示す。かようなコア-シェル構造によって、非水電解質二次電池のサイクル特性がより向上する。本発明者らの研究において、サイクル耐久試験後のNMC複合酸化物の粒子を分析したところ、粒子表層部のみNi価数の低下が確認された。このことから、本発明者らは、粒子表層部においてはNiが不活性化して実質的に充放電に寄与できなくなっている可能性があるとの仮説を設定した。そのうえで、この劣化し易い局所部にNi濃度の低いNMC複合酸化物やNi以外の材料を配置することがサイクル特性をのいっそうの向上に繋がると考え、これを実証したのである。
 コア部は、1層(単層)であってもよいし、2層以上で構成していてもよい。コア部を2層以上で構成する態様には、(1)コア部の表面から中心部に向けて、同心円状に複数積層された構造、(2)コア部の表面から中心部に向けて連続的に含有量が変化するような構造も含まれる。これらの場合には、例えば、各層ごとに材料を変えたり、2種以上の活物質材料の混合比率を変えるなどして、コア部の表面から中心部に向けて容量や出力等の性能が増加ないし減少するように変化(機能傾斜)させることができる。さらに、本発明では、2種以上の材料を用いた造粒技術により製造可能なものが含まれえる。例えば、(3)マトリックス材料内に島状に別の材料が点在して配置されてなるような海島構造であってもよい。また(4)コア粒子の半球部分ごとに異なる材料が配置されたような構造であってもよい。さらに(5)異なる材料からなる微粒子群を寄せ集めて固めて造粒したような二次粒子(凝集)構造であってもよい。さらに、上記(1)~(5)を適当に組み合わせた構造などが挙げられる。製造容易性、材料点数及び製造工数の削減(材料及び製造コストの低減)などの観点からは、1層(単層)で構成するのが望ましい。
 コア部の形状としては、特に制限されるものではなく、例えば、球状、立方体形状、直方体、楕円球状、針状、板状、角状、柱状、不定形状などが挙げられる。好ましくは球状および楕円球状である。
 シェル部は、コア部の外側(外層)に形成されてなるものであればよく、1層(単層)であっても良いし、2層以上で構成していてもよい。
 また、シェル部はコア部全体を被覆する形態に限られず、一部被覆する形態であってもよい(すなわち、シェル部の複合酸化物がコア部の複合酸化物表面に点在するように配置され、コア部表面の一部が露出したままの状態であってもよい)。
 また、シェル部は、コア部の表面全体を被覆するように層状に配置されていてもよいし(図1A参照)、あるいはコア部の表面全体を多数の微粒子(粉末)を用いて覆う(添着する)ように配置されていてもよい(図1B参照)。
 シェル部を2層以上で構成する態様には、上記コア部で記載した(1)~(5)の構造が挙げられる。
 シェル部に含有されるリチウム複合酸化物としては、上述した本発明の第一の形態に係る正極活物質と異なるリチウム含有複合酸化物であれば特に限定されず、具体的には、例えば、LiMn等のスピネル構造のマンガン酸リチウム、LiMnOおよびLiMnO等のマンガン酸リチウム、上述した第一の形態に係る正極活物質とは異なる組成のリチウムニッケル系複合酸化物(例えば、NMC複合酸化物)、LiCoOなどのコバルト酸リチウム、LiNiOなどのニッケル酸リチウム、LiFeOなどのリチウム鉄酸化物、LiFePOなどのリン酸鉄リチウム等が挙げられる。中でも、サイクル特性の観点から、上述した第一の形態に係る正極活物質とは異なる組成のリチウムニッケル系複合酸化物(例えば、NMC複合酸化物)、ニッケル酸リチウム、またはスピネル系マンガン正極活物質であることが好ましく、上述した第一の形態に係る正極活物質とは異なる組成のNMC複合酸化物(好適には、一般式(2):Lia’Nib’Coc’Mnd’x’(但し、式中、a’、b’、c’、d’、x’は、0.9≦a’≦1.2、0<b’<1、0<c’≦0.5、0<d’≦0.5、0≦x’≦0.3、b+c+d=1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、Srから選ばれる元素で少なくとも1種類を含む)で表される。)であることがより好ましい。
 さらに、コア部に含まれる正極活物質が、一般式(1)において、b、cおよびdが、0.49≦b≦0.51、0.29≦c≦0.31、0.19≦d≦0.21である複合酸化物であり、シェル部に含まれる複合酸化物が上述した第一の形態に係る正極活物質とは異なる組成のリチウムニッケル系複合酸化物であることが好ましく、上述した第一の形態に係る正極活物質とは異なる組成のNMC複合酸化物であることがより好ましい。
 これらシェル部に含まれる複合酸化物は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。シェル部を2層以上で構成する場合には、各層ごとに活物質材料を1種単独で用いてもよいし、2種以上を混合して用いてもよい。
 このようなコア-シェル型構造をとる正極材料にあっては、コア部100重量%に対してシェル部が1~30重量%であることが好ましく、1~15重量%であることがより好ましい。なお、コア-シェル型の構造を有する正極材料は、特開2007-213866号公報に記載の方法により製造することができる。
 本発明のさらに他の形態によれば、上述した本発明の第一の形態に係る正極活物質と、スピネル系マンガン正極活物質とが混合状態で含有されてなる正極材料が提供される。本願発明者らは、NMC複合酸化物が低温での高出力放電時の電圧低下が大きく、例えば寒冷地においては車両の出力不足が生じるといった課題があることを見出した。そして、スピネル系マンガン正極活物質と混合することによって、低温での高出力放電時の電圧低下が少なく、例えば、寒冷地においても車両の出力不足が少なくなることを見出したものである。
 上述した第一の形態に係る正極活物質と、スピネル系マンガン正極活物質との混合重量比率は、サイクル特性の観点から、上述した第一の形態に係る正極活物質:スピネル系マンガン正極活物質=50:50~90:10であることが好ましく、容量、寿命、熱安定性のバランスから、70:30~90:10であることがより好ましい。
 本発明のさらに他の形態によれば、正極集電体の表面に、上述した本発明の第一の形態に係る正極活物質、コア-シェル型の正極材料、および第一の形態に係る正極活物質とスピネル系マンガン正極活物質とが混合されてなる正極材料からなる群から選択される少なくとも1種を含む正極活物質層が形成されてなる正極が提供される。
 なお、正極において活物質の役割を果たす他の正極活物質を含んでいてもよいことはもちろんである。ただし、正極活物質層に含まれる正極活物質として機能しうる材料100重量%に対して、上述した本発明の第一の形態に係る正極活物質、コア-シェル型の正極材料、および第一の形態に係る正極活物質とスピネル系マンガン正極活物質とが混合されてなる正極材料からなる群から選択される材料の合計含量は80~100重量%であることが好ましく、95~100重量%であることがより好ましく、100重量%であることがさらに好ましい。
 正極活物質層は活物質の他、必要に応じて、導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。
 正極活物質層中、正極活物質として機能しうる材料の含有量は、85~99.5重量%であることが好ましい。
 (バインダー)
 正極活物質層に用いられるバインダーとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)およびその塩、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。これらのバインダーは、単独で用いてもよいし、2種以上を併用してもよい。
 正極活物質層中に含まれるバインダー量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5~15重量%であり、より好ましくは1~10重量%である。
 正極活物質層は、必要に応じて、導電助剤、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。
 導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、ケッチェンブラック、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
 電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
 イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
 正極活物質層および後述の負極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、リチウムイオン二次電池についての公知の知見を適宜参照することにより、調整されうる。各活物質層の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、2~100μm程度である。
 本発明のさらに他の形態によれば、上述した正極と、負極集電体の表面に負極活物質層が形成されてなる負極と、セパレータと、を含む発電要素を有する非水電解質二次電池が提供される。
 以下、非水電解質二次電池の好ましい実施形態として、非水電解質リチウムイオン二次電池について説明するが、以下の実施形態のみには制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 図2は、扁平型(積層型)の双極型ではない非水電解質リチウムイオン二次電池(以下、単に「積層型電池」ともいう)の基本構成を模式的に表した断面概略図である。図2に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体である電池外装材29の内部に封止された構造を有する。ここで、発電要素21は、正極と、セパレータ17と、負極とを積層した構成を有している。なお、セパレータ17は、非水電解質(例えば、液体電解質)を内蔵している。正極は、正極集電体11の両面に正極活物質層13が配置された構造を有する。負極は、負極集電体12の両面に負極活物質層15が配置された構造を有する。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、セパレータ17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。これにより、隣接する正極、電解質層および負極は、1つの単電池層19を構成する。したがって、図2に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。
 なお、発電要素21の両最外層に位置する最外層正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図2とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層負極集電体が位置するようにし、該最外層負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。
 正極集電体11および負極集電体12は、各電極(正極および負極)と導通される正極集電板(タブ)25および負極集電板(タブ)27がそれぞれ取り付けられ、電池外装材29の端部に挟まれるようにして電池外装材29の外部に導出される構造を有している。正極集電板25および負極集電板27はそれぞれ、必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
 なお、図2では、扁平型(積層型)の双極型ではない積層型電池を示したが、集電体の一方の面に電気的に結合した正極活物質層と、集電体の反対側の面に電気的に結合した負極活物質層と、を有する双極型電極を含む双極型電池であってもよい。この場合、一の集電体が正極集電体および負極集電体を兼ねることとなる。
 以下、各部材について、さらに詳細に説明する。
 [負極活物質層]
 負極活物質層は活物質を含み、必要に応じて、導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤については、上記正極活物質層の欄で述べたものと同様である。
 負極活物質層においては、少なくとも水系バインダーを含むことが好ましい。水系バインダーは、結着力が高い。また、原料としての水の調達が容易であることに加え、乾燥時に発生するのは水蒸気であるため、製造ラインへの設備投資が大幅に抑制でき、環境負荷の低減を図ることができるという利点がある。
 水系バインダーとは水を溶媒もしくは分散媒体とするバインダーをいい、具体的には熱可塑性樹脂、ゴム弾性を有するポリマー、水溶性高分子など、またはこれらの混合物が該当する。ここで、水を分散媒体とするバインダーとは、ラテックスまたはエマルジョンと表現される全てを含み、水と乳化または水に懸濁したポリマーを指し、例えば自己乳化するような系で乳化重合したポリマーラテックス類が挙げられる。
 水系バインダーとしては、具体的にはスチレン系高分子(スチレン-ブタジエンゴム、スチレン-酢酸ビニル共重合体、スチレン-アクリル共重合体等)、アクリロニトリル-ブタジエンゴム、メタクリル酸メチル-ブタジエンゴム、(メタ)アクリル系高分子(ポリエチルアクリレート、ポリエチルメタクリレート、ポリプロピルアクリレート、ポリメチルメタクリレート(メタクリル酸メチルゴム)、ポリプロピルメタクリレート、ポリイソプロピルアクリレート、ポリイソプロピルメタクリレート、ポリブチルアクリレート、ポリブチルメタクリレート、ポリヘキシルアクリレート、ポリヘキシルメタクリレート、ポリエチルヘキシルアクリレート、ポリエチルヘキシルメタクリレート、ポリラウリルアクリレート、ポリラウリルメタクリレート等)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリブタジエン、ブチルゴム、フッ素ゴム、ポリエチレンオキシド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル、ポリスチレン、エチレン-プロピレン-ジエン共重合体、ポリビニルピリジン、クロロスルホン化ポリエチレン、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂;ポリビニルアルコール(平均重合度は、好適には200~4000、より好適には、1000~3000、ケン化度は好適には80モル%以上、より好適には90モル%以上)およびその変性体(エチレン/酢酸ビニル=2/98~30/70モル比の共重合体の酢酸ビニル単位のうちの1~80モル%ケン化物、ポリビニルアルコールの1~50モル%部分アセタール化物等)、デンプンおよびその変性体(酸化デンプン、リン酸エステル化デンプン、カチオン化デンプン等)、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、およびこれらの塩等)、ポリビニルピロリドン、ポリアクリル酸(塩)、ポリエチレングリコール、(メタ)アクリルアミドおよび/または(メタ)アクリル酸塩の共重合体[(メタ)アクリルアミド重合体、(メタ)アクリルアミド-(メタ)アクリル酸塩共重合体、(メタ)アクリル酸アルキル(炭素数1~4)エステル-(メタ)アクリル酸塩共重合体など]、スチレン-マレイン酸塩共重合体、ポリアクリルアミドのマンニッヒ変性体、ホルマリン縮合型樹脂(尿素-ホルマリン樹脂、メラミン-ホルマリン樹脂等)、ポリアミドポリアミンもしくはジアルキルアミン-エピクロルヒドリン共重合体、ポリエチレンイミン、カゼイン、大豆蛋白、合成蛋白、並びにマンナンガラクタン誘導体等の水溶性高分子などが挙げられる。これらの水系バインダーは1種単独で用いてもよいし、2種以上併用して用いてもよい。
 上記水系バインダーは、結着性の観点から、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、メタクリル酸メチル-ブタジエンゴム、およびメタクリル酸メチルゴムからなる群から選択される少なくとも1つのゴム系バインダーを含むことが好ましい。さらに、結着性が良好であることから、水系バインダーはスチレン-ブタジエンゴムを含むことが好ましい。
 水系バインダーとしてスチレン-ブタジエンゴムを用いる場合、塗工性向上の観点から、上記水溶性高分子を併用することが好ましい。スチレン-ブタジエンゴムと併用することが好適な水溶性高分子としては、ポリビニルアルコールおよびその変性体、デンプンおよびその変性体、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、およびこれらの塩等)、ポリビニルピロリドン、ポリアクリル酸(塩)、またはポリエチレングリコールが挙げられる。中でも、バインダーとして、スチレン-ブタジエンゴムと、カルボキシメチルセルロース(塩)とを組み合わせることが好ましい。スチレン-ブタジエンゴムと、水溶性高分子との含有重量比は、特に制限されるものではないが、スチレン-ブタジエンゴム:水溶性高分子=1:0.1~10であることが好ましく、0.5~2であることがより好ましい。
 負極活物質層に用いられるバインダーのうち、水系バインダーの含有量は80~100重量%であることが好ましく、90~100重量%であることが好ましく、100重量%であることが好ましい。
 負極活物質としては、例えば、グラファイト(黒鉛)、ソフトカーボン、ハードカーボン等の炭素材料、リチウム-遷移金属複合酸化物(例えば、LiTi12)、金属材料、リチウム合金系負極材料などが挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、炭素材料またはリチウム-遷移金属複合酸化物が、負極活物質として用いられる。なお、上記以外の負極活物質が用いられてもよいことは勿論である。
 負極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1~100μm、より好ましくは1~20μmである。
 [セパレータ(電解質層)]
 セパレータは、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。
 セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
 ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。
 微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。1例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4~60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。
 不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。また、不織布のかさ密度は、含浸させた電解質により十分な電池特性が得られるものであればよく、特に制限されるべきものではない。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5~200μmであり、特に好ましくは10~100μmである。
 また、上述したように、セパレータは、電解質を含む。電解質としては、かような機能を発揮できるものであれば特に制限されないが、液体電解質またはゲルポリマー電解質が用いられる。ゲルポリマー電解質を用いることにより、電極間距離の安定化が図られ、分極の発生が抑制され、耐久性(サイクル特性)が向上する。
 液体電解質は、リチウムイオンのキャリヤーとしての機能を有する。電解液層を構成する液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiCFSO等の電極の活物質層に添加されうる化合物が同様に採用されうる。液体電解質は、上述した成分以外の添加剤をさらに含んでもよい。かような化合物の具体例としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネート、1-メチル-1-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-1-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1-ジメチル-2-メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
 ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することで容易になる点で優れている。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HEP)、ポリ(メチルメタクリレート(PMMA)およびこれらの共重合体等が挙げられる。
 ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
 また、セパレータとしては多孔質基体に耐熱絶縁層が積層されたセパレータ(耐熱絶縁層付セパレータ)であることが好ましい。耐熱絶縁層は、無機粒子およびバインダーを含むセラミック層である。耐熱絶縁層付セパレータは融点または熱軟化点が150℃以上、好ましくは200℃以上である耐熱性の高いものを用いる。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られうる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電池の製造工程でセパレータがカールしにくくなる。
 耐熱絶縁層における無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に制限されない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物(SiO、Al、ZrO、TiO)、水酸化物、および窒化物、ならびにこれらの複合体が挙げられる。これらの無機粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ(SiO)またはアルミナ(Al)を用いることが好ましく、アルミナ(Al)を用いることがより好ましい。
 耐熱性粒子の目付けは、特に限定されるものではないが、5~15g/mであることが好ましい。この範囲であれば、十分なイオン伝導性が得られ、また、耐熱強度を維持する点で好ましい。
 耐熱絶縁層におけるバインダーは、無機粒子どうしや、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダーによって、耐熱絶縁層が安定に形成され、また多孔質基体層および耐熱絶縁層の間の剥離を防止される。
 耐熱絶縁層に使用されるバインダーは、特に制限はなく、例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン-ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルなどの化合物がバインダーとして用いられうる。このうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、またはポリフッ化ビニリデン(PVDF)を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。
 耐熱絶縁層におけるバインダーの含有量は、耐熱絶縁層100重量%に対して、2~20重量%であることが好ましい。バインダーの含有量が2重量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダーの含有量が20重量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。
 耐熱絶縁層付セパレータの熱収縮率は、150℃、2gf/cm条件下、1時間保持後にMD、TDともに10%以下であることが好ましい。このような耐熱性の高い材質を用いることで、正極発熱量が高くなり電池内部温度が150℃に達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。
 [集電体]
 集電体を構成する材料に特に制限はないが、好適には金属が用いられる。
 具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅、その他合金等などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位の観点からは、アルミニウム、ステンレス、銅が好ましい。
 集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。
 [正極集電板および負極集電板]
 集電板(25、27)を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板25と負極集電板27とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
 [正極リードおよび負極リード]
 また、図示は省略するが、集電体11と集電板(25、27)との間を正極リードや負極リードを介して電気的に接続してもよい。正極および負極リードの構成材料としては、公知のリチウムイオン二次電池において用いられる材料が同様に採用されうる。なお、外装から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
 [電池外装体]
 電池外装体29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。また、外部から掛かる発電要素への群圧を容易に調整することができ、所望の電解液層厚みへと調整容易であることから、外装体はアルミネートラミネートがより好ましい。
 [セルサイズ]
 図3は、二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。
 図3に示すように、扁平なリチウムイオン二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極タブ58、負極タブ59が引き出されている。発電要素57は、リチウムイオン二次電池50の電池外装材52によって包まれ、その周囲は熱融着されており、発電要素57は、正極タブ58および負極タブ59を外部に引き出した状態で密封されている。ここで、発電要素57は、先に説明した図2に示すリチウムイオン二次電池10の発電要素21に相当するものである。発電要素57は、正極(正極活物質層)13、電解質層17および負極(負極活物質層)15で構成される単電池層(単セル)19が複数積層されたものである。
 なお、上記リチウムイオン二次電池は、積層型の扁平な形状のものに制限されるものではない。巻回型のリチウムイオン二次電池では、円筒型形状のものであってもよいし、こうした円筒型形状のものを変形させて、長方形状の扁平な形状にしたようなものであってもよいなど、特に制限されるものではない。上記円筒型の形状のものでは、その外装材に、ラミネートフィルムを用いてもよいし、従来の円筒缶(金属缶)を用いてもよいなど、特に制限されるものではない。好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。当該形態により、軽量化が達成されうる。
 また、図3に示すタブ58、59の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図3に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
 一般的な電気自動車では、電池格納スペースが170L程度である。このスペースにセルおよび充放電制御機器等の補機を格納するため、通常セルの格納スペース効率は50%程度となる。この空間へのセルの積載効率が電気自動車の航続距離を支配する因子となる。単セルのサイズが小さくなると上記積載効率が損なわれるため、航続距離を確保できなくなる。
 したがって、本発明において、発電要素を外装体で覆った電池構造体は大型であることが好ましい。具体的には、ラミネートセル電池の短辺の長さが100mm以上であることが好ましい。かような大型の電池は、車両用途に用いることができる。ここで、ラミネートセル電池の短辺の長さとは、最も長さが短い辺を指す。短辺の長さの上限は特に限定されるものではないが、通常400mm以下である。
 [体積エネルギー密度および定格放電容量]
 一般的な電気自動車では、一回の充電による走行距離(航続距離)は100kmが市場要求である。かような航続距離を考慮すると、電池の体積エネルギー密度は157Wh/L以上であることが好ましく、かつ定格容量は20Wh以上であることが好ましい。
 また、電極の物理的な大きさの観点とは異なる、大型化電池の観点として、電池面積や電池容量の関係から電池の大型化を規定することもできる。例えば、扁平積層型ラミネート電池の場合には、定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上である電池においては、単位容量当たりの電池面積が大きいため、活物質の膨張収縮に伴う結晶構造の崩壊等に起因する電池特性(サイクル特性)の低下の問題がよりいっそう顕在化しやすい。したがって、本形態に係る非水電解質二次電池は、上述したような大型化された電池であることが、本発明の作用効果の発現によるメリットがより大きいという点で、好ましい。さらに、矩形状の電極のアスペクト比は1~3であることが好ましく、1~2であることがより好ましい。なお、電極のアスペクト比は矩形状の正極活物質層の縦横比として定義される。アスペクト比をかような範囲とすることで、車両要求性能と搭載スペースを両立できるという利点がある。
 [組電池]
 組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
 電池が複数、直列にまたは並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。
 [車両]
 本発明の非水電解質二次電池は、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記非水電解質二次電池は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
 具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。
 以下、実施例および比較例を用いてさらに詳細に説明するが、本発明は以下の実施例のみに何ら限定されるわけではない。
 [実施例1]
 (1)正極活物質の作製
 硫酸ニッケル、硫酸コバルト、および硫酸マンガンを溶解した水溶液(1mol/L)に、60℃にて水酸化ナトリウムおよびアンモニアを連続的に供給してpHを11.3に調整し、共沈法によりニッケルとマンガンとコバルトとが50:30:20のモル比で固溶してなる金属複合水酸化物を作製した。
 この金属複合水酸化物と炭酸リチウムを、Li以外の金属(Ni、Co、Mn)の合計のモル数とLiのモル数の比が1:1となるように秤量した後、十分混合し、昇温速度5℃/minで昇温し、空気雰囲気で900℃、2時間仮焼成した後、昇温速度3℃/minで昇温し、920℃で10時間本焼成し、室温まで冷却してNMC複合酸化物(LiNi0.50Mn0.30Co0.20)を得た。
I 得られたNMC複合酸化物について、一次粒子の平均粒子径(D1)および結晶子径を測定し、D1の値からD1の標準偏差(σ)およびσを計算により算出した。なお、D1の測定は、FIB(集束イオンビーム;Focused Ion Beam)を用いて、得られたNMC複合酸化物の断面を切り出し、走査型イオン顕微鏡(SIM)を用いてその断面の画像を撮影することによって測定した。また、D2については、50個以上の二次粒子を抽出してそれらの長軸方向の径の平均値として算出することができる。なお、D1については200個以上の一次粒子を抽出してそれらの長軸方向の径の平均値として算出した。さらに、結晶子径については、粉末X線回折測定により得られる回折ピーク強度から結晶子径を算出する、リートベルト法により測定した。
 また、得られたNMC複合酸化物について、タップ密度、BET比表面積、および、粉末X線回折測定による(104)面のピーク強度(I(104))と(003)面のピーク強度(I(003))とのピーク強度比(I(003)/I(104))を算出した。なお、タップ密度は試料粉体を10mLのガラス製メスシリンダーに入れ、200回タップした後の粉体充填密度として測定した。また、BET比表面積は、AMS8000型全自動粉体比表面積測定装置(大倉理研製)を用い、吸着ガスに窒素、キャリアガスにヘリウムを使用し、連続流動方によるBET1点式法測定を行った。具体的には、粉体試料を混合ガスにより150℃の温度で加熱脱気し、次いで液体窒素温度まで冷却して窒素/ヘリウム混合ガスを吸着させた後、これを水により室温まで加温して吸着された窒素ガスを脱着させ、その量を熱伝導検出器によって検出し、これから試料の比表面積を算出した。さらに、ピーク強度比(I(003)/I(104))をおよび上述した結晶子径を算出するための粉末X線回折測定には、Cu-Kα線を用いたX線回折装置(理学製)を使用し、Fundamental Parameterを採用して解析を行った。回折角2θ=15~120°の範囲より得られたX線回折パターンを用いて、解析用ソフトウエアTopas Version 3を用いて解析を行った。結晶構造は、空間群R-3mの六方晶に帰属され、その3aサイトにLi、3bサイトにM(Ni、Co、Mn、Alなど)、そして過剰なLi分x、そして6cサイトにOが占有されていると仮定し、結晶子径(Gauss)および結晶歪み(Gauss)を求めた。なお、等方性温度因子(Beq:isotropic temperature factor)を1と仮定し、Rwp<10.0、GOF<1.3まで精密化を行った。精密化の手順としては、Beq=1に固定し、酸素のz座標および席占有率、結晶子径(Gauss)および、各サイト間の結合距離を変数とした状態で、各変数が変動しなくなるまで繰り返し行った。
 (2)正極の作成
 (1)で得られた正極活物質を90重量%、導電助剤としてケッチェンブラック(平均粒子径:300nm)5重量%、バインダーとしてポリフッ化ビニリデン(PVDF)5重量%、およびスラリー粘度調整溶媒であるN-メチル-2-ピロリドン(NMP)を適量混合して、正極活物質スラリーを調製し、得られた正極活物質スラリーを集電体であるアルミニウム箔(厚さ:20μm)に塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形して、正極活物質層の片面塗工量18mg/cmの正極を作製した。
 (3)コインセルの作製
 次に、アルゴン雰囲気下のグローブボックス内で、上記(2)で得られた正極を直径14mmの円盤形状に打ち抜き、コインセル用の正極とした。負極としては、金属リチウムを直径15mmの円盤形状に打ち抜いたものを用いた。また、電解液としては、1.0M LiPFをエチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合溶媒(体積比1:1)に溶解した溶液を準備した。正極と負極とを、セパレータ(材質:ポリプロピレン、厚さ:25μm)を介して積層し、コインセル容器内に入れ、電解液を注入し、上蓋をすることにより評価用コインセルを作製した。作製した電池は24時間放置し、開回路電圧(OCV:Open Circuit Voltage)が安定した後、正極に対する電流密度を0.2mA/cmとしてカットオフ電圧4.25Vまで充電して初期充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。さらに、この充放電サイクルを200回繰り返した後の容量維持率を求め、サイクル耐久性として評価した。各物性評価、電池評価の結果を下記の表1に示す。なお、得られたコインセルに対して4.25V充電状態でコインセルを解体し、当該正極の示差熱分析(DSC)を行った結果、発熱開始温度は292℃であった。
 [実施例2]
 本焼成の条件を930℃、12時間としたこと以外は、上述した実施例1と同様の手法によりNMC複合酸化物(LiNi0.50Mn0.30Co0.20)を合成し、コインセルを作製して、各物性評価および電池評価を実施した。結果を下記の表1に示す。
 [実施例3]
 本焼成の条件を935℃、12時間としたこと以外は、上述した実施例1と同様の手法によりNMC複合酸化物(LiNi0.50Mn0.30Co0.20)を合成し、コインセルを作製して、各物性評価および電池評価を実施した。結果を下記の表1に示す。
 [実施例4]
 本焼成の条件を940℃、12時間としたこと以外は、上述した実施例1と同様の手法によりNMC複合酸化物(LiNi0.50Mn0.30Co0.20)を合成し、コインセルを作製して、各物性評価および電池評価を実施した。結果を下記の表1に示す。
 [実施例5]
 本焼成の条件を940℃、15時間としたこと以外は、上述した実施例1と同様の手法によりNMC複合酸化物(LiNi0.50Mn0.30Co0.20)を合成し、コインセルを作製して、各物性評価および電池評価を実施した。結果を下記の表1に示す。
 [実施例6]
 本焼成の条件を950℃、12時間としたこと以外は、上述した実施例1と同様の手法によりNMC複合酸化物(LiNi0.50Mn0.30Co0.20)を合成し、コインセルを作製して、各物性評価および電池評価を実施した。結果を下記の表1に示す。
 [実施例7]
 本焼成の条件を980℃、12時間としたこと以外は、上述した実施例1と同様の手法によりNMC複合酸化物(LiNi0.50Mn0.30Co0.20)を合成し、コインセルを作製して、各物性評価および電池評価を実施した。結果を下記の表1に示す。
 [比較例1]
 本焼成の条件を1000℃、10時間としたこと以外は、上述した実施例1と同様の手法によりNMC複合酸化物(LiNi0.50Mn0.30Co0.20)を合成し、コインセルを作製して、各物性評価および電池評価を実施した。結果を下記の表1に示す。
 [比較例2]
 本焼成の条件を1000℃、20時間としたこと以外は、上述した実施例1と同様の手法によりNMC複合酸化物(LiNi0.50Mn0.30Co0.20)を合成し、コインセルを作製して、各物性評価および電池評価を実施した。結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の結果から、本発明に係る正極活物質を用いた実施例1~7では、比較例1~2と比べて、200サイクル後の容量維持率が高いことから、サイクル耐久性に優れるものであることがわかる。
 [実施例8]
 電解二酸化マンガン、水酸化アルミニウムを混合し、750℃で熱処理し、三二酸化マンガンとした後、Li/(Mn+Al)モル比が0.55となるように炭酸リチウムを加えて混合し、850℃で20時間焼成してスピネルマンガン酸リチウムを得た。
 次に、実施例1と同様に作製したNMC複合酸化物(LiNi0.50Mn0.30Co0.20)100重量%に対して、重量百分率が5重量%となるように上記スピネルマンガン酸リチウムを混合し、粉砕機を用いて1時間機械的処理を行った。その後、再度空気雰囲気下、920℃で10時間焼成して、核(コア)となるLiNi0.50Mn0.30Co0.20の二次粒子表面にスピネルマンガン酸リチウムが5重量%被覆したLi-Ni複合酸化物粒子粉末を得た。このLi-Ni複合酸化物を正極活物質として用いて実施例1と同様に評価用コインセルを作製して、200サイクル後の容量維持率を求め、サイクル耐久性として評価した。結果を下記の表2に示す。なお、得られたコインセルに対して4.25V充電状態でコインセルを解体し、当該正極の示差熱分析(DSC)を行った結果、発熱開始温度は305℃であった。
 [実施例9]
 硫酸ニッケル、硫酸コバルトおよび硫酸マンガンを溶解した水溶液に水酸化ナトリウムおよびアンモニアを供給し、共沈法によりニッケル、コバルトおよびマンガンのモル比が1/3:1/3:1/3で固溶してなる金属複合水酸化物を調製した。この金属複合水酸化物と炭酸リチウムとを、Li以外の金属(Ni、Co、Mn)の合計モル数とLiのモル数との比が1:1となるように秤量した後、これらを十分混合し、昇温速度5℃/minで昇温し、空気雰囲気下、920℃で10時間焼成し、室温まで冷却した。次に、実施例1と同様に作製したNMC複合酸化物(LiNi0.50Mn0.30Co0.20)100重量%に対して、重量百分率が5重量%となるようにLiNi1/3Mn1/3Co1/3を混合し、粉砕機を用いて30分間機械的処理を行った。その後、再度空気雰囲気下、930℃で10時間焼成し、核(コア)となるLiNi0.50Mn0.30Co0.20の二次粒子表面にLiNi1/3Mn1/3Co1/3が5重量%被覆したLi-Ni複合酸化物粒子粉末を得た。このLi-Ni複合酸化物を正極活物質として用いて実施例1と同様に評価用コインセルを作製して、200サイクル後の容量維持率を求め、サイクル耐久性として評価した。結果を下記の表2に示す。なお、得られたコインセルに対して4.25V充電状態でコインセルを解体し、当該正極の示差熱分析(DSC)を行った結果、発熱開始温度は295℃であった。
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、本発明に係る正極活物質からなるコアの周囲にスピネルマンガン酸リチウムまたはLiNi1/3Mn1/3Co1/3からなるシェルが形成されてなるコア-シェル型正極材料を用いた実施例8および実施例9では、200サイクル後の容量維持率が実施例1よりも高いことから、サイクル耐久性がよりいっそう優れるものであることがわかる。また、DSC発熱開始温度も実施例1と比べて上昇していることから、熱安定性にも優れた効果を発揮しうるものであることがわかる。
 [実施例10]
 実施例1と同様に作製したNMC複合酸化物(LiNi0.50Mn0.30Co0.20)と、実施例8と同様に作製したスピネルマンガン酸リチウムとの混合物を正極活物質として用いた。この際、上記活物質の混合比は、90:10(NMC複合酸化物:スピネルマンガン酸リチウムの重量比)であった。このこと以外は実施例1と同様に評価用コインセルを作製して、200サイクル後の容量維持率を求め、サイクル耐久性として評価した。また、得られたコインセルについて-20℃の温度条件の下、上限電圧4.25Vの定電圧定電流0.4mA/cmで充電した後、放電終止電圧3.0Vまでの定電流放電を行った。その後、同じコインセルについて電流4.0mA/cmの条件で定電流充電を行い、放電終止電圧3.0Vまでの定電流放電を行った。そして、電流0.4mA/cmの条件で充放電を行ったときの容量に対する電流4.0mA/cmの条件で充放電を行ったときの容量の割合を算出して、低温負荷特性(-20℃出力特性)として評価した。これらの結果を下記の表3に示す。
 [実施例11]
 NMC複合酸化物(LiNi0.50Mn0.30Co0.20)とスピネルマンガン酸リチウムとの混合物における混合比を70:30(NMC複合酸化物:スピネルマンガン酸リチウムの重量比)としたこと以外は実施例10と同様に評価用コインセルを作製して、200サイクル後の容量維持率を求め、サイクル耐久性として評価した。また、上記と同様にして低温負荷特性(-20℃出力特性)を評価した。これらの結果を下記の表3に示す。
 [実施例12]
 NMC複合酸化物(LiNi0.50Mn0.30Co0.20)とスピネルマンガン酸リチウムとの混合物における混合比を30:70(NMC複合酸化物:スピネルマンガン酸リチウムの重量比)としたこと以外は実施例10と同様に評価用コインセルを作製して、200サイクル後の容量維持率を求め、サイクル耐久性として評価した。また、上記と同様にして低温負荷特性(-20℃出力特性)を評価した。これらの結果を下記の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 以上の結果から、本発明に係る正極活物質とスピネルマンガン酸リチウムとが混合されてなる正極材料を用いた実施例10~12では、200サイクル後の容量維持率は実施例1よりも若干低下するものの、-20℃出力特性が向上している。このことから、低温での高出力放電時の電圧低下が少なく、例えば、寒冷地においても車両の出力不足が生じにくいものであることがわかる。
 [実施例13]
 無機粒子であるアルミナ粒子(BET比表面積:5m/g、平均粒子径2μm)95質量部およびバインダーであるカルボキシメチルセルロース(バインダー質量あたりの含有水分量:9.12質量%、日本製紙ケミカル社製、サンローズ(登録商標)MACシリーズ)5質量部を水に均一に分散させた水溶液を調製した。この水溶液をグラビアコーターを用いてポリエチレン(PE)微多孔膜(膜厚:2μm、空隙率:55%)の両面に塗工した。次いで、60℃にて乾燥して水を除去し、多孔膜の両面に3.5μmずつ耐熱絶縁層が形成された、総膜厚25μmの多層多孔膜である耐熱絶縁層付セパレータを作製した。このときの耐熱絶縁層の目付は両面の合計で9g/mであった。
 (4)負極の作製
 続いて、負極活物質として人造グラファイト96.5質量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.5質量%およびスチレン-ブタジエン共重合体ラテックス2.0質量%を精製水中に分散させて負極活物質スラリーを調製した。この負極活物質スラリーを負極集電体となる銅箔(厚さ10μm)に塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形して負極を作製した。裏面にも同様にして負極活物質層を形成して、負極集電体(銅箔)の両面に負極活物質層が形成されてなる負極を作製した。
 実施例1の(2)で作製した正極同様にして正極集電体(アルミニウム箔)の両面に形成してなる正極と、上記(4)で作製した負極とを、上記で得られた耐熱絶縁層付セパレータを介して交互に積層(正極20層、負極21層)することによって発電要素を作製した。得られた発電要素を外装であるアルミラミネートシート製のバッグ中に載置し、電解液を注液した。電解液としては、1.0M LiPFをエチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合溶媒(体積比1:1)に溶解した溶液を用いた。次いで、真空条件下において、両電極に接続された電流取り出しタブが導出するようにアルミラミネートシート製バッグの開口部を封止し、長さ280mm×幅210mm×厚み7mmのラミネート型リチウムイオン二次電池である試験用セルを完成させた。
 得られた試験用セルに組み込まれたセパレータの特性評価として、試験用セルを150℃の恒温槽内に1時間放置し、セパレータの収縮率を測定して耐熱特性を評価した。熱収縮率の測定は、試験用セルを150℃の恒温槽内に1時間放置した後に取り出してセパレータの長さを測定し、試験前の長さと比較して長さの減少割合を熱収縮率とした。また、得られた試験用セルの信頼性試験として、電池を150℃の恒温槽中に放置して、電池の機能が失われるまでの時間を測定し、高温時における信頼性試験を実施した。熱収縮率の測定結果および信頼性試験の結果を下記の表4に示す。このように作製された電池の定格容量は56.6Ahであり、定格容量に対する電池面積の比は13.0cm/Ahであった。
 [実施例14]
 グラビアコーターの塗布ギャップを変更して耐熱絶縁層の目付けが両面の合計で13g/mとなるように調整した以外は、実施例13と同様にして、耐熱絶縁層付セパレータを得て、同様にしてセパレータの熱収縮率を測定した。測定結果を下記の表4に示す。
 また、得られた耐熱絶縁層付セパレータを用いたこと以外は実施例13と同様にして試験用セルを作製し、同様にして信頼性評価を行なった。結果を下記の表4に示す。
 [実施例15]
 グラビアコーターの塗布ギャップを変更して耐熱絶縁層の目付けが両面の合計で15g/mとなるように調整した以外は、実施例13と同様にして、耐熱絶縁層付セパレータを得て、同様にしてセパレータの熱収縮率を測定した。測定結果を下記の表4に示す。
 また、得られた耐熱絶縁層付セパレータを用いたこと以外は実施例13と同様にして試験用セルを作製し、同様にして信頼性評価を行なった。結果を下記の表4に示す。
 [実施例16]
 グラビアコーターの塗布ギャップを変更して耐熱絶縁層の目付けが両面の合計で17g/mとなるように調整した以外は、実施例13と同様にして、耐熱絶縁層付セパレータを得て、同様にしてセパレータの熱収縮率を測定した。測定結果を下記の表4に示す。
 また、得られた耐熱絶縁層付セパレータを用いたこと以外は実施例13と同様にして試験用セルを作製し、同様にして信頼性評価を行なった。結果を下記の表4に示す。
 [実施例17]
 グラビアコーターの塗布ギャップを変更して耐熱絶縁層の目付けが両面の合計で5g/mとなるように調整した以外は、実施例13と同様にして、耐熱絶縁層付セパレータを得て、同様にしてセパレータの熱収縮率を測定した。測定結果を下記の表4に示す。
 また、得られた耐熱絶縁層付セパレータを用いたこと以外は実施例13と同様にして試験用セルを作製し、同様にして信頼性評価を行なった。結果を下記の表4に示す。
 [実施例18]
 グラビアコーターの塗布ギャップを変更して耐熱絶縁層の目付けが両面の合計で2g/mとなるように調整した以外は、実施例13と同様にして、耐熱絶縁層付セパレータを得て、同様にしてセパレータの熱収縮率を測定した。測定結果を下記の表4に示す。
 また、得られた耐熱絶縁層付セパレータを用いたこと以外は実施例13と同様にして試験用セルを作製し、同様にして信頼性評価を行なった。結果を下記の表4に示す。
 [実施例19]
 実施例13において、得られた発電要素を渦巻状に巻回して巻回体電極群を作製した。次いで、得られた巻回体電極群を押しつぶして扁平状にし、厚み6mm、高さ50mm、幅34mmのアルミニウム製外装缶に入れ、電解液を注入した後に封止を行って、リチウムイオン二次電池である試験用セルを作製し、信頼性試験を行った。結果を下記の表4に示す。
 [実施例20]
 実施例19において、耐熱絶縁層付セパレータの耐熱絶縁層を形成する前の多孔質基体であるポリエチレン(PE)微多孔膜をそのままセパレータとして準備し、同様にして熱収縮率の測定を行った。また、このセパレータを用いて上述した実施例13と同様の手法により試験用セルを作製し、信頼性試験を行った。これらの結果を下記の表4に示す。
 [実施例21]
 実施例13において、耐熱絶縁層付セパレータの耐熱絶縁層を形成する前の多孔質基体であるポリエチレン(PE)微多孔膜をそのままセパレータとして準備し、同様にして熱収縮率の測定を行った。また、このセパレータを用いて上述した実施例13と同様の手法により試験用セルを作製し、信頼性試験を行った。これらの結果を下記の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 以上の結果から、耐熱絶縁層(セラミック層)を表面に有するセパレータ(いわゆるセラミックセパレータ)を用いた実施例13~19では、かようなセパレータを用いない実施例20および実施例21と比べて、セパレータの熱収縮率が低減されており、信頼性評価の結果も向上していることがわかる。また、セラミックセパレータを用いることにより奏されるこのような効果(熱収縮率の低減割合および信頼性評価の向上)は、電池外装体として外装缶を用いた巻回型電池よりも、ラミネートフィルムを用いた扁平積層型ラミネート電池においてより顕著に発現することもわかる。
 本出願は、2013年2月28日に出願された日本特許出願番号2013-040108号に基づいており、その開示内容は、参照により全体として組み入れられている。
  1 正極材料のシェル部、
  2 正極材料のコア部、
  3 正極材料、
  10、50 リチウムイオン二次電池、
  11 正極集電体、
  12 負極集電体、
  13 正極活物質層、
  15 負極活物質層、
  17 セパレータ、
  19 単電池層、
  21、57 発電要素、
  25 正極集電板、
  27 負極集電板、
  29、52 電池外装材、
  58  正極タブ、
  59  負極タブ。

Claims (15)

  1.  リチウムとニッケルとを含有する複合酸化物からなる非水電解質二次電池用正極活物質であって、
     一次粒子が凝集してなる二次粒子の構成を有し、
     前記一次粒子の平均粒子径(D1)が0.9μm以下であり、前記一次粒子の平均粒子径(D1)と、前記一次粒子の平均粒子径(D1)の標準偏差(σ)とが、D/σ≧24の関係を満たす、非水電解質二次電池用正極活物質。
  2.  前記複合酸化物は、
     一般式:LiNiMnCo(但し、式中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3、b+c+d=1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種である)で表される組成を有する、請求項1に記載の正極活物質。
  3.  前記b、cおよびdが、0.44≦b≦0.51、0.27≦c≦0.31、0.19≦d≦0.26である、請求項2に記載の正極活物質。
  4.  結晶子径が0.4μm以下である、請求項1~3のいずれか1項に記載の正極活物質。
  5.  タップ密度が2.0g/cm以上である、請求項1~4のいずれか1項に記載の正極活物質。
  6.  BET比表面積が0.1~1.0m/gである、請求項1~5のいずれか1項に記載の正極活物質。
  7.  粉末X線回折測定による(104)面の回折ピークと(003)面の回折ピークとが、回折ピーク強度比((003)/(104))として1.28以上であり、回折ピーク積分強度比((003)/(104))として1.05以上である、請求項1~6のいずれか1項に記載の正極活物質。
  8.  請求項1~7のいずれか1項に記載の正極活物質を含むコア部と、前記正極活物質と異なるリチウム含有複合酸化物を含むシェル部と、を有する非水電解質二次電池用正極材料。
  9.  請求項1~7のいずれか1項に記載の正極活物質と、スピネル系マンガン正極活物質とが混合状態で含有されてなる、非水電解質二次電池用正極材料。
  10.  請求項1~7のいずれか1項に記載の正極活物質と、前記スピネル系マンガン正極活物質との混合重量比率が、50:50~90:10である、請求項9に記載の正極材料。
  11.  正極集電体の表面に、請求項1~7のいずれか1項に記載の正極活物質、および請求項8~10のいずれか1項に記載の正極材料からなる群から選択される少なくとも1種を含む正極活物質層が形成されてなる非水電解質二次電池用正極。
  12.  請求項11に記載の正極と、
     負極集電体の表面に負極活物質層が形成されてなる負極と、
     セパレータと、
    を含む発電要素を有する非水電解質二次電池。
  13.  前記セパレータが耐熱絶縁層付セパレータである、請求項12に記載の非水電解質二次電池。
  14.  定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上である、請求項12または13に記載の非水電解質二次電池。
  15.  矩形状の正極活物質層の縦横比として定義される電極のアスペクト比が1~3である、請求項12~14のいずれか1項に記載の非水電解質二次電池。
PCT/JP2014/054830 2013-02-28 2014-02-27 正極活物質、正極材料、正極および非水電解質二次電池 WO2014133064A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480011338.5A CN105027336A (zh) 2013-02-28 2014-02-27 正极活性物质、正极材料、正极及非水电解质二次电池
JP2015503009A JP6075440B2 (ja) 2013-02-28 2014-02-27 正極活物質、正極材料、正極および非水電解質二次電池
KR1020157023419A KR20150121010A (ko) 2013-02-28 2014-02-27 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지
EP14756529.5A EP2963708B1 (en) 2013-02-28 2014-02-27 Positive electrode active material, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
US14/771,106 US9537148B2 (en) 2013-02-28 2014-02-27 Positive electrode active substance, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-040108 2013-02-28
JP2013040108 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014133064A1 true WO2014133064A1 (ja) 2014-09-04

Family

ID=51428324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054830 WO2014133064A1 (ja) 2013-02-28 2014-02-27 正極活物質、正極材料、正極および非水電解質二次電池

Country Status (6)

Country Link
US (1) US9537148B2 (ja)
EP (1) EP2963708B1 (ja)
JP (1) JP6075440B2 (ja)
KR (1) KR20150121010A (ja)
CN (2) CN109599555A (ja)
WO (1) WO2014133064A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104488A1 (ja) * 2014-12-25 2016-06-30 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
JP2018022689A (ja) * 2016-08-03 2018-02-08 三星電子株式会社Samsung Electronics Co., Ltd. 複合正極活物質、それを含む正極、及びリチウム電池
JP2019091692A (ja) * 2017-11-15 2019-06-13 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. 二次電池用正極活物質及びその製造方法
JP2020505739A (ja) * 2017-01-27 2020-02-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh リチウムイオン電池用の安定化された活物質
JP2020072091A (ja) * 2018-11-02 2020-05-07 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池
JP2020514970A (ja) * 2016-12-22 2020-05-21 ポスコPosco 正極活物質、その製造方法、およびこれを含むリチウム二次電池
WO2020175360A1 (ja) * 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP2020537315A (ja) * 2017-11-21 2020-12-17 エルジー・ケム・リミテッド 二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133069A1 (ja) * 2013-02-28 2014-09-04 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
EP2980910B1 (en) * 2013-03-26 2018-02-28 Nissan Motor Co., Ltd Non-aqueous electrolyte secondary battery
KR102195723B1 (ko) * 2014-04-04 2020-12-28 삼성에스디아이 주식회사 복합양극활물질전구체, 양극활물질, 이를 채용한 양극과 리튬전지 및 전구체 제조방법
US10615414B2 (en) 2016-01-15 2020-04-07 Toda Kogyo Corp. Lithium nickelate-based positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP6378246B2 (ja) * 2016-05-09 2018-08-22 トヨタ自動車株式会社 正極活物質、及び、当該正極活物質を用いたリチウムイオン二次電池
US10581070B2 (en) 2016-08-02 2020-03-03 Apple Inc. Coated nickel-based cathode materials and methods of preparation
KR20180056310A (ko) * 2016-11-18 2018-05-28 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
CN111900358A (zh) 2017-05-19 2020-11-06 株式会社半导体能源研究所 正极活性物质以及二次电池
CN109728375A (zh) * 2017-10-30 2019-05-07 微宏动力系统(湖州)有限公司 一种回收并修复正极材料的方法、修复的正极材料及锂离子电池
EP3683873B1 (en) * 2017-11-06 2023-04-12 LG Energy Solution, Ltd. Lithium secondary battery
KR102130484B1 (ko) * 2017-11-15 2020-07-06 주식회사 에코프로비엠 이차전지용 양극 활물질 및 이의 제조 방법
EP3486978B1 (en) * 2017-11-15 2020-12-30 Ecopro Bm Co., Ltd. Cathode active material and preparation method thereof
CN108767254B (zh) * 2018-05-24 2020-12-15 湘潭大学 一种层状富锂正极材料的表面结构和化学组成同步调控方法
KR20200046485A (ko) * 2018-10-24 2020-05-07 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
KR102385749B1 (ko) * 2019-03-15 2022-04-11 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN114365308A (zh) * 2019-07-10 2022-04-15 辰星锂电 用于锂二次电池的正极活性物质、其制备方法和包括其的锂二次电池
CN112447966A (zh) * 2019-09-02 2021-03-05 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
KR102595176B1 (ko) * 2020-06-18 2023-10-27 삼성에스디아이 주식회사 리튬이차전지용 니켈계 복합양극활물질, 그 제조방법 및 이를 포함하는 양극을 함유한 리튬이차전지
JP6936909B1 (ja) 2020-08-07 2021-09-22 Basf戸田バッテリーマテリアルズ合同会社 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
US20240047731A1 (en) * 2021-07-21 2024-02-08 Lg Energy Solution, Ltd. Lithium Secondary Battery
CN115020697B (zh) * 2022-06-13 2023-12-29 北京当升材料科技股份有限公司 一种正极材料及其制备方法及应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006670A1 (fr) * 1996-08-12 1998-02-19 Fuji Chemical Industry Co., Ltd. Oxyde composite de lithium/nickel/cobalt, procede pour sa preparation, et materiau actif de cathode pour batterie rechargeable
JP2001085006A (ja) 1999-09-14 2001-03-30 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムニッケル複合酸化物およびそれを用いたリチウム二次電池
JP2005129492A (ja) * 2003-09-29 2005-05-19 Sanyo Electric Co Ltd 非水電解質二次電池の充放電制御方法
JP2007213866A (ja) 2006-02-07 2007-08-23 Nissan Motor Co Ltd 電池活物質および二次電池
JP2010050079A (ja) * 2008-03-17 2010-03-04 Sanyo Electric Co Ltd 非水電解質二次電池
WO2010053058A1 (ja) * 2008-11-06 2010-05-14 日立マクセル株式会社 電気化学素子
JP2011086603A (ja) * 2009-10-16 2011-04-28 ▲ショウ▼▲ゲン▼科技股▲ふん▼有限公司 リチウム電池の複合電極活物質およびその製造方法
JP2011105588A (ja) 2009-10-22 2011-06-02 Toda Kogyo Corp ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池
JP2011105594A (ja) * 2010-12-13 2011-06-02 Mitsubishi Chemicals Corp ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
JP2013040108A (ja) 2011-08-11 2013-02-28 Nisshin Seifun Group Inc 抗肥満剤

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5034136B2 (ja) * 2000-11-14 2012-09-26 株式会社Gsユアサ 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
CN100338801C (zh) * 2003-05-13 2007-09-19 三菱化学株式会社 层状锂镍系复合氧化物粉末及其制造方法
EP1624509A4 (en) * 2003-05-13 2010-03-24 Mitsubishi Chem Corp COMPOSITE OXIDE POWDER BASED ON NICKEL / LITHIUM LAYER AND METHOD FOR PRODUCING THE SAME
CN100483808C (zh) * 2005-03-09 2009-04-29 松下电器产业株式会社 非水电解质二次电池
JP4774232B2 (ja) 2005-04-13 2011-09-14 パナソニック株式会社 非水電解質二次電池用電極およびその製造方法
KR100783293B1 (ko) 2005-08-16 2007-12-10 주식회사 엘지화학 양극 활물질 및 그것을 포함하고 있는 리튬 이차전지
CN101223658A (zh) * 2005-08-16 2008-07-16 株式会社Lg化学 阴极活性材料及包含该活性材料的锂二次电池
JP4768562B2 (ja) 2005-09-27 2011-09-07 石原産業株式会社 リチウム・遷移金属複合酸化物及びその製造方法並びにそれを用いてなるリチウム電池
KR100723973B1 (ko) * 2005-11-09 2007-06-04 한양대학교 산학협력단 열적 안정성이 우수하고 용량이 높은 코어쉘 구조를 가지는리튬이차전지용 양극 활물질, 그 제조 방법 및 그를사용한 리튬이차전지
JP4996117B2 (ja) * 2006-03-23 2012-08-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法とそれを用いた非水系電解質二次電池
JP5228292B2 (ja) * 2006-07-06 2013-07-03 東ソー株式会社 リチウム−ニッケル−マンガン−コバルト複合酸化物の製造方法。
JP4213768B2 (ja) * 2007-01-26 2009-01-21 三井金属鉱業株式会社 層構造を有するリチウム遷移金属酸化物
CN102639443B (zh) * 2009-12-07 2015-04-15 住友化学株式会社 锂复合金属氧化物的制造方法、锂复合金属氧化物及非水电解质二次电池
CN102754268B (zh) * 2010-02-12 2014-11-19 三菱化学株式会社 非水电解液及非水电解质二次电池
DE102010011413A1 (de) * 2010-03-15 2011-09-15 Li-Tec Battery Gmbh Kathodische Elektrode und elektrochemische Zelle für dynamische Einsätze
US8945768B2 (en) * 2011-05-06 2015-02-03 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
JP5308600B1 (ja) * 2011-11-25 2013-10-09 三井金属鉱業株式会社 層構造を有するリチウム金属複合酸化物
KR101487373B1 (ko) * 2012-03-09 2015-01-29 가부시키가이샤 히타치세이사쿠쇼 비수 전해질 이차 전지
JP6229709B2 (ja) * 2013-02-28 2017-11-15 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
JP6008041B2 (ja) * 2013-03-15 2016-10-19 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006670A1 (fr) * 1996-08-12 1998-02-19 Fuji Chemical Industry Co., Ltd. Oxyde composite de lithium/nickel/cobalt, procede pour sa preparation, et materiau actif de cathode pour batterie rechargeable
JP2001085006A (ja) 1999-09-14 2001-03-30 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムニッケル複合酸化物およびそれを用いたリチウム二次電池
JP2005129492A (ja) * 2003-09-29 2005-05-19 Sanyo Electric Co Ltd 非水電解質二次電池の充放電制御方法
JP2007213866A (ja) 2006-02-07 2007-08-23 Nissan Motor Co Ltd 電池活物質および二次電池
JP2010050079A (ja) * 2008-03-17 2010-03-04 Sanyo Electric Co Ltd 非水電解質二次電池
WO2010053058A1 (ja) * 2008-11-06 2010-05-14 日立マクセル株式会社 電気化学素子
JP2011086603A (ja) * 2009-10-16 2011-04-28 ▲ショウ▼▲ゲン▼科技股▲ふん▼有限公司 リチウム電池の複合電極活物質およびその製造方法
JP2011105588A (ja) 2009-10-22 2011-06-02 Toda Kogyo Corp ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池
US20130045421A1 (en) 2009-10-22 2013-02-21 Masashi Kobino Nickel-cobalt-maganese-based compound particles and process for producing the nickel-cobalt-manganese-based compound particles, lithium composite oxide particles and process for producing the lithium composite oxide particles, and non-aqueous electrolyte secondary battery
JP2011105594A (ja) * 2010-12-13 2011-06-02 Mitsubishi Chemicals Corp ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
JP2013040108A (ja) 2011-08-11 2013-02-28 Nisshin Seifun Group Inc 抗肥満剤

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104488A1 (ja) * 2014-12-25 2016-06-30 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
US11024847B2 (en) 2014-12-25 2021-06-01 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP2018022689A (ja) * 2016-08-03 2018-02-08 三星電子株式会社Samsung Electronics Co., Ltd. 複合正極活物質、それを含む正極、及びリチウム電池
JP2020514970A (ja) * 2016-12-22 2020-05-21 ポスコPosco 正極活物質、その製造方法、およびこれを含むリチウム二次電池
JP2020505739A (ja) * 2017-01-27 2020-02-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh リチウムイオン電池用の安定化された活物質
JP2019091692A (ja) * 2017-11-15 2019-06-13 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. 二次電池用正極活物質及びその製造方法
JP2020537315A (ja) * 2017-11-21 2020-12-17 エルジー・ケム・リミテッド 二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池
JP7086412B2 (ja) 2017-11-21 2022-06-20 エルジー エナジー ソリューション リミテッド 二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池
JP2020072091A (ja) * 2018-11-02 2020-05-07 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池
JP7022730B2 (ja) 2018-11-02 2022-02-18 三星エスディアイ株式会社 リチウム二次電池用正極活物質、その製造方法およびこれを含むリチウム二次電池
US11515521B2 (en) 2018-11-02 2022-11-29 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
WO2020175360A1 (ja) * 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
CN109599555A (zh) 2019-04-09
EP2963708A4 (en) 2016-11-09
JPWO2014133064A1 (ja) 2017-02-02
US9537148B2 (en) 2017-01-03
CN105027336A (zh) 2015-11-04
EP2963708A1 (en) 2016-01-06
EP2963708B1 (en) 2017-11-15
US20160006031A1 (en) 2016-01-07
KR20150121010A (ko) 2015-10-28
JP6075440B2 (ja) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6075440B2 (ja) 正極活物質、正極材料、正極および非水電解質二次電池
JP6229709B2 (ja) 正極活物質、正極材料、正極および非水電解質二次電池
JP5967287B2 (ja) 正極活物質、正極材料、正極および非水電解質二次電池
JP6008041B2 (ja) 正極活物質、正極材料、正極および非水電解質二次電池
JP6036999B2 (ja) 非水電解質二次電池
JP6070824B2 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP6112204B2 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP6176317B2 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP6156491B2 (ja) 非水電解質二次電池
WO2015156400A1 (ja) 電気デバイス用正極、およびこれを用いた電気デバイス
JP6070823B2 (ja) 非水電解質二次電池
JP6070822B2 (ja) 非水電解質二次電池
JP6241543B2 (ja) 電気デバイス
JP2014216264A (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極および非水電解質二次電池
JP6676289B2 (ja) 非水電解質二次電池用正極
JP2016225185A (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP2017073281A (ja) 非水電解質二次電池用正極材料、並びにこれを用いた非水電解質二次電池用正極および非水電解質二次電池
JP2017033766A (ja) 非水電解質二次電池用負極活物質、並びにこれを用いた非水電解質二次電池用負極および非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011338.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756529

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2014756529

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14771106

Country of ref document: US

Ref document number: 2014756529

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015503009

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20157023419

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE