WO2016071971A1 - はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法 - Google Patents
はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法 Download PDFInfo
- Publication number
- WO2016071971A1 WO2016071971A1 PCT/JP2014/079347 JP2014079347W WO2016071971A1 WO 2016071971 A1 WO2016071971 A1 WO 2016071971A1 JP 2014079347 W JP2014079347 W JP 2014079347W WO 2016071971 A1 WO2016071971 A1 WO 2016071971A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solder
- core
- ball
- yellowness
- solder material
- Prior art date
Links
- 229910000679 solder Inorganic materials 0.000 title claims abstract description 247
- 239000000463 material Substances 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims description 39
- 239000006260 foam Substances 0.000 title claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 53
- 239000000956 alloy Substances 0.000 claims abstract description 53
- 229910052718 tin Inorganic materials 0.000 claims abstract description 20
- 239000010410 layer Substances 0.000 claims description 106
- 239000011247 coating layer Substances 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 229920005989 resin Polymers 0.000 claims description 16
- 239000011347 resin Substances 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 229910052709 silver Inorganic materials 0.000 claims description 13
- 238000005259 measurement Methods 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052787 antimony Inorganic materials 0.000 claims description 8
- 229910052738 indium Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052732 germanium Inorganic materials 0.000 claims description 7
- 229910052745 lead Inorganic materials 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 229910052797 bismuth Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 238000007726 management method Methods 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 229910003455 mixed metal oxide Inorganic materials 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract description 20
- 238000002844 melting Methods 0.000 abstract description 19
- 230000008018 melting Effects 0.000 abstract description 19
- 230000003647 oxidation Effects 0.000 abstract description 18
- 238000007254 oxidation reaction Methods 0.000 abstract description 18
- 239000010949 copper Substances 0.000 description 410
- 238000007747 plating Methods 0.000 description 73
- 239000000203 mixture Substances 0.000 description 25
- 239000000243 solution Substances 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 24
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000010703 silicon Substances 0.000 description 7
- 229910017944 Ag—Cu Inorganic materials 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 239000002346 layers by function Substances 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 150000003460 sulfonic acids Chemical class 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910017821 Cu—Ge Inorganic materials 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910020836 Sn-Ag Inorganic materials 0.000 description 2
- 229910020988 Sn—Ag Inorganic materials 0.000 description 2
- 229910052776 Thorium Inorganic materials 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000005260 alpha ray Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000010413 mother solution Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- YXTDAZMTQFUZHK-ZVGUSBNCSA-L (2r,3r)-2,3-dihydroxybutanedioate;tin(2+) Chemical compound [Sn+2].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O YXTDAZMTQFUZHK-ZVGUSBNCSA-L 0.000 description 1
- MNDGPLSORKUYSJ-UHFFFAOYSA-J 1,6,8,13-tetraoxa-7-stannaspiro[6.6]tridecane-2,5,9,12-tetrone Chemical compound O1C(=O)CCC(=O)O[Sn]21OC(=O)CCC(=O)O2 MNDGPLSORKUYSJ-UHFFFAOYSA-J 0.000 description 1
- DIZBQMTZXOUFTD-UHFFFAOYSA-N 2-(furan-2-yl)-3h-benzimidazole-5-carboxylic acid Chemical compound N1C2=CC(C(=O)O)=CC=C2N=C1C1=CC=CO1 DIZBQMTZXOUFTD-UHFFFAOYSA-N 0.000 description 1
- GEZAUFNYMZVOFV-UHFFFAOYSA-J 2-[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphastannetan-2-yl)oxy]-1,3,2$l^{5},4$l^{2}-dioxaphosphastannetane 2-oxide Chemical compound [Sn+2].[Sn+2].[O-]P([O-])(=O)OP([O-])([O-])=O GEZAUFNYMZVOFV-UHFFFAOYSA-J 0.000 description 1
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 1
- CQMNNMLVXSWLCH-UHFFFAOYSA-B 2-hydroxypropane-1,2,3-tricarboxylate;tin(4+) Chemical compound [Sn+4].[Sn+4].[Sn+4].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O CQMNNMLVXSWLCH-UHFFFAOYSA-B 0.000 description 1
- SKEZDZQGPKHHSH-UHFFFAOYSA-J 2-hydroxypropanoate;tin(4+) Chemical compound [Sn+4].CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O SKEZDZQGPKHHSH-UHFFFAOYSA-J 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OCUCCJIRFHNWBP-IYEMJOQQSA-L Copper gluconate Chemical compound [Cu+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OCUCCJIRFHNWBP-IYEMJOQQSA-L 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- MRLQSGZHMHONNG-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].[Ge+3] Chemical compound P(=O)([O-])([O-])[O-].[Ge+3] MRLQSGZHMHONNG-UHFFFAOYSA-K 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229910021612 Silver iodide Inorganic materials 0.000 description 1
- 229910020816 Sn Pb Inorganic materials 0.000 description 1
- 229910020830 Sn-Bi Inorganic materials 0.000 description 1
- 229910020888 Sn-Cu Inorganic materials 0.000 description 1
- 229910020922 Sn-Pb Inorganic materials 0.000 description 1
- 229910018728 Sn—Bi Inorganic materials 0.000 description 1
- 229910019204 Sn—Cu Inorganic materials 0.000 description 1
- 229910018956 Sn—In Inorganic materials 0.000 description 1
- 229910008783 Sn—Pb Inorganic materials 0.000 description 1
- RZESOXIJGKVAAX-UHFFFAOYSA-L [Ag++].[O-]C(=O)CCC([O-])=O Chemical compound [Ag++].[O-]C(=O)CCC([O-])=O RZESOXIJGKVAAX-UHFFFAOYSA-L 0.000 description 1
- RAOSIAYCXKBGFE-UHFFFAOYSA-K [Cu+3].[O-]P([O-])([O-])=O Chemical compound [Cu+3].[O-]P([O-])([O-])=O RAOSIAYCXKBGFE-UHFFFAOYSA-K 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- ODWXUNBKCRECNW-UHFFFAOYSA-M bromocopper(1+) Chemical compound Br[Cu+] ODWXUNBKCRECNW-UHFFFAOYSA-M 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- MGIWDIMSTXWOCO-UHFFFAOYSA-N butanedioic acid;copper Chemical compound [Cu].OC(=O)CCC(O)=O MGIWDIMSTXWOCO-UHFFFAOYSA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229940108925 copper gluconate Drugs 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- RSJOBNMOMQFPKQ-UHFFFAOYSA-L copper;2,3-dihydroxybutanedioate Chemical compound [Cu+2].[O-]C(=O)C(O)C(O)C([O-])=O RSJOBNMOMQFPKQ-UHFFFAOYSA-L 0.000 description 1
- DYROSKSLMAPFBZ-UHFFFAOYSA-L copper;2-hydroxypropanoate Chemical compound [Cu+2].CC(O)C([O-])=O.CC(O)C([O-])=O DYROSKSLMAPFBZ-UHFFFAOYSA-L 0.000 description 1
- HFDWIMBEIXDNQS-UHFFFAOYSA-L copper;diformate Chemical compound [Cu+2].[O-]C=O.[O-]C=O HFDWIMBEIXDNQS-UHFFFAOYSA-L 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- ZQLBQWDYEGOYSW-UHFFFAOYSA-L copper;disulfamate Chemical compound [Cu+2].NS([O-])(=O)=O.NS([O-])(=O)=O ZQLBQWDYEGOYSW-UHFFFAOYSA-L 0.000 description 1
- ZHOLKSYCHRKNCU-UHFFFAOYSA-H copper;silicon(4+);hexafluoride Chemical compound [F-].[F-].[F-].[F-].[F-].[F-].[Si+4].[Cu+2] ZHOLKSYCHRKNCU-UHFFFAOYSA-H 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- PEVJCYPAFCUXEZ-UHFFFAOYSA-J dicopper;phosphonato phosphate Chemical compound [Cu+2].[Cu+2].[O-]P([O-])(=O)OP([O-])([O-])=O PEVJCYPAFCUXEZ-UHFFFAOYSA-J 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- ZUVOYUDQAUHLLG-OLXYHTOASA-L disilver;(2r,3r)-2,3-dihydroxybutanedioate Chemical compound [Ag+].[Ag+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O ZUVOYUDQAUHLLG-OLXYHTOASA-L 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- GGQZVHANTCDJCX-UHFFFAOYSA-N germanium;tetrahydrate Chemical compound O.O.O.O.[Ge] GGQZVHANTCDJCX-UHFFFAOYSA-N 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 1
- 229940071536 silver acetate Drugs 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- 229940071575 silver citrate Drugs 0.000 description 1
- 229940045105 silver iodide Drugs 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- FJOLTQXXWSRAIX-UHFFFAOYSA-K silver phosphate Chemical compound [Ag+].[Ag+].[Ag+].[O-]P([O-])([O-])=O FJOLTQXXWSRAIX-UHFFFAOYSA-K 0.000 description 1
- 229910000161 silver phosphate Inorganic materials 0.000 description 1
- 229940019931 silver phosphate Drugs 0.000 description 1
- 229910000367 silver sulfate Inorganic materials 0.000 description 1
- YPNVIBVEFVRZPJ-UHFFFAOYSA-L silver sulfate Chemical compound [Ag+].[Ag+].[O-]S([O-])(=O)=O YPNVIBVEFVRZPJ-UHFFFAOYSA-L 0.000 description 1
- NEMJXQHXQWLYDM-JJKGCWMISA-M silver;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Ag+].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O NEMJXQHXQWLYDM-JJKGCWMISA-M 0.000 description 1
- LMEWRZSPCQHBOB-UHFFFAOYSA-M silver;2-hydroxypropanoate Chemical compound [Ag+].CC(O)C([O-])=O LMEWRZSPCQHBOB-UHFFFAOYSA-M 0.000 description 1
- FTNNQMMAOFBTNJ-UHFFFAOYSA-M silver;formate Chemical compound [Ag+].[O-]C=O FTNNQMMAOFBTNJ-UHFFFAOYSA-M 0.000 description 1
- TZMGLOFLKLBEFW-UHFFFAOYSA-M silver;sulfamate Chemical compound [Ag+].NS([O-])(=O)=O TZMGLOFLKLBEFW-UHFFFAOYSA-M 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- -1 sulfonic acid copper salt Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- VJHDVMPJLLGYBL-UHFFFAOYSA-N tetrabromogermane Chemical compound Br[Ge](Br)(Br)Br VJHDVMPJLLGYBL-UHFFFAOYSA-N 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
- CUDGTZJYMWAJFV-UHFFFAOYSA-N tetraiodogermane Chemical compound I[Ge](I)(I)I CUDGTZJYMWAJFV-UHFFFAOYSA-N 0.000 description 1
- VPKAOUKDMHJLAY-UHFFFAOYSA-J tetrasilver;phosphonato phosphate Chemical compound [Ag+].[Ag+].[Ag+].[Ag+].[O-]P([O-])(=O)OP([O-])([O-])=O VPKAOUKDMHJLAY-UHFFFAOYSA-J 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- YZJQPSAZKVXWEZ-UHFFFAOYSA-J tin(4+) tetraformate Chemical compound [Sn+4].[O-]C=O.[O-]C=O.[O-]C=O.[O-]C=O YZJQPSAZKVXWEZ-UHFFFAOYSA-J 0.000 description 1
- FAKFSJNVVCGEEI-UHFFFAOYSA-J tin(4+);disulfate Chemical compound [Sn+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O FAKFSJNVVCGEEI-UHFFFAOYSA-J 0.000 description 1
- QUBMWJKTLKIJNN-UHFFFAOYSA-B tin(4+);tetraphosphate Chemical compound [Sn+4].[Sn+4].[Sn+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QUBMWJKTLKIJNN-UHFFFAOYSA-B 0.000 description 1
- AECLSPNOPRYXFI-UHFFFAOYSA-J tin(4+);tetrasulfamate Chemical compound [Sn+4].NS([O-])(=O)=O.NS([O-])(=O)=O.NS([O-])(=O)=O.NS([O-])(=O)=O AECLSPNOPRYXFI-UHFFFAOYSA-J 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- QPBYLOWPSRZOFX-UHFFFAOYSA-J tin(iv) iodide Chemical compound I[Sn](I)(I)I QPBYLOWPSRZOFX-UHFFFAOYSA-J 0.000 description 1
- YJGJRYWNNHUESM-UHFFFAOYSA-J triacetyloxystannyl acetate Chemical compound [Sn+4].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O YJGJRYWNNHUESM-UHFFFAOYSA-J 0.000 description 1
- YQMWDQQWGKVOSQ-UHFFFAOYSA-N trinitrooxystannyl nitrate Chemical compound [Sn+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YQMWDQQWGKVOSQ-UHFFFAOYSA-N 0.000 description 1
- PQGFRBOHUKOXQZ-FSCNPAMSSA-J tris[[(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl]oxy]stannyl (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Sn+4].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O PQGFRBOHUKOXQZ-FSCNPAMSSA-J 0.000 description 1
- QUTYHQJYVDNJJA-UHFFFAOYSA-K trisilver;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [Ag+].[Ag+].[Ag+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QUTYHQJYVDNJJA-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/492—Bases or plates or solder therefor
- H01L23/4924—Bases or plates or solder therefor characterised by the materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/262—Sn as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/18—Non-metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0233—Sheets, foils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
- B23K35/025—Pastes, creams, slurries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/302—Cu as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/16—Apparatus for electrolytic coating of small objects in bulk
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/30—Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/60—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/60—Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
- H01L2021/60277—Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving the use of conductive adhesives
Definitions
- the present invention relates to a solder material, a solder paste, foam solder, a solder joint, and a solder material management method.
- the electronic components to be mounted have been rapidly downsized.
- the electronic component uses a ball grid array (hereinafter referred to as “BGA”) in which electrodes are provided on the back surface. .
- BGA ball grid array
- An electronic component to which BGA is applied includes, for example, a semiconductor package.
- the semiconductor package is configured by sealing a semiconductor chip having electrodes with a resin.
- Solder bumps are formed on the electrodes of the semiconductor chip.
- the solder bump is formed by joining a solder ball to an electrode of a semiconductor chip.
- a semiconductor package to which BGA is applied is mounted on a printed circuit board by bonding solder bumps melted by heating and conductive lands of the printed circuit board.
- solder balls may be crushed by the weight of the semiconductor package. If such a thing occurs, the solder may protrude from the electrodes, the electrodes may be connected, and a short circuit may occur.
- the Cu core ball includes a Cu ball serving as a core and a solder layer covering the surface of the Cu ball.
- Solder bumps formed using Cu core balls support the semiconductor package with Cu balls that do not melt at the melting point of the solder, even when the weight of the semiconductor package is added to the solder bump when an electronic component is mounted on a printed circuit board. Can do. Thereby, it is possible to prevent the solder bumps from being crushed by the weight of the semiconductor package.
- an oxide film may be formed on the solder surface of the Cu core ball by heating during the reflow process. Due to the influence of the oxide film, wetting failure occurs between the solder and the electrode pad, and as a result, defective mounting of the Cu core ball occurs, resulting in a problem that the productivity and yield of the semiconductor package are significantly reduced. . Therefore, oxidation resistance is required during and after the melting of the Cu core ball.
- the problem of the oxide film of the Cu core ball may be caused by the temperature and humidity of the storage environment after the Cu core ball is manufactured. Even when the Cu core ball formed with the oxide film is mounted on the electrode of the semiconductor package and then reflow-treated, poor solder wetting occurs, and the solder constituting the Cu core ball does not spread over the entire electrode, There are problems that the electrode is exposed, or that the mounting failure of the Cu core ball occurs due to misalignment of the Cu core ball with respect to the electrode. Therefore, management of the oxide film thickness after the production of the Cu core ball is also an important problem.
- Patent Document 1 discloses that the yellowness (b * value) of the surface of a solder ball composed of 0 to 4.0% Ag, 0 to 1.0% Cu, the balance Sn and unavoidable impurities. ) Is set to 10 or less to describe a technique for controlling the Sn oxide film thickness formed on the surface of the solder ball to a certain value or less.
- Patent Document 2 describes a technique for suppressing the oxidation of Sn by preferentially forming a Ge oxide film on the surface of molten solder by containing 0.2% or less of Ge in a solder alloy. .
- FIG. 6 is a graph showing the relationship between yellowness (b * value) and oxide film thickness in Cu core balls and solder balls.
- the vertical axis indicates yellowness
- the horizontal axis indicates the oxide film thickness.
- the oxidation proceeds faster than the solder ball, and the yellowness also increases with this, but thereafter the yellowness decreases regardless of the increase in the oxide film thickness.
- yellowness are not proportional. For example, when the oxide film thickness is 4 nm, the yellowness is 7.2, but when the oxide film thickness is 8.7 nm, the yellowness is 2.9, which is between the oxide film thickness and the yellowness. There is no correlation. This is considered to be caused by impurities in the solder plating that covers the surface of the Cu ball.
- Patent Document 2 is a technique related to a solder alloy, and there is no description about managing the oxide film thickness of a Cu core ball.
- the present invention has been made in view of the above problems, and an object thereof is to manage the oxide film thickness at a certain value or less before melting of the solder. Moreover, this invention is providing the solder material which has oxidation resistance at the time of the fusion
- the present inventors pay attention to two indexes of yellowness and lightness (L * value) as indexes for managing the oxide film thickness in advance before melting of the solder material, and solder of yellowness and lightness within a set range. It has been found that the oxide film thickness formed on the surface of the solder material can be accurately controlled by selecting the material. In addition, the present inventors can improve oxidation resistance at the time of melting and after melting of the solder material by adding Ge to the coating layer to give the solder material potential oxidation resistance. I found it.
- the coating layer is a solder alloy containing Sn or Sn as a main component.
- the lightness in the L * a * b * color system of the solder material is 65 or more, and the yellowness in the L * a * b * color system is 7.0 or less.
- the coating layer includes, for example, a layer that directly covers the surface of the nucleus and a layer that covers the nucleus via another functional layer formed on the surface of the nucleus.
- Other functional layers may be composed of one layer, or may be composed of two or more layers.
- the oxide film thickness formed on the surface of the coating layer is 3.8 nm or less.
- the brightness of the solder material is 70 or more and the yellowness is 5.1 or less.
- the coating layer contains 40% or more of Sn, and contains Ge. It is contained at 20 ppm or more and 220 ppm or less.
- the solder material has a lightness in the L * a * b * color system of 65 or more and a yellowness in the L * a * b * color system of 7.0 or less. It is characterized by.
- the core covered with a layer composed of one or more elements selected from Ni and Co is covered with the solder layer. To do.
- the nucleus is spherical Cu, Ni, Ag, Bi, Pb, Al, Sn, Fe, Zn, In, Ge, Sb, Co, Mn , Au, Si, Pt, Cr, La, Mo, Nb, Pd, Ti, Zr, Mg composed of simple metal, alloy, metal oxide, mixed metal oxide, or resin material To do.
- the nucleus is a columnar Cu, Ni, Ag, Bi, Pb, Al, Sn, Fe, Zn, In, Ge, Sb, Co, Mn, Au, Si, Pt, Cr, La, Mo, Nb, Pd, Ti, Zr, Mg are composed of a single metal, alloy, metal oxide, mixed metal oxide, or resin material.
- solder paste according to any one of the above (1) to (8) is used in the solder paste.
- solder material described in any one of (1) to (8) is used.
- solder material according to any one of (1) to (8) is used.
- the ⁇ dose of at least one of the core, the coating layer, and the entire solder material is 0.0200 cph / cm 2 or less. It is characterized by being.
- a method for managing a solder material comprising: a core that secures a space between a bonded object and an object to be bonded; and a coating layer that is made of Sn or a solder alloy mainly composed of Sn that covers the core. And measuring the brightness and yellowness in the L * a * b * color system of the solder material, and the brightness of the solder material is 65 or more based on the measurement result of the brightness and yellowness of the solder material, and And a step of selecting only a solder material having a yellowness of 7.0 or less.
- the brightness of the solder material in the L * a * b * color system is 65 or more and the yellowness in the L * a * b * color system is 7.0 or less.
- a solder material having a thin oxide film thickness can be provided.
- a coating layer contains Ge at 20 ppm or more and 220 ppm or less, oxidation resistance can be improved at the time of melting of solder and after melting.
- FIG. 1 is a cross-sectional view showing an example of the configuration of a Cu core ball 1A according to the present invention.
- a Cu core ball 1A according to the present invention has a predetermined size and a Cu ball that secures a gap between a semiconductor package (joined article) and a printed circuit board (joined article).
- the Cu core ball 1A has a brightness of 65 or more and a yellowness of 7.0 or less.
- 3 A of solder layers are comprised from the solder alloy which has Sn or Sn as a main component.
- the brightness of the Cu core ball (solder layer) is 65 or more and the yellowness is 7.0 or less.
- the Cu core ball 1A has a brightness of 65 or more and a yellowness of 7.0 or less. More preferably, the lightness is 70 or more and the yellowness is 5.1 or less.
- the oxide film thickness formed on the surface of the solder layer 3A can be managed at a certain value or less. For example, when the brightness and yellowness of the Cu core ball 1A are measured and a Cu core ball 1A having a brightness of 65 or more and a yellowness of 7.0 or less is selected, the oxide film thickness can be controlled to 4 nm or less. it can.
- the oxide film thickness can be controlled to 2 nm or less. it can.
- the oxide film thickness of the Cu core ball 1A cannot be accurately controlled by only one index of yellowness or lightness alone. Therefore, the oxide film thickness of the Cu core ball 1A is determined by the two indexes of yellowness and lightness. Is managing. Since the reason why the oxide film thickness of the Cu core ball 1A cannot be managed only by the yellowness has already been described, the reason why the oxide film thickness of the Cu core ball 1A cannot be managed only by the brightness will be described below.
- FIG. 2 is a graph showing the relationship between the oxide film thickness and brightness of the Cu core ball 1A and the solder ball.
- the vertical axis indicates the brightness
- the horizontal axis indicates the oxide film thickness.
- the oxide film thickness and brightness of the Cu core ball 1A have a correlation that the brightness decreases as the oxide film becomes thicker.
- the correlation coefficient R between the oxide film thickness and lightness at this time was determined.
- the correlation coefficient R is obtained in the range of ⁇ 1 to 1.
- Oxide film thickness and the contribution ratio R 2 of the brightness of the Cu core ball 1A 0.8229, and becomes relatively smaller value than 1.
- the composition and sphericity of the Cu ball 2A constituting the Cu core ball 1A according to the present invention will be described in detail. Since the Cu ball 2A is not melted at the soldering temperature when the Cu core ball 1A is used for a solder bump, the Cu ball 2A has a function of suppressing the height variation of the solder joint. Therefore, the Cu ball 2A preferably has a high sphericity and a small variation in diameter. Further, as described above, it is preferable that the ⁇ dose of the Cu ball 2A is as low as the solder layer 3A.
- preferred embodiments of the Cu ball 2A will be described.
- bowl 2A can also be set as the composition of Cu single-piece
- the Cu ball 2A is made of an alloy, the Cu content is 50% by mass or more.
- Ni, Ag, Bi, Pb, Al, Sn, Fe, Zn, In, Ge, Sb, Co, Mn, Au, Si, Pt, Cr, La, Mo, Nb, Pd, Ti, Zr, Mg may be composed of a single metal, an alloy, a metal oxide, a metal mixed oxide, or a resin material.
- the purity of Cu ball 2A constituting the present invention is not particularly limited, but it is necessary to suppress deterioration of the electrical conductivity and thermal conductivity of Cu ball 2A due to a decrease in purity. From the viewpoint of suppressing the ⁇ dose according to the above, it is preferably 99.9% or more.
- the impurity element contained in the Cu ball 2A As the impurity element contained in the Cu ball 2A, Sn, Sb, Bi, Ni, Zn, Fe, Al, As, Ag, In, Cd, Pb, Au, P, S, Co, and the like can be considered.
- the Cu ball 2A constituting the present invention has a sphericity of 0.95 or more from the standpoint of controlling the standoff height. If the sphericity of the Cu ball 2A is less than 0.95, the Cu ball 2A has an indefinite shape, and therefore bumps with non-uniform heights are formed when bumps are formed, which increases the possibility of defective bonding. Furthermore, when the Cu core ball 1A is mounted on the electrode and reflow is performed, the Cu core ball 1A is displaced, and the self-alignment property is also deteriorated.
- the sphericity is more preferably 0.990 or more. In the present invention, the sphericity represents a deviation from the sphere.
- the sphericity is obtained by various methods such as a least square center method (LSC method), a minimum region center method (MZC method), a maximum inscribed center method (MIC method), and a minimum circumscribed center method (MCC method).
- LSC method least square center method
- MZC method minimum region center method
- MIC method maximum inscribed center method
- MCC method minimum circumscribed center method
- the sphericity is an arithmetic average value calculated when the diameter of each of the 500 Cu balls 2A is divided by the major axis, and the closer the value is to the upper limit of 1.00, the closer to the true sphere.
- the length of the major axis and the length of the diameter mean a length measured by an ultra quick vision, ULTRA QV350-PRO measuring device manufactured by Mitutoyo Corporation.
- the diameter of the Cu ball 2A constituting the present invention is preferably 1 to 1000 ⁇ m. Within this range, the spherical Cu ball 2A can be manufactured stably, and connection short-circuiting when the terminals are at a narrow pitch can be suppressed.
- the aggregate of “Cu core balls” may be referred to as “Cu core powder”.
- the “Cu core powder” is an aggregate of a large number of Cu core balls 1A in which the individual core core balls 1A have the above-described characteristics. For example, it is distinguished from the single Cu core ball 1A in terms of the usage form, such as being blended as a powder in a solder paste. Similarly, when used for the formation of solder bumps, it is normally handled as an aggregate, so that the “Cu core powder” used in such a form is distinguished from a single Cu core ball 1A.
- solder layer [3A. Solder layer] Next, the composition of the solder layer 3A constituting the Cu core ball 1A according to the present invention will be described in detail.
- the composition of the solder layer 3A can be composed of Sn alone, an alloy composition of a lead-free solder alloy containing Sn as a main component, or the composition of the Sn—Pb solder alloy. You can also When the solder layer 3A is made of an alloy, the Sn content is 40% by mass or more.
- the lead-free solder composition include, for example, Sn, Sn—Ag alloy, Sn—Cu alloy, Sn—Bi alloy, Sn—Ag—Cu alloy, Sn—In alloy, and predetermined alloy elements added thereto. Things. Examples of alloy elements to be added include Ag, Cu, In, Ni, Co, Sb, P, and Fe.
- the alloy composition of the solder layer 3A is preferably a Sn-3Ag-0.5Cu alloy from the viewpoint of thermal fatigue life.
- the thickness of the solder layer 3A is not particularly limited, but for example, 100 ⁇ m (one side) or less is sufficient. Generally, it may be 20 to 50 ⁇ m.
- the Sn content of the lead-free solder alloy containing Sn as a main component is preferably 80% or higher, more preferably 90% or higher.
- a Cu material as a material is placed on a heat-resistant plate which is a heat-resistant plate such as ceramic, and is heated together with the heat-resistant plate in a furnace.
- the heat-resistant plate is provided with a number of circular grooves whose bottoms are hemispherical.
- the diameter and depth of the groove are appropriately set according to the particle diameter of the Cu ball 2A. For example, the diameter is 0.8 mm and the depth is 0.88 mm.
- chip-shaped Cu material hereinafter referred to as “chip material” obtained by cutting the Cu thin wire is put into the groove of the heat-resistant plate one by one.
- the heat-resistant plate in which the chip material is put in the groove is heated to 1100 to 1300 ° C. in a furnace filled with a reducing gas, for example, ammonia decomposition gas, and is heated for 30 to 60 minutes. At this time, if the furnace temperature becomes equal to or higher than the melting point of Cu, the chip material melts and becomes spherical. Thereafter, the inside of the furnace is cooled, and the Cu ball 2A is formed in the groove of the heat-resistant plate. After cooling, the molded Cu ball 2A may be subjected to heat treatment again at 800 to 1000 ° C., which is a temperature lower than the melting point of Cu.
- a reducing gas for example, ammonia decomposition gas
- an atomizing method in which molten Cu is dropped from an orifice provided at the bottom of the crucible, and this droplet is cooled to form a Cu ball 2A, or thermal plasma is applied to the Cu cut metal.
- molten Cu is dropped from an orifice provided at the bottom of the crucible, and this droplet is cooled to form a Cu ball 2A, or thermal plasma is applied to the Cu cut metal.
- the Cu balls 2A thus formed may be reheated at a temperature of 800 to 1000 ° C. for 30 to 60 minutes.
- the Cu material as the raw material of the Cu ball 2A may be heat-treated at 800 to 1000 ° C.
- the Cu material that is a raw material of the Cu ball 2A for example, pellets, wires, pillars, and the like can be used.
- the purity of the Cu material may be 99.9 to 99.99% from the viewpoint of preventing the purity of the Cu ball 2A from being excessively lowered.
- the heat treatment described above may not be performed, and the molten Cu holding temperature may be lowered to about 1000 ° C. as in the conventional case.
- the above-mentioned heat treatment may be omitted or changed as appropriate according to the purity of the Cu material.
- solder layer 3A As a method for forming the solder layer 3A on the Cu ball 2A by flowing the Cu ball 2A and the plating solution produced as described above, a known electroplating method such as barrel plating, or a pump connected to a plating tank is used. A method in which high-speed turbulence is generated in the plating solution in the plating tank, and the solder layer 3A is formed on the Cu balls 2A by the turbulent flow of the plating solution, and the plating solution is provided with a vibrating plate and vibrated at a predetermined frequency. Is a method in which the solder layer 3A is formed on the Cu ball 2A by turbulent flow of the plating solution.
- a Cu ball 2A having a film thickness (one side) of 2 ⁇ m is coated on a Cu ball 2A having a diameter of 100 ⁇ m, and then a Sn—Ag—Cu solder layer 3A having a film thickness (one side) of 18 ⁇ m is formed. This will be described as an example.
- the Sn—Ag—Cu-containing plating solution according to an embodiment of the present invention contains Sn, Ag, and Cu as essential components as a sulfonic acid and a metal component in a medium mainly composed of water.
- the plating solution is obtained by mixing a plating mother solution mainly composed of water and sulfonic acids and a metal compound, and preferably contains an organic complexing agent for the stability of metal ions.
- Examples of the metal compound in the plating solution include the following.
- Specific examples of the Sn compound include tin salts of organic sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, 2-propanolsulfonic acid, p-phenolsulfonic acid, tin sulfate, tin oxide, tin nitrate, tin chloride, bromide.
- the 1st Sn compound of these is mentioned. These Sn compounds can be used individually by 1 type or in mixture of 2 or more types.
- examples include copper, copper gluconate, copper tartrate, copper lactate, copper succinate, copper sulfamate, copper borofluoride, copper silicofluoride and the like.
- These Cu compounds can be used individually by 1 type or in mixture of 2 or more types.
- Examples of the Ag compound include silver salts of the above organic sulfonic acids, silver sulfate, silver oxide, silver chloride, silver nitrate, silver bromide, silver iodide, silver phosphate, silver pyrophosphate, silver acetate, silver formate, silver citrate, Examples include silver gluconate, silver tartrate, silver lactate, silver succinate, silver sulfamate, silver borofluoride, and silver silicofluoride. These Ag compounds can be used individually by 1 type or in mixture of 2 or more types.
- the amount of each metal in the plating solution is 0.21 to 2 mol / L, preferably 0.25 to 1 mol / L as Sn 2+ , and 0.01 to 0.1 mol / L as Ag + , preferably 0.8. 02 to 0.05 mol / L, and Cu 2+ is 0.002 to 0.02 mol / L, preferably 0.003 to 0.01 mol / L.
- the amount of Sn 2+ may be adjusted in the present invention.
- the Ag ion concentration (Ag / Cu molar ratio) with respect to the Cu ion concentration is preferably in the range of 4.5 to 5.58. Within this range, a Sn—Ag—Cu solder layer 3A having a low melting point such as an Sn-3Ag—0.5Cu alloy can be formed.
- the deposition amount of a desired solder plating is estimated by the following formula (1) according to Faraday's law of electrolysis, the amount of electricity is calculated, and an electric current is passed through the plating solution so that the calculated amount of electricity is obtained. Plating is performed while flowing 2A and the plating solution. The capacity of the plating tank can be determined according to the total amount of the Cu balls 2A and the plating solution.
- w is the amount of electrolytic deposition (g)
- I is the current (A)
- t is the energization time (seconds)
- M is the atomic weight of the deposited element (118.71 in the case of Sn)
- Z is The valence (divalent in the case of Sn)
- F is the Faraday constant (96500 coulomb)
- Q is represented by (I ⁇ sec)
- plating is performed while flowing the Cu balls 2A and the plating solution, but the method of flowing is not particularly limited.
- the Cu ball 2A and the plating solution can be flowed by rotation of the barrel as in the barrel electrolytic plating method.
- the Cu core ball 1A according to the present invention can be obtained by drying in the air or N 2 atmosphere.
- a Cu core ball 1B according to the present invention includes a Cu ball (core) 2B that secures a gap between a semiconductor package and a printed circuit board, and a solder layer (cover layer) 3B that covers the Cu ball 2B. 3B contains 40% or more of Sn and contains 20 ppm or more and 220 ppm or less of Ge.
- the Cu core ball 1B has a brightness of 65 or more and a yellowness of 7.0 or less.
- each structure of Cu core ball 1B is demonstrated in detail.
- the Cu core ball 1B has the same configuration and the like as the Cu core ball 1A described above except that the solder layer 3B contains Ge. Therefore, the Cu core ball 1B will be described with reference to FIG. .
- the brightness of the Cu core ball is 65 or more and the yellowness is 7.0 or less.
- FIG. 3 is a diagram showing the relationship between the yellowness and the oxide film thickness in the Cu core ball and the solder ball. The vertical axis represents yellowness, and the horizontal axis represents heating time. As shown in FIG. 3, when Ge is added to the solder ball, it is difficult to oxidize, and almost no change in yellowness is observed. On the other hand, in Cu core balls, when a predetermined amount of Ge is added to the solder layer or when Ge is not added, the yellowness increases as the surface oxide film thickness increases, but the surface color changes thereafter. The yellowness decreased.
- the oxide film thickness is also managed by the two indexes of yellowness and lightness in the Cu core ball 1B.
- the Cu core ball 1B has a brightness of 65 or more and a yellowness of 7.0 or less. More preferably, the lightness is 70 or more and the yellowness is 5.1 or less.
- the oxide film thickness formed on the surface of the solder layer 3B can be managed at a certain value or less. For example, when the brightness and yellowness of the Cu core ball 1B are measured and a Cu core ball 1B having a brightness of 65 or more and a yellowness of 7.0 or less is selected, the oxide film thickness can be controlled to 4 nm or less. Further, when the brightness and yellowness of the Cu core ball 1B are measured and a Cu core ball 1B having a brightness of 70 or more and a yellowness of 5.1 or less is selected, the oxide film thickness can be controlled to 2 nm or less.
- Cu ball The composition, purity, ⁇ dose, sphericity, diameter, and the like of the Cu ball 2B are the same as those of the Cu ball 2A that constitutes the Cu core ball 1A described above, and thus detailed description thereof is omitted.
- solder layer 3B is configured by adding Ge in the range of 20 ppm to 220 ppm to the same composition as the solder layer 3A of the Cu core ball 1A described above. Since the ⁇ dose and the like of the other solder layers 3B are the same as those of the solder layer 3A described above, detailed description thereof is omitted.
- the addition amount of Ge is 20 ppm to 220 ppm, more preferably 50 ppm to 200 ppm.
- the Sn—Ag—Cu—Ge-containing plating solution according to one embodiment of the present invention contains Sn, Ag, Cu, and Ge as essential components in a medium mainly composed of water as sulfonic acids and metal components. .
- the metal components are Sn ions (Sn 2+ and / or Sn 4+ ), Ag ions (Ag + ), Cu ions (Cu + and or Cu 2+ ) and Ge ions (Ge 2+ and or Ge 4 ) in the plating solution. + ) Is present.
- the plating solution is obtained by mixing a plating mother solution mainly composed of water and sulfonic acids and a metal compound, and preferably contains an organic complexing agent for the stability of metal ions.
- Ge compound in the plating solution examples include germanium oxide, germanium hydroxide, germanium phosphate, germanium chloride, germanium bromide, germanium iodide, and the like. These Ge compounds can be used individually by 1 type or in mixture of 2 or more types.
- a Cu ball 2B having a diameter of 100 ⁇ m is coated with a Ni plating layer having a film thickness (one side) of 2 ⁇ m and a Sn—Ag—Cu—Ge solder layer 3B having a film thickness (one side) of 18 ⁇ m.
- Cu core ball 1B is produced.
- FIG. 4 is a cross-sectional view showing an example of the configuration of the Cu nucleus column 4 according to the present invention.
- the Cu core column 4 according to the present invention includes a Cu column (core) 5 that secures a gap between the semiconductor package and the printed circuit board, and a solder layer (covering layer) that covers the Cu column 5. 6 is provided.
- the Cu core column 4 has a brightness of 65 or more and a yellowness of 7.0 or less. More preferably, the lightness is 70 or more and the yellowness is 5.1 or less.
- the oxide film thickness formed on the surface of the solder layer 6 can be controlled to a certain value or less.
- the Cu core column 4 is only different in shape from the balls such as the Cu core ball 1A, and the other configurations are the same as those of the Cu core ball 1A. Therefore, details of common items are omitted.
- the Cu column 5 can have a composition of Cu alone or an alloy composition containing Cu as a main component. When the Cu column 5 is made of an alloy, the Cu content is 50% by mass or more.
- Ni, Ag, Bi, Pb, Al, Sn, Fe, Zn, In, Ge, Sb, Co, Mn, Au, Si, Pt, Cr, La, Mo, Nb, Pd, Ti, Zr, Mg may be composed of a single metal, an alloy, a metal oxide, a metal mixed oxide, or a resin material.
- the Cu column 5 is composed of an elongated cylindrical body.
- the length L of the Cu column 5 is, for example, 1 to 3000 ⁇ m, and the diameter D of the Cu column is, for example, 1 to 1000 ⁇ m.
- the Cu column 5 may be annealed. Since the composition, purity, ⁇ dose, sphericity, etc. of the Cu column 5 are the same as those of the Cu ball 2A of the Cu core ball 1A described above, detailed description thereof is omitted.
- the solder layer 6 can have a composition of Sn alone or an alloy composition of a lead-free solder alloy mainly containing Sn. When the solder layer 6 is made of an alloy, the Sn content is 40% by mass or more.
- the thickness of the solder layer 6 is not particularly limited, but for example, 100 ⁇ m (one side) or less is sufficient. Generally, it may be 20-50 ⁇ m.
- Ge By adding Ge to the solder layer 6 in the range of 20 ppm or more and 220 ppm or less, oxidation resistance at the time of melting and after melting can be provided. Since the composition, ⁇ dose, and the like of the solder layer 6 are the same as those of the solder layer 3A of the Cu core ball 1A described above, detailed description thereof is omitted.
- a known technique can be adopted as a method of manufacturing the Cu column 5 of the Cu nucleus column 4.
- the copper column is drawn by passing a copper wire through a die to a predetermined diameter, and the drawn copper wire is cut at a predetermined length to produce the Cu column 5.
- a solder layer 6 is formed on the produced Cu column 5.
- a known electrolytic plating method such as barrel plating, or a pump connected to the plating tank generates a high-speed turbulent flow in the plating solution, and the turbulent flow of the plating solution causes Cu to flow.
- a method of forming the solder layer 6 on the column 5 a vibrating plate is provided in the plating tank, and the plating solution is vibrated at a predetermined frequency to stir the plating solution at a high speed, and the solder layer 6 is applied to the Cu column 5 by the turbulent flow of the plating solution.
- There is a method of forming Since other manufacturing methods are the same as the manufacturing method of the solder layer 3A and the like of the Cu core ball 1A described above, detailed description thereof is omitted.
- the case where Ge is added to the solder layer 6 is the same as in the above example, and thus detailed description thereof is omitted.
- the Cu core balls 1A, 1B and the Cu core column 4 according to the present invention have different surfaces of the Cu balls 2A, 2B and the Cu column 5 in advance before the solder layers 3A, 3B, 6 are formed. It may be covered with a plating layer.
- a plating layer In particular, when the surfaces of the Cu balls 2A and 2B and the Cu column 5 are previously coated with a Ni plating layer, a Co plating layer, or the like, the diffusion of Cu into the solder can be reduced during bonding to the electrode. Therefore, Cu erosion of the Cu balls 2A and 2B and the Cu column 5 can be suppressed.
- the metal which comprises a plating layer is not restricted to a single metal, The alloy which combined 2 or more elements from Ni, Co, etc. may be sufficient.
- the sphericity of the Cu core balls 1A and 1B according to the present invention is preferably 0.95 or more.
- the sphericity is more preferably 0.99 or more.
- the Cu core balls 1A and 1B and the Cu core column 4 according to the present invention can cover the entire surface with a flux.
- the Cu core balls 1A, 1B and the Cu core column 4 according to the present invention can also be used for foam solder in which the Cu core balls 1A, 1B and the Cu core column 4 are dispersed in the solder.
- a solder alloy having a composition of Sn-3Ag-0.5Cu each numerical value is% by mass
- the Cu core balls 1A and 1B and the Cu core column 4 according to the present invention can also be used for solder joints of electronic components.
- the Cu core balls 1A and 1B according to the present invention can be applied to the form of pillars and pellets having Cu as a core.
- the cores constituting the Cu core balls 1A and 1B and the Cu core column 4 according to the present invention can be configured by resin balls.
- resin materials include amino resins, acrylic resins, ethylene-vinyl acetate resins, styrene-butadiene block copolymers, polyester resins, melamine resins, phenol resins, alkyd resins, polyimide resins, urethane resins, epoxy resins, and cross-linked resins.
- conductive plastics such as polyacetylene, polypyrrole, polythiophene, and polyaniline.
- a Cu core ball can be constituted by the Sn—Ag—Cu solder plating layer (coating layer) to be coated.
- the Cu core ball includes a resin ball, a Cu plating layer that covers the surface of the resin ball, a Ni plating layer that covers the surface of the Cu plating layer, a Cu plating layer that covers the surface of the Ni plating layer, and Cu It can also be constituted by a Sn—Ag solder plating layer covering the surface of the plating layer.
- the kind and laminated structure of a functional layer and a coating layer which were mentioned above are not limited to the said example.
- a Cu pellet having a purity of 99.9%, a Cu wire having a purity of 99.995% or less, and a Cu plate having a purity exceeding 99.995% were prepared. After putting each prepared in a crucible, the temperature of the crucible was raised to 1200 ° C. and a heat treatment was performed for 45 minutes. Subsequently, a molten Cu droplet was dropped from an orifice provided at the bottom of the crucible, and the dropped droplet was cooled to form a Cu ball. Thereby, Cu balls having an average particle diameter of 100 ⁇ m were produced.
- the sphericity of the produced Cu ball was measured using a CNC image measurement system. Specifically, an ultra quick vision, ULTRA QV350-PRO measuring device manufactured by Mitutoyo Corporation was used. In this example, the length of the major diameter of the Cu ball and the length of the diameter are measured by the measuring device, and the arithmetic average value of the value obtained by dividing the diameter of each of the 500 Cu balls by the major diameter is calculated to calculate the sphericity. Asked. The closer the value is to the upper limit of 1.00, the closer to a true sphere.
- bowl was measured using the alpha ray measuring apparatus of a gas flow proportional counter.
- the measurement sample is a 300 mm ⁇ 300 mm flat shallow container in which Cu balls are spread until the bottom of the container is not visible. This measurement sample was placed in an ⁇ -ray measuring apparatus and allowed to stand for 24 hours in a PR-10 gas flow, and then the ⁇ dose was measured.
- the PR-10 gas used for the measurement (90% argon—10% methane) was obtained after 3 weeks or more had passed since the gas cylinder was filled with the PR-10 gas.
- the cylinder that was used for more than 3 weeks was used because the JEDEC STANDARD-Alpha Radiation Measuring Element, which was established by JEDEC (Joint Electron Engineering Engineering Coil) to prevent alpha rays from being generated by radon in the atmosphere entering the gas cylinder. This is because JESD221 is followed.
- Table 1 shows the elemental analysis results, sphericity and ⁇ dose of the prepared Cu balls. Elemental analysis was performed by inductively coupled plasma mass spectrometry (ICP-MS analysis) for U and Th, and by inductively coupled plasma optical emission spectrometry (ICP-AES analysis) for other elements. In Table 1, the unit is mass ppb for U and Th, and mass ppm for other elements.
- the ⁇ dose was 0.0010 cph / cm 2 or less for Cu balls using Cu pellets, Cu wires, and Cu plates, and was below the required 0.0200 cph / cm 2 .
- Cu oxide ball (without Ge addition) oxide film thickness, brightness, yellowness
- a Ni plating layer was formed on the surface of the Ni plating layer, and a solder layer was formed on the surface of the Ni plating layer to produce a Cu core ball.
- the oxide film thickness, brightness, and yellowness of the prepared Cu core ball were measured.
- the Cu core ball used for the measurement was subjected to Ni plating of 2 ⁇ m on one side to a Cu ball having a diameter of 100 ⁇ m to produce a Ni-plated Cu ball having a diameter of 104 ⁇ m, and further solder plating of 18 ⁇ m on one side to the Ni-plated Cu ball.
- This is a Cu core ball having a diameter of 140 ⁇ m.
- the composition of the solder layer is Sn-3Ag-0.5Cu alloy.
- Example 1A a Cu core ball immediately after fabrication was used.
- the Cu core ball was stored at room temperature (exposure to the atmosphere) and at a humidity of 30 to 40% for 2 days. The room temperature is 20-30 ° C.
- Example 3A Cu core balls were stored for 5 days at room temperature and humidity of 30-40%.
- Example 4A Cu core balls were stored for 7 days at room temperature and humidity of 30-40%.
- Example 5A Cu core balls were stored for 10 days at room temperature and humidity of 30-40%.
- Example 6A Cu core balls were stored for 14 days at room temperature and humidity of 30-40%.
- Example 7A Cu core balls were stored at 40 ° C. and 90% humidity for 1 day.
- Example 8A the Cu core ball was stored at room temperature and humidity of 30 to 40% for 20 days.
- Example 9A Cu core balls were stored at 40 ° C. and 90% humidity for 2 days.
- Example 10A the Cu core ball was stored at 150 ° C. for 1 day.
- Comparative Example 1A Cu core balls were stored at 40 ° C. and 90% humidity for 5 days.
- Comparative Example 2A Cu core balls were stored for 7 days at 40 ° C. and 90% humidity.
- Comparative Example 3A the Cu core ball was stored at 40 ° C. and a humidity of 90% for 10 days.
- Comparative Example 4A Cu core balls were stored for 14 days at 40 ° C. and 90% humidity.
- Comparative Example 5A the Cu core ball was stored at 150 ° C. for 5 days.
- Comparative Example 6A Cu core balls were stored at 150 ° C. for 7 days.
- the Cu core balls of Examples 1A to 10A and Comparative Examples 1A to 6A stored under the above conditions were recovered, and the brightness, yellowness, and oxide film thickness of each recovered Cu core ball were measured.
- the brightness and yellowness of the Cu core ball were measured using a CM-2600d spectrocolorimeter manufactured by Konica Minolta.
- the oxide film thickness of the Cu ball was measured using a FE-AES measuring device of ULVAC PHI700.
- the acceleration voltage of the measuring device was 10 kV, and the irradiation current was 10 nA.
- the oxide film thickness (depth) is obtained from the speed (etching rate) at which the surface of the sample is shaved with ions (Ar), and the etching depth that is a half peak value of oxygen-derived Intensity is used as an approximate value of the oxide film thickness. It was.
- the etching rate is a value converted to SiO 2 in terms of the cutting speed of the SiO 2 standard sample. Table 2 shows the relationship between the brightness and yellowness of Cu core balls and the oxide film thickness in the measured Examples 1A to 10A and Comparative Examples 1A to 6A. In Table 2, the unit of the oxide film thickness is (nm).
- Examples 1A to 10A in Table 2 when a Cu core ball having a brightness of 65 or more and a yellowness of 7.0 or less is selected, the oxide film thickness is 3.8 nm or less. became. Further, as shown in Examples 1A to 5A in Table 2, when a Cu core ball having a brightness of 70 or more and a yellowness of 5.1 or less is selected, the oxide film thickness is 1.9 nm. Thus, Cu core balls having a thinner oxide film thickness than those of other Examples 6A to 10A were obtained.
- the redness (a * value) was also measured, the correlation coefficient with the oxide film thickness and the contribution ratio were smaller than 1, and it was confirmed that the redness could not be used as an index for managing the oxide film thickness.
- the ⁇ dose of all Cu core balls is 0.0010 cph / cm 2 or less, which is required. Less than 0.0200 cph / cm 2 .
- the solderability (solder wettability) when reflow treatment was performed using the Cu core ball of the above example was verified.
- an oxide film having a predetermined thickness is formed on the surface of the Cu core ball according to the storage conditions.
- the oxide film on the surface of the Cu core ball exceeds a certain thickness, the reflow process is performed. In some cases, it is not possible to remove all of the oxide film even by the flux. In this case, at the time of joining, the solder constituting the Cu core ball does not spread over the entire electrode due to the influence of the oxide film, and the electrode is exposed, which causes a defect.
- the test regarding the solderability in the case of using the Cu core ball described in Examples 1A and 10A and Comparative Examples 3A, 4A, and 5A was performed. Specifically, a Cu core ball was placed on a Cu substrate coated with Senju Metal Industry's flux WF-6400, and then the Cu substrate on which the Cu core ball was placed was reflowed in an atmospheric environment. And the oxide film thickness of the surface of the Cu core ball of Examples 1A and 10A and Comparative Examples 3A, 4A, and 5A and the height of the solder bump after the reflow treatment were measured. The peak temperature of the reflow process was set to 245 ° C.
- a Cu core ball is formed by joining a Cu core ball on a simple Cu substrate that does not have a resist portion that should be present around the electrode on the substrate.
- the solder that constitutes the Cu core ball at the time of joining spreads on the Cu substrate without being dammed up at the resist portion, and almost all of the solder flows down from the Cu core ball so that the Cu ball is exposed at the top of the solder bump.
- the Cu core ball having a thick oxide film does not spread so much when the solder constituting the Cu core ball is bonded, the solder remains on the top (bump top) of the Cu ball (solder bump).
- the height of the solder bumps becomes higher than the height of the solder bumps formed using Cu core balls whose oxide film thickness is below a certain level.
- a close correlation is recognized among the oxide film thickness, the height of the solder bump, and the solderability (wettability).
- the solder bump height increases, at least one of the brightness and yellowness of the Cu core ball also increases, and therefore a correlation is recognized between the brightness and yellowness of the Cu core ball and solderability. .
- Table 3 shows the relationship between the brightness and yellowness of each Cu core ball and the average height of the solder bumps.
- the average height of the solder bumps is the height from the surface of the 10 solder bump samples prepared under the same conditions to the Cu core balls on the Cu substrate to the top of the solder bumps, which is OPTELICS C130 manufactured by Lasertec Corporation. Are used to calculate the arithmetic average of the measured values.
- FIG. 5A is a sectional view showing a state of the solder bump 13 when the solderability is good in this experiment
- FIG. 5B is a sectional view showing a state of the solder bump 13 when the solderability is bad in this experiment. is there.
- FIG. 5A when the top portion of the Cu ball 11 placed on the Cu substrate 10 is exposed and the solder 12 flows down to the side peripheral portion of the Cu ball 11, the solder 12 smoothly wets and spreads. Can be judged. Therefore, in this embodiment, in the state of the solder bump 13 shown in FIG.
- the average height H of the solder bump is set to the diameter BD of the Cu ball 11 between the Cu substrate 10 and the Cu ball 11 formed between the Cu substrate 10 and the Cu ball 11.
- the thickness of the compound layer or the like was 105 ⁇ m considering the thickness (1 ⁇ m)
- FIG. 5B when the solder 12 remains on the top of the Cu ball 11 placed on the Cu substrate 10, it is determined that the solder 12 is not smoothly wetted and spread. it can. Therefore, in this embodiment, as shown in FIG.
- the average height H of the solder bumps of the solder bumps 13 is the diameter BD of the Cu balls 11 + the thickness of the formed intermetallic compound layer + the thickness T of the solder 12.
- the total thickness exceeds 105 ⁇ m, it was determined that the solderability was poor.
- brightness and yellowness are used as threshold values when determining solderability, but the average height of solder bumps may be used as threshold values.
- the brightness of the Cu core balls was 65 or more, the yellowness was 7.0 or less, and both the conditions of the brightness and the yellowness were I found it to satisfy. Thereby, it was proved that the use of the Cu core balls of Examples 1A and 10A can prevent the solderability from being lowered.
- the brightness of the Cu core balls was 65 or more, but both the yellowness exceeded 7.0, and the yellowness condition was not satisfied. I understood.
- the yellowness was 7.0 or less, but the lightness was less than 65, and it was found that the lightness condition was not satisfied. Thus, it was proved that when the Cu core balls of Comparative Examples 3A, 4A, and 5A were used, the solderability deteriorated.
- ⁇ Oxide film thickness, brightness, and yellowness of Cu core ball (with Ge addition)
- a Cu core ball in which a predetermined amount of Ge was added to the solder layer of the Cu core ball was prepared, and the oxidation resistance of the prepared Cu core ball Verified.
- Cu core balls were prepared by forming the film, and the oxide film thickness, brightness, and yellowness of the prepared Cu core balls were measured.
- the Cu core ball used for the measurement was subjected to Ni plating of 2 ⁇ m on one side to a Cu ball having a diameter of 100 ⁇ m to produce a Ni-plated Cu ball having a diameter of 104 ⁇ m, and further solder plating of 18 ⁇ m on one side to the Ni-plated Cu ball.
- This is a Cu core ball having a diameter of 140 ⁇ m.
- Example 1B a Cu core ball of a solder layer in which Ge was not added to the Sn-3Ag-0.5Cu alloy was used.
- Example 2B a Cu core ball of a solder layer in which only 50 ppm of Ge was added to an Sn-3Ag-0.5Cu alloy was used.
- Example 3B Cu core balls having a solder layer in which only 100 ppm of Ge was added to an Sn-3Ag-0.5Cu alloy were used.
- Example 4B a Cu core ball of a solder layer in which only 220 ppm of Ge was added to an Sn-3Ag-0.5Cu alloy was used.
- Comparative Example 1B a solder ball obtained by adding only 50 ppm of Ge to an Sn-3Ag-0.5Cu alloy was used.
- each Cu core ball of Examples 1B to 4B and Comparative Example 1B stored under the above conditions was recovered, and the brightness, yellowness, and oxide film thickness of each recovered Cu core ball were measured. Since the apparatus used for the measurement and the setting conditions of the apparatus are the same as those in Example 1A and the like, detailed description thereof is omitted.
- Table 4 shows the relationship between the measured brightness and yellowness of the Cu core balls in Examples 1B to 4B and Comparative Example 1B.
- a Cu core ball having a brightness of 65 or more and a yellowness of 7.0 or less when the storage time is 0 hour is selected.
- the oxide film thickness became the target value of 3.8 nm or less.
- a Cu core ball having a thin oxide film thickness can be provided by selecting a Cu core ball having a brightness of 65 or more and a yellowness of 7.0 or less.
- the solder layer is the same as in the case where Ge is not added to the solder layer of the Cu core ball despite the addition of Ge having oxidation resistance to the solder layer of the Cu core ball.
- An oxide film was formed on the surface. This is because Ge, which is known as an element exhibiting oxidation resistance in the direction of the surface of the ball, cannot be diffused in the solder layer plating state, so that Ge is oxidized on the outermost surface of the ball and inhibits the growth of the oxide film inside. The reason is that it was not possible to demonstrate.
- Comparative Example 1B Ge was oxidized on the outermost surface of the ball to inhibit the growth of the oxide film therein, so that the oxide film thickness was constant even after the storage time had elapsed.
- the Cu core balls of Examples 1C to 5C and the Cu core balls of Comparative Examples 1C and 2C were melted after being reflowed and washed at 250 ° C. using a flux WF-6450 manufactured by Senju Metal Industry.
- the oxide film thickness of the soldered portion was measured, and the change in the oxide film thickness when heated and stored at 150 ° C. was tracked.
- the oxide film thickness was measured under the same conditions as in Examples 1A to 10A and Comparative Examples 1A to 6A.
- the oxide film thickness is a value converted to SiO 2 .
- Table 5 shows the relationship between the heating time of the Cu core ball and the oxide film thickness in the measured Examples 1C to 5C and Comparative Examples 1C and 2C. In Table 5, the unit of the oxide film thickness is (nm).
- the oxide film thickness greatly increases even when the heating time is increased. Was not seen.
- the oxide film thickness increases as the heating time increases. Increased significantly.
- the oxidation resistance was improved after the solder was melted. It has been found that the effect of oxidation resistance can be obtained particularly when the Ge content is 50 ppm or more. For this reason, the Ge content is preferably 50 ppm or more. On the other hand, when the Ge content increases, the wettability of the solder tends to deteriorate. For this reason, the Ge content is preferably 220 ppm or less, and more preferably 200 ppm or less. Thus, the optimal solder bump can be formed by setting the Ge added to the solder layer within the above range.
- a Cu column was produced by cutting the copper wire at a position where The surface of the Cu column was coated with a solder plating layer made of Sn-3Ag-0.5Cu alloy to prepare a Cu core column, and the oxide film thickness, brightness, and yellowness of the prepared Cu core column were measured.
- the brightness and yellowness cannot be accurately measured when only the column is laid.
- the Cu nucleus ball produced under the same conditions as the Cu nucleus column is used together with the column. Laid down and measured. Since the apparatus used for measurement other than the above, the setting conditions of the apparatus, and the like are the same as those in Example 1A, detailed description thereof is omitted. As a result, when a Cu core ball having a lightness of 65 or more and a yellowness of 7.0 or less was selected, the oxide film thickness was 3.8 nm or less.
- a Cu core column was prepared by coating a Sn-3Ag-0.5Cu alloy with 200 ppm Ge added solder, and the oxidation resistance of the prepared Cu core ball was verified.
- a Cu core ball is produced by forming a Ni plating layer on the surface of a Cu column having an ⁇ dose of 0.0200 cph / cm 2 or less, and forming a solder layer to which Ge is added on the surface of the Ni plating layer.
- the oxide film thickness, brightness, and yellowness of the produced Cu core ball were measured.
- the apparatus used for the measurement and the setting conditions of the apparatus are the same as those of the Cu nucleus column coated with the solder plating layer made of the Sn-3Ag-0.5Cu alloy. As a result, when a Cu nucleus column having a lightness of 65 or more and a yellowness of 7.0 or less was selected, the oxide film thickness was 3.8 nm or less.
- the Cu nucleus column according to the present invention can also be used for a through-silicon via (TSV) for connecting electrodes between stacked semiconductor chips.
- TSV is manufactured by drilling holes in silicon, forming an insulating layer in the hole, and then forming through conductors in that order, polishing the top and bottom surfaces of silicon and exposing the through conductors on the top and bottom surfaces.
- the through conductor is conventionally formed by filling a hole with Cu or the like by a plating method. In this method, the entire surface of silicon is immersed in a plating solution. There is a risk of adsorption and moisture absorption. Therefore, the column of the present invention can be directly inserted into a hole formed in silicon in the height direction and used as a through conductor.
- the Cu core column When the Cu core column is inserted into silicon, it may be joined by a solder material such as a solder paste. When the Cu core column is inserted into silicon, the Cu core column can be joined only by flux. Thereby, defects such as impurity adsorption and moisture absorption can be prevented, and the manufacturing cost and time can be reduced by omitting the plating step.
- a solder material such as a solder paste.
- the nucleus used in the present invention, the material used for the coating layer, and the ⁇ dose of the present invention may be 0.0200 cph / cm 2 or less.
- the ⁇ dose is 0.0200 cph / cm 2 or less, a soft error of the electronic device can be prevented.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Powder Metallurgy (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
(1)接合物と被接合物との間で間隔を確保する核と、前記核を被覆する被覆層とを備えたはんだ材料において、前記被覆層は、SnまたはSnを主成分とするはんだ合金から構成され、前記はんだ材料のL*a*b*表色系における明度が65以上、かつ、L*a*b*表色系における黄色度が7.0以下であることを特徴とする。本発明において被覆層には、例えば、核の表面を直接的に被覆する層や、核の表面に形成される他の機能層を介して核を被覆する層が含まれる。他の機能層は、1層で構成されていても良いし、2層以上で構成されていても良い。
図1は、本発明に係るCu核ボール1Aの構成の一例を示す断面図である。図1に示すように、本発明に係るCu核ボール1Aは、所定の大きさを有して半導体パッケージ(接合物)とプリント基板(被接合物)との間で間隔を確保するCuボール(核)2Aと、Cuボール2Aを被覆するはんだ層(被覆層)3Aとを備えている。Cu核ボール1Aは、明度が65以上、かつ、黄色度が7.0以下である。はんだ層3Aは、SnまたはSnを主成分とするはんだ合金から構成されている。
Cu核ボール1Aは、明度が65以上、黄色度が7.0以下である。より好ましくは、明度が70以上、黄色度が5.1以下である。明度および黄色度として上記範囲内のCu核ボール1Aを選定することにより、はんだ層3Aの表面に形成される酸化膜厚を一定値以下で管理することができる。例えば、Cu核ボール1Aの明度および黄色度を測定し、明度が65以上、黄色度が7.0以下のCu核ボール1Aを選定した場合には、酸化膜厚を4nm以下で管理することができる。また、Cu核ボール1Aの明度および黄色度を測定し、明度が70以上、黄色度が5.1以下のCu核ボール1Aを選定した場合には、酸化膜厚を2nm以下で管理することができる。
次に、本発明に係るCu核ボール1Aを構成するCuボール2Aの組成、真球度について詳しく説明する。Cuボール2Aは、Cu核ボール1Aがはんだバンプに用いられる際、はんだ付けの温度で溶融しないため、はんだ継手の高さばらつきを抑制する機能を有する。したがって、Cuボール2Aは、真球度が高く直径のバラツキが少ない方が好ましい。また、前述のように、Cuボール2Aのα線量もはんだ層3Aと同様に低いことが好ましい。以下にCuボール2Aの好ましい態様を記載する。
Cuボール2Aは、Cu単体の組成とすることもできるし、Cuを主成分とする合金組成とすることもできる。Cuボール2Aを合金により構成する場合、Cuの含有量は50質量%以上である。また、核となるボールとしては、Cu以外にも、Ni、Ag、Bi、Pb、Al、Sn、Fe、Zn、In、Ge、Sb、Co、Mn、Au、Si、Pt、Cr、La、Mo、Nb、Pd、Ti、Zr、Mgの金属単体や合金、金属酸化物、あるいは金属混合酸化物により構成しても良いし、樹脂材料によって構成しても良い。
本発明を構成するCuボール2Aの純度は特に限定されないが、純度の低下によるCuボール2Aの電気伝導度や熱伝導率の劣化を抑制し、また必要に応じてα線量を抑制する観点から、好ましくは99.9%以上である。
本発明を構成するCuボール2Aは、スタンドオフ高さを制御する観点から真球度が0.95以上である。Cuボール2Aの真球度が0.95未満であると、Cuボール2Aが不定形状になるため、バンプ形成時に高さが不均一なバンプが形成され、接合不良が発生する可能性が高まる。さらに、Cu核ボール1Aを電極に搭載してリフローを行う際、Cu核ボール1Aが位置ずれを起こしてしまい、セルフアライメント性も悪化する。真球度は、より好ましくは0.990以上である。本発明において、真球度とは真球からのずれを表す。真球度は、例えば、最小二乗中心法(LSC法)、最小領域中心法(MZC法)、最大内接中心法(MIC法)、最小外接中心法(MCC法)など種々の方法で求められる。詳しくは、真球度とは、500個の各Cuボール2Aの直径を長径で割った際に算出される算術平均値であり、値が上限である1.00に近いほど真球に近いことを表す。本発明での長径の長さ、および直径の長さとは、ミツトヨ社製のウルトラクイックビジョン、ULTRA QV350-PRO測定装置によって測定された長さをいう。
本発明を構成するCuボール2Aの直径は1~1000μmであることが好ましい。この範囲にあると、球状のCuボール2Aを安定して製造でき、また、端子間が狭ピッチである場合の接続短絡を抑制することができる。
次に、本発明に係るCu核ボール1Aを構成するはんだ層3Aの組成について詳述する。
はんだ層3Aは、Sn単体の組成とすることもできるし、Snを主成分とする鉛フリーはんだ合金の合金組成とすることもできるし、Sn-Pbはんだ合金の組成とすることもできる。はんだ層3Aを合金により構成する場合、Snの含有量は40質量%以上である。鉛フリーはんだ組成の一例としては、例えば、Sn、Sn-Ag合金、Sn-Cu合金、Sn-Bi合金、Sn-Ag-Cu合金、Sn-In合金、およびこれらに所定の合金元素を添加したものが挙げられる。添加する合金元素としては、例えばAg、Cu、In、Ni、Co、Sb、P、Fe等が挙げられる。添加する合金元素の添加量については、鉛フリーはんだ合金の黄色度と明度がSn単体の黄色度と明度とほぼ同程度となる量に抑えるのが好ましい。これらの中でも、はんだ層3Aの合金組成は、熱疲労寿命の観点から、Sn-3Ag-0.5Cu合金が好ましい。はんだ層3Aの厚さは、特に制限されないが、例えば100μm(片側)以下であれば十分である。一般には20~50μmであれば良い。なお本発明におけるSnを主成分とする鉛フリーはんだ合金のSnの含有量は、好ましくはSnが80%以上、より好ましくはSnが90%以上である。
次に、本発明に係るCu核ボール1Aの製造方法の一例を説明する。Cu核ボール1Aを構成するCuボール2Aについて、材料となるCu材はセラミックのような耐熱性の板である耐熱板に置かれ、耐熱板とともに炉中で加熱される。耐熱板には底部が半球状となった多数の円形の溝が設けられている。溝の直径や深さは、Cuボール2Aの粒径に応じて適宜設定されており、例えば、直径が0.8mmであり、深さが0.88mmである。また、Cu細線が切断されて得られたチップ形状のCu材(以下、「チップ材」という。)は、耐熱板の溝内に一個ずつ投入される。
次に、Cu核ボールの他の構成について説明する。本発明に係るCu核ボール1Bは、半導体パッケージとプリント基板との間で間隔を確保するCuボール(核)2Bと、Cuボール2Bを被覆するはんだ層(被覆層)3Bとを備え、はんだ層3BがSnを40%以上含有すると共にGeを20ppm以上220ppm以下で含有する。Cu核ボール1Bは、明度が65以上、かつ、黄色度が7.0以下である。以下に、Cu核ボール1Bの各構成について詳細に説明する。なお、Cu核ボール1Bは、はんだ層3BにGeを含有する以外は上述したCu核ボール1Aと構成等が共通するため、図1を参照して説明すると共に共通する事項についての詳細は省略する。
図3は、Cu核ボールおよびはんだボールにおける黄色度と酸化膜厚との関係を示す図である。縦軸は黄色度を示し、横軸は加熱時間を示している。図3に示すように、はんだボールにGeを添加した場合には、酸化しにくく、黄色度の変化はほとんど見られない。一方、Cu核ボールにおいて、はんだ層にGeを所定量添加した場合やGeを添加しない場合には、表面の酸化膜厚が厚くなるにつれて黄色度も上昇するが、その後、表面の色が変化して黄色度が低下した。したがって、Cu核ボールのはんだ層にGeを添加した場合等でも、図6に示したGeを添加していないCu核ボールと同様の挙動になることが分かった。そこで、本発明では、Cu核ボール1Bにおいても、黄色度と明度の二つの指標によって酸化膜厚の管理を行うこととしている。
Cuボール2Bの組成や純度、α線量、真球度、直径等については、上述したCu核ボール1Aを構成するCuボール2Aと共通しているため、詳細な説明は省略する。
はんだ層3Bは、上述したCu核ボール1Aのはんだ層3Aと同様の組成に、Geを20ppm以上220ppm以下の範囲で添加することで構成されている。なお、その他のはんだ層3Bのα線量等については上述したはんだ層3Aと共通しているため、詳細な説明は省略する。
はんだ層3Bの合金組成に20ppm以上のGeが添加されると、はんだ層3Bの溶融時および溶融後の耐酸化性が向上する。Geの添加量が220ppmを超えても耐酸化性は確保できるが、濡れ性が悪化する傾向にある。そこで、Geの添加量は20ppm以上220ppm以下、より好ましくは、50ppm以上200ppm以下である。
Cu核ボール1Bの製造方法についても、はんだ層3BにGeを添加させる以外は、上述したCu核ボール1Aと同様の製造方法を採用することができるため、以下では、Cu核ボール1Aの製造方法と異なる点についてのみ説明する。
次に、本発明に係るCu核カラム4の構成について説明する。図4は、本発明に係るCu核カラム4の構成の一例を示す断面図である。図4に示すように、本発明に係るCu核カラム4は、半導体パッケージとプリント基板との間で間隔を確保するCuカラム(核)5と、Cuカラム5を被覆するはんだ層(被覆層)6とを備えている。Cu核カラム4は、明度が65以上、黄色度が7.0以下である。より好ましくは、明度が70以上、黄色度が5.1以下である。Cu核カラム4の明度および黄色度として上記範囲内のCu核カラム4を選定することにより、はんだ層6の表面に形成される酸化膜厚を一定値以下で管理することができる。なお、Cu核カラム4は、Cu核ボール1A等のボールとは形状が異なるのみであり、その他の構成はCu核ボール1Aと共通しているため、共通する事項についての詳細は省略する。
Cuカラム5は、Cu単体の組成とすることもできるし、Cuを主成分とする合金組成とすることもできる。Cuカラム5を合金により構成する場合、Cuの含有量は50質量%以上である。また、核となるボールとしては、Cu以外にも、Ni、Ag、Bi、Pb、Al、Sn、Fe、Zn、In、Ge、Sb、Co、Mn、Au、Si、Pt、Cr、La、Mo、Nb、Pd、Ti、Zr、Mgの金属単体や合金、金属酸化物、あるいは金属混合酸化物により構成しても良いし、樹脂材料によって構成しても良い。Cuカラム5は、細長の円柱体により構成されている。Cuカラム5の長さLは例えば1~3000μmであり、Cuカラムの径Dは例えば1~1000μmである。柔軟性が高い低ビッカース硬さのCuカラムが求められる場合には、Cuカラム5にアニーリング処理を施しても良い。なお、Cuカラム5のその他、組成や純度、α線量、真球度等については、上述したCu核ボール1AのCuボール2A等と共通しているため、詳細な説明は省略する。
はんだ層6は、Sn単体の組成とすることもできるし、Snを主成分とする鉛フリーはんだ合金の合金組成とすることもできる。はんだ層6を合金により構成する場合、Snの含有量は40質量%以上である。はんだ層6の厚さは、特に制限されないが、例えば100μm(片側)以下であれば十分である。一般には、20~50μmであれば良い。はんだ層6にGeを20ppm以上220ppm以下の範囲で添加することにより、溶融時および溶融後の耐酸化性を持たせることもできる。なお、はんだ層6のその他、組成やα線量等については、上述したCu核ボール1Aのはんだ層3A等と共通しているため、詳細な説明は省略する。
Cu核カラム4のCuカラム5の製造方法は、公知の技術を採用することができる。例えば、ダイスに銅線を通して銅線を所定の径に伸線し、伸線した銅線を所定の長さで切断することによりCuカラム5を作製する。続けて、作製したCuカラム5にはんだ層6を形成する。はんだ層6を形成する方法としては、公知のバレルめっき等の電解めっき法や、めっき槽に接続されたポンプがめっき槽中にめっき液に高速乱流を発生させてめっき液の乱流によりCuカラム5にはんだ層6を形成する方法、めっき槽に振動板を設けて所定の周波数で振動させることによりめっき液を高速乱流攪拌してめっき液の乱流によりCuカラム5にはんだ層6を形成する方法等がある。その他の製造方法については、上述したCu核ボール1Aのはんだ層3A等の製造方法と同様であるため、詳細な説明は省略する。はんだ層6にGeを添加する場合も上記例と同様であるため、詳細な説明を省略する。
純度が99.9%のCuペレット、純度が99.995%以下のCuワイヤ、および純度が99.995%を超えるCu板を準備した。準備した各々をるつぼの中に投入した後、るつぼの温度を1200℃に昇温し、45分間加熱処理を行った。続けて、るつぼ底部に設けたオリフィスから溶融Cuの液滴を滴下し、滴下した液滴を冷却してCuボールを造球した。これにより、平均粒径が100μmのCuボールを作製した。
作製したCuボールの真球度は、CNC画像測定システムを使用して測定した。具体的には、ミツトヨ社製のウルトラクイックビジョン、ULTRA QV350-PRO測定装置を使用した。本実施例では、上記測定装置によりCuボールの長径の長さと直径の長さを測定し、500個の各Cuボールの直径を長径で割った値の算術平均値を算出して真球度を求めた。値が上限である1.00に近いほど真球に近いことを表す。
作製したCuボールのα線量は、ガスフロー比例計数器のα線測定装置を使用して測定した。測定サンプルは、300mm×300mmの平面浅底容器にCuボールを容器の底が見えなくなるまで敷き詰めたものである。この測定サンプルをα線測定装置内に入れ、PR-10ガスフローにて24時間放置した後、α線量を測定した。
次に、上述した真球度が0.990以上であってα線量が0.0200cph/cm2以下であるCuボールの表面にNiめっき層を形成し、さらにNiめっき層の表面にはんだ層を形成してCu核ボールを作製し、作製したCu核ボールの酸化膜厚、明度および黄色度をそれぞれ測定した。なお、測定に使用したCu核ボールは、直径100μmのCuボールに、片側2μmのNiめっきを行って、直径104μmのNiめっきCuボールを作製し、さらにNiめっきCuボールに片側18μmのはんだめっきを行い作製した直径140μmのCu核ボールである。はんだ層の組成は、Sn-3Ag-0.5Cu合金である。
次に、Cu核ボールのはんだ層にGeを所定量添加したCu核ボールを作製し、作製したCu核ボールの耐酸化性を検証した。詳しくは、真球度が0.990以上であってα線量が0.0200cph/cm2以下であるCuボールの表面にNiめっき層を形成し、Niめっき層の表面にGeを添加したはんだ層を形成することによりCu核ボールを作製し、作製したCu核ボールの酸化膜厚、明度、黄色度をそれぞれ測定した。なお、測定に使用したCu核ボールは、直径100μmのCuボールに、片側2μmのNiめっきを行って、直径104μmのNiめっきCuボールを作製し、さらにNiめっきCuボールに片側18μmのはんだめっきを行い作製した直径140μmのCu核ボールである。
Cu核カラムの明度・黄色度の測定の際は、カラムのみを敷き詰めた状態では明度・黄色度の正確な測定はできないので、Cu核カラムと同じ条件で作製したCu核ボールをカラムと一緒に敷き詰めて、測定した。前記以外の測定に使用する装置や装置の設定条件等は、上記実施例1A等と同様であるため、詳細な説明を省略する。
結果、明度が65以上であり、かつ、黄色度が7.0以下であるCu核ボールを選定した場合には、酸化膜厚が3.8nm以下となった。
結果、明度が65以上であり、かつ、黄色度が7.0以下であるCu核カラムを選定した場合には、酸化膜厚が3.8nm以下となった。
2A,2B Cuボール(核)
3A,3B はんだ層(被覆層)
4 Cu核カラム(はんだ材料)
5 Cuカラム(核)
6 はんだ層(被覆層)
Claims (13)
- 接合物と被接合物との間で間隔を確保する核と、前記核を被覆する被覆層とを備えたはんだ材料において、
前記被覆層は、SnまたはSnを主成分とするはんだ合金から構成され、
前記はんだ材料のL*a*b*表色系における明度が65以上、かつ、L*a*b*表色系における黄色度が7.0以下である
ことを特徴とするはんだ材料。 - 前記被覆層の表面に形成される酸化膜の膜厚が3.8nm以下である
ことを特徴とする請求項1に記載のはんだ材料。 - 前記はんだ材料の明度が70以上、かつ、黄色度が5.1以下である
ことを特徴とする請求項1または2に記載のはんだ材料。 - 接合物と被接合物との間で間隔を確保する核と、前記核を被覆する被覆層とを備えたはんだ材料において、
前記被覆層は、Snを40%以上含有し、Geを20ppm以上220ppm以下で含有する
ことを特徴とするはんだ材料。 - 前記はんだ材料はL*a*b*表色系における明度が65以上、かつ、L*a*b*表色系における黄色度が7.0以下である
ことを特徴とする請求項4に記載のはんだ材料。 - Ni及びCoから選択される1元素以上からなる層で被覆された前記核が、前記はんだ層で被覆される
ことを特徴とする請求項1~5のいずれか1項に記載のはんだ材料。 - 前記核が球状のCu、Ni、Ag、Bi、Pb、Al、Sn、Fe、Zn、In、Ge、Sb、Co、Mn、Au、Si、Pt、Cr、La、Mo、Nb、Pd、Ti、Zr、Mgの金属単体、合金、金属酸化物、あるいは金属混合酸化物、または樹脂材料によって構成されている
ことを特徴とする請求項1~6のいずれか1項に記載のはんだ材料。 - 前記核が円柱状のCu、Ni、Ag、Bi、Pb、Al、Sn、Fe、Zn、In、Ge、Sb、Co、Mn、Au、Si、Pt、Cr、La、Mo、Nb、Pd、Ti、Zr、Mgの金属単体、合金、金属酸化物、あるいは金属混合酸化物、または樹脂材料によって構成されている
ことを特徴とする請求項1~6のいずれか1項に記載のはんだ材料。 - 請求項1~8のいずれか1項に記載のはんだ材料を使用した
ことを特徴とするはんだペースト。 - 請求項1~8のいずれか1項に記載のはんだ材料を使用した
ことを特徴とするフォームはんだ。 - 請求項1~8のいずれか1項に記載のはんだ材料を使用した
ことを特徴とするはんだ継手。 - 請求項1~8のいずれか1項に記載のはんだ材料のうち、核、被覆層、はんだ材料全体のうち少なくとも1つ以上のα線量が0.0200cph/cm2以下である
ことを特徴とするはんだ材料 - 接合物と被接合物との間で間隔を確保する核と、前記核を被覆するSnまたはSnを主成分とするはんだ合金で構成される被覆層とを備えたはんだ材料の管理方法において、
前記はんだ材料のL*a*b*表色系における明度および黄色度を測定する工程と、
前記はんだ材料の明度および黄色度の測定結果に基づいて前記はんだ材料の明度が65以上、かつ、黄色度が7.0以下を示したはんだ材料のみを選定する工程と
を有することを特徴とするはんだ材料の管理方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177014982A KR101912550B1 (ko) | 2014-11-05 | 2014-11-05 | 납땜 재료, 납땜 페이스트, 폼 납땜, 납땜 이음 및 납땜 재료의 관리 방법 |
PT149056178T PT3216553T (pt) | 2014-11-05 | 2014-11-05 | Material de solda, massa de solda, solda de espuma, junta de solda e método para controlar material de solda |
KR1020187011106A KR20180045051A (ko) | 2014-11-05 | 2014-11-05 | 납땜 재료, 납땜 페이스트, 폼 납땜, 납땜 이음 및 납땜 재료의 관리 방법 |
EP14905617.8A EP3216553B1 (en) | 2014-11-05 | 2014-11-05 | Solder material, solder paste, foam solder, solder joint, and method for controlling solder material |
CN201480083214.8A CN107073656B (zh) | 2014-11-05 | 2014-11-05 | 软钎焊材料、焊膏、成形焊料、钎焊接头以及软钎焊材料的管理方法 |
JP2015539902A JP5846341B1 (ja) | 2014-11-05 | 2014-11-05 | はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法 |
PCT/JP2014/079347 WO2016071971A1 (ja) | 2014-11-05 | 2014-11-05 | はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法 |
US15/523,714 US10717157B2 (en) | 2014-11-05 | 2014-11-05 | Solder material, solder paste, solder preform, solder joint and method of managing the solder material |
TW104136273A TWI616265B (zh) | 2014-11-05 | 2015-11-04 | 焊接材料、焊膏、泡沫焊料、焊料接頭及焊接材料的管理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/079347 WO2016071971A1 (ja) | 2014-11-05 | 2014-11-05 | はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016071971A1 true WO2016071971A1 (ja) | 2016-05-12 |
Family
ID=55169203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/079347 WO2016071971A1 (ja) | 2014-11-05 | 2014-11-05 | はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10717157B2 (ja) |
EP (1) | EP3216553B1 (ja) |
JP (1) | JP5846341B1 (ja) |
KR (2) | KR20180045051A (ja) |
CN (1) | CN107073656B (ja) |
PT (1) | PT3216553T (ja) |
TW (1) | TWI616265B (ja) |
WO (1) | WO2016071971A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6232157B1 (ja) * | 2017-03-31 | 2017-11-15 | 日新製鋼株式会社 | 水蒸気処理製品の品質評価方法 |
EP3334260A1 (en) * | 2016-12-07 | 2018-06-13 | Senju Metal Industry Co., Ltd | Core material, semiconductor package, and forming method of bump electrode |
WO2018159664A1 (ja) * | 2017-02-28 | 2018-09-07 | 千住金属工業株式会社 | はんだ材料、はんだペースト、フォームはんだ及びはんだ継手 |
JP2018140436A (ja) * | 2017-12-19 | 2018-09-13 | 千住金属工業株式会社 | はんだ材料、はんだペースト、フォームはんだ及びはんだ継手 |
US20180281118A1 (en) * | 2015-06-29 | 2018-10-04 | Senju Metal Industry Co., Ltd. | Soldering Material, Solder Joint, and Method for Inspecting Soldering Material |
JP2018172771A (ja) * | 2017-03-31 | 2018-11-08 | 新日鉄住金化学株式会社 | ニッケル被覆銅粒子、接合材及び接合方法 |
JP2019150880A (ja) * | 2017-02-28 | 2019-09-12 | 千住金属工業株式会社 | はんだ材料、はんだペースト、フォームはんだ及びはんだ継手 |
JP2020075280A (ja) * | 2018-11-09 | 2020-05-21 | 千住金属工業株式会社 | ハンダボール、ハンダ継手および接合方法 |
JP7189480B1 (ja) | 2022-02-09 | 2022-12-14 | 千住金属工業株式会社 | フラックスコートボール及びその製造方法 |
TWI853426B (zh) | 2022-02-09 | 2024-08-21 | 日商千住金屬工業股份有限公司 | 塗佈助焊劑的球及其製造方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10384314B2 (en) * | 2015-04-22 | 2019-08-20 | Hitachi Metals, Ltd. | Metal particle and method for producing the same, covered metal particle, and metal powder |
CN107511603B (zh) * | 2017-09-30 | 2019-08-09 | 北京康普锡威科技有限公司 | 一种核壳结构双金属复合焊粉及其制备方法 |
JP7184759B2 (ja) * | 2017-12-22 | 2022-12-06 | 積水化学工業株式会社 | 導電材料、導電材料の保管方法、導電材料の製造方法及び接続構造体の製造方法 |
CN109967914A (zh) * | 2017-12-27 | 2019-07-05 | 北京康普锡威科技有限公司 | 一种电子封装用铜芯结构的锡铜高温无铅预成型焊料 |
JP6439893B1 (ja) * | 2018-05-25 | 2018-12-19 | 千住金属工業株式会社 | ハンダボール、ハンダ継手および接合方法 |
JP6572998B1 (ja) * | 2018-06-12 | 2019-09-11 | 千住金属工業株式会社 | Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ |
JP6485580B1 (ja) * | 2018-06-12 | 2019-03-20 | 千住金属工業株式会社 | Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ |
US12032039B2 (en) * | 2019-01-18 | 2024-07-09 | Mitsubishi Electric Corporation | Solder joint life predictor and solder joint life prediction method |
CN111745155B (zh) * | 2020-07-10 | 2022-07-12 | 郑州机械研究所有限公司 | 低熔包覆合金粉末及其制备方法和铁基金刚石胎体 |
JP6892621B1 (ja) * | 2020-09-10 | 2021-06-23 | 千住金属工業株式会社 | 核材料、電子部品及びバンプ電極の形成方法 |
KR20220040307A (ko) * | 2020-09-23 | 2022-03-30 | 삼성전자주식회사 | 하이브리드 접합 구조물, 이를 포함한 반도체 소자, 및 반도체 소자 제조방법 |
CN112621008B (zh) * | 2020-12-15 | 2022-06-24 | 北京科技大学顺德研究生院 | 一种低热应力芯片封装用焊锡球及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009090776A1 (ja) * | 2008-01-17 | 2009-07-23 | Horizon Technology Laboratory Co., Ltd. | 半導体装置およびその製造方法 |
JP2009248156A (ja) * | 2008-04-08 | 2009-10-29 | Hitachi Metals Ltd | はんだボール、はんだ層及びはんだバンプ並びにそれらの形成方法 |
WO2012118202A1 (ja) * | 2011-03-02 | 2012-09-07 | セントラル硝子株式会社 | 導電部付きガラス板用端子構造体及びこれを用いたガラス板物品 |
WO2014109052A1 (ja) * | 2013-01-11 | 2014-07-17 | 千住金属工業株式会社 | Cuボール |
JP5585751B1 (ja) * | 2014-02-04 | 2014-09-10 | 千住金属工業株式会社 | Cuボール、Cu核ボール、はんだ継手、はんだペースト、およびフォームはんだ |
JP5590259B1 (ja) * | 2014-01-28 | 2014-09-17 | 千住金属工業株式会社 | Cu核ボール、はんだペーストおよびはんだ継手 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3420917B2 (ja) | 1997-09-08 | 2003-06-30 | 富士通株式会社 | 半導体装置 |
SE515028C2 (sv) | 1999-04-21 | 2001-05-28 | Ericsson Telefon Ab L M | Förbättrade lodkulor samt användning av dylika |
JP2002153990A (ja) * | 2000-11-21 | 2002-05-28 | Senju Metal Ind Co Ltd | はんだボール用合金 |
JP4432041B2 (ja) | 2004-05-28 | 2010-03-17 | 日立金属株式会社 | はんだ合金およびはんだボール |
JP2007287712A (ja) | 2006-04-12 | 2007-11-01 | Oki Electric Ind Co Ltd | 半導体装置、半導体装置の実装構造、及びそれらの製造方法 |
JP2009034692A (ja) * | 2007-07-31 | 2009-02-19 | Hitachi Metals Ltd | はんだボールおよびそれを用いたはんだバンプ |
JP2010099694A (ja) * | 2008-10-23 | 2010-05-06 | Fujikura Ltd | ハンダボール |
CN106098829A (zh) * | 2008-11-27 | 2016-11-09 | 日立金属株式会社 | 太阳能电池用导线和太阳能电池的制造方法 |
JP5542360B2 (ja) * | 2009-03-30 | 2014-07-09 | 太陽ホールディングス株式会社 | プリント配線板 |
JP5418894B2 (ja) * | 2009-07-24 | 2014-02-19 | 日立金属株式会社 | 電子部品用複合ボールの製造方法 |
US9597754B2 (en) * | 2011-03-07 | 2017-03-21 | Jx Nippon Mining & Metals Corporation | Copper or copper alloy, bonding wire, method of producing the copper, method of producing the copper alloy, and method of producing the bonding wire |
CN109551134B (zh) | 2012-12-06 | 2020-10-09 | 千住金属工业株式会社 | 铜球 |
-
2014
- 2014-11-05 KR KR1020187011106A patent/KR20180045051A/ko not_active Application Discontinuation
- 2014-11-05 KR KR1020177014982A patent/KR101912550B1/ko active IP Right Grant
- 2014-11-05 CN CN201480083214.8A patent/CN107073656B/zh active Active
- 2014-11-05 WO PCT/JP2014/079347 patent/WO2016071971A1/ja active Application Filing
- 2014-11-05 EP EP14905617.8A patent/EP3216553B1/en active Active
- 2014-11-05 PT PT149056178T patent/PT3216553T/pt unknown
- 2014-11-05 US US15/523,714 patent/US10717157B2/en active Active
- 2014-11-05 JP JP2015539902A patent/JP5846341B1/ja active Active
-
2015
- 2015-11-04 TW TW104136273A patent/TWI616265B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009090776A1 (ja) * | 2008-01-17 | 2009-07-23 | Horizon Technology Laboratory Co., Ltd. | 半導体装置およびその製造方法 |
JP2009248156A (ja) * | 2008-04-08 | 2009-10-29 | Hitachi Metals Ltd | はんだボール、はんだ層及びはんだバンプ並びにそれらの形成方法 |
WO2012118202A1 (ja) * | 2011-03-02 | 2012-09-07 | セントラル硝子株式会社 | 導電部付きガラス板用端子構造体及びこれを用いたガラス板物品 |
WO2014109052A1 (ja) * | 2013-01-11 | 2014-07-17 | 千住金属工業株式会社 | Cuボール |
JP5590259B1 (ja) * | 2014-01-28 | 2014-09-17 | 千住金属工業株式会社 | Cu核ボール、はんだペーストおよびはんだ継手 |
JP5585751B1 (ja) * | 2014-02-04 | 2014-09-10 | 千住金属工業株式会社 | Cuボール、Cu核ボール、はんだ継手、はんだペースト、およびフォームはんだ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3216553A4 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180281118A1 (en) * | 2015-06-29 | 2018-10-04 | Senju Metal Industry Co., Ltd. | Soldering Material, Solder Joint, and Method for Inspecting Soldering Material |
EP3334260A1 (en) * | 2016-12-07 | 2018-06-13 | Senju Metal Industry Co., Ltd | Core material, semiconductor package, and forming method of bump electrode |
CN108172523A (zh) * | 2016-12-07 | 2018-06-15 | 千住金属工业株式会社 | 芯材料和半导体封装体和凸块电极的形成方法 |
US10381319B2 (en) | 2016-12-07 | 2019-08-13 | Senju Metal Industry Co., Ltd. | Core material, semiconductor package, and forming method of bump electrode |
JP2018140427A (ja) * | 2017-02-28 | 2018-09-13 | 千住金属工業株式会社 | はんだ材料、はんだペースト、フォームはんだ及びはんだ継手 |
WO2018159664A1 (ja) * | 2017-02-28 | 2018-09-07 | 千住金属工業株式会社 | はんだ材料、はんだペースト、フォームはんだ及びはんだ継手 |
EP3590651A4 (en) * | 2017-02-28 | 2021-03-03 | Senju Metal Industry Co., Ltd | SOLDER MATERIAL, SOLDER PASTE, FOAM SOLDERING DEVICE AND SOLDER JOINT |
CN110325320A (zh) * | 2017-02-28 | 2019-10-11 | 千住金属工业株式会社 | 焊接材料、焊膏、泡沫焊料和焊料接头 |
JP2019150880A (ja) * | 2017-02-28 | 2019-09-12 | 千住金属工業株式会社 | はんだ材料、はんだペースト、フォームはんだ及びはんだ継手 |
JP2018173378A (ja) * | 2017-03-31 | 2018-11-08 | 日新製鋼株式会社 | 水蒸気処理製品の品質評価方法 |
JP2018172771A (ja) * | 2017-03-31 | 2018-11-08 | 新日鉄住金化学株式会社 | ニッケル被覆銅粒子、接合材及び接合方法 |
JP6232157B1 (ja) * | 2017-03-31 | 2017-11-15 | 日新製鋼株式会社 | 水蒸気処理製品の品質評価方法 |
WO2018180169A1 (ja) * | 2017-03-31 | 2018-10-04 | 日新製鋼株式会社 | 水蒸気処理製品の品質評価方法 |
US10788472B2 (en) | 2017-03-31 | 2020-09-29 | Nippon Steel Nisshin Co., Ltd. | Method for evaluating the quality of steam-treated products |
JP2018140436A (ja) * | 2017-12-19 | 2018-09-13 | 千住金属工業株式会社 | はんだ材料、はんだペースト、フォームはんだ及びはんだ継手 |
JP2020075280A (ja) * | 2018-11-09 | 2020-05-21 | 千住金属工業株式会社 | ハンダボール、ハンダ継手および接合方法 |
US10780531B2 (en) | 2018-11-09 | 2020-09-22 | Senju Metal Industry Co., Ltd. | Solder ball, solder joint, and joining method |
JP7189480B1 (ja) | 2022-02-09 | 2022-12-14 | 千住金属工業株式会社 | フラックスコートボール及びその製造方法 |
JP2023116315A (ja) * | 2022-02-09 | 2023-08-22 | 千住金属工業株式会社 | フラックスコートボール及びその製造方法 |
TWI853426B (zh) | 2022-02-09 | 2024-08-21 | 日商千住金屬工業股份有限公司 | 塗佈助焊劑的球及其製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3216553A1 (en) | 2017-09-13 |
TWI616265B (zh) | 2018-03-01 |
CN107073656A (zh) | 2017-08-18 |
JPWO2016071971A1 (ja) | 2017-04-27 |
CN107073656B (zh) | 2018-07-03 |
TW201630682A (zh) | 2016-09-01 |
EP3216553A4 (en) | 2018-04-25 |
KR101912550B1 (ko) | 2018-10-26 |
US10717157B2 (en) | 2020-07-21 |
JP5846341B1 (ja) | 2016-01-20 |
KR20170095841A (ko) | 2017-08-23 |
KR20180045051A (ko) | 2018-05-03 |
US20170312860A1 (en) | 2017-11-02 |
EP3216553B1 (en) | 2019-12-25 |
PT3216553T (pt) | 2020-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5846341B1 (ja) | はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法 | |
JP5408401B1 (ja) | Cu核ボール | |
JP5967316B2 (ja) | Cu核ボール、はんだペースト、フォームはんだ及びはんだ継手 | |
KR101867796B1 (ko) | 땜납 재료, 땜납 이음 및 땜납 재료의 검사 방법 | |
JP5534122B1 (ja) | 核ボール、はんだペースト、フォームはんだ、フラックスコート核ボールおよびはんだ継手 | |
TWI527643B (zh) | Copper balls, copper ball, soft solder joints, soft solder paste and foam solder | |
JP5590259B1 (ja) | Cu核ボール、はんだペーストおよびはんだ継手 | |
JP5652560B1 (ja) | Cu核ボール、はんだペースト、フォームはんだ及びはんだ継手 | |
JP6572995B1 (ja) | Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ | |
JP5510623B1 (ja) | Niボール、Ni核ボール、はんだ継手、フォームはんだ、はんだペースト | |
JP5585750B1 (ja) | Cu核ボール、はんだ継手、フォームはんだ、およびはんだペースト | |
JP5680773B1 (ja) | Cu核ボール、はんだ継手、フォームはんだおよびはんだペースト | |
JP6572998B1 (ja) | Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ | |
JP6572997B1 (ja) | Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015539902 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14905617 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15523714 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014905617 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177014982 Country of ref document: KR Kind code of ref document: A |