WO2016075892A1 - 液面計及び液体原料気化供給装置 - Google Patents

液面計及び液体原料気化供給装置 Download PDF

Info

Publication number
WO2016075892A1
WO2016075892A1 PCT/JP2015/005498 JP2015005498W WO2016075892A1 WO 2016075892 A1 WO2016075892 A1 WO 2016075892A1 JP 2015005498 W JP2015005498 W JP 2015005498W WO 2016075892 A1 WO2016075892 A1 WO 2016075892A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid level
liquid
chamber
protective tube
raw material
Prior art date
Application number
PCT/JP2015/005498
Other languages
English (en)
French (fr)
Inventor
敦志 日高
正明 永瀬
薫 平田
哲 山下
圭志 平尾
西野 功二
池田 信一
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to US15/525,479 priority Critical patent/US10604840B2/en
Priority to CN201580044670.6A priority patent/CN107003168B/zh
Priority to KR1020177003066A priority patent/KR101930303B1/ko
Publication of WO2016075892A1 publication Critical patent/WO2016075892A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/246Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices
    • G01F23/247Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water

Definitions

  • the present invention relates to a liquid level gauge and a liquid raw material vaporization supply apparatus, and more particularly, to a liquid level gauge for detecting a liquid level and a liquid raw material vaporization supply apparatus including the liquid level gauge.
  • liquid source vaporization and supply apparatuses for supplying a source fluid to semiconductor manufacturing apparatuses using metal organic chemical vapor deposition have been proposed (for example, Patent Documents 1 to 3).
  • This type of liquid source vaporization supply device heats and vaporizes liquid source materials such as TEOS (Tetraethyl orthosilicate) in a vaporization chamber, and controls the vaporized gas to a predetermined flow rate by a flow rate control device and supplies it to a semiconductor manufacturing apparatus. To do. In order to compensate for the decrease in the liquid material due to vaporization of the liquid material, it is necessary to control the liquid level by detecting the liquid level of the liquid material and supplying the reduced amount.
  • TEOS Tetraethyl orthosilicate
  • a pressure detection type liquid level detection device that detects that the liquid material in the vaporizer has decreased due to vaporization by monitoring the pressure decrease in the vaporizer
  • Patent Document 2 a pressure detection type liquid level detection device that detects that the liquid material in the vaporizer has decreased due to vaporization by monitoring the pressure decrease in the vaporizer
  • Patent Documents 4 to 6 etc. thermal liquid level detection devices
  • two protective tubes 3 each enclosing temperature measuring resistors R1 and R2 such as platinum are inserted into a container 21 in the vertical direction.
  • a relatively large constant current I1 heating current
  • I2 ambient temperature measurement current
  • the resistance temperature detector R1 that has passed a large current I1 generates heat.
  • the heat dissipation constant when the resistance temperature detector is in the liquid phase L is the heat dissipation constant when the resistance temperature detector is in the gas phase V. Therefore, the temperature of the resistance temperature detector when it is in the gas phase V becomes higher than that when it is in the liquid phase.
  • the resistance temperature detector in the gas phase has a higher resistance value than the resistance temperature detector in the liquid phase, and therefore, the voltage output of the resistance temperature detector R1 through which a large current flows,
  • the voltage output of the resistance temperature detector R2 through which a minute current flows it is possible to determine whether the resistance temperature detector is above or below the liquid surface. That is, when the difference is small, it can be determined that the resistance temperature detector is below the liquid level, and when the difference is large, the resistance temperature detector is above the liquid level.
  • FIG. 16 is an example of a liquid level detection circuit, and constant temperature is supplied to the resistance temperature detectors R1 and R2 from the power source Vcc via the constant current circuits S1 and S2.
  • a small current having a magnitude that can be ignored while the ambient temperature can be measured flows to the resistance temperature detector R2, and the current resistance R1 has a current value larger than that of the resistance temperature detector R2.
  • the constant current circuit S1 is set so that a larger current flows than the constant current circuit S2 so that a relatively large current flows in order to heat the resistance temperature detector R1 to a high temperature.
  • the terminal voltage V1 of the resistance temperature detector R1 and the terminal voltage V2 of the resistance temperature detector R2 are input to the inverting input and the non-inverting input of the differential amplifier circuit D, respectively.
  • a voltage signal corresponding to the difference voltage V2 (V1-V2) is input to the comparator C.
  • the comparator C compares the reference voltage V3 set by the voltage dividing resistors R3 and R4 with the difference
  • the temperature increase of the resistance temperature detector R1 relative to the ambient temperature is smaller than the temperature increase in the gas phase.
  • the output voltage from the operational amplification circuit D corresponding to the difference from the voltage signal of the magnitude corresponding to the ambient temperature emitted from the resistance temperature detector R2 also in the liquid phase becomes smaller than the reference voltage, and the comparator The output of C becomes low level.
  • the temperature rise with respect to the ambient temperature becomes the temperature rise in the gas phase, so that the temperature measurement resistor R2 is also emitted from the gas phase.
  • the output voltage of the differential amplifier circuit D corresponding to the difference from the voltage signal having a magnitude corresponding to the ambient temperature becomes higher than the reference voltage, and the output of the comparator C becomes high level.
  • the resistance thermometers R1, R2 are in the gas phase, and when the output of the comparator C is low, the resistance thermometers R1, R2 are in the liquid phase. Determined.
  • the resistance values of the resistance temperature detectors R1 and R2 can be obtained from the current values I1 and I2 according to Ohm's law, and if the resistance values of the resistance temperature detectors R1 and R2 are known. If the rate of resistance change with respect to the temperature of the resistance thermometers R1, R2 is known, the temperature of the resistance thermometers R1, R2 can be derived. Therefore, in the liquid level measuring circuit, instead of comparing the voltage outputs of the resistance temperature detectors R1 and R2, it is possible to discriminate by comparing the resistance values of the resistance temperature detectors R1 and R2.
  • the resistance value is 100 ⁇ at 0 ° C., and the resistance value increases by 0.39 ⁇ for every 1 ° C. increase.
  • the pressure detection type liquid level detection device when the pressure decrease in the vaporizer is detected, the liquid raw material in the vaporizer is almost lost, and if the liquid raw material is supplied in an empty state, a flow rate control failure may be caused. .
  • the thermal liquid level detection device can detect the set liquid level height, by detecting the liquid level of the desired height and controlling the liquid supply so as to hold the liquid level at that height, Problems such as the pressure detection type liquid level detection device can be solved.
  • the conventional thermal liquid level detection device has a problem that the detection reaction is slow because detection takes a relatively long time.
  • the detection time for switching from the liquid phase to the gas phase is dependent on the flow rate, and accurate detection is difficult. there were.
  • the main object of the present invention is to provide a thermal liquid level gauge capable of solving the above-mentioned problems in the conventional thermal liquid level detection apparatus, and a liquid raw material vaporization supply apparatus including the liquid level gauge.
  • a liquid level gauge includes a liquid level detection member and a temperature measurement member, and is a liquid level gauge provided in a chamber for storing liquid, wherein the liquid level detection
  • the member includes a protective tube containing a resistance temperature detector, and is disposed horizontally in the chamber.
  • the protective tube of the liquid level detection member may be inserted and fixed in the horizontal direction on the side wall of the chamber.
  • the temperature measuring member may include a protective tube in which a resistance temperature detector is accommodated, and may be disposed horizontally in the chamber.
  • the temperature measuring member may include a protective tube in which a thermocouple, thermistor, or infrared thermometer is accommodated.
  • the temperature measuring member and the liquid level detecting member may be arranged at the same horizontal height.
  • the temperature measured by the temperature measuring member is the temperature measured by the liquid level detecting member by causing a current (heating current) larger than the temperature measuring current to flow through the resistance temperature detector of the liquid level detecting member.
  • the liquid level detection member can be configured to detect whether it exists in the liquid phase part or in the gas phase part.
  • a first current for temperature measurement is passed through the resistance temperature detector of the temperature measurement member, and a second current (heating current) larger than the first current is passed through the resistance temperature detector of the liquid level detection member.
  • the resistance value of each of the resistance temperature detectors may be compared to detect whether the liquid level detection member exists in the liquid phase part or the gas phase part.
  • the temperature measuring member may be arranged below a preset lower limit liquid level, and the liquid level detecting member may be arranged at at least one of the lower limit liquid level and a preset upper limit liquid level.
  • the liquid level meter includes a protective tube that is horizontally disposed in a chamber for storing a liquid raw material and accommodates a resistance temperature detector. By alternately flowing a current having a current value of 1 and a current having a second current value larger than the first current value (heating current), and comparing the resistance value of the resistance temperature detector with respect to each current value , It may be configured to detect whether the protective tube is present in the liquid phase part or in the gas phase part.
  • the liquid level gauge according to the present invention includes a protective tube that is horizontally disposed in a chamber for storing a liquid and that houses a resistance temperature detector, and the resistance temperature detector has a temperature greater than the temperature measurement current. Whether or not the protective tube is in the liquid phase part is determined based on a change in resistance value between when the protective tube is in the liquid phase part and when in the gas phase part. It may be configured to detect whether it is within the phase.
  • At least one or more protective tubes may be passivated.
  • the liquid source vaporizing and supplying apparatus includes a chamber for storing and vaporizing the liquid source, a liquid level detecting member arranged in the chamber, a temperature measuring member for measuring the temperature in the chamber, A flow rate control device for controlling the flow rate of the source gas vaporized in the chamber, and the liquid level detection member is provided with a protective tube containing a resistance temperature detector, and is disposed horizontally in the chamber. .
  • the protective tube is inserted and fixed in a horizontal direction on the side wall of the chamber, and the protective tube includes a flange for fixing to the side wall of the chamber. And a gasket recess for receiving the metal gasket formed on each of the flange and the outer side surface of the chamber side wall, and a metal gasket surrounding the periphery of the protective tube interposed between the outer side surface and the outer side surface of the chamber side wall.
  • An annular protrusion for holding a gasket formed on each of the recesses for the gasket.
  • the protective tube can be screwed and fixed to the chamber.
  • the temperature measurement member includes a protective tube containing a resistance temperature detector or a thermocouple, and is disposed horizontally in the chamber, and the liquid level detection member And the temperature measuring member may be disposed at the same horizontal height.
  • liquid raw material vaporization and supply apparatus may be provided with a vapor shielding plate for shielding vapor rising from the liquid raw material below the protective tube.
  • the steam shield may extend in an inclined manner.
  • the detection time can be shortened by arranging the protective tube of the liquid level detection member horizontally in the chamber. Further, according to the liquid raw material vaporizing and supplying apparatus according to the present invention, the protective tube of the liquid level detecting member is horizontally disposed in the chamber, so that the flow rate dependence is almost not detected in the detection time of switching from the liquid phase to the gas phase. Can be eliminated.
  • FIG. 1 is a partial cross-sectional side view showing a first embodiment of a liquid source vaporizing and supplying apparatus equipped with a level gauge according to the present invention. It is the schematic perspective view which saw through the inside of the chamber of FIG. It is a top view which expands and shows the flange fixed to the protective tube of FIG.
  • FIG. 4 is a sectional view taken along line III-III in FIG. 3. It is a principal part longitudinal cross-sectional view which expands and shows the fixing structure of the protective tube of FIG. It is a graph which shows the evaluation test result of Example 1 of this invention. 6 is a graph showing the evaluation test results of Comparative Example 1. It is a graph which shows the evaluation test result of Example 2 of this invention.
  • FIG. 6 is a graph showing the evaluation test results of Comparative Examples 1 to 3. It is a fragmentary sectional side view which shows 2nd Embodiment of the liquid raw material vaporization supply apparatus provided with the liquid level gauge which concerns on this invention. It is the schematic perspective view which saw through the inside of the chamber of FIG. It is a fragmentary sectional side view which shows 3rd Embodiment of the liquid raw material vaporization supply apparatus provided with the liquid level gauge which concerns on this invention. It is a longitudinal cross-sectional view of a protection pipe and a steam shielding board which shows the change aspect of 3rd Embodiment of FIG. It is the schematic perspective view which saw through the inside of the chamber of FIG. It is a schematic block diagram which shows the conventional liquid level gauge. It is a circuit diagram which shows an example of the liquid level detection circuit of the conventional liquid level gauge.
  • FIG. 1 is a partial cross-sectional side view showing a first embodiment of the present invention.
  • a liquid raw material vaporization supply apparatus 1 equipped with a liquid level gauge according to the present invention detects a vaporization chamber 2 that stores and vaporizes a liquid raw material L, and a liquid level L1 in the vaporization chamber 2.
  • a flow rate control device 4 that controls and supplies the flow rate of the gas vaporized in the vaporization chamber 2 (see FIG. 2).
  • the protective tubes 3 and 3 are inserted and fixed to the side wall 2a of the vaporizing chamber 2 at the same height in the horizontal direction.
  • a platinum resistance temperature detector can be suitably used, but other known resistance temperature detectors can also be used. Since the liquid level detection circuit using the resistance temperature detector can adopt the same principle as the conventional circuit described above, detailed description thereof is omitted.
  • Each of the two protective tubes 3 and 3 has the same outer diameter, and houses a resistance temperature detector at the tip of the elongated rod-shaped portion.
  • the same resistance temperature detector is accommodated in each of the protective tubes 3 and 3.
  • One of the protective tubes 3 and the resistance temperature detector accommodated in the protection tube 3 has such a size that self-heating of the resistance temperature detector is negligible to such an extent that a current for temperature measurement, that is, the ambient temperature can be measured.
  • a small constant current is flowed to constitute a temperature measuring member used for ambient temperature measurement.
  • the other protective tube 3 and the resistance temperature detector housed therein are supplied with a relatively large constant current (heating current) in order to keep the resistance temperature detector higher than the ambient temperature by self-heating, as described above.
  • a liquid level detection member for determining whether it is in the liquid phase or in the gas phase is configured through a liquid level detection circuit.
  • the vaporization chamber 2 is a box type provided with a liquid material supply port 2b and a vaporized gas discharge port 2c at the top, and is formed of a metal such as stainless steel.
  • the liquid material supply port is not limited to the illustrated example, and a supply pipe is inserted into the upper wall of the vaporization chamber 2 and the lower end of the supply pipe is extended to the lower interior of the vaporization chamber 2 to be provided in the lower inner part of the vaporization chamber 2. Alternatively, it may be provided on the side wall of the vaporizing chamber 2 or the bottom wall of the vaporizing chamber 2.
  • the vaporization chamber can be heated by a heater (not shown) attached so as to surround the outer surface of the chamber wall.
  • the heater for heating the vaporizing chamber 2 can be embedded in a metal wall forming the vaporizing chamber 2 by providing a recess or a hole.
  • the vaporization chamber 2 is formed as a single chamber in the illustrated example, the inside of the chamber is partitioned into a plurality of rooms by partition walls (not shown), and holes for passing the vaporized gas are formed in each of the partition walls. May be. in this case.
  • a supply port for supplying a liquid raw material is provided in the partitioned room on one end side, and an exhaust port for discharging the vaporized gas is formed in the partitioned room on the other end side.
  • the discharge port 2 c is connected to the gas flow path 5.
  • the gas flow path 5 is comprised by the hole formed in piping or a block.
  • a flow rate control device 4 is interposed in the gas flow path 5.
  • a known so-called pressure type flow rate control device can be adopted. This is because the pressure detector 7 controls the gas pressure at least upstream of the orifice plate 6 interposed in the gas flow path 5. Based on the detected pressure signal, the flow rate is controlled by opening and closing the metal diaphragm valve element interposed in the gas flow path 5 by the piezoelectric drive element.
  • the gas passing through the orifice becomes the sonic velocity and does not exceed that.
  • the flow rate depends only on the pressure upstream of the orifice, and the principle that the flow rate is proportional to the pressure is used.
  • a pneumatically driven on-off valve 8 is interposed in the gas passage 5 between the vaporization chamber 3 and the flow control device 4, but can be provided in the gas passage on the downstream side of the flow control device 4 or can be omitted. it can.
  • the protective tube 3 is made of a corrosion-resistant metal material such as stainless steel, and a resistance temperature detector is accommodated in the tip of the elongated sheath 3a. Since the passive film of stainless steel is relatively thin, it is preferable to further passivate the protective tube 3 to enhance corrosion resistance.
  • the protective tube 3 is fitted in a hole 9a formed in a flange 9 made of stainless steel, and is fixed to the fixed flange 9 by welding.
  • the fixing flange 9 has a plurality of bolt holes 9b and a first gasket recess 9c formed on one side of the fixing flange 9 around the hole 9a.
  • a first annular protrusion 9d for gasket pressing is formed in the first gasket recess 9c.
  • a female screw hole 2 d having a bottom corresponding to the bolt hole 9 b of the fixing flange 9, a through hole 2 e through which the protective tube 3 is passed, and a periphery of the through hole 2 e on the outer side surface of the vaporizing chamber 2.
  • a second gasket recess 2f On one side of the vaporizing chamber 2, there are a female screw hole 2 d having a bottom corresponding to the bolt hole 9 b of the fixing flange 9, a through hole 2 e through which the protective tube 3 is passed, and a periphery of the through hole 2 e on the outer side surface of the vaporizing chamber 2.
  • a second gasket recess 2f A second annular protrusion 2g for gasket pressing is formed in the second gasket recess 2f.
  • the male screw 11 passed through the bolt hole 9b of the fixing flange 9 is screwed into the female screw hole 2d of the vaporizing chamber 2.
  • the first annular protrusion 9d for gasket pressing and the second annular protrusion 2g for gasket pressing bite into both side surfaces of the metal gasket 10, and the through hole 2e of the vaporizing chamber 2 is sealed.
  • the metal gasket 10 can be formed of stainless steel.
  • FIG. 15 An embodiment of a liquid raw material vaporizing and supplying apparatus equipped with a liquid level gauge according to the present invention, and a conventional liquid level gauge in which a protective tube containing a platinum resistor is vertically inserted (vertically) into a vaporizer (see FIG. 15) ) And the comparative example of the liquid raw material vaporization and supply apparatus provided with the evaluation of the change detection performance from the liquid phase to the gas phase.
  • FIG. 6 shows the result of Example 1
  • FIG. 7 shows the result of Comparative Example 1.
  • a constant current of 1 mA was passed through one platinum resistance temperature detector, and a constant current of 30 mA was passed through the other platinum resistance temperature detector.
  • a platinum resistor having a temperature characteristic of 100 ⁇ at 0 ° C. and a temperature characteristic of 0.39 ⁇ / ° C. (for example, 103.9 ⁇ at 10 ° C.) was used.
  • TEOS TEOS was used as the liquid raw material
  • the temperature of the vaporization chamber 2 was set to 200 ° C.
  • the gas control flow rate was set to 53.17% (6.7 g / min)
  • the inside of the vaporization chamber was evacuated to a vacuum state.
  • the liquid source is supplied until the protective tube is submerged, the valve of the flow rate control device is closed and the valve interposed in the liquid source supply tube of the vaporization chamber is also closed and sealed for 10 minutes.
  • the gas which was activated and vaporized was flowed at a predetermined flow rate.
  • a line T1 is a graph showing a time change of the temperature of the platinum resistance thermometer having passed 30 mA
  • a line T2 is a graph showing a time change of the temperature of the platinum resistance thermometer having passed 1 mA. It is.
  • Example 1 shown in FIG. 6 the transition from the liquid phase to the gas phase could be detected in 30 seconds or less, but Comparative Example 1 in FIG. Then, it took about 3 minutes to detect. As described above, the detection time of Comparative Example 1 is longer than that of Example 1.
  • the protective tube is installed horizontally until the liquid material evaporates and shifts from the liquid phase to the gas phase.
  • the comparative example referring to FIG. 15, since the protective tube is installed in the vertical direction, the protective tube is gradually exposed from the liquid phase to the liquid. This is thought to be due to the decrease in heat dissipation and the increase in self-heating.
  • Example 2 in which the control flow rate was set lower than that in Example 1, and in Comparative Example 2 and Comparative Example 3 in which the control flow rate was set lower than that in Comparative Example 1, the results of the same evaluation test as in Example 1 were performed. It shows in FIG. 8, FIG. FIG. 8 shows Example 2.
  • the control flow rate was set to 3.0 g / min.
  • the control flow rate of Comparative Example 1 was 6.7 g / min
  • the control flow rate of Comparative Example 2 was 3.0 g / min
  • the control flow rate of Comparative Example 3 was 1.0 g / min.
  • Example 1 and Example 2 show that the detection time from the liquid phase to the gas phase is detected even when the control flow rate is changed from 6.7 g / min to 3.0 g / min. Although no significant difference was observed, in Comparative Examples 1 to 3, the detection time of the change from the liquid phase to the gas phase became longer as the control flow rate decreased, and about 3 minutes in Comparative Example 1 and about 2 minutes in Comparative Example 2 It was 5.5 minutes and about 9.1 minutes in Comparative Example 3. As described above, the difference in the detection time of the change from the liquid phase to the gas phase between the example and the comparative example is considered to be due to the difference in time taken for the protective tube to change from the submerged state to the exposed state. It is done.
  • two resistance temperature detectors are used, and the current flowing through one resistance temperature detector is increased so that the current flowing through the other resistance temperature detector is increased from the liquid phase to the gas phase (or the gas phase).
  • the transition of the liquid level from the phase to the liquid phase is detected.
  • a single resistance temperature detector is used, and a large or small current (temperature measurement) of a predetermined size is applied to the single resistance temperature detector. It is also possible to detect the transition of the liquid level from the liquid phase to the gas phase (or from the gas phase to the liquid phase) by alternately flowing a working current and a heating current every predetermined time (for example, every 10 to 15 seconds). .
  • FIG. 10 is a partial cross-sectional side view showing a second embodiment of the liquid raw material vaporizing and supplying apparatus equipped with the liquid level gauge according to the present invention.
  • the protective tube 3 containing the resistance temperature detector is attached to the vaporization chamber 2 in two stages, up and down.
  • two protective tubes 3 containing resistance temperature detectors are provided at the same height in the upper stage (liquid level detection member and temperature measurement member), and two are provided at the same height in the lower stage (liquid level).
  • Surface detecting member and temperature measuring member By setting the pair of protective tubes in two upper and lower stages, the upper limit liquid level and the lower limit liquid level of the liquid raw material in the vaporization chamber 2 can be set.
  • the temperature measuring resistor-containing protective tube constituting the upper temperature measuring member can be omitted. In this case, the upper limit liquid level can be detected by the lower temperature measuring member and the upper liquid level detecting member.
  • FIG. 12 is a partial cross-sectional side view showing a third embodiment of the liquid raw material vaporization and supply apparatus equipped with the liquid level gauge according to the present invention.
  • a steam shielding plate 12 for shielding steam rising from the liquid raw material is provided below the protective tube 3.
  • the steam shielding plate 12 is preferably disposed so as to be inclined downward or upward (downward in the illustrated example) from the base portion to the distal end portion.
  • the steam shielding plate 12 may be a flat plate shape, but may be a plate shape having a mountain cross section as shown in FIGS. Providing the steam shielding plate 12 can reduce malfunctions caused by the vapor of the liquid raw material.
  • the width dimension and length of the steam shielding plate 12 can be designed as appropriate, but preferably the width dimension is 1.5 to 2 times the outer diameter of the protective tube 3 and the length dimension is the length of the protective tube 3. It is about 1 to 1.3 times.
  • the temperature measuring resistor is housed in the protective tube 3 of the temperature measuring member.
  • the temperature measuring member only needs to be able to measure the ambient temperature.
  • other temperature sensors are used.
  • a thermocouple, a thermistor, or an infrared thermometer may be accommodated in the protective tube.
  • the protection tube of a temperature measurement member is from the preset minimum liquid level. It is good also as a structure which arrange
  • the attachment of the protective tube to the chamber is not limited to the above embodiment.
  • a screw hole is formed in the wall of the chamber, a male screw is formed on the outer periphery of the protective tube, and the protective tube is fixed by screwing into the chamber. You can also.
  • liquid level to be detected is not limited to the liquid raw material used in the semiconductor manufacturing apparatus, but can be used for various chemical liquids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

【課題】 液相から気相への切り替わりの検知時間に流量依存性を減らすとともに、検知時間を短縮し得る、液面計及び液体原料気化供給装置を提供する。 【解決手段】 液体原料を貯留するチャンバ2と、チャンバ2内の液面L1を検知するための測温抵抗体を収容した少なくとも一本の保護管3と、チャンバ2から流出したガスの流量を制御して供給する流量制御装置4と、を備え、保護管3が、チャンバ2の側壁2aに水平方向に挿入されて固定されている。

Description

液面計及び液体原料気化供給装置
 本発明は、液面計及び液体原料気化供給装置に係り、詳しくは、液面レベルを検知する液面計、及び、該液面計を備えた液体原料気化供給装置に関する。
 従来、例えば有機金属気相成長法(MOCVD: Metal Organic Chemical Vapor Deposition)が用いられる半導体製造装置に、原料流体を供給する液体原料気化供給装置が提案されている(例えば特許文献1~3)。
 この種の液体原料気化供給装置は、TEOS(Tetraethyl orthosilicate)等の液体原料を気化チャンバ内で加熱して気化させ、気化させたガスを流量制御装置により所定流量に制御して半導体製造装置に供給する。そして、液体原料を気化させることによる液体原料の減少を補うため、液体原料の液面を検出し、減少分を供給することにより、液面を制御することが必要となる。
 液体原料の液面を検出する方法として、例えば、気化器内の圧力減少をモニターすることで気化器内の液体原料が気化により減少したことを検出する圧力検知式液面検出装置(特許文献2等)や、液相と気相とで熱放散定数が異なることを利用した熱式液面検出装置(特許文献4~6等)が知られている。
 この種の熱式液面検出装置では、図15に示すように、それぞれに白金等の測温抵抗体R1、R2を封入した2本の保護管3を容器21内に鉛直方向に挿入して、一方の測温抵抗体R1には測温抵抗体R1を自己発熱により周囲温度より高温に保つために比較的大きな定電流I1(加熱電流)を流し、他方の測温抵抗体R2には周囲温度を測定できる程度で発熱が無視できる大きさの微小な定電流I2(周囲温度測定用電流)を流す。
 そうすると、大きな電流I1を流した測温抵抗体R1は発熱するが、このとき、測温抵抗体が液相L中にある場合の熱放散定数は、気相V中にある場合の熱放散定数よりも大きいために、気相V中にある場合の測温抵抗体の温度は、液相中にある場合と比べると高くなる。
 そしてこのことは、気相中の測温抵抗体は、液相中の測温抵抗体よりも抵抗値が高いことを意味するため、大きな電流を流した測温抵抗体R1の電圧出力と、微小な電流を流した測温抵抗体R2の電圧出力との差分を見ることで、測温抵抗体が液面の上方か下方かを判別することが可能となる。即ち、差分が小さい場合には測温抵抗体は液面よりも下方にあり、差分が大きい場合には測温抵抗体は液面よりも上方にあると判断することができる。
 図16は、液面検知回路の一例であり、測温抵抗体R1,R2には、定電流回路S1、S2を介して電源Vccから定電流を供給される。測温抵抗体R2には、周囲温度を測定できる程度で発熱が無視できる大きさの微小な電流が流れ、測温抵抗体R1には、測温抵抗体R2より大きな電流値の電流であって測温抵抗体R1を高温に加熱するために比較的大きな電流が流れるように、定電流回路S1には定電流回路S2より大きな電流が流れるように設定されている。測温抵抗体R1の端子電圧V1と測温抵抗体R2の端子電圧V2とが差動増幅回路Dの反転入力及び非反転入力に其々入力され、差動増幅回路Dから、端子電圧V1,V2の差電圧(V1-V2)に相当する電圧信号が比較器Cに入力される。比較器Cは、分圧抵抗器R3,R4により設定された基準電圧V3を、前記差電圧と比較する。
 測温抵抗体R1が液相中にあるときは、測温抵抗体R1は周囲温度に対する温度上昇は気相中の温度上昇より小さい。その結果、同じく液相中にある測温抵抗体R2から発せられる周囲温度に対応した大きさの電圧信号との差に相当する作動増幅回路Dからの出力電圧が基準電圧より小さくなり、比較器Cの出力はローレベルになる。一方、液面が下がり、測温抵抗体R1が気相中に露出すると、周囲温度に対する温度上昇が気相中の温度上昇になるから、同じく気相中にある測温抵抗体R2から発せられる周囲温度に対応した大きさの電圧信号との差に相当する差動増幅回路Dの出力電圧が基準電圧より大きくなり、比較器Cの出力はハイレベルとなる。比較器Cの出力がハイレベルの時は測温抵抗体R1,R2が気相中にあり、比較器Cの出力がローレベルの時は測温抵抗体R1,R2が液相中にあると判別される。
 端子電圧V1,V2を測定すれば、電流値I1、I2からオームの法則により、測温抵抗体R1,R2の抵抗値を求めることができ、測温抵抗体R1,R2の抵抗値が分かれば、測温抵抗体R1,R2の温度に対する抵抗変化率が既知であれば、測温抵抗体R1,R2の温度を導き出すことができる。したがって、液面計知回路では、測温抵抗体R1、R2の電圧出力の比較に代えて、測温抵抗体R1,R2の抵抗値を比較することによっても判別可能であるし、あるいは、測温抵抗体R1,R2の温度に対する抵抗変化率を利用して各々の抵抗値から測温抵抗体R1,R2の温度を測定してそれらの温度を比較することによっても、判別可能である。なお、白金の場合、0℃で100Ωであり、1℃上昇するごとに抵抗値が0.39Ω上昇する。
特開2009-252760号公報 特開2010-180429号公報 特開2013-77710号公報 特許第3009809号公報 特許第5400816号公報 特開2001-99692号公報
 上記圧力検知式液面検出装置では、気化器内の圧力減少を検出したときには気化器内の液体原料は殆ど無くなっており、空焚き状態で液体原料を供給すると流量制御不良を招来することがある。
 一方、熱式液面検出装置は、設定した液面高さを検知できるので、所望高さの液面を検知してその高さに液面を保持するように給液を制御することで、上記圧力検知式液面検出装置のような問題を解消し得る。
 しかしながら、従来の熱式液面検出装置は、検知に比較的長い時間が掛るため、検知反応が遅いという問題があった。また、従来の熱式液面検出装置は、流量制御装置と組み合わせて使用した場合、液相から気相への切り替わりの検知時間に流量依存性があり、正確な検知が困難であるという問題もあった。
 本発明は、従来の熱式液面検出装置における上記問題点を解決し得る熱式液面計、及び該液面計を備える液体原料気化供給装置を提供することを主たる目的とする。
 上記目的を達成するため、本発明に係る液面計は、液面検知部材と温度測定部材とを有し、液体を貯留するチャンバ内に設けられた液面計であって、前記液面検知部材が、測温抵抗体を収容した保護管を備え、前記チャンバ内に水平に配置されている。
 前記液面検知部材の保護管は、前記チャンバの側壁に水平方向に挿入されて固定され得る。
 前記温度測定部材が、測温抵抗体が収容された保護管を備え、前記チャンバ内に水平に配置され得る。
 前記温度測定部材が、熱電対、サーミスタ、又は赤外温度計が収容された保護管を備え得る。
 前記温度測定部材と前記液面検知部材とは、同じ水平高さに配置され得る。
 前記液面検知部材の測温抵抗体に温度測定用電流より大きな電流値の電流(加熱電流)を流して該液面検知部材により測定された検知温度を、前記温度測定部材により測定された温度と比較することにより前記液面検知部材が液相部内に存在するか気相部内に存在するかを検知するように構成され得る。
 前記温度測定部材の測温抵抗体に温度測定用の第1の電流を流すとともに、前記液面検知部材の測温抵抗体に前記第1の電流より大きい第2の電流(加熱電流)を流し、前記各測温抵抗体の抵抗値を比較することにより前記液面検知部材が液相部内に存在するか気相部内に存在するかを検知するように構成され得る。
 前記温度測定部材が予め設定された下限液位より下方に配置され、前記液面検知部材が前記下限液位及び予め設定された上限液位の少なくとも一方の液位に配置され得る。
 また、本発明に係る液面計は、液体原料を貯留するチャンバ内に水平に配置され、測温抵抗体が収容された1つの保護管を備え、前記測温抵抗体に温度測定用の第1の電流値の電流と該第1の電流値より大きい第2の電流値の電流(加熱電流)とを交互に流し、各々の電流値に対する前記測温抵抗体の抵抗値を比較することにより、前記保護管が液相部内に存在するか気相部内に存在するかを検知するように構成され得る。
 また、本発明に係る液面計は、液体を貯留するチャンバ内に水平に配置され、測温抵抗体が収容された1つの保護管を備え、前記測温抵抗体に温度測定用電流より大きな所定の電流値の電流(加熱電流)を流し、前記保護管が液相部内にあるときと気相部内にあるときとの抵抗値変化に基づいて、前記保護管が液相部内にあるか気相部内にあるかを検知するように構成され得る。
 少なくとも1つ以上の保護管に不動態処理が施され得る。
 また、本発明に係る液体原料気化供給装置は、液体原料を貯留し気化させるチャンバと、前記チャンバ内に配置された液面検知部材と、前記チャンバ内の温度を測定する温度測定部材と、前記チャンバ内で気化された原料ガスの流量を制御する流量制御装置と、を備え、前記液面検知部材が、測温抵抗体を収容した保護管を備え、前記チャンバ内に水平に配置されている。
 本発明に係る液体原料気化供給装置は、前記保護管が前記チャンバの側壁に水平方向に挿入されて固定されており、前記保護管が前記チャンバの側壁に固定するためのフランジを備え、該フランジと前記チャンバ側壁の外側面との間に該保護管の周囲を囲む金属ガスケットが介在され、該フランジと前記チャンバ側壁の外側面の各々に形成されて前記金属ガスケットを収容するガスケット用凹部と、該ガスケット用凹部の其々に形成されたガスケット押え用環状突起と、を備え得る。
 また、本発明に係る液体原料気化供給装置は、前記保護管が前記チャンバにねじ込み固定され得る。
 また、本発明に係る液体原料気化供給装置は、前記温度測定部材が、測温抵抗体又は熱電対を収容した保護管を備え、前記チャンバ内に水平に配置されており、前記液面検知部材と前記温度測定部材とが、同じ水平高さに配置され得る。
 また、本発明に係る液体原料気化供給装置は、前記保護管の下方に、液体原料から上昇する蒸気を遮るための蒸気遮板が設けられ得る。前記蒸気遮板は傾斜状に延び得る。
 本発明に係る液面計よれば、液面検知部材の保護管をチャンバ内に水平に配置したことにより、検知時間を短縮し得る。また、本発明に係る液体原料気化供給装置によれば、液面検知部材の保護管をチャンバ内に水平に配置したことにより、液相から気相への切り替わりの検知時間に流量依存性を殆どなくすことができる。
本発明に係る液面計を備えた液体原料気化供給装置の第1実施形態を示す部分断面側面図である。 図1のチャンバの内部を透視した概略斜視図である。 図1の保護管に固定されたフランジを拡大して示す平面図である。 図3のIII-III線に沿う断面図である。 図1の保護管の固定構造を拡大して示す要部縦断面図である。 本発明の実施例1の評価試験結果を示すグラフである。 比較例1の評価試験結果を示すグラフである。 本発明の実施例2の評価試験結果を示すグラフである。 比較例1~3の評価試験結果を示すグラフである。 本発明に係る液面計を備えた液体原料気化供給装置の第2実施形態を示す部分断面側面図である。 図10のチャンバの内部を透視した概略斜視図である。 本発明に係る液面計を備えた液体原料気化供給装置の第3実施形態を示す部分断面側面図である。 図12の第3実施形態の変更態様を示す、保護管と蒸気遮板の縦断面図である。 図12のチャンバの内部を透視した概略斜視図である。 従来の液面計を示す概略構成図である。 従来の液面計の液面検知回路の一例を示す回路図である。
 本発明に係る液面計を備えた液体原料気化供給装置の実施形態について、以下に図面を参照しつつ説明する。なお、全図及び全実施形態を通じて、同一又は類似の構成部分には同符号を付した。
 図1は、本発明の第1実施形態を示す部分断面側面図である。図1に示すように、本発明に係る液面計を備えた液体原料気化供給装置1は、液体原料Lを貯留し気化させる気化チャンバ2と、気化チャンバ2内の液面L1を検知するための測温抵抗体(付図示)を封入した保護管3と、気化チャンバ2で気化したガスの流量を制御して供給する流量制御装置4と、を備え、2本(図2参照。)の保護管3、3が、気化チャンバ2の側壁2aに水平方向に同じ高さ位置で挿入されて固定されている。
 保護管3に封入される測温抵抗体としては、白金測温抵抗体を好適に用いることができるが、他の公知の測温抵抗体も用い得る。測温抵抗体を用いた液面検知回路は上記した従来回路と同様の原理のものを採用し得るので詳細な説明は省略する。2本の保護管3,3は、何れも同じ外径を有し、細長い棒状部分の先端部に測温抵抗体を収容している。
 其々の保護管3,3には、同じ測温抵抗体が収容されている。一方の保護管3及びそこに収容された測温抵抗体は、その測温抵抗体に温度測定用の電流、即ち、周囲温度を測定できる程度で測温抵抗体の自己発熱が無視できる大きさの微小な定電流が流され、周囲温度測定のために用いられる温度測定部材を構成する。他方の保護管3とそこに収容された測温抵抗体は、その測温抵抗体を自己発熱により周囲温度より高温に保つために比較的大きな定電流(加熱電流)が流され、上記のような液面検知回路を通じ、液相中にあるか気相中にあるかを判別するための液面検知部材を構成する。
 気化チャンバ2は、液体原料の供給口2b及び気化したガスの排出口2cを上部に備えた箱型で、ステンレス等の金属で形成されている。液体原料の供給口は、図示例に限らず、気化チャンバ2の上壁に供給管を挿して該供給管の下端を気化チャンバ2の内部下部まで延ばすことによりに気化チャンバ2の内部下部に設けることもできるし、あるいは、気化チャンバ2の側壁や気化チャンバ2の底壁に設けることも可能である。
 気化チャンバは、チャンバ壁の外面を囲むようにして取り付けられたヒータ(図示せず)によって加熱され得る。気化チャンバ2を加熱するヒータは、図示しないが、気化チャンバ2を形成する金属壁に凹部や孔を設けてそこに埋設することもできる。
 気化チャンバ2は、図示例では一室で形成されているが、チャンバ内を区画壁(図示せず)で複数の部屋に区画し、それら区画壁の各々には気化したガスを通す孔を形成してもよい。この場合。一端側の区画された部屋には液体原料を供給する供給口が設けられ、他端側の区画された部屋に気化したガスを排出する排出口が形成される。
 排出口2cは、ガス流路5に連通接続されている。ガス流路5は、配管又はブロック内に形成された孔によって構成されている。ガス流路5には、流量制御装置4が介在されている。図示例の流量制御装置4は、公知のいわゆる圧力式流量制御装置を採用することができ、これは、ガス流路5に介在したオリフィス板6の少なくとも上流側のガス圧力を圧力検出器7によって検出し、検出した圧力信号に基づいて圧電駆動素子によりガス流路5に介在された金属製ダイヤフラム弁体を開閉させて流量制御する。すなわち、オリフィス板6の上流側の絶対圧力がオリフィス板6の下流側の絶対圧力の約2倍以上(臨界膨張条件)になるとオリフィスを通過するガスが音速となり、それ以上にならないことから、その流量はオリフィス上流側の圧力のみに依存し、流量は圧力に比例するという原理を利用している。なお、図示しないが、オリフィス下流側の圧力を検出して、オリフィスの上流側と下流側の差圧に基づいて流量制御することも可能である。
 ガス通路5には、空気圧駆動式の開閉弁8が介在されている。開閉弁8は、気化チャンバ3と流量制御装置4との間のガス通路5に介在されているが、流量制御装置4の下流側のガス通路に設けることもできるし、あるいは、省略することもできる。
 保護管3は、ステンレス鋼等の耐腐食性金属材料で形成され、細長い鞘部3aの先端部内に測温抵抗体が収容されている。ステンレス鋼の不動態被膜は比較的薄いため、保護管3に更に不動態処理を施して耐食性を高めることが好ましい。
 保護管3を気化チャンバ2に水平に挿すため、気化チャンバ2内の高温の液体原料が漏れ出ないようなシール構造にして固定することが必要となる。
 図3~図5を参照して、保護管3は、同じくステンレス鋼製のフランジ9に形成された孔9aに嵌入され、溶接により固定フランジ9に固定されている。固定フランジ9は、孔9aの他に、複数のボルト孔9bと、固定フランジ9の一方の側面で孔9aの周囲に形成された第1ガスケット用凹部9cと、を有している。第1ガスケット用凹部9cには、ガスケット押え用第1環状突起9dが形成されている。
 気化チャンバ2の一側面には、固定フランジ9のボルト孔9bに一致する有底の雌螺子孔2dと、保護管3を通す通孔2eと、気化チャンバ2の外側側面で通孔2eの周囲に形成された第2ガスケット用凹部2fと、を備えている。第2ガスケット用凹部2fには、ガスケット押え用第2環状突起2gが形成されている。
 保護管3を、円環状の金属ガスケット10及び気化チャンバ2の通孔2eに通し、固定フランジ9のボルト孔9bに通した雄螺子11を気化チャンバ2の雌螺子孔2dに螺締することにより、ガスケット押え用第1環状突起9d及びガスケット押え用第2環状突起2gが金属ガスケット10の両側面に食い込み、気化チャンバ2の通孔2eを密封状態とする。金属ガスケット10は、ステンレス鋼で形成することができる。
 本発明に係る液面計を備えた液体原料気化供給装置の実施例と、白金抵抗体を収容した保護管を気化器に鉛直方向(縦向き)に挿入した従来の液面計(図15参照)を備えた液体原料気化供給装置の比較例とで、液相から気相へ変化の検出性能を評価した。
 図6が実施例1の結果で、図7が比較例1の結果である。実施例1と比較例1とは、ともに、一方の白金測温抵抗体には1mAの定電流を流し、他方の白金測温抵抗体には30mAの定電流を流した。白金抵抗体は、0℃で100Ω、0.39Ω/℃の温度特性(例えば、10℃の時に103.9Ω)のものを用いた。評価試験の評価条件として、液体原料にTEOSを用い、気化チャンバ2の温度を200℃、ガス制御流量を53.17%(6.7g/分)とし、気化チャンバ内部を排気して真空状態にしてから液体原料を保護管が水没するまで供給し、流量制御装置のバルブを閉じるとともに気化チャンバの液体原料供給管に介在させたバルブも閉じて10分間封止状態とした後、流量制御装置を作動させて気化したガスを所定流量で流した。
 図6、図7において、線T1は30mAを流した白金測温抵抗体の温度の時間変化を示すグラフであり、線T2は1mAを流した白金測温抵抗体の温度の時間変化を示すグラフである。白金測温抵抗体の温度は、白金測温抵抗体の温度特性から計算により算出した。図6,図7において、ΔT=T1-T2が大きいところが、液相から気相へ移行していることを示している。
 図6、図7に示されているように、図6に示す実施例1では、液相から気相へ移行したことを30秒以下で検知することができたが、図7の比較例1では検知に3分程度を要した。このように、比較例1の検知時間が実施例1に比較して長いのは、実施例1では液体原料が蒸発して液相から気相に移行する迄の間、保護管は水平に設置されているため全長に亘って水没しているのに対して、比較例では、図15を参照すれば、保護管が縦方向に設置されているため徐々に液相から露出して、液体への放熱が低下し、自己発熱量が増加していることに起因しているものと考えられる。
 次に、実施例1より制御流量を低く設定した実施例2と、比較例1より制御流量を低くした比較例2、比較例3とで、実施例1と同様の評価試験を行った結果を図8、図9に示す。図8が実施例2であり、実施例2は、制御流量を3.0g/分とした。図9は、比較例1,2,3のΔT=T1-T2を示しており、線C1が比較例1、線C2が比較例2、線C3が比較例3を示す。比較例1の制御流量は6.7g/分、比較例2の制御流量は3.0g/分、比較例3の制御流量は1.0g/分であった。
 図8と図9とを比較すると、実施例1と実施例2とは、制御流量が6.7g/分から3.0g/分に変化しても液相から気相への変化の検知時間に大きな差は認められなかったが、比較例1~3では、制御流量が低くなるに従って液相から気相への変化の検知時間が長くなり、比較例1で約3分、比較例2で約5.5分、比較例3で約9.1分であった。このように液相から気相への変化の検知時間に関して実施例と比較例で異なるのは、保護管が水没状態から露出状態へ変化するのにかかる時間の差に起因しているものと考えられる。
 上記第1実施形態では2本の測温抵抗体を使用し、一方の測温抵抗体に流す電流を他方の測温抵抗体に流す電流を大きくすることにより、液相から気相(又は気相から液相)への液面の移行を検知するようにしているが、測温抵抗体を1本にして、その一本の測温抵抗体に所定の大きさの大小の電流(温度測定用電流と加熱電流)を所定時間毎(例えば10~15秒毎)に交互に流すことにより、液相から気相(又は気相から液相)への液面の移行を検知することもできる。
 図10は、本発明に係る液面計を備えた液体原料気化供給装置の第2実施形態を示す部分断面側面図である。第2実施形態では、測温抵抗体を収容した保護管3が、上下に2段、気化チャンバ2に取り付けられている。なお、図11を参照して、測温抵抗体を収容した保護管3は上段の同じ高さに2本(液面検知部材と温度測定部材)、下段にも同じ高さに2本(液面検知部材と温度測定部材)取り付けられている。1対の保護管を上下2段とすることで、気化チャンバ2内の液体原料の上限液位と下限液位とを設定することができる。上段の温度測定部材を構成する測温抵抗体入り保護管を省略することもでき、この場合、下段の温度測定部材と上段の液面検知部材とにより上限液位を検知することができる。
 図12は、本発明に係る液面計を備えた液体原料気化供給装置の第3実施形態を示す部分断面側面図である。第3実施形態においては、保護管3の下方に、液体原料から上昇する蒸気を遮るための蒸気遮板12が設けられている。蒸気遮板12は、好ましくは基部から先端部にかけて下方又は上方へ(図示例では下方)傾斜して延びるように配設されている。蒸気遮板12は、平坦な板状とすることができるが、図13、図14に示すような断面山形の板状としてもよい。蒸気遮板12を設けることにより、液体原料の蒸気による誤動作を減らすことができる。蒸気遮板12の幅寸法や長さは適宜設計され得るが、好ましくは、幅寸法が保護管3の外径の1.5~2倍であり、長さ寸法が保護管3の長さの1~1.3倍程度である。
 上記実施形態では、温度測定部材の保護管3に測温抵抗体を収容した例について説明したが、温度測定部材は、周囲温度を測定できればよく、測温抵抗体に代えて、その他の温度センサー、例えば、熱電対、サーミスタ、又は、赤外温度計を保護管に収容してもよい。
 また、上記実施形態では、温度測定部材の保護管と液面検知部材の保護管を同じ水平高さに配置した例を示したが、温度測定部材の保護管を予め設定された下限液位より下方に配置して常に液中にあるようにしておいて、液面検知部材の保護管を下限液位及び又は上限液位に配置する構成としてもよい。
 また、保護管のチャンバへの取り付けは上記実施形態に限らず、例えば、チャンバの壁に螺子孔を形成して保護管の外周に雄螺子を形成し、保護管をチャンバにねじ込む形式により固定することもできる。
 また、上記実施形態では、密閉型の気化チャンバの例について説明したが、チャンバは上部が開放されたタンクでも使用可能である。
 また、検知する液面は、半導体製造装置に用いられる液体原料に限らず、各種薬液等に対しても使用可能である。
1 液体原料気化供給装置
2 気化チャンバ
3 保護管
4 流量制御装置
L 液体原料
L1 液面
9 フランジ
10 金属ガスケット
9c、2f ガスケット用凹部
9d、2g ガスケット押え用環状突起
12 蒸気遮板

Claims (17)

  1.  液面検知部材と温度測定部材とを有し、液体を貯留するチャンバ内に設けられる液面計であって、前記液面検知部材が、測温抵抗体を収容した保護管を備え、前記チャンバ内に水平に配置されていることを特徴とする前記液面計。
  2.  前記液面検知部材の保護管が、前記チャンバの側壁に水平方向に挿入されて固定されていることを特徴とする請求項1に記載の液面計。
  3.  前記温度測定部材が、測温抵抗体が収容された保護管を備え、前記チャンバ内に水平に配置されていることを特徴とする請求項1又は2に記載の液面計。
  4.  前記温度測定部材が、熱電対、サーミスタ、又は赤外温度計が収容された保護管を備えていることを特徴とする請求項1又は2に記載の液面計。
  5.  前記温度測定部材と前記液面検知部材とが同じ水平高さに配置されていることを特徴とする請求項3に記載の液面計。
  6.  前記液面検知部材の測温抵抗体に温度測定用電流より大きな電流値の電流を流して該液面検知部材により測定された検知温度を、前記温度測定部材により測定された温度と比較することにより前記液面検知部材が液相部内に存在するか気相部内に存在するかを検知するように構成されている、請求項1または請求項2に記載の液面計。
  7.  前記温度測定部材の測温抵抗体に温度測定用の第1の電流を流すとともに、前記液面検知部材の測温抵抗体に前記第1の電流より大きい第2の電流を流し、前記各測温抵抗体の抵抗値を比較することにより前記液面検知部材が液相部内に存在するか気相部内に存在するかを検知するように構成されている、請求項3に記載の液面計。
  8.  前記温度測定部材が予め設定された下限液位より下方に配置され、前記液面検知部材が前記下限液位及び予め設定された上限液位の少なくとも一方の液位に配置されていることを特徴とする請求項7に記載の液面計。
  9.  液体原料を貯留するチャンバ内に水平に配置され、測温抵抗体が収容された1つの保護管を備え、
     前記測温抵抗体に温度測定用の第1の電流値の電流と該第1の電流値より大きい第2の電流値の電流とを交互に流し、各々の電流値に対する前記測温抵抗体の抵抗値を比較することにより、前記保護管が液相部内に存在するか気相部内に存在するかを検知するように構成されている液面計。
  10.  液体を貯留するチャンバ内に水平に配置され、測温抵抗体が収容された1つの保護管を備え、
     前記測温抵抗体に温度測定用電流より大きな所定の電流値の電流を流し、前記保護管が液相部内にあるときと気相部内にあるときとの抵抗値変化に基づいて、前記保護管が液相部内にあるか気相部内にあるかを検知するように構成されている液面計。
  11.  前記保護管に不動態処理が施されていることを特徴とする請求項1、9又は10に記載の液面計。
  12.  液体原料を貯留し気化させるチャンバと、前記チャンバ内に配置された液面検知部材と、前記チャンバ内の温度を測定する温度測定部材と、前記チャンバ内で気化された原料ガスの流量を制御する流量制御装置と、を備え、前記液面検知部材が、測温抵抗体を収容した保護管を備え、前記チャンバ内に水平に配置されていることを特徴とする、液体原料気化供給装置。
  13.  前記保護管が前記チャンバの側壁に水平方向に挿入されて固定されており、前記保護管が前記チャンバの側壁に固定するためのフランジを備え、該フランジと前記チャンバ側壁の外側面との間に該保護管の周囲を囲む金属ガスケットが介在され、該フランジと前記チャンバ側壁の外側面の各々に形成されて前記金属ガスケットを収容するガスケット用凹部と、該ガスケット用凹部の其々に形成されたガスケット押え用環状突起と、を備えることを特徴とする請求項12に記載の液体原料気化供給装置。
  14.  前記保護管が前記チャンバにねじ込み固定されていることを特徴とする、請求項12に記載の液体原料気化供給装置。
  15.  前記温度測定部材が、測温抵抗体又は熱電対を収容した保護管を備え、前記チャンバ内に水平に配置されており、
     前記液面検知部材と前記温度測定部材とが、同じ水平高さに配置されていることを特徴とする請求項12に記載の液面計を備えた液体原料気化供給装置。
  16.  前記保護管の下方に、液体原料から上昇する蒸気を遮るための蒸気遮板が設けられていることを特徴とする請求項12に記載の液体原料気化供給装置。
  17.  前記蒸気遮板が傾斜状に延びていることを特徴とする請求項16に記載の液面計を備えた液体原料気化供給装置。
PCT/JP2015/005498 2014-11-13 2015-11-02 液面計及び液体原料気化供給装置 WO2016075892A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/525,479 US10604840B2 (en) 2014-11-13 2015-11-02 Liquid level indicator and liquid raw material vaporization feeder
CN201580044670.6A CN107003168B (zh) 2014-11-13 2015-11-02 液面计以及液体原料气化供给装置
KR1020177003066A KR101930303B1 (ko) 2014-11-13 2015-11-02 액면계 및 액체 원료 기화 공급 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-231119 2014-11-13
JP2014231119A JP6212467B2 (ja) 2014-11-13 2014-11-13 液面計及び液体原料気化供給装置

Publications (1)

Publication Number Publication Date
WO2016075892A1 true WO2016075892A1 (ja) 2016-05-19

Family

ID=55953996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005498 WO2016075892A1 (ja) 2014-11-13 2015-11-02 液面計及び液体原料気化供給装置

Country Status (6)

Country Link
US (1) US10604840B2 (ja)
JP (1) JP6212467B2 (ja)
KR (1) KR101930303B1 (ja)
CN (1) CN107003168B (ja)
TW (1) TWI592639B (ja)
WO (1) WO2016075892A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489764A (zh) * 2018-12-18 2019-03-19 中国矿业大学(北京) 一种实验室规模气体体积自动计量装置及方法
WO2024009845A1 (ja) * 2022-07-07 2024-01-11 大陽日酸株式会社 固体材料容器、固体材料供給装置、及び固体材料供給方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6212467B2 (ja) * 2014-11-13 2017-10-11 株式会社フジキン 液面計及び液体原料気化供給装置
JP6704809B2 (ja) * 2016-07-05 2020-06-03 東京エレクトロン株式会社 基板処理装置、基板処理方法および記憶媒体
JP6830265B2 (ja) * 2016-12-27 2021-02-17 株式会社フジキン 液面計、それを備えた気化器、及び液面検知方法
JP7137921B2 (ja) * 2017-11-07 2022-09-15 株式会社堀場エステック 気化システム及び気化システム用プログラム
CN112843756A (zh) * 2020-12-29 2021-05-28 东华理工大学 液体蒸发气体发生器及其控制方法
KR102347205B1 (ko) * 2021-02-26 2022-01-06 (주)지오엘리먼트 전구체의 레벨 측정 기능을 구비한 기화기 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446717U (ja) * 1987-09-17 1989-03-22
JPS6446716U (ja) * 1987-09-17 1989-03-22
JPH0651834U (ja) * 1992-12-18 1994-07-15 ティーディーケイ株式会社 液面及び異常過熱検出装置
JPH0763592A (ja) * 1993-08-26 1995-03-10 Saginomiya Seisakusho Inc 液面検出装置
JP2005337627A (ja) * 2004-05-28 2005-12-08 Sharp Corp 蒸気調理器
JP2014211345A (ja) * 2013-04-18 2014-11-13 株式会社八洲測器 液面検出装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3181557A (en) * 1962-11-02 1965-05-04 Jr James E Lannan Liquid interface sensor
US3905243A (en) * 1973-09-11 1975-09-16 Us Energy Liquid-level sensing device
US3983751A (en) * 1974-07-17 1976-10-05 Atlantic Richfield Company Method of measuring the level of elevated temperature particulate material
JPH039809A (ja) 1989-06-06 1991-01-17 Daietsu:Kk 水分計測方法
JP3009809U (ja) * 1994-10-03 1995-04-11 タックメディカル株式会社 趾間部保護シート
JP2951954B1 (ja) * 1998-09-17 1999-09-20 ムサシノ機器株式会社 気圧式液面計
JP3869169B2 (ja) 1999-09-29 2007-01-17 株式会社鷺宮製作所 液面検出装置
JP3826072B2 (ja) * 2002-06-03 2006-09-27 アドバンスド エナジー ジャパン株式会社 液体材料気化供給装置
JP4999605B2 (ja) * 2007-08-23 2012-08-15 日本エア・リキード株式会社 液化ガスの気化方法、気化装置およびこれを用いた液化ガス供給装置
JP5461786B2 (ja) 2008-04-01 2014-04-02 株式会社フジキン 気化器を備えたガス供給装置
JP5350824B2 (ja) 2009-02-03 2013-11-27 株式会社フジキン 液体材料の気化供給システム
US8438919B2 (en) * 2010-07-23 2013-05-14 Rosemount Aerospace Inc. Systems and methods for liquid level sensing having a differentiating output
JP5400816B2 (ja) 2011-01-31 2014-01-29 株式会社トリケミカル研究所 液面レベルセンサー
JP5913888B2 (ja) 2011-09-30 2016-04-27 国立大学法人東北大学 気化器
US9357881B2 (en) * 2012-03-31 2016-06-07 Pitco Frialator, Inc. Oil level detection system for deep fat fryer
US20150323938A1 (en) * 2014-05-09 2015-11-12 Honeywell International Inc. Temperature-based level detection and control method and apparatus
EP2995913B1 (en) * 2014-09-10 2020-06-17 Bruker Switzerland AG Robust dynamical method for detecting the level of a liquid using resistance temperature detectors
JP6212467B2 (ja) * 2014-11-13 2017-10-11 株式会社フジキン 液面計及び液体原料気化供給装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446717U (ja) * 1987-09-17 1989-03-22
JPS6446716U (ja) * 1987-09-17 1989-03-22
JPH0651834U (ja) * 1992-12-18 1994-07-15 ティーディーケイ株式会社 液面及び異常過熱検出装置
JPH0763592A (ja) * 1993-08-26 1995-03-10 Saginomiya Seisakusho Inc 液面検出装置
JP2005337627A (ja) * 2004-05-28 2005-12-08 Sharp Corp 蒸気調理器
JP2014211345A (ja) * 2013-04-18 2014-11-13 株式会社八洲測器 液面検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489764A (zh) * 2018-12-18 2019-03-19 中国矿业大学(北京) 一种实验室规模气体体积自动计量装置及方法
WO2024009845A1 (ja) * 2022-07-07 2024-01-11 大陽日酸株式会社 固体材料容器、固体材料供給装置、及び固体材料供給方法

Also Published As

Publication number Publication date
KR20170026607A (ko) 2017-03-08
TW201631299A (zh) 2016-09-01
US10604840B2 (en) 2020-03-31
CN107003168B (zh) 2019-12-20
CN107003168A (zh) 2017-08-01
JP2016095212A (ja) 2016-05-26
US20170327949A1 (en) 2017-11-16
JP6212467B2 (ja) 2017-10-11
TWI592639B (zh) 2017-07-21
KR101930303B1 (ko) 2018-12-18

Similar Documents

Publication Publication Date Title
JP6212467B2 (ja) 液面計及び液体原料気化供給装置
JP6578125B2 (ja) 気化供給装置
JP7005531B2 (ja) 改善されたプロセス侵襲を有するプロセス流体温度計測システム
TWI437402B (zh) Pressure flow control device
TWI417697B (zh) 質流控制器之熱虹吸補償
JP2016095212A5 (ja)
TWI628717B (zh) 加熱汽化系統和加熱汽化方法
US20150316401A1 (en) Thermal, flow measuring apparatus and method for determining and/or monitoring flow of a medium
TWI657232B (zh) 液面計、具備彼之氣化器及液面檢測方法
KR20170044680A (ko) 액면 검지 회로, 액면계, 그것을 구비한 용기, 및 그 용기를 사용한 기화기
KR20170139524A (ko) 가연성 가스와 연소 공기를 혼합하기 위한 장치와 방법, 이것이 구비된 온수 설비, 대응하는 열식 질량 유량 센서, 및 가스 유동의 질량 유량을 측정하기 위한 방법
US20170322091A1 (en) Open air thermowell
WO2013175664A1 (ja) ボイラの蒸気圧力計測装置およびボイラの蒸気量計測装置
US10788378B2 (en) Device and method for reliably and precisely determining the temperature of a medium
JP3009809B2 (ja) 半導体加工用液体原料収容容器における液面検出装置
US20220093431A1 (en) Systems and methods for detecting the presence of deposits in fluid flow conduits
JP5847607B2 (ja) 流量制御装置
TW202335126A (zh) 用於偵測流體流動導管中沉積物之存在之系統及方法
CN115943294A (zh) 用于低温应用的保护管
KR20060015730A (ko) 열 풍속계를 이용한 질량 유량 측정장치 및 측정방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177003066

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15525479

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858476

Country of ref document: EP

Kind code of ref document: A1