WO2016084635A1 - ダンパ装置 - Google Patents
ダンパ装置 Download PDFInfo
- Publication number
- WO2016084635A1 WO2016084635A1 PCT/JP2015/082030 JP2015082030W WO2016084635A1 WO 2016084635 A1 WO2016084635 A1 WO 2016084635A1 JP 2015082030 W JP2015082030 W JP 2015082030W WO 2016084635 A1 WO2016084635 A1 WO 2016084635A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- weight member
- elastic
- elastic member
- present
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/10—Suppression of vibrations in rotating systems by making use of members moving with the system
- F16F15/12—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
- F16F15/131—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
- F16F15/133—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
- F16F15/136—Plastics springs, e.g. made of rubber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D13/00—Friction clutches
- F16D13/58—Details
- F16D13/60—Clutching elements
- F16D13/64—Clutch-plates; Clutch-lamellae
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F7/00—Vibration-dampers; Shock-absorbers
- F16F7/10—Vibration-dampers; Shock-absorbers using inertia effect
- F16F7/104—Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
- F16F7/108—Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on plastics springs
Definitions
- Embodiments of the present invention relate to a damper device.
- vibration is reduced by a main damper that reduces torque fluctuation by a first elastic member interposed between a first rotating member and a second rotating member, and a first weight member and a second elastic member.
- a damper device including a first dynamic damper and a second dynamic damper that reduces vibration by a second weight member and a third elastic member.
- the damper device includes, for example, a first rotating member that can rotate around the rotation center, a second rotating member that can rotate around the rotation center, the first rotating member, and the second rotation.
- a first elastic member that is elastically deformed by relative rotation with the member; a second elastic member that is connected to the second rotating member and extends along a radial direction of the second rotating member;
- the second rotating member is connected to the second elastic member on the radially outer side of the second rotating member, and the first rotating member moves relative to the second rotating member with elastic deformation of the second elastic member.
- the one side is connected to the member on the radially outer side of the second rotating member, and the third side Accompanied by elastic deformation of the sexual member and a dynamic vibration reducer having a, a second weight member moving one relative said. Therefore, for example, by combining a plurality of elastic members extending in the radial direction and a plurality of weight members connected to the elastic members, a dynamic vibration absorber having a plurality of natural frequencies is realized with a relatively simple configuration. sell.
- the third elastic member is connected to the second rotating member and the second weight member, and one side or the other side in the axial direction of the second elastic member. Located in. Therefore, for example, a dynamic vibration absorber having a plurality of natural frequencies can be realized by a configuration in which the combination of the elastic member and the weight member is divided in the axial direction and arranged in parallel.
- the third elastic member is connected to the second rotating member and the second weight member, and one side or the other side in the circumferential direction of the second elastic member. Located in. Therefore, for example, a dynamic vibration absorber having a plurality of natural frequencies can be realized by a configuration in which the combination of the elastic member and the weight member is divided in the circumferential direction and arranged in parallel.
- the plurality of second elastic members are arranged apart from each other in the circumferential direction, and the first weight member is connected to the plurality of second elastic members.
- the second weight member and the third elastic member are provided between the two second elastic members adjacent to each other. Therefore, for example, the space between the plurality of second elastic members and the first weight member can be effectively used, and the third elastic member and the second weight member can be arranged.
- FIG. 1 is an exemplary front view of the damper device according to the first embodiment.
- 2 is a cross-sectional view taken along the line II-II in FIG.
- FIG. 3 is an exemplary cross-sectional view of the dynamic vibration absorber of the damper device according to the second embodiment.
- FIG. 4 is an exemplary front view of the dynamic vibration absorber of the damper device according to the third embodiment.
- FIG. 5 is an exemplary front view of the dynamic vibration absorber of the damper device according to the fourth embodiment.
- FIG. 6 is an exemplary front view of the dynamic vibration absorber of the damper device according to the fifth embodiment.
- 7 is a sectional view taken along line VII-VII in FIG. FIG.
- FIG. 8 is an exemplary cross-sectional view of the dynamic vibration absorber of the damper device according to the sixth embodiment.
- FIG. 9 is an exemplary cross-sectional view of the damper device according to the seventh embodiment.
- 10 is a cross-sectional view taken along the line XX of FIG.
- FIG. 11 is an exemplary cross-sectional view of the dynamic vibration absorber of the damper device according to the eighth embodiment.
- FIG. 12 is an exemplary cross-sectional view of the dynamic vibration absorber of the damper device according to the ninth embodiment.
- FIG. 13 is an exemplary cross-sectional view of the dynamic vibration absorber of the damper device according to the tenth embodiment.
- FIG. 14 is an exemplary cross-sectional view of the dynamic vibration absorber of the damper device according to the eleventh embodiment.
- FIG. 15 is an exemplary cross-sectional view of the dynamic vibration absorber of the damper device according to the twelfth embodiment.
- FIG. 16 is an exemplary cross-sectional view of the dynamic vibration absorber of the damper device according to the thirteenth embodiment.
- FIG. 17 is an exemplary front view of the dynamic vibration absorber of the damper device according to the fourteenth embodiment.
- FIG. 18 is an exemplary cross-sectional view of a part of the dynamic vibration absorber of the damper device according to the fifteenth embodiment.
- FIG. 19 is an exemplary cross-sectional view of a part of the dynamic vibration absorber of the damper device according to the sixteenth embodiment.
- FIG. 20 is an exemplary cross-sectional view of a part of the dynamic vibration absorber of the damper device according to the seventeenth embodiment.
- 21 is an exemplary cross-sectional view of a part of the dynamic vibration absorber of the damper device according to the eighteenth embodiment.
- 22 is a view taken in the direction of arrow XXII in FIG.
- FIG. 23 is an exemplary cross-sectional view of a part of the dynamic vibration absorber of the damper device according to the nineteenth embodiment.
- FIG. 24 is an exemplary front view of a part of the dynamic vibration absorber of the damper device according to the twentieth embodiment.
- FIG. 25 is an exemplary cross-sectional view of a part of the dynamic vibration absorber of the damper device according to the twenty-first embodiment.
- 26 is a cross-sectional view taken along the line XXVI-XXVI in FIG.
- the damper device 1 is positioned, for example, between an engine on the input side and a transmission on the output side.
- the damper device 1 can alleviate fluctuations such as torque and rotation as driving force between the input side and the output side.
- the damper device 1 can also be referred to as a torque fluctuation absorber.
- the damper device 1 is not limited to be provided between the engine and the transmission, but can be provided between the other two rotating elements, for example, between the engine and the motor generator. It can be provided in a vehicle or a machine having a rotating element.
- the damper device 1 can be provided, for example, in a clutch device 100 that transmits and shuts off driving force between an engine and a transmission.
- the clutch device 100 includes a flywheel (not shown) connected to the crankshaft of the engine, and a disk portion 11 connected to an input shaft (not shown) of the transmission.
- the clutch device 100 changes the pressing state of the disk unit 11 against the flywheel, thereby transmitting the driving force between the flywheel and the disk unit 11 and between the flywheel and the disk unit 11. Switching between a cut-off state in which the transmission of the driving force is cut off.
- the clutch device 100 can also transmit a driving force in a so-called half-clutch state in which the output torque is reduced with respect to the input torque between the flywheel and the disk portion 11.
- the damper device 1 includes, for example, a disk unit 11, a damper unit 12, and a dynamic vibration absorber 17.
- the disk part 11 is located on the radially outer side of the damper device 1, and the damper part 12 is located on the radially inner side of the disk part 11.
- the dynamic vibration absorber 17 is provided in the damper portion 12.
- the disk portion 11 is formed in an annular shape around the rotation center Ax.
- the rotation center Ax can also be referred to as a rotation axis or an axis.
- the disk part 11 includes, for example, a wall part 11a and a cover part 11b.
- the wall portion 11a is formed in an annular and plate shape around the rotation center Ax and extends in the radial direction.
- the cover 11b is formed in an annular and plate shape around the rotation center Ax and extends in the radial direction.
- the cover portion 11b is provided on each of one side and the other side in the axial direction of the rotation center Ax with respect to the wall portion 11a.
- Each of the two cover portions 11b is located at an end portion on the outer side in the radial direction of the wall portion 11a.
- the cover 11b on one side in the axial direction faces the flywheel and can be coupled to the flywheel by friction.
- the wall portion 11a and the two cover portions 11b are coupled to each other by a coupling tool such as a screw or a rivet (not shown) that passes through them in the axial direction.
- the cover 11b can also be called a facing or a pad.
- the driving force of the engine is input to the disk unit 11 from the flywheel.
- the cover 11b may not be annular.
- a plurality of cover portions 11b having a rectangular shape or the like may be arranged around the rotation center Ax.
- the damper portion 12 includes a first rotating member 25, a second rotating member 26, and a first elastic member 23.
- the first rotating member 25 includes, for example, the disk portion 11 and the outer member 21, and the second rotating member 26 includes, for example, the inner member 22 and the hub member 24.
- the first rotating member 25 and the second rotating member 26 are configured to be rotatable around the rotation center Ax.
- the first elastic member 23 is interposed between the outer member 21 of the first rotating member 25 and the inner member 22 of the second rotating member 26.
- the outer member 21 is connected to the input side, i.e., the engine via the disk portion 11, and the inner member 22 is connected to the output side, i.e., the transmission, via the hub member 24.
- the first elastic member 23 elastically expands and contracts with the relative rotation of the first rotating member 25 and the second rotating member 26, thereby reducing torque fluctuation.
- the first rotating member 25 is an example of an input side member
- the second rotating member 26 is an example of an output side member.
- the outer member 21 has, for example, two side plates 21a and 21b that are paired in the axial direction.
- the side plate 21a is located on one side of the side plate 21b in the axial direction, that is, on the left side in FIG.
- the side plates 21a and 21b are formed in an annular and plate shape around the rotation center Ax and spread in the radial direction.
- the side plates 21a and 21b are located at least partially spaced apart from each other in the axial direction.
- the side plates 21a and 21b are coupled to each other by a coupling tool such as a screw or a rivet (not shown) and rotate integrally around the rotation center Ax.
- the radially outer end of the side plate 21a is coupled to the radially inner end of the wall 11a. Therefore, the outer member 21 rotates integrally around the disk portion 11 and the rotation center Ax.
- the side plates 21a and 21b are provided with a plurality of openings 21c and 21d at intervals in the circumferential direction, respectively. As shown in FIG. 2, these openings 21 c and 21 d are configured as through holes that overlap each other in the axial direction, for example.
- a first elastic member 23 is disposed between one edge in the circumferential direction and the other edge.
- the side plates 21a and 21b, that is, the outer member 21, can be made of, for example, a metal material.
- the inner member 22 has, for example, a center plate 22a.
- the center plate 22a is positioned between the side plate 21a and the side plate 21b of the outer member 21, and is separated from the side plate 21a and the side plate 21b in the axial direction.
- the center plate 22a is formed in an annular and plate shape around the rotation center Ax and spreads in the radial direction.
- the center plate 22a is provided so as to be relatively rotatable around the side plates 21a and 21b and the rotation center Ax.
- the relative rotation between the center plate 22a and the side plates 21a and 21b is limited to a predetermined angle range by, for example, contact of stoppers (not shown).
- the center plate 22a is provided with an opening 22b. As shown in FIG.
- the opening 22b is configured as a notch that is opened toward the outside in the radial direction of the center plate 22a, for example. Further, the opening 22b penetrates the center plate 22a in the axial direction. The opening 22b of the center plate 22a and the openings 21c and 21d of the side plates 21a and 21b overlap each other in the axial direction.
- the first elastic member 23 is disposed in the opening 22b between the edge on one side and the edge on the other side in the circumferential direction.
- a convex hooking portion 22c is provided at the radially inner end of the center plate 22a. The hook 22c protrudes from the radially inner end of the center plate 22a toward the rotation center Ax.
- the center plate 22a that is, the inner member 22, can be made of, for example, a metal material.
- the first elastic member 23 shown in FIGS. 1 and 2 is a coil spring made of, for example, a metal material and extending substantially along the circumferential direction.
- the first elastic member 23 is accommodated in the openings 21 c and 21 d and the opening 22 b that overlap each other in the axial direction, and is connected to the first rotating member 25 and the second rotating member 26.
- the first elastic member 23 is elastically extended. That is, the first elastic member 23 is sandwiched between the side plates 21a and 21b of the first rotating member 25 and the center plate 22a of the second rotating member 26, and is relatively rotated around the rotation center Ax. Accompanying this, it elastically expands and contracts along the substantially circumferential direction. The first elastic member 23 elastically contracts to store torque as a compressive force, and elastically extends to release the compressive force as torque.
- the 1st elastic member 23 is located between the 1st rotation member 25 and the 2nd rotation member 26, and the 1st rotation member 25 and the 2nd rotation member 26 are the circumferential direction. It is sandwiched approximately along and elastically expands and contracts approximately along the circumferential direction.
- the damper portion 12 can relieve torque fluctuation by the expansion and contraction of the first elastic member 23.
- the hub member 24 is positioned inside the outer member 21 and the inner member 22 in the radial direction.
- the hub member 24 is configured in a cylindrical shape around the rotation center Ax as a whole.
- the hub member 24 has a cylindrical portion 24a.
- An input shaft of the transmission is inserted inside the cylindrical portion 24a.
- the cylindrical portion 24a is coupled to the input shaft and rotates integrally with the input shaft.
- the cylindrical portion 24a includes, for example, a first cylindrical portion 24b, a second cylindrical portion 24c, and a third cylindrical portion 24d.
- the first cylindrical portion 24b, the second cylindrical portion 24c, and the third cylindrical portion 24d are all configured in a cylindrical shape around the rotation center Ax.
- the first cylindrical portion 24b, the second cylindrical portion 24c, and the third cylindrical portion 24d are arranged in this order from one side to the other side in the axial direction. That is, it is located from the left side to the right side in FIG.
- the first tubular portion 24b includes an end portion on one side in the axial direction of the tubular portion 24a
- the third tubular portion 24d includes an end portion on the other side in the axial direction of the tubular portion 24a.
- the outer diameter of the first cylindrical portion 24b and the outer diameter of the third cylindrical portion 24d are substantially the same.
- the second cylindrical portion 24c is provided between the first cylindrical portion 24b and the third cylindrical portion 24d. The outer diameter of the second cylindrical portion 24c is larger than the outer diameters of the first cylindrical portion 24b and the third cylindrical portion 24d.
- the second cylindrical portion 24c is positioned on the inner side in the radial direction of the side plates 21a and 21b, and supports the side plates 21a and 21b, that is, the first rotating member 25 so as to be rotatable around the rotation center Ax. Yes.
- the second cylindrical portion 24 c can function as a bearing for the first rotating member 25.
- the second cylindrical portion 24c is provided with an overhang portion 24e.
- the projecting portion 24e projects from the substantially central portion in the axial direction of the second cylindrical portion 24c toward the outer side in the radial direction.
- the overhang portion 24e is configured in a cylindrical shape around the rotation center Ax.
- the overhang portion 24e is located on the inner side in the radial direction of the center plate 22a.
- the overhang portion 24e can also be referred to as a cylindrical portion or a convex portion.
- a concave hooking portion 24f is provided on the radially outer portion of the overhang portion 24e.
- the hook portion 24f is provided at a position corresponding to the hook portion 22c of the center plate 22a, and can accommodate the hook portion 22c in a state of being separated from the hook portion 22c in the circumferential direction.
- the hooking portion 24f is configured to be hooked in the circumferential direction with the hooking portion 22c in a state where an elastic member (not shown) that expands and contracts with relative rotation between the inner member 22 and the hub member 24 is elastically contracted, for example. Can be done.
- the damper part 12 can relieve torque fluctuations by expansion and contraction of the elastic member.
- the hub member 24 rotates integrally with the inner member 22 in a state where the hooking portion 24f and the hooking portion 22c are hooked in the circumferential direction.
- the hub member 24 rotates integrally with the input shaft of the transmission as described above. Therefore, the hub member 24 and the inner member 22 rotate integrally with the input shaft.
- the hub member 24 can be made of, for example, a metal material.
- the dynamic vibration absorber 17 is provided, for example, on the output side of the driving force in the first elastic member 23 to which the driving force of the engine is transmitted, that is, on the second rotating member 26.
- the dynamic vibration absorber 17 includes a first dynamic vibration absorber 13 and a second dynamic vibration absorber 14.
- the first dynamic vibration absorber 13 and the second dynamic vibration absorber 14 are each connected to the first cylindrical portion 24b of the hub member 24, and are arranged side by side in the axial direction with a space therebetween.
- the first dynamic vibration absorber 13 includes a first weight member 32 and a second elastic member 33. As shown in FIG. 2, the first weight member 32 is positioned so as to be spaced outward in the radial direction with respect to the first cylindrical portion 24 b. Moreover, as FIG. 1 shows, the 1st weight member 32 has the cylindrical part 32a comprised by the annular
- the first weight member 32 functions as an inertial body, a mass body, a flywheel, or the like.
- the first weight member 32 when circumferential vibration is generated in the second rotating member 26, the first weight member 32 is opposite to the vibration direction of the second rotating member 26 due to elastic deformation of the second elastic member 33. By vibrating in the direction, that is, by relative movement, the circumferential vibration of the second rotating member 26 can be attenuated.
- the first weight member 32 can be made of, for example, a metal material.
- the second elastic member 33 is interposed between the first weight member 32 and the first cylindrical portion 24b which are separated in the radial direction. Moreover, as FIG. 1 shows, the 2nd elastic member 33 is comprised by the annular
- the weight member 32 is coupled.
- the second elastic member 33 is made of, for example, a rubber material such as an elastomer. The second elastic member 33 supports the first weight member 32 in a state in which the second elastic member 33 is supported by the first cylindrical portion 24b so as to be elastically deformable.
- the second dynamic vibration absorber 14 is located on the other axial side of the first dynamic vibration absorber 13, that is, on the right side in FIG.
- the second dynamic vibration absorber 14 includes a second weight member 37 and a third elastic member 38.
- the second weight member 37 has an annular cylindrical portion 37a that is located on the outer side in the radial direction with respect to the first cylindrical portion 24b.
- the cylindrical portion 37a that is, the second weight member 37 is supported by the third elastic member 38 so as to be movable with respect to the first cylindrical portion 24b.
- the second weight member 37 functions as an inertial body, a mass body, a flywheel, or the like.
- the second weight member 37 can be made of, for example, a metal material.
- the third elastic member 38 is interposed between the second weight member 37 and the first cylindrical portion 24b which are separated in the radial direction. Further, the third elastic member 38 is configured in, for example, an annular shape spreading in the radial direction. In the present embodiment, the radially inner end 38a of the third elastic member 38 is coupled to the first cylindrical portion 24b, and the radially outer end 38b of the third elastic member 38 is the second. The weight member 37 is coupled. Similar to the second elastic member 33, the third elastic member 38 is made of a rubber material such as an elastomer. The third elastic member 38 supports the second weight member 37 while being supported by the first cylindrical portion 24b so as to be elastically deformable.
- the cylindrical portion 32 a of the first weight member 32 is positioned on the outer side in the radial direction of the cylindrical portion 37 a of the second weight member 37.
- the dynamic vibration absorber 17 having a plurality of natural frequencies can be obtained relatively easily by the two cylindrical portions 32a and 37a having different magnitudes of inertia. If a single dynamic vibration absorber whose natural frequency is matched with the resonance frequency of the damper device 1 is provided, there is a risk that a so-called contradiction part in which vibration, that is, torque fluctuation increases at the rotation speeds before and after the resonance frequency is provided. there were.
- the dynamic vibration absorber 17 having a plurality of natural frequencies since the dynamic vibration absorber 17 having a plurality of natural frequencies is provided, it is easy to adjust the characteristics of torque fluctuation with respect to the rotation speed. Therefore, for example, the vibration at the rotational speed before and after the resonance frequency of the damper device 1, that is, the torque fluctuation can be configured to be smaller than that in the case where one dynamic vibration absorber is provided.
- the damper device 1 is connected to the second rotating member 26, the second elastic member 33 extending along the radial direction of the second rotating member 26, and the first A first weight member 32 that is connected to the second elastic member 33 on the outer side in the radial direction of the second rotating member 26 and moves relative to the second rotating member 26 with elastic deformation of the second elastic member 33;
- a third elastic member 38 connected to the second rotating member 26 and extending along the radial direction of the second rotating member 26, and a third elastic member 38 on the radially outer side of the second rotating member 26.
- a dynamic vibration absorber 17 having a second weight member 37 that is connected and moves relative to the second rotating member 26 with elastic deformation of the third elastic member 38 is provided.
- the second elastic member 33 and the third elastic member 38 as a plurality of elastic members extending in the radial direction, and the plurality of weight members connected to the elastic members.
- the third elastic member 38 is connected to the second rotating member 26 and the second weight member 37, and the other side in the axial direction of the second elastic member 33, that is, the figure. 2 on the right side. Therefore, according to the present embodiment, for example, the combination of the second elastic member 33 and the first weight member 32 and the combination of the third elastic member 38 and the second weight member 37 are divided in the axial direction. With the configuration arranged in parallel, the dynamic vibration absorber 17 having a plurality of natural frequencies can be realized.
- the first weight member 32 is located on the outer side in the radial direction of the second weight member 37. Therefore, according to the present embodiment, for example, the dynamic vibration absorber 17 having a plurality of natural frequencies is configured by the configuration in which the first weight member 32 and the second weight member 37 are arranged in the radial direction. Can be realized relatively easily.
- the second elastic member 33 and the third elastic member 38 are made of a rubber material. Therefore, according to the present embodiment, for example, the second elastic member 33 and the third elastic member 38, and thus the dynamic vibration absorber 17 can be configured relatively easily.
- a damper device 1A of the present embodiment shown in FIG. 3 has the same configuration as the damper device 1 of FIG. Therefore, according to this embodiment, the same result and effect based on the same configuration as that of the embodiment of FIG. 1 can be obtained.
- the first weight member 32A includes a cylindrical portion 32a and a protruding portion 32b.
- the protruding portion 32b protrudes from the cylindrical portion 32a to the other side in the axial direction, that is, the right side in FIG. 3, and overlaps at least a part of the second weight member 37 in the radial direction.
- the protruding portion 32b may be formed in an annular shape like the cylindrical portion 32a, or may be partially provided on the cylindrical portion 32a.
- a support member 70 is provided between the second rotating member 26 and the first weight member 32 ⁇ / b> A.
- the support member 70 includes a wall portion 70a and a wall portion 70b.
- the wall part 70b is comprised by the annular
- the radially inner end of the wall 70b is connected to the first tubular portion 24b, and the radially outer end of the wall 70b is connected to the wall 70a.
- the wall portion 70 b is positioned between the second elastic member 33, the third elastic member 38, and the second weight member 37 arranged in the axial direction. According to the present embodiment, the movement of the second weight member 37 in the axial direction can be suppressed by the wall portion 70b. Further, the wall portion 70a protrudes from the wall portion 70b to the other axial side, that is, the right side in FIG.
- the wall portion 70a is positioned between the protruding portion 32b of the first weight member 32A and the second weight member 37, and is configured, for example, in a cylindrical shape along the outer surface of the tubular portion 37a.
- the wall portion 70a supports the first weight member 32A and the second weight member 37 so as to be rotatable around the rotation center Ax. That is, the wall portion 70 a functions as a bearing for the first weight member 32 ⁇ / b> A and the second weight member 37.
- the support member 70 is made of, for example, a synthetic resin material or a metal material.
- the first weight member 32 ⁇ / b> A includes the protruding portion 32 b that is positioned so as to overlap at least a part of the second weight member 37 and the second rotating member 26 in the radial direction.
- the inertia moment of the first weight member 32A is increased as compared with the case where the protruding portion 32b is not provided, and the dynamic vibration absorber 17 and the damper device 1A are large in the axial direction. It is easy to be suppressed.
- the damper device 1A is provided between the second rotating member 26 and the first weight member 32A, and the first weight member 32A is arranged in the radial direction of the second rotating member 26.
- a support member 70 is provided. Therefore, according to the present embodiment, for example, the support member 70 can easily suppress the movement of the first weight member 32A in the radial direction.
- the support member 70 further supports the second weight member 37 in the radial direction of the second rotating member 26. Therefore, according to the present embodiment, for example, the support member 70 can easily suppress the movement of the first weight member 32A and the second weight member 37 in the radial direction.
- the support member 70 is made of a synthetic resin material or a metal material. Therefore, according to the present embodiment, for example, the support member 70 can be configured relatively easily.
- the support member 70 functions as a bearing that supports the first weight member 32A and the second weight member 37 so as to be rotatable around the rotation center Ax. Therefore, according to this embodiment, compared with the case where a bearing is provided separately from the support member 70, the effort and cost which manufacture requires are easy to be reduced.
- the damper device 1B of the present embodiment shown in FIG. 4 has the same configuration as the damper device 1 of FIG. Therefore, according to this embodiment, the same result and effect based on the same configuration as that of the embodiment of FIG. 1 can be obtained.
- the second elastic member 33 ⁇ / b> A and the third elastic member 38 ⁇ / b> A are arranged side by side in the circumferential direction with a space therebetween.
- the second elastic member 33A and the third elastic member 38A have a radially outer end with respect to the radially inner ends 33a and 38a in the axial line of sight shown in FIG.
- the parts 33b and 38b are formed in a substantially trapezoidal shape with long sides.
- the first weight member 32B and the second weight member 37B have base portions 32d and 37d, respectively.
- the base portions 32d and 37d are, for example, configured in a rectangular shape and a plate shape along the long side end portions 33b and 38b, and are coupled to the end portions 33b and 38b.
- the dynamic vibration absorber 17 includes, for example, a first dynamic vibration absorber 13, a second dynamic vibration absorber 14, a third dynamic vibration absorber 15, and a fourth dynamic vibration absorber (not shown).
- the first dynamic vibration absorber 13, the second dynamic vibration absorber 14, the third dynamic vibration absorber 15, and the fourth dynamic vibration absorber (not shown) are arranged side by side at equal intervals along the circumferential direction. Yes.
- the elastic members of the respective dynamic vibration absorbers that is, the second elastic member 33A, the third elastic member 38A, the fourth elastic member 36A, and the fifth elastic member (not shown) have a diameter from the first cylindrical portion 24b. Projecting radially outward in the direction. Further, the weight member of each dynamic vibration absorber, that is, the first weight member 32B, the second weight member 37B, the third weight member 35B, and the fourth weight member (not shown) are arranged in the radial direction of each elastic member. Coupled to the outer end and spaced apart from each other in the circumferential direction.
- the elastic force of the second elastic member 33A, the third elastic member 38A, the fourth elastic member 36A, and the fifth elastic member (not shown), the first weight member 32B, At least one of the magnitudes of inertia of the second weight member 37B, the third weight member 35B, and the fourth weight member (not shown) can be configured to be different from each other.
- the third elastic member 38A is connected to the second rotating member 26 and the second weight member 37B, and one side in the circumferential direction of the second elastic member 33A, That is, it is located on the F direction side in FIG.
- the combination of the second elastic member 33A and the first weight member 32B and the combination of the third elastic member 38A and the second weight member 37B are divided in the circumferential direction.
- the dynamic vibration absorber 17 having a plurality of natural frequencies can be realized.
- the dynamic vibration absorber 17 and the damper device 1B may be made smaller in the axial direction as compared with the case where the third elastic member is positioned on one side in the axial direction of the second elastic member.
- the dynamic vibration absorber 17 includes a first dynamic vibration absorber 13, a second dynamic vibration absorber 14, a third dynamic vibration absorber 15, and a fourth not illustrated. Since it has a dynamic vibration absorber, it becomes easier to adjust the characteristics of torque fluctuation with respect to the rotational speed than when the dynamic vibration absorber 17 is composed of a first dynamic vibration absorber and a second dynamic vibration absorber. There is.
- the damper device 1C of the present embodiment shown in FIG. 5 has the same configuration as the damper device 1B of FIG. Therefore, according to the present embodiment, similar results and effects based on the same configuration as the embodiment of FIG. 4 can be obtained.
- the first dynamic vibration absorber 13 includes the first weight member 32 ⁇ / b> C and a plurality of second elastic members 33 ⁇ / b> B that are spaced apart from each other in the circumferential direction. , 33B.
- the plurality of second elastic members 33B and 33B are connected to the cylindrical portion 32a of the first weight member 32C.
- the second dynamic vibration absorber 14 is provided between the two second elastic members 33B and 33B adjacent in the circumferential direction. Specifically, the second dynamic vibration absorber 14 is accommodated in a space formed between the first cylindrical portion 24b, the two second elastic members 33B and 33B, and the cylindrical portion 32a. Has been.
- the second weight member 37C and the third elastic member 38B are configured in an arc shape along the cylindrical portion 32a, for example.
- the first weight member 32C and the second weight member 37C rotate as compared with the case where the second weight member is configured in a rectangular shape as shown in FIG.
- Mutual buffering when rotating relatively around the center Ax is likely to be suppressed.
- a third dynamic vibration absorber (not shown) is provided on the side opposite to the rotation center Ax of the second dynamic vibration absorber 14.
- the configuration of the third dynamic vibration absorber is the same as that of the second dynamic vibration absorber 14. Therefore, according to the present embodiment, for example, the space between the plurality of second elastic members 33B and 33B and the first weight member 32C is effectively used, and the third elastic member 38B and the second weight are used.
- a member 37C may be disposed.
- the damper device 1D of the present embodiment shown in FIGS. 6 and 7 has the same configuration as the damper device 1C of FIG. Therefore, according to the present embodiment, similar results and effects based on the same configuration as the embodiment of FIG. 5 can be obtained.
- the second weight member 37D has an inner weight portion 37f, an outer weight portion 37g, and an intermediate weight portion 37h.
- the inner weight portion 37f is positioned on the inner side in the radial direction of the second rotating member 26 with respect to the cylindrical portion 32a, that is, the first weight member 32C, and extends along the axial direction.
- the outer weight portion 37g is positioned on the outer side in the radial direction of the second rotating member 26 with respect to the first weight member 32C, and extends along the axial direction.
- the intermediate weight portion 37h is located on the other axial side of the second rotating member 26 relative to the first weight member 32C, that is, on the right side in FIG. 7, and extends along the radial direction.
- the radially inner end portion of the intermediate weight portion 37h is connected to the inner weight portion 37f
- the radially outer end portion of the intermediate weight portion 37h is connected to the outer weight portion 37g.
- the second weight member 37D has a substantially U-shaped cross-sectional shape opened to one side in the axial direction, that is, the left side in FIG. 7 by the inner weight part 37f, the outer weight part 37g, and the intermediate weight part 37h.
- An opening 37x having the following is provided.
- the cylindrical part 32a is accommodated in this opening part 37x.
- the second weight member 37D and the third elastic member 38B are configured in an arc shape along the cylindrical portion 32a, for example. Therefore, according to the present embodiment, for example, the moment of inertia of the second weight member 37D is likely to be increased by the inner weight portion 37f, the outer weight portion 37g, and the intermediate weight portion 37h.
- the damper device 1E of the present embodiment shown in FIG. 8 has the same configuration as the damper device 1 of FIG. Therefore, according to this embodiment, the same result and effect based on the same configuration as that of the embodiment of FIG. 1 can be obtained.
- the dynamic vibration absorber 17 includes the second elastic member 33C, the first weight member 32E, the third elastic member 38C, and the second weight member. 37E.
- the second elastic member 33C and the third elastic member 38C are arranged side by side in the radial direction with a space between each other, and inside the radial direction of the third elastic member 38C.
- the end 38a is coupled to the first weight member 32E. That is, in the present embodiment, the second weight member 37E and the first weight member 32E are connected in series via the third elastic member 38C.
- the support member 70A is provided on the other axial side of the dynamic vibration absorber 17, that is, on the right side in FIG.
- the support member 70A includes, for example, a wall part 70d, a wall part 70e, and a wall part 70f.
- the wall portion 70d is formed in an annular and plate shape extending along the radial direction.
- the radially inner end portion of the wall portion 70d is connected to the first cylindrical portion 24b, and the radially outer end portion of the wall portion 70d is connected to the wall portion 70f.
- the substantially middle portion in the radial direction is connected to the wall portion 70e.
- the wall portion 70e protrudes from the wall portion 70d on one side in the axial direction, that is, on the left side in FIG.
- the wall portion 70e is positioned on the outer side in the radial direction of the first weight member 32E and faces at least a part of the first weight member 32E. Further, the wall portion 70f protrudes from the wall portion 70d to one side in the axial direction, that is, the left side in FIG. 8, and the wall portion 70f is located on the outer side in the radial direction of the second weight member 37E. It faces at least a part of the weight member 32E.
- the wall portions 70e and 70f are formed in, for example, an annular shape, and support the first weight member 32E and the second weight member 37E so as to be rotatable around the rotation center Ax. That is, the walls 70e and 70f function as bearings for the first weight member 32E and the second weight member 37E.
- the support member 70A is made of, for example, a synthetic resin material, a metal material, or the like.
- the third elastic member 38C is connected to the first weight member 32E and the second weight member 37E, and on the radially outer side of the second elastic member 33C. Is located. Therefore, according to the present embodiment, for example, the combination of the second elastic member 33C and the first weight member 32E and the combination of the third elastic member 38C and the second weight member 37E are arranged in series in the radial direction. With the configuration thus constructed, the dynamic vibration absorber 17 having a plurality of natural frequencies can be realized.
- the dynamic vibration absorber 17 and the damper device 1E may be configured to be smaller in the axial direction than when the third elastic member is positioned on one axial side of the second elastic member. .
- the damper device 1E includes a support member 70A that is provided on the second rotating member 26 and supports the first weight member 32E and the second weight member 37E in the radial direction. Therefore, according to the present embodiment, for example, the support member 70A can easily suppress the movement of the first weight member 32E and the second weight member 37E in the radial direction. Further, in the present embodiment, since the support member 70A functions as a bearing, labor and cost required for manufacturing are easily reduced compared to the case where a bearing is provided separately from the support member 70A.
- the damper device 1F of the present embodiment shown in FIGS. 9 and 10 has the same configuration as the damper device 1E of FIG. Therefore, according to this embodiment, the same result and effect based on the same configuration as that of the embodiment of FIG. 8 can be obtained.
- the stopper mechanism 80 is provided on the first rotating member 25 and the first weight member 32F.
- the stopper mechanism 80 has a first hooking portion 80a and a second hooking portion 80b.
- the second hooking portion 80b is provided, for example, on the side plate 21a of the first rotating member 25, and protrudes from the side plate 21a to one side in the axial direction, that is, the left side in FIG.
- the first weight member 32F is provided with an opening 32r that accommodates at least a part of the second hooking portion 80b.
- the opening 32r has a substantially U-shaped cross-sectional shape released toward the inner side in the radial direction in the axial line of sight, ie, the line of sight in FIG.
- the first hooking portion 80a is configured by the surfaces on both sides in the circumferential direction of the opening 32r.
- the second hooking portion 80b moves between the two first hooking portions 80a and 80a that are separated in the circumferential direction by the relative rotation of the first rotating member 25 and the first weight member 32F.
- the 1st hook part 80a and the 2nd hook part 80b contact
- the interposition member 31 is provided between the second elastic member 33C and the first cylindrical portion 24b.
- the interposition member 31 has a cylindrical tubular portion 31a along the outer surface of the first tubular portion 24b.
- the cylindrical portion 31a and the first cylindrical portion 24b are coupled to each other by, for example, press-fitting, caulking, hooking, adhesion, a coupling tool, or the like. Therefore, the interposition member 31 rotates integrally with the hub member 24.
- the interposition member 31 constitutes a part of the second rotating member 26 together with the hub member 24 and the inner member 22.
- the interposed member 31 can be made of, for example, a metal material.
- a damper device 1G of the present embodiment shown in FIG. 11 has the same configuration as the damper device 1E of FIG. Therefore, according to this embodiment, the same result and effect based on the same configuration as that of the embodiment of FIG. 8 can be obtained.
- the second elastic member 33D and the third elastic member 38D are arranged side by side in the axial direction. Then, the radially outer end 38b of the third elastic member 38D is coupled to the first weight member 32G, and the radially inner end 38a of the third elastic member 38D is the second weight member 37G. Combined with. That is, in the present embodiment, the second weight member 37G and the first weight member 32G are connected in series via the third elastic member 38D.
- the second weight member 37G includes an inner weight portion 37i, an outer weight portion 37j, and an intermediate weight portion 37k.
- the inner weight portion 37i is located on the radially inner side of the cylindrical portion 32a, that is, the first weight member 32G, and is configured in a cylindrical shape along the outer surface of the first cylindrical portion 24b, for example.
- the outer weight portion 37j is positioned on the outer side in the radial direction with respect to the first weight member 32G, and is configured in a cylindrical shape along the outer surface of the cylindrical portion 32a, for example.
- the intermediate weight portion 37k is located on one side in the axial direction from the first weight member 32G, that is, on the left side in FIG. 11, and is configured in an annular shape that extends along the radial direction, for example.
- the radially inner end portion of the intermediate weight portion 37k is connected to the inner weight portion 37i, and the radially outer end portion of the intermediate weight portion 37k is connected to the outer weight portion 37j.
- the second weight member 37G has a substantially U-shaped cross-sectional shape released toward the other side in the axial direction by the inner weight part 37i, the outer weight part 37j, and the intermediate weight part 37k, that is, the right side in FIG.
- An opening 37y having the following is provided.
- at least a part of the first weight member 32G and the third elastic member 38D are accommodated in the opening 37y.
- the third elastic member 38D is connected to the first weight member 32G and the second weight member 37G, and one side in the axial direction of the second elastic member 33D, That is, it is located on the left side of FIG. Therefore, according to the present embodiment, for example, the combination of the second elastic member 33D and the first weight member 32G and the combination of the third elastic member 38D and the second weight member 37G are arranged in series in the axial direction. With the configuration thus constructed, the dynamic vibration absorber 17 having a plurality of natural frequencies can be realized.
- the damper device 1H of the present embodiment shown in FIG. 12 has the same configuration as the damper device 1G of FIG. Therefore, according to this embodiment, the same result and effect based on the same configuration as that of the embodiment of FIG. 11 can be obtained.
- a support member 70B is provided between the first cylindrical portion 24b and the first weight member 32G.
- the support member 70B has a wall part 70g and a wall part 70h.
- the wall portion 70g is positioned between the first cylindrical portion 24b and the inner portion 37i of the second weight member 37G, and is configured in a cylindrical shape along the outer surface of the first cylindrical portion 24b, for example. Yes.
- the wall portion 70h protrudes outward in the radial direction from the other axial side of the wall portion 70g, that is, the right end portion in FIG.
- the wall portion 70h is positioned between the second elastic member 33D and the third elastic member 38D, and is configured, for example, in an annular shape and a plate shape extending along the radial direction.
- the walls 70g and 70h support the second weight member 37G and the first weight member 32G so as to be rotatable around the rotation center Ax. That is, the walls 70g and 70h function as bearings for the second weight member 37G and the first weight member 32G.
- the support member 70B is made of a synthetic resin material or a metal material. Therefore, according to the present embodiment, for example, the support member 70B can easily suppress the movement of the first weight member 32G and the second weight member 37G in the radial direction.
- the damper device 1I of the present embodiment shown in FIG. 13 has the same configuration as the damper device 1G of FIG. Therefore, according to this embodiment, the same result and effect based on the same configuration as that of the embodiment of FIG. 11 can be obtained.
- the dynamic vibration absorber 17 includes the second elastic member 33E, the first weight member 32H, the third elastic member 38E, and the second weight member. 37H, a fourth elastic member 36E, and a third weight member 35H.
- the second elastic member 33E, the third elastic member 38E, and the fourth elastic member 36E are arranged in this order from the other side in the axial direction to one side, that is, from the right side to the left side in FIG. They are arranged side by side.
- the radially outer end 38b of the third elastic member 38E is coupled to the first weight member 32H, and the radially inner end 38a is coupled to the second weight member 37H.
- the radially inner end 36a of the fourth elastic member 36E is coupled to the second weight member 37H, and the radially outer end 36b is coupled to the third weight member 35H.
- the first weight member 32H and the second weight member 37H are connected in series via the third elastic member 38E, and the fourth elastic member 36E is interposed.
- the second weight member 37H and the third weight member 35H are connected in series.
- the first weight member 32H, the second weight member 37H, and the third weight member 35H are configured such that at least a part of each cylindrical portion 32a, 37a, 35a is in the radial direction. They are arranged in an overlapping state.
- the cylindrical part 37a is located inside the radial direction of the cylindrical part 32a, and the cylindrical part 35a is located outside the radial direction of the cylindrical part 32a. That is, in the present embodiment, the third weight member 32H, the second weight member 37H, and the third weight member 35H that are arranged on the side opposite to the second rotation member 26 in the most series path are arranged.
- the weight member 35H is configured to have the largest moment of inertia. Therefore, according to the present embodiment, for example, a dynamic vibration absorber having a plurality of natural frequencies by the first weight member 32H, the second weight member 37H, and the third weight member 35H having different moments of inertia. 17 can be realized with a relatively simple configuration.
- the damper device 1J of the present embodiment shown in FIG. 14 has the same configuration as the damper device 1I of FIG. Therefore, according to this embodiment, the same result and effect based on the same configuration as that of the embodiment of FIG. 13 can be obtained.
- a support member 70C is provided between the first cylindrical portion 24b and the third weight member 35H.
- the support member 70C includes a wall portion 70i, a wall portion 70j, and a wall portion 70k.
- Wall part 70i is comprised by the annular
- the radially inner end of the wall 70i is connected to the wall 70j, and the radially outer end of the wall 70i is connected to the wall 70k.
- the wall portion 70j protrudes from the wall portion 70i to the other side in the axial direction, that is, the right side in FIG.
- the wall portion 70j is configured, for example, in a cylindrical shape along the outer surface of the first cylindrical portion 24b, and is connected to the first cylindrical portion 24b.
- the wall portion 70k protrudes from the wall portion 70i to one side in the axial direction, that is, the left side in FIG.
- the wall portion 70k is positioned between the first weight member 32H and the third weight member 35H, and is configured in a cylindrical shape along the outer surface of the cylindrical portion 32a, for example.
- the support member 70C supports the first weight member 32H and the third weight member 35H so as to be rotatable around the rotation center Ax. That is, the support member 70C functions as a bearing for the first weight member 32H and the third weight member 35H.
- the support member 70C is made of a synthetic resin material, a metal material, or the like. Therefore, according to the present embodiment, for example, the support member 70C can easily suppress the radial movement of the first weight member 32H, the third weight member 35H, and thus the second weight member 37H.
- the damper device 1K of the present embodiment shown in FIG. 15 has the same configuration as the damper device 1F of FIGS. Therefore, according to this embodiment, the same result and effect based on the same configuration as the embodiment of FIGS. 9 and 10 can be obtained.
- the dynamic vibration absorber 17 includes the second elastic member 33F, the first weight member 32I, the third elastic member 38F, and the second weight member. 37I, a fourth elastic member 36F, a third weight member 35I, a fifth elastic member 34F, and a fourth weight member 30I.
- the second elastic member 33F and the third elastic member 38F are arranged in the radial direction on the other side in the axial direction, that is, on the right side in FIG. 15, and the fourth elastic member 36F and the fifth elastic member
- the elastic member 34F is arranged side by side in the radial direction on one side in the axial direction, that is, on the left side in FIG.
- the radially inner end 33a of the second elastic member 33F is coupled to the interposition member 31, and the radially outer end 33b is coupled to the first weight member 32I. Yes. Further, the radially inner end 38a of the third elastic member 38F is coupled to the first weight member 32I, and the radially outer end 38b is coupled to the second weight member 37I. In addition, the radially inner end 36a of the fourth elastic member 36F is coupled to the third weight member 35I, and the radially outer end 36b is coupled to the second weight member 37I. Further, the radially inner end 34a of the fifth elastic member 34F is coupled to the fourth weight member 30I, and the radially outer end 34b is coupled to the third weight member 35I.
- the first weight member 32I, the second weight member 37I, the third weight member 35I, and the fourth weight member 30I are composed of the second elastic member 33F and the third elastic member 38F.
- the fourth elastic member 36F and the fifth elastic member 34F are connected in series.
- the cylindrical part 37a is located in the radial direction outer side of the cylindrical parts 32a and 35a
- the cylindrical part 30a is located inside the radial direction of the cylindrical parts 32a and 35a.
- the second moment member 37I is configured to have the largest moment of inertia and the fourth weight member 30I is configured to have the smallest moment of inertia.
- the first weight member 32I, the second weight member 37I, the third weight member 35I, and the fourth weight member 30I having mutually different moments of inertia have a plurality of natural frequencies.
- the dynamic vibration absorber 17 having the above can be realized with a relatively simple configuration.
- the damper device 1L of the present embodiment shown in FIG. 16 has the same configuration as the damper device 1K of FIG. Therefore, also in this embodiment, the same result and effect based on the same configuration as the embodiment of FIG. 15 can be obtained.
- a support member 70D is provided between the first cylindrical portion 24b and the second weight member 37I.
- the support member 70D includes a wall portion 70m, a wall portion 70n, and a wall portion 70p.
- the wall portion 70m is positioned between the first cylindrical portion 24b and the fourth weight member 30I, and is configured, for example, in a cylindrical shape along the outer surface of the first cylindrical portion 24b.
- the other side in the axial direction of the wall 70m that is, the right end in FIG. 16 is connected to the wall 70n, and one side in the axial direction of the wall 70m, ie, the left end in FIG. It is connected to the wall portion 70p.
- the wall portion 70n protrudes outward in the radial direction from the wall portion 70m.
- the wall portion 70n is located between the first weight member 32I and the third weight member 35I, and is configured in, for example, an annular shape and a plate shape extending along the radial direction.
- the wall portion 70p protrudes outward in the radial direction from the wall portion 70m.
- the wall portion 70p is positioned on one side of the fourth weight member 30I in the axial direction, that is, on the left side of FIG. 16, and is configured in an annular and plate shape that extends along the radial direction, for example.
- the support member 70D supports the second weight member 37I and the fourth weight member 30I so as to be rotatable about the rotation center Ax.
- the support member 70D functions as a bearing for the second weight member 37I and the fourth weight member 30I.
- the support member 70D is made of a synthetic resin material, a metal material, or the like. Therefore, according to the present embodiment, for example, the support member 70D can suppress the movement of the second weight member 37I and the fourth weight member 30I in the radial direction. Further, according to the present embodiment, for example, the wall portion 70n of the support member 70D can suppress the movement of the first weight member 32I and the third weight member 35I in the axial direction, and the wall portions 70n and 70p. The movement of the fourth weight member 30I in the axial direction can be suppressed.
- a damper device 1L of the present embodiment shown in FIG. 17 has the same configuration as the damper device 1 of FIG. Therefore, according to this embodiment, the same result and effect based on the same configuration as that of the embodiment of FIG. 1 can be obtained.
- the second elastic member 33G is configured by a leaf spring.
- the second elastic member 33G is configured in a rod shape extending along the radial direction.
- One end portion 33a of the second elastic member 33G is connected to the first cylindrical portion 24b of the second rotating member 26, and the other end portion 33b of the second elastic member 33G is the first end portion 33b.
- the weight member 32 is connected.
- the second elastic member 33G supports the first weight member 32 while being supported by the second rotating member 26 so as to be elastically deformable.
- the second elastic member 33G is coupled to the first cylindrical portion 24b and the first weight member 32 by, for example, vulcanization adhesion or the like.
- the plurality of second elastic members 33G are arranged side by side in the circumferential direction at intervals. Therefore, a space is provided between two second elastic members 33G adjacent in the circumferential direction.
- the plurality of second elastic members 33G are arranged radially around the rotation center Ax, and are arranged at substantially equal angular intervals along the circumferential direction.
- the plurality of second elastic members 33G are positioned so as to overlap each other in the radial direction.
- the second elastic member 33G is configured as a leaf spring in which the axial thickness is thinner than the width along the circumferential direction.
- the second elastic member 33G has a different bending rigidity in the thickness direction and a bending rigidity in the width direction orthogonal to the thickness direction. Therefore, according to the present embodiment, for example, it is easy to obtain different damping characteristics for vibrations in different directions applied to the damper device 1L.
- the plurality of second elastic members 33G are positioned at intervals around the rotation center Ax. Therefore, according to the present embodiment, the amount of deformation in the circumferential direction of the second elastic member 33G may be increased as compared with the case where one second elastic member is configured in an annular shape around the rotation center Ax. .
- a third elastic member (not shown) can also be configured by a leaf spring.
- the damper device 1M of the present embodiment shown in FIG. 18 has the same configuration as the damper device 1 of FIG. Therefore, according to this embodiment, the same result and effect based on the same configuration as that of the embodiment of FIG. 1 can be obtained.
- the first weight member 32J has a base portion 32t and a first extending portion 32u.
- the base portion 32t is configured in a cylindrical shape, and is coupled to the radially outer end portion 33b of the second elastic member 33.
- the first extending portion 32u protrudes inward in the radial direction from one axial side of the base portion 32t, that is, from the left end in FIG. 18, and faces the second elastic member 33 in the axial direction.
- the first extending portion 32u is formed in an annular and plate shape around the rotation center Ax.
- the radially inner end 32u1 of the first extension 32u is the radially inner end of the first weight member 32J.
- the support member 41 is provided between the first cylindrical portion 24b and the first extending portion 32u.
- the support member 41 is located radially inward of the radial center of the second elastic member 33.
- the position of the center of the second elastic member 33 in the radial direction is indicated by a line B.
- the support member 41 has a radial direction support part 41a and an axial direction support part 41b.
- the radial direction support part 41a is also called a cylindrical part, and the axial direction support part 41b is also called a wall part.
- the radial support part 41a is configured in a cylindrical shape around the rotation center Ax.
- the radial support portion 41a and the first cylindrical portion 24b are coupled to each other by press-fitting, caulking, hooking, bonding, a bonding tool, or the like. Therefore, the support member 41 rotates integrally with the second rotation member 26.
- the radial support portion 41a faces the end portion 32u1 of the first weight member 32J in the radial direction. There may be a gap or no gap between the radial support portion 41a and the end portion 32u1.
- the radial support portion 41a supports the first weight member 32J in the radial direction in a state where the radial support portion 41a and the end portion 32u1 are in contact with each other in the radial direction.
- the radial support portion 41a supports the first weight member 32J so as to be rotatable around the rotation center Ax in a state where the radial support portion 41a and the end portion 32u1 are in radial contact with each other. That is, the radial support portion 41a functions as a radial bearing for the first weight member 32J.
- the axial support portion 41b is formed in an annular and plate shape around the rotation center Ax. The axial support portion 41b protrudes radially outward from the other axial direction of the radial support portion 41a, that is, from the right end in FIG.
- the axial direction support part 41b is located between the first extension part 32u and the second elastic member 33, and faces the first extension part 32u in the axial direction.
- the axial support portion 41b supports the first weight member 32J in the axial direction in a state where the axial support portion 41b and the first extension portion 32u are in contact with each other in the axial direction. Further, the axial support portion 41b supports the first weight member 32J so as to be rotatable around the rotation center Ax in a state where the axial support portion 41b and the first extension portion 32u are in contact with each other in the axial direction. That is, the axial direction support part 41b functions as a thrust bearing of the first weight member 32J.
- the support member 41 is made of a synthetic resin material, a metal material, or the like.
- the support member 41 may be constituted by a ball bearing, a roller bearing, or the like.
- the support member 41 is provided on the second rotating member 26 and supports the first weight member 32J in the radial direction of the second rotating member 26. Therefore, according to the present embodiment, for example, the support member 41 can suppress the movement of the first weight member 32J in the radial direction. Therefore, for example, the eccentricity of the first weight member 32J can be suppressed.
- the support member 41 functions as a bearing that supports the first weight member 32J so as to be rotatable about the rotation center Ax. Therefore, according to the present embodiment, for example, compared to a case where a bearing is provided separately from the support member 41, labor and cost required for manufacturing the damper device 1M are easily reduced.
- the support member 41 supports the end portion 32u1 on the inner side in the radial direction of the first weight member 32J. Therefore, according to the present embodiment, for example, the support member 41 supports and rotates the first weight member 32J in the support member 41 as compared with the configuration in which the support member supports the radially outer end of the first weight member.
- the distance from the center Ax can be shortened. Therefore, for example, torque due to contact between the support member 41 and the first weight member 32J can be reduced.
- the first weight member 32J includes a base portion 32t connected to the second elastic member 33 and an end portion 32u1, and the radial direction of the second rotating member 26 from the base portion 32t. And a first extension 32u extending inward. Therefore, according to the present embodiment, for example, torque due to contact between the support member 41 and the first weight member 32J is likely to be smaller.
- the support member 41 is located on the inner side in the radial direction from the radial center of the second elastic member 33. Therefore, according to the present embodiment, for example, torque due to contact between the support member 41 and the first weight member 32J is likely to be smaller.
- a second weight member (not shown) can be configured in substantially the same manner as the first weight member 32J.
- a support member substantially similar to the support member 41 can be provided between the second weight member (not shown) and the second rotating member 26.
- the damper device 1N of the present embodiment shown in FIG. 19 has the same configuration as the damper device 1M of FIG. Therefore, also in this embodiment, the same result and effect based on the same configuration as the embodiment of FIG. 18 can be obtained.
- both the base portion 32t and the first extension portion 32u are configured in a plate shape.
- the first weight member 32K is a press-formed product formed by press molding.
- the first weight member 32K is formed by press molding, it is easy to reduce the manufacturing cost of the first weight member 32K.
- a second weight member (not shown) may be configured in substantially the same manner as the first weight member 32K.
- the damper device 1O of the present embodiment shown in FIG. 20 has the same configuration as the damper device 1N of FIG. Therefore, also in this embodiment, the same result and effect based on the same configuration as the embodiment of FIG. 19 can be obtained.
- the first weight member 32L has a base portion 32t, a first extension portion 32u, and a bent portion 32e.
- the bent part 32e is bent outward in the radial direction from the other axial side of the base part 32t, that is, from the right end in FIG.
- the bent portion 32e has a second extending portion 32e1 and a cylindrical portion 32e2.
- the second extending portion 32e1 extends outward in the radial direction from the other axial side of the base portion 32t, that is, the right end in FIG.
- the second extending portion 32e1 is formed in an annular and plate shape around the rotation center Ax and spreads in the radial direction.
- the cylindrical portion 32e2 extends from the radially outer end of the second extending portion 32e1 to one side in the axial direction, that is, the left side in FIG.
- the cylindrical portion 32e2 is configured in a cylindrical shape around the rotation center Ax.
- the cylindrical portion 32e2 is located on the outer side in the radial direction of the base portion 32t.
- the first weight member 32L is a press-formed product formed by press molding.
- the second extending portion 32e1 can also be referred to as a wall portion.
- the first weight member 32L includes the second extending portion 32e1 or the cylindrical portion 32e2 extending from the base portion 32t to the outer side in the radial direction of the second rotating member 26. Have.
- the inertia moment of the first weight member 32L tends to be larger.
- a second weight member (not shown) can be configured in substantially the same manner as the first weight member 32L.
- the damper device 1P of the present embodiment shown in FIGS. 21 and 22 has the same configuration as the damper device 1M of FIG. Therefore, also in this embodiment, the same result and effect based on the same configuration as the embodiment of FIG. 18 can be obtained.
- the first weight member 32M and the support member 41K are provided with a stopper mechanism 80A.
- the stopper mechanism 80A has a third hooking portion 41d1 and a fourth hooking portion 32g.
- the fourth hook portion 32g is provided, for example, in the first extension portion 32u of the first weight member 32M, and protrudes inward in the radial direction from the end portion 32u1.
- the support member 41K is provided with an opening 41d in which at least a part of the fourth hook 32g is accommodated.
- the opening 41d has a substantially U-shaped cross-sectional shape released toward the outside in the radial direction in the axial line of sight, that is, the line of sight in FIG.
- a third hook portion 41d1 is configured by the surfaces on both sides in the circumferential direction of the opening portion 41d.
- the support member 41K is coupled to the first cylindrical portion 24b and rotates integrally with the second rotating member 26.
- the fourth hooking portion 32g is formed between the two first hooking portions 41d1 and 41d1 separated in the circumferential direction by the relative rotation of the first weight member 32M, the support member 41K, and the second rotating member 26. Moving. And when the 1st hook part 41d1 and the 2nd hook part 32g mutually contact
- the present embodiment for example, excessive deformation of the second elastic member 33 can be suppressed by the third hooking portion 41d1 and the fourth hooking portion 32g.
- a similar stopper mechanism 80A may be provided for the combination of the second weight member and the support member (not shown). It can.
- the stopper mechanism 80A is, for example, a combination of the first weight member 32A and the support member 70 shown in FIG. 3, a combination of the first weight member 32G and the support member 70B shown in FIG. 12, and shown in FIG.
- the present invention can also be applied to a combination of the first weight member 32H and the support member 70C.
- the stopper mechanism 80A includes a combination of the second weight member 37 and the support member 70 shown in FIG. 3, a combination of the second weight member 37G and the support member 70B shown in FIG. 12, and a first combination shown in FIG.
- the present invention can also be applied to a combination of the three weight members 35H and the support member 70C, a combination of the second weight member 37I and the support member 70D shown in FIG.
- the stopper mechanism 80A is not limited to the combination of the weight member and the support member, and may be applied to, for example, a combination of the first weight member 32G and the second weight member 37G as shown in FIG.
- the damper device 1Q of the present embodiment shown in FIG. 23 has the same configuration as the damper device 1L of FIG. Therefore, according to the present embodiment, similar results and effects based on the same configuration as that of the embodiment of FIG. 17 can be obtained.
- the first dynamic vibration absorber 13 includes a first weight member 32N, a plurality of second elastic members 33L, and interposition members 31L.
- the interposition member 31L includes a cylindrical portion 31a and a wall portion 31d.
- the wall 31d protrudes radially outward from the other axial side of the cylindrical portion 31a, that is, from the right end of FIG.
- the wall 31d is formed in an annular plate shape around the rotation center Ax.
- An opening 31d1 is provided in the wall 31d.
- the opening 31d1 is, for example, a through hole that penetrates the wall 31d in the axial direction.
- the first weight member 32N includes a base portion 32t and a first extending portion 32u.
- An opening 32u2 is provided in the first extension 32u.
- the opening 32u2 is, for example, a through hole that penetrates the first extending portion 32u in the axial direction.
- the arrangement of the plurality of second elastic members 33L is the same as the arrangement of the plurality of second elastic members 33G in the fourteenth embodiment.
- Each of the plurality of second elastic members 33L includes a wall portion 33s and coupling portions 33g and 33h.
- the coupling portion 33g is connected to the radially inner end of the wall portion 33s.
- An axial thickness L5 of the coupling portion 33g is thicker than an axial thickness L6 of the wall portion 33s, and both axial end portions of the coupling portion 33g protrude in the axial direction with respect to the wall portion 33s. ing.
- the coupling portion 33g is overlapped with the cylindrical portion 31a on the outer side in the radial direction of the cylindrical portion 31a of the interposition member 31L, and the wall portion on one side in the axial direction of the wall portion 31d of the interposition member 31L, that is, the left side in FIG. It is overlapped with 31d.
- the coupling portion 33g is provided with an opening 33g1.
- the opening 33g1 is, for example, a through hole that penetrates the coupling portion 33g in the axial direction.
- the opening 33g1 faces the opening 31d1 of the interposed member 31L.
- the coupling portion 33g is coupled to the wall portion 31d of the interposed member 31L by the coupling tool 42 inserted into the openings 31d1 and 33g1 and the coupling tool 43 coupled to the coupling tool 42.
- the coupler 42 is, for example, a bolt as a screw member
- the coupler 43 is, for example, a nut as a screw member.
- the coupling portion 33h is connected to an end portion on the outer side in the radial direction of the wall portion 33s.
- An axial thickness L7 of the coupling portion 33h is thicker than an axial thickness L6 of the wall portion 33s, and both axial end portions of the coupling portion 33h protrude in the axial direction with respect to the wall portion 33s. ing.
- the coupling portion 33h is overlapped with the first extension portion 32u on the other axial side of the first extension portion 32u of the first weight member 32N, that is, on the right side of FIG.
- the coupling portion 33h is provided with an opening 33h1.
- the opening 33h1 is, for example, a through hole that penetrates the coupling portion 33h in the axial direction.
- the opening 33h1 faces the opening 32u2 of the first extension 32u.
- the coupling portion 33h is coupled to the first extension portion 32u of the first weight member 32N by the coupling device 42 inserted into the openings 32u2 and 33h1 and the coupling device 43 coupled to the coupling device 42. .
- the second elastic member 33L is coupled to the second rotating member 26 and the first weight member 32N by the couplers 42 and 43. Therefore, according to the present embodiment, for example, it is not necessary to perform vulcanization adhesion in the connection between the second elastic member 33L and at least one of the second rotating member 26 and the first weight member 32N.
- the second elastic member 33L may be coupled to at least one of the second rotating member 26 and the first weight member 32N by caulking or the like.
- the second elastic member 33L includes coupling portions 33g and 33h coupled to the support member 31L of the second rotating member 26 and the first weight member 32N, and the coupling portions 33g and 33h.
- the axial thicknesses L5 and L7 are thicker than the axial thickness L6 of the wall portion 33s which is a portion other than the coupling portions 33g and 33h in the second elastic member 33L. Therefore, it is easy to increase the strength of the coupling portions 33g and 33h.
- a second dynamic vibration absorber (not shown) can be configured in substantially the same manner as the first dynamic vibration absorber 13.
- the damper device 1R of the present embodiment shown in FIG. 24 has the same configuration as the damper device 1Q of the embodiment of FIG. Therefore, also in this embodiment, similar results and effects based on the same configuration as in the embodiment of FIG. 23 can be obtained.
- the first dynamic vibration absorber 13 includes a first weight member 32R, a second elastic member 33M, and an interposition member 31M.
- the interposition member 31M includes a cylindrical portion 31a and a plurality of convex second fitting portions 31e.
- the second fitting portion 31e protrudes radially outward from the radially outer end of the cylindrical portion 31a.
- the plurality of second fitting portions 31e are positioned at intervals in the circumferential direction.
- the 2nd fitting part 31e has the connection part 31e1 and the overhang
- the connection part 31e1 is connected to the outer end part in the radial direction of the cylindrical part 31a.
- the overhang portion 31e2 is connected to the radially outer end of the connection portion 31e1 and protrudes in the circumferential direction with respect to the connection portion 31e1.
- the first weight member 32R includes a base portion 32t and a plurality of convex second fitting portions 32i. In FIG. 24, only one second fitting portion 32i is shown. The second fitting portion 32i protrudes radially inward from the radially inner end of the base portion 32t. The plurality of second fitting portions 32i are positioned at intervals in the circumferential direction.
- the second fitting part 32i has a connection part 32i1 and an overhang part 32i2.
- the connection part 32i1 is connected to the radially inner end of the base part 32t.
- the overhang portion 32i2 is connected to the radially inner end of the connection portion 32i1 and overhangs in the circumferential direction with respect to the connection portion 32i1.
- the second elastic member 33M has a cylindrical portion 33a.
- the cylindrical portion 33a is provided with a plurality of concave first fitting portions 33e and 33f.
- the plurality of first fitting portions 33e are provided at the radially inner end of the cylindrical portion 33a and are spaced apart from each other in the circumferential direction.
- the first fitting portion 33e is formed in a concave shape with respect to the radially inner end face of the cylindrical portion 33a and is formed in a shape along the second fitting portion 31e of the interposed member 31M.
- the first fitting portion 33e is mechanically joined to the second fitting portion 31e by being fitted with the second fitting portion 31e of the interposed member 31M.
- the second fitting portion 31e is press-fitted into the first fitting portion 33e.
- the first fitting portion 33e and the second fitting portion 31e are hooked in the circumferential direction and the radial direction.
- the plurality of first fitting portions 33f are provided at the radially outer end of the tubular portion 33a and are spaced from each other in the circumferential direction.
- the first fitting portion 33f is configured to be concave with respect to the radially outer end face of the cylindrical portion 33a, and is configured in a shape along the second fitting portion 32i of the first weight member 32R. Yes.
- the first fitting portion 33f is mechanically joined to the second fitting portion 32i, for example, by fitting with the second fitting portion 32i of the first weight member 32R. Specifically, the second fitting portion 32i is press-fitted into the first fitting portion 33f. The first fitting portion 33f and the second fitting portion 32i are hooked in the circumferential direction and the radial direction. Therefore, according to the present embodiment, the second elastic member 33M, the interposition member 31M of the second rotating member 26, and the first weight member 32R need not be vulcanized and bonded. Note that the second elastic member 33M and the second elastic member 33M may be coupled to at least one of the support member 31M of the second rotating member 26 and the first weight member 32R. Although only the first dynamic vibration absorber 13 is shown in the present embodiment, a second dynamic vibration absorber (not shown) can be configured in the same manner as the first dynamic vibration absorber 13.
- the damper device 1S of the present embodiment shown in FIGS. 25 and 26 has the same configuration as the damper device 1L of FIG. Therefore, according to the present embodiment, similar results and effects based on the same configuration as that of the embodiment of FIG. 17 can be obtained.
- the second elastic member 33P is configured by a coil spring around which a wire is wound.
- One end 33a of the second elastic member 33P is connected to the interposition member 31P of the second rotating member 26, and the other end 33b of the second elastic member 33G is the first weight member 32P. It is connected to the.
- the second elastic member 33P supports the first weight member 32P while being supported by the second rotating member 26 so as to be elastically deformable.
- the cylindrical portion 31a of the interposition member 31P is provided with an accommodating portion 31h.
- the accommodating portion 31h opens to the outside in the radial direction.
- the accommodating portion 31h accommodates the end portion 33a of the second elastic member 33P.
- the cylindrical portion 32a of the first weight member 32P is provided with a housing portion 32h.
- the accommodating part 32h is opened inside in the radial direction.
- the housing portion 32h houses the end portion 33b of the second elastic member 33P. Therefore, according to this embodiment, the 1st dynamic vibration absorber 13 can be comprised comparatively easily by the 2nd elastic member 33P comprised by the coil spring.
- the plurality of second elastic members 33P are positioned around the rotation center Ax at intervals. Therefore, according to the present embodiment, there is a case where the amount of deformation in the circumferential direction of the second elastic member 33P can be increased as compared with the case where one second elastic member is configured in an annular shape around the rotation center Ax. .
- a third elastic member (not shown) can also be constituted by a coil spring.
- the second weight member includes an inner weight portion positioned on a radially inner side of the second rotating member with respect to the first weight member, and the second rotating member with respect to the first weight member. And an intermediate weight part connected to the inner weight part and the outer weight part on one side in the axial direction of the second rotating member relative to the first weight member. And having.
- the third elastic member is connected to the first weight member and the second weight member, and is located outside or inside in the radial direction of the second elastic member.
- the third elastic member is connected to the first weight member and the second weight member, and is positioned on one side or the other side in the axial direction of the second elastic member.
- the first weight member is located on the outer side or the inner side in the radial direction of the second rotating member of the second weight member.
- the at least part of the first weight member and the at least part of the second weight member are positioned so as to overlap in the radial direction of the second rotating member.
- a supporting member is provided on the second rotating member and supports the first weight member in the radial direction of the second rotating member.
- the support member further supports the second weight member in the radial direction of the second rotating member.
- the support member is made of a synthetic resin material or a metal material.
- the support member functions as a bearing that supports at least the first weight member rotatably around the rotation center.
- the support member rotates integrally with the second rotating member, is provided on one of the support member and the first weight member, and is spaced from each other in the circumferential direction of the second rotating member
- Two third hooks and the other of the support member and the first weight member, and the two third hooks are provided by relative rotation between the support member and the first weight member.
- a fourth hook portion that moves between the hook portions, and the relative rotation between the support member and the first weight member is the third hook portion and the fourth hook portion. It is limited by the contact.
- the support member supports at least a radially inner end of the second rotating member of the first weight member.
- the first weight member includes a base portion connected to the second elastic member, and a first extension portion including the end portion and extending radially inward of the second rotating member from the base portion. And having.
- the first weight member has a second extending portion extending from the base portion to the outside in the radial direction of the second rotating member.
- the first weight member is press-molded.
- the support member is positioned inside the radial direction from the radial center of the second rotating member of the second elastic member.
- At least one of the second elastic member and the third elastic member is made of any one of a rubber material, a leaf spring, and a coil spring.
- the second elastic member is coupled to at least one of the second rotating member and the first weight member by a coupler or caulking.
- the second elastic member is provided with a first fitting portion, and at least one of the second rotating member and the first weight member is fitted with the first fitting portion.
- a fitting portion is provided.
- the second elastic member has a coupling portion coupled to the second rotating member or the first weight member, and the thickness of the coupling portion in the axial direction of the second rotating member is It is thicker than the thickness of the second elastic member other than the coupling portion in the axial direction.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Vibration Dampers (AREA)
- Vibration Prevention Devices (AREA)
Abstract
実施形態のダンパ装置で、例えば、動吸振器は、第二の回転部材と接続され第二の回転部材の径方向に沿って延びた第二の弾性部材と、第二の弾性部材に第二の回転部材とは第二の回転部材の径方向外側で接続され第二の弾性部材の弾性変形を伴って第二の回転部材と相対移動する第一の錘部材と、第二の回転部材および第一の錘部材のうち一方と接続され第二の回転部材の径方向に沿って延びた第三の弾性部材と、第三の弾性部材に一方とは第二の回転部材の径方向外側で接続され第三の弾性部材の弾性変形を伴って一方と相対移動する第二の錘部材と、を有する。
Description
本発明の実施形態は、ダンパ装置に関する。
従来、第一の回転部材と第二の回転部材との間に介在した第一の弾性部材によってトルク変動を低減するメインダンパと、第一の錘部材と第二の弾性部材とによって振動を低減する第一のダイナミックダンパと、第二の錘部材と第三の弾性部材とによって振動を低減する第二のダイナミックダンパと、を備えた、ダンパ装置が知られている。
この種のダンパ装置では、例えば、より不都合の少ない新規な構成が得られれば、好ましい。
実施形態のダンパ装置は、例えば、回転中心回りに回転可能な第一の回転部材と、上記回転中心回りに回転可能な第二の回転部材と、上記第一の回転部材と上記第二の回転部材との相対的な回転によって弾性変形する第一の弾性部材と、上記第二の回転部材と接続され上記第二の回転部材の径方向に沿って延びた第二の弾性部材と、上記第二の弾性部材に上記第二の回転部材とは上記第二の回転部材の径方向外側で接続され上記第二の弾性部材の弾性変形を伴って上記第二の回転部材と相対移動する第一の錘部材と、上記第二の回転部材および上記第一の錘部材のうち一方と接続され上記第二の回転部材の径方向に沿って延びた第三の弾性部材と、上記第三の弾性部材に上記一方とは上記第二の回転部材の径方向外側で接続され上記第三の弾性部材の弾性変形を伴って上記一方と相対移動する第二の錘部材と、を有した動吸振器と、を備える。よって、例えば、径方向に延びた複数の弾性部材と当該弾性部材に接続された複数の錘部材との組み合わせにより、複数の固有振動数を有する動吸振器が、比較的簡素な構成によって実現されうる。
また、上記ダンパ装置では、例えば、上記第三の弾性部材は、上記第二の回転部材と上記第二の錘部材とに接続され、上記第二の弾性部材の軸方向の一方側または他方側に位置される。よって、例えば、弾性部材と錘部材との組み合わせが軸方向に分けられて並列に配置された構成によって、複数の固有振動数を有する動吸振器が実現されうる。
また、上記ダンパ装置では、例えば、上記第三の弾性部材は、上記第二の回転部材と上記第二の錘部材とに接続され、上記第二の弾性部材の周方向の一方側または他方側に位置される。よって、例えば、弾性部材と錘部材との組み合わせが周方向に分けられて並列に配置された構成によって、複数の固有振動数を有する動吸振器が実現されうる。
また、上記ダンパ装置では、例えば、上記周方向に互いに離間して複数の上記第二の弾性部材が配置されるとともに、上記第一の錘部材は、上記複数の第二の弾性部材と接続され、上記第二の錘部材と上記第三の弾性部材とが、互いに隣接した二つの上記第二の弾性部材の間に設けられる。よって、例えば、複数の第二の弾性部材と第一の錘部材との間のスペースが有効に利用され、第三の弾性部材と第二の錘部材とが配置されうる。
以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用、結果、および効果は、あくまで一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果のうち少なくとも一つを得ることが可能である。
また、以下の複数の実施形態には、同様の構成要素が含まれている。よって、以下では、それら同様の構成要素には共通の符号が付与されるとともに、重複する説明が省略される。また、図中、軸方向の一方側を矢印Xで示し、径方向の外側を矢印Rで示し、周方向の一方側を矢印Fで示す。また、以下の説明では、便宜上、図2の左側からの視線を正面視とし、図2の右側からの視線を背面視とする。
<第1実施形態>
ダンパ装置1は、例えば、入力側となるエンジンと出力側となるトランスミッションとの間に位置される。ダンパ装置1は、入力側と出力側との間で駆動力としてのトルクや回転等の変動を緩和することができる。ダンパ装置1は、トルク変動吸収装置とも称されうる。なお、ダンパ装置1は、エンジンとトランスミッションとの間には限らず、他の二つの回転要素間、例えば、エンジンとモータジェネレータとの間に設けることが可能であるし、ハイブリット自動車等の種々の車両や、回転要素を有した機械等に設けることが可能である。
ダンパ装置1は、例えば、入力側となるエンジンと出力側となるトランスミッションとの間に位置される。ダンパ装置1は、入力側と出力側との間で駆動力としてのトルクや回転等の変動を緩和することができる。ダンパ装置1は、トルク変動吸収装置とも称されうる。なお、ダンパ装置1は、エンジンとトランスミッションとの間には限らず、他の二つの回転要素間、例えば、エンジンとモータジェネレータとの間に設けることが可能であるし、ハイブリット自動車等の種々の車両や、回転要素を有した機械等に設けることが可能である。
また、図1,2に示されるように、ダンパ装置1は、例えば、エンジンとトランスミッションとの間で駆動力の伝達と遮断とを行うクラッチ装置100に設けられることができる。クラッチ装置100は、エンジンのクランクシャフトに連結されるフライホイール(不図示)と、トランスミッションの入力シャフト(不図示)と連結されるディスク部11と、を備える。クラッチ装置100は、フライホイールに対するディスク部11の押し付け状態を変化させることにより、フライホイールとディスク部11との間で駆動力が伝達される伝達状態と、フライホイールとディスク部11との間で駆動力の伝達が遮断される遮断状態と、を切り替える。なお、クラッチ装置100は、フライホイールとディスク部11との間で入力トルクに対して出力トルクが減る所謂半クラッチ状態での駆動力の伝達も可能である。
ダンパ装置1は、例えば、ディスク部11と、ダンパ部12と、動吸振器17と、を備える。ディスク部11は、ダンパ装置1のうち径方向の外側に位置され、ダンパ部12は、ディスク部11の径方向の内側に位置されている。また、動吸振器17は、ダンパ部12に設けられている。
ディスク部11は、回転中心Ax回りの円環状に構成されている。回転中心Axは、回転軸や、軸心等とも称されうる。ディスク部11は、例えば、壁部11aと、覆部11bと、を有する。壁部11aは、回転中心Ax回りの円環状かつ板状に構成され、径方向に広がっている。覆部11bは、回転中心Ax回りの円環状かつ板状に構成され、径方向に広がっている。覆部11bは、壁部11aに対して回転中心Axの軸方向の一方側および他方側のそれぞれに、設けられている。二つの覆部11bは、いずれも壁部11aの径方向の外側の端部に位置されている。軸方向の一方側、すなわち図2の左側の覆部11bは、フライホイールに面しており、フライホイールと摩擦により結合可能である。壁部11aと二つの覆部11bとは、それらを軸方向に貫通する不図示のねじやリベット等の結合具によって互いに結合されている。覆部11bは、フェイシングやパッド等とも称されうる。ディスク部11には、フライホイールからエンジンの駆動力が入力される。なお、覆部11bは、環状でなくてもよい。例えば、矩形状等の形状の複数の覆部11bが、回転中心Ax回りに並べられていてもよい。
ダンパ部12は、第一の回転部材25と、第二の回転部材26と、第一の弾性部材23と、を有する。図2に示されるように、第一の回転部材25は、例えば、ディスク部11と、外側部材21とを含み、第二の回転部材26は、例えば、内側部材22と、ハブ部材24とを含む。第一の回転部材25と第二の回転部材26とは、回転中心Ax回りに回転可能に構成されている。第一の弾性部材23は、第一の回転部材25の外側部材21と第二の回転部材26の内側部材22との間に介在している。また、外側部材21は、ディスク部11を介して入力側、すなわちエンジンに接続され、内側部材22は、ハブ部材24を介して出力側、すなわちトランスミッションに接続されている。ダンパ部12では、第一の回転部材25と第二の回転部材26との相対的な回転に伴って第一の弾性部材23が弾性的に伸縮することにより、トルク変動が緩和される。本実施形態では、第一の回転部材25は、入力側部材の一例であり、第二の回転部材26は、出力側部材の一例である。
図2に示されるように、外側部材21は、例えば、軸方向で一対となった二つのサイドプレート21a,21bを有する。本実施形態では、サイドプレート21aは、サイドプレート21bの軸方向の一方側、すなわち図2の左側に位置されている。サイドプレート21a,21bは、回転中心Ax回りの円環状かつ板状に構成され、径方向に広がっている。サイドプレート21a,21bは、少なくとも部分的に、互いに軸方向に間隔をあけて位置されている。サイドプレート21a,21bは、不図示のねじやリベット等の結合具によって互いに結合され、回転中心Ax回りに一体に回転する。また、サイドプレート21aの径方向の外側の端部は、壁部11aの径方向の内側の端部に結合されている。よって、外側部材21は、ディスク部11と回転中心Ax回りに一体に回転する。また、図1に示されるように、サイドプレート21a,21bには、それぞれ、周方向に間隔をあけて複数の開口部21c,21dが設けられている。図2に示されるように、これら開口部21c,21dは、例えば、互いに軸方向に重なり合った貫通孔として構成されている。開口部21c,21dには、それぞれの周方向の一方側の縁部と他方側の縁部との間に第一の弾性部材23が配置されている。サイドプレート21a,21b、すなわち外側部材21は、例えば、金属材料によって構成されうる。
内側部材22は、例えば、センタプレート22aを有する。センタプレート22aは、外側部材21のサイドプレート21aとサイドプレート21bとの間に位置され、サイドプレート21aおよびサイドプレート21bから軸方向に離間している。センタプレート22aは、回転中心Ax回りの円環状かつ板状に構成され、径方向に広がっている。センタプレート22aは、サイドプレート21a,21bと回転中心Ax回りに相対的に回転可能に設けられている。ただし、センタプレート22aとサイドプレート21a,21bとの相対的な回転は、例えば、不図示のストッパ同士が当接することなどによって、所定の角度範囲内に限定されている。センタプレート22aには、開口部22bが設けられている。図2に示されるように、開口部22bは、例えば、センタプレート22aの径方向の外側に向けて開放された切欠部として構成されている。また、開口部22bは、センタプレート22aを軸方向に貫通している。センタプレート22aの開口部22bとサイドプレート21a,21bの開口部21c,21dとは、互いに軸方向に重なり合っている。開口部22bには、周方向の一方側の縁部と他方側の縁部との間に第一の弾性部材23が配置されている。また、センタプレート22aの径方向の内側の端部には、凸状の引掛部22cが設けられている。引掛部22cは、センタプレート22aの径方向の内側の端部から回転中心Ax側に向かって突出している。センタプレート22a、すなわち内側部材22は、例えば、金属材料によって構成されうる。
図1,2に示される第一の弾性部材23は、例えば、金属材料で構成され、周方向に略沿って延びたコイルばねである。第一の弾性部材23は、互いに軸方向に重なり合った開口部21c,21dおよび開口部22b内に収容され、第一の回転部材25と第二の回転部材26とに接続される。このような構成で、開口部21c,21dの周方向の一方側の縁部と開口部22bの周方向の他方側の縁部とが互いに近付く方向に相対的に回転すると、それら縁部によって第一の弾性部材23が弾性的に縮む。逆に、開口部21c,21dおよび開口部22b内で弾性的に縮んだ状態で、開口部21c,21dの周方向の一方側の縁部と開口部22bの周方向の他方側の縁部とが互いに遠ざかる方向に相対的に回転すると、第一の弾性部材23は弾性的に伸びる。すなわち、第一の弾性部材23は、第一の回転部材25のサイドプレート21a,21bと第二の回転部材26のセンタプレート22aとの間に挟まれ、回転中心Ax回りの相対的な回転に伴って略周方向に沿って弾性的に伸縮する。第一の弾性部材23は、弾性的に縮むことによりトルクを圧縮力として蓄え、弾性的に伸びることにより圧縮力をトルクとして放出する。第一の弾性部材23は、このように、第一の回転部材25と第二の回転部材26との間に位置され、第一の回転部材25と第二の回転部材26とに周方向に略沿って挟まれて、周方向に略沿って弾性的に伸縮する。ダンパ部12は、この第一の弾性部材23の伸縮によってトルク変動を緩和することができる。
図2に示されるように、ハブ部材24は、外側部材21および内側部材22の径方向の内側に位置されている。ハブ部材24は、全体として回転中心Ax回りの円筒状に構成されている。また、ハブ部材24は、筒状部24aを有する。筒状部24aの内側には、トランスミッションの入力シャフトが挿入される。筒状部24aは、入力シャフトと結合され、入力シャフトと一体に回転する。
筒状部24aは、例えば、第一の筒状部24bと、第二の筒状部24cと、第三の筒状部24dと、を有する。第一の筒状部24b、第二の筒状部24c、および第三の筒状部24dは、いずれも回転中心Ax回りの円筒状に構成されている。図2に示されるように、本実施形態では、第一の筒状部24b、第二の筒状部24c、および第三の筒状部24dの順で、軸方向の一方側から他方側、すなわち図2の左側から右側に位置されている。第一の筒状部24bは、筒状部24aの軸方向の一方側の端部を含み、第三の筒状部24dは、筒状部24aの軸方向の他方側の端部を含む。第一の筒状部24bの外径と第三の筒状部24dの外径とは、略同じである。また、第二の筒状部24cは、第一の筒状部24bと第三の筒状部24dとの間に設けられている。第二の筒状部24cの外径は、第一の筒状部24bおよび第三の筒状部24dの外径よりも大きい。また、第二の筒状部24cは、サイドプレート21a,21bの径方向の内側に位置され、サイドプレート21a,21b、すなわち第一の回転部材25を回転中心Ax回りに回転可能に支持している。第二の筒状部24cは、第一の回転部材25の軸受として機能することができる。
また、第二の筒状部24cには、張出部24eが設けられている。張出部24eは、第二の筒状部24cの軸方向の略中央部から径方向の外側に向かって張り出している。張出部24eは、回転中心Ax回りの円筒状に構成されている。張出部24eは、センタプレート22aの径方向の内側に位置されている。張出部24eは、筒状部や凸部等とも称されうる。また、張出部24eの径方向の外側の部分には、凹状の引掛部24fが設けられている。引掛部24fは、センタプレート22aの引掛部22cと対応した位置に設けられ、引掛部22cと周方向に離間した状態で引掛部22cを収容可能である。引掛部24fは、例えば、内側部材22とハブ部材24との相対的な回転に伴って伸縮する不図示の弾性部材が弾性的に縮んだ状態で、引掛部22cと周方向に引っ掛かるように構成されうる。ダンパ部12は、この弾性部材の伸縮によってもトルク変動を緩和することができる。また、ハブ部材24は、引掛部24fと引掛部22cとが周方向に互いに引っ掛かった状態では、内側部材22と一体に回転する。また、ハブ部材24は、上述のとおりトランスミッションの入力シャフトと一体に回転する。したがって、ハブ部材24と内側部材22とは、入力シャフトと一体に回転する。ハブ部材24は、例えば、金属材料によって構成されうる。
図2に示されるように、動吸振器17は、例えば、エンジンの駆動力が伝達される第一の弾性部材23における当該駆動力の出力側、すなわち第二の回転部材26に設けられている。本実施形態では、動吸振器17は、第一の動吸振器13と、第二の動吸振器14と、を有する。第一の動吸振器13および第二の動吸振器14は、それぞれがハブ部材24の第一の筒状部24bと接続され、互いに間隔をあけて軸方向に並んで配置されている。
第一の動吸振器13は、第一の錘部材32と、第二の弾性部材33と、を有する。図2に示されるように、第一の錘部材32は、第一の筒状部24bに対して径方向の外側に離間して位置されている。また、図1に示されるように、第一の錘部材32は、例えば、円環状に構成された筒状部32aを有する。本実施形態では、筒状部32a、すなわち第一の錘部材32は、第一の筒状部24bに対して移動可能に第二の弾性部材33に支持されている。第一の錘部材32は、慣性体や、質量体、はずみ車等として機能する。第一の錘部材32は、例えば、第二の回転部材26に周方向の振動が発生した場合、第二の弾性部材33の弾性変形を伴って第二の回転部材26の振動方向とは逆方向に振動、すなわち相対移動することにより、第二の回転部材26の周方向の振動を減衰させることができる。第一の錘部材32は、例えば、金属材料によって構成されうる。
第二の弾性部材33は、径方向に離間した第一の錘部材32と第一の筒状部24bとの間に介在している。また、図1に示されるように、第二の弾性部材33は、例えば、径方向に広がった円環状に構成されている。本実施形態では、第二の弾性部材33の径方向の内側の端部33aが第一の筒状部24bと結合され、第二の弾性部材33の径方向の外側の端部33bが第一の錘部材32と結合されている。第二の弾性部材33は、例えば、エラストマ等のゴム材料によって構成されている。第二の弾性部材33は、第一の筒状部24bに弾性変形可能に支持された状態で、第一の錘部材32を支持している。
第二の動吸振器14は、第一の動吸振器13の軸方向の他方側、すなわち図2の右側に位置されている。第二の動吸振器14は、第二の錘部材37と、第三の弾性部材38と、を有する。第二の錘部材37は、第一の筒状部24bに対して径方向の外側に離間して位置された円環状の筒状部37aを有する。本実施形態では、筒状部37a、すなわち第二の錘部材37は、第一の筒状部24bに対して移動可能に第三の弾性部材38に支持されている。第二の錘部材37は、第一の錘部材32と同様に、慣性体や、質量体、はずみ車等として機能する。第二の錘部材37は、例えば、金属材料によって構成されうる。
第三の弾性部材38は、径方向に離間した第二の錘部材37と第一の筒状部24bとの間に介在している。また、第三の弾性部材38は、例えば、径方向に広がった円環状に構成されている。本実施形態では、第三の弾性部材38の径方向の内側の端部38aが第一の筒状部24bと結合され、第三の弾性部材38の径方向の外側の端部38bが第二の錘部材37と結合されている。第三の弾性部材38は、第二の弾性部材33と同様に、エラストマ等のゴム材料によって構成されている。第三の弾性部材38は、第一の筒状部24bに弾性変形可能に支持された状態で、第二の錘部材37を支持している。
図2に示されるように、本実施形態では、第一の錘部材32の筒状部32aが、第二の錘部材37の筒状部37aの径方向の外側に位置されている。本実施形態によれば、このような慣性の大きさが互いに異なる二つの筒状部32a,37aによって、複数の固有振動数を有した動吸振器17を比較的簡単に得ることができる。仮に、固有振動数がダンパ装置1の共振周波数に合わされた一つの動吸振器が設けられた場合、共振周波数の前後の回転数で振動、すなわちトルク変動が大きくなる所謂背反部分が設けられる虞があった。その点、本実施形態によれば、例えば、複数の固有振動数を有した動吸振器17を備えるため、回転数に対するトルク変動の特性を調整しやすくなる。よって、例えば、ダンパ装置1の共振周波数の前後の回転数での振動、すなわちトルク変動が一つの動吸振器が設けられた場合のものと比べて小さくなるように構成できる。
以上のように、本実施形態では、例えば、ダンパ装置1は、第二の回転部材26と接続され、第二の回転部材26の径方向に沿って延びた第二の弾性部材33と、第二の弾性部材33に第二の回転部材26の径方向外側で接続され、第二の弾性部材33の弾性変形を伴って第二の回転部材26と相対移動する第一の錘部材32と、第二の回転部材26と接続され、第二の回転部材26の径方向に沿って延びた第三の弾性部材38と、第三の弾性部材38に第二の回転部材26の径方向外側で接続され、第三の弾性部材38の弾性変形を伴って第二の回転部材26と相対移動する第二の錘部材37と、を有した動吸振器17を備える。よって、本実施形態によれば、例えば、径方向に延びた複数の弾性部材としての第二の弾性部材33および第三の弾性部材38と、当該弾性部材に接続された複数の錘部材としての第一の錘部材32および第二の錘部材37との組み合わせにより、複数の固有振動数を有する動吸振器17が、比較的簡素な構成によって実現されうる。
また、本実施形態では、例えば、第三の弾性部材38は、第二の回転部材26と第二の錘部材37とに接続され、第二の弾性部材33の軸方向の他方側、すなわち図2の右側に位置されている。よって、本実施形態によれば、例えば、第二の弾性部材33および第一の錘部材32の組み合わせと第三の弾性部材38および第二の錘部材37の組み合わせとが軸方向に分けられて並列に配置された構成によって、複数の固有振動数を有する動吸振器17が実現されうる。
また、本実施形態では、例えば、第一の錘部材32は、第二の錘部材37の径方向の外側に位置されている。よって、本実施形態によれば、例えば、第一の錘部材32と第二の錘部材37とが径方向に分けられて配置された構成によって、複数の固有振動数を有する動吸振器17が、比較的容易に実現されうる。
また、本実施形態では、例えば、第二の弾性部材33および第三の弾性部材38は、ゴム材料で構成されている。よって、本実施形態によれば、例えば、第二の弾性部材33および第三の弾性部材38、ひいては動吸振器17が比較的容易に構成されうる。
<第2実施形態>
図3に示される本実施形態のダンパ装置1Aは、図1のダンパ装置1と同様の構成を備える。よって、本実施形態によっても、図1の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図3に示される本実施形態のダンパ装置1Aは、図1のダンパ装置1と同様の構成を備える。よって、本実施形態によっても、図1の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図3に示されるように、第一の錘部材32Aは、筒状部32aと、突出部32bと、を有する。突出部32bは、筒状部32aから軸方向の他方側、すなわち図3の右側に突出し、第二の錘部材37の少なくとも一部と径方向に重なり合っている。突出部32bは、例えば、筒状部32aと同様に円環状に構成されてもよいし、筒状部32aに部分的に設けられてもよい。また、図3に示されるように、本実施形態では、第二の回転部材26と第一の錘部材32Aとの間に、支持部材70が設けられている。支持部材70は、壁部70aと、壁部70bと、を有する。壁部70bは、径方向に沿って広がった円環状かつ板状に構成されている。本実施形態では、壁部70bの径方向の内側の端部は第一の筒状部24bと接続され、壁部70bの径方向の外側の端部は壁部70aと接続されている。壁部70bは、軸方向に並んだ第二の弾性部材33と第三の弾性部材38および第二の錘部材37との間に位置されている。本実施形態によれば、壁部70bによって、第二の錘部材37の軸方向への移動が抑制されうる。また、壁部70aは、壁部70bから軸方向の他方側、すなわち図3の右側に突出している。壁部70aは、第一の錘部材32Aの突出部32bと第二の錘部材37との間に位置され、例えば、筒状部37aの外面に沿った円筒状に構成されている。また、本実施形態では、壁部70aは、第一の錘部材32Aと第二の錘部材37とを回転中心Ax回りに回転可能に支持している。すなわち、壁部70aは、第一の錘部材32Aおよび第二の錘部材37の軸受として機能する。支持部材70は、例えば、合成樹脂材料や、金属材料等によって構成されている。
以上のように、本実施形態では、例えば、第一の錘部材32Aは、第二の錘部材37の少なくとも一部と第二の回転部材26の径方向に重なり合って位置される突出部32bを有する。よって、本実施形態によれば、例えば、突出部32bを有さない場合と比べて、第一の錘部材32Aの慣性モーメントが大きくなるとともに、動吸振器17ひいてはダンパ装置1Aが軸方向に大型化するのが抑制されやすい。
また、本実施形態では、例えば、ダンパ装置1Aは、第二の回転部材26と第一の錘部材32Aとの間に設けられ、第一の錘部材32Aを第二の回転部材26の径方向に支持する支持部材70を備える。よって、本実施形態によれば、例えば、支持部材70によって、第一の錘部材32Aの径方向への移動が抑制されやすい。
また、本実施形態では、例えば、支持部材70は、さらに第二の錘部材37を第二の回転部材26の径方向に支持する。よって、本実施形態によれば、例えば、支持部材70によって、第一の錘部材32Aおよび第二の錘部材37の径方向への移動が抑制されやすい。
また、本実施形態では、例えば、支持部材70は、合成樹脂材料または金属材料によって構成されている。よって、本実施形態によれば、例えば、支持部材70が比較的容易に構成されうる。
また、本実施形態では、例えば、支持部材70は、第一の錘部材32Aおよび第二の錘部材37を回転中心Ax回りに回転可能に支持する軸受として機能する。よって、本実施形態によれば、例えば、支持部材70とは別に軸受が設けられる場合と比べて、製造に要する手間や費用が低減されやすい。
<第3実施形態>
図4に示される本実施形態のダンパ装置1Bは、図1のダンパ装置1と同様の構成を備える。よって、本実施形態によっても、図1の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図4に示される本実施形態のダンパ装置1Bは、図1のダンパ装置1と同様の構成を備える。よって、本実施形態によっても、図1の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図4に示されるように、第二の弾性部材33Aと第三の弾性部材38Aとが、互いに間隔をあけて周方向に並んで配置されている。本実施形態では、第二の弾性部材33Aおよび第三の弾性部材38Aは、図4に示される軸方向の視線では、径方向の内側の端部33a,38aに対して径方向の外側の端部33b,38bが長辺となる略台形状に構成されている。また、第一の錘部材32Bおよび第二の錘部材37Bは、それぞれが基部32d,37dを有する。基部32d,37dは、例えば、長辺側の端部33b,38bに沿った矩形状かつ板状に構成され、当該端部33b,38bと結合されている。また、本実施形態では、動吸振器17は、例えば、第一の動吸振器13と、第二の動吸振器14と、第三の動吸振器15と、不図示の第四の動吸振器と、を備える。これら第一の動吸振器13、第二の動吸振器14、第三の動吸振器15、および不図示の第四の動吸振器は、周方向に沿って等間隔に並んで配置されている。各動吸振器の弾性部材、すなわち第二の弾性部材33A、第三の弾性部材38A、第四の弾性部材36A、および不図示の第五の弾性部材は、第一の筒状部24bから径方向の外側に向けて放射状に突出している。また、各動吸振器の錘部材、すなわち第一の錘部材32B、第二の錘部材37B、第三の錘部材35B、および不図示の第四の錘部材は、各弾性部材の径方向の外側の端部と結合され、周方向に互いに離間している。本実施形態では、例えば、第二の弾性部材33A、第三の弾性部材38A、第四の弾性部材36A、および不図示の第五の弾性部材の弾性力、および第一の錘部材32B、第二の錘部材37B、第三の錘部材35B、および不図示の第四の錘部材の慣性の大きさのうち少なくとも一方が互いに異なるように構成されうる。このように、本実施形態では、例えば、第三の弾性部材38Aは、第二の回転部材26と第二の錘部材37Bとに接続され、第二の弾性部材33Aの周方向の一方側、すなわち図4のF方向側に位置されている。よって、本実施形態によれば、例えば、第二の弾性部材33Aおよび第一の錘部材32Bの組み合わせと第三の弾性部材38Aおよび第二の錘部材37Bの組み合わせとが周方向に分けられて並列に配置された構成によって、複数の固有振動数を有する動吸振器17が実現されうる。また、例えば、第三の弾性部材が第二の弾性部材の軸方向の一方側に位置される場合と比べて、動吸振器17ひいてはダンパ装置1Bが軸方向により小型に構成されうる場合がある。また、本実施形態によれば、例えば、動吸振器17は、第一の動吸振器13と、第二の動吸振器14と、第三の動吸振器15と、不図示の第四の動吸振器とを有するため、動吸振器17が第一の動吸振器と第二の動吸振器とで構成された場合と比べて、回転数に対するトルク変動の特性をより調整しやすくなる場合がある。
<第4実施形態>
図5に示される本実施形態のダンパ装置1Cは、図4のダンパ装置1Bと同様の構成を備える。よって、本実施形態によっても、図4の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図5に示される本実施形態のダンパ装置1Cは、図4のダンパ装置1Bと同様の構成を備える。よって、本実施形態によっても、図4の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図5に示されるように、第一の動吸振器13は、第一の錘部材32Cと、周方向に互いに離間して配置された複数の第二の弾性部材33B,33Bと、を有する。複数の第二の弾性部材33B,33Bは、第一の錘部材32Cの筒状部32aと接続されている。また、本実施形態では、第二の動吸振器14は、周方向に隣接した二つの第二の弾性部材33B,33Bの間に設けられている。具体的には、第二の動吸振器14は、第一の筒状部24bと、二つの第二の弾性部材33B,33Bと、筒状部32aとの間に形成された空間部に収容されている。また、第二の錘部材37Cおよび第三の弾性部材38Bは、例えば、筒状部32aに沿った円弧状に構成されている。これにより、例えば、第二の錘部材が軸方向の視線で図4に示されるような矩形状に構成される場合と比べて、第一の錘部材32Cと第二の錘部材37Cとが回転中心Ax回りに相対的に回転した時の互いの緩衝が抑制されやすい。また、本実施形態では、例えば、第二の動吸振器14の回転中心Axとは反対側には、不図示の第三の動吸振器が設けられている。第三の動吸振器の構成は、第二の動吸振器14の構成と同様である。よって、本実施形態によれば、例えば、複数の第二の弾性部材33B,33Bと第一の錘部材32Cとの間のスペースが有効に利用され、第三の弾性部材38Bと第二の錘部材37Cとが配置されうる。
<第5実施形態>
図6,7に示される本実施形態のダンパ装置1Dは、図5のダンパ装置1Cと同様の構成を備える。よって、本実施形態によっても、図5の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図6,7に示される本実施形態のダンパ装置1Dは、図5のダンパ装置1Cと同様の構成を備える。よって、本実施形態によっても、図5の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図6,7に示されるように、第二の錘部材37Dは、内側錘部37fと、外側錘部37gと、中間錘部37hと、を有する。内側錘部37fは、筒状部32a、すなわち第一の錘部材32Cよりも第二の回転部材26の径方向の内側に位置され、軸方向に沿って延びている。外側錘部37gは、第一の錘部材32Cよりも第二の回転部材26の径方向の外側に位置され、軸方向に沿って延びている。中間錘部37hは、第一の錘部材32Cよりも第二の回転部材26の軸方向の他方側、すなわち図7の右側に位置され、径方向に沿って延びている。本実施形態では、中間錘部37hの径方向の内側の端部が内側錘部37fと接続され、中間錘部37hの径方向の外側の端部が外側錘部37gと接続されている。第二の錘部材37Dには、これら内側錘部37f、外側錘部37g、および中間錘部37hによって軸方向の一方側、すなわち図7の左側に向けて開放された略U字状の断面形状を有した開口部37xが設けられている。本実施形態では、この開口部37xに筒状部32aが収容されている。また、第二の錘部材37Dおよび第三の弾性部材38Bは、例えば、筒状部32aに沿った円弧状に構成されている。よって、本実施形態によれば、例えば、内側錘部37f、外側錘部37g、および中間錘部37hによって、第二の錘部材37Dの慣性モーメントがより大きくなりやすい。
<第6実施形態>
図8に示される本実施形態のダンパ装置1Eは、図1のダンパ装置1と同様の構成を備える。よって、本実施形態によっても、図1の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図8に示される本実施形態のダンパ装置1Eは、図1のダンパ装置1と同様の構成を備える。よって、本実施形態によっても、図1の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図8に示されるように、動吸振器17は、第二の弾性部材33Cと、第一の錘部材32Eと、第三の弾性部材38Cと、第二の錘部材37Eと、を備える。具体的には、本実施形態では、第二の弾性部材33Cと第三の弾性部材38Cとが互いに間隔をあけて径方向に並んで配置され、第三の弾性部材38Cの径方向の内側の端部38aが第一の錘部材32Eと結合されている。すなわち、本実施形態では、第三の弾性部材38Cを介して、第二の錘部材37Eと第一の錘部材32Eとが直列に接続されている。また、本実施形態では、動吸振器17の軸方向の他方側、すなわち、図8の右側に支持部材70Aが設けられている。支持部材70Aは、例えば、壁部70dと、壁部70eと、壁部70fと、を有する。壁部70dは、径方向に沿って広がった円環状かつ板状に構成されている。本実施形態では、壁部70dの径方向の内側の端部は第一の筒状部24bと接続され、壁部70dの径方向の外側の端部は壁部70fと接続され、壁部70dの径方向の略中間部は壁部70eと接続されている。壁部70eは、壁部70dから軸方向の一方側、すなわち図8の左側に突出している。壁部70eは、第一の錘部材32Eの径方向の外側に位置され、第一の錘部材32Eの少なくとも一部と対向している。また、壁部70fは、壁部70dから軸方向の一方側、すなわち図8の左側に突出している、壁部70fは、第二の錘部材37Eの径方向の外側に位置され、第二の錘部材32Eの少なくとも一部と対向している。本実施形態では、壁部70e,70fは、例えば、円環状に構成され、第一の錘部材32Eおよび第二の錘部材37Eを回転中心Ax回りに回転可能に支持している。すなわち、壁部70e,70fは、第一の錘部材32Eおよび第二の錘部材37Eの軸受として機能する。支持部材70Aは、例えば、合成樹脂材料や、金属材料等によって構成されている。
以上のように、本実施形態では、例えば、第三の弾性部材38Cは、第一の錘部材32Eと第二の錘部材37Eとに接続され、第二の弾性部材33Cの径方向の外側に位置されている。よって、本実施形態によれば、例えば、第二の弾性部材33Cおよび第一の錘部材32Eの組み合わせと第三の弾性部材38Cおよび第二の錘部材37Eの組み合わせとが径方向に直列に配置された構成によって、複数の固有振動数を有する動吸振器17が実現されうる。また、例えば、第三の弾性部材が第二の弾性部材の軸方向の一方側に位置される場合と比べて、動吸振器17ひいてはダンパ装置1Eが軸方向により小型に構成されうる場合がある。
また、本実施形態では、例えば、ダンパ装置1Eは、第二の回転部材26に設けられ、第一の錘部材32Eおよび第二の錘部材37Eを径方向に支持する支持部材70Aを備える。よって、本実施形態によれば、例えば、支持部材70Aによって、第一の錘部材32Eおよび第二の錘部材37Eの径方向への移動が抑制されやすい。また、本実施形態では、支持部材70Aが軸受として機能するため、支持部材70Aとは別に軸受が設けられる場合と比べて、製造に要する手間や費用が低減されやすい。
<第7実施形態>
図9,10に示される本実施形態のダンパ装置1Fは、図8のダンパ装置1Eと同様の構成を備える。よって、本実施形態によっても、図8の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図9,10に示される本実施形態のダンパ装置1Fは、図8のダンパ装置1Eと同様の構成を備える。よって、本実施形態によっても、図8の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図9,10に示されるように、第一の回転部材25と第一の錘部材32Fとに、ストッパ機構80が設けられている。ストッパ機構80は、第一の引掛部80aと、第二の引掛部80bと、を有する。第二の引掛部80bは、例えば、第一の回転部材25のサイドプレート21aに設けられ、サイドプレート21aから軸方向の一方側、すなわち図9の左側に突出している。第一の錘部材32Fには、第二の引掛部80bの少なくとも一部が収容される開口部32rが設けられている。開口部32rは、軸方向の視線、すなわち図10の視線では、径方向の内側に向けて解放された略U字状の断面形状を有している。本実施形態では、この開口部32rの周方向の両側の面によって第一の引掛部80aが構成されている。第二の引掛部80bは、第一の回転部材25と第一の錘部材32Fとの相対的な回転によって周方向に離間した二つの第一の引掛部80a,80aの間を移動する。そして、第一の引掛部80aと第二の引掛部80bとが互いに当接した場合に、第一の回転部材25と第一の錘部材32Fとの相対的な回転が制限される。本実施形態によれば、ストッパ機構80が設けられているため、例えば、第一の引掛部80aと第二の引掛部80bとが互いに当接した状態と当接しない状態とで、動吸振器17の固有振動数を異ならせることができる。また、本実施形態では、第二の弾性部材33Cと第一の筒状部24bとの間に、介在部材31が設けられている。介在部材31は、第一の筒状部24bの外面に沿った円筒状の筒状部31aを有する。筒状部31aと第一の筒状部24bとは、例えば、圧入や、かしめ、引っ掛かり、接着、結合具等によって互いに結合される。よって、介在部材31は、ハブ部材24と一体に回転する。介在部材31は、ハブ部材24および内側部材22とともに、第二の回転部材26の一部を構成している。介在部材31は、例えば、金属材料等によって構成されうる。
<第8実施形態>
図11に示される本実施形態のダンパ装置1Gは、図8のダンパ装置1Eと同様の構成を備える。よって、本実施形態によっても、図8の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図11に示される本実施形態のダンパ装置1Gは、図8のダンパ装置1Eと同様の構成を備える。よって、本実施形態によっても、図8の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図11に示されるように、第二の弾性部材33Dと第三の弾性部材38Dとが軸方向に並んで配置されている。そして、第三の弾性部材38Dの径方向の外側の端部38bが第一の錘部材32Gと結合され、第三の弾性部材38Dの径方向の内側の端部38aが第二の錘部材37Gと結合されている。すなわち、本実施形態では、第三の弾性部材38Dを介して、第二の錘部材37Gと第一の錘部材32Gとが直列に接続されている。また、本実施形態では、第二の錘部材37Gは、内側錘部37iと、外側錘部37jと、中間錘部37kと、を有する。内側錘部37iは、筒状部32a、すなわち第一の錘部材32Gよりも径方向の内側に位置され、例えば、第一の筒状部24bの外面に沿った円筒状に構成されている。外側錘部37jは、第一の錘部材32Gよりも径方向の外側に位置され、例えば、筒状部32aの外面に沿った円筒状に構成されている。中間錘部37kは、第一の錘部材32Gよりも軸方向の一方側、すなわち図11の左側に位置され、例えば、径方向に沿って広がった円環状に構成されている。本実施形態では、中間錘部37kの径方向の内側の端部が内側錘部37iと接続され、中間錘部37kの径方向の外側の端部が外側錘部37jと接続されている。第二の錘部材37Gには、これら内側錘部37i、外側錘部37j、および中間錘部37kによって軸方向の他方側、すなわち図11の右側に向けて解放された略U字状の断面形状を有した開口部37yが設けられている。本実施形態では、この開口部37yに、第一の錘部材32Gの少なくとも一部と第三の弾性部材38Dとが収容されている。このように、本実施形態では、例えば、第三の弾性部材38Dは、第一の錘部材32Gと第二の錘部材37Gとに接続され、第二の弾性部材33Dの軸方向の一方側、すなわち図11の左側に位置されている。よって、本実施形態によれば、例えば、第二の弾性部材33Dおよび第一の錘部材32Gの組み合わせと第三の弾性部材38Dおよび第二の錘部材37Gの組み合わせとが軸方向に直列に配置された構成によって、複数の固有振動数を有する動吸振器17が実現されうる。
<第9実施形態>
図12に示される本実施形態のダンパ装置1Hは、図11のダンパ装置1Gと同様の構成を備える。よって、本実施形態によっても、図11の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図12に示される本実施形態のダンパ装置1Hは、図11のダンパ装置1Gと同様の構成を備える。よって、本実施形態によっても、図11の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図12に示されるように、第一の筒状部24bと第一の錘部材32Gとの間に、支持部材70Bが設けられている。支持部材70Bは、壁部70gと、壁部70hと、を有する。壁部70gは、第一の筒状部24bと第二の錘部材37Gの内側部分37iとの間に位置され、例えば、第一の筒状部24bの外面に沿った円筒状に構成されている。壁部70hは、壁部70gの軸方向の他方側、すなわち図12の右側の端部から径方向の外側に突出している。壁部70hは、第二の弾性部材33Dと第三の弾性部材38Dとの間に位置され、例えば、径方向に沿って広がった円環状かつ板状に構成されている。本実施形態では、壁部70g,70hは、第二の錘部材37Gおよび第一の錘部材32Gを回転中心Ax回りに回転可能に支持している。すなわち、壁部70g,70hは、第二の錘部材37Gおよび第一の錘部材32Gの軸受として機能する。支持部材70Bは、合成樹脂材料または金属材料で構成されている。よって、本実施形態によれば、例えば、支持部材70Bによって、第一の錘部材32Gおよび第二の錘部材37Gの径方向への移動が抑制されやすい。
<第10実施形態>
図13に示される本実施形態のダンパ装置1Iは、図11のダンパ装置1Gと同様の構成を備える。よって、本実施形態によっても、図11の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図13に示される本実施形態のダンパ装置1Iは、図11のダンパ装置1Gと同様の構成を備える。よって、本実施形態によっても、図11の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図13に示されるように、動吸振器17は、第二の弾性部材33Eと、第一の錘部材32Hと、第三の弾性部材38Eと、第二の錘部材37Hと、第四の弾性部材36Eと、第三の錘部材35Hと、を備える。本実施形態では、第二の弾性部材33E、第三の弾性部材38E、および第四の弾性部材36Eの順で、軸方向の他方側から一方側、すなわち図13の右側から左側に向かって軸方向に並んで配置されている。また、本実施形態では、第三の弾性部材38Eの、径方向の外側の端部38bが第一の錘部材32Hと結合され、径方向の内側の端部38aが第二の錘部材37Hと結合されている。また、第四の弾性部材36Eの、径方向の内側の端部36aが第二の錘部材37Hと結合され、径方向の外側の端部36bが第三の錘部材35Hと結合されている。このような構成により、本実施形態では、第三の弾性部材38Eを介して、第一の錘部材32Hと第二の錘部材37Hとが直列に接続され、第四の弾性部材36Eを介して、第二の錘部材37Hと第三の錘部材35Hとが直列に接続されている。図13に示されるように、第一の錘部材32H、第二の錘部材37H、および第三の錘部材35Hは、それぞれの筒状部32a,37a,35aの少なくとも一部が径方向に互いに重なる状態で、配置されている。また、本実施形態では、筒状部37aは、筒状部32aの径方向の内側に位置され、筒状部35aは、筒状部32aの径方向の外側に位置されている。すなわち、本実施形態では、第一の錘部材32H、第二の錘部材37H、および第三の錘部材35Hのうち最も直列経路の第二の回転部材26とは反対側に配置される第三の錘部材35Hの慣性モーメントが最も大きくなるように構成されている。よって、本実施形態によれば、例えば、互いに慣性モーメントが異なる第一の錘部材32H、第二の錘部材37H、および第三の錘部材35Hによって、複数の固有振動数を有した動吸振器17が、比較的簡単な構成で実現されうる。
<第11実施形態>
図14に示される本実施形態のダンパ装置1Jは、図13のダンパ装置1Iと同様の構成を備える。よって、本実施形態によっても、図13の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図14に示される本実施形態のダンパ装置1Jは、図13のダンパ装置1Iと同様の構成を備える。よって、本実施形態によっても、図13の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図14に示されるように、第一の筒状部24bと第三の錘部材35Hとの間に、支持部材70Cが設けられている。支持部材70Cは、壁部70iと、壁部70jと、壁部70kと、を有する。壁部70iは、径方向に沿って広がった円環状かつ板状に構成されている。本実施形態では、壁部70iの径方向の内側の端部は壁部70jと接続され、壁部70iの径方向の外側の端部は壁部70kと接続されている。壁部70jは、壁部70iから軸方向の他方側、すなわち図14の右側に突出している。壁部70jは、例えば、第一の筒状部24bの外面に沿った円筒状に構成され、第一の筒状部24bと接続されている。壁部70kは、壁部70iから軸方向の一方側、すなわち図14の左側に突出している。壁部70kは、第一の錘部材32Hと第三の錘部材35Hとの間に位置され、例えば、筒状部32aの外面に沿った円筒状に構成されている。本実施形態では、支持部材70Cは、第一の錘部材32Hおよび第三の錘部材35Hを回転中心Ax回りに回転可能に支持している。すなわち、支持部材70Cは、第一の錘部材32Hおよび第三の錘部材35Hの軸受として機能する。支持部材70Cは、合成樹脂材料や、金属材料等によって構成されている。よって、本実施形態によれば、例えば、支持部材70Cによって、第一の錘部材32Hおよび第三の錘部材35H、ひいては第二の錘部材37Hの径方向への移動が抑制されやすい。
<第12実施形態>
図15に示される本実施形態のダンパ装置1Kは、図9,10のダンパ装置1Fと同様の構成を備える。よって、本実施形態によっても、図9,10の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図15に示される本実施形態のダンパ装置1Kは、図9,10のダンパ装置1Fと同様の構成を備える。よって、本実施形態によっても、図9,10の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図15に示されるように、動吸振器17は、第二の弾性部材33Fと、第一の錘部材32Iと、第三の弾性部材38Fと、第二の錘部材37Iと、第四の弾性部材36Fと、第三の錘部材35Iと、第五の弾性部材34Fと、第四の錘部材30Iと、を備える。本実施形態では、第二の弾性部材33Fと第三の弾性部材38Fとが軸方向の他方側、すなわち図15の右側で径方向に並んで配置され、第四の弾性部材36Fと第五の弾性部材34Fとが軸方向の一方側、すなわち図15の左側で径方向に並んで配置されている。また、本実施形態では、第二の弾性部材33Fの、径方向の内側の端部33aが介在部材31と結合され、径方向の外側の端部33bが第一の錘部材32Iと結合されている。また、第三の弾性部材38Fの、径方向の内側の端部38aが第一の錘部材32Iと結合され、径方向の外側の端部38bが第二の錘部材37Iと結合されている。また、第四の弾性部材36Fの、径方向の内側の端部36aが第三の錘部材35Iと結合され、径方向の外側の端部36bが第二の錘部材37Iと結合されている。また、第五の弾性部材34Fの、径方向の内側の端部34aが第四の錘部材30Iと結合され、径方向の外側の端部34bが第三の錘部材35Iと結合されている。すなわち、本実施形態では、第一の錘部材32I、第二の錘部材37I、第三の錘部材35I、および第四の錘部材30Iが、第二の弾性部材33F、第三の弾性部材38F、第四の弾性部材36F、および第五の弾性部材34Fを介して直列に接続されている。また、本実施形態では、筒状部37aは、筒状部32a,35aの径方向の外側に位置され、筒状部30aは、筒状部32a,35aの径方向の内側に位置されている。すなわち、本実施形態では、第二の錘部材37Iの慣性モーメントが最も大きくなるように構成され、第四の錘部材30Iの慣性モーメントが最も小さくなるように構成されている。よって、本実施形態によっても、例えば、互いに慣性モーメントが異なる第一の錘部材32I、第二の錘部材37I、第三の錘部材35I、および第四の錘部材30Iによって、複数の固有振動数を有した動吸振器17が、比較的簡単な構成で実現されうる。
<第13実施形態>
図16に示される本実施形態のダンパ装置1Lは、図15のダンパ装置1Kと同様の構成を備える。よって、本実施形態によっても、図15の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図16に示される本実施形態のダンパ装置1Lは、図15のダンパ装置1Kと同様の構成を備える。よって、本実施形態によっても、図15の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図16に示されるように、第一の筒状部24bと第二の錘部材37Iとの間に、支持部材70Dが設けられている。支持部材70Dは、壁部70mと、壁部70nと、壁部70pと、を有する。壁部70mは、第一の筒状部24bと第四の錘部材30Iとの間に位置され、例えば、第一の筒状部24bの外面に沿った円筒状に構成されている。本実施形態では、壁部70mの軸方向の他方側、すなわち図16の右側の端部は壁部70nと接続され、壁部70mの軸方向の一方側、すなわち図16の左側の端部は壁部70pと接続されている。壁部70nは、壁部70mから径方向の外側に突出している。壁部70nは、第一の錘部材32Iと第三の錘部材35Iとの間に位置され、例えば、径方向に沿って広がった円環状かつ板状に構成されている。壁部70pは、壁部70mから径方向の外側に突出している。壁部70pは、第四の錘部材30Iの軸方向の一方側、すなわち図16の左側に位置され、例えば、径方向に沿って広がった円環状かつ板状に構成されている。本実施形態では、支持部材70Dは、第二の錘部材37Iおよび第四の錘部材30Iを回転中心Ax回りに回転可能に支持している。すなわち、支持部材70Dは、第二の錘部材37Iおよび第四の錘部材30Iの軸受として機能する。支持部材70Dは、合成樹脂材料や、金属材料等によって構成されている。よって、本実施形態によれば、例えば、支持部材70Dによって、第二の錘部材37Iおよび第四の錘部材30Iの径方向への移動を抑制できる。また、本実施形態によれば、例えば、支持部材70Dの壁部70nによって、第一の錘部材32Iおよび第三の錘部材35Iの軸方向への移動を抑制できるとともに、壁部70n,70pによって第四の錘部材30Iの軸方向への移動を抑制できる。
<第14実施形態>
図17に示される本実施形態のダンパ装置1Lは、図1のダンパ装置1と同様の構成を備える。よって、本実施形態によっても、図1の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図17に示される本実施形態のダンパ装置1Lは、図1のダンパ装置1と同様の構成を備える。よって、本実施形態によっても、図1の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図17に示されるように、第二の弾性部材33Gが、板ばねで構成されている。第二の弾性部材33Gは、径方向に沿って延びた棒状に構成されている。第二の弾性部材33Gの一方側の端部33aは、第二の回転部材26の第一の筒状部24bに接続され、第二の弾性部材33Gの他方側の端部33bは、第一の錘部材32に接続されている。第二の弾性部材33Gは、第二の回転部材26に弾性変形可能に支持された状態で、第一の錘部材32を支持している。第二の弾性部材33Gと第一の筒状部24bおよび第一の錘部材32との結合は、例えば、加硫接着等によってなされる。また、本実施形態では、複数の第二の弾性部材33Gが、互いに間隔をあけて周方向に並んで配置されている。よって、周方向で隣り合う二つの第二の弾性部材33Gの間には、空間が設けられている。複数の第二の弾性部材33Gは、回転中心Axを中心とした放射状に並べられるとともに、周方向に沿って略等角度間隔に並べられている。また、複数の第二の弾性部材33Gは、径方向に互いに重なり合って位置されている。第二の弾性部材33Gは、例えば、軸方向の厚さが周方向に沿った幅よりも薄い板ばねとして構成されている。すなわち、本実施形態では、第二の弾性部材33Gは、厚さ方向の曲げ剛性と厚さ方向と直交する幅方向の曲げ剛性とが異なっている。よって、本実施形態によれば、例えば、ダンパ装置1Lに加わる互いに異なる方向の振動に対して異なる減衰特性を得やすい。また、本実施形態では、複数の第二の弾性部材33Gが回転中心Ax回りに互いに間隔を空けて位置されている。よって、本実施形態によれば、一つの第二の弾性部材が回転中心Ax回りの環状に構成される場合と比べて、第二の弾性部材33Gの周方向の変形量を大きくできる場合がある。なお、本実施形態では、第二の弾性部材33Gのみが示されたが、不図示の第三の弾性部材も板バネで構成されうる。
<第15実施形態>
図18に示される本実施形態のダンパ装置1Mは、図1のダンパ装置1と同様の構成を備える。よって、本実施形態によっても、図1の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図18に示される本実施形態のダンパ装置1Mは、図1のダンパ装置1と同様の構成を備える。よって、本実施形態によっても、図1の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図18に示されるように、第一の錘部材32Jは、ベース部32tと、第一の延部32uと、を有する。ベース部32tは、円筒状に構成され、第二の弾性部材33の径方向の外側の端部33bと結合されている。第一の延部32uは、ベース部32tの軸方向の一方側、すなわち図18の左側の端部から径方向の内側に突出し、第二の弾性部材33に軸方向で面している。第一の延部32uは、回転中心Ax回りの円環状かつ板状に構成されている。第一の延部32uの径方向の内側の端部32u1は、第一の錘部材32Jの径方向の内側の端部である。また、本実施形態では、第一の筒状部24bと第一の延部32uとの間に、支持部材41が設けられている。支持部材41は、第二の弾性部材33の径方向の中心よりも径方向の内側に位置されている。第二の弾性部材33の径方向の中心の位置は、線Bによって示されている。支持部材41は、径方向支持部41aと、軸方向支持部41bと、を有している。径方向支持部41aは、筒状部とも称され、軸方向支持部41bは、壁部とも称される。径方向支持部41aは、回転中心Ax回りの円筒状に構成されている。径方向支持部41aと第一の筒状部24bとは、圧入や、かしめ、引っ掛かり、接着、結合具等によって互いに結合されている。よって、支持部材41は、第二の回転部材26と一体に回転する。径方向支持部41aは、第一の錘部材32Jの端部32u1に径方向で面している。径方向支持部41aと端部32u1との間には、隙間があってもよいし隙間が無くてもよい。径方向支持部41aは、径方向支持部41aと端部32u1とが互いに径方向で接触した状態で、第一の錘部材32Jを径方向に支持する。また、径方向支持部41aは、径方向支持部41aと端部32u1とが互いに径方向で接触した状態で、第一の錘部材32Jを回転中心Ax回りに回転可能に支持する。すなわち、径方向支持部41aは、第一の錘部材32Jのラジアル軸受として機能する。軸方向支持部41bは、回転中心Ax回りの円環状かつ板状に構成されている。軸方向支持部41bは、径方向支持部41aの軸方向の他方向、すなわち図18の右側の端部から径方向の外側に突出している。軸方向支持部41bは、第一の延部32uと第二の弾性部材33との間に位置され、第一の延部32uに軸方向で面している。軸方向支持部41bと第一の延部32uとの間には、隙間があってもよいし隙間が無くてもよい。軸方向支持部41bは、軸方向支持部41bと第一の延部32uとが互いに軸方向で接触した状態で、第一の錘部材32Jを軸方向に支持する。また、軸方向支持部41bは、軸方向支持部41bと第一の延部32uとが互いに軸方向で接触した状態で、第一の錘部材32Jを回転中心Ax回りに回転可能に支持する。すなわち、軸方向支持部41bは、第一の錘部材32Jのスラスト軸受として機能する。支持部材41は、合成樹脂材料や金属材料等によって構成されている。なお、支持部材41は、玉軸受や、ころ軸受等によって構成されてもよい。
以上のように、本実施形態では、例えば、支持部材41は、第二の回転部材26に設けられ、第一の錘部材32Jを第二の回転部材26の径方向に支持する。よって、本実施形態によれば、例えば、支持部材41によって、第一の錘部材32Jの径方向への移動を抑制することができる。よって、例えば、第一の錘部材32Jの偏心を抑制することができる。
また、本実施形態では、例えば、支持部材41は、第一の錘部材32Jを回転中心Ax回りに回転可能に支持する軸受として機能する。よって、本実施形態によれば、例えば、支持部材41とは別に軸受が設けられた場合に比べて、ダンパ装置1Mの製造に要する手間や費用が低減されやすい。
また、本実施形態では、例えば、支持部材41は、第一の錘部材32Jの径方向の内側の端部32u1を支持する。よって、本実施形態によれば、例えば、支持部材が第一の錘部材の径方向の外側の端部を支持する構成に比べて、支持部材41における第一の錘部材32Jの支持位置と回転中心Axとの間の距離を短くすることができる。よって、例えば、支持部材41と第一の錘部材32Jとの接触によるトルクを小さくすることができる。
また、本実施形態では、例えば、第一の錘部材32Jは、第二の弾性部材33と接続されたベース部32tと、端部32u1を含みベース部32tから第二の回転部材26の径方向の内側に延びた第一の延部32uと、を有する。よって、本実施形態によれば、例えば、支持部材41と第一の錘部材32Jとの接触によるトルクがより小さくなりやすい。
また、本実施形態では、支持部材41は、第二の弾性部材33の径方向の中心よりも径方向の内側に位置されている。よって、本実施形態によれば、例えば、支持部材41と第一の錘部材32Jとの接触によるトルクがより小さくなりやすい。なお、本実施形態では、第一の錘部材32Jのみが示されたが、不図示の第二の錘部材も第一の錘部材32Jと略同様に構成されうる。この場合、不図示の第二の錘部材と第二の回転部材26との間に、支持部材41と略同様の支持部材が設けられうる。
<第16実施形態>
図19に示される本実施形態のダンパ装置1Nは、図18のダンパ装置1Mと同様の構成を備える。よって、本実施形態によっても、図18の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図19に示される本実施形態のダンパ装置1Nは、図18のダンパ装置1Mと同様の構成を備える。よって、本実施形態によっても、図18の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図19に示されるように、ベース部32tと第一の延部32uとは、両方とも板状に構成されている。そして、第一の錘部材32Kは、プレス成形によって形成されたプレス成形品である。このように、本実施形態では、第一の錘部材32Kがプレス成形によって形成されたので、第一の錘部材32Kの製造コストを低減しやすい。なお、本実施形態では、第一の錘部材32Kのみが示されたが、不図示の第二の錘部材も第一の錘部材32Kと略同様に構成されうる。
<第17実施形態>
図20に示される本実施形態のダンパ装置1Oは、図19のダンパ装置1Nと同様の構成を備える。よって、本実施形態によっても、図19の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図20に示される本実施形態のダンパ装置1Oは、図19のダンパ装置1Nと同様の構成を備える。よって、本実施形態によっても、図19の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図20に示されるように、第一の錘部材32Lは、ベース部32tと、第一の延部32uと、折曲部32eと、を有する。折曲部32eは、ベース部32tの軸方向の他方側、すなわち図20の右側の端部から径方向の外側に折れ曲がっている。また、折曲部32eは、第二の延部32e1と、筒状部32e2と、を有する。第二の延部32e1は、ベース部32tの軸方向の他方側、すなわち図20の右側の端部から径方向の外側に延びている。第二の延部32e1は、回転中心Ax回りの円環状かつ板状に構成され、径方向に広がっている。筒状部32e2は、第二の延部32e1の径方向の外側の端部から軸方向の一方側、すなわち図20の左側に延びている。筒状部32e2は、回転中心Ax回りの円筒状に構成されている。筒状部32e2は、ベース部32tの径方向の外側に位置されている。第一の錘部材32Lは、プレス成形によって形成されたプレス成形品である。第二の延部32e1は、壁部とも称されうる。このように、本実施形態では、例えば、第一の錘部材32Lは、ベース部32tから第二の回転部材26の径方向の外側に延びた第二の延部32e1や、筒状部32e2を有する。よって、本実施形態によれば、第一の錘部材32Lの慣性モーメントがより大きくなりやすい。なお、本実施形態では、第一の錘部材32Lのみが示されたが、不図示の第二の錘部材も第一の錘部材32Lと略同様に構成されうる。
<第18実施形態>
図21,22に示される本実施形態のダンパ装置1Pは、図18のダンパ装置1Mと同様の構成を備える。よって、本実施形態によっても、図18の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図21,22に示される本実施形態のダンパ装置1Pは、図18のダンパ装置1Mと同様の構成を備える。よって、本実施形態によっても、図18の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図21,22に示されるように、第一の錘部材32Mと支持部材41Kとに、ストッパ機構80Aが設けられている。ストッパ機構80Aは、第三の引掛部41d1と、第四の引掛部32gと、を有する。第四の引掛部32gは、例えば、第一の錘部材32Mの第一の延部32uに設けられ、端部32u1から径方向の内側に突出している。支持部材41Kには、第四の引掛部32gの少なくとも一部が収容される開口部41dが設けられている。開口部41dは、軸方向の視線、すなわち図22の視線では、径方向の外側に向けて解放された略U字状の断面形状を有している。本実施形態では、この開口部41dの周方向の両側の面によって第三の引掛部41d1が構成されている。支持部材41Kは、第一の筒状部24bに結合され、第二の回転部材26と一体に回転する。第四の引掛部32gは、第一の錘部材32Mと支持部材41Kおよび第二の回転部材26との相対的な回転によって周方向に離間した二つの第一の引掛部41d1,41d1の間を移動する。そして、第一の引掛部41d1と第二の引掛部32gとが互いに当接した場合に、第一の錘部材32Mと支持部材41Kとの相対的な回転が制限される。よって、本実施形態によれば、例えば、第三の引掛部41d1および第四の引掛部32gによって、第二の弾性部材33の過大な変形が抑制されうる。なお、本実施形態では、第一の錘部材32Mおよび支持部材41Kの組み合わせのみが示されたが、不図示の第二の錘部材および支持部材の組み合わせにも同様のストッパ機構80Aを設けることができる。また、ストッパ機構80Aは、例えば、図3に示される第一の錘部材32Aおよび支持部材70の組み合わせや、図12に示される第一の錘部材32Gおよび支持部材70Bの組み合わせ、図14に示される第一の錘部材32Hおよび支持部材70Cの組み合わせ等にも適用可能である。さらに、ストッパ機構80Aは、図3に示される第二の錘部材37および支持部材70の組み合わせや、図12に示される第二の錘部材37Gおよび支持部材70Bの組み合わせ、図14に示される第三の錘部材35Hおよび支持部材70Cの組み合わせ、図16に示される第二の錘部材37Iおよび支持部材70Dの組み合わせ等にも適用可能である。また、ストッパ機構80Aは、錘部材および支持部材の組み合わせに限らず、例えば、図11に示されるような第一の錘部材32Gおよび第二の錘部材37Gの組み合わせ等に適用してもよい。
<第19実施形態>
図23に示される本実施形態のダンパ装置1Qは、図17のダンパ装置1Lと同様の構成を備える。よって、本実施形態によっても、図17の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図23に示される本実施形態のダンパ装置1Qは、図17のダンパ装置1Lと同様の構成を備える。よって、本実施形態によっても、図17の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図23に示されるように、第一の動吸振器13は、第一の錘部材32Nと、複数の第二の弾性部材33Lと、介在部材31Lと、を有する。介在部材31Lは、筒状部31aと、壁部31dと、を有する。壁部31dは、筒状部31aの軸方向の他方側、すなわち図23の右側の端部から径方向の外側に突出している。壁部31dは、回転中心Ax回りの円環状かつ板状に構成されている。壁部31dには、開口部31d1が設けられている。開口部31d1は、例えば、壁部31dを軸方向に貫通した貫通孔である。第一の錘部材32Nは、ベース部32tと、第一の延部32uと、を有する。第一の延部32uには、開口部32u2が設けられている。開口部32u2は、例えば、第一の延部32uを軸方向に貫通した貫通孔である。複数の第二の弾性部材33Lの配置は、第14実施形態の複数の第二の弾性部材33Gの配置と同様である。複数の第二の弾性部材33Lは、それぞれ、壁部33sと、結合部33g,33hと、を有する。結合部33gは、壁部33sの径方向の内側の端部に接続されている。結合部33gの軸方向の厚さL5は、壁部33sの軸方向の厚さL6よりも厚くなっており、結合部33gの軸方向の両端部は、壁部33sに対して軸方向に突出している。結合部33gは、介在部材31Lの筒状部31aの径方向の外側で筒状部31aと重ねられるとともに、介在部材31Lの壁部31dの軸方向の一方側、すなわち図23の左側で壁部31dと重ねられている。結合部33gには、開口部33g1が設けられている。開口部33g1は、例えば、結合部33gを軸方向に貫通した貫通孔である。開口部33g1は、介在部材31Lの開口部31d1に面している。結合部33gは、開口部31d1,33g1に挿入された結合具42と、結合具42と結合された結合具43とによって、介在部材31Lの壁部31dに結合されている。結合具42は、例えば、ねじ部材としてのボルトであり、結合具43は、例えば、ねじ部材としてのナットである。また、結合部33hは、壁部33sの径方向の外側の端部に接続されている。結合部33hの軸方向の厚さL7は、壁部33sの軸方向の厚さL6よりも厚くなっており、結合部33hの軸方向の両端部は、壁部33sに対して軸方向に突出している。結合部33hは、第一の錘部材32Nの第一の延部32uの軸方向の他方側、すなわち図23の右側で第一の延部32uと重ねられている。結合部33hには、開口部33h1が設けられている。開口部33h1は、例えば、結合部33hを軸方向に貫通した貫通孔である。開口部33h1は、第一の延部32uの開口部32u2に面している。結合部33hは、開口部32u2,33h1に挿入された結合具42と、結合具42と結合された結合具43とによって、第一の錘部材32Nの第一の延部32uに結合されている。
以上のように、本実施形態では、例えば、第二の弾性部材33Lは、第二の回転部材26と第一の錘部材32Nとに、結合具42,43によって結合されている。よって、本実施形態によれば、例えば、第二の弾性部材33Lと、第二の回転部材26および第一の錘部材32Nのうち少なくとも一方との結合において、加硫接着をせずに済む。なお、第二の弾性部材33Lは、第二の回転部材26および第一の錘部材32Nのうち少なくとも一方と、かしめ等によって結合されてもよい。
また、本実施形態では、第二の弾性部材33Lは、第二の回転部材26の支持部材31Lおよび第一の錘部材32Nと結合された結合部33g,33hを有し、結合部33g,33hの軸方向の厚さL5,L7は、当該第二の弾性部材33Lのうち結合部33g,33h以外の部分である壁部33sの軸方向の厚さL6よりも厚い。よって、結合部33g,33hの強度を高くしやすい。なお、本実施形態では、第一の動吸振器13のみが示されたが、不図示の第二の動吸振器も第一の動吸振器13と略同様に構成されうる。
<第20実施形態>
図24に示される本実施形態のダンパ装置1Rは、図23の実施形態のダンパ装置1Qと同様の構成を備える。よって、本実施形態によっても、図23の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図24に示される本実施形態のダンパ装置1Rは、図23の実施形態のダンパ装置1Qと同様の構成を備える。よって、本実施形態によっても、図23の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図24に示されるように、第一の動吸振器13は、第一の錘部材32Rと、第二の弾性部材33Mと、介在部材31Mと、を有する。介在部材31Mは、筒状部31aと、凸状の複数の第二の嵌部31eと、を有する。第二の嵌部31eは、筒状部31aの径方向の外側の端部から径方向の外側に突出している。複数の第二の嵌部31eは、周方向に互いに間隔を空けて位置されている。第二の嵌部31eは、接続部31e1と、張出部31e2と、を有する。接続部31e1は、筒状部31aの径方向の外側の端部に接続されている。張出部31e2は、接続部31e1の径方向の外側の端部に接続されるとともに、接続部31e1に対して周方向に張り出している。第一の錘部材32Rは、ベース部32tと、凸状の複数の第二の嵌部32iと、を有する。なお、図24では、一つの第二の嵌部32iのみが示されている。第二の嵌部32iは、ベース部32tの径方向の内側の端部から径方向の内側に突出している。複数の第二の嵌部32iは、周方向に互いに間隔を空けて位置されている。第二の嵌部32iは、接続部32i1と、張出部32i2と、を有する。接続部32i1は、ベース部32tの径方向の内側の端部に接続されている。張出部32i2は、接続部32i1の径方向の内側の端部に接続されるとともに、接続部32i1に対して周方向に張り出している。第二の弾性部材33Mは、筒状部33aを有する。本実施形態では、筒状部33aに、凹状の複数の第一の嵌部33e,33fが設けられている。複数の第一の嵌部33eは、筒状部33aの径方向の内側の端部に設けられ、周方向に互いに間隔を空けて位置されている。第一の嵌部33eは、筒状部33aの径方向の内側の端面に対して凹状に構成されるとともに、介在部材31Mの第二の嵌部31eに沿った形状に構成されている。第一の嵌部33eは、例えば、介在部材31Mの第二の嵌部31eと嵌め合わされることにより、第二の嵌部31eと機械的に接合されている。具体的には、第一の嵌部33eに第二の嵌部31eが圧入されている。第一の嵌部33eと第二の嵌部31eとは、互いに周方向および径方向に引っ掛かっている。複数の第一の嵌部33fは、筒状部33aの径方向の外側の端部に設けられ、周方向に互いに間隔を空けて位置されている。第一の嵌部33fは、筒状部33aの径方向の外側の端面に対して凹状に構成されるとともに、第一の錘部材32Rの第二の嵌部32iに沿った形状に構成されている。第一の嵌部33fは、例えば、第一の錘部材32Rの第二の嵌部32iと嵌め合わされることにより、第二の嵌部32iと機械的に接合されている。具体的には、第一の嵌部33fに第二の嵌部32iが圧入されている。第一の嵌部33fと第二の嵌部32iとは、互いに周方向および径方向に引っ掛かっている。よって、本実施形態によれば、第二の弾性部材33Mと、第二の回転部材26の介在部材31Mおよび第一の錘部材32Rとの結合において、加硫接着をせずに済む。なお、第二の弾性部材33Mと嵌め合いによって結合されるのは、第二の回転部材26の支持部材31Mおよび第一の錘部材32Rの少なくとも一方であってよい。なお、本実施形態では、第一の動吸振器13のみが示されたが、不図示の第二の動吸振器も第一の動吸振器13と同様に構成されうる。
<第21実施形態>
図25,26に示される本実施形態のダンパ装置1Sは、図17のダンパ装置1Lと同様の構成を備える。よって、本実施形態によっても、図17の実施形態と同様の構成に基づく同様の結果および効果が得られる。
図25,26に示される本実施形態のダンパ装置1Sは、図17のダンパ装置1Lと同様の構成を備える。よって、本実施形態によっても、図17の実施形態と同様の構成に基づく同様の結果および効果が得られる。
ただし、本実施形態では、図25,26に示されるように、第二の弾性部材33Pが、線材が巻回されたコイルばねで構成されている。第二の弾性部材33Pの一方側の端部33aは、第二の回転部材26の介在部材31Pに接続され、第二の弾性部材33Gの他方側の端部33bは、第一の錘部材32Pに接続されている。第二の弾性部材33Pは、第二の回転部材26に弾性変形可能に支持された状態で、第一の錘部材32Pを支持している。また、図26に示されるように、介在部材31Pの筒状部31aには、収容部31hが設けられている。収容部31hは、径方向の外側に開口している。収容部31hには、第二の弾性部材33Pの端部33aが収容されている。また、第一の錘部材32Pの筒状部32aには、収容部32hが設けられている。収容部32hは、径方向の内側に開口している。収容部32hには、第二の弾性部材33Pの端部33bが収容されている。よって、本実施形態によれば、コイルばねで構成された第二の弾性部材33Pによって、第一の動吸振器13が比較的容易に構成されうる。また、本実施形態では、複数の第二の弾性部材33Pが回転中心Ax回りに互いに間隔を空けて位置されている。よって、本実施形態によれば、一つの第二の弾性部材が回転中心Ax回りの環状に構成される場合に比べて、第二の弾性部材33Pの周方向の変形量を大きくできる場合がある。なお、本実施形態では、第二の弾性部材33Pのみが示されたが、不図示の第三の弾性部材もコイルばねで構成されうる。
上述した実施形態に関して、付記を開示する。
(付記)
前記第二の錘部材は、前記第一の錘部材よりも前記第二の回転部材の径方向の内側に位置された内側錘部と、前記第一の錘部材よりも前記第二の回転部材の径方向の外側に位置された外側錘部と、前記第一の錘部材よりも前記第二の回転部材の軸方向の一方側で前記内側錘部および前記外側錘部と繋がった中間錘部と、を有する。
(付記)
前記第二の錘部材は、前記第一の錘部材よりも前記第二の回転部材の径方向の内側に位置された内側錘部と、前記第一の錘部材よりも前記第二の回転部材の径方向の外側に位置された外側錘部と、前記第一の錘部材よりも前記第二の回転部材の軸方向の一方側で前記内側錘部および前記外側錘部と繋がった中間錘部と、を有する。
前記第三の弾性部材は、前記第一の錘部材と前記第二の錘部材とに接続され、前記第二の弾性部材の径方向の外側または内側に位置される。
前記第一の回転部材および前記第一の錘部材のうち一方に設けられ、前記第二の回転部材の周方向に互いに離間して位置された二つの第一の引掛部と、前記第一の回転部材および前記第一の錘部材のうち他方に設けられ、前記第一の回転部材と前記第一の錘部材との相対的な回転によって前記二つの第一の引掛部の間を移動する第二の引掛部と、を備え、前記第一の回転部材と前記第一の錘部材との相対的な回転が、前記第一の引掛部と前記第二の引掛部との当接により制限される。
前記第三の弾性部材は、前記第一の錘部材と前記第二の錘部材とに接続され、前記第二の弾性部材の軸方向の一方側または他方側に位置される。
前記第一の錘部材は、前記第二の錘部材の前記第二の回転部材の径方向の外側または内側に位置される。
前記第一の錘部材の少なくとも一部と前記第二の錘部材の少なくとも一部とが前記第二の回転部材の径方向に重なるように位置される。
前記第二の回転部材に設けられ、前記第一の錘部材を前記第二の回転部材の径方向に支持する支持部材を備える。
前記支持部材は、さらに前記第二の錘部材を前記第二の回転部材の径方向に支持する。
前記支持部材は、合成樹脂材料または金属材料によって構成される。
前記支持部材は、少なくとも前記第一の錘部材を前記回転中心回りに回転可能に支持する軸受として機能する。
前記支持部材は、前記第二の回転部材と一体に回転し、前記支持部材および前記第一の錘部材のうち一方に設けられ、前記第二の回転部材の周方向に互いに間隔を空けて位置された二つの第三の引掛部と、前記支持部材および前記第一の錘部材のうち他方に設けられ、前記支持部材と前記第一の錘部材との相対的な回転によって前記二つの第三の引掛部の間を移動する第四の引掛部と、を備え、前記支持部材と前記第一の錘部材との相対的な回転が、前記第三の引掛部と前記第四の引掛部との当接により制限される。
前記支持部材は、少なくとも前記第一の錘部材の前記第二の回転部材の径方向の内側の端部を支持する。
前記第一の錘部材は、前記第二の弾性部材と接続されたベース部と、前記端部を含み前記ベース部から前記第二の回転部材の径方向の内側に延びた第一の延部と、を有する。
前記第一の錘部材は、前記ベース部から前記第二の回転部材の径方向の外側に延びた第二の延部を有する。
前記第一の錘部材は、プレス成形される。
前記支持部材は、前記第二の弾性部材の前記第二の回転部材の径方向の中心よりも前記径方向の内側に位置される。
前記第二の弾性部材および前記第三の弾性部材のうち少なくとも一方は、ゴム材料、板バネ、およびコイルばねのうちいずれか一つで構成される。
前記第二の弾性部材は、前記第二の回転部材および前記第一の錘部材のうち少なくとも一方に、結合具またはかしめによって結合される。
前記第二の弾性部材には、第一の嵌部が設けられ、前記第二の回転部材および前記第一の錘部材のうち少なくとも一方には、前記第一の嵌部と嵌まる第二の嵌部が設けられる。
前記第二の弾性部材は、前記第二の回転部材または前記第一の錘部材と結合された結合部を有し、前記第二の回転部材の軸方向に関する前記結合部の厚さは、当該第二の弾性部材のうち前記結合部以外の部分の前記軸方向の厚さよりも厚い。
以上、本発明の実施形態を例示したが、上記実施形態は一例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。上記実施形態は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。本発明は、上記実施形態に開示される構成以外によっても実現可能であるとともに、基本的な構成(技術的特徴)によって得られる種々の効果(派生的な効果も含む)を得ることが可能である。また、各構成要素のスペック(構造や、種類、方向、形状、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。
1,1A~1S…ダンパ装置、17…動吸振器、23…第一の弾性部材、25…第一の回転部材、26…第二の回転部材、31e,32i…第二の嵌部、32,32A~32R…第一の錘部材、32e1…第二の延部、32g…第四の引掛部、32t…ベース部、32u…第一の延部、32u1…端部、33,33A~33P…第二の弾性部材、33e,33f…第一の嵌部、33g,33h…結合部、37,37A~37I…第二の錘部材、37f,37i…内側錘部、37g,37j…外側錘部、37h,37k…中間錘部、38,38A~38F…第三の弾性部材、41,41K,70,70A~70D…支持部材、41d1…第三の引掛部、42,43…結合具、80a…第一の引掛部、80b…第二の引掛部、Ax…回転中心、F…周方向、R…径方向、X…軸方向。
Claims (4)
- 回転中心回りに回転可能な第一の回転部材と、
前記回転中心回りに回転可能な第二の回転部材と、
前記第一の回転部材と前記第二の回転部材との相対的な回転によって弾性変形する第一の弾性部材と、
前記第二の回転部材と接続され前記第二の回転部材の径方向に沿って延びた第二の弾性部材と、前記第二の弾性部材に前記第二の回転部材とは前記第二の回転部材の径方向外側で接続され前記第二の弾性部材の弾性変形を伴って前記第二の回転部材と相対移動する第一の錘部材と、前記第二の回転部材および前記第一の錘部材のうち一方と接続され前記第二の回転部材の径方向に沿って延びた第三の弾性部材と、前記第三の弾性部材に前記一方とは前記第二の回転部材の径方向外側で接続され前記第三の弾性部材の弾性変形を伴って前記一方と相対移動する第二の錘部材と、を有した動吸振器と、
を備えた、ダンパ装置。 - 前記第三の弾性部材は、前記第二の回転部材と前記第二の錘部材とに接続され、前記第二の弾性部材の軸方向の一方側または他方側に位置された、請求項1に記載のダンパ装置。
- 前記第三の弾性部材は、前記第二の回転部材と前記第二の錘部材とに接続され、前記第二の弾性部材の周方向の一方側または他方側に位置された、請求項1に記載のダンパ装置。
- 前記周方向に互いに離間して複数の前記第二の弾性部材が配置されるとともに、前記第一の錘部材は、前記複数の第二の弾性部材と接続され、
前記第二の錘部材と前記第三の弾性部材とが、互いに隣接した二つの前記第二の弾性部材の間に設けられた、請求項3に記載のダンパ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201590001138.1U CN207005193U (zh) | 2014-11-25 | 2015-11-13 | 减震装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-238260 | 2014-11-25 | ||
JP2014238260A JP2016098958A (ja) | 2014-11-25 | 2014-11-25 | ダンパ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016084635A1 true WO2016084635A1 (ja) | 2016-06-02 |
Family
ID=56074203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/082030 WO2016084635A1 (ja) | 2014-11-25 | 2015-11-13 | ダンパ装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2016098958A (ja) |
CN (1) | CN207005193U (ja) |
WO (1) | WO2016084635A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019220598A1 (ja) * | 2018-05-17 | 2019-11-21 | 鍋屋バイテック 株式会社 | 軸継手 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018105497A (ja) * | 2016-12-28 | 2018-07-05 | 株式会社フコク | アイソレーション付きプーリ |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05256337A (ja) * | 1992-01-17 | 1993-10-05 | Carl Freudenberg:Fa | 回転数適応型捩り振動ダンパ |
JPH0753865A (ja) * | 1993-08-11 | 1995-02-28 | Toray Ind Inc | 樹脂組成物および成形体 |
JPH10227333A (ja) * | 1997-02-14 | 1998-08-25 | Nok Megurasutikku Kk | ダイナミックダンパ |
JPH112291A (ja) * | 1997-06-11 | 1999-01-06 | Mitsubishi Motors Corp | ダンパ装置とその組み付け方法 |
JP2006090528A (ja) * | 2004-09-27 | 2006-04-06 | Tokai Rubber Ind Ltd | 回転軸用制振装置 |
JP2009115184A (ja) * | 2007-11-06 | 2009-05-28 | Toyota Motor Corp | デュアルマスフライホイール |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0719648U (ja) * | 1993-09-10 | 1995-04-07 | エヌ・オー・ケー・メグラスティック株式会社 | ダイナミックダンパ |
-
2014
- 2014-11-25 JP JP2014238260A patent/JP2016098958A/ja active Pending
-
2015
- 2015-11-13 WO PCT/JP2015/082030 patent/WO2016084635A1/ja active Application Filing
- 2015-11-13 CN CN201590001138.1U patent/CN207005193U/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05256337A (ja) * | 1992-01-17 | 1993-10-05 | Carl Freudenberg:Fa | 回転数適応型捩り振動ダンパ |
JPH0753865A (ja) * | 1993-08-11 | 1995-02-28 | Toray Ind Inc | 樹脂組成物および成形体 |
JPH10227333A (ja) * | 1997-02-14 | 1998-08-25 | Nok Megurasutikku Kk | ダイナミックダンパ |
JPH112291A (ja) * | 1997-06-11 | 1999-01-06 | Mitsubishi Motors Corp | ダンパ装置とその組み付け方法 |
JP2006090528A (ja) * | 2004-09-27 | 2006-04-06 | Tokai Rubber Ind Ltd | 回転軸用制振装置 |
JP2009115184A (ja) * | 2007-11-06 | 2009-05-28 | Toyota Motor Corp | デュアルマスフライホイール |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019220598A1 (ja) * | 2018-05-17 | 2019-11-21 | 鍋屋バイテック 株式会社 | 軸継手 |
JPWO2019220598A1 (ja) * | 2018-05-17 | 2021-05-27 | 鍋屋バイテック株式会社 | 軸継手 |
JP7162913B2 (ja) | 2018-05-17 | 2022-10-31 | 鍋屋バイテック株式会社 | 軸継手 |
Also Published As
Publication number | Publication date |
---|---|
CN207005193U (zh) | 2018-02-13 |
JP2016098958A (ja) | 2016-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5772098B2 (ja) | トルク変動吸収装置 | |
EP2112399B1 (en) | Frequency tuned damper | |
KR102073315B1 (ko) | 원심력 진자를 구비한 마찰 클러치 | |
US9638282B2 (en) | Damper apparatus | |
EP3006774A1 (en) | Damper apparatus with torque limiter | |
JP2018535372A (ja) | 振子減衰装置 | |
JP2016098954A (ja) | ダンパ装置 | |
WO2016084635A1 (ja) | ダンパ装置 | |
JP2017530317A (ja) | ブレード付きトーショナルダンパ | |
JP6471486B2 (ja) | ダンパ装置 | |
JP6318746B2 (ja) | ダンパ装置 | |
JP5971162B2 (ja) | ダンパ装置 | |
JP6476790B2 (ja) | ダンパ装置 | |
JP2017115927A (ja) | クランクプーリ | |
JP6100070B2 (ja) | トルク変動吸収ダンパ | |
JP6471474B2 (ja) | ダンパ装置 | |
JP6476791B2 (ja) | ダンパ装置 | |
JP2016098962A (ja) | ダンパ装置 | |
JP6822113B2 (ja) | ダンパ装置 | |
JP6810562B2 (ja) | ダンパ装置 | |
JP2009085315A (ja) | 筒型防振装置 | |
JP2016008713A (ja) | ダンパ装置 | |
JP2014181753A (ja) | ダンパ装置 | |
JP2019052727A (ja) | ダンパ装置 | |
JP5389714B2 (ja) | エンジンのフライホイール装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15862189 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15862189 Country of ref document: EP Kind code of ref document: A1 |