WO2016076073A1 - めっき鋼板およびその製造方法 - Google Patents
めっき鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2016076073A1 WO2016076073A1 PCT/JP2015/079375 JP2015079375W WO2016076073A1 WO 2016076073 A1 WO2016076073 A1 WO 2016076073A1 JP 2015079375 W JP2015079375 W JP 2015079375W WO 2016076073 A1 WO2016076073 A1 WO 2016076073A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chemical conversion
- steel sheet
- amount
- plated steel
- layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/06—Electrolytic coating other than with metals with inorganic materials by anodic processes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/08—Electrolytic coating other than with metals with inorganic materials by cathodic processes
Definitions
- the present invention relates to a plated steel sheet having excellent corrosion resistance and a method for producing the same.
- This application claims priority on November 10, 2014 based on Japanese Patent Application No. 2014-228436 for which it applied to Japan, and uses the content here.
- This chromate film is made of metallic chromium and oxide chromium, and is formed by subjecting a steel sheet to cathodic electrolysis (electrolytic chromic acid treatment) in a treatment solution containing hexavalent chromium.
- cathodic electrolysis electrolytic chromic acid treatment
- hexavalent chromium is harmful to the environment, in recent years, development of a technology that replaces chromate treatment with surface treatment that does not use hexavalent chromium has progressed.
- Patent Documents 1 and 2 disclose that a strip steel is subjected to a cathodic electrolytic treatment in a treatment solution containing zirconium ions, fluoride ions and phosphate ions, and the strip steel is coated with a chemical conversion treatment film. Yes.
- the chemical conversion coatings disclosed in Patent Documents 1 to 6 described above only have relatively good corrosion resistance when a coating film (paint coating) is formed on the chemical conversion coating.
- a coating film is not formed on the chemical conversion coating
- these chemical conversion coatings have performance such as corrosion resistance.
- the present inventors recognize that the chemical conversion coating disclosed in Patent Documents 1 to 6 does not give sufficient corrosion resistance to the steel sheet under the condition that there is no coating on the chemical conversion coating, and increase the amount of zirconium oxide. Thus, it has been found that there is a possibility that sufficient corrosion resistance can be obtained even when a coating film is not formed on the chemical conversion coating.
- Patent Documents 3, 4, 5, and 6 use two baths to form the chemical conversion film, so that the production time is long and the productivity is low.
- a chemical conversion film is formed on a plated steel sheet by cathodic electrolysis using one bath, it is possible to control the cation to some extent, but the chemical conversion film is plated using two baths. Compared with the case where it forms on the top, the control conditions of the quality of a chemical conversion treatment film become fewer.
- the present invention solves the above-mentioned problems of the prior art, is excellent in coating film adhesion, and not only under conditions where there is a coating film on the chemical conversion treatment film but also under conditions where there is no coating film on the chemical conversion treatment film. It aims at providing the plated steel plate excellent in corrosion resistance, and its manufacturing method.
- the present inventors have intensively studied the above-mentioned problems and constructed a chemical conversion treatment film in a tin-plated steel sheet capable of obtaining excellent coating adhesion and extremely good corrosion resistance, and a method for realizing the chemical conversion treatment film. did.
- the plated steel plate according to the first aspect of the present invention includes a steel plate, a plated metal layer including a Sn plating layer, and a chemical conversion treatment layer, and the plated metal layer is present on the surface of the steel plate.
- the chemical conversion treatment layer is present on the surface of the Sn plating layer.
- the amount of P is 3 to 20 mg / m 2
- the amount of Zr is more than 5 mg / m 2 and 30 mg / m 2 or less.
- the ratio P / Zr of the P amount and the Zr amount is 0.35 to 1.00
- the chemical conversion treatment layer contains tin phosphate and zirconium oxide (IV).
- strength of Zr obtained by the mapping analysis of a field emission type electron beam microanalyzer is 0.00. It may be 1 to 10%.
- the Sn plating layer may be present on the surface of the steel sheet.
- the plated metal layer further includes an alloy layer, the alloy layer is present on the surface of the steel sheet, and the Sn plated layer is It exists on the surface of the alloy layer, and the alloy layer may include Fe and at least one chemical element selected from the group consisting of Sn and Ni.
- the alloy layer is selected from the group consisting of a FeSn 2 phase, a Ni 3 Sn 4 phase, an ⁇ phase in the Fe—Ni system, and a ⁇ phase in the Fe—Ni system. At least one alloy may be included.
- the Zr amount may be 6 mg / m 2 or more.
- the Zr amount may be 8 mg / m 2 or more.
- a method for producing a plated steel sheet according to the first aspect of the present invention includes: a Sn plating process for plating Sn on a steel sheet; and after the Sn plating process, an anodic electrolytic treatment is performed on the steel sheet in a chemical conversion solution.
- the temperature of the chemical conversion solution is 20 ° C. to 60 ° C.
- the amount P is in the range of 3 ⁇ 20mg / m 2
- Zr amount of the chemical conversion treatment layer is within a range of 5 ⁇ 30mg / m 2
- the P And the condition of the anodic electrolysis treatment in the anodic electrolysis treatment step and the condition of the cathodic electrolysis treatment in the cathodic electrolysis treatment step so that the ratio P / Zr of Zr amount is in the range of 0.35 to 1.00.
- the method for producing a plated steel sheet according to the above (8) includes a Ni-containing plating for plating the steel sheet with at least one metal selected from the group consisting of Ni and Fe—Ni before the Sn plating step. A process may be further included.
- the method for producing a plated steel sheet according to (8) or (9) described above is a pretreatment electrolysis in which cathodic electrolysis is performed on the steel sheet in the chemical conversion solution before the anodic electrolysis process. A process may be further included.
- the current density during the cathodic electrolysis is 0.1 to 10 A / dm 2
- the energization amount due to the cathodic electrolysis May be 1 to 10 C / dm 2 .
- the current density during the anodic electrolytic treatment is 0.1 A / dm 2 to 2 A / dm 2
- the energization amount by the anodic electrolytic treatment may be 0.1 C / dm 2 to 2 C / dm 2 .
- a current density during the cathode electrolytic treatment is 1 to 20 A / dm 2 .
- energization amount by the cathodic electrolysis treatment may be 5 ⁇ 50C / dm 2.
- the amount of Zr may be 6 mg / m 2 or more.
- the amount of Zr may be 8 mg / m 2 or more.
- the chemical conversion treatment solution may have a pH of 3 to 4.
- the plated steel sheet 1 includes a steel sheet 2, a plated metal layer 3 on the surface of the steel sheet 2, and a chemical conversion treatment layer 4 on the surface of the plated metal layer 3. .
- the plated metal layer 3 includes an Sn plated layer 3a, and in some cases includes an alloy layer 3b. That is, the plated metal layer 3 may be composed of the Sn plated layer 3a or may be composed of the Sn plated layer 3a and the alloy layer 3b. Therefore, the plated metal layer 3 contains Sn. 2 and 4, the chemical conversion treatment layer 4 includes a first chemical conversion treatment layer 4a on the surface of the plating metal layer 3 and a second chemical conversion treatment layer 4a on the surface of the first chemical conversion treatment layer 4a. You may provide the process layer 4b.
- the plated steel sheet 1 includes the steel sheet 2, the Sn plating layer 3a, and the chemical conversion treatment layer 4 in this order.
- the plated steel plate 1 includes a steel plate 2, a Sn plating layer 3 a, a first chemical conversion treatment layer 4 a, and a second chemical conversion treatment layer 4 a.
- the chemical conversion treatment layers 4b are provided in this order.
- the plated steel plate 1 further includes an alloy layer (alloyed layer) 3b between the steel plate 2 and the Sn plating layer 3a. Also good.
- the Sn plating layer 3 a exists between the steel plate 2 and the chemical conversion treatment layer 4.
- the Sn plated layer 3 a exists on the surface of the steel plate 2.
- the alloy layer 3b exists on the surface of the steel plate 2
- the Sn plating layer 3a exists on the surface of the alloy layer 3b.
- This alloy layer 3b contains Fe and at least one chemical element selected from the group consisting of Sn and Ni.
- the chemical conversion treatment layer 4 includes the first chemical conversion treatment layer 4a and the second chemical conversion treatment layer 4b
- the first chemical conversion treatment layer 4a exists on the surface of the Sn plating layer 3a
- the second chemical conversion treatment layer 4a exists on the surface of the first chemical conversion treatment layer 4a.
- the chemical conversion treatment layer 4 contains tin phosphate and zirconium oxide (IV).
- the amount of P is 3 to 20 mg / m 2
- the amount of Zr is more than 5 mg / m 2 and not more than 30 mg / m 2 .
- the ratio of P amount to Pr amount (P / Zr) in the chemical conversion treatment layer 4 is 0.35 to 1.00.
- the plated steel sheet 1 according to this embodiment is preferably used for containers such as beverage cans and food cans.
- the plated steel plate 1 according to the present embodiment is not limited to the use as a container.
- Step 2 various steel plates can be used as the steel plate 2 without limitation.
- a conventionally used steel plate such as aluminum killed steel or low carbon steel can be used as the steel plate 2 without any problem.
- grades such as the thickness of a steel plate, and a tempering degree, according to the intended purpose.
- the amount of the alloy layer 3b and the amount of the Sn plating layer 3a are not limited because they may be appropriately selected according to the purpose of use.
- the alloy layer 3b is often composed of a phase containing Sn and Fe in order to reduce the potential difference between the Sn plating layer and the steel sheet and reduce the corrosion current.
- the Sn amount in the alloy layer 3b is generally 0.1 to 1.6 g / m 2 .
- Sn in an amount of at least 0.1 g / m 2 is inevitably included in the alloy layer 3b.
- the maximum reflow temperature is 232 ° C. to 300 ° C. or less because the melting point of Sn is 232 ° C. In this reflow process, an FeSn 2 phase is mainly formed.
- the amount of metallic tin (excluding substantially monometallic tin, ie, intermetallic compound and tin dissolved in another metal) is generally 0.2 to 12 g / m 2. It is. When the amount of metal tin is 0.2 g / m 2 or more, the frequency of local overheating by wire seam welding for manufacturing a can body is reduced, and the scattering of molten metal called chilli can be suppressed. It becomes easy to obtain a sufficient welding proper current range. When the amount of metallic tin is 12 g / m 2 or less, weldability per unit weight of metallic tin is increased, and material costs and scarce resources can be saved.
- the alloy layer 3b may contain Ni.
- the amount of Ni 3 Sn 4 increases, the amount of FeSn 2 decreases. Therefore, when the alloy layer 3b contains Ni, excessive formation of the Fe—Sn alloy in the alloy layer 3b is suppressed, and minute cracks are hardly generated in the alloy layer 3b during processing such as bending and curling.
- the amount of Ni in the alloy layer is 2 mg / m 2 or more, the generation of cracks during the above processing can be more reliably suppressed.
- the amount of Ni is 100 mg / m 2 or less, excessive formation of the Ni—Sn alloy (Ni 3 Sn 4 phase) in the alloy layer 3b is suppressed. The generation of cracks can be suppressed.
- the alloy layer 3b contains Fe and at least one chemical element selected from the group consisting of Sn and Ni.
- the alloy layer 3b is a layer of Fe—Sn alloy (FeSn 2 phase in Fe—Sn system), a layer of Fe—Ni alloy ( ⁇ phase, ⁇ phase in Fe—Ni system), Fe—Ni—Sn alloy (Fe -Ni-Sn based FeSn 2 phase, Ni 3 Sn 4 phase mixed phase) layer.
- the chemical conversion treatment layer 4 located on the Sn plating layer 3a contains tin phosphate and zirconium oxide (IV). Moreover, this chemical conversion treatment layer 4 may be comprised from the lower layer (1st chemical conversion treatment layer 4a) containing a tin phosphate, and the upper layer (2nd chemical conversion treatment layer 4b) containing a zirconium oxide (IV). . Tin phosphate has a role as a binder for bonding zirconium oxide (IV) to the Sn plating layer 3a. When the chemical conversion treatment layer 4 contains tin phosphate and zirconium oxide (IV), the surface of the Sn plating layer 3a can be appropriately covered with the chemical conversion treatment layer 4 by controlling the surface structure. Improves.
- the amount of P in the chemical conversion treatment layer 4 needs to be 3 to 20 mg / m 2 . If the amount of P is less than 3 mg / m 2 , the chemical conversion treatment layer 4 cannot properly cover the plated metal layer 3, and the corrosion resistance of the plated steel sheet 1 decreases. On the other hand, when the amount of P exceeds 20 mg / m 2 , the chemical conversion treatment layer 4 is destroyed by aggregation of the phosphoric acid compound, and the corrosion resistance of the plated steel sheet 1 is lowered. In order to further improve the corrosion resistance of the plated steel sheet 1, the amount of P in the chemical conversion layer 4 is preferably 4 mg / m 2 or more, and more preferably 5 mg / m 2 or more.
- the amount of P in the chemical conversion treatment layer 4 is preferably 15 mg / m 2 or less, preferably 10 mg / m 2. More preferably, it is 2 or less. For example, the amount of P is more preferably 5 to 10 mg / m 2 .
- zirconium oxide (IV) is present on the surface of the plated steel sheet 1 except for the coating film formed on the plated steel sheet 1.
- Zirconium oxide (IV) is stably present as a passive substance in a relatively wide pH range, and exhibits high corrosion resistance against various contents in contact with the inner surface of the can.
- the amount of Zr in the chemical conversion treatment layer 4 needs to be within a predetermined range. That is, the amount of Zr (in terms of metal Zr) in the chemical conversion treatment layer 4 needs to be more than 5 mg / m 2 and not more than 30 mg / m 2 .
- the amount of Zr is 5 mg / m 2 or less, the surface of the plated metal layer 3 is not properly covered with the chemical conversion treatment layer 4, so that sufficient corrosion resistance is not ensured.
- the amount of Zr exceeds 30 mg / m 2 , the chemical conversion treatment layer 4 is destroyed by aggregation of zirconium (IV) oxide, and the corrosion resistance of the plated steel sheet 1 is lowered.
- the amount of Zr is preferably 6 mg / m 2 or more, or 8 mg / m 2 or more, preferably 9 mg / m 2 or more or 10 mg / m. More preferably, it is 2 or more.
- the amount of Zr is preferably 25 mg / m 2 or less, and 20 mg / m 2 or less. It is more preferable.
- the amount of Zr is more preferably 8 to 20 mg / m 2 .
- the chemical conversion treatment layer 4 may contain F.
- the P / Zr ratio When the P / Zr ratio is less than 0.35, the amount of tin phosphate is insufficient with respect to the amount of zirconium (IV) oxide. Therefore, the role of tin phosphate as a binder for bonding zirconium oxide (IV) to the Sn plating layer 3a is not sufficient, and the chemical conversion treatment layer 4 is brittle. Therefore, the plated steel sheet 1 does not have sufficient corrosion resistance, and the appearance of the plated steel sheet 1 may deteriorate. When the P / Zr ratio exceeds 1.00, tin phosphate is excessive with respect to zirconium (IV) oxide. Therefore, the effect of increasing the corrosion resistance of zirconium (IV) oxide is reduced by tin phosphate. Therefore, the plated steel sheet 1 does not have sufficient corrosion resistance, and the appearance of the plated steel sheet 1 may deteriorate.
- FIG. 5 shows an example of the relationship between the P / Zr ratio and the corrosion resistance.
- the plated steel sheet having sufficient corrosion resistance has a corrosion resistance of 3 or more.
- the corrosion resistance of the plated steel sheet is sufficiently high both when there is no coating and when there is coating.
- the P / Zr ratio is less than 0.35 or more than 1.00, sufficient corrosion resistance may be obtained when there is paint, but when there is no paint as can be understood from the arrows in FIG. Does not provide sufficient corrosion resistance.
- the P / Zr ratio by controlling the P / Zr ratio appropriately, it is possible to obtain a superior and excellent effect that has not been recognized in the past.
- the P / Zr ratio is preferably 0.95 or less, and more preferably 0.90 or less or 0.85 or less.
- the P / Zr ratio is preferably 0.38 or more, and more preferably 0.40 or more or 0.50 or more.
- the surface structure of the chemical conversion treatment layer 4 containing zirconium (IV) oxide and tin phosphate is properly controlled.
- the conditions regarding the structure of the chemical conversion treatment layer 4 can be evaluated using a field emission electron beam microanalyzer (FE-EPMA).
- the area ratio (area ratio of the low Zr region) of the region having an intensity level of 50% or less of the average strength level of Zr, obtained by analyzing the surface of the plated steel sheet 1 by this FE-EPMA mapping analysis is 0.
- the chemical conversion treatment layer 4 preferably has a surface structure of 1 to 10%. In this case, if the range of the P / Zr ratio satisfies the above-described conditions, it can be determined that the chemical conversion treatment layer 4 properly covers the plated metal layer 3, which is stable and sufficient for the plated steel plate 1. Corrosion resistance can be imparted.
- the corrosion region can be reliably limited to a radius of 35 ⁇ m or less.
- the chemical conversion coating 4 forms an appropriate surface structure with zirconium (IV) oxide and tin phosphate, so that it has practically sufficient corrosion resistance. Can be regarded as having stable.
- such a surface structure is strong against stress, even when stress is applied to the coating film when the plated steel sheet 1 includes the coating film, it is possible to stably prevent cohesive failure of the chemical conversion coating 4.
- the area ratio of the low Zr region is more preferably 0.2% or more. Similarly, the area ratio of the low Zr region is more preferably 9% or less, and most preferably 8% or 6% or less.
- the amount of metal Sn in the Sn plating layer 3a is measured by an electrolytic stripping method based on ASTM A630.
- a plated steel plate 1 to be measured is used for the anode, and a platinum plate is used for the cathode.
- a constant current is passed through the anode and cathode in 1N hydrochloric acid to create a potential-time curve, and then the amount of metal Sn is calculated according to Faraday's law.
- the amount of Fe, Ni, and Sn in the alloy layer 3b is determined by the fluorescent X on the surface (peeled surface) of the steel plate obtained by peeling the metal Sn from the plated steel plate 1 by the electrolytic peeling method in accordance with the above ASTM A630. Analyzed and measured by X-ray elemental analysis (XRF). Furthermore, the FeSn 2 phase, the Ni 3 Sn 4 phase, the ⁇ phase, and the ⁇ phase in the alloy layer 3b are identified by a thin film X-ray diffraction method.
- the amount of P and the amount of Zr in the chemical conversion treatment layer 4 are measured by fluorescent X-ray elemental analysis (XRF).
- the measurement region is a region having a diameter of 20 mm or more on the surface of the plated steel sheet 1 (the surface of the chemical conversion treatment layer 4).
- XRF fluorescent X-ray elemental analysis
- the measurement region is a region having a diameter of 20 mm or more on the surface of the plated steel sheet 1 (the surface of the chemical conversion treatment layer 4).
- a calibration curve prepared in advance that is, a relational expression between the P amount and the fluorescent X-ray intensity (CPS) of the wavelength corresponding to P, and the wavelength corresponding to the Zr amount and Zr are used.
- the relationship between the fluorescent X-ray intensity (CPS) is used.
- This calibration curve is obtained by measuring the X-ray fluorescence intensity (CPS) of a known sample whose P amount and Zr amount have been previously measured with an ICP emission spectrometer by XRF.
- CPS X-ray fluorescence intensity
- a fluorescent X-ray apparatus can measure P and Zr
- a general commercial item can be used as a fluorescent X-ray apparatus without limiting a model.
- an X-ray photoelectron spectrum is measured by X-ray photoelectron spectroscopy (XPS), and this measurement is repeated in the thickness direction (depth direction) of the chemical conversion treatment layer 4.
- XPS X-ray photoelectron spectroscopy
- the zirconium (IV) oxide in the chemical conversion treatment layer 4 is identified from the amount of chemical shift in the Zr spectrum.
- the spectrum of P is obtained from the region of binding energy of 130 to 140 eV
- the spectrum of Zr is obtained from the region of binding energy of 176 to 188 eV
- the spectrum of Sn is obtained from the region of binding energy of 482 to 490 eV.
- the analysis of the chemical conversion treatment layer 4 ends when the magnitude (height) of the spectrum of Sn existing as the metal Sn becomes substantially constant in the depth direction.
- the amount of each element can be calculated from the area of the spectrum.
- the amount is regarded as 0, and when the area of the spectrum is the maximum in the depth direction, the amount is regarded as 100, and the amount of P in the thickness direction of the chemical conversion layer 4 is Zr.
- Amount, Sn amount is determined.
- the thickness of the chemical conversion treatment layer 4 is very small compared to the roughness of the surface of the plated metal layer 3, the surface of the chemical conversion treatment layer 4 has a certain degree of roughness.
- the chemical conversion treatment layer 4 is converted into the first chemical conversion treatment layer 4a. And the second chemical conversion treatment layer 4b existing on the surface of the first chemical conversion treatment layer 4a.
- the distribution of zirconium (IV) oxide in the vicinity of the surface of the plated steel sheet 1 is obtained by analyzing the surface of the plated steel sheet 1 with a field emission electron beam microanalyzer (FE-EPMA) as described above.
- the Zr intensity level in a square area of 200 ⁇ m on one side of the surface of the plated steel sheet 1 is mapped at a pitch of 1 ⁇ m (200 ⁇ 200, 40,000 points).
- An average intensity level of Zr is calculated from the mapping data of the intensity level of Zr, and points having an intensity level of 50% or less of the average intensity level of Zr are counted.
- the area ratio of a region having an intensity level of 50% or less of the average intensity level of Zr is calculated. Mapping analysis is performed once for any three positions on the surface of the plated steel sheet 1, and the area ratio of the area having an intensity level of 50% or less of the average intensity level of Zr by averaging the obtained three area ratios. To decide. That is, since the total number of data is 120,000 points, if the point having an intensity level of 50% or less of the average intensity level of Zr is 12,000 points or less, the intensity of 50% or less of the average intensity level of Zr The area ratio of the region having the level is considered to be 10% or less.
- the average intensity level of Zr can be regarded as 5 mg / m 2 , so the amount of Zr corresponding to 50% of the average intensity level of Zr amount is 2.5 mg / m 2.
- the region where the Zr amount is 2.5 mg / m 2 or less is 10% or less, and when the region is considered to be circular, the radius of the region is about 35 ⁇ m or less. If the corrosion area is 35 ⁇ m or less, the change in the plated steel sheet 1 due to corrosion cannot be visually confirmed, so the above measurement conditions must be adopted.
- the process before plating the steel sheet is not particularly limited.
- the steel sheet may be subjected to degreasing with electrolytic alkali and pickling with dilute sulfuric acid.
- the steel plate Before the Sn is plated on the steel plate, the steel plate may be plated with Ni or Fe—Ni alloy.
- a nickel bath, nickel chloride, a watt bath mainly composed of boric acid, a strike bath mainly composed of nickel chloride, or a total sulfuric acid bath mainly composed of nickel sulfate may be used as the Ni plating bath. it can.
- a Fe—Ni alloy plating bath for example, a bath in which iron sulfate or iron chloride is added to the Watt bath, a bath in which iron chloride is added to the strike bath, or a bath in which iron sulfate is added to the total sulfuric acid bath. Can be used.
- the Ni-plated steel plate may be heated to diffuse Ni into the steel plate surface layer, thereby forming a Fe—Ni alloy layer on the steel plate surface.
- the Sn plating method is not particularly limited.
- an acidic Sn plating bath such as a phenol sulfonic acid bath or a sulfuric acid bath containing a gloss additive can be used.
- an acidic Sn plating bath such as a phenol sulfonic acid bath or a sulfuric acid bath containing a gloss additive can be used.
- electric Sn plating is applied to the steel sheet in such an acidic Sn plating bath, good Sn plating can be obtained.
- the steel plate after Sn plating may be dipped in a bath containing water or a diluted solution of Sn plating solution and dried. Then, you may reflow-process with respect to Sn plating steel plate.
- the reflow process is a step of heating the Sn-plated steel sheet to 232 ° C. or higher, which is the melting point of Sn, in order to impart gloss to the surface of the Sn-plated steel sheet. When this heating temperature is 300 ° C. or lower, generation of an excessive alloy layer can be suppressed.
- the heating means is not particularly limited. For example, electrical resistance heating, induction heating, or a combination thereof can be used as the heating means.
- the Sn-plated steel sheet immediately after the reflow treatment it is possible to prevent the FeSn 2 phase and the Ni 3 Sn 4 phase in the alloy layer and the tin oxide on the surface of the Sn plating layer from being excessively generated. it can.
- the Sn-plated steel sheet in which tin is melted can be quenched by immersing it in water.
- the chemical conversion treatment is performed on the Sn-plated steel sheet by the method described below.
- a chemical conversion treatment layer containing tin phosphate and zirconium (IV) oxide is formed using one bath. If a chemical conversion treatment layer containing two compounds that are difficult to produce at the same time is formed using two baths, two baths must be prepared, which is more expensive than one bath.
- operating conditions need to be constrained to avoid the adverse effects caused by the ingredients in the first bath being mixed into the next bath. For example, it is necessary to slow down the production line as one of the production conditions.
- a compound such as a hydroxide may be generated.
- the concentration of each ion in the chemical conversion solution will be described.
- the zirconium ion concentration in the chemical conversion solution is 100 ppm to 10,000 ppm.
- the zirconium ion concentration is less than 100 ppm, the zirconium ions in the chemical conversion treatment solution necessary for nucleation and growth are insufficient, and a chemical conversion treatment layer containing a sufficient amount of zirconium (IV) oxide cannot be obtained.
- the zirconium ion concentration exceeds 10,000 ppm, the chemical conversion treatment layer grows extremely and induces excessive unevenness in the chemical conversion treatment layer.
- the zirconium ion concentration in the chemical conversion solution is preferably 500 ppm or more, and more preferably 1500 ppm or more.
- the zirconium ion concentration decreases, the unevenness of the chemical conversion treatment layer decreases, and the amount of deformation when the chemical conversion treatment layer breaks increases. Therefore, the zirconium ion concentration in the chemical conversion treatment liquid is preferably 9500 ppm or less, and more preferably 9000 ppm or less.
- the fluoride ion concentration in the chemical conversion solution is 100 ppm to 10,000 ppm.
- the fluoride ion forms a stable complex with zirconium ion (IV) to stabilize zirconium ion (IV) in the chemical conversion solution.
- fluoride ions improve the wettability and lyophilicity of the plated steel sheet, and the surface of the plated steel sheet is appropriately activated.
- the fluoride ion concentration is less than 100 ppm, a complex of fluoride ion and zirconium ion (IV) is not sufficiently formed in the chemical conversion treatment solution, and a sufficient amount of stable zirconium ion (IV) is obtained. I can't.
- the fluoride ion exceeds 10,000 ppm
- the fluoride ion and zirconium ion (IV) form a complex, whereby the zirconium ion (IV) is excessively stabilized.
- cathodic electrolysis increases the pH in the vicinity of the surface of the plated steel sheet, and the hydrolysis of the complex proceeds with this increase in pH.
- the rate of hydrolysis will decrease. Therefore, the responsiveness of the amount of Zr with respect to the cathode current density and electrolysis time at the time of cathodic electrolysis is remarkably lowered, and the time required for cathodic electrolysis is remarkably increased. Further, when cathodic electrolysis is performed for a long time, excessive unevenness may be induced in the chemical conversion treatment layer.
- the concentration of fluoride ions in the chemical conversion treatment solution is preferably 500 ppm or more, and more preferably 1500 ppm or more.
- the fluoride ion concentration is preferably 9500 ppm or less, and more preferably 9000 ppm or less.
- the phosphate ion concentration in the chemical conversion solution is 100 ppm to 3000 ppm.
- the phosphate ion concentration is 100 ppm to 3000 ppm, a chemical conversion treatment layer containing a sufficient amount of phosphate groups can be obtained. If the phosphate ion concentration is less than 100 ppm, a chemical conversion treatment layer containing a sufficient amount of phosphate groups cannot be obtained. That is, the phosphate ion concentration is required to be 100 ppm or more in order to react Sn ions eluted from the Sn plating layer and phosphate ions during the anodic electrolysis treatment and to add tin phosphate to the surface of the plated steel sheet. .
- the concentration of phosphate ions in the chemical conversion solution is preferably 300 ppm or more, and more preferably 1000 ppm or more. Further, in order to more optimally control the amount of P in the chemical conversion treatment layer or to more efficiently use the chemical conversion treatment solution, the concentration of phosphate ions is preferably 2800 ppm or less, and preferably 2500 ppm or less. It is more preferable.
- the concentration of nitrate ions in the chemical conversion solution is 100 ppm to 30000 ppm.
- the nitrate ion concentration is 100 ppm to 30000 ppm, the electrical conductivity necessary for the anodic electrolysis treatment and the cathodic electrolysis treatment can be maintained, and a chemical conversion treatment film can be formed on the surface of the plated steel sheet.
- the nitrate ion concentration is less than 100 ppm, the conductivity necessary for the electrolytic treatment cannot be obtained, and a chemical conversion coating is not formed.
- the nitrate ion concentration exceeds 30000 ppm, the chemical conversion film is formed even with a minute current. Therefore, it is difficult to control the generation rate of the chemical conversion coating so that local growth and the like can be suppressed.
- the nitrate ion concentration in the chemical conversion solution is preferably 500 ppm or more, and more preferably 2000 ppm or more. Further, in order to further reduce the unevenness of the chemical conversion treatment film, the nitrate ion concentration in the chemical conversion treatment solution is preferably 25000 ppm or less, and more preferably 22000 ppm or less.
- the pH of the chemical conversion treatment solution is preferably 3 or more.
- the pH of the chemical conversion treatment solution is 3 or more, hydrolysis of a complex formed by fluoride ions and zirconium ions (IV) is easily promoted when the pH in the vicinity of the surface of the plated steel sheet increases during cathodic electrolysis.
- the pH of a chemical conversion liquid is 4 or less. When the pH of the chemical conversion solution is 4 or less, a complex formed by fluoride ions and zirconium ions (IV) can be stably obtained.
- the pH of the chemical conversion treatment liquid is 4 or less, it can be prevented that zirconium oxide (IV) is generated in the chemical conversion treatment liquid and the amount of zirconium ions (IV) is lowered. Therefore, the pH of the chemical conversion treatment solution is preferably 3-4. Nitric acid may be used to lower the pH, and ammonia water may be used to raise the pH.
- the temperature of the chemical conversion treatment solution during the electrolytic treatment is 20 ° C. to 60 ° C. In this temperature range, the complex formed by fluoride ions and zirconium ions (IV) is stabilized in the chemical conversion solution. In addition, at a temperature of less than 20 ° C., insoluble matter that is considered to be composed of zirconium ions and phosphate ions tends to be generated in the chemical conversion treatment liquid. At a temperature higher than 60 ° C., a complex formed by fluoride ions and zirconium ions (IV) becomes unstable in the chemical conversion solution. Moreover, since a chemical conversion liquid tends to evaporate, a chemical conversion liquid cannot be used for a long time.
- the most significant feature of this method is that anodic electrolysis and cathodic electrolysis are performed in this order in one bath (one kind of chemical conversion solution), and tin phosphate, zirconium oxide (IV) and Forming a chemical conversion treatment layer containing
- the amount of P and the amount of Zr in the chemical conversion treatment layer are not limited to the following conditions because they vary depending not only on the electrolytic treatment conditions but also on the surface properties of the plated steel sheet before the electrolytic treatment. However, it is preferable to select the following conditions so that the predetermined P amount and Zr amount can be stably obtained while avoiding the influence of the surface properties of the plated steel sheet.
- cathodic electrolysis is added as a pretreatment before anodic electrolysis You may do it.
- the cathode current density is preferably 0.1 to 10 A / dm 2 and the energization amount is preferably 1 to 10 C / dm 2 .
- the cathode current density is 0.1 A / dm 2 or more, tin oxide generated by the reflow treatment can be sufficiently reduced.
- the cathode current density in this pretreatment is 10 A / dm 2 or less, it is possible to more reliably prevent substances that inhibit the formation of tin phosphate from adhering to the surface of the plated steel sheet.
- the cathode current density is preferably 1 A / dm 2 .
- the energization amount is 1 C / dm 2 or more, tin oxide generated by the reflow treatment can be sufficiently reduced.
- the energization amount is 10 C / dm 2 or less, not only the tin oxide generated by the reflow process can be efficiently reduced, but also zirconium (IV) oxide is hardly generated. Even if the pretreatment by the cathodic electrolysis is performed before the anodic electrolysis, Sn in the Sn plating cannot be eluted, so that tin phosphate is not formed.
- the anodic electrolysis treatment is a step of imparting tin phosphate to the surface of the plated steel sheet by combining Sn ions generated by slowly dissolving tin plating in the chemical conversion treatment solution with phosphate ions in the chemical conversion treatment solution.
- the anode current density is preferably 0.1 A / dm 2 to 2 A / dm 2
- the energization amount is preferably 0.1 C / dm 2 to 2 C / dm 2 .
- anode current density is 0.1 A / dm 2 or more
- Sn can be dissolved at a sufficiently high rate, and a sufficient amount of tin phosphate is added for a suitable time to impart sufficient corrosion resistance to the plated steel sheet. Can be obtained within.
- the anode current density is 2 A / dm 2 or less
- tin can be dissolved at a sufficiently stable rate, so that dense and tough tin phosphate is produced. Therefore, the chemical conversion treatment layer is not easily destroyed by aggregation of tin phosphate, and sufficient corrosion resistance can be stably imparted to the plated steel sheet.
- the energization amount is 0.1 C / dm 2 or more, a sufficient amount of tin phosphate can be adhered to the surface of the plated steel sheet.
- the energization amount is 2 C / dm 2 or less, it is possible to prevent a large amount of Sn from eluting from the Sn plating layer, and it is possible to sufficiently maintain the Sn plating layer effective for barrier-type anticorrosion.
- Cathodic electrolysis is performed after the anodic electrolysis, and zirconium (IV) oxide is formed on the surface of the plated steel sheet formed with tin phosphate.
- the cathode current density is preferably 1 to 20 A / dm 2 and the energization amount is preferably 5 to 50 C / dm 2 .
- the cathode current density is 1 A / dm 2 or more, the pH in the vicinity of the surface of the cathode is sufficiently increased, and zirconium (IV) oxide can be generated at a sufficient rate, so that productivity is high.
- the cathode current density is 20 A / dm 2 or less
- the energization amount is 5 C / dm 2 or more
- zirconium oxide (IV) can be efficiently produced in a short time, the amount of zirconium oxide (IV) can be controlled with higher productivity.
- the amount of P, the amount of Zr, and the ratio P / Zr in the chemical conversion treatment layer can be controlled by the composition and temperature of the chemical conversion treatment solution, the conditions of anodic electrolysis, and the conditions of cathodic electrolysis.
- P in the chemical conversion treatment layer is mainly derived from tin phosphate.
- Zr in the chemical conversion treatment layer is mainly derived from zirconium (IV) oxide.
- the ratio P / Zr can be controlled by controlling the amount of P (mainly tin phosphate) and the amount of Zr (mainly zirconium (IV) oxide).
- the amount of P in the chemical conversion treatment layer is in the range of 3 to 20 mg / m 2
- the amount of Zr in the chemical conversion treatment layer is in the range of 5 to 30 mg / m 2
- the conditions of the anodic electrolysis process in the anodic electrolysis process and the cathodic electrolysis process conditions in the cathodic electrolysis process are controlled so that Zr is in the range of 0.35 to 1.00.
- the current density of the anodic electrolysis and the energization amount are increased within the above ranges.
- the current density of the cathodic electrolysis, and the energization amount are increased within the above ranges.
- the manufacturing process in this embodiment will be described consistently. If necessary, the oil and scale adhering to the surface of the original steel plate are removed (cleaning step). Next, Ni-based plating is applied to the surface of the steel sheet as necessary (pre-plating step). Next, Sn is plated on the surface of the steel plate (electrical Sn plating step). Next, if necessary, Sn in the Sn plating layer is melted and solidified by water cooling (reflow process). Next, a chemical conversion treatment layer is formed on the Sn plating layer by chemical treatment (after anodic electrolytic treatment and cathodic electrolytic treatment) (chemical conversion treatment step). Finally, rust preventive oil is applied to the surface of the chemical conversion treatment layer as necessary. FIG.
- FIGS. 6 and 7 show an outline of the order of the manufacturing process
- FIG. 7 shows an outline of the order of the chemical conversion treatment process.
- a process surrounded by a broken line indicates a process performed as necessary (a process that can be skipped if necessary)
- a process surrounded by a solid line indicates an essential process. .
- a steel strip having a plate thickness of 0.18 mm and a tempering degree of T-4CA was used as a steel plate (original plate).
- This steel strip is obtained by continuously annealing a low carbon cold-rolled steel strip and then temper rolling. Prior to plating, the steel strip was electrolytically degreased in a 10 mass% sodium hydroxide solution and then pickled with 5 mass% dilute sulfuric acid.
- Some steel strips were plated with Fe-Ni alloy or Ni. In part of the steel strip subjected to Ni plating, Ni was diffused in the steel strip by annealing to form an Fe—Ni alloy layer.
- electrotin plating was applied to the steel strip using a ferrostan bath.
- the surface of the steel strip was subjected to cathodic electrolysis at a cathode current density of 20 A / dm 2 in a tin plating solution at 50 ° C. containing 20 g / L of tin ions, 75 g / L of phenolsulfonic acid ions and 5 g / L of surfactant.
- platinum-plated titanium was used as the anode.
- the amount of tin plating was adjusted to 2.8 g / m 2 by adjusting the electrolysis time.
- the tin-plated steel sheet was immersed in a solution obtained by diluting the above tin-plating solution 10 times, and the liquid adhering to the surface of the tin-plated steel sheet was removed with a rubber roll. Thereafter, the tin-plated steel sheet was dried with cold air. Furthermore, the tin-plated steel sheet was heated from room temperature to 250 ° C. for 10 seconds by energization heating to reflow the tin. Immediately after the tin reflowed, the tinned steel sheet was quenched with 80 ° C. water.
- Samples for analysis of chemical conversion coatings were separated from each edge in the plate width direction of the plated steel plate by a distance of 1/4 of the plate width (2 locations), and the center of the plate width of the plated steel plate (1 location) From. Further, this sampling position was 1 m or more away from the edge in the rolling direction of the plated steel sheet.
- the strength level of Zr in a square region of 200 ⁇ m on one side of the surface of the plated steel plate was measured with FE-EPMA at a pitch of 1 ⁇ m, and this strength level was mapped (40,000 points of 200 ⁇ 200). From this mapping data, the area ratio of a region having an average intensity level of Zr and an intensity level of Zr equal to or less than 50% of the average intensity level of Zr was obtained.
- the “area ratio of the low Zr region” in Tables 1 and 2 indicates the area ratio of a region having an intensity level of Zr that is 50% or less of the average intensity level of Zr.
- ⁇ Testing method for corrosion resistance> ⁇ Corrosion resistance without painting>
- As the corrosion resistance test solution an aqueous solution in which a 0.1% sodium thiosulfate aqueous solution and 0.1N sulfuric acid were mixed at a volume ratio of 1: 2 was used.
- a circular test piece having a diameter of 35 mm was cut out from the plated steel plate, and the test piece was placed and fixed on the mouth of a heat-resistant bottle containing a corrosion resistance test solution. After heat-treating the heat-resistant bottle at 121 ° C. for 60 minutes, the corrosion area of the test piece was measured. Corrosion resistance was evaluated from the ratio of the corrosion area of the test piece to the area of the mouth of the heat-resistant bottle.
- the area of the mouth of the heat-resistant bottle means the area where the test piece comes into contact with the corrosion resistance test solution.
- the corrosion resistance was evaluated with a rating of 1 to 5 points according to the ratio of the corrosion area. The larger this score, the smaller the corrosion area.
- a steel strip having a rating of 3 or more was regarded as a plated steel plate having good corrosion resistance.
- the sample was immersed in a test solution at 55 ° C. composed of 1.5% citric acid and 1.5% sodium chloride for 96 hours under open air.
- a tape was applied to the sample so as to include the vicinity of the cut portion and the flat portion, and the tape was peeled off from the sample. Then, in order to evaluate corrosion resistance, the cut part vicinity and the plane part were observed, and it was confirmed whether there was pitting corrosion in the cut part vicinity, and whether the coating film of the plane part was peeled off.
- a sample with no peeling or corrosion of the coating film by tape was given a score of 4 (very good).
- a sample in which the area where the coating film was peeled off by the tape was 0 mm or more and less than 0.2 mm from the cut portion and a sample in which only slight corrosion that could not be visually confirmed was given 3 points (good).
- Two points (slightly poor) were given to the sample in which the area where the coating film was peeled off by the tape was 0.2 mm or more and 0.5 mm or less from the cut part and the sample where corrosion was visually observed.
- One point (defect) was given as a score to a sample in which the area where the coating film was peeled off by the tape was more than 0.5 mm from the cut part.
- a steel strip having a rating of 3 or more was regarded as a plated steel plate having good corrosion resistance.
- Each of these regions is perpendicular to the longitudinal direction of the specimen (longitudinal direction of the nylon adhesive film) and the specimen is T-shaped in a cross section perpendicular to the width direction of the specimen (width direction of the nylon adhesive film).
- the regions were bent to form a shape.
- the region was grasped with a chuck of a tensile tester and pulled at 200 mm / min to measure peel strength (T peel strength).
- This T peel strength is the strength per 5 mm width of the test piece.
- the T peel strength was 2 to 4 kgf
- the T peel strength was 6 kgf or more.
- the peel surface of one test piece had a dull metallic luster, and the peel surface of the other test piece was covered with a coating film.
- EPMA electron beam microanalyzer
- both peeling surfaces of the test pieces were covered with the coating film.
- EPMA electron beam microanalyzer
- Table 1 shows the effect of the chemical conversion solution composition on the corrosion resistance of the plated steel sheet.
- Table 2 the influence which the temperature of a chemical conversion liquid has on the corrosion resistance of a plated steel plate is shown.
- Tables 3 to 5 show the effect of the electrolytic treatment conditions on the corrosion resistance of the plated steel sheet.
- ⁇ indicates that a chemical conversion treatment layer could not be formed (precipitate was generated in the chemical conversion treatment solution and the chemical conversion treatment solution Indicates that the corresponding item was not evaluated.
- “Zr amount” and “P / Zr” in Table 4 “ND” indicates that Zr could not be detected, and “ ⁇ ” indicates that the value of P / Zr cannot be calculated. .
- the plated steel sheet has excellent corrosion resistance.
- the chemical conversion treatment layer contained Sn phosphate (tin phosphate) and zirconium oxide (IV) in all the conditions of the inventive examples.
- two layers were clearly recognized in the chemical conversion treatment layer.
- the corrosion resistance of the plated steel sheet was insufficient.
- under condition 71 since anodic electrolysis was not performed, phosphoric acid Sn was not recognized in the chemical conversion treatment layer.
- Under condition 72 no cathodic electrolysis was performed, and therefore no zirconium compound such as zirconium oxide (IV) was found in the chemical conversion treatment layer. In both conditions 71 and 72, two layers were not recognized in the chemical conversion treatment layer.
- Table 6 shows the corrosion resistance of the plated steel sheet (condition 82) manufactured under the same manufacturing conditions as the steel sheet 8 of Patent Document 2. Under this condition 82, sufficient corrosion resistance was obtained when the plated steel sheet was coated. However, when the plated steel sheet is not coated, the plated steel sheet under condition 82 did not have sufficient corrosion resistance. Moreover, under this condition 82, phosphoric acid Sn was not recognized in the chemical conversion treatment layer.
- the present invention provides a plated steel sheet having a very good corrosion resistance and a method for producing the same, the industrial applicability of the present invention is clear.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Electroplating Methods And Accessories (AREA)
- Laminated Bodies (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
このめっき鋼板は、鋼板と、Snめっき層を含むめっき金属層と、化成処理層とを備え、前記めっき金属層は、前記鋼板の表面上に存在し、前記化成処理層は、前記Snめっき層の表面上に存在する。前記化成処理層では、P量が3~20mg/m2であり、Zr量が5mg/m2超かつ30mg/m2以下であり、前記P量と前記Zr量の比率P/Zrが0.35~1.00である。前記化成処理層は、りん酸錫と酸化ジルコニウム(IV)とを含む。
Description
本発明は、耐食性に優れためっき鋼板及びその製造方法に関する。
本願は、2014年11月10日に、日本に出願された特願2014-228436号に基づき優先権を主張し、その内容をここに援用する。
本願は、2014年11月10日に、日本に出願された特願2014-228436号に基づき優先権を主張し、その内容をここに援用する。
缶用の鋼板製品では、耐食性、耐錆性、塗料密着性(塗膜密着性)などの特性を確保するため、鋼板表面上に直接、あるいは、鋼板表面上に存在するSn、ZnやNi等のめっき上に、クロメート皮膜が形成されている。このクロメート皮膜は、金属クロムとオキサイドクロムからなり、六価クロムを含む処理液中で鋼板に陰極電解処理(電解クロム酸処理)を行うことにより形成される。一方で、六価クロムは環境上有害であるため、近年六価クロムを使用しない表面処理でクロメート処理を代替する技術の開発が進んでいる。
鋼板の表面処理の一種として、りん酸塩、ジルコニウム化合物を含有する処理液を用いた化成処理が知られている。例えば、特許文献1、2には、ジルコニウムイオン、ふっ化物イオンおよびりん酸イオンを含む処理液中で、帯鋼に陰極電解処理を行い、帯鋼に化成処理皮膜を被覆することが開示されている。
特許文献3、4、5、6には、りん酸塩溶液が入った一方の浴中でりん酸塩皮膜を形成した後、ジルコニウムイオンを含む溶液が入った他方の浴中でジルコニウム皮膜を形成する方法が開示されている。
しかしながら、上記の特許文献1~6に開示された化成処理皮膜は、化成処理皮膜上に塗膜(塗装皮膜)が形成された場合に、比較的良好な耐食性を有しているに過ぎない。一方、化成処理皮膜上に塗膜が形成されない場合には、容器内に腐食性の高い内容物を入れ、この容器を過酷な環境下で使用すると、これらの化成処理皮膜は、耐食性等の性能を十分に発揮することができない。本発明者らは、化成処理皮膜上に塗膜がない条件下において特許文献1~6に開示された化成処理皮膜が鋼板に十分な耐食性を与えないことを認識し、酸化ジルコニウムの量を増やすことにより、化成処理皮膜上に塗膜を形成しない場合でも十分な耐食性が得られる可能性を見出した。しかしながら、化成処理皮膜上に塗膜を形成しない場合には、酸化ジルコニウムの量を増やすだけでは、十分な耐食性が得られなかった。その上、酸化ジルコニウムの量を増やすと、化成処理皮膜の表面に負荷がかかった際に化成処理皮膜中に凝集した酸化ジルコニウムが生じ、この凝集した酸化ジルコニウムを起点として塗膜が加工時に剥離していた。そのため、塗装密着性が低下して加工後の耐食性が低下した。したがって、従来技術(例えば、特許文献4)では、化成処理皮膜上に塗膜を形成すれば、加工後であっても十分な耐食性が得られるように、酸化ジルコニウムの量を低下させていた。このため、化成処理皮膜上に塗膜を形成しない場合でもめっき鋼板に十分な耐食性を付与し、かつ、十分な塗膜密着性を維持できる化成処理皮膜について検討する必要性を本発明者らは初めて認識した。
また、特許文献3、4、5、6に開示された製造方法は、二つの浴を使用して化成処理皮膜を形成しているので、製造時間が長く生産性が低い。一方で、一つの浴を使用して陰極電解により化成処理皮膜をめっき鋼板上に形成する場合、カチオンをある程度制御することは可能であるが、二つの浴を使用して化成処理皮膜をめっき鋼板上に形成する場合に比べ、化成処理皮膜の品質の制御条件が少なくなる。
そこで、本発明は、上記従来技術の問題点を解決し、塗膜密着性に優れ、かつ、化成処理皮膜上に塗膜がある条件下だけでなく化成処理皮膜上に塗膜がない条件下においても耐食性に優れためっき鋼板、及び、その製造方法を提供することを目的とする。
本発明者らは、上記の課題を鋭意検討し、優れた塗膜密着性と極めて良好な耐食性とが得られる錫めっき鋼板中の化成処理皮膜と、その化成処理皮膜を実現する方法とを構築した。
即ち、本発明の主旨は、以下の通りである。
(1)本発明の第一の態様に係るめっき鋼板は、鋼板と、Snめっき層を含むめっき金属層と、化成処理層とを備え、前記めっき金属層が、前記鋼板の表面上に存在し、前記化成処理層が、前記Snめっき層の表面上に存在し、前記化成処理層では、P量が3~20mg/m2であり、Zr量が5mg/m2超かつ30mg/m2以下であり、前記P量と前記Zr量の比率P/Zrが0.35~1.00であり、前記化成処理層が、りん酸錫と酸化ジルコニウム(IV)とを含む。
(2)上記(1)に記載のめっき鋼板の前記化成処理層では、電界放出型電子線マイクロアナライザーのマッピング分析によって得られたZrの平均強度の50%以下の強度を有する面積率が0.1~10%であってもよい。
(3)上記(1)または(2)に記載のめっき鋼板では、前記Snめっき層は、前記鋼板の表面上に存在してもよい。
(4)上記(1)または(2)に記載のめっき鋼板では、前記めっき金属層は、合金層をさらに備え、この合金層は、前記鋼板の表面上に存在し、前記Snめっき層は、前記合金層の表面上に存在し、前記合金層は、Sn、Niからなる群から選択される少なくとも1種の化学元素と、Feとを含んでもよい。
(5)上記(4)に記載のめっき鋼板では、前記合金層は、FeSn2相、Ni3Sn4相、Fe-Ni系におけるα相、Fe-Ni系におけるγ相からなる群から選択される少なくとも1種の合金を含んでもよい。
(6)上記(1)~(5)のいずれか一項に記載のめっき鋼板では、前記Zr量が6mg/m2以上であってもよい。
(7)上記(1)~(5)のいずれか一項に記載のめっき鋼板では、前記Zr量が8mg/m2以上であってもよい。
(8)本発明の第一の態様に係るめっき鋼板の製造方法は、鋼板にSnをめっきするSnめっき工程と;前記Snめっき工程後、化成処理液中で前記鋼板に対して陽極電解処理を行う陽極電解処理工程と;前記陽極電解処理工程後、前記化成処理液中で前記鋼板に対して陰極電解処理を行う陰極電解処理工程と;を含み、前記化成処理液は、100ppm~10000ppmのジルコニウムイオンと、100ppm~10000ppmのふっ化物イオンと、100ppm~3000ppmのりん酸イオンと、100ppm~30000ppmの硝酸イオンとを含み、前記化成処理液の温度が20℃~60℃であり、化成処理層中のP量が3~20mg/m2の範囲内で、前記化成処理層中のZr量が5~30mg/m2の範囲内で、前記P量と前記Zr量の比率P/Zrが0.35~1.00の範囲内になるように前記陽極電解処理工程の前記陽極電解処理の条件と前記陰極電解処理工程の前記陰極電解処理の条件を制御する。
(9)上記(8)に記載のめっき鋼板の製造方法は、前記Snめっき工程の前に、Ni、Fe-Niからなる群から選択される少なくとも一種の金属を前記鋼板にめっきするNi含有めっき工程をさらに含んでもよい。
(10)上記(8)または(9)に記載のめっき鋼板の製造方法は、前記陽極電解処理工程を行う前に、前記化成処理液中で前記鋼板に対して陰極電解処理を行う前処理電解工程をさらに含んでもよい。
(11)上記(10)に記載のめっき鋼板の製造方法における前記前処理電解工程では、前記陰極電解処理中の電流密度が0.1~10A/dm2であり、前記陰極電解処理による通電量が1~10C/dm2であってもよい。
(12)上記(8)~(11)のいずれか一項に記載のめっき鋼板の製造方法における前記陽極電解処理工程では、前記陽極電解処理中の電流密度が0.1A/dm2~2A/dm2であり、前記陽極電解処理による通電量が0.1C/dm2~2C/dm2であってもよい。
(13)上記(8)~(12)のいずれか一項に記載のめっき鋼板の製造方法における前記陰極電解処理工程では、前記陰極電解処理中の電流密度が1~20A/dm2であり、前記陰極電解処理による通電量が5~50C/dm2であってもよい。
(14)上記(8)~(13)のいずれか一項に記載のめっき鋼板の製造方法では、前記Zr量が6mg/m2以上であってもよい。
(15)上記(8)~(13)のいずれか一項に記載のめっき鋼板の製造方法では、前記Zr量が8mg/m2以上であってもよい。
(16)上記(8)~(15)のいずれか一項に記載のめっき鋼板の製造方法では、前記化成処理液のpHが3~4であってもよい。
(1)本発明の第一の態様に係るめっき鋼板は、鋼板と、Snめっき層を含むめっき金属層と、化成処理層とを備え、前記めっき金属層が、前記鋼板の表面上に存在し、前記化成処理層が、前記Snめっき層の表面上に存在し、前記化成処理層では、P量が3~20mg/m2であり、Zr量が5mg/m2超かつ30mg/m2以下であり、前記P量と前記Zr量の比率P/Zrが0.35~1.00であり、前記化成処理層が、りん酸錫と酸化ジルコニウム(IV)とを含む。
(2)上記(1)に記載のめっき鋼板の前記化成処理層では、電界放出型電子線マイクロアナライザーのマッピング分析によって得られたZrの平均強度の50%以下の強度を有する面積率が0.1~10%であってもよい。
(3)上記(1)または(2)に記載のめっき鋼板では、前記Snめっき層は、前記鋼板の表面上に存在してもよい。
(4)上記(1)または(2)に記載のめっき鋼板では、前記めっき金属層は、合金層をさらに備え、この合金層は、前記鋼板の表面上に存在し、前記Snめっき層は、前記合金層の表面上に存在し、前記合金層は、Sn、Niからなる群から選択される少なくとも1種の化学元素と、Feとを含んでもよい。
(5)上記(4)に記載のめっき鋼板では、前記合金層は、FeSn2相、Ni3Sn4相、Fe-Ni系におけるα相、Fe-Ni系におけるγ相からなる群から選択される少なくとも1種の合金を含んでもよい。
(6)上記(1)~(5)のいずれか一項に記載のめっき鋼板では、前記Zr量が6mg/m2以上であってもよい。
(7)上記(1)~(5)のいずれか一項に記載のめっき鋼板では、前記Zr量が8mg/m2以上であってもよい。
(8)本発明の第一の態様に係るめっき鋼板の製造方法は、鋼板にSnをめっきするSnめっき工程と;前記Snめっき工程後、化成処理液中で前記鋼板に対して陽極電解処理を行う陽極電解処理工程と;前記陽極電解処理工程後、前記化成処理液中で前記鋼板に対して陰極電解処理を行う陰極電解処理工程と;を含み、前記化成処理液は、100ppm~10000ppmのジルコニウムイオンと、100ppm~10000ppmのふっ化物イオンと、100ppm~3000ppmのりん酸イオンと、100ppm~30000ppmの硝酸イオンとを含み、前記化成処理液の温度が20℃~60℃であり、化成処理層中のP量が3~20mg/m2の範囲内で、前記化成処理層中のZr量が5~30mg/m2の範囲内で、前記P量と前記Zr量の比率P/Zrが0.35~1.00の範囲内になるように前記陽極電解処理工程の前記陽極電解処理の条件と前記陰極電解処理工程の前記陰極電解処理の条件を制御する。
(9)上記(8)に記載のめっき鋼板の製造方法は、前記Snめっき工程の前に、Ni、Fe-Niからなる群から選択される少なくとも一種の金属を前記鋼板にめっきするNi含有めっき工程をさらに含んでもよい。
(10)上記(8)または(9)に記載のめっき鋼板の製造方法は、前記陽極電解処理工程を行う前に、前記化成処理液中で前記鋼板に対して陰極電解処理を行う前処理電解工程をさらに含んでもよい。
(11)上記(10)に記載のめっき鋼板の製造方法における前記前処理電解工程では、前記陰極電解処理中の電流密度が0.1~10A/dm2であり、前記陰極電解処理による通電量が1~10C/dm2であってもよい。
(12)上記(8)~(11)のいずれか一項に記載のめっき鋼板の製造方法における前記陽極電解処理工程では、前記陽極電解処理中の電流密度が0.1A/dm2~2A/dm2であり、前記陽極電解処理による通電量が0.1C/dm2~2C/dm2であってもよい。
(13)上記(8)~(12)のいずれか一項に記載のめっき鋼板の製造方法における前記陰極電解処理工程では、前記陰極電解処理中の電流密度が1~20A/dm2であり、前記陰極電解処理による通電量が5~50C/dm2であってもよい。
(14)上記(8)~(13)のいずれか一項に記載のめっき鋼板の製造方法では、前記Zr量が6mg/m2以上であってもよい。
(15)上記(8)~(13)のいずれか一項に記載のめっき鋼板の製造方法では、前記Zr量が8mg/m2以上であってもよい。
(16)上記(8)~(15)のいずれか一項に記載のめっき鋼板の製造方法では、前記化成処理液のpHが3~4であってもよい。
本発明により、塗膜密着性と極めて良好な耐食性を具備しためっき鋼板及びその製造方法を提供することができる。
以下に、本発明の実施形態に係るめっき鋼板を詳細に説明する。
(めっき鋼板1)
図1~4に示すように、本実施形態に係るめっき鋼板1は、鋼板2と、鋼板2の表面上のめっき金属層3と、めっき金属層3の表面上の化成処理層4とを備える。めっき金属層3は、Snめっき層3aを含み、場合によっては、合金層3bを含む。すなわち、めっき金属層3は、Snめっき層3aからなる場合と、Snめっき層3aと合金層3bとからなる場合とがある。したがって、めっき金属層3は、Snを含む。また、図2及び図4に示すように、化成処理層4は、めっき金属層3の表面上の第1の化成処理層4aと、第1の化成処理層4aの表面上の第2の化成処理層4bとを備えてもよい。
図1~4に示すように、本実施形態に係るめっき鋼板1は、鋼板2と、鋼板2の表面上のめっき金属層3と、めっき金属層3の表面上の化成処理層4とを備える。めっき金属層3は、Snめっき層3aを含み、場合によっては、合金層3bを含む。すなわち、めっき金属層3は、Snめっき層3aからなる場合と、Snめっき層3aと合金層3bとからなる場合とがある。したがって、めっき金属層3は、Snを含む。また、図2及び図4に示すように、化成処理層4は、めっき金属層3の表面上の第1の化成処理層4aと、第1の化成処理層4aの表面上の第2の化成処理層4bとを備えてもよい。
例えば、図1に示す本発明の一実施形態に係るめっき鋼板1のように、めっき鋼板1は、鋼板2と、Snめっき層3aと、化成処理層4とをこの順番で備える。また、例えば、図2に示す本発明の別の実施形態に係るめっき鋼板1のように、めっき鋼板1は、鋼板2と、Snめっき層3aと、第1の化成処理層4aと、第2の化成処理層4bとをこの順番で備える。また、図3に示す本発明の別の実施形態に係るめっき鋼板1のように、めっき鋼板1は、鋼板2とSnめっき層3aとの間に合金層(合金化層)3bをさらに備えてもよい。Snめっき層3aは、鋼板2と化成処理層4との間に存在する。図1に示すように、めっき鋼板1が合金層3bを備えない場合には、Snめっき層3aは、鋼板2の表面上に存在する。図3に示すように、めっき鋼板1が合金層3bを備える場合には、合金層3bは、鋼板2の表面に存在し、Snめっき層3aは、合金層3bの表面上に存在する。この合金層3bは、Sn、Niからなる群から選択される少なくとも1種の化学元素と、Feを含む。
また、化成処理層4が第1の化成処理層4aと第2の化成処理層4bとを備える場合、第1の化成処理層4aは、Snめっき層3aの表面上に存在し、第2の化成処理層4bは、第1の化成処理層4aの表面上に存在する。化成処理層4は、りん酸錫と、酸化ジルコニウム(IV)とを含む。また、化成処理層4中においては、P量が3~20mg/m2であり、Zr量が5mg/m2超かつ30mg/m2以下である。さらに、化成処理層4中のZr量に対するP量の比率(P/Zr)が0.35~1.00である。
本実施形態に係るめっき鋼板1は、飲料缶、食缶等の容器に使用されることが好ましい。しかし、本実施形態に係るめっき鋼板1は、容器としての用途に限定されない。
(鋼板2)
本実施形態では、鋼板2として、種々の鋼板を制限なく使用することができる。例えば、めっき鋼板1を容器に使用する場合には、従来から使用されているアルミキルド鋼や低炭素鋼等の鋼板を鋼板2として問題なく使用できる。また、使用目的に応じて鋼板の厚みや調質度等のグレードを選択すればよい。
本実施形態では、鋼板2として、種々の鋼板を制限なく使用することができる。例えば、めっき鋼板1を容器に使用する場合には、従来から使用されているアルミキルド鋼や低炭素鋼等の鋼板を鋼板2として問題なく使用できる。また、使用目的に応じて鋼板の厚みや調質度等のグレードを選択すればよい。
(めっき金属層3)
合金層3bの量やSnめっき層3aの量は、使用目的に応じて適宜選択すればよいので、限定されない。一般に、合金層3bは、Snめっき層と鋼板との間の電位差を小さくし、腐食電流を減らすため、SnとFeとを含む相で構成されることが多い。このように、合金層3bがSnを含む場合、合金層3b中のSn量は、0.1~1.6g/m2であるのが一般的である。Snめっき後にSnを溶融させる加熱工程(リフロー処理)を経ると、少なくとも0.1g/m2の量のSnが合金層3b中に不可避的に含まれる。合金層3b中のSn量が1.6g/m2以下であると、曲げ、カーリング等の加工時に合金層3b中に微小なクラックが生じ難くなり、腐食の起点(クラック)を減らすことができる。リフロー処理の最高到達温度は、Snの融点が232℃であるため、232℃~300℃以下である。このリフロー処理では、主にFeSn2相が形成される。
合金層3bの量やSnめっき層3aの量は、使用目的に応じて適宜選択すればよいので、限定されない。一般に、合金層3bは、Snめっき層と鋼板との間の電位差を小さくし、腐食電流を減らすため、SnとFeとを含む相で構成されることが多い。このように、合金層3bがSnを含む場合、合金層3b中のSn量は、0.1~1.6g/m2であるのが一般的である。Snめっき後にSnを溶融させる加熱工程(リフロー処理)を経ると、少なくとも0.1g/m2の量のSnが合金層3b中に不可避的に含まれる。合金層3b中のSn量が1.6g/m2以下であると、曲げ、カーリング等の加工時に合金層3b中に微小なクラックが生じ難くなり、腐食の起点(クラック)を減らすことができる。リフロー処理の最高到達温度は、Snの融点が232℃であるため、232℃~300℃以下である。このリフロー処理では、主にFeSn2相が形成される。
Snめっき層3aにおける、金属錫(実質的に単金属の錫、すなわち金属間化合物及び他金属に固溶した錫を除く)の量は、0.2~12g/m2であるのが一般的である。金属錫の量が0.2g/m2以上であると、缶胴を製造するためのワイヤーシーム溶接によって局所的に過熱される頻度が減少し、チリと呼ばれる溶融金属の飛散を抑制できるので、十分な溶接適正電流範囲を得やすくなる。金属錫の量が12g/m2以下であると、金属錫の単位重量当たりの溶接性が高まり、材料コストや希少資源を節約することができる。
また、合金層3bは、Niを含んでもよい。Ni3Sn4の量が増加するとFeSn2の量が低下する。そのため、合金層3bがNiを含有する場合には、合金層3b中のFe-Sn合金の過剰生成が抑制され、曲げ、カーリング等の加工時に合金層3b中に微小なクラックが生じ難い。合金層中のNi量が2mg/m2以上であると、上記の加工時のクラック生成をより確実に抑制することができる。一方、Ni量が100mg/m2以下であると、合金層3b中のNi-Sn合金(Ni3Sn4相)の過剰生成が抑制されているため、加工時において合金層3b中に微小なクラックが生成するのを抑制することができる。したがって、合金層3bは、Sn、Niからなる群から選択される少なくとも1種の化学元素と、Feを含む。例えば、合金層3bがFe-Sn合金(Fe-Sn系におけるFeSn2相)の層、Fe-Ni合金(Fe-Ni系におけるα相、γ相)の層、Fe-Ni-Sn合金(Fe-Ni-Sn系におけるFeSn2相、Ni3Sn4相の混相)の層からなる群から選択される少なくとも1種の層からなってもよい。
(化成処理層4)
Snめっき層3aの上に位置する化成処理層4は、りん酸錫と酸化ジルコニウム(IV)とを含む。また、この化成処理層4は、りん酸錫を含む下層(第1の化成処理層4a)と、酸化ジルコニウム(IV)を含む上層(第2の化成処理層4b)とから構成されてもよい。りん酸錫は、酸化ジルコニウム(IV)をSnめっき層3aに接着するためのバインダーとしての役割を有する。化成処理層4がりん酸錫と酸化ジルコニウム(IV)とを含むと、表面構造の制御によってSnめっき層3aの表面を化成処理層4によって適正に覆うことができるので、化成処理層4のバリア性が向上する。
Snめっき層3aの上に位置する化成処理層4は、りん酸錫と酸化ジルコニウム(IV)とを含む。また、この化成処理層4は、りん酸錫を含む下層(第1の化成処理層4a)と、酸化ジルコニウム(IV)を含む上層(第2の化成処理層4b)とから構成されてもよい。りん酸錫は、酸化ジルコニウム(IV)をSnめっき層3aに接着するためのバインダーとしての役割を有する。化成処理層4がりん酸錫と酸化ジルコニウム(IV)とを含むと、表面構造の制御によってSnめっき層3aの表面を化成処理層4によって適正に覆うことができるので、化成処理層4のバリア性が向上する。
化成処理層4中のP量は、3~20mg/m2であることが必要である。P量が3mg/m2未満であると、化成処理層4がめっき金属層3を適正に覆うことができず、めっき鋼板1の耐食性が低下する。一方、P量が20mg/m2を超えると、化成処理層4がりん酸化合物の凝集によって破壊され、めっき鋼板1の耐食性が低下する。めっき鋼板1の耐食性をさらに高めるために、化成処理層4中のP量が4mg/m2以上であることが好ましく、5mg/m2以上であることがより好ましい。化成処理層4中のりん酸化合物の凝集をさらに抑制してめっき鋼板1の耐食性をさらに高めるために、化成処理層4中のP量が15mg/m2以下であることが好ましく、10mg/m2以下であることがより好ましい。例えば、P量が5~10mg/m2であるとより好ましい。
場合によって、めっき鋼板1に形成される塗膜を除けば、めっき鋼板1の表面には、酸化ジルコニウム(IV)が存在する。酸化ジルコニウム(IV)は、比較的広いpH範囲で不動態として安定に存在し、缶内面に接する様々な内容物に対し高い耐食性を示す。酸化ジルコニウム(IV)を含む化成処理層4がめっき金属層3を適正に被覆するためには、化成処理層4中のZr量が所定範囲内であることが必要である。すなわち、化成処理層4中のZr量(金属Zr換算)は、5mg/m2超かつ30mg/m2以下であることが必要である。Zr量が5mg/m2以下であると、化成処理層4によってめっき金属層3の表面が適正に被覆されないため、十分な耐食性が確保されない。一方、Zr量が30mg/m2を超えると、化成処理層4が酸化ジルコニウム(IV)の凝集によって破壊され、めっき鋼板1の耐食性が低下してしまう。化成処理層4のバリア性を高めてめっき鋼板1の耐食性をさらに高めるために、Zr量が6mg/m2以上もしくは8mg/m2以上であることが好ましく、9mg/m2以上もしくは10mg/m2以上であることがより好ましい。化成処理層4中の酸化ジルコニウム(IV)の凝集をさらに抑制してめっき鋼板1の耐食性をさらに高めるために、Zr量が25mg/m2以下であることが好ましく、20mg/m2以下であることがより好ましい。例えば、Zr量が8~20mg/m2であるとより好ましい。また、化成処理層4は、Fを含んでもよい。
P/Zr比率が0.35未満のとき、りん酸錫の量が酸化ジルコニウム(IV)の量に対して不足している。そのため、酸化ジルコニウム(IV)をSnめっき層3aに接着するりん酸錫のバインダーとしての役割が十分でなく、化成処理層4が脆い。したがって、めっき鋼板1が十分な耐食性を有しておらず、めっき鋼板1の外観が悪化する場合もある。P/Zr比率が1.00を超えると、りん酸錫が酸化ジルコニウム(IV)に対して過剰である。そのため、酸化ジルコニウム(IV)の耐食性を高める効果がりん酸錫によって低下する。したがって、めっき鋼板1が十分な耐食性を有しておらず、めっき鋼板1の外観が悪化する場合もある。
図5に、P/Zr比率と耐食性との間の関係の一例を示す。この図5では、十分な耐食性を有するめっき鋼板は、3以上の耐食性を有している。図5に示されているように、P/Zr比率が0.35~1.00であると、塗装がない場合でも塗装がある場合でもめっき鋼板の耐食性が十分に高い。一方、P/Zr比率が0.35未満もしくは1.00超であると、塗装がある場合に十分な耐食性が得られる場合があるが、図5の矢印から理解できるように塗装がない場合には十分な耐食性が得られない。このように、P/Zr比率を適正に制御することにより、従来では認識されなかった異質的な優れた効果を得ることができる。より高い耐食性をより安定的に得るためには、P/Zr比率が、0.95以下であることが好ましく、0.90以下もしくは0.85以下であることがより好ましい。同様に、P/Zr比率が、0.38以上であることが好ましく、0.40以上もしくは0.50以上であることがより好ましい。
また、化成処理層4上に塗装被膜を形成することなくめっき鋼板1の耐食性を安定的かつ十分に得るためには、酸化ジルコニウム(IV)及びりん酸錫を含む化成処理層4の表面構造(例えば、厚さ)が適正に制御されると好ましい。
この化成処理層4の構造に関する条件は、電界放出型電子線マイクロアナライザー(FE-EPMA)を用いて評価することができる。このFE-EPMAのマッピング分析によってめっき鋼板1の表面を分析して得られた、Zrの平均強度レベルの50%以下の強度レベルを有する領域の面積率(低Zr領域の面積率)が0.1~10%である表面構造を化成処理層4が有していることが好ましい。この場合に、P/Zr比率の範囲が上述の条件を満たしていると化成処理層4がめっき金属層3上を適正に覆っていると判断でき、めっき鋼板1に対して安定的に十分な耐食性を付与することができる。例えば、低Zr領域の面積率が10%以下であれば、腐食領域を確実に半径35μm以下に制限することができる。この場合、腐食によるめっき鋼板1の変化を目視で確認できないため、実用上十分な耐食性を有しているとみなすことができる。また、例えば、低Zr領域の面積率が0.1%以上であれば、化成処理皮膜4が酸化ジルコニウム(IV)とりん酸錫とによって適正な表面構造を形成するので、実用上十分な耐食性を安定的に有しているとみなすことができる。加えて、そのような表面構造は、応力に対して強いため、めっき鋼板1が塗膜を備える場合に塗膜に応力が作用しても化成処理皮膜4の凝集破壊を安定的に防ぐことができる。このように、化成処理層4の均一性や厚さが大きければ大きいほどめっき鋼板1の耐食性が安定的に向上するわけではない。そのため、P量やZr量だけでなくP/Zrの範囲及び化成処理層4の表面構造も制御すれば、耐食性をさらに向上させたり、高い耐食性を安定的に得たりすることができる。より高い耐食性をより安定的に得るためには、低Zr領域の面積率が0.2%以上であることがより好ましい。同様に、低Zr領域の面積率が9%以下であることがより好ましく、8%もしくは6%以下であることが最も好ましい。
(測定方法)
Snめっき層3a中の金属Snの量は、ASTM A630に準拠する電解剥離法によって測定される。この電解剥離法では、アノードに測定すべきめっき鋼板1を使用し、カソードに白金板を使用する。これらアノード及びカソードに1N塩酸中で定電流を流し、電位-時間曲線を作成した後、ファラデーの法則にしたがって金属Snの量を計算する。また、合金層3b中のFe、Ni、Snの量は、上記のASTM A630に準拠する電解剥離法によってめっき鋼板1から金属Snを剥離して得られた鋼板の表面(剥離面)を蛍光X線元素分析法(XRF)によって分析し測定される。さらに、合金層3b中のFeSn2相、Ni3Sn4相、α相、γ相は、薄膜X線回折法によって同定される。
Snめっき層3a中の金属Snの量は、ASTM A630に準拠する電解剥離法によって測定される。この電解剥離法では、アノードに測定すべきめっき鋼板1を使用し、カソードに白金板を使用する。これらアノード及びカソードに1N塩酸中で定電流を流し、電位-時間曲線を作成した後、ファラデーの法則にしたがって金属Snの量を計算する。また、合金層3b中のFe、Ni、Snの量は、上記のASTM A630に準拠する電解剥離法によってめっき鋼板1から金属Snを剥離して得られた鋼板の表面(剥離面)を蛍光X線元素分析法(XRF)によって分析し測定される。さらに、合金層3b中のFeSn2相、Ni3Sn4相、α相、γ相は、薄膜X線回折法によって同定される。
化成処理層4中のP量及びZr量は、蛍光X線元素分析法(XRF)によって測定される。測定領域は、めっき鋼板1の表面(化成処理層4の表面)における直径20mm以上の領域である。P量及びZr量の定量には、予め作成した検量線、すなわち、P量とPに対応する波長の蛍光X線強度(CPS)との間の関係式及びZr量とZrに対応する波長の蛍光X線強度(CPS)との間の関係式を使用する。この検量線は、予めICP発光分析装置でP量及びZr量を測定した既知のサンプルの蛍光X線強度(CPS)をXRFにより測定して得られる。なお、蛍光X線装置がP、Zrを測定できれば、蛍光X線装置として機種を限定することなく一般的な市販品を使用することができる。
さらに、X線光電子分光分析(XPS)によりX線光電子スペクトルを測定し、この測定を化成処理層4の厚さ方向(深さ方向)に向けて繰り返す。得られたX線光電子スペクトルから化学元素の存在状態を分析することにより、化成処理層4の層構造を同定し、化成処理層4中に存在する化合物を検出する。Snのスペクトルのケミカルシフトの量から化成処理層4中のSnイオンを同定し、PもしくはOのスペクトルのケミカルシフトの量から化成処理層4中のりん酸イオンを同定する。化成処理層4中にSnイオンとりん酸イオンとを両方同定した場合、化成処理層4中にりん酸錫が存在するとみなす。また、Zrのスペクトルのケミカルシフトの量から化成処理層4中の酸化ジルコニウム(IV)を同定する。Pのスペクトルは、130~140eVの結合エネルギーの領域から得られ、Zrのスペクトルは、176~188eVの結合エネルギーの領域から得られ、Snのスペクトルは、482~490eVの結合エネルギーの領域から得られる。なお、金属Snとして存在するSnのスペクトルの大きさ(高さ)が深さ方向に略一定になった場合に化成処理層4の分析を終了する。各元素の量(P量、Zr量、Sn量)は、スペクトルの面積から算出することができる。スペクトルの面積が0の場合を量が0であるとみなし、スペクトルの面積が深さ方向において最大である場合を量が100であるとみなして化成処理層4の厚さ方向におけるP量、Zr量、Sn量を決定する。ここで、めっき金属層3の表面の粗度に比べて化成処理層4の厚さが非常に小さいので、化成処理層4の表面は、見かけ上ある程度の粗度を有している。したがって、化成処理層4の表面から内部に向かってある深さまで、P量が増加し、Zr量が低下し、Sn量が増加する場合に、化成処理層4が、第1の化成処理層4aとこの第1の化成処理層4aの表面上に存在する第2の化成処理層4bとを備えているとみなす。
めっき鋼板1の表面近傍における酸化ジルコニウム(IV)の分布は、上述のように、めっき鋼板1の表面を電界放出型電子線マイクロアナライザー(FE-EPMA)で分析して得られる。めっき鋼板1の表面の一辺200μmの正方形の領域内におけるZrの強度レベルを1μmピッチで(200×200の40,000点)マッピングする。Zrの強度レベルのマッピングデータからZrの平均強度レベルを算出し、Zrの平均強度レベルの50%以下の強度レベルを有する点をカウントする。得られた点の数を全データ数である40,000点で除することにより、Zrの平均強度レベルの50%以下の強度レベルを有する領域の面積率を算出する。めっき鋼板1の表面の任意の3つの位置について、マッピング分析を1回ずつ行い、得られた3つの面積率を平均してZrの平均強度レベルの50%以下の強度レベルを有する領域の面積率を決定する。すなわち、全データ数が120,000点であるので、Zrの平均強度レベルの50%以下の強度レベルを有する点が12,000点以下であれば、Zrの平均強度レベルの50%以下の強度レベルを有する領域の面積率が10%以下であるとみなす。例えば、Zr量が5mg/m2のとき、Zrの平均強度レベルを5mg/m2とみなすことができるので、Zr量の平均強度レベルの50%に対応するZr量を2.5mg/m2とみなすことができる。上記の測定条件では、Zr量が2.5mg/m2以下である領域が10%以下であり、その領域を円形であるとみなすと、その領域の半径は約35μm以下である。腐食領域が35μm以下であると、腐食によるめっき鋼板1の変化を目視で確認できないため、上記の測定条件を採用する必要がある。
(製造方法)
次に、本発明の実施形態に係るめっき鋼板の製造方法について詳述する。
次に、本発明の実施形態に係るめっき鋼板の製造方法について詳述する。
鋼板にめっきを施す前の工程は、特に限定されない。前処理として、例えば、鋼板に電解アルカリによる脱脂及び希硫酸による酸洗を施してもよい。
鋼板にSnがめっきされる前に、鋼板にNi、または、Fe-Ni合金をめっきしてもよい。この場合、Niめっき浴として、例えば、硫酸ニッケル、塩化ニッケル、ほう酸を主成分とするワット浴、塩化ニッケルを主成分とするストライク浴、又は硫酸ニッケルを主成分とする全硫酸浴を用いることができる。Fe-Ni合金めっき浴として、例えば、上記のワット浴に硫酸鉄あるいは塩化鉄を添加した浴、上記のストライク浴に塩化鉄を添加した浴、又は上記の全硫酸浴に硫酸鉄を添加した浴を用いることができる。また、鋼板にNiをめっきした後、Niめっき鋼板を加熱してNiを鋼板表面層内に拡散させ、鋼板表面にFe-Ni合金層を形成させてもよい。
Snめっきの方法は、特に限定されない。例えば、光沢添加剤を含むフェノールスルホン酸浴、硫酸浴等の酸性Snめっき浴を用いることができる。このような酸性Snめっき浴中で電気Snめっきを鋼板に施すと、良好なSnめっきが得られる。
Snめっき後の鋼板は、水又はSnめっき液の希釈液の入った槽に浸漬され、乾燥されてもよい。その後、Snめっき鋼板に対してリフロー処理を施してもよい。リフロー処理は、Snめっき鋼板の表面に光沢を付与するために、Snめっき鋼板をSnの融点である232℃以上に加熱する工程である。この加熱温度が300℃以下であると、過剰な合金層の生成を抑制することができる。加熱手段は特に限定されない。例えば、加熱手段として、電気抵抗加熱や誘導加熱、又は、それらの組み合わせを用いることができる。また、リフロー処理の直後にSnめっき鋼板をクエンチすることで、合金層中のFeSn2相及びNi3Sn4相や、Snめっき層の表面上の酸化錫が過剰に生成するのを防ぐことができる。錫を溶融したSnめっき鋼板を水に浸漬してSnめっき鋼板をクエンチすることができる。
Snめっき鋼板に対して以下に述べる方法で化成処理を施す。
本方法の特徴は、りん酸錫と酸化ジルコニウム(IV)とを含む化成処理層を一つの浴を用いて形成することである。同時に生成することが困難な二つの化合物を含む化成処理層を二つの浴を用いて形成させると、二つの浴を用意しなければならないので、一つの浴よりもコストがかかる。加えて、最初の浴中の成分が次の浴中に混入することによって生じる悪い影響を避けるため、操業条件を制約する必要が生じる。例えば、製造条件の一つとして製造ラインの速度を遅くしなければならない。また、成分の混入を回避するために、最初の浴から次の浴にめっき鋼板を移す際にめっき鋼板を水洗すると、水酸化物のような化合物が生じる場合がある。一つの浴だけで化成処理層を形成させると、コストの低減、操業条件の緩和といった製法上のメリットだけでなく、めっき鋼板の表面構造に悪影響を与える中間副生成物の形成の回避といった製品上のメリットもある。
化成処理液中の各イオンの濃度について説明する。
化成処理液中のジルコニウムイオン濃度は、100ppm~10000ppmである。ジルコニウムイオン濃度が100ppm未満の場合には、核生成、核成長に必要な化成処理液中のジルコニウムイオンが不足し、十分な量の酸化ジルコニウム(IV)を含む化成処理層を得ることができない。一方、ジルコニウムイオン濃度が10000ppmを超える場合には、化成処理層が極度に成長し、化成処理層に過剰なむらを誘発する。
化成処理液中のジルコニウムイオン濃度は、100ppm~10000ppmである。ジルコニウムイオン濃度が100ppm未満の場合には、核生成、核成長に必要な化成処理液中のジルコニウムイオンが不足し、十分な量の酸化ジルコニウム(IV)を含む化成処理層を得ることができない。一方、ジルコニウムイオン濃度が10000ppmを超える場合には、化成処理層が極度に成長し、化成処理層に過剰なむらを誘発する。
より高いバリア性を得るために、化成処理液中のジルコニウムイオン濃度が、500ppm以上であることが好ましく、1500ppm以上であることが好ましい。また、ジルコニウムイオン濃度が低下するとともに、化成処理層のむらの大きさが低下し、化成処理層が破壊する際の変形量が大きくなる。そのため、化成処理液中のジルコニウムイオン濃度は、9500ppm以下であることが好ましく、9000ppm以下であることがより好ましい。
また、化成処理液中のふっ化物イオン濃度は、100ppm~10000ppmである。ふっ化物イオンは、ジルコニウムイオン(IV)と安定な錯体を形成して化成処理液中のジルコニウムイオン(IV)を安定にする。加えて、ふっ化物イオンは、めっき鋼板の濡れ性および親液性を向上させ、めっき鋼板の表面が適度に活性化される。ふっ化物イオン濃度が100ppm未満の場合には、ふっ化物イオンとジルコニウムイオン(IV)との錯体が化成処理液中に十分に形成されず、十分な量の安定なジルコニウムイオン(IV)を得ることができない。
一方、ふっ化物イオンが10000ppmを超える場合には、ふっ化物イオンとジルコニウムイオン(IV)とが錯体を形成することによってジルコニウムイオン(IV)が過度に安定化する。通常、陰極電解によってめっき鋼板表面近傍のpHが増加し、このpHの増加によって錯体の加水分解が進行する。しかしながら、錯体が過度に安定化していると、加水分解の速度が低下する。そのため、陰極電解処理時の陰極電流密度及び電解時間に対するZr量の応答性が著しく低下し、陰極電解に要する時間が著しく長くなる。さらに、陰極電解を長時間行うと、化成処理層に過剰なむらを誘発する場合がある。
より高い量の酸化ジルコニウムを含む化成処理層を安定的に得るために、化成処理液中のふっ化物イオンの濃度が、500ppm以上であることが好ましく、1500ppm以上であることが好ましい。また、めっき鋼板の外観によりよくするために、ふっ化物イオンの濃度が、9500ppm以下であることが好ましく、9000ppm以下であることがより好ましい。
また、化成処理液中のりん酸イオン濃度は、100ppm~3000ppmである。りん酸イオン濃度が100ppm~3000ppmであると、十分な量のりん酸基を含有する化成処理層を得ることができる。りん酸イオン濃度が100ppm未満では、十分な量のりん酸基を含有する化成処理層を得ることができない。すなわち、陽極電解処理の際にSnめっき層から溶出したSnイオンとりん酸イオンとを反応させ、めっき鋼板の表面にりん酸錫を付与するためには、りん酸イオン濃度が100ppm以上必要である。りん酸イオン濃度が3000ppmを超える場合、化成処理液中にジルコニウムイオンとりん酸イオンとからなると考えられる不溶物が生成しやすくなる場合がある。そのため、不溶物が化成処理液を汚染すると同時に有効なジルコニウムイオン、りん酸イオンが減少する場合がある。
より高い量のりん酸錫を含む化成処理層を安定的に得るために、化成処理液中のりん酸イオンの濃度が、300ppm以上であることが好ましく、1000ppm以上であることがより好ましい。また、化成処理層中のP量をより最適に制御したり、化成処理液をより効率よく利用したりするために、りん酸イオンの濃度が、2800ppm以下であることが好ましく、2500ppm以下であることがより好ましい。
また、化成処理液中の硝酸イオン濃度は、100ppm~30000ppmである。硝酸イオン濃度が100ppm~30000ppmであると、陽極電解処理及び陰極電解処理に必要な導電率を維持することができ、めっき鋼板の表面に化成処理皮膜を形成することができる。硝酸イオン濃度が100ppm未満では、電解処理に必要な導電率が得られず化成処理皮膜が形成されない。また、硝酸イオン濃度が30000ppmを超える場合は、微小な電流でも化成処理皮膜が形成される。そのため、局部成長等を抑制できるように化成処理皮膜の生成速度を制御するのが困難である。
より効率よく電流を使用するために、化成処理液中の硝酸イオン濃度は、500ppm以上であることが好ましく、2000ppm以上であることがより好ましい。また、化成処理皮膜のむらの大きさをより低下させるために、化成処理液中の硝酸イオン濃度は、25000ppm以下であることが好ましく、22000ppm以下であることがより好ましい。
さらに、化成処理液のpHは、3以上であることが好ましい。化成処理液のpHが3以上であると、陰極電解時にめっき鋼板の表面近傍のpHが増加する際にふっ化物イオンとジルコニウムイオン(IV)とによって形成された錯体の加水分解が促進されやすい。また、化成処理液のpHは、4以下であることが好ましい。化成処理液のpHが4以下であると、ふっ化物イオンとジルコニウムイオン(IV)とによって形成された錯体を安定的に得ることができる。また、化成処理液のpHが4以下であると、化成処理液中に酸化ジルコニウム(IV)が生じてジルコニウムイオン(IV)の量が低下することを防ぐことができる。そのため、化成処理液のpHは、3~4であることが好ましい。なお、pHを下げる場合には、硝酸を用いるとよく、pHを上げる場合には、アンモニア水を用いるとよい。
また、電解処理時の化成処理液の温度は20℃~60℃である。この温度域では、ふっ化物イオンとジルコニウムイオン(IV)とによって形成された錯体が化成処理液中で安定する。なお、20℃未満の温度では、ジルコニウムイオンとりん酸イオンから成ると考えられる不溶物が化成処理液中に生成されやすい。60℃超の温度では、ふっ化物イオンとジルコニウムイオン(IV)とによって形成された錯体が化成処理液中で不安定となる。また、化成処理液が蒸発しやすいため、化成処理液を長期使用することができない。
本方法の最も大きな特徴は、一つの浴(一種類の化成処理液)中で、陽極電解処理と陰極電解処理をこの順に行って、めっき鋼板の表面にりん酸錫と酸化ジルコニウム(IV)とを含む化成処理層とを形成することである。
次に、電解処理の条件について説明する。化成処理層中のP量及びZr量は、電解処理条件だけでなく、電解処理前のめっき鋼板の表面性状等によっても変動するため、以下の条件に限定されない。但し、めっき鋼板の表面性状等の影響を避けつつ安定的に所定のP量とZr量とが得られるように、以下の条件を選択すると好ましい。
めっき金属層の表面近くの酸化物(例えば、リフロー処理によってSnめっきの表面近くに生じた錫酸化物)を還元するために、場合により、陽極電解処理の前に陰極電解処理を前処理として追加しても良い。この前処理(陰極電解処理)では、陰極電流密度が0.1~10A/dm2であり、通電量が1~10C/dm2であると好ましい。陰極電流密度が0.1A/dm2以上であると、リフロー処理で生じた酸化錫を十分に還元することができる。
一方、この前処理における陰極電流密度が10A/dm2以下であると、りん酸錫の生成を阻害する物質がめっき鋼板の表面に付着するのをより確実に防ぐことができる。このような物質の量を減らすために、陰極電流密度が1A/dm2であることが好ましい。通電量が1C/dm2以上であると、リフロー処理で生じた酸化錫を十分に還元することができる。一方、通電量が10C/dm2以下であると、リフロー処理で生じた酸化錫を効率良く還元することができるだけでなく、酸化ジルコニウム(IV)も生成しにくい。陽極電解処理の前に陰極電解処理による前処理を行っても、Snめっき中のSnを溶出させることができないので、りん酸錫は形成されない。
陽極電解処理は、錫めっきをゆっくりと化成処理液中に溶解させて生じたSnイオンを化成処理液中のりん酸イオンと結合させることにより、りん酸錫をめっき鋼板表面に付与する工程である。陽極電解処理では、陽極電流密度が0.1A/dm2~2A/dm2であり、通電量が0.1C/dm2~2C/dm2であると好ましい。陽極電流密度が0.1A/dm2以上であると、十分に速い速度でSnを溶解させることができ、めっき鋼板に十分な耐食性を付与するのに十分な量のりん酸錫を適切な時間内に得ることができる。
一方、陽極電流密度が2A/dm2以下であると、錫を十分に安定した速度で溶解させることができるので、密でタフなりん酸錫が生成する。そのため、化成処理層がりん酸錫の凝集によって破壊されにくく、めっき鋼板に十分な耐食性を安定的に付与することができる。通電量が0.1C/dm2以上であると、十分な量のりん酸錫をめっき鋼板の表面に付着させることができる。一方、通電量が2C/dm2以下であると、Snめっき層から大量のSnが溶出するのを防止することができ、バリア型防食に有効なSnめっき層を十分に維持することができる。
陽極電解処理の後に陰極電解処理を行い、酸化ジルコニウム(IV)をりん酸錫が生成しためっき鋼板の表面上に形成する。この陰極電解処理では、陰極電流密度が1~20A/dm2であり、通電量が5~50C/dm2であると好ましい。陰極電流密度が1A/dm2以上であると、陰極の表面近傍のpHが十分に上昇し、十分な速度で酸化ジルコニウム(IV)を生成させることができるので、生産性が高い。
一方、陰極電流密度が20A/dm2以下であると、局所的に電流密度が高くなる領域が発生したり、水素ガスが発生したりするのを防止することができるので、酸化ジルコニウム(IV)が不均一となる要因をより確実に排除することができる。通電量が5C/dm2以上であると、十分な耐食性を得るのに十分な酸化ジルコニウム(IV)の量を安定的に確保することができる。一方、通電量が50C/dm2以下であると、化成処理液中で化成処理層が剥離してしまうことを防止することができる。また、短時間で効率よく酸化ジルコニウム(IV)を生成できるので、より経済的に高い生産性で酸化ジルコニウム(IV)の量を制御できる。
化成処理層中のP量、Zr量および比率P/Zrは、化成処理液の組成及び温度と陽極電解の条件と、陰極電解の条件とにより制御できる。本実施形態では、化成処理層中のPは、主にりん酸錫に由来する。一方、本実施形態では、化成処理層中のZrは、主に酸化ジルコニウム(IV)に由来する。P量(主にりん酸錫)とZr量(主に酸化ジルコニウム(IV))とを制御すれば比率P/Zrを制御できる。具体的には、化成処理層中のP量が3~20mg/m2の範囲内、化成処理層中のZr量が5~30mg/m2の範囲内、P量とZr量の比率P/Zrが0.35~1.00の範囲内になるように、陽極電解処理工程の陽極電解処理の条件と陰極電解処理工程の陰極電解処理の条件を制御する。
化成処理層中のP量を増加させるためには、例えば、化成処理液中のりん酸イオン濃度や硝酸イオン濃度、陽極電解の電流密度や通電量を上記の範囲内で増やす。
化成処理層中のZr量を増加させるためには、例えば、化成処理液中のジルコニウムイオン濃度や硝酸イオン濃度、陰極電解の電流密度や通電量を上記の範囲内で増やす。
化成処理層中のZr量を増加させるためには、例えば、化成処理液中のジルコニウムイオン濃度や硝酸イオン濃度、陰極電解の電流密度や通電量を上記の範囲内で増やす。
本実施形態における製造工程を一貫で説明する。必要に応じて、原板である鋼板の表面に付着した油分及びスケールを除去する(洗浄工程)。次いで、必要に応じて、鋼板の表面にNi系めっきを施す(プレめっき工程)。次いで、鋼板の表面にSnをめっきする(電気Snめっき工程)。次いで、必要に応じて、Snめっき層中のSnを溶融させ、水冷により凝固させる(リフロー工程)。次いで、電解処理(陽極電解処理後、陰極電解処理)によってSnめっき層上に化成処理層を形成する(化成処理工程)。最後に、必要に応じて、化成処理層の表面に防錆油を塗布する。図6に製造工程の順序の概略を、図7に化成処理工程の順序の概略を示す。これら図6及び図7において、破線で囲まれた工程は必要に応じて実施される工程(必要に応じてスキップできる工程)を示し、実線で囲まれた工程は必須の工程であることを示す。
以下、本発明に係る実施例を説明する。
板厚が0.18mmであり、調質度がT-4CAである鋼帯を鋼板(原板)として使用した。この鋼帯は、低炭素冷延鋼帯を連続焼鈍し、次いで、調質圧延して得られている。めっき前に、鋼帯を10mass%水酸化ナトリウム溶液中で電解脱脂した後、5mass%希硫酸で鋼帯を酸洗した。
一部の鋼帯には、Fe-Ni合金めっき、又は、Niめっきを施した。Niめっきを施した鋼帯の一部には、焼鈍によりNiを鋼帯中に拡散させて、Fe-Ni合金層を形成させた。
次いで、フェロスタン浴を用いて鋼帯に対し電気錫めっきを施した。錫イオンを20g/L、フェノールスルホン酸イオンを75g/L、界面活性剤を5g/L含む50℃の錫めっき液中で、陰極電流密度20A/dm2で鋼帯の表面を陰極電解した。陽極には、白金めっきしたチタンを用いた。電解時間を調節して錫めっきの量を2.8g/m2に調節した。錫めっき後、上記の錫めっき液を10倍に希釈した溶液中に錫めっき鋼板を浸漬し、ゴムロールで錫めっき鋼板の表面に付着した液体を除去した。その後、錫めっき鋼板を冷風で乾燥した。さらに、通電加熱によって10秒間で室温から250℃まで錫めっき鋼板を加熱して錫をリフローさせた。錫がリフローした後直ちに錫めっき鋼板を80℃の水でクエンチした。
引き続き、前述のSnめっき鋼板上に化成処理皮膜を表1~5に示す条件で形成した。表1~5中の「プレめっき」及び「電解パターン」の項目について、「-」は、対応する処理を行わなかったことを示す。また、「電解パターン」の項目では、左から右に向けて電解処理を順に行った。得られた化成処理皮膜付きのめっき鋼板を以下のように評価した。また、化成処理液のpHは、3.8に調整した。
<化成処理皮膜の分析用試料>
化成処理皮膜の分析用試料を、めっき鋼板の板幅方向におけるエッジの各々から板幅の1/4の距離だけ離れた位置(2ヶ所)と、めっき鋼板の板幅の中心(1ヶ所)とから採取した。また、この採取位置は、めっき鋼板の圧延方向のエッジから1m以上離れていた。
化成処理皮膜の分析用試料を、めっき鋼板の板幅方向におけるエッジの各々から板幅の1/4の距離だけ離れた位置(2ヶ所)と、めっき鋼板の板幅の中心(1ヶ所)とから採取した。また、この採取位置は、めっき鋼板の圧延方向のエッジから1m以上離れていた。
<化成処理皮膜の分析方法>
Zr及びPの量を蛍光X線元素分析法にて測定した。検量線の作成には、予めICP発光分析装置でZr量及びP量を測定しておいた既知のサンプルを使用した。測定面積は、20mmΦであった。また、XPSにて深さ方向に元素の存在状態を分析した。XPSでは、ULVAC-PHI社製Quantum2000を使用した。測定条件は、以下の通りである。
X線源 :AlKα
X線出力:15kV、25W
測定面積:100μmΦ
真空度 :2.1×10-7Pa
スパッタ速度:17.6nm/分(SiO2換算のスパッタ速度)
Zr及びPの量を蛍光X線元素分析法にて測定した。検量線の作成には、予めICP発光分析装置でZr量及びP量を測定しておいた既知のサンプルを使用した。測定面積は、20mmΦであった。また、XPSにて深さ方向に元素の存在状態を分析した。XPSでは、ULVAC-PHI社製Quantum2000を使用した。測定条件は、以下の通りである。
X線源 :AlKα
X線出力:15kV、25W
測定面積:100μmΦ
真空度 :2.1×10-7Pa
スパッタ速度:17.6nm/分(SiO2換算のスパッタ速度)
更に、FE-EPMAでめっき鋼板の表面の一辺200μmの正方形の領域におけるZrの強度レベルを1μmピッチで測定し、この強度レベルをマッピングした(200×200の40,000点)。このマッピングデータから、Zrの平均強度レベル及びZrの平均強度レベルの50%以下のZrの強度レベルを有する領域の面積率を求めた。表1及び表2における「低Zr領域の面積率」は、Zrの平均強度レベルの50%以下のZrの強度レベルを有する領域の面積率を示す。
<耐食性の試験方法>
<塗装なしの耐食性>
耐食性試験液には、0.1%チオ硫酸ナトリウム水溶液と0.1N硫酸を体積比1:2に混合した水溶液を用いた。めっき鋼板から直径35mmの円形試験片を切り出し、耐食性試験液を入れた耐熱瓶の口にその試験片を乗せ固定した。この耐熱瓶に対して121℃で60分の熱処理を行った後、試験片の腐食面積を測定した。耐熱瓶の口の面積に対する試験片の腐食面積の割合から耐食性を評価した。耐熱瓶の口の面積は、試験片が耐食性試験液に触れる面積を意味する。
<塗装なしの耐食性>
耐食性試験液には、0.1%チオ硫酸ナトリウム水溶液と0.1N硫酸を体積比1:2に混合した水溶液を用いた。めっき鋼板から直径35mmの円形試験片を切り出し、耐食性試験液を入れた耐熱瓶の口にその試験片を乗せ固定した。この耐熱瓶に対して121℃で60分の熱処理を行った後、試験片の腐食面積を測定した。耐熱瓶の口の面積に対する試験片の腐食面積の割合から耐食性を評価した。耐熱瓶の口の面積は、試験片が耐食性試験液に触れる面積を意味する。
この腐食面積の割合に応じて耐食性を1~5点の評点で評価した。この評点が大きくなるほど、腐食面積が小さくなる。評点が3点以上である鋼帯を良好な耐食性を有するめっき鋼板とみなした。
<塗装ありの耐食性>
缶内面に相当する面における評価材(めっき鋼板)の耐食性を評価するために、UCC(アンダーカッティング・コロージョン)試験を行った。めっき鋼板の表面にエポキシフェノール系塗料を、50mg/dm2塗布し、205℃で10分間焼き付けた。さらに、180℃で10分間の追い焼きを行った。この塗装板から50mm×50mmの大きさの試料を切出した。カッターの刃が地鉄に達するようなクロスカット(グリッド状の切れ込み)を試料表面の塗膜に入れ、試料の端面及び裏面を塗料でシールした。その後、この試料を、1.5%くえん酸と1.5%塩化ナトリウムとからなる55℃の試験液中に、大気開放下で96時間浸漬した。試料に対し水洗と乾燥とを行った後速やかに、カット部近傍及び平面部を含むように試料にテープを貼り、試料からテープを剥がした。その後、耐食性を評価するために、カット部近傍及び平面部を観察し、カット部近傍にピッティング腐食があるかどうかと、平面部の塗膜が剥がれているかどうかを確認した。
缶内面に相当する面における評価材(めっき鋼板)の耐食性を評価するために、UCC(アンダーカッティング・コロージョン)試験を行った。めっき鋼板の表面にエポキシフェノール系塗料を、50mg/dm2塗布し、205℃で10分間焼き付けた。さらに、180℃で10分間の追い焼きを行った。この塗装板から50mm×50mmの大きさの試料を切出した。カッターの刃が地鉄に達するようなクロスカット(グリッド状の切れ込み)を試料表面の塗膜に入れ、試料の端面及び裏面を塗料でシールした。その後、この試料を、1.5%くえん酸と1.5%塩化ナトリウムとからなる55℃の試験液中に、大気開放下で96時間浸漬した。試料に対し水洗と乾燥とを行った後速やかに、カット部近傍及び平面部を含むように試料にテープを貼り、試料からテープを剥がした。その後、耐食性を評価するために、カット部近傍及び平面部を観察し、カット部近傍にピッティング腐食があるかどうかと、平面部の塗膜が剥がれているかどうかを確認した。
テープによる塗膜の剥離も腐食も認められなかった試料には、評点として4点(非常に良好)を与えた。テープによって塗膜が剥離した領域がカット部から0mm以上かつ0.2mm未満である試料と目視で確認できない僅かな腐食のみが認められた試料には、評点として3点(良好)を与えた。テープによって塗膜が剥離した領域がカット部から0.2mm以上かつ0.5mm以下である試料と目視で腐食が認められた試料には、評点として2点(やや不良)を与えた。テープによって塗膜が剥離した領域がカット部から0.5mm超である試料には、評点として1点(不良)を与えた。評点が3点以上である鋼帯を良好な耐食性を有するめっき鋼板とみなした。
<塗膜密着性(Tピール試験)>
めっき鋼板に、エポキシフェノール系塗料を5g/m2塗布し、最高到達温度が180℃となるように焼付けた。このめっき鋼板から、5mm×100mmの大きさの試験片を2枚切出した。この2枚の試験片の間に5mm×90mm×0.05mmの大きさのナイロン接着フィルムを挟み、加熱と圧力とにより試験片の塗装面とナイロン接着フィルムを接着した。結果として、2つの試験片の長手方向の端部にナイロン接着フィルムがない領域が残った。これら領域の各々が試験片の長手方向(ナイロン接着フィルムの長手方向)と直角になるように、かつ、試験片の幅方向(ナイロン接着フィルムの幅方向)に垂直な断面において試験片がT字形状を形成するように、それら領域を曲げた。その領域を引張試験機のチャックでつかみ、200mm/minで引張って剥離強度(Tピール強度)を測定した。このTピール強度は、試験片の幅5mm当たりの強度である。Tピール強度が4kgf(4kg/5mm)を超える場合には、めっき鋼板の塗膜密着性が高いと決定した。一方で、Tピール強度が4kgf(4kg/5mm)以下である場合には、めっき鋼板の塗膜密着性が低いと決定した。
めっき鋼板に、エポキシフェノール系塗料を5g/m2塗布し、最高到達温度が180℃となるように焼付けた。このめっき鋼板から、5mm×100mmの大きさの試験片を2枚切出した。この2枚の試験片の間に5mm×90mm×0.05mmの大きさのナイロン接着フィルムを挟み、加熱と圧力とにより試験片の塗装面とナイロン接着フィルムを接着した。結果として、2つの試験片の長手方向の端部にナイロン接着フィルムがない領域が残った。これら領域の各々が試験片の長手方向(ナイロン接着フィルムの長手方向)と直角になるように、かつ、試験片の幅方向(ナイロン接着フィルムの幅方向)に垂直な断面において試験片がT字形状を形成するように、それら領域を曲げた。その領域を引張試験機のチャックでつかみ、200mm/minで引張って剥離強度(Tピール強度)を測定した。このTピール強度は、試験片の幅5mm当たりの強度である。Tピール強度が4kgf(4kg/5mm)を超える場合には、めっき鋼板の塗膜密着性が高いと決定した。一方で、Tピール強度が4kgf(4kg/5mm)以下である場合には、めっき鋼板の塗膜密着性が低いと決定した。
結果として、一部のめっき鋼板では、Tピール強度が2~4kgfであり、残りのめっき鋼板では、Tピール強度が6kgf以上であった。2~4kgfのTピール強度を有するめっき鋼板では、一方の試験片の剥離面がくすんだ金属光沢を有し、他方の試験片の剥離面が塗膜で覆われていた。これら試験片の剥離面を電子線マイクロアナライザー(EPMA)により分析したところ、両試験片においてZrが検出された。すなわち、2~4kgfのTピール強度を有するめっき鋼板は、化成処理皮膜の凝集破壊により塗膜密着性が低下していた。一方、6kgf以上のTピール強度を有するめっき鋼板では、両方の試験片の剥離面がともに塗膜で覆われていた。これら試験片の剥離面を電子線マイクロアナライザー(EPMA)により分析したところ、両試験片においてZrが検出されなかった。このことは、化成処理皮膜に凝集破壊が生じていないことを意味している。
表1に、化成処理液の組成がめっき鋼板の耐食性へ与える影響を示す。表2に、化成処理液の温度がめっき鋼板の耐食性へ与える影響を示す。表3~5に、電解処理条件がめっき鋼板の耐食性へ与える影響を示す。なお、表1及び2の「低Zr領域の面積率」、「耐食性」の項目について、「-」は、化成処理層を形成できなかった(化成処理液中に沈殿物が生じて化成処理液が安定でなかった)ため対応する項目を評価しなかったことを示す。また、表4の「Zr量」、「P/Zr」の項目について、「ND」は、Zrが検出できなかったことを示し、「-」は、P/Zrの値が計算できないことを示す。
表1~5から、発明例では、めっき鋼板が優れた耐食性を有することが明らかである。また、XPSによる測定結果から、発明例の条件全てにおいて、化成処理層がりん酸Sn(りん酸錫)と酸化ジルコニウム(IV)とを含んでいた。また、発明例の一部では、化成処理層に2つの層が明確に認められた。一方、比較例では、めっき鋼板の耐食性が不十分であった。これら比較例のうち、条件71では、陽極電解処理を行わなかったので、化成処理層中にりん酸Snが認められなかった。条件72では、陰極電解処理を行わなかったので、化成処理層中に酸化ジルコニウム(IV)のようなジルコニウム化合物が認められなかった。これら条件71及び条件72ともに、化成処理層に2つの層が認められなかった。
また、表6に、特許文献2の鋼板8と同一の製造条件で製造しためっき鋼板(条件82)の耐食性を示す。この条件82では、めっき鋼板に塗装がある場合には、十分な耐食性が得られた。しかしながら、めっき鋼板に塗装がない場合に条件82のめっき鋼板は十分な耐食性を有していなかった。また、この条件82では、化成処理層中にりん酸Snが認められなかった。
さらに、表7及び表8に、特許文献4の実施例9や実施例27、比較例9と類似の製造条件で製造しためっき鋼板(条件83及び84)の耐食性と塗膜密着性とを示す。すなわち、りん酸塩水溶液が入ったある浴中で陰極電解処理を行い、次いでジルコニウムイオンを含む水溶液が入った別の浴中で陽極電解処理を行って、化成処理層を形成した。また、特許文献4の実施例9及び実施例27における条件を適宜変更して、化成処理層中のP量、Zr量を変更した。これら条件83及び84では、めっき鋼板に塗装がある場合、めっき鋼板に塗装がない場合のどちらでも十分な耐食性が得られなかった。また、Tピール試験によって評価された塗膜密着性も十分でなかった。一方、表1~4の発明例の条件全てにおいて、十分な塗膜密着性が得られた。表9に、発明例のめっき鋼板から得られた塗膜密着性の結果の一部を示す。
本発明は、極めて良好な耐食性を具備しためっき鋼板及びその製造方法が提供するので、本発明の産業上の利用可能性は明らかである。
1 めっき鋼板
2 鋼板
3 めっき金属層
3a Snめっき層
3b 合金層(合金化層)
4 化成処理層(化成処理皮膜)
4a 第1の化成処理層(第1の化成処理皮膜)
4b 第2の化成処理層(第2の化成処理皮膜)
2 鋼板
3 めっき金属層
3a Snめっき層
3b 合金層(合金化層)
4 化成処理層(化成処理皮膜)
4a 第1の化成処理層(第1の化成処理皮膜)
4b 第2の化成処理層(第2の化成処理皮膜)
Claims (16)
- 鋼板と、
Snめっき層を含むめっき金属層と、
化成処理層と
を備え、
前記めっき金属層は、前記鋼板の表面上に存在し、
前記化成処理層は、前記Snめっき層の表面上に存在し、
前記化成処理層では、P量が3~20mg/m2であり、Zr量が5mg/m2超かつ30mg/m2以下であり、
前記P量と前記Zr量の比率P/Zrが0.35~1.00であり、
前記化成処理層は、りん酸錫と酸化ジルコニウム(IV)とを含む
ことを特徴とするめっき鋼板。 - 前記化成処理層では、電界放出型電子線マイクロアナライザーのマッピング分析によって得られたZrの平均強度の50%以下の強度を有する面積率が0.1~10%である
ことを特徴とする請求項1に記載のめっき鋼板。 - 前記Snめっき層は、前記鋼板の表面上に存在する
ことを特徴とする請求項1または2に記載のめっき鋼板。 - 前記めっき金属層は、合金層をさらに備え、
この合金層は、前記鋼板の表面上に存在し、
前記Snめっき層は、前記合金層の表面上に存在し、
前記合金層は、Sn、Niからなる群から選択される少なくとも1種の化学元素と、Feとを含む
ことを特徴とする請求項1または2に記載のめっき鋼板。 - 前記合金層は、FeSn2相、Ni3Sn4相、Fe-Ni系におけるα相、Fe-Ni系におけるγ相からなる群から選択される少なくとも1種の合金を含む
ことを特徴とする請求項4に記載のめっき鋼板。 - 前記Zr量が6mg/m2以上である
ことを特徴とする請求項1~5のいずれか一項に記載のめっき鋼板。 - 前記Zr量が8mg/m2以上である
ことを特徴とする請求項1~5のいずれか一項に記載のめっき鋼板。 - 鋼板にSnをめっきするSnめっき工程と;
前記Snめっき工程後、化成処理液中で前記鋼板に対して陽極電解処理を行う陽極電解処理工程と;
前記陽極電解処理工程後、前記化成処理液中で前記鋼板に対して陰極電解処理を行う陰極電解処理工程と;
を含み、
前記化成処理液は、100ppm~10000ppmのジルコニウムイオンと、100ppm~10000ppmのふっ化物イオンと、100ppm~3000ppmのりん酸イオンと、100ppm~30000ppmの硝酸イオンとを含み、前記化成処理液の温度が20℃~60℃であり、
化成処理層中のP量が3~20mg/m2の範囲内、前記化成処理層中のZr量が5~30mg/m2の範囲内、前記P量と前記Zr量の比率P/Zrが0.35~1.00の範囲内になるように前記陽極電解処理工程の前記陽極電解処理の条件と前記陰極電解処理工程の前記陰極電解処理の条件を制御する
ことを特徴とするめっき鋼板の製造方法。 - 前記Snめっき工程の前に、Ni、Fe-Niからなる群から選択される少なくとも一種の金属を前記鋼板にめっきするNi含有めっき工程をさらに含む
ことを特徴とする請求項8に記載のめっき鋼板の製造方法。 - 前記陽極電解処理工程を行う前に、前記化成処理液中で前記鋼板に対して陰極電解処理を行う前処理電解工程をさらに含む
ことを特徴とする請求項8又は9に記載のめっき鋼板の製造方法。 - 前記前処理電解工程では、前記陰極電解処理中の電流密度が0.1~10A/dm2であり、前記陰極電解処理による通電量が1~10C/dm2である
ことを特徴とする請求項10に記載のめっき鋼板の製造方法。 - 前記陽極電解処理工程では、前記陽極電解処理中の電流密度が0.1A/dm2~2A/dm2であり、前記陽極電解処理による通電量が0.1C/dm2~2C/dm2である
ことを特徴とする請求項8~11のいずれか一項に記載のめっき鋼板の製造方法。 - 前記陰極電解処理工程では、前記陰極電解処理中の電流密度が1~20A/dm2であり、前記陰極電解処理による通電量が5~50C/dm2である
ことを特徴とする請求項8~12のいずれか一項に記載のめっき鋼板の製造方法。 - 前記Zr量が6mg/m2以上である
ことを特徴とする請求項8~13のいずれか一項に記載のめっき鋼板。 - 前記Zr量が8mg/m2以上である
ことを特徴とする請求項8~13のいずれか一項に記載のめっき鋼板。 - 前記化成処理液のpHが3~4である
ことを特徴とする請求項8~15のいずれか一項に記載のめっき鋼板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016537590A JP6146541B2 (ja) | 2014-11-10 | 2015-10-16 | めっき鋼板およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-228436 | 2014-11-10 | ||
JP2014228436 | 2014-11-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016076073A1 true WO2016076073A1 (ja) | 2016-05-19 |
Family
ID=55954165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/079375 WO2016076073A1 (ja) | 2014-11-10 | 2015-10-16 | めっき鋼板およびその製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6146541B2 (ja) |
TW (1) | TWI563099B (ja) |
WO (1) | WO2016076073A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018135569A (ja) * | 2017-02-22 | 2018-08-30 | 新日鐵住金株式会社 | Snめっき鋼板及びSnめっき鋼板の製造方法 |
JP2018135570A (ja) * | 2017-02-22 | 2018-08-30 | 新日鐵住金株式会社 | Sn系合金めっき鋼板及びSn系合金めっき鋼板の製造方法 |
KR20190125457A (ko) * | 2017-04-13 | 2019-11-06 | 닛폰세이테츠 가부시키가이샤 | Sn 도금 강판 및 Sn 도금 강판의 제조 방법 |
KR20200044915A (ko) * | 2017-11-01 | 2020-04-29 | 닛폰세이테츠 가부시키가이샤 | 전기 Sn 도금 강판 |
CN113710831A (zh) * | 2019-04-23 | 2021-11-26 | 杰富意钢铁株式会社 | 表面处理钢板的制造方法和表面处理钢板 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009256726A (ja) * | 2008-04-16 | 2009-11-05 | Nippon Steel Corp | 缶用めっき鋼板及びその製造方法 |
JP2010180452A (ja) * | 2009-02-05 | 2010-08-19 | Nippon Steel Corp | 缶用めっき鋼板及びその製造方法 |
JP2010242182A (ja) * | 2009-04-07 | 2010-10-28 | Nippon Steel Corp | 缶用めっき鋼板 |
JP2010261068A (ja) * | 2009-04-30 | 2010-11-18 | Jfe Steel Corp | 錫めっき鋼板およびその製造方法 |
US20110300402A1 (en) * | 2010-06-04 | 2011-12-08 | Akira Tachiki | Steel sheet for container use and method of production of same |
JP2012062519A (ja) * | 2010-09-15 | 2012-03-29 | Jfe Steel Corp | 容器用鋼板 |
JP2012062521A (ja) * | 2010-09-15 | 2012-03-29 | Jfe Steel Corp | 容器用鋼板の製造方法 |
JP2012062520A (ja) * | 2010-09-15 | 2012-03-29 | Jfe Steel Corp | 容器用鋼板およびその製造方法 |
JP2012062518A (ja) * | 2010-09-15 | 2012-03-29 | Jfe Steel Corp | 容器用鋼板の製造方法 |
JP2013237922A (ja) * | 2011-09-05 | 2013-11-28 | Jfe Steel Corp | 容器用鋼板 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11264075A (ja) * | 1998-03-17 | 1999-09-28 | Nippon Parkerizing Co Ltd | スズめっきスチール製表面処理缶およびスズめっきスチール製缶の表面処理方法 |
KR100993431B1 (ko) * | 2006-03-29 | 2010-11-09 | 신닛뽄세이테쯔 카부시키카이샤 | 용기용 강판 |
JP5469556B2 (ja) * | 2010-07-16 | 2014-04-16 | 日新製鋼株式会社 | 化成処理めっき鋼板およびその製造方法 |
JP5808626B2 (ja) * | 2011-09-14 | 2015-11-10 | 日新製鋼株式会社 | 化成処理めっき鋼板およびその製造方法 |
JP6040716B2 (ja) * | 2012-11-09 | 2016-12-07 | Jfeスチール株式会社 | 処理液、容器用鋼板、および、容器用鋼板の製造方法 |
-
2015
- 2015-10-16 JP JP2016537590A patent/JP6146541B2/ja active Active
- 2015-10-16 TW TW104134057A patent/TWI563099B/zh not_active IP Right Cessation
- 2015-10-16 WO PCT/JP2015/079375 patent/WO2016076073A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009256726A (ja) * | 2008-04-16 | 2009-11-05 | Nippon Steel Corp | 缶用めっき鋼板及びその製造方法 |
JP2010180452A (ja) * | 2009-02-05 | 2010-08-19 | Nippon Steel Corp | 缶用めっき鋼板及びその製造方法 |
JP2010242182A (ja) * | 2009-04-07 | 2010-10-28 | Nippon Steel Corp | 缶用めっき鋼板 |
JP2010261068A (ja) * | 2009-04-30 | 2010-11-18 | Jfe Steel Corp | 錫めっき鋼板およびその製造方法 |
US20110300402A1 (en) * | 2010-06-04 | 2011-12-08 | Akira Tachiki | Steel sheet for container use and method of production of same |
JP2012062519A (ja) * | 2010-09-15 | 2012-03-29 | Jfe Steel Corp | 容器用鋼板 |
JP2012062521A (ja) * | 2010-09-15 | 2012-03-29 | Jfe Steel Corp | 容器用鋼板の製造方法 |
JP2012062520A (ja) * | 2010-09-15 | 2012-03-29 | Jfe Steel Corp | 容器用鋼板およびその製造方法 |
JP2012062518A (ja) * | 2010-09-15 | 2012-03-29 | Jfe Steel Corp | 容器用鋼板の製造方法 |
JP2013237922A (ja) * | 2011-09-05 | 2013-11-28 | Jfe Steel Corp | 容器用鋼板 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018135569A (ja) * | 2017-02-22 | 2018-08-30 | 新日鐵住金株式会社 | Snめっき鋼板及びSnめっき鋼板の製造方法 |
JP2018135570A (ja) * | 2017-02-22 | 2018-08-30 | 新日鐵住金株式会社 | Sn系合金めっき鋼板及びSn系合金めっき鋼板の製造方法 |
KR20190125457A (ko) * | 2017-04-13 | 2019-11-06 | 닛폰세이테츠 가부시키가이샤 | Sn 도금 강판 및 Sn 도금 강판의 제조 방법 |
EP3611292A4 (en) * | 2017-04-13 | 2020-12-09 | Nippon Steel Corporation | TINNED STEEL SHEET AND TINNED STEEL SHEET MANUFACTURING PROCESS |
US11021806B2 (en) | 2017-04-13 | 2021-06-01 | Nippon Steel Corporation | Sn-plated steel sheet and method for manufacturing Sn-plated steel sheet |
KR102303005B1 (ko) * | 2017-04-13 | 2021-09-16 | 닛폰세이테츠 가부시키가이샤 | Sn 도금 강판 및 Sn 도금 강판의 제조 방법 |
KR20200044915A (ko) * | 2017-11-01 | 2020-04-29 | 닛폰세이테츠 가부시키가이샤 | 전기 Sn 도금 강판 |
KR102412968B1 (ko) * | 2017-11-01 | 2022-06-24 | 닛폰세이테츠 가부시키가이샤 | 전기 Sn 도금 강판 |
CN113710831A (zh) * | 2019-04-23 | 2021-11-26 | 杰富意钢铁株式会社 | 表面处理钢板的制造方法和表面处理钢板 |
EP3960900A4 (en) * | 2019-04-23 | 2022-05-18 | JFE Steel Corporation | METHOD FOR PRODUCING SURFACE-TREATED STEEL SHEET, AND SURFACE-TREATED STEEL SHEET |
US11926921B2 (en) | 2019-04-23 | 2024-03-12 | Jfe Steel Corporation | Method of producing surface-treated steel sheet and surface-treated steel sheet |
Also Published As
Publication number | Publication date |
---|---|
TW201619407A (zh) | 2016-06-01 |
JPWO2016076073A1 (ja) | 2017-04-27 |
TWI563099B (en) | 2016-12-21 |
JP6146541B2 (ja) | 2017-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5015239B2 (ja) | 缶用めっき鋼板及びその製造方法 | |
JP5760355B2 (ja) | 容器用鋼板 | |
JP4864493B2 (ja) | 缶用めっき鋼板 | |
JP6146541B2 (ja) | めっき鋼板およびその製造方法 | |
JP5157487B2 (ja) | 容器用鋼板とその製造方法 | |
JP5332836B2 (ja) | 缶用めっき鋼板 | |
JP6658878B2 (ja) | 容器用鋼板 | |
JP6119930B2 (ja) | 容器用鋼板及び容器用鋼板の製造方法 | |
JP4869976B2 (ja) | 缶用めっき鋼板及びその製造方法 | |
JP6540801B2 (ja) | 容器用鋼板及び容器用鋼板の製造方法 | |
JP6119931B2 (ja) | 容器用鋼板及び容器用鋼板の製造方法 | |
JP6583538B2 (ja) | 化成処理鋼板及び化成処理鋼板の製造方法 | |
JP7284372B2 (ja) | 容器用鋼板 | |
WO2023243717A1 (ja) | 錫めっき鋼板および缶 | |
JP5428906B2 (ja) | 塗装性能に優れたスズめっき鋼板 | |
JP6146402B2 (ja) | 容器用鋼板 | |
WO2023195252A1 (ja) | 表面処理鋼板およびその製造方法 | |
JP6135650B2 (ja) | 容器用鋼板 | |
WO2017163299A1 (ja) | 化成処理鋼板及び化成処理鋼板の製造方法 | |
WO2015020053A1 (ja) | 容器用鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016537590 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15859164 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15859164 Country of ref document: EP Kind code of ref document: A1 |