WO2016078264A1 - 移位寄存单元、移位寄存器、栅极驱动电路及显示装置 - Google Patents
移位寄存单元、移位寄存器、栅极驱动电路及显示装置 Download PDFInfo
- Publication number
- WO2016078264A1 WO2016078264A1 PCT/CN2015/074352 CN2015074352W WO2016078264A1 WO 2016078264 A1 WO2016078264 A1 WO 2016078264A1 CN 2015074352 W CN2015074352 W CN 2015074352W WO 2016078264 A1 WO2016078264 A1 WO 2016078264A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transistor
- control
- shift register
- module
- pole
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3674—Details of drivers for scan electrodes
- G09G3/3677—Details of drivers for scan electrodes suitable for active matrices only
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3266—Details of drivers for scan electrodes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C19/00—Digital stores in which the information is moved stepwise, e.g. shift registers
- G11C19/28—Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
- G09G2300/0861—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0267—Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0286—Details of a shift registers arranged for use in a driving circuit
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0291—Details of output amplifiers or buffers arranged for use in a driving circuit
Definitions
- the present invention relates to the field of liquid crystal display technology, and in particular to a shift register unit, a shift register including the shift register unit, a gate drive circuit including the shift register, and a gate including the same A display device for a pole drive circuit.
- each pixel independently emits light for display under the control of a thin film transistor.
- OLED Organic Light-Emitting Diode
- the gate driving circuit of the OLED display device it is necessary to provide a light-emission control shift register unit, which realizes light-emitting in pixels by outputting a turn-off signal in one pulse and outputting an turn-on signal in the remaining periods.
- the phase control pixel illumination is in a normally open state.
- the illumination control shift register unit comprises a first module 1, a second module 2, a first control module 3' and a second control module 3.
- the first module 1 is used to shift the level
- the output terminal 4 of the bit register unit outputs a high level signal, which includes a first control transistor 10, a first pole of the first control transistor 10 is coupled to the high level signal input terminal 5, and a second pole is coupled to the output terminal 4.
- the second module 2 is configured to output the low level signal of the output terminal 4 of the shift register unit of the present stage, which includes a second control transistor 20, and the first pole of the second control transistor 20 is connected to the low level signal input terminal 6, The second pole is connected to the output terminal 4.
- the first control module 3' and the second control module 3' are used to control the on and off of the first control transistor 10 and the second control transistor 20; wherein the first control module 3' includes an initial a signal module 3c', a first capacitor C S0 and a first sub-module 3a ′ and a second sub-module 3 b ′ in parallel with the first capacitor C S0 ; the second control module 3 ⁇ includes a third sub-module 3 a ⁇ and a fourth sub-module Module 3b ⁇ ; first sub-module 3a', second sub-module 3b' and first control The gate of the body tube 10 is connected to control the on and off of the first control transistor 10.
- the first sub-module 3a' and the second sub-module 3b' are also connected to the third sub-module 3a, for controlling the third
- the third sub-module 3a and the fourth sub-module 3b are connected to the gate of the second control transistor 20 for controlling the on and off of the second control transistor 20.
- the start signal module 3c' includes a signal control transistor 30; the first sub-module 3a' includes a first transistor 31, a second transistor 32, a third transistor 33, and a second capacitor C S1 ; the second sub-module 3b' includes a fourth transistor 34; the third sub-module 3a ⁇ includes a fifth transistor 35 and a sixth transistor 36; the fourth sub-module 3b ⁇ includes a seventh transistor 37 and a third capacitor C S2 ; the connection relationship of the above transistors is as shown in FIG. 1 .
- the operation principle of the light-emission control shift register unit will be described by taking a transistor of the light-emission control shift register unit and a thin-film transistor that controls pixel light emission as a P-type transistor.
- the start signal input from the start signal input terminal 8 is at a low level
- the first clock signal input from the first clock signal input terminal 7 is at a low level
- the second clock signal input from the second clock signal input terminal 9 is at a high level.
- each of the first control transistor 10 and the third sub-module 3a is turned off under the control of the second sub-module 3b', and the second control transistor 20 is under the control of the fourth sub-module 3b Turning on, so that the low level signal input from the low level signal input terminal 6 is output from the output terminal 4 via the second module 2, that is, the turn-on signal is output from the output terminal 4.
- the start signal goes high
- the first clock signal goes high
- the second clock signal goes low.
- each of the first control transistor 10 and the third sub-module 3a is turned on under the control of the second sub-module 3b', and further causes the second control transistor 20 to be in the third sub-module 3a.
- the control is turned off so that the high level signal input from the high level signal input terminal 5 is output from the output terminal 4 via the first module 1, that is, the off signal is output from the output terminal 4.
- the start signal is maintained at a high level
- the first clock signal becomes a low level
- the second clock signal becomes a high level.
- each of the first control transistor 10 and the third sub-module 3a is turned off under the control of the first sub-module 3a'
- the second control transistor 20 is under the control of the fourth sub-module 3b Turning on, so that the low level signal input from the low level signal input terminal 6 is output from the output terminal 4 via the second module 2, that is, the turn-on signal is output from the output terminal 4.
- the start signal is maintained at a high level, the first clock signal becomes a high level, and the second clock signal becomes a low level.
- each of the first control transistor 10 and the third sub-module 3a The tube is turned off under the control of the first sub-module 3a', and the second control transistor 20 is turned on under the control of the fourth sub-module 3b, so that the low-level signal input from the low-level signal input terminal 6 passes through
- the second module 2 is outputted from the output terminal 4, that is, the turn-on signal is outputted from the output terminal 4.
- the third stage c and the fourth stage d are continuously repeated so that the signals output through the output terminal 4 are Turn on the signal.
- the signal output of the light emission control shift register unit is controlled by using a larger number of transistors (10 in total) (that is, the turn-off signal is output only in one pulse, and the turn-on signal is output in other periods). Therefore, the illumination control shift register unit needs to occupy a large space, that is, the frame width, which is disadvantageous for implementing the narrow bezel design of the display device.
- the present invention is directed to at least one of the technical problems existing in the prior art, and proposes a shift register unit, a shift register, a gate drive circuit, and a display device, and the shift register unit can reduce a transistor included therein The amount of space that is occupied by the frame width is reduced, thereby contributing to the narrow bezel design of the display device.
- a shift register unit including a first module, a second module, and a control module, wherein the first module is configured to output a high level signal to an output end of the shift register unit of the stage.
- the first control transistor includes a first control transistor, a gate of the first control transistor is connected to the control module, a first pole of the first control transistor is connected to a high level signal input end, and the first control transistor is The second pole is connected to the output end of the shift register unit of the current stage; the control module is configured to control the on and off of the first control transistor; and the second module is configured to output the output end of the shift register unit of the current stage a level signal, comprising a second control transistor, a gate of the second control transistor, a first pole connected to a low level signal input terminal, a second pole of the second control transistor and a shift register of the current stage The output of the unit is connected.
- the control module includes a start signal module, a first capacitor, and a first control module and a second control module connected in parallel with the first capacitor;
- the start signal module is configured to the first capacitor, the first control The module and the second control module provide a start signal, the first end of the first capacitor is connected to the start signal module, and the second end is connected to the first control transistor a gate connection;
- the first control module is configured to control on and off of the first control transistor according to the start signal and a first clock signal input by the first clock signal input end; The on/off of the first control transistor is controlled according to the start signal and a second clock signal input by the second clock signal input terminal.
- the start signal module includes a signal control transistor, a gate of the signal control transistor is connected to the first clock signal input end, and a first pole of the signal control transistor is connected to the start signal input end.
- the second pole of the signal control transistor is coupled to the first end of the first capacitor, the first control module, and the second control module.
- the first control module includes a second capacitor, a first transistor, a second transistor, and a third transistor; a gate and a first pole of the first transistor are both connected to the first clock signal input end, where a second pole of the first transistor is connected to a second pole of the second transistor and a gate of the third transistor; a gate of the second transistor is connected to a second pole of the signal control transistor, a first pole of the second transistor is coupled to the high level signal input terminal, a second pole of the second transistor is coupled to a gate of the third transistor; a gate of the third transistor is a first end of the second capacitor is connected, a second end of the second capacitor is connected to the high level signal input end, and a first pole of the third transistor is connected to the high level signal input end.
- the second pole of the third transistor is connected to the gate of the first control transistor and the second end of the first capacitor.
- the second control module includes a fourth transistor, a gate of the fourth transistor is connected to a second electrode of the signal control transistor, and a first end of the first capacitor, the fourth transistor The first pole is connected to the second clock signal input end, and the second pole of the fourth transistor is connected to the gate of the first control transistor and the second end of the first capacitor.
- the present invention further provides a shift register including a cascaded multi-stage shift register unit, wherein the shift register unit is the above-described shift register unit provided by the present invention.
- the present invention further provides a gate driving circuit including a shift register using the above shift register provided by the present invention.
- the present invention also provides a display device including a gate And a gate driving circuit using the above-described gate driving circuit provided by the present invention.
- the gate of the second control transistor is connected to the low-level signal input terminal, that is, the on-off of the second control transistor is directly controlled by the low-level signal, so that it is not necessary to separately set an additional
- the transistor is used to respectively control the on and off of the second control transistor.
- the shift register unit provided by the present invention reduces the number of transistors, thereby reducing the space required for the shift register unit, which is helpful. To achieve a narrow bezel design of the display device.
- the shift register provided by the present invention adopts the above-mentioned shift register unit provided by the present invention, and does not need to separately provide additional transistors for respectively controlling the on and off of the second control transistor, which reduces the number of transistors compared with the prior art. Thereby, the space required for the shift register can be reduced, which contributes to the narrow bezel design of the display device.
- the gate driving circuit provided by the present invention adopts the above shift register provided by the present invention, and does not need to separately provide additional transistors for respectively controlling the on and off of the second control transistor, which reduces the number of transistors compared with the prior art. Thereby, the space required by the gate driving circuit can be reduced, which contributes to the narrow bezel design of the display device.
- the display device provided by the invention adopts the above-mentioned gate driving circuit provided by the invention, can reduce the space occupied by the gate driving circuit, and contributes to realize the narrow frame design of the display device.
- 1 is a circuit diagram of a conventional illumination control shift register unit
- FIG. 2 is a timing chart of signals in the light-emission control shift register unit when each transistor in the light-emission control shift register unit and the thin-film transistor that controls pixel light emission are P-type transistors;
- FIG. 3 is a circuit diagram of a preferred embodiment of a shift register unit provided by the present invention.
- FIG. 4 is a timing chart of signals in the shift register unit when the transistors in the shift register unit and the thin film transistor that controls the pixel light emission are P-type transistors.
- the shift register unit includes a first module 1, a second module 2, and a control module 3, wherein the first module 1 is used to make the output terminal 4 of the shift register unit of the present stage Outputting a high level signal, comprising a first control transistor 10, the gate of the first control transistor 10 is connected to the control module 3, the first pole of the first control transistor 10 is connected to the high level signal input terminal 5, the first control The second electrode of the transistor 10 is connected to the output terminal 4 of the shift register unit of the present stage; the control module 3 is for controlling the on and off of the first control transistor 10; and the second module 2 is for outputting the output of the shift register unit of the present stage.
- the output terminal 4 of the shift register unit is connected
- first pole is referred to as a source
- second pole is a drain
- first pole is a drain
- second pole All are sources.
- the gate of the second control transistor 20 is connected to the low-level signal input terminal 6, that is, the on-off of the second control transistor 20 is directly input from the low level input through the low-level signal input terminal 6.
- Signal control so that it is not necessary to separately provide additional transistors for controlling the on and off of the second control transistor 20, respectively.
- the shift register unit in the present embodiment reduces the number of transistors, thereby reducing the shift.
- the space required for the registration unit helps to achieve a narrow bezel design of the display device.
- the control module 3 includes a start signal module 3c, a first capacitor C S0 , and a first control module 3a and a second control module 3b connected in parallel with the first capacitor C S0 ; the start signal module 3 c is used to the first capacitor C S0 , The first control module 3a and the second control module 3b provide a start signal, the first end of the first capacitor C S0 is connected to the start signal module 3c, and the second end is connected to the gate of the first control transistor 10; The module 3a is configured to control the on and off of the first control transistor 10 according to the start signal and the first clock signal input by the first clock signal input terminal 7; the second control module 3b is configured to use the start signal and the second The second clock signal input from the clock signal input terminal 9 controls the on and off of the first control transistor 10.
- the start signal module 3c includes a signal control transistor 30, the gate of the signal control transistor 30 is connected to the first clock signal input terminal 7, the first pole of the signal control transistor 30 is connected to the start signal input terminal 8, and the signal control transistor 30 is The second pole is connected to the first end of the first capacitor C S0 , the first control module 3 a and the second control module 3 b .
- the first control module 3a includes a first transistor 31, a second transistor 32, and a third transistor 33; the gate and the first pole of the first transistor 31 are both connected to the first clock signal input terminal 7, and the second transistor 31 is second.
- the pole is connected to the second pole of the second transistor 32 and the gate of the third transistor 33; the gate of the second transistor 32 is connected to the second pole of the signal control transistor 30, and the first pole of the second transistor 32 is high level of the signal input terminal 5 is connected to a second electrode of the second transistor 32 is connected to the gate of the third transistor 33; gate of the third transistor 33 is connected to a first terminal of the second capacitor C S1, and the second capacitor C S1
- the second end is connected to the high level signal input terminal 5, the first pole of the third transistor 33 is connected to the high level signal input terminal 5, the second pole of the third transistor 33 is connected to the gate of the first control transistor 10, The second ends of a capacitor C S0 are connected.
- the second control module 3b includes a fourth transistor 34.
- the gate of the fourth transistor 34 is connected to the second pole of the signal control transistor 30, the first end of the first capacitor C S0 , and the first pole and the second pole of the fourth transistor 34 .
- the clock signal input terminal 9 is connected, and the second electrode of the fourth transistor 34 is connected to the gate of the first control transistor 10 and the second terminal of the first capacitor C S0 .
- the operation principle of the shift register unit will be described by taking each transistor in the shift register unit and a thin film transistor that controls pixel light emission as a P-type transistor.
- the start signal input from the start signal input terminal 8 is at a low level
- the first clock signal input from the first clock signal input terminal 7 is located at a low level.
- the second clock signal input from the second clock signal input terminal 9 is at a high level.
- the signal control transistor 30 and the first transistor 31 are turned on; the start signal charges and holds the first capacitor C S0 , and the start signal is input to the gates of the second transistor 32 and the fourth transistor 34.
- the second transistor 32 and the fourth transistor 34 are turned on; the second transistor 32 is turned on, so that the high level signal input from the high level signal input terminal 5 passes through the first pole and the second pole of the second transistor 32. Input to the gate of the third transistor 33 to turn off the third transistor 33; conduction of the fourth transistor 34 causes the second clock signal to be input to the gate of the first control transistor 10, thereby turning off the first control transistor 10; In this process, a low level signal is input from the low level signal input terminal 6 to the gate of the second control transistor 20, and the second control transistor 20 is turned on, thereby outputting a low power from the output terminal 4 of the shift register unit.
- the flat signal that is, the output terminal 4 outputs an on signal.
- the start signal goes high, the first clock signal goes high, and the second clock signal goes low.
- the signal control transistor 30, the first transistor 31 is turned off, and the first capacitor C S0 inputs the start signal of the first phase a held by it to the gates of the second transistor 32 and the fourth transistor 34, so that The second transistor 32 and the fourth transistor 34 are turned on; the second transistor 32 is turned on, so that the high level signal input from the high level signal input terminal 5 is input to the first pole and the second pole of the second transistor 32 to a gate of the third transistor 33 and a first end of the second capacitor C S1 , thereby turning off the third transistor 33 , and the high level signal charges and holds the second capacitor C S1 ; the conduction of the fourth transistor 34 makes The second clock signal is input to the gate of the first control transistor 10 via the first pole and the second pole of the fourth transistor 34, thereby turning on the first control transistor 10; in the process, the low level signal is input to the first Second, the gate of the control transistor 20 is such that
- the start signal is maintained at a high level, the first clock signal becomes a low level, and the second clock signal becomes a high level.
- the signal control transistor 30 and the first transistor 31 are turned on, the start signal charges and holds the first capacitor C S0 , and is input to the gates of the second transistor 32 and the fourth transistor 34 to make the second transistor. 32.
- the fourth transistor 34 is turned off; the first transistor 31 is turned on, so that the first clock signal is input to the gate of the third transistor 33 through the first pole and the second pole of the first transistor 31, and the third transistor 33 is led.
- the third transistor 33 is turned on, so that a high level signal input from the high level signal input terminal 5 is input to the gate of the first control transistor 10 via the first and second poles of the third transistor 33, so that The first control transistor 10 is turned off; at the same time, the high level signal also charges and holds the second capacitor C S1 ; in the process, the low level signal is input to the gate of the second control transistor 20 to make the second control transistor 20 is still in an on state, thereby outputting a low level signal from the shift register unit, that is, the output terminal 4 outputs an on signal.
- the start signal is maintained at a high level, the first clock signal becomes a high level, and the second clock signal becomes a low level.
- the signal control transistor 30, the first transistor 31 is turned off, and the first capacitor C S0 inputs the start signal of the third phase c held by it to the gates of the second transistor 32 and the fourth transistor 34, so that The second transistor 32 and the fourth transistor 34 are turned off;
- the second capacitor C S1 inputs the high level signal of the third stage c held by it to the gate of the third transistor 33 to turn off the third transistor 33;
- the first capacitor C S0 inputs the start signal of the third stage c held by it to the gate of the first control transistor 10, turning off the first control transistor 10.
- a low level signal is input to the gate of the second control transistor 20, so that the second control transistor 20 is still in an on state, and thus, the shift register unit outputs a low level signal, that is, the output terminal 4 The output is turned on.
- the third stage c and the fourth stage d are continuously repeated, so that the signals output through the output terminal 4 are all on signals.
- each transistor in the shift register unit and the thin film transistor that controls pixel light emission may also be an N-type transistor, in which case, by controlling the timing of the start signal, the first clock signal, and the second clock signal, The first control transistor 10 is turned off only for one pulse, and remains turned on for the remaining period, so that the shift register unit outputs the turn-off signal only at one pulse, and outputs the turn-on signal for the remaining period.
- the gate of the second control transistor 20 is connected to the low-level signal input terminal 6, that is, the on-off of the second control transistor 20 is directly controlled by the low-level signal, thereby There is no need to separately provide additional transistors for controlling the on and off of the second control transistor 20 respectively.
- the shift register unit provided by the present invention reduces the number of transistors, thereby reducing the occupation of the shift register unit. The space helps to achieve a narrow bezel design for the display device.
- the present invention further provides a shift register including a cascaded multi-stage shift register unit, which is the above-described shift register unit provided by the present invention.
- the present invention further provides a gate driving circuit including a shift register, which is the above shift register provided by the present invention.
- the gate driving circuit provided by the present invention adopts the above shift register provided by the present invention, and does not need to separately provide additional transistors for respectively controlling the on and off of the second control transistor, which reduces the number of transistors compared with the prior art. Thereby, the space required for the shift register and the gate driving circuit can be reduced, which contributes to the narrow bezel design of the display device.
- the present invention further provides a display device including a gate and a gate driving circuit, wherein the gate driving circuit adopts the above-mentioned gate driving circuit provided by the present invention.
- the display device is an OLED display device.
- the display device provided by the invention adopts the above-mentioned gate driving circuit provided by the invention, can reduce the space occupied by the gate driving circuit, and contributes to realize the narrow frame design of the display device.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Shift Register Type Memory (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
Claims (8)
- 一种移位寄存单元,包括第一模块、第二模块和控制模块,其特征在于,所述第一模块用于使本级移位寄存单元的输出端输出高电平信号,其包括第一控制晶体管,所述第一控制晶体管的栅极与所述控制模块连接,所述第一控制晶体管的第一极与高电平信号输入端连接,所述第一控制晶体管的第二极与本级移位寄存单元的输出端连接;所述控制模块用于控制所述第一控制晶体管的通断;所述第二模块用于使本级移位寄存单元的输出端输出低电平信号,其包括第二控制晶体管,所述第二控制晶体管的栅极、第一极均与低电平信号输入端连接,所述第二控制晶体管的第二极与本级移位寄存单元的输出端连接。
- 根据权利要求1所述的移位寄存单元,其特征在于,所述控制模块包括起始信号模块、第一电容以及与所述第一电容并联的第一控制模块、第二控制模块;所述起始信号模块用于向第一电容、第一控制模块、第二控制模块提供起始信号;所述第一电容的第一端与起始信号模块连接,第二端与所述第一控制晶体管的栅极连接;所述第一控制模块用于根据所述起始信号以及第一时钟信号输入端输入的第一时钟信号控制所述第一控制晶体管的通断;所述第二控制模块用于根据所述起始信号以及第二时钟信号输入端输入的第二时钟信号控制所述第一控制晶体管的通断。
- 根据权利要求2所述的移位寄存单元,其特征在于,所述起始信号模块包括信号控制晶体管,所述信号控制晶体管的栅极与所述第一时钟信号输入端连接,所述信号控制晶体管的第一极与所述起始 信号输入端连接,所述信号控制晶体管的第二极与所述第一电容的第一端、所述第一控制模块和所述第二控制模块均连接。
- 根据权利要求3所述的移位寄存单元,其特征在于,所述第一控制模块包括第二电容、第一晶体管、第二晶体管和第三晶体管;所述第一晶体管的栅极和第一极均与所述第一时钟信号输入端连接,所述第一晶体管的第二极与所述第二晶体管的第二极以及所述第三晶体管的栅极均连接;所述第二晶体管的栅极与所述信号控制晶体管的第二极连接,所述第二晶体管的第一极与所述高电平信号输入端连接,所述第二晶体管的第二极与所述第三晶体管的栅极连接;所述第三晶体管的栅极与所述第二电容的第一端连接,所述第二电容的第二端与所述高电平信号输入端连接,所述第三晶体管的第一极与所述高电平信号输入端连接,所述第三晶体管的第二极与所述第一控制晶体管的栅极、所述第一电容的第二端均连接。
- 根据权利要求4所述的移位寄存单元,其特征在于,所述第二控制模块包括第四晶体管,所述第四晶体管的栅极与所述信号控制晶体管的第二极、所述第一电容的第一端均连接,所述第四晶体管的第一极与所述第二时钟信号输入端连接,所述第四晶体管的第二极与所述第一控制晶体管的栅极、所述第一电容的第二端均连接。
- 一种移位寄存器,所述移位寄存器包括级联的多级移位寄存单元,其特征在于,所述移位寄存单元采用权利要求1~5任意一项所述的移位寄存单元。
- 一种栅极驱动电路,包括移位寄存器,其特征在于,所述移位寄存器采用权利要求6所述的移位寄存器。
- 一种显示装置,包括栅极以及栅极驱动电路,其特征在于, 所述栅极驱动电路采用权利要求7所述的栅极驱动电路。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017545993A JP6369963B2 (ja) | 2014-11-19 | 2015-03-17 | シフトレジスタ素子、シフトレジスタ、ゲート駆動回路および表示装置 |
KR1020157023334A KR101746634B1 (ko) | 2014-11-19 | 2015-03-17 | 시프트 레지스터 유닛, 시프트 레지스터, 게이트 구동 회로 및 디스플레이 장치 |
US14/771,030 US20160351150A1 (en) | 2014-11-19 | 2015-03-17 | Shift register unit, shift register, gate driving circuit and display device |
EP15750915.9A EP3223267B1 (en) | 2014-11-19 | 2015-03-17 | Display device comprising a shift register |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410664680.7A CN104361860B (zh) | 2014-11-19 | 2014-11-19 | 一种移位寄存器、栅极驱动电路以及显示装置 |
CN201410664680.7 | 2014-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016078264A1 true WO2016078264A1 (zh) | 2016-05-26 |
Family
ID=52529117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/074352 WO2016078264A1 (zh) | 2014-11-19 | 2015-03-17 | 移位寄存单元、移位寄存器、栅极驱动电路及显示装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20160351150A1 (zh) |
EP (1) | EP3223267B1 (zh) |
JP (1) | JP6369963B2 (zh) |
KR (1) | KR101746634B1 (zh) |
CN (1) | CN104361860B (zh) |
WO (1) | WO2016078264A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104361860B (zh) * | 2014-11-19 | 2017-02-22 | 京东方科技集团股份有限公司 | 一种移位寄存器、栅极驱动电路以及显示装置 |
CN104835450B (zh) * | 2015-05-22 | 2017-01-25 | 京东方科技集团股份有限公司 | 移位寄存器单元及其控制方法、栅极驱动电路、显示装置 |
CN105304057B (zh) * | 2015-12-09 | 2018-11-30 | 京东方科技集团股份有限公司 | 一种移位寄存器及其驱动方法、栅极驱动电路 |
CN109427285B (zh) * | 2017-08-31 | 2022-06-24 | 乐金显示有限公司 | 选通驱动电路和使用该选通驱动电路的电致发光显示器 |
CN109410836A (zh) * | 2018-12-05 | 2019-03-01 | 武汉华星光电半导体显示技术有限公司 | Oled像素驱动电路及显示面板 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202332230U (zh) * | 2011-11-25 | 2012-07-11 | 京东方科技集团股份有限公司 | 移位寄存器、栅极驱动电路及其液晶显示装置 |
CN102982777A (zh) * | 2012-12-07 | 2013-03-20 | 京东方科技集团股份有限公司 | 显示装置的栅极驱动电路、开关控制电路及移位寄存器 |
CN103000155A (zh) * | 2012-12-11 | 2013-03-27 | 京东方科技集团股份有限公司 | 移位寄存器单元、阵列基板栅极驱动装置及显示设备 |
CN103325353A (zh) * | 2012-03-23 | 2013-09-25 | 乐金显示有限公司 | 用于液晶显示器的电平移位器 |
US20140266304A1 (en) * | 2011-09-28 | 2014-09-18 | Semiconductor Energy Laboratory Co., Ltd. | Shift register circuit |
CN104361860A (zh) * | 2014-11-19 | 2015-02-18 | 京东方科技集团股份有限公司 | 一种移位寄存器、栅极驱动电路以及显示装置 |
CN204178680U (zh) * | 2014-11-19 | 2015-02-25 | 京东方科技集团股份有限公司 | 一种移位寄存器、栅极驱动电路以及显示装置 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3589926B2 (ja) * | 2000-02-02 | 2004-11-17 | シャープ株式会社 | シフトレジスタ回路および画像表示装置 |
TWI282081B (en) * | 2002-08-13 | 2007-06-01 | Au Optronics Corp | Shift register circuit |
KR100490623B1 (ko) * | 2003-02-24 | 2005-05-17 | 삼성에스디아이 주식회사 | 버퍼 회로 및 이를 이용한 액티브 매트릭스 표시 장치 |
US20060013352A1 (en) * | 2004-07-13 | 2006-01-19 | Ching-Wei Lin | Shift register and flat panel display apparatus using the same |
JP2006058770A (ja) * | 2004-08-23 | 2006-03-02 | Toshiba Matsushita Display Technology Co Ltd | 表示装置の駆動回路 |
JP2006228312A (ja) * | 2005-02-16 | 2006-08-31 | Alps Electric Co Ltd | シフトレジスタ及び液晶駆動回路 |
KR100729099B1 (ko) * | 2005-09-20 | 2007-06-14 | 삼성에스디아이 주식회사 | 주사 구동회로와 이를 이용한 유기 전계발광 장치 |
TWI338877B (en) * | 2006-05-04 | 2011-03-11 | Chi Mei El Corp | A shift register circuit and a pull high element thereof |
EP2234116B1 (en) * | 2007-12-27 | 2013-07-24 | Sharp Kabushiki Kaisha | Shift register and display device |
JP5527647B2 (ja) * | 2008-05-26 | 2014-06-18 | Nltテクノロジー株式会社 | シフトレジスタ |
KR20100083370A (ko) * | 2009-01-13 | 2010-07-22 | 삼성전자주식회사 | 게이트 구동회로 및 이를 갖는 표시장치 |
CN101615431B (zh) * | 2009-07-29 | 2012-06-27 | 友达光电股份有限公司 | 移位寄存器 |
CN102479477B (zh) * | 2010-11-26 | 2015-03-04 | 京东方科技集团股份有限公司 | 移位寄存器单元、栅极驱动电路和显示装置 |
KR101963595B1 (ko) * | 2012-01-12 | 2019-04-01 | 삼성디스플레이 주식회사 | 게이트 구동 회로 및 이를 구비한 표시 장치 |
CN102708816B (zh) * | 2012-03-02 | 2013-06-12 | 京东方科技集团股份有限公司 | 移位寄存器、栅极驱动装置和显示装置 |
CN103236272B (zh) * | 2013-03-29 | 2016-03-16 | 京东方科技集团股份有限公司 | 移位寄存器单元及其驱动方法、栅极驱动装置与显示装置 |
CN103226981B (zh) * | 2013-04-10 | 2015-09-16 | 京东方科技集团股份有限公司 | 一种移位寄存器单元及栅极驱动电路 |
CN103280200B (zh) * | 2013-04-22 | 2015-01-21 | 京东方科技集团股份有限公司 | 移位寄存器单元、栅极驱动电路与显示器件 |
CN104183219B (zh) * | 2013-12-30 | 2017-02-15 | 昆山工研院新型平板显示技术中心有限公司 | 扫描驱动电路和有机发光显示器 |
CN104299554B (zh) * | 2014-08-22 | 2017-07-18 | 京东方科技集团股份有限公司 | 移位寄存器、阵列基板及显示装置 |
CN104464817B (zh) * | 2014-12-05 | 2018-06-15 | 深圳市华星光电技术有限公司 | 液晶显示装置及其移位寄存器 |
-
2014
- 2014-11-19 CN CN201410664680.7A patent/CN104361860B/zh active Active
-
2015
- 2015-03-17 KR KR1020157023334A patent/KR101746634B1/ko active IP Right Grant
- 2015-03-17 WO PCT/CN2015/074352 patent/WO2016078264A1/zh active Application Filing
- 2015-03-17 JP JP2017545993A patent/JP6369963B2/ja active Active
- 2015-03-17 US US14/771,030 patent/US20160351150A1/en not_active Abandoned
- 2015-03-17 EP EP15750915.9A patent/EP3223267B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140266304A1 (en) * | 2011-09-28 | 2014-09-18 | Semiconductor Energy Laboratory Co., Ltd. | Shift register circuit |
CN202332230U (zh) * | 2011-11-25 | 2012-07-11 | 京东方科技集团股份有限公司 | 移位寄存器、栅极驱动电路及其液晶显示装置 |
CN103325353A (zh) * | 2012-03-23 | 2013-09-25 | 乐金显示有限公司 | 用于液晶显示器的电平移位器 |
CN102982777A (zh) * | 2012-12-07 | 2013-03-20 | 京东方科技集团股份有限公司 | 显示装置的栅极驱动电路、开关控制电路及移位寄存器 |
CN103000155A (zh) * | 2012-12-11 | 2013-03-27 | 京东方科技集团股份有限公司 | 移位寄存器单元、阵列基板栅极驱动装置及显示设备 |
CN104361860A (zh) * | 2014-11-19 | 2015-02-18 | 京东方科技集团股份有限公司 | 一种移位寄存器、栅极驱动电路以及显示装置 |
CN204178680U (zh) * | 2014-11-19 | 2015-02-25 | 京东方科技集团股份有限公司 | 一种移位寄存器、栅极驱动电路以及显示装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3223267A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN104361860A (zh) | 2015-02-18 |
EP3223267A4 (en) | 2018-07-18 |
US20160351150A1 (en) | 2016-12-01 |
EP3223267A1 (en) | 2017-09-27 |
KR101746634B1 (ko) | 2017-06-27 |
CN104361860B (zh) | 2017-02-22 |
EP3223267B1 (en) | 2022-06-15 |
JP6369963B2 (ja) | 2018-08-08 |
KR20160078296A (ko) | 2016-07-04 |
JP2018501601A (ja) | 2018-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9105234B2 (en) | Array substrate row driving unit, array substrate row driving circuit and display device | |
US9113534B2 (en) | Light-emitting control circuit, light-emitting control method and shift register | |
US9583041B2 (en) | Pixel circuit and driving method thereof, display panel, and display device | |
US9496293B2 (en) | Pixel circuit and method for driving the same, display panel and display apparatus | |
JP6857779B2 (ja) | Oledピクセル回路及びoled素子の劣化遅延方法 | |
US9847062B2 (en) | Scan driver and organic light-emitting display using same | |
WO2018054350A1 (zh) | 像素电路及其驱动方法、阵列基板以及显示装置 | |
WO2016078264A1 (zh) | 移位寄存单元、移位寄存器、栅极驱动电路及显示装置 | |
WO2017117940A1 (zh) | 像素驱动电路、像素驱动方法、显示面板和显示装置 | |
CN105575327B (zh) | 一种像素电路、其驱动方法及有机电致发光显示面板 | |
US20160049116A1 (en) | Gate driver circuit, gate driving method, gate-on-array circuit, display device, and electronic product | |
WO2016165529A1 (zh) | 像素电路及其驱动方法、显示装置 | |
WO2016155161A1 (zh) | Oeld像素电路、显示装置及控制方法 | |
WO2016045256A1 (zh) | 像素电路及其发光器件驱动方法和有机电致发光显示面板 | |
WO2016119342A1 (zh) | 移位寄存器及其驱动方法、栅极驱动电路 | |
US20170243535A1 (en) | Oled inverting circuit and display panel | |
WO2016074356A1 (zh) | 一种像素电路、显示面板及其驱动方法 | |
WO2015051682A1 (zh) | 像素电路及其驱动方法、薄膜晶体管背板 | |
WO2015003434A1 (zh) | 发光二极管像素单元电路、其驱动方法及显示面板 | |
WO2017045376A1 (zh) | 像素电路及其驱动方法、显示面板和显示装置 | |
WO2014134869A1 (zh) | 像素电路、有机电致发光显示面板以及显示装置 | |
TW202027056A (zh) | 畫素電路及其驅動方法 | |
WO2013127193A1 (zh) | 阵列基板行驱动单元、阵列基板行驱动电路以及显示装置 | |
WO2018196096A1 (zh) | 像素驱动电路、显示面板及像素驱动方法 | |
WO2016180110A1 (zh) | 驱动电路及其驱动方法、显示基板及其驱动方法、显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20157023334 Country of ref document: KR Kind code of ref document: A Ref document number: 2017545993 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015750915 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14771030 Country of ref document: US Ref document number: 2015750915 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15750915 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |