WO2014109052A1 - Cuボール - Google Patents

Cuボール Download PDF

Info

Publication number
WO2014109052A1
WO2014109052A1 PCT/JP2013/050424 JP2013050424W WO2014109052A1 WO 2014109052 A1 WO2014109052 A1 WO 2014109052A1 JP 2013050424 W JP2013050424 W JP 2013050424W WO 2014109052 A1 WO2014109052 A1 WO 2014109052A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
balls
oxide film
less
sphericity
Prior art date
Application number
PCT/JP2013/050424
Other languages
English (en)
French (fr)
Inventor
貴洋 服部
浩由 川崎
六本木 貴弘
相馬 大輔
佐藤 勇
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Priority to CN201380070219.2A priority Critical patent/CN104994974A/zh
Priority to KR1020157021286A priority patent/KR20150097808A/ko
Priority to PCT/JP2013/050424 priority patent/WO2014109052A1/ja
Priority to KR1020167001997A priority patent/KR102036959B1/ko
Priority to EP13870796.3A priority patent/EP2944400A4/en
Priority to US14/759,360 priority patent/US20150336216A1/en
Priority to CN201710742046.4A priority patent/CN107579007A/zh
Priority to JP2013539041A priority patent/JP5447745B1/ja
Priority to TW102148968A priority patent/TWI595948B/zh
Publication of WO2014109052A1 publication Critical patent/WO2014109052A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10234Metallic balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10734Ball grid array [BGA]; Bump grid array
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components

Definitions

  • the present invention relates to a Cu ball used for soldering electronic parts and the like.
  • BGA ball grid array
  • An electronic component to which BGA is applied includes, for example, a semiconductor package.
  • a semiconductor package a semiconductor chip having electrodes is sealed with a resin.
  • Solder bumps are formed on the electrodes of the semiconductor chip. This solder bump is formed by joining a solder ball to an electrode of a semiconductor chip.
  • a package to which BGA is applied is placed on the printed circuit board so that each solder bump comes into contact with the conductive land of the printed circuit board.
  • solder bumps in which Cu balls are electrically joined to electrodes of electronic components with solder paste are being studied.
  • the solder bump having the Cu ball can be supported by the Cu ball that does not melt at the melting point of the solder alloy even if the weight of the semiconductor package is applied to the solder bump. Therefore, the solder bump is not crushed by the weight of the package.
  • Patent Document 1 is cited as a related technique.
  • Patent Document 1 since the Cu ball disclosed in Patent Document 1 is manufactured by melting Cu pieces in a non-oxidizing atmosphere in order to increase the sphericity, high purity is required. There has been no study of alignment properties that represent accuracy.
  • An object of the present invention is to provide a Cu ball having excellent alignment properties.
  • the present inventors paid attention to the bonding form of the Cu balls in order to improve the alignment of the Cu balls. Specifically, in view of the fact that the Cu balls are electrically joined to the electrodes by the solder particles in the solder paste, the surface state of the Cu balls affects the wettability with the solder particles in the solder paste. Pay attention.
  • the inventors of the present invention have the property that Cu balls are easily oxidized, and the thinner the oxide film on the surface of the Cu balls, the higher the wettability with the solder particles in the solder paste, and the better The knowledge which has alignment property was acquired.
  • the present inventors examined increasing the alignment by defining the state of the oxide film of the Cu ball with some index.
  • ⁇ Cu balls change to ocher when the thickness of the oxide film is increased to about 70 to 100 nm. Therefore, it is considered that alignment is improved by being defined by yellowness.
  • a thick oxide film is formed only after being left for a long time in a hot and humid environment.
  • Cu balls stored at about 20-40 ° C. do not form such a thick oxide film even in a high humidity environment. Therefore, even if such a Cu ball is defined by yellowness, it is unlikely that the alignment will be improved.
  • the present inventors investigated this point, and obtained the knowledge that it is difficult to define by the yellowness as with the solder ball.
  • Cu balls stored at about 20 to 40 ° C. have an oxide film thickness of about 40 nm or less. At this time, the Cu ball turns brown. For this reason, it seems that Cu ball
  • the present inventors pay attention to the fact that the metallic luster is lost when the Cu ball is oxidized, and by specifying the Cu ball by the brightness as an index for defining the degree of oxidation of the Cu ball, the wetting defect of the Cu ball is reduced.
  • the present inventors consider that the high sphericity of the Cu ball is required for the lightness to be measured more accurately, and by chance, the purity of the Cu ball is 99.995% or less.
  • the present invention has been completed by obtaining knowledge that increases the sphericity.
  • FIG. 1 is an SEM photograph of Cu balls manufactured using Cu pellets having a purity of 99.9%.
  • FIG. 2 is an SEM photograph of a Cu ball manufactured using a Cu wire having a purity of 99.995% or less.
  • FIG. 3 is a SEM photograph of a Cu ball manufactured using a Cu plate having a purity exceeding 99.995%.
  • FIG. 4 is an optical micrograph of a solder bump on which a Cu ball of the present invention is mounted.
  • FIG. 5 is an optical micrograph of solder bumps on which Cu balls of comparative examples are mounted.
  • FIG. 6 is a graph showing the relationship between the L * value and the thickness of the oxide film.
  • FIG. 7 is a graph showing the relationship between the b * value and the thickness of the oxide film.
  • FIG. 8 is a graph showing the relationship between the a * value and the Cu ball oxide film thickness.
  • FIG. 9 is a graph showing the relationship between the L * value and the average misalignment of the Cu balls after the Cu balls are mounted
  • units (ppm, ppb, and%) relating to the composition of Cu balls represent ratios (mass ppm, mass ppb, and mass%) to the mass of Cu balls unless otherwise specified.
  • the brightness is 55 or more
  • the Cu ball according to the present invention has a brightness of 55 or more.
  • lightness is, L * a * b * color system of L * value (hereinafter, simply sometimes referred to as L * value.) It is.
  • L * value L * value
  • the Cu ball oxide film is thin, and the alignment is improved.
  • the accuracy of these confirmations is also increased.
  • the height variation of the solder bump is measured by the laser wavelength meter, the measurement accuracy of the height variation is also improved. As a result, the inspection accuracy of the electronic component is improved and the product yield of the electronic component is improved.
  • a thick oxide film mainly composed of Cu 2 O is formed on the surface of the Cu ball, resulting in poor wettability with solder particles in the solder paste, resulting in alignment properties. descend.
  • a thick oxide film is formed, the Cu ball loses its metallic luster, so that the inspection accuracy of electronic parts deteriorates. Also, the formation of a thick oxide film reduces the electrical conductivity and thermal conductivity of the Cu ball.
  • the brightness is preferably 57 or more, more preferably 59 or more.
  • the brightness due to the metallic luster inherent in Cu is the upper limit, and is preferably 70 or less.
  • bowl is 99.995% or less.
  • bowl which concerns on this invention is 99.995% or less. That is, the Cu ball according to the present invention has a content of an element excluding Cu (hereinafter, appropriately referred to as “impurity element”) of 50 ppm or more.
  • the Cu material formed into small pieces of a predetermined shape is melted by heating, and the molten Cu becomes spherical due to surface tension, which solidifies into a Cu ball.
  • the molten Cu solidifies from the liquid state, crystal grains grow in the spherical molten Cu.
  • the impurity elements serve as crystal nuclei and growth of crystal grains is suppressed. Therefore, the spherical molten Cu becomes a Cu ball having a high sphericity due to the fine crystal grains whose growth is suppressed.
  • the lower limit of purity is not particularly limited, but is preferably 99.9% from the viewpoint of suppressing deterioration of the electrical conductivity and thermal conductivity of Cu balls due to a decrease in purity. That is, the content of impurities in Cu balls excluding Cu is preferably 1000 ppm or less in total.
  • the Cu ball according to the present invention preferably contains Pb and Bi as impurities among impurities. These contents are preferably 1 ppm or more in total. Usually, the content of Pb and / or Bi in the Cu material is 1 ppm or more in total. In the production of Cu balls, Cu is not heated to a temperature higher than the boiling points of Pb and Bi. That is, the contents of Pb and Bi are not greatly reduced. Thus, since Pb and Bi remain in a certain amount even after the production of Cu balls, the content measurement error is small.
  • Pb and Bi are important elements for estimating the content of impurity elements.
  • the total content of Pb and Bi is preferably 1 ppm or more.
  • the content of Pb and / or Bi is more preferably 10 ppm or more in total.
  • an upper limit is not specifically limited, From a viewpoint of suppressing deterioration of the electrical conductivity of Cu ball
  • the Cu ball according to the present invention preferably has a thickness of the oxide film of 8 nm or less.
  • the film thickness is 8 nm or less, since the oxide film is thin, poor wetting is suppressed and alignment is improved.
  • the solder paste for joining the Cu ball to the electrode usually contains a flux. Flux dissolves and removes a thin oxide film of 8 nm or less with rosin as its main component. Therefore, since the Cu ball according to the present invention can suppress poor wetting, the (self) alignment property is excellent.
  • the Cu ball moves to the center of the electrode when the soft solder paste becomes uniform over the entire surface of the electrode due to surface tension during reflow.
  • the thickness of the oxide film is 8 nm or less, the electrical conductivity and thermal conductivity of the Cu ball are increased.
  • the thickness of the oxide film is preferably 7 nm or less, more preferably 6 nm or less.
  • the lower limit value of the thickness of the oxide film is not particularly limited, and the thinner the thickness, the lower the wetting defect.
  • the shape of the Cu ball according to the present invention preferably has a higher sphericity from the viewpoint of reducing lightness measurement errors. Moreover, when the sphericity is high, an error in the standoff height can be reduced. If the sphericity of the Cu ball is less than 0.95, the Cu ball has an indefinite shape, so that bumps with non-uniform height are formed at the time of bump formation, and the possibility of occurrence of poor bonding increases.
  • the sphericity is more preferably 0.990 or more. In the present invention, the sphericity represents a deviation from the sphere.
  • the sphericity represents a deviation from the sphere.
  • the sphericity is obtained by various methods such as the least square center method (LSC method), the minimum region center method (MZC method), the maximum inscribed center method (MIC method), and the minimum circumscribed circle center method (MCC method). It is done.
  • LSC method least square center method
  • MZC method minimum region center method
  • MIC method maximum inscribed center method
  • MCC method minimum circumscribed circle center method
  • the diameter of the Cu ball according to the present invention is preferably 1 to 1000 ⁇ m. When it is in this range, spherical Cu balls are stably produced, and connection short-circuiting when terminals are at a narrow pitch is suppressed. When the diameter of the Cu ball is 1 ⁇ m or more, a spherical Cu ball can be produced stably. Further, when the diameter of the Cu ball is 1000 ⁇ m or less, a connection short circuit when the terminals are at a narrow pitch can be suppressed.
  • the “Cu ball” may be referred to as “Cu powder”.
  • the diameter of the Cu ball is generally 1 to 300 ⁇ m.
  • a Cu material as a material is placed on a heat-resistant plate such as ceramic (hereinafter referred to as “heat-resistant plate”), and is heated together with the heat-resistant plate in a furnace.
  • the heat-resistant plate is provided with a number of circular grooves whose bottoms are hemispherical. The diameter and depth of the groove are appropriately set according to the particle diameter of the Cu ball. For example, the diameter is 0.8 mm and the depth is 0.88 mm.
  • chip-shaped Cu material hereinafter referred to as “chip material” obtained by cutting the Cu thin wire is put into the groove of the heat-resistant plate one by one.
  • the heat-resistant plate in which the chip material is put in the groove is heated to about 1000 ° C. in a furnace filled with ammonia decomposition gas and subjected to heat treatment for 30 to 60 minutes. At this time, if the furnace temperature becomes equal to or higher than the melting point of Cu, the chip material melts and becomes spherical. Thereafter, the inside of the furnace is cooled and Cu balls are formed in the grooves of the heat-resistant plate.
  • a molten Cu droplet is dropped from an orifice provided at the bottom of the crucible, and this droplet is cooled to form a Cu ball, or a Cu cut metal by thermal plasma.
  • a granulation method that heats to 1000 ° C. or higher.
  • pellets, wires, pillars, and the like can be used as the Cu material that is a raw material of the Cu balls.
  • the purity of the Cu material may be 99 to 99.995% from the viewpoint of not reducing the purity of the Cu ball too much.
  • the Cu ball according to the present invention forms an oxide film on the surface by reacting with oxygen in the atmosphere depending on the temperature and humidity of the storage environment. For this reason, it is preferable to store Cu balls immediately after production at room temperature and normal humidity when stored in the air.
  • normal temperature and normal humidity are in the range of 5 to 35 ° C. and 45 to 85%, respectively, according to JIS Z 8703.
  • inert gas such as He and Ar, nitrogen gas, or a clean room.
  • regulated by this invention may be applied to Cu column or Cu pillar.
  • bowl which concerns on this invention can be used for the solder joint of an electronic component by electrically joining to an electrode with a solder paste.
  • the ⁇ dose is reduced by using a low ⁇ wire.
  • the Cu material is heated at about 800 to 1000 ° C. for 30 to 60 minutes when the conventional atomizing method is used. A process of raising the temperature to about 1300 ° C. is performed. Further, the manufactured Cu ball may be separately reheated at 800 to 900 ° C. which is lower than the melting point of Cu. Thereby, radioactive isotopes such as 210 Po are volatilized and the ⁇ dose is reduced.
  • the sphericity was measured with a CNC image measurement system.
  • the apparatus is an Ultra Quick Vision, ULTRA QV350-PRO manufactured by Mitutoyo Corporation.
  • FIG. 1 is an SEM photograph of Cu balls manufactured using Cu pellets having a purity of 99.9%.
  • FIG. 2 is an SEM photograph of a Cu ball manufactured using a Cu wire having a purity of 99.995% or less.
  • FIG. 3 is a SEM photograph of a Cu ball manufactured using a Cu plate having a purity exceeding 99.995%. The magnification of the SEM photograph is 100 times.
  • the Cu balls using Cu pellets having a purity of 99.9% and Cu wires having a purity of 99.995% or less exhibited a sphericity of 0.990 or more.
  • the sphericity of the Cu ball using a Cu plate having a purity exceeding 99.995% was less than 0.95.
  • Example 1 For the Cu balls produced as described above, the brightness immediately after production (less than 1 minute after production) and the thickness of the oxide film were measured under the following conditions. Then, Cu balls are mounted on each of the 30 electrodes printed with a 100 ⁇ m thick metal mask with a solder paste (Senju Metal Industry Co., Ltd .: M705-GRN360-K2-V), and the Cu balls are applied to the electrodes by reflow. Solder bumps were made by bonding. Reflow was performed under conditions of a peak temperature of 245 ° C. and an N 2 atmosphere. Since the oxygen concentration is 100 ppm or less, the increase in the oxide film thickness due to reflow does not affect the measurement of brightness.
  • a solder paste Sud Metal Industry Co., Ltd .: M705-GRN360-K2-V
  • the average misregistration is a value for objectively evaluating the alignment property numerically. The results are shown in Table 2. Details of each measurement and each evaluation are as shown below.
  • the brightness is measured by using SPECTROTOPOMETER CM-3500d made by MINOLTA, measuring the spectral transmittance according to JIS Z 8722 “Color Measurement Method-Reflection and Transmission Object Color” with a D65 light source and a 10-degree field of view. It was obtained from the values (L * , a * , b * ).
  • the color values (L * , a * , b * ) are defined in JIS Z 8729 “Color Display Method-L * a * b * Color System and L * u * v * Color System”. It is what.
  • the film thickness of the oxide film of the Cu ball was measured by the following apparatus and conditions. Incidentally, the oxide film thickness measurements were determined by the terms of SiO 2.
  • FIG. 4 is an optical micrograph of the solder bump 10 on which the Cu ball 11 of the present invention is mounted.
  • FIG. 5 is an optical micrograph of the solder bump 20 on which the Cu ball 21 of the comparative example is mounted.
  • the Cu ball 11 according to the present invention is mounted at the center of the electrode 13, and no positional deviation occurs.
  • the Cu ball 21 of the comparative example protrudes from the electrode 23, and a positional deviation occurs.
  • the case where the Cu ball 21 protrudes from the electrode 23 even a little is handled as the occurrence of the positional deviation.
  • the alignment performance was evaluated based on the number of Cu ball misalignments.
  • No misalignment occurred in all 30 pieces.
  • X One or more position shift occurred.
  • Measurement of average misalignment The distance between the center of the electrode and the center of the Cu ball bump after reflow was measured for 30 solder bumps by measuring the distance between circle centers using VH-S30 manufactured by KEYENCE. The average of the 30 measurement results is the misalignment average. In this example, when the average misalignment is 30 ⁇ m or less, the alignment property is excellent during mounting.
  • Examples 2 to 6 and Comparative Examples 1 to 4 In Examples 2 to 6 and Comparative Examples 1 to 4, the same evaluation as in Example 1 was performed on Cu balls after being stored under the storage conditions shown in Table 2. The results are shown in Table 2.
  • room temperature is 20 ° C. Further, the humidity when measured at “room temperature” and “200 ° C.” is 50%.
  • FIG. 6 is a graph showing the relationship between the L * value and the thickness of the oxide film. As shown in FIG. 6, when the L * value was 55 or more, the thickness of the oxide film was 8 nm or less, and the alignment property was good. However, when the L * value was less than 55, the thickness of the oxide film exceeded 8 nm, and the alignment property was x.
  • FIG. 7 is a graph showing the relationship between the b * value and the thickness of the oxide film.
  • the yellowness showed no correlation with the thickness of the oxide film. For this reason, it became clear that Cu balls cannot be determined using yellowness.
  • FIG. 8 is a graph showing the relationship between the a * value and the thickness of the oxide film. As a result, the redness did not show a correlation with the thickness of the oxide film. For this reason, it became clear that Cu balls cannot be determined using redness.
  • FIG. 9 is a graph showing the relationship between the L * value and the average displacement of Cu balls when Cu balls are mounted on electrodes. The higher the L * value, the smaller the average displacement of the Cu balls. For this reason, it has been found that there is a correlation between the L * value and the displacement of the Cu ball when the Cu ball is mounted on the electrode. Further, as shown in FIG. 9, it was found that when the L * value is 55 or more, at least the average misalignment is 30 ⁇ m or less.
  • the Cu ball according to the present invention can determine the degree of oxidation of the Cu ball based on the L * value.

Abstract

 優れたアライメント性を有するCuボールを提供する。 はんだ付けの際のCuボールの濡れ不良を抑制するため、ボール表面の酸化膜の膜厚を判定する指標として明度を規定し、明度を55以上とする。また、明度を正確に測定するにはCuボールの真球度が高い方がよく、真球度を高くするにはCuボールの純度を99.995%以下とする。明度が55以上の場合、Cuボールの表面に形成された酸化膜の膜厚は8nm以下が好ましい。

Description

Cuボール
 本発明は、電子部品等のはんだ付けに用いられるCuボールに関する。
 近年、小型情報機器の発達により、搭載される電子部品の急速な小型化が進行している。電子部品は、小型化の要求により接続端子の狭小化や実装面積の縮小に対応するため、裏面に電極が設置されたボールグリッドアレイ(以下、「BGA」と称する。)が適用されている。
 BGAを適用した電子部品には、例えば半導体パッケージがある。半導体パッケージでは、電極を有する半導体チップが樹脂で封止されている。半導体チップの電極には、はんだバンプが形成されている。このはんだバンプは、はんだボールを半導体チップの電極に接合することによって形成されている。BGAを適用したパッケージは、各はんだバンプがプリント基板の導電性ランドに接触するように、プリント基板上に置かれ、加熱により溶融したはんだバンプとランドとが接合することにより、プリント基板に搭載される。また、更なる高密度実装の要求に対応するため、半導体パッケージが高さ方向に積み重ねられた3次元高密度実装が検討されている。
 しかし、3次元高密度実装がなされたパッケージにBGAが適用されると、パッケージの自重によりはんだボールが潰れてしまい、電極間で接続短絡が発生する。これは、高密度実装を行う上での支障となる。
 そこで、電子部品の電極にはんだペーストでCuボールが電気的に接合されたはんだバンプが検討されている。Cuボールを有するはんだバンプは、電子部品がプリント基板に実装される際、半導体パッケージの重量がはんだバンプに加わっても、はんだ合金の融点では溶融しないCuボールによりパッケージを支えることができる。したがって、パッケージの自重によりはんだバンプが潰れることがない。関連技術として例えば特許文献1が挙げられる。
国際公開第95/24113号
 しかし、特許文献1で開示されたCuボールは、真球度を高めるためにCu個片を非酸化性雰囲気内で溶融して製造されているために高い純度が要求されているが、位置合わせ精度を表すアライメント性については一切検討されていない。
 Cuボールを用いてBGAを適用した電子部品は、プリント基板に搭載される際、Cuボールが電極から脱落すると接合不良として取り扱われる。また、Cuボールが電極の所定の位置からずれて接合された場合、Cuバンプを含めた各電極の高さがばらつく。高さが高い電極はランドと接合することができるが、高さが低い電極はランドと接合することができない。Cuボールが所定の位置からずれて接合された電子部品も不良として取り扱われる。したがって、Cuボールはアライメント性が高いレベルで要求されている。
 本発明の課題は優れたアライメント性を有するCuボールを提供することである。
 本発明者らは、Cuボールのアライメント性を高めるために、Cuボールの接合形態に着目した。具体的には、Cuボールがはんだペースト中のはんだ粒子で電極と電気的に接合されていることに鑑み、Cuボールの表面状態がはんだペースト中のはんだ粒子との濡れ性に影響を及ぼすことに着目した。そして、本発明者らは、Cuボールが酸化されやすい性質を有することに起因して、Cuボール表面の酸化膜の膜厚が薄いほどはんだペースト中のはんだ粒子との濡れ性が高く、優れたアライメント性を有する知見を得た。
 ここで、Cuボールのアライメント性を高めるために、Cuボールが酸素濃度や酸化膜の膜厚のみで規定された場合、作製されたCuボールの全てに対してこれらが測定される必要があり、高価な設備や長い測定時間が必要となる。したがって、Cuボールを酸素濃度や酸化膜の膜厚のみで規定することは現実的ではない。サンプルを抽出して酸素濃度や酸化膜の膜厚が測定されたとしても、これらが測定されていないCuボールがアライメント性に優れるとは限らない。
 そこで、本発明者らは、Cuボールの酸化膜の状態を何らかの指標で規定することによりアライメント性を高めることを検討した。
 Cuボールは、酸化膜の膜厚が70~100nm程度にまで厚くなると黄土色に変色するため、黄色度で規定されることによりアライメント性が高められるとも思われる。しかし、そのような厚い酸化膜は、高温多湿の環境下で長時間放置されてようやく形成されるものである。20~40℃程度で保管されたCuボールは、高湿度の環境化であってもこのような厚い酸化膜が形成されることはない。したがって、このようなCuボールが黄色度で規定されても、アライメント性が高まるとは考え難い。本発明者らは、この点について調査したところ、はんだボールと同様に黄色度により規定することは困難であるとの知見を得た。
 20~40℃程度で保管されたCuボールは、酸化膜の膜厚が概ね40nm以下程度である。このとき、Cuボールは褐色に変色する。このため、Cuボールは、赤色度で規定されることによりアライメント性が高められるとも思われる。しかし、Cuはそもそも赤みを帯びているため、Cuボールが酸化膜により褐色に変色したとしても、Cuボールは酸化の程度を精度よく判定され得ないと考えられる。本発明者らは、この点についても調査したところ、Cuボールが赤色度で規定されても、Cuボールのアライメント性を高めることができない知見も得た。
 そこで、本発明者らは、Cuボールが酸化すると金属光沢が失われる点に着目し、Cuボールの酸化の程度を規定する指標としてCuボールを明度で規定することにより、Cuボールの濡れ不良を抑制してアライメント性が飛躍的に向上する知見を得た。また、本発明者らは、明度がより正確に測定されるためにはCuボールの高い真球度が要求されることを考慮し、偶然にも、Cuボールの純度が99.995%以下の場合に真球度が高まる知見を得て本発明を完成した。
 その知見に基づき完成させた発明の要旨は、次の通りである。
 (1)純度が99.995%以下であり、明度が55以上であることを特徴とするCuボール。
 (2)表面の酸化膜の膜厚が8nm以下である、上記(1)に記載のCuボール。
 (3)真球度が0.95以上である、上記(1)または上記(2)に記載のCuボール。
 (4)直径が1~1000μmである、上記(1)~上記(3)のいずれか1つに記載のCuボール。
 (5)上記(1)~上記(4)のいずれか1つに記載のCuボールを使用したはんだ継手。
図1は、純度が99.9%のCuペレットを用いて製造したCuボールのSEM写真である。 図2は、純度が99.995%以下のCuワイヤを用いて製造したCuボールのSEM写真である。 図3は、純度が99.995%を超えるCu板を用いて製造したCuボールのSEM写真である。 図4は、本発明のCuボールが搭載されたはんだバンプの光学顕微鏡写真である。 図5は、比較例のCuボールが搭載されたはんだバンプの光学顕微鏡写真である。 図6は、L値と酸化膜の膜厚との関係を示すグラフである。 図7は、b値と酸化膜の膜厚との関係を示すグラフである。 図8は、a値とCuボールの酸化膜厚との関係を示すグラフである。 図9は、L値と電極にCuボールを搭載した後のCuボールの位置ずれ平均との関係を示すグラフである。
 本発明は以下で詳述される。本明細書において、Cuボールの組成に関する単位(ppm、ppb、および%)は、特に指定しない限りCuボールの質量に対する割合(質量ppm、質量ppb、および質量%)を表す。
 ・明度が55以上
 本発明に係るCuボールは明度が55以上である。ここに、明度とは、L表色系のL値(以下、単に、L値と言うこともある。)である。明度が55以上であるとCuボールの酸化膜が薄いことになり、アライメント性が高まる。CCDカメラなどで撮影した画像によりはんだボールの欠損や位置ずれが確認される場合、これらの確認の精度も高まる。また、レーザ波長計によりはんだバンプの高さばらつきが測定される場合、高さばらつきの測定精度も向上する。この結果、電子部品の検査精度が向上して電子部品の製品歩留まりが向上する。
 明度が55未満であると、主としてCuOで構成される厚い酸化膜がCuボールの表面に形成されていることになり、はんだペースト中のはんだ粒子との濡れ不良が発生してアライメント性が低下する。厚い酸化膜が形成されるとCuボールは金属光沢を失うため、電子部品の検査精度は劣化する。また、厚い酸化膜の形成によりCuボールの電気伝導度や熱伝導率が低下する。
 本発明に係るCuボールの効果がより一層高まるため、明度は、好ましくは57以上であり、より好ましくは59以上である。明度の上限に関しては、Cuが元来有する金属光沢による明度が上限値となるため、好ましくは70以下である。
・Cuボールの純度が99.995%以下
 本発明に係るCuボールは純度が99.995%以下である。つまり、本発明に係るCuボールはCuを除く元素(以下、適宜、「不純物元素」という。)の含有量が50ppm以上である。Cuボールを構成するCuの純度がこの範囲であると、Cuボールの真球度が高まるための十分な量の結晶核が溶融Cu中に確保されることになる。また、真球度が高まると、明度の測定誤差が低減される。Cuボールの純度が低いと真球度が高まる理由は以下のように詳述される。
 Cuボールを製造する際、所定形状の小片に形成されたCu材は、加熱により溶融し、溶融Cuが表面張力によって球形となり、これが凝固してCuボールとなる。溶融Cuが液体状態から凝固する過程において、結晶粒が球形の溶融Cu中で成長する。この際、不純物元素が多いと、この不純物元素が結晶核となって結晶粒の成長が抑制される。したがって、球形の溶融Cuは、成長が抑制された微細結晶粒によって真球度が高いCuボールとなる。一方不純物元素が少ないと、相対的に結晶核となるものが少なく、粒成長が抑制されずにある方向性をもって成長する。この結果、球形の溶融Cuは表面の一部分が突出して凝固してしまう。このようなCuボールは、真球度が低い。不純物としては、Sn、Sb、Bi、Zn、As、Ag、Cd、Ni、Pb、Au、P、S、U、Thなどが考えられる。
 純度の下限値は特に限定されないが、純度の低下によるCuボールの電気電導度や熱伝導率の劣化を抑制する観点から、好ましくは99.9%である。つまり、好ましくはCuを除くCuボールの不純物の含有量は合計で1000ppm以下である。
 不純物元素としては、前述のように、Sn、Sb、Bi、Zn、As、Ag、Cd、Ni、Pb、Au、P、S、U、Thなどが考えられる。本発明に係るCuボールは、不純物の中でも特にPbおよびBiを不純物として含有することが好ましい。これらの含有量は合計で1ppm以上であることが好ましい。通常、Cu材のPbおよび/またはBiの含有量は合計で1ppm以上である。Cuボールの製造において、CuがPbおよびBiの沸点以上の温度に加熱されることはない。つまり、PbおよびBiの含有量が大きく減少することはない。このように、PbおよびBiはCuボールを製造した後でもある程度の量が残存するため含有量の測定誤差が少ない。したがって、PbやBiは、不純物元素の含有量を推定するために重要な元素である。このような観点からも、PbおよびBiの含有量は合計で1ppm以上であることが好ましい。Pbおよび/またはBiの含有量は、より好ましくは合計で10ppm以上である。上限は特に限定されないが、Cuボールの電気電導度の劣化を抑制する観点から、より好ましくはPbおよびBiの合計で1000ppm未満である。
 ・酸化膜の膜厚が8nm以下
 本発明に係るCuボールは酸化膜の膜厚が8nm以下であることが好ましい。膜厚が8nm以下であると、酸化膜が薄いために濡れ不良が抑制されてアライメント性が高まる。Cuボールを電極と接合するはんだペーストは通常フラックスを含有する。フラックスはその主成分であるロジンにより8nm以下の薄い酸化膜を溶解除去する。したがって、本発明に係るCuボールは濡れ不良を抑制することができるため、(セルフ)アライメント性が優れる。つまり、Cuボールの搭載直後は電極の中央からわずかに外れていても、リフロー時は軟化したはんだペーストが表面張力により電極の全面で均一になる際に、Cuボールが電極の中央に移動する。また、酸化膜の膜厚が8nm以下であると、Cuボールの電気伝導度や熱伝導率が高まる。
 このような効果をより一層高めるため、酸化膜の膜厚は、好ましくは7nm以下であり、より好ましくは6nm以下である。酸化膜の膜厚の下限値は特に限定されず、薄ければ薄いほど濡れ不良を低減することができる。
 ・Cuボールの真球度:0.95以上
 本発明に係るCuボールの形状は、明度の測定誤差が低減する観点から、真球度が高い方が好ましい。また、真球度が高いと、スタンドオフ高さの誤差を低減することができる。Cuボールの真球度が0.95未満であると、Cuボールが不定形状になるため、バンプ形成時に高さが不均一なバンプが形成され、接合不良が発生する可能性が高まる。真球度は、より好ましくは0.990以上である。本発明において、真球度とは真球からのずれを表す。本発明において真球度とは、真球からのずれを表す。真球度は、例えば、最小二乗中心法(LSC法)、最小領域中心法(MZC法)、最大内接中心法(MIC法)、最小外接円中心法(MCC法)など種々の方法で求められる。
 ・Cuボールの直径:1~1000μm
 本発明に係るCuボールの直径は1~1000μmであることが好ましい。この範囲にあると、球状のCuボールが安定して製造され、また、端子間が狭ピッチである場合の接続短絡が抑制される。Cuボールの直径が1μm以上であると、球状のCuボールを安定して製造できる。また、Cuボールの直径が1000μm以下であると、端子間が狭ピッチである場合の接続短絡を抑制することができる。ここで、例えば、本発明に係るCuボールがCuペースト中のCuとして用いられるような場合、「Cuボール」は「Cuパウダ」と称されてもよい。「Cuボール」が「Cuパウダ」と称されるような場合、一般的に、Cuボールの直径は1~300μmである。
 本発明に係るCuボールの製造方法の一例を説明する。
 材料となるCu材はセラミックのような耐熱性の板(以下、「耐熱板」という。)に置かれ、耐熱板とともに炉中で加熱される。耐熱板には底部が半球状となった多数の円形の溝が設けられている。溝の直径や深さは、Cuボールの粒径に応じて適宜設定されており、例えば、直径が0.8mmであり、深さが0.88mmである。また、Cu細線が切断されて得られたチップ形状のCu材(以下、「チップ材」という。)は、耐熱板の溝内に一個ずつ投入される。溝内にチップ材が投入された耐熱板は、アンモニア分解ガスが充填された炉内で1000℃程度に昇温され、30~60分間加熱処理が行われる。このとき炉内温度がCuの融点以上になると、チップ材は溶融して球状となる。その後、炉内が冷却され、耐熱板の溝内でCuボールが成形される。
 また、別の方法としては、るつぼの底部に設けられたオリフィスから溶融Cuの液滴が滴下され、この液滴が冷却されてCuボールが造粒されるアトマイズ法や、熱プラズマによってCuカットメタルを1000℃以上に加熱する造粒方法がある。
 Cuボールの原料であるCu材としては、例えばペレット、ワイヤ、ピラーなどを用いることができる。Cu材の純度は、Cuボールの純度を下げすぎないようにする観点から99~99.995%でよい。
 ・Cuボールの保管方法
 本発明に係るCuボールは、保管環境の温度や湿度によっては雰囲気中の酸素と反応して表面に酸化膜を形成する。このため、製造直後のCuボールは、大気中で保管する場合には常温、常湿で保管することが好ましい。本発明においては、常温および常湿は、JIS Z 8703に従い、各々5~35℃、45~85%の範囲とする。また、Cuボールの酸化を極力抑制する場合には、HeやArなどの不活性ガス、窒素ガス、またはクリーンルームと同じ環境下で保存することが特に好ましい。
 また、本発明で規定する純度はCuカラムやCuピラーに応用されてもよい。
 なお、本発明に係るCuボールは、はんだペーストで電極に電気的に接合されることにより、電子部品のはんだ継手に用いられることができる。
 本発明に係るCuボールは、低α線材を使用することによりα線量が低減する。このような低α線のCuボールは、メモリ周辺のはんだバンプとして用いられるとソフトエラーを抑制することが可能になる。低α線のCuボールが製造されるには、従来のアトマイズ法で製造される際に、Cu材が800~1000℃程度で30~60分間加熱処理が施され、Cuの溶融温度を1100~1300℃程度に上げる処理が施される。また、製造されたCuボールは、別途Cuの融点未満である800~900℃で再加熱処理が行われてもよい。これにより、210Poなどの放射性同位元素が揮発してα線量が低下する。
 以下に本発明の実施例を説明するが、本発明はこれらに限定されるものではない。本実施例では、L値と酸化膜の膜厚とアライメント性との関係を調査するため、敢えて、種々の条件でCuボールが保管された。そして、L値が異なる種々のCuボールを用いて以下の検討が行われた。
 まず、明度が正確に測定されるため、真球度が高いCuボールの作製条件を調査した。純度が99.9%のCuペレット、純度が99.995%以下のCuワイヤ、および純度が99.995%を超えるCu板を準備した。各々をるつぼの中に投入した後、るつぼの温度を1200℃に昇温し、45分間加熱処理を行い、るつぼ底部に設けたオリフィスから溶融Cuの液滴を滴下し、液滴を冷却してCuボールを造粒した。これにより平均粒径が250μmのCuボールを作製した。作製したCuボールの元素分析結果および真球度を表1に示す。以下に、真球度の測定方法を詳述する。
 ・真球度
 真球度はCNC画像測定システムで測定された。装置は、ミツトヨ社製のウルトラクイックビジョン、ULTRA QV350-PROである。
 また、作製された各々のCuボールのSEM写真は図1~3に示される。図1は、純度が99.9%のCuペレットを用いて製造したCuボールのSEM写真である。図2は、純度が99.995%以下のCuワイヤを用いて製造したCuボールのSEM写真である。図3は、純度が99.995%を超えるCu板を用いて製造したCuボールのSEM写真である。SEM写真の倍率は100倍である。
Figure JPOXMLDOC01-appb-T000001
 表1、図1および2に示すように、純度が99.9%のCuペレットおよび99.995%以下のCuワイヤを用いたCuボールは、いずれも真球度が0.990以上を示した。一方、表1および図3に示すように、純度が99.995%を超えるCu板を用いたCuボールは、真球度が0.95を下回った。このため、以下に示す実施例および比較例では、いずれも99.9%のCuペレットで製造したCuボールを用いて種々の検討を行った。
 実施例1
 前述のように作製されたCuボールについて、作製直後(作製してから1分未満。)の明度および酸化膜の膜厚が以下の条件で測定された。そして、はんだペースト(千住金属工業株式会社製:M705-GRN360-K2-V)が100μm厚のメタルマスクにより印刷された30個の電極の各々にCuボールが搭載され、リフローによりCuボールが電極に接合されてはんだバンプが作製された。リフローは、ピーク温度245℃、N雰囲気の条件で行われた。なお、酸素濃度は100ppm以下であるため、リフローによる酸化膜厚の増加は明度の測定に影響を及ぼさない。その後、作製されたはんだバンプについて、明度および酸化膜の膜厚の測定、アライメント性の評価、ならびに位置ずれ平均の測定が行われた。位置ずれ平均は、アライメント性を数値化して客観的に評価するための値である。結果は表2に示される。各測定および各評価の詳細は以下に示されるとおりである。
 ・明度の測定
 明度は、MINOLTA製 SPECTROPHOTOMETER CM-3500dを用いて、D65光源、10度視野でJIS Z 8722「色の測定方法-反射及び透過物体色」に準じて分光透過率を測定し、色彩値(L,a,b)から求められた。なお、色彩値(L、a、b)は、JIS Z 8729「色の表示方法-L表色系及びL表色系」にて規定されているものである。
 ・酸化膜の膜厚の測定
 Cuボールの酸化膜の膜厚は、以下の装置および条件で測定された。なお、酸化膜厚測定値はSiO換算により求めた。
 測定装置:ULVAC-PHI,INC.製 走査型FEオージェ電子分光分析装置
 測定条件:Beam Voltage:10kV,試料電流:10nA(Arイオン銃を用いたスパッタ深さの測定法は、ISO/TR 15969に準拠。)
 ・アライメント性の評価
 はんだバンプが形成された30個の電極のすべてが光学顕微鏡により40倍で撮影された。図4は、本発明のCuボール11が搭載されたはんだバンプ10の光学顕微鏡写真である。図5は、比較例のCuボール21が搭載されたはんだバンプ20の光学顕微鏡写真である。これらの写真は、はんだペースト12、22が印刷された電極13、23にCuボール11、21が搭載された状態を、Cuボール11、21側から撮影した写真である。写真の倍率は40倍である。
 図4に示すように、本発明に係るCuボール11は電極13の中央に搭載されており、位置ずれが発生していない。一方、図5に示すように、比較例のCuボール21は電極23からはみ出ており、位置ずれが発生している。本実施例では、Cuボール21が電極23から少しでもはみ出しているものを、位置ずれが発生したものとして取り扱った。そして、Cuボールの位置ずれが発生している個数によりアライメント性が評価された。
 ○:30個すべてにおいて位置ずれが発生しなかった。
 ×:1個以上位置ずれが発生した。
 ・位置ずれ平均の測定
 電極の中心とリフロー後Cuボールバンプの中心との間の距離は、KEYENCE製VH-S30を用いた円心間距離測定により、30個のはんだバンプについて測定された。30個の測定結果の平均が位置ずれ平均である。本実施例では、位置ずれ平均が30μm以下であれば、実装時に優れたアライメント性を有することとした。
 実施例2~6および比較例1~4
 実施例2~6および比較例1~4では、表2に示す保管条件で保管した後のCuボールについて、実施例1と同様の評価が行われた。結果が表2に示される。
 なお、表2中、「室温」とは20℃である。また、「室温」および「200℃」で測定が行われた時の湿度はいずれも50%である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、L値が55以上を示す実施例1~6ではアライメント性がすべて○であり、位置ずれ平均がいずれも30μm以下であった。一方、L値が55未満を示す比較例1~4ではアライメント性が×であり、位置ずれ平均いずれも40μmを上回った。
 図6は、L値と酸化膜の膜厚との関係を示すグラフである。図6に示すように、L値が55以上であると酸化膜の膜厚が8nm以下であり、アライメント性が○であった。しかし、L値が55未満であると酸化膜の膜厚が8nmを上回り、アライメント性が×であった。
 参考として、Cuボールの酸化の程度を黄色度で判定できるか否かが調査された。図7は、b値と酸化膜の膜厚との関係を示すグラフである。Sn-Ag-Cu系はんだボールのように、黄色度では酸化膜の膜厚との相関関係は示されなかった。このため、Cuボールは、黄色度を用いて判定することができないことが明らかになった。
 またCuボールの酸化の程度を赤色度で判定できるか否かについても調査された。図8は、a値と酸化膜の膜厚との関係を示すグラフである。結果は、赤色度では酸化膜の膜厚との相関関係は示されなかった。このため、Cuボールは、赤色度を用いて判定することができないことが明らかになった。
 表6の結果に基づいて、L値と搭載されたCuボール位置ずれ平均との関係が図に示された。図9は、L値と電極へCuボールを搭載した際のCuボールの位置ずれ平均との関係を示すグラフである。L値が高いほど、Cuボールの位置ずれ平均は小さい値を示した。このため、L値と電極へCuボールを搭載した際のCuボールの位置ずれに相関関係があることがわかった。また、図9に示すように、L値が55以上では、少なくとも位置ずれ平均は30μm以下であることが明らかになった。
 図3および図9に示すように、本発明に係るCuボールは、L値によりCuボールの酸化の程度を判定可能であることが明らかになった。

Claims (5)

  1.  純度が99.995%以下であり、明度が55以上であることを特徴とするCuボール。
  2.  表面の酸化膜の膜厚が8nm以下である、請求項1に記載のCuボール。
  3.  真球度が0.95以上である、請求項1または2に記載のCuボール。
  4.  直径が1~1000μmである、請求項1~3のいずれか1項に記載のCuボール。
  5.  請求項1~4のいずれか1項に記載のCuボールを使用したはんだ継手。
PCT/JP2013/050424 2013-01-11 2013-01-11 Cuボール WO2014109052A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201380070219.2A CN104994974A (zh) 2013-01-11 2013-01-11 铜球
KR1020157021286A KR20150097808A (ko) 2013-01-11 2013-01-11 Cu 볼
PCT/JP2013/050424 WO2014109052A1 (ja) 2013-01-11 2013-01-11 Cuボール
KR1020167001997A KR102036959B1 (ko) 2013-01-11 2013-01-11 Cu 볼을 전극에 접합하는 방법 및 Cu 볼을 선정하는 방법
EP13870796.3A EP2944400A4 (en) 2013-01-11 2013-01-11 CU BALL
US14/759,360 US20150336216A1 (en) 2013-01-11 2013-01-11 Cu BALL
CN201710742046.4A CN107579007A (zh) 2013-01-11 2013-01-11 将铜球接合于电极的方法以及选择铜球的方法
JP2013539041A JP5447745B1 (ja) 2013-01-11 2013-01-11 Cuボール
TW102148968A TWI595948B (zh) 2013-01-11 2013-12-30 A copper ball, a method of bonding the electrode to the electrode, and a method of selecting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050424 WO2014109052A1 (ja) 2013-01-11 2013-01-11 Cuボール

Publications (1)

Publication Number Publication Date
WO2014109052A1 true WO2014109052A1 (ja) 2014-07-17

Family

ID=50614425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050424 WO2014109052A1 (ja) 2013-01-11 2013-01-11 Cuボール

Country Status (7)

Country Link
US (1) US20150336216A1 (ja)
EP (1) EP2944400A4 (ja)
JP (1) JP5447745B1 (ja)
KR (2) KR20150097808A (ja)
CN (2) CN104994974A (ja)
TW (1) TWI595948B (ja)
WO (1) WO2014109052A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5846341B1 (ja) * 2014-11-05 2016-01-20 千住金属工業株式会社 はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法
JP5850199B1 (ja) * 2015-06-29 2016-02-03 千住金属工業株式会社 はんだ材料、はんだ継手およびはんだ材料の検査方法
JP5935938B1 (ja) * 2015-12-28 2016-06-15 千住金属工業株式会社 導電接合シートおよび導電接合シートの製造方法。
JP2016112587A (ja) * 2014-12-15 2016-06-23 住友金属鉱山株式会社 エネルギー吸収量が制御されたPbフリーAu−Ge系はんだ合金及びこれを用いて封止若しくは接合された電子部品
JP6232157B1 (ja) * 2017-03-31 2017-11-15 日新製鋼株式会社 水蒸気処理製品の品質評価方法
US10780530B2 (en) 2018-05-25 2020-09-22 Senju Metal Industry Co., Ltd. Solder ball, solder joint, and joining method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068123A (ja) * 2014-09-30 2016-05-09 住友金属鉱山株式会社 Au−Sn−Ag系はんだ合金及びこれを用いて封止若しくは接合された電子機器並びに該電子機器を搭載した電子装置
US10384314B2 (en) * 2015-04-22 2019-08-20 Hitachi Metals, Ltd. Metal particle and method for producing the same, covered metal particle, and metal powder
JP6717356B2 (ja) * 2018-03-27 2020-07-01 日立金属株式会社 金属粒子の製造方法
MY190752A (en) * 2019-05-27 2022-05-12 Senju Metal Industry Co Solder alloy, solder paste, solder ball, solder preform, and solder joint
AU2021303983A1 (en) 2020-07-08 2023-01-19 Mitsui Mining & Smelting Co., Ltd. Fine metal linear body

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024113A1 (fr) 1994-03-01 1995-09-08 Sumitomo Special Metals Company Limited Boule en cuivre et procede de production de cette derniere
JP2000288771A (ja) * 1999-04-09 2000-10-17 Senju Metal Ind Co Ltd はんだボールおよびはんだボールの被覆方法
JP2001244286A (ja) * 2000-02-29 2001-09-07 Fujitsu Ltd 球状電極、半導体デバイスの突起電極および実装基板の形成方法
JP2002248596A (ja) * 2001-02-27 2002-09-03 Toshiba Tungaloy Co Ltd 耐酸化性に優れる鉛レス半田ボール
JP2004137530A (ja) * 2002-10-16 2004-05-13 Fukuda Metal Foil & Powder Co Ltd 電気・電子回路部品の接続端子として用いられる複合合金金属球及びその製造方法
JP2005002428A (ja) * 2003-06-12 2005-01-06 Hitachi Metals Ltd 金属微小球
JP2007160401A (ja) * 2005-11-15 2007-06-28 Hitachi Metals Ltd はんだ合金、はんだボールおよびそれを用いたはんだ接合部
JP2011029395A (ja) * 2009-07-24 2011-02-10 Hitachi Metals Ltd 電子部品用複合ボールの製造方法
WO2012120982A1 (ja) * 2011-03-07 2012-09-13 Jx日鉱日石金属株式会社 α線量が少ない銅又は銅合金及び銅又は銅合金を原料とするボンディングワイヤ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280241A (ja) * 1985-10-01 1987-04-13 Tanaka Denshi Kogyo Kk 半導体素子のボンデイング用銅線
JP3032927B2 (ja) * 1993-02-05 2000-04-17 日鉄鉱業株式会社 表面に金属酸化物膜を有する金属又は金属化合物粉体
JP3330613B2 (ja) * 1995-03-14 2002-09-30 日鉄鉱業株式会社 表面に多層膜を有する粉体及びその製法
JP2004263205A (ja) * 2003-01-31 2004-09-24 Toho Titanium Co Ltd 金属微粉末およびその製造方法ならびにこの金属微粉末を用いた導電ペースト
US6911618B1 (en) * 2004-02-03 2005-06-28 Hitachi Metals, Ltd. Method of producing minute metal balls
JP4470917B2 (ja) * 2006-06-29 2010-06-02 ソニー株式会社 電極集電体、電池用電極及び二次電池
KR101308828B1 (ko) * 2010-12-06 2013-09-13 히타치 긴조쿠 가부시키가이샤 금속 미소구의 제조방법
CN102601380B (zh) * 2011-12-21 2015-05-20 中国科学院过程工程研究所 一种立方铜粉及其制备方法
US9668358B2 (en) * 2012-12-06 2017-05-30 Senju Metal Industry Co., Ltd. Cu ball

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024113A1 (fr) 1994-03-01 1995-09-08 Sumitomo Special Metals Company Limited Boule en cuivre et procede de production de cette derniere
JP2000288771A (ja) * 1999-04-09 2000-10-17 Senju Metal Ind Co Ltd はんだボールおよびはんだボールの被覆方法
JP2001244286A (ja) * 2000-02-29 2001-09-07 Fujitsu Ltd 球状電極、半導体デバイスの突起電極および実装基板の形成方法
JP2002248596A (ja) * 2001-02-27 2002-09-03 Toshiba Tungaloy Co Ltd 耐酸化性に優れる鉛レス半田ボール
JP2004137530A (ja) * 2002-10-16 2004-05-13 Fukuda Metal Foil & Powder Co Ltd 電気・電子回路部品の接続端子として用いられる複合合金金属球及びその製造方法
JP2005002428A (ja) * 2003-06-12 2005-01-06 Hitachi Metals Ltd 金属微小球
JP2007160401A (ja) * 2005-11-15 2007-06-28 Hitachi Metals Ltd はんだ合金、はんだボールおよびそれを用いたはんだ接合部
JP2011029395A (ja) * 2009-07-24 2011-02-10 Hitachi Metals Ltd 電子部品用複合ボールの製造方法
WO2012120982A1 (ja) * 2011-03-07 2012-09-13 Jx日鉱日石金属株式会社 α線量が少ない銅又は銅合金及び銅又は銅合金を原料とするボンディングワイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2944400A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI616265B (zh) * 2014-11-05 2018-03-01 千住金屬工業股份有限公司 焊接材料、焊膏、泡沫焊料、焊料接頭及焊接材料的管理方法
US10717157B2 (en) 2014-11-05 2020-07-21 Senju Metal Industry Co., Ltd. Solder material, solder paste, solder preform, solder joint and method of managing the solder material
WO2016071971A1 (ja) * 2014-11-05 2016-05-12 千住金属工業株式会社 はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法
CN107073656B (zh) * 2014-11-05 2018-07-03 千住金属工业株式会社 软钎焊材料、焊膏、成形焊料、钎焊接头以及软钎焊材料的管理方法
JP5846341B1 (ja) * 2014-11-05 2016-01-20 千住金属工業株式会社 はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法
CN107073656A (zh) * 2014-11-05 2017-08-18 千住金属工业株式会社 软钎焊材料、焊膏、成形焊料、钎焊接头以及软钎焊材料的管理方法
EP3216553A4 (en) * 2014-11-05 2018-04-25 Senju Metal Industry Co., Ltd Solder material, solder paste, foam solder, solder joint, and method for controlling solder material
JP2016112587A (ja) * 2014-12-15 2016-06-23 住友金属鉱山株式会社 エネルギー吸収量が制御されたPbフリーAu−Ge系はんだ合金及びこれを用いて封止若しくは接合された電子部品
WO2017002704A1 (ja) * 2015-06-29 2017-01-05 千住金属工業株式会社 はんだ材料、はんだ継手およびはんだ材料の検査方法
CN107735212A (zh) * 2015-06-29 2018-02-23 千住金属工业株式会社 软钎料材料、焊接接头和软钎料材料的检查方法
KR20180014217A (ko) * 2015-06-29 2018-02-07 센주긴조쿠고교 가부시키가이샤 땜납 재료, 땜납 이음 및 땜납 재료의 검사 방법
KR101867796B1 (ko) 2015-06-29 2018-06-15 센주긴조쿠고교 가부시키가이샤 땜납 재료, 땜납 이음 및 땜납 재료의 검사 방법
CN107735212B (zh) * 2015-06-29 2019-03-08 千住金属工业株式会社 软钎料材料、焊接接头和软钎料材料的检查方法
JP5850199B1 (ja) * 2015-06-29 2016-02-03 千住金属工業株式会社 はんだ材料、はんだ継手およびはんだ材料の検査方法
US10888957B2 (en) 2015-06-29 2021-01-12 Senju Metal Industry Co., Ltd. Soldering material
JP5935938B1 (ja) * 2015-12-28 2016-06-15 千住金属工業株式会社 導電接合シートおよび導電接合シートの製造方法。
JP6232157B1 (ja) * 2017-03-31 2017-11-15 日新製鋼株式会社 水蒸気処理製品の品質評価方法
WO2018180169A1 (ja) * 2017-03-31 2018-10-04 日新製鋼株式会社 水蒸気処理製品の品質評価方法
JP2018173378A (ja) * 2017-03-31 2018-11-08 日新製鋼株式会社 水蒸気処理製品の品質評価方法
US10780530B2 (en) 2018-05-25 2020-09-22 Senju Metal Industry Co., Ltd. Solder ball, solder joint, and joining method

Also Published As

Publication number Publication date
US20150336216A1 (en) 2015-11-26
JPWO2014109052A1 (ja) 2017-01-19
KR20150097808A (ko) 2015-08-26
JP5447745B1 (ja) 2014-03-19
EP2944400A4 (en) 2016-10-05
TW201446362A (zh) 2014-12-16
KR102036959B1 (ko) 2019-10-25
EP2944400A1 (en) 2015-11-18
TWI595948B (zh) 2017-08-21
CN107579007A (zh) 2018-01-12
CN104994974A (zh) 2015-10-21
KR20160015397A (ko) 2016-02-12

Similar Documents

Publication Publication Date Title
JP5447745B1 (ja) Cuボール
JP5435182B1 (ja) Cuボール
JP5846341B1 (ja) はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法
JP5408401B1 (ja) Cu核ボール
JP5967316B2 (ja) Cu核ボール、はんだペースト、フォームはんだ及びはんだ継手
TW201540394A (zh) 銅球、銅核球、軟焊接頭、軟焊膏及泡沫焊料
JP6485580B1 (ja) Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ
JP6572995B1 (ja) Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ
JP5585750B1 (ja) Cu核ボール、はんだ継手、フォームはんだ、およびはんだペースト
US11185950B2 (en) Cu ball, Osp-treated Cu ball, Cu core ball, solder joint, solder paste, formed solder, and method for manufacturing Cu ball
KR101550560B1 (ko) Cu 코어 볼, 땜납 이음, 폼 땜납 및 땜납 페이스트
JP6572998B1 (ja) Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ
JP6485581B1 (ja) Cu核ボール、はんだ継手、はんだペースト及びフォームはんだ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013539041

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870796

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14759360

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013870796

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157021286

Country of ref document: KR

Kind code of ref document: A