WO2016060066A1 - シリンダ装置 - Google Patents

シリンダ装置 Download PDF

Info

Publication number
WO2016060066A1
WO2016060066A1 PCT/JP2015/078668 JP2015078668W WO2016060066A1 WO 2016060066 A1 WO2016060066 A1 WO 2016060066A1 JP 2015078668 W JP2015078668 W JP 2015078668W WO 2016060066 A1 WO2016060066 A1 WO 2016060066A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
side chamber
pressure
passage
cylinder device
Prior art date
Application number
PCT/JP2015/078668
Other languages
English (en)
French (fr)
Inventor
貴之 小川
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to CA2941878A priority Critical patent/CA2941878C/en
Priority to CN201580014343.6A priority patent/CN106104066B/zh
Priority to US15/124,866 priority patent/US9945441B2/en
Priority to KR1020167024673A priority patent/KR101825863B1/ko
Priority to EP15850577.6A priority patent/EP3109504B1/en
Publication of WO2016060066A1 publication Critical patent/WO2016060066A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/19Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder and of single-tube type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • F15B11/10Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor in which the servomotor position is a function of the pressure also pressure regulators as operating means for such systems, the device itself may be a position indicating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/20Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with the piston-rod extending through both ends of the cylinder, e.g. constant-volume dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/48Arrangements for providing different damping effects at different parts of the stroke
    • F16F9/49Stops limiting fluid passage, e.g. hydraulic stops or elastomeric elements inside the cylinder which contribute to changes in fluid damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/58Stroke limiting stops, e.g. arranged on the piston rod outside the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/12Fluid damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/066Variable stiffness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/22Pumps

Definitions

  • the present invention relates to a cylinder device.
  • a cylinder device that is interposed between a vehicle body and a carriage to be used in a railway vehicle to suppress left-right vibration with respect to the traveling direction of the vehicle body is used.
  • a cylinder device that is interposed between a vehicle body and a carriage to be used in a railway vehicle to suppress left-right vibration with respect to the traveling direction of the vehicle body is used.
  • the cylinder device includes, for example, a cylinder, a piston that is slidably inserted into the cylinder, a rod that is inserted into the cylinder and connected to the piston, a rod-side chamber and a piston that are partitioned by the piston in the cylinder.
  • a first opening / closing valve provided in the middle of the first passage communicating the side chamber, the tank, the rod side chamber and the piston side chamber, and a second opening / closing valve provided in the middle of the second passage communicating the piston side chamber and the tank;
  • a pump that supplies liquid to the rod side chamber, a motor that drives the pump, a discharge passage that connects the rod side chamber to the tank, and a variable relief valve provided in the middle of the discharge passage. (See, for example, JP2013-1305A).
  • the direction of thrust to be output is determined by appropriately opening and closing the first on-off valve and the second on-off valve, and the pump is rotated at a constant speed by a motor to supply a constant flow rate into the cylinder.
  • the relief pressure of the variable relief valve is adjusted to control the pressure in the cylinder so that a desired magnitude of thrust can be output in a desired direction.
  • Other cylinder devices include, for example, a cylinder, a piston that is slidably inserted into the cylinder, a rod that is inserted into the cylinder and connected to the piston, and a rod-side chamber partitioned by the piston in the cylinder.
  • a first on-off valve provided in the middle of the first passage communicating the piston side chamber, the tank, the rod side chamber and the piston side chamber, and a second on-off valve provided in the middle of the second passage communicating the piston side chamber and the tank
  • a discharge passage for connecting the rod side chamber to the tank, and a variable relief valve provided in the middle of the discharge passage see, for example, JP2000-238637A).
  • the direction of the damping force to be output is determined by appropriately opening and closing the first on-off valve and the second on-off valve, the relief pressure of the variable relief valve is adjusted, the pressure in the cylinder is controlled, and the desired It is possible to output a damping force that is as large as possible.
  • a center pin is provided below the vehicle body, and a pair of stoppers are provided on the cart side at positions spaced apart on both the left and right sides of the center pin.
  • the lateral acceleration of the vehicle body is detected by an acceleration sensor, and the thrust or damping force antagonizing the detected acceleration is output by the cylinder device. If so, vibration of the vehicle body can be suppressed.
  • the cylinder device may be controlled so as to reduce the displacement by feeding back the displacement of the vehicle body relative to the carriage.
  • a stroke sensor in the cylinder device, which increases the size or length of the cylinder device.
  • an electromagnetic valve is used as the variable relief valve, if a stroke sensor is provided in the cylinder device, noise from the electromagnetic valve is superimposed on the sensor signal, so that accurate control cannot be expected.
  • the cylinder device functions like a rigid rod because the rigidity between the vehicle body and the carriage increases so as to maintain the vehicle body near the center with respect to the carriage, thereby isolating the vibration of the vehicle body.
  • a new problem arises that the purpose of improving the ride comfort cannot be achieved.
  • An object of the present invention is to provide a cylinder device that can improve riding comfort in a railway vehicle.
  • a cylinder device includes a cylinder, a piston that is slidably inserted into the cylinder, a rod that is inserted into the cylinder and connected to the piston, and the piston is partitioned into the cylinder.
  • Extension side chamber, pressure side chamber, tank, extension side suction passage that allows only passage of liquid from the tank to the extension side chamber, pressure side suction passage that allows only passage of liquid from the tank to the pressure side chamber, piston and cylinder A recess facing the other of the piston and the cylinder, an extension discharge passage provided in the piston and allowing only the flow of liquid from the extension side chamber to the recess, and provided in the piston toward the recess from the pressure side chamber.
  • FIG. 1 is a schematic view of a cylinder device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a state in which the cylinder device according to the first embodiment is interposed between the vehicle body and the carriage of the railway vehicle.
  • FIG. 3 is a schematic view of a cylinder device according to a modification of the first embodiment.
  • FIG. 4 is a schematic view of a cylinder device according to another modification of the first embodiment.
  • FIG. 5 is a schematic view of a cylinder device according to the second embodiment.
  • FIG. 6 is a schematic view of a cylinder device according to the third embodiment.
  • FIG. 7 is a schematic view of a cylinder device according to the fourth embodiment.
  • FIG. 8 is a schematic view of a cylinder device according to the fifth embodiment.
  • the cylinder device C ⁇ b> 1 in the first embodiment includes a cylinder 1, a piston 2 that is slidably inserted into the cylinder 1, and a rod that is inserted into the cylinder 1 and connected to the piston 2. 3, an extension side chamber R1 and a pressure side chamber R2 partitioned by a piston 2 in the cylinder 1, a tank T, an extension side suction passage 4 that allows only passage of liquid from the tank T to the extension side chamber R1, and a tank T.
  • a pressure side suction passage 5 that allows only passage of liquid toward the pressure side chamber R2, a recess 2a that is provided on the outer periphery of the piston 2 and faces the cylinder 1, and a flow of liquid that is provided in the piston 2 toward the recess 2a from the extension side chamber R1
  • An extension side discharge passage 6 that allows only the flow
  • a pressure side discharge passage 7 that is provided in the piston 2 and that allows only the flow of liquid from the pressure side chamber R2 toward the recess 2a
  • the recess 1a that opens in the cylinder 1
  • the expansion side discharge passage 6 and the pressure side discharge passage 7 communicate with the tank T, and the expansion side as an expansion side damping force generation passage that provides resistance to the flow of liquid from the expansion side chamber R1 to the tank T.
  • a damping passage 9 and a pressure-side damping passage 10 as a pressure-side damping force generating passage that provides resistance to the flow of liquid from the pressure-side chamber R2 to the tank T are provided.
  • the extension side chamber R1 and the pressure side chamber R2 are filled with a liquid such as hydraulic oil, and the tank T is filled with a gas in addition to the liquid.
  • the inside of the tank T is not particularly required to be pressurized and filled with gas, but may be pressurized.
  • the cylinder 1 has a cylindrical shape, and one end (right end in FIG. 1) of the cylinder 1 is closed by a lid 15, and an annular rod guide 16 is attached to the other end (left end in FIG. 1). Further, the rod 3 that is movably inserted into the cylinder 1 is slidably inserted into the rod guide 16.
  • the rod 3 has one end protruding outside the cylinder 1 and the other end inside the cylinder 1 connected to a piston 2 that is slidably inserted into the cylinder 1.
  • the seal between the outer periphery of the rod 3 and the inner periphery of the rod guide 16 and between the outer periphery of the rod guide 16 and the cylinder 1 is sealed by a seal member (not shown). Thereby, the inside of the cylinder 1 is maintained in a sealed state.
  • the extension side chamber R1 and the pressure side chamber R2 defined by the piston 2 in the cylinder 1 are filled with hydraulic oil as a liquid as described above.
  • attachment portions 3a and 15a are provided on the lid 15 that closes one end (the left end in FIG. 1) of the rod 3 and one end (the right end in FIG. 1) of the cylinder 1, respectively.
  • the cylinder device C1 is connected to the center pin P and the carriage W of the vehicle body B of the railway vehicle to be controlled by the attachment portions 3a and 15a.
  • an actuator A is interposed between the center pin P and the carriage W.
  • the carriage W is provided with a pair of stoppers S and S disposed on the left and right sides of the center pin P so as to be separated from the center pin P.
  • the stoppers S and S are elastic and are compressed when the stopper S comes into contact with the center pin P, exhibiting a resilient force and suppressing displacement in the direction in which the center pin P compresses the stopper S. Therefore, when the vehicle body B strokes the carriage W more than the distance Ls from the center of the stroke, the stopper S comes into contact with the center pin P, and the movement of the vehicle body B is suppressed and compressed most gradually while increasing the elasticity. Further, the vehicle body B is stopped by restricting further displacement of the vehicle body B.
  • the extension side suction passage 4 opens from the rod guide 16 and communicates the extension side chamber R1 to the tank T.
  • a check valve 4a that allows only the flow of liquid from the tank T toward the extension side chamber R1 is provided.
  • the extension side suction passage 4 is set as a one-way passage that allows only the passage of liquid from the tank T toward the extension side chamber R1.
  • the extension side chamber R 1 communicates with the tank T through the extension side attenuation passage 9 that opens to the rod guide 16.
  • a relief valve 9 a as a damping force generating element is provided in the middle of the extension side damping passage 9.
  • the relief valve 9a is a passive damping valve. When the valve opening pressure is reached, the relief valve 9a opens the expansion side attenuation passage 9 and allows only the flow of liquid from the expansion side chamber R1 to the tank T, while passing the liquid passing therethrough. Provides resistance to flow.
  • the pressure side suction passage 5 opens from the lid 15 and communicates the pressure side chamber R2 to the tank T. In the middle of the pressure side suction passage 5, a check valve 5a that allows only the flow of liquid from the tank T toward the pressure side chamber R1 is provided. Thus, the pressure side suction passage 5 is set as a one-way passage that allows only the passage of liquid from the tank T toward the pressure side chamber R2.
  • the pressure side chamber R2 communicates with the tank T through the pressure side attenuation passage 10 opened in the lid 15.
  • a relief valve 10 a as a damping force generating element is provided in the middle of the compression side damping passage 10.
  • the relief valve 10a is a passive damping valve. When the valve opening pressure is reached, the relief valve 10a opens the pressure side damping passage 10 and allows only the liquid flow from the pressure side chamber R2 toward the tank T, while passing the liquid flow. Give resistance.
  • a recess 2 a formed as an annular groove is provided on the outer periphery of the piston 2.
  • the axial width L1 of the recess 2a is set to a length twice the distance Ls between the center pin P and the stopper S in a state where the vehicle body B is disposed at the stroke center with respect to the carriage W.
  • the piston 2 is provided with an extension side discharge passage 6 that opens at an end on the extension side chamber R1 side and communicates the extension side chamber R1 and the recess 2a.
  • the extension side discharge passage 6 is provided with a check valve 6a that allows only the flow of liquid from the extension side chamber R1 toward the recess 2a.
  • the extension side discharge passage 6 is set as a passage that allows only the flow of liquid from the extension side chamber R1 toward the recess 2a.
  • the piston 2 is provided with a pressure side discharge passage 7 that opens at an end portion on the pressure side chamber R2 side and communicates the pressure side chamber R2 and the recess 2a.
  • the pressure side discharge passage 7 is provided with a check valve 7a that allows only the flow of liquid from the pressure side chamber R2 toward the recess 2a.
  • the pressure side discharge passage 7 is set to a passage that allows only the flow of liquid from the pressure side chamber R2 toward the recess 2a.
  • not all of the extension side discharge passage 6 and the pressure side discharge passage 7 may be provided in the rod 3 instead of being provided in the piston 2.
  • the tank side discharge passage 8 opens from the inner periphery of the cylinder 1 and communicates with the tank T.
  • the cylinder 1 is provided with a port 1 a that penetrates the cylinder 1 in the radial direction and forms a part of the tank side discharge passage 8.
  • the port 1a When the piston 2 is displaced from the neutral position to the left in FIG. 1 by L1 / 2 or more with respect to the cylinder 1, the port 1a is once closed by the outer periphery of the piston 2 for further piston displacement, and then the piston displacement is further increased.
  • the port 1a communicates with the pressure side chamber R2.
  • the piston 2 is displaced from the neutral position to the right side in FIG.
  • the port 1a is once closed by the outer periphery of the piston 2 with respect to the further piston displacement.
  • the port 1a communicates with the extension side chamber R1.
  • the tank side discharge passage 8 communicates the expansion side discharge passage 6 and the pressure side discharge passage 7 with the tank T through the recess 2a.
  • the pressure side chamber R2 communicates with the tank T only by the tank side discharge passage 8, and the piston 2 is on the right side in FIG.
  • the expansion side chamber R1 communicates with the tank T only by the tank side discharge passage 8.
  • the neutral position of the piston 2 with respect to the cylinder 1 is not necessarily the center of the cylinder 1, and the cylinder device C1 is attached between the vehicle body B and the carriage W of the railway vehicle, and the center pin P is between the stoppers S and S. What is necessary is just to make the position where piston 2 is arrange
  • an on-off valve 17 for opening and closing the tank side discharge passage 8 is provided.
  • the on-off valve 17 includes a valve main body 17a having a communication position for opening the tank-side discharge passage 8 and a shut-off position for blocking the tank-side discharge passage 8, and a spring 17b that biases the valve main body 17a to position it at the shut-off position. And a solenoid 17c that switches the valve body 17a to the communication position against the urging force of the spring 17b when energized.
  • the cylinder device C1 is configured as described above. Hereinafter, the operation of the cylinder device C1 will be described. First, the case where the on-off valve 17 shuts off the tank side discharge passage 8 will be described. In this case, when the piston 2 moves leftward in FIG. 1 with respect to the cylinder 1, that is, when the cylinder device C ⁇ b> 1 extends, the expansion side chamber R ⁇ b> 1 is compressed, and the expansion side chamber R ⁇ b> 1 passes through the expansion side attenuation passage 9 to the tank T. The flow of the discharged liquid is given resistance by the relief valve 9a, and the pressure in the extension side chamber R1 rises in accordance with the pressure loss of the relief valve 9a.
  • the pressure side chamber R2 to be expanded is opened with the check valve 5a in the pressure side suction passage 5 and supplied with liquid from the tank T, and the pressure in the pressure side chamber R2 becomes the tank pressure.
  • the pressure in the expansion side chamber R1 becomes higher than the pressure in the compression side chamber R2, and the cylinder device C1 is attenuated in a direction that suppresses the expansion with a magnitude corresponding to the difference between the pressure in the expansion side chamber R1 and the pressure in the compression side chamber R2. Demonstrate power.
  • the piston 2 moves to the right in FIG. 1 with respect to the cylinder 1, that is, when the cylinder device C1 is contracted, the compression side chamber R2 is compressed.
  • the pressure in the compression side chamber R2 becomes higher than the pressure in the expansion side chamber R1, and the cylinder device C1 is attenuated in a direction that suppresses contraction with a magnitude corresponding to the difference between the pressure in the compression side chamber R2 and the pressure in the expansion side chamber R1. Demonstrate power. Therefore, when the on-off valve 17 blocks the tank-side discharge passage 8, the cylinder device C1 can exhibit a damping force during the stroke in both the extension operation and the contraction operation, as in a general damper.
  • the extension side attenuation passage 9 is placed in a blocked state.
  • the compression side chamber R2 to the tank T is compressed through the pressure side discharge passage 7, the concave portion 2a and the tank side discharge passage 8.
  • the liquid is discharged, and the pressure side chamber R2 is maintained at the tank pressure.
  • the expanding side chamber R1 is also supplied with the liquid from the tank T through the extending side suction passage 4, and the extending side chamber R1 is also maintained at the tank pressure.
  • the pressure side attenuation passage 10 is placed in a cutoff state.
  • the piston 2 is stroked within the distance L1 / 2 from the neutral position with respect to the cylinder 1, and the port 1a of the tank side discharge passage 8 is always maintained in communication with the recess 2a.
  • the cylinder device C1 is in a state of hardly exhibiting a damping force with respect to the vibration input.
  • the stroke range in which the cylinder device C1 hardly exhibits the damping force is realized by the communication between the recess 2a and the port 1a.
  • a stroke range that hardly exhibits a damping force is set by setting the axial width of the recess 2a.
  • This range is equal to twice the distance Ls between the stopper S and the center pin P in the state where the center pin P is at the stroke center in the cylinder device C1 of the present embodiment. Set to a value. Thereby, until the center pin P contacts the stopper S, the cylinder device C1 is maintained in a state in which almost no damping force is generated.
  • the cylinder device C1 exhibits a damping force, and a damping force that suppresses the center pin P from being separated from the stroke center. Demonstrate.
  • the cylinder device C1 can exhibit a damping force depending on the position of the vehicle body B relative to the carriage W without providing a stroke sensor. Then, when the center pin P collides with the stopper S, the cylinder device C1 exerts a damping force to gradually suppress the displacement of the vehicle body B relative to the carriage W, and gives an unpleasant vibration to the vehicle body B at the stroke end. Eliminates and secures a good ride.
  • the cylinder device C1 does not exhibit a force for suppressing the displacement of the vehicle body B relative to the carriage W until the center pin P contacts the stopper S. Therefore, in a range where the center pin P does not come into contact with the stopper S, the cylinder device C1 is damped against the control force while the actuator A provided in the cylinder device C1 exerts the control force that suppresses the vibration of the vehicle body B. Since the force is not exerted, the riding comfort in the railway vehicle is not hindered, and the energy consumption of the actuator A can be reduced.
  • the extension side chamber R1 communicates with the tank T via the tank side discharge passage 8, the liquid is discharged from the compressed extension side chamber R1 to the tank T via the tank side discharge passage 8. Therefore, the pressure in the extension side chamber R1 becomes the tank pressure, and the liquid is supplied from the tank T to the pressure side chamber R2 to be expanded via the pressure side suction passage 5, so that the pressure side chamber R2 also becomes the tank pressure. Therefore, there is no difference between the pressure in the extension side chamber R1 and the pressure in the compression side chamber R2, and the cylinder device C1 hardly exhibits a damping force.
  • the cylinder device C1 uses this range as a thrust reduction stroke range to reduce the damping force, that is, a dead zone that does not exhibit the damping force. . Further, when the piston 2 strokes beyond the stroke range, the cylinder device C1 exhibits a damping force in a direction to return the piston 2 to the neutral position with respect to a stroke in a direction away from the neutral position. A damping force that impedes this is not exhibited until the stroke 2 returns to the position where the tank side discharge passage 8 is closed with respect to the stroke in the direction of returning to the neutral position.
  • the cylinder device C1 reduces the damping force until the stroke in the range of the dead zone, that is, until the center pin P of the vehicle body B abuts against the stopper S, thereby suppressing the vibration of the vehicle body B by the control force of the actuator A. Do not disturb control.
  • the damping force for suppressing this can be exerted to suppress the displacement of the vehicle body B,
  • the damping force that prevents this is not exerted, so the vehicle body B can be quickly returned to the stroke center side.
  • the on-off valve 17 is provided in the tank-side discharge passage 8, and when this on-off valve 17 is provided, the tank-side discharge passage 8 can be switched between valid and invalid.
  • the cylinder device C1 can function as a general passive damper having no thrust reduction stroke range, and when the on-off valve 17 is opened, The cylinder device C1 can function as a damper having a thrust reduction stroke range that is a dead zone that does not exhibit a damping force.
  • the on-off valve 17 is not energized, the on / off valve 17 takes the shut-off position.
  • the on-off valve 17 takes the off-position, so that the vibration of the vehicle body B It is possible to automatically shift to a mode that always suppresses. Further, there is an advantage that vibration of the vehicle body B can be suppressed even if the actuator A provided in addition to the cylinder device C1 is in a failed state.
  • the on-off valve 17 may not be provided in order for the cylinder device C1 to function as a damper having a thrust reduction stroke range that does not exhibit a damping force. Further, as shown by the broken line in FIG.
  • the cylinder device C1 when the throttle valve 8a as a damping force generating element is provided in the tank side discharge passage 8, the cylinder device C1 can perform the extension side damping even in the stroke in the thrust reduction stroke range. A damping force lower than the damping force generated in the passage 9 and the compression side damping passage 10 can be exhibited. Further, as shown by a broken line in FIG. 1, a relief as a damping force generating element is arranged in parallel with the on-off valve 17 in the tank side discharge passage 8 or in parallel with the throttle valve 8a when the on-off valve 17 is abolished.
  • the cylinder device C1 always makes a stroke outside the thrust reduction stroke range regardless of the stroke direction. It can be set to exert a damping force. If a damping force generating element is provided in the tank side discharge passage 8, the cylinder device C ⁇ b> 1 can exhibit a low damping force in the thrust reduction stroke range and reduce the chance of collision between the center pin P and the stopper S.
  • the axial width L1 of the recess 2a is set to a value twice the distance Ls between the stopper S and the center pin P, but the center pin P collides with the stopper S.
  • L1 ⁇ Ls ⁇ 2 may be set.
  • the cylinder device C1 needs to exert the damping force. May be set to L1> Ls ⁇ 2.
  • the rigidity between the vehicle body B and the carriage W does not increase, so that the vibration of the carriage W can be transmitted to the vehicle body B and the vibration can be insulated.
  • the axial width L1 of the recess 2a is optimal for the ride comfort of the vehicle body B from the rigidity of the stopper S, the stroke amount of the center pin P from when it contacts the center pin P until it is compressed to stop the center pin P, etc. Should be set to be.
  • the recess 2a is formed by providing an annular groove on the outer periphery of the piston 2, but the piston 2 may be configured as shown in FIG. Specifically, the piston 2 is provided on the rod 3 so as to be in sliding contact with the cylinder 1, and the piston 2 is provided on the rod 3 so as to be separated from the first piston forming member 18. And a disk-shaped second piston forming member 19 that is in sliding contact.
  • the recess 20 is formed by an annular gap formed between the first piston forming member 18 and the second piston forming member 19.
  • the piston 2 is constituted by the two disc-shaped first piston forming member 18 and the second piston forming member 19, and the extension side chamber is provided between the first piston forming member 18 and the second piston forming member 19.
  • the width of the recess 20 can be easily adjusted by installing a cylindrical spacer 40 between the first piston forming member 18 and the second piston forming member 19 on the outer periphery of the rod 3. Furthermore, when it is necessary to increase the axial length of the recess 20, if such a recess is formed on the outer periphery of the single piston 2, the axial length of the piston 2 increases and the weight increases.
  • the piston 2 is constituted by the one piston forming member 18 and the second piston forming member 19, even if the axial length of the recess 20 is increased, the weight is not increased. Further, when the piston 2 is constituted by the first piston forming member 18 and the second piston forming member 19, the extension side discharge passage 6 and the pressure side discharge passage 7 can be easily installed.
  • the extension side discharge passage 6 and the pressure side discharge passage 7 may be provided in the rod 3 instead of being provided in the first piston forming member 18 and the second piston forming member 19, respectively.
  • the check valve 6a is constituted by a leaf valve
  • the first piston forming member 18 is provided with a port for forming the passage of the extension side discharge passage 6, and the rod 3 is provided on the concave side of the first piston forming member 18.
  • the extension side discharge passage 6 can be easily configured. Further, when the check valve 7 a is configured by a leaf valve, a port for forming the pressure side discharge passage 7 is provided in the second piston forming member 19, and the rod 3 is disposed on the concave side of the second piston forming member 19. If the leaf valve mounted on the outer periphery is laminated, the pressure side discharge passage 7 can be easily configured.
  • an annular groove is provided to form the recess 1b, and the recess 1b is discharged to the tank side.
  • the passage 8 may communicate with the tank T, and the piston 2 may be provided with the expansion side discharge passage 6 and the pressure side discharge passage 7, and these outlet ports 2 c may be provided on the outer periphery of the piston 2. Even in this case, a part of the extension side discharge passage 6 and the pressure side discharge passage 7 may be provided in the rod 3 instead of being provided in the piston 2.
  • the expansion side discharge passage 6, the pressure side discharge passage 7, and the tank side discharge passage 8 are placed in communication with each other. Does not demonstrate. Therefore, even in the cylinder device C1 in which the cylinder 1 is provided with the recess 1b, the same operation as that of the cylinder device C1 shown in FIG. 1 is exhibited and the same effect is obtained. However, the axial length of the piston 2 needs to be set to be twice or more the axial length of the recess 1b.
  • the recesses 2 a and 1 b may be formed by an annular groove provided on the outer periphery of the piston 2, or may be formed by an annular groove provided on the inner periphery of the cylinder 1. Further, since the recesses 2a, 1b and 20 are annular, even if the piston 2 rotates in the circumferential direction with respect to the cylinder 1, the extension side discharge passage 6, the pressure side discharge passage 7 and the tank are passed through the recesses 2a, 1b and 20. Communication of the side discharge passage 8 is ensured.
  • the relief valves 9a, 10a, and 8b since the relief valves 9a, 10a, and 8b only need to be able to generate a damping force, the relief valves 9a, 10a, and 8b can be changed to a damping valve or a throttle valve that has no valve opening pressure.
  • the cylinder device C2 in the second embodiment includes a cylinder 1, a piston 2 that is slidably inserted into the cylinder 1, a rod 3 that is inserted into the cylinder 1 and connected to the piston 2, and the cylinder 1.
  • the expansion side chamber R1 and the pressure side chamber R2 partitioned by the piston 2 inside, the tank T, the expansion side suction passage 4 that allows only the passage of liquid from the tank T to the expansion side chamber R1, and the tank T toward the pressure side chamber R2.
  • the pressure side suction passage 5 that allows only the passage of liquid, the recess 2a that is provided on the outer periphery of the piston 2 and faces the cylinder 1, and the flow of the liquid that is provided on the piston 2 toward the recess 2a from the extension side chamber R1 are allowed.
  • a tank side discharge passage 8 that communicates the pressure side discharge passage 7 with the tank T
  • an extension side communication passage 21 as an extension side damping force generation passage that provides resistance to the flow of liquid from the extension side chamber R1 to the pressure side chamber R2, and a pressure side.
  • a pressure-side damping passage 10 serving as a pressure-side damping force generation passage that provides resistance to the flow of liquid from the chamber R2 toward the tank T.
  • the cylinder device C2 has the same configuration as the cylinder device C1 except that the extension side attenuation passage 9 is eliminated from the configuration of the cylinder device C1 of the first embodiment and the extension side communication passage 21 is provided instead. It has.
  • the extension side communication passage 21 communicates the extension side chamber R1 and the compression side chamber R2, and includes a relief valve 21a in the middle.
  • the relief valve 21a is a passive damping valve. When the valve opening pressure is reached, the relief valve 21a opens the extension-side communication passage 21, and allows only the flow of liquid from the extension-side chamber R1 to the pressure-side chamber R2. Resistance to the flow of water.
  • the pressure side chamber R2 to be expanded is supplied with liquid from the extension side chamber R1 via the extension side communication passage 21, but the volume of liquid with which the rod 3 retreats from the cylinder 1 is insufficient, so the pressure side suction Liquid is supplied from the tank T through the passage 5. Therefore, the pressure in the pressure side chamber R2 becomes the tank pressure. As a result, the pressure in the expansion side chamber R1 becomes higher than the pressure in the compression side chamber R2, and the cylinder device C2 is attenuated in a direction that suppresses the expansion with a magnitude corresponding to the difference between the pressure in the expansion side chamber R1 and the pressure in the compression side chamber R2. Demonstrate power.
  • the pressure in the compression side chamber R2 becomes higher than the pressure in the expansion side chamber R1, and the cylinder device C2 is attenuated in such a direction as to suppress contraction with a magnitude corresponding to the difference between the pressure in the compression side chamber R2 and the pressure in the expansion side chamber R1. Demonstrate power. Therefore, when the on-off valve 17 blocks the tank-side discharge passage 8, the cylinder device C2 exhibits a damping force during the stroke in both the expansion operation and the contraction operation, as in a general damper.
  • the extension side communication passage 21 is placed in a blocked state.
  • the compression side chamber R2 to the tank T is compressed through the pressure side discharge passage 7, the concave portion 2a and the tank side discharge passage 8.
  • the liquid is discharged, and the pressure side chamber R2 is maintained at the tank pressure.
  • the expanding side chamber R1 is also supplied with the liquid from the tank T through the extending side suction passage 4, and the extending side chamber R1 is also maintained at the tank pressure.
  • the pressure side attenuation passage 10 is placed in a cutoff state.
  • the piston 2 is stroked within the distance L1 / 2 from the neutral position with respect to the cylinder 1, and the port 1a of the tank side discharge passage 8 is always maintained in communication with the recess 2a.
  • the cylinder device C2 is in a state of hardly exhibiting a damping force with respect to the vibration input. Therefore, even in the cylinder device C2, similarly to the cylinder device C1, there is provided a thrust reduction stroke range that hardly exhibits a damping force due to the communication between the recess 2a and the port 1a. It is set by the axial width of 2a.
  • the cylinder device C2 exhibits a damping force, and a damping force that suppresses the center pin P from being separated from the stroke center. Demonstrate.
  • the cylinder device C2 can exhibit a damping force depending on the position of the vehicle body B relative to the carriage W without providing a stroke sensor. Then, when the center pin P collides with the stopper S, the cylinder device C2 exerts a damping force to gradually suppress the displacement of the vehicle body B relative to the carriage W, and gives an unpleasant vibration to the vehicle body B at the stroke end. Therefore, a good ride comfort can be secured.
  • the cylinder device C2 does not exhibit a force for suppressing the displacement of the vehicle body B relative to the carriage W until the center pin P contacts the stopper S. Therefore, in a range where the center pin P does not contact the stopper S, the cylinder device C2 is damped against the control force while the actuator A provided in the cylinder device C2 exerts the control force that suppresses the vibration of the vehicle body B. Since the force is not exerted, the riding comfort in the railway vehicle is not hindered, and the energy consumption of the actuator A can be reduced.
  • the cylinder device C2 uses this range as a dead zone that does not exert a damping force with a thrust reduction stroke range.
  • the cylinder device C2 exhibits a damping force in a direction to return the piston 2 to the neutral position with respect to a stroke in a direction away from the neutral position. A damping force that impedes this is not exhibited until the stroke 2 returns to the position where the tank side discharge passage 8 is closed with respect to the stroke in the direction of returning to the neutral position.
  • the cylinder device C2 operates in the same manner as the cylinder device C1 and has the same effect, the riding comfort in the railway vehicle can be improved.
  • the abolition of the on-off valve 17, the installation and non-installation of the throttle valve 8a, and the installation and non-installation of the relief valve 8b can be selected similarly to the cylinder device C1. Further, the relief valves 21a, 10a, and 8b only need to be able to generate a damping force, and therefore can be changed to a damping valve or a throttle valve that does not have a valve opening pressure set.
  • the cylinder device C3 in the third embodiment includes a cylinder 1, a piston 2 that is slidably inserted into the cylinder 1, a rod 3 that is inserted into the cylinder 1 and connected to the piston 2, and the cylinder 1
  • the expansion side chamber R1 and the pressure side chamber R2 partitioned by the piston 2 inside, the tank T, the expansion side suction passage 4 that allows only the passage of liquid from the tank T to the expansion side chamber R1, and the tank T toward the pressure side chamber R2.
  • the pressure side suction passage 5 that allows only the passage of liquid, the recess 2a that is provided on the outer periphery of the piston 2 and faces the cylinder 1, and the flow of the liquid that is provided on the piston 2 toward the recess 2a from the extension side chamber R1 are allowed.
  • a tank side discharge passage 8 that communicates the pressure side discharge passage 7 with the tank T, an extension side attenuation passage 9 as an extension side damping force generation passage that provides resistance to the flow of liquid from the extension side chamber R1 to the tank T, and a pressure side chamber.
  • a pressure side communication passage 22 serving as a pressure side damping force generation passage that provides resistance to the flow of liquid from R2 toward the extension side chamber R1.
  • the cylinder device C3 has the same configuration as the cylinder device C1 except that the compression side damping passage 10 is eliminated from the configuration of the cylinder device C1 of the first embodiment and the pressure side communication passage 22 is provided instead. ing.
  • the pressure side communication passage 22 communicates the pressure side chamber R2 and the extension side chamber R1, and includes a relief valve 22a in the middle.
  • the relief valve 22a is a passive damping valve. When the valve opening pressure is reached, the relief valve 22a opens the pressure side communication passage 22, and allows only the flow of liquid from the pressure side chamber R2 to the extension side chamber R1, while passing the liquid passing therethrough. Provides resistance to flow.
  • the pressure in the pressure side chamber R2 becomes the tank pressure.
  • the pressure in the expansion side chamber R1 becomes higher than the pressure in the compression side chamber R2, and the cylinder device C3 is attenuated in a direction that suppresses the expansion with a magnitude corresponding to the difference between the pressure in the expansion side chamber R1 and the pressure in the compression side chamber R2.
  • Demonstrate power when the piston 2 moves to the right in FIG. 5 with respect to the cylinder 1, that is, when the cylinder device C3 is contracted, the pressure side chamber R2 is compressed, and the expansion side chamber is compressed from the pressure side chamber R2 through the pressure side communication passage 22. Resistance is given to the flow of the liquid moving to R1 by the relief valve 22a.
  • the pressure in the pressure side chamber R2 rises in accordance with the pressure loss of the relief valve 22a.
  • the expansion side chamber R1 is expanded, the check valve 4a in the expansion side suction passage 4 is opened and liquid is supplied from the tank T, and the pressure in the expansion side chamber R1 becomes the tank pressure.
  • the pressure in the compression side chamber R2 becomes higher than the pressure in the expansion side chamber R1, and the cylinder device C3 is attenuated in a direction that suppresses the contraction with a magnitude corresponding to the difference between the pressure in the compression side chamber R2 and the pressure in the expansion side chamber R1. Demonstrate power. Therefore, when the on-off valve 17 blocks the tank-side discharge passage 8, the cylinder device C3 exerts a damping force during the stroke in both the expansion operation and the contraction operation, as in a general damper.
  • the extension side attenuation passage 9 is placed in a blocked state.
  • the compression side chamber R2 to the tank T is compressed through the pressure side discharge passage 7, the concave portion 2a and the tank side discharge passage 8.
  • the liquid is discharged, and the pressure side chamber R2 is maintained at the tank pressure.
  • the expanding side chamber R1 is also supplied with the liquid from the tank T through the extending side suction passage 4, and the extending side chamber R1 is also maintained at the tank pressure.
  • the pressure side communication passage 22 is placed in a shut-off state. Therefore, when the piston 2 strokes within the distance L1 / 2 from the neutral position with respect to the cylinder 1 and the port 1a of the tank side discharge passage 8 is always maintained in communication with the recess 2a, the cylinder The device C3 is in a state where it hardly exhibits a damping force with respect to the vibration input. Thus, even in the cylinder device C3, similarly to the cylinder device C1, there is provided a thrust reduction stroke range that hardly exhibits a damping force due to the communication between the recess 2a and the port 1a. , Set by the axial width of the recess 2a.
  • the cylinder device C3 exhibits a damping force, and a damping force that suppresses the center pin P from being separated from the stroke center. Demonstrate.
  • the cylinder device C3 can exhibit a damping force depending on the position of the vehicle body B relative to the carriage W without providing a stroke sensor.
  • the cylinder device C3 exerts a damping force to gradually suppress the displacement of the vehicle body B with respect to the carriage W, and gives an unpleasant vibration to the vehicle body B at the stroke end. Therefore, a good ride comfort can be secured.
  • the cylinder device C3 does not exhibit a force that suppresses the displacement of the vehicle body B relative to the carriage W until the center pin P contacts the stopper S. Therefore, in a range where the center pin P does not come into contact with the stopper S, the cylinder device C3 is damped against the control force while the actuator A provided in the cylinder device C3 exerts the control force that suppresses the vibration of the vehicle body B. Since the force is not exerted, the riding comfort in the railway vehicle is not hindered, and the energy consumption of the actuator A can be reduced.
  • the cylinder device C3 uses this range as a dead zone that does not exhibit a damping force with a thrust reduction stroke range.
  • the cylinder device C3 exhibits a damping force in a direction to return the piston 2 to the neutral position with respect to a stroke in a direction away from the neutral position. A damping force that impedes this is not exhibited until the stroke 2 returns to the position where the tank side discharge passage 8 is closed with respect to the stroke in the direction of returning to the neutral position.
  • the cylinder device C3 operates in the same manner as the cylinder device C1 and has the same effect, the riding comfort in the railway vehicle can be improved.
  • the abolition of the on-off valve 17, the installation and non-installation of the throttle valve 8a, and the installation and non-installation of the relief valve 8b can be selected similarly to the cylinder device C1. Further, the relief valves 9a, 22a, and 8b only need to be able to generate a damping force, and therefore can be changed to a damping valve or a throttle valve that does not have a valve opening pressure set.
  • the cylinder device C4 in the fourth embodiment includes a cylinder 1, a piston 2 that is slidably inserted into the cylinder 1, and a cylinder 1 that is inserted into the cylinder 1 and both ends project outward from the cylinder 1.
  • a suction passage 4 a pressure side suction passage 5 that allows only liquid to pass from the tank T to the pressure side chamber R2, a recess 2a that is provided on the outer periphery of the piston 2 and faces the cylinder 1, and an extension side chamber that is provided in the piston 2.
  • An extension side discharge passage 6 that allows only the flow of liquid from R1 toward the recess 2a, and a pressure side discharge passage 7 that is provided in the piston 2 and that allows only the flow of liquid from the pressure side chamber R2 toward the recess 2a;
  • a resistance is given to the tank-side discharge passage 8 that opens to the cylinder 1 and communicates the expansion-side discharge passage 6 and the pressure-side discharge passage 7 to the tank T via the recess 2a, and the flow of liquid from the expansion-side chamber R1 to the pressure-side chamber R2.
  • An extension side communication passage 21 as an extension side damping force generation passage, and a pressure side communication passage 22 as a compression side damping force generation passage that provides resistance to the flow of liquid from the compression side chamber R2 to the extension side chamber R1 are provided.
  • the cylinder device C4 eliminates the extension side damping passage 9 and the pressure side damping passage 10 from the configuration of the cylinder device C1 of the first embodiment, and provides the extension side communication passage 21 and the pressure side communication passage 22 instead.
  • both ends of the rod 23 are configured as a double rod type projecting outward from both sides of the cylinder 1.
  • the installation position is not limited to the center. .
  • the extension side communication passage 21 includes a relief valve 21a on the way, and allows only the flow of liquid from the extension side chamber R1 to the pressure side chamber R2 while passing therethrough. It is designed to give resistance to the flow of liquid.
  • the pressure side communication passage 22 includes a relief valve 22a on the way, and passes only while allowing the flow of liquid from the pressure side chamber R2 toward the extension side chamber R1. Resist the flow of liquid.
  • the pressure in the expansion side chamber R1 becomes higher than the pressure in the compression side chamber R2, and the cylinder device C4 has a damping force in a direction that suppresses expansion with a magnitude corresponding to the difference between the pressure in the expansion side chamber R1 and the pressure in the compression side chamber R2. Demonstrate.
  • the piston 2 moves to the right in FIG. 7 with respect to the cylinder 1, that is, when the cylinder device C4 is contracted, the pressure side chamber R2 is compressed, and the expansion side chamber is compressed from the pressure side chamber R2 through the pressure side communication passage 22.
  • the flow of liquid toward R1 is given resistance by the relief valve 22a.
  • the pressure in the pressure side chamber R2 rises in accordance with the pressure loss of the relief valve 22a.
  • a liquid is supplied to the expansion side chamber R ⁇ b> 1 to be expanded through the pressure side communication passage 22. Therefore, the pressure in the compression side chamber R2 becomes higher than the pressure in the expansion side chamber R1, and the cylinder device C4 has a damping force in a direction to suppress the contraction with a magnitude corresponding to the difference between the pressure in the compression side chamber R2 and the pressure in the expansion side chamber R1.
  • the on-off valve 17 blocks the tank-side discharge passage 8
  • the cylinder device C4 exhibits a damping force during the stroke in both the expansion operation and the contraction operation, as in a general damper.
  • the compression side chamber R2 to the tank T is compressed through the pressure side discharge passage 7, the concave portion 2a and the tank side discharge passage 8.
  • the liquid is discharged, and the pressure side chamber R2 is maintained at the tank pressure.
  • the expanding side chamber R1 is also supplied with the liquid from the tank T through the extending side suction passage 4, and the extending side chamber R1 is also maintained at the tank pressure.
  • the cylinder device C4 exhibits a damping force, and a damping force that suppresses the center pin P from being separated from the stroke center. Demonstrate.
  • the cylinder device C4 can exhibit a damping force depending on the position of the vehicle body B relative to the carriage W without providing a stroke sensor. Then, when the center pin P collides with the stopper S, the cylinder device C4 exerts a damping force to gradually suppress the displacement of the vehicle body B relative to the carriage W, and gives an unpleasant vibration to the vehicle body B at the stroke end. Therefore, a good ride comfort can be secured.
  • the cylinder device C4 does not exert a force for suppressing the displacement of the vehicle body B relative to the carriage W until the center pin P contacts the stopper S. Therefore, in a range where the center pin P does not come into contact with the stopper S, the cylinder device C4 is damped against the control force while the actuator A provided in the cylinder device C4 exerts the control force that suppresses the vibration of the vehicle body B. Since the force is not exerted, the riding comfort in the railway vehicle is not hindered, and the energy consumption of the actuator A can be reduced.
  • the cylinder device C4 uses this range as a dead zone that does not exhibit a damping force with a thrust reduction stroke range.
  • the cylinder device C4 exhibits a damping force in a direction to return the piston 2 to the neutral position with respect to a stroke in a direction away from the neutral position. A damping force that impedes this is not exhibited until the stroke 2 returns to the position where the tank side discharge passage 8 is closed with respect to the stroke in the direction of returning to the neutral position.
  • the cylinder device C4 exhibits the same operation as the cylinder device C1 and exhibits the same effect, so that the riding comfort in the railway vehicle can be improved.
  • the abolition of the on-off valve 17, the installation and non-installation of the throttle valve 8a, and the installation and non-installation of the relief valve 8b can be selected similarly to the cylinder device C1. Further, the relief valves 21a, 22a, and 8b only need to be able to generate a damping force, and therefore can be changed to a damping valve or a throttle valve that does not have a valve opening pressure set.
  • the cylinder device C1 includes only the extension side attenuation passage 9 and the compression side attenuation passage 10, but one or both of the extension side communication passage 21 and the pressure side communication passage 22 may be provided in this configuration.
  • relief is performed so that either the expansion side damping passage 9 or the expansion side communication passage 21 that exhibits a damping force in the extension stroke is released so that the pressure in the expansion side chamber R1 does not exceed the allowable pressure.
  • the system can be protected by functioning as a passage.
  • either one of the pressure side damping passage 10 and the pressure side communication passage 22 that exerts a damping force in the contraction stroke is made to function as a relief passage for releasing the pressure so that the pressure in the pressure side chamber R2 does not exceed the allowable pressure. Can protect the system.
  • the cylinder device C2 includes only the expansion side communication passage 21 and the pressure side attenuation passage 10, the pressure side communication passage 22 may be provided in this configuration.
  • the cylinder device C3 only the expansion side attenuation passage 9 and the pressure side communication passage 22 are provided, but the expansion side communication passage 21 may be provided in this configuration.
  • the cylinder device C4 includes only the expansion side communication passage 21 and the pressure side communication passage 22, one or both of the expansion side attenuation passage 9 and the pressure side attenuation passage 10 may be provided in this configuration. In this way, the system of the cylinder devices C2, C3, C4 can be protected from excessive pressure in the cylinder 1.
  • the cylinder device C5 includes a cylinder 1, a piston 2 that is slidably inserted into the cylinder 1, a rod 3 that is inserted into the cylinder 1 and connected to the piston 2, and the cylinder 1.
  • the expansion side chamber R1 and the pressure side chamber R2 partitioned by the piston 2 inside, the tank T, the expansion side suction passage 4 that allows only the passage of liquid from the tank T to the expansion side chamber R1, and the tank T toward the pressure side chamber R2.
  • the pressure side suction passage 5 that allows only the passage of liquid, the recess 2a that is provided on the outer periphery of the piston 2 and faces the cylinder 1, and the flow of the liquid that is provided on the piston 2 toward the recess 2a from the extension side chamber R1 are allowed.
  • a tank side discharge passage 8 that communicates the pressure side discharge passage 7 with the tank T, an extension side attenuation passage 9 as an extension side damping force generation passage that provides resistance to the flow of liquid from the extension side chamber R1 to the tank T, and a pressure side chamber.
  • a pressure-side damping passage 10 serving as a pressure-side damping force generation passage that provides resistance to the flow of liquid from R2 to the tank T, and a tandem pump 30 that supplies liquid at the same flow rate to both the extension-side chamber R1 and the pressure-side chamber R2.
  • the cylinder device C5 has the same configuration as the cylinder device C1 except that the tandem pump 30 is added to the configuration of the cylinder device C1 of the first embodiment.
  • the tandem pump 30 is driven by a motor 31.
  • the tandem pump 30 includes two pumps 30a and 30b that draw a liquid from the tank T and discharge the liquid with the same discharge amount using a common drive shaft driven by the motor 31.
  • One pump 30a is connected to a supply passage 32 whose discharge port opens to the rod guide 16 and communicates with the extension side chamber R1.
  • the pump 30a sucks the liquid from the tank T and supplies the liquid to the extension side chamber R1.
  • the other pump 30b is connected to a supply passage 33 whose discharge port opens into the lid 15 and communicates with the pressure side chamber R2.
  • the pump 30b sucks liquid from the tank T and supplies the liquid to the pressure side chamber R2.
  • the pumps 30a and 30b are driven by one motor 31 and discharge liquid with the same discharge amount. That is, the tandem pump 30 supplies an equal amount of liquid to the extension side chamber R1 and the compression side chamber R2.
  • check valves 34 and 35 for preventing a back flow of liquid from the extension side chamber R1 and the pressure side chamber R2 to the pump 30a and the pump 30b are provided.
  • the cylinder device C5 has a configuration in which the tandem pump 30 is added to the cylinder device C1. Therefore, in the state where the on-off valve 17 blocks the tank-side discharge passage 8 and the tandem pump 30 is not driven, The actuator operates in the same manner as the device C1, and exerts thrust during the stroke in both the extension operation and the contraction operation, like a general damper.
  • the on-off valve 17 communicates with the tank side discharge passage 8 and the tandem pump 30 is being driven.
  • the port 1a of the tank side discharge passage 8 is always communicated with the recess 2a. Even if the liquid is supplied from the tandem pump 30 to the extension side chamber R1 and the pressure side chamber R2, the liquid supplied through the extension side discharge passage 6, the pressure side discharge passage 7, the recess 2a, and the tank side discharge passage 8 remains in the extension side chamber R1.
  • the pressure side chamber R2 and the pressure side chamber R2 are all discharged to the tank T, and the expansion side chamber R1 and the pressure side chamber R2 are maintained at the tank pressure. Therefore, even if the tandem pump 30 is being driven, the cylinder device C5 does not exert thrust in the extending direction or the contracting direction. Even if the piston 2 strokes to the left in the thrust reduction stroke range, the liquid supplied from the tandem pump 30 via the expansion side discharge passage 6, the pressure side discharge passage 7, the recess 2a, and the tank side discharge passage 8 is All of the expansion side chamber R1 and the pressure side chamber R2 are discharged to the tank T, and the expansion side chamber R1 and the pressure side chamber R2 are maintained at the tank pressure.
  • the cylinder device C5 does not exert thrust even when the tandem pump 30 is being driven or extended in the thrust reduction stroke range.
  • the liquid supplied from the tandem pump 30 via the expansion side discharge passage 6, the pressure side discharge passage 7, the recess 2a, and the tank side discharge passage 8 The extension side chamber R1 and the pressure side chamber R2 are all discharged to the tank T, and the extension side chamber R1 and the pressure side chamber R2 are maintained at the tank pressure. Therefore, the cylinder device C5 does not exert thrust even when the tandem pump 30 is being driven or contracted within the thrust reduction stroke range.
  • the cylinder device C5 since the cylinder device C5 has a configuration in which the tandem pump 30 is added to the cylinder device C1, the thrust is generated when the on-off valve 17 communicates with the tank side discharge passage 8 and the tandem pump 30 is not driven. As long as the stroke is within the reduced stroke range, it operates in the same manner as the cylinder device C1, and therefore thrust is not exerted in both the extension operation and the contraction operation.
  • the cylinder device C5 exhibits a thrust that suppresses expansion and contraction, regardless of whether the tandem pump 30 is driven. Since the port 1a gradually closes when the displacement of the piston 2 proceeds, the cylinder device C5 increases the thrust that gradually suppresses expansion and contraction until the port 1a is completely closed when the displacement of the piston 2 proceeds. .
  • the cylinder device C5 exhibits thrust and exerts thrust that suppresses the center pin P from being separated from the stroke center. .
  • the cylinder device C5 can exert thrust depending on the position of the vehicle body B relative to the carriage W without providing a stroke sensor. Then, when the center pin P collides with the stopper S, the cylinder device C5 exerts thrust to gradually suppress the displacement of the vehicle body B relative to the carriage W, and does not give unpleasant vibration to the vehicle body B at the stroke end. , Can ensure a good ride.
  • the cylinder device C5 does not exert a force for suppressing the displacement of the vehicle body B relative to the carriage W until the center pin P contacts the stopper S. Therefore, in a range where the center pin P does not come into contact with the stopper S, the cylinder device C5 thrusts against the control force while the actuator A provided in the cylinder device C5 exerts the control force that suppresses the vibration of the vehicle body B. Therefore, the riding comfort in the railway vehicle is not hindered, and the energy consumption of the actuator A can be reduced.
  • the piston 2 is located on the right side in FIG. From the inside of the pressure side chamber R2, the liquid is discharged to the tank T through the pressure side attenuation passage 10, but from the inside of the extension side chamber R1, the liquid is discharged to the tank T through the extension side discharge passage 6 and the tank side discharge passage 8. Is done. Therefore, since the pressure in the compression side chamber R2 is larger than the pressure in the expansion side chamber R1 that is equal to the tank pressure, the cylinder device C5 always exerts thrust in a direction to return the piston 2 to the neutral position.
  • the cylinder device C5 When the on-off valve 17 communicates with the tank side discharge passage 8 and the tandem pump 30 is stopped, the cylinder device C5 operates in the same manner as the cylinder device C1. That is, when the piston 2 is on the left side in FIG. 8 with respect to the port 1a of the tank side discharge passage 8 and the piston 2 strokes in the direction in which the expansion side chamber R1 is compressed, the cylinder device C5 resists expansion. When the piston 2 is on the left side in FIG. 8 with respect to the port 1a of the tank side discharge passage 8 and the piston 2 strokes in the direction of compressing the pressure side chamber R2, the piston 2 is on the tank side. Until the discharge passage 8 is closed, the cylinder device C5 hardly exerts thrust.
  • the tank side discharge passage 8 strokes within the range facing the recess 2a.
  • the cylinder device C5 always exerts thrust in a direction to return the piston 2 to the neutral position if the tandem pump 30 is being driven.
  • the vehicle body B can be returned to the stroke center with respect to the carriage W. Therefore, it is possible to avoid a situation in which it is difficult to suppress vibration of the vehicle body B because the stopper S and the center pin P are in contact with each other for a long time.
  • the cylinder device C5 exerts thrust in a direction to return the piston 2 to the neutral position with respect to a stroke in a direction away from the neutral position, as in the cylinder device C1.
  • the thrust that inhibits the stroke until the piston 2 returns to the neutral position is not exhibited until the piston 2 returns to the position where the tank-side discharge passage 8 is closed.
  • the cylinder device C5 similarly to the cylinder device C1, the cylinder device C5 not only operates as a passive damper that does not exert thrust in the thrust reduction stroke range, but also includes the tandem pump 30 to actively move the piston 2 to the neutral position.
  • the thrust to return can be demonstrated. Therefore, the riding comfort in the railway vehicle can be further improved.
  • the tandem pump 30 can be applied to the cylinder device C2 of the second embodiment, the cylinder device C3 of the third embodiment, and further to the cylinder device C4 of the fourth embodiment.
  • the tandem pump 30 is provided in the cylinder devices C2, C3, C4, it is possible to exert a thrust force that positively returns the piston 2 to the neutral position, and the riding comfort in the railway vehicle can be further improved.
  • the cylinder device C5 includes only the expansion side attenuation passage 9 and the compression side attenuation passage 10, but one or both of the expansion side communication passage 21 and the pressure side communication passage 22 may be provided in this configuration.
  • relief is performed so that either the expansion side damping passage 9 or the expansion side communication passage 21 that exhibits a damping force in the extension stroke is released so that the pressure in the expansion side chamber R1 does not exceed the allowable pressure.
  • the system can be protected by functioning as a passage.
  • either one of the pressure side damping passage 10 and the pressure side communication passage 22 that exerts a damping force in the contraction stroke is made to function as a relief passage for releasing the pressure so that the pressure in the pressure side chamber R2 does not exceed the allowable pressure. Can protect the system.
  • the tandem pump 30 is applied to the cylinder device C2 to supply the liquid to the extension side chamber R1 and the pressure side chamber R2, even if the pressure side communication passage 22 is provided in the configuration of the cylinder device C2. Good. Even when the tandem pump 30 is applied to the cylinder device C3 to supply liquid to the extension side chamber R1 and the pressure side chamber R2, the extension side communication passage 21 may be provided in this configuration. Further, even when the tandem pump 30 is applied to the cylinder device C4 to supply the liquid to the expansion side chamber R1 and the compression side chamber R2, this configuration includes the expansion side attenuation passage 9 and the pressure side attenuation passage 10 with each other. One or both may be provided. In this way, the system of the cylinder devices C2, C3, C4 can be protected from excessive pressure in the cylinder 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Damping Devices (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

シリンダ装置(C1)は、ピストン(2)とシリンダ(1)の一方に設けられ、ピストン(2)とシリンダ(1)の他方に臨む凹部(2a)と、伸側室(R1)から凹部(2a)へ向かう液体の流れのみを許容する伸側排出通路(6)と、圧側室(R2)から凹部(2a)へ向かう液体の流れのみを許容する圧側排出通路(7)と、凹部(2a)を介して伸側排出通路(6)と圧側排出通路(7)をタンク(T)に連通するタンク側排出通路(8)と、伸長時に通過する液体の流れに抵抗を与えて減衰力を発揮する伸側減衰力発生通路(9)と、収縮時に通過する液体の流れに抵抗を与えて減衰力を発揮する圧側減衰力発生通路(10)と、を備える。

Description

シリンダ装置
 本発明は、シリンダ装置に関する。
 従来、この種のシリンダ装置にあっては、たとえば、鉄道車両に車体の進行方向に対して左右方向の振動を抑制すべく、車体と台車との間に介装されて使用されるシリンダ装置が知られている。
 そして、このシリンダ装置は、たとえば、シリンダと、シリンダ内に摺動自在に挿入されるピストンと、シリンダ内に挿入されてピストンに連結されるロッドと、シリンダ内にピストンで区画したロッド側室とピストン側室と、タンクと、ロッド側室とピストン側室とを連通する第一通路の途中に設けた第一開閉弁と、ピストン側室とタンクとを連通する第二通路の途中に設けた第二開閉弁と、ロッド側室へ液体を供給するポンプと、ポンプを駆動するモータと、ロッド側室をタンクへ接続する排出通路と、排出通路の途中に設けた可変リリーフ弁と、を備えて構成されたものがある(たとえば、JP2013-1305A参照)。
 このシリンダ装置によれば、第一開閉弁と第二開閉弁を適宜開閉させて出力する推力の方向を決定し、且つ、モータでポンプを定速度で回転させ、一定流量をシリンダ内へ供給するようにしつつ、可変リリーフ弁のリリーフ圧を調節しシリンダ内の圧力を制御して、所望する大きさの推力を望む方向へ出力できるようになっている。
 また、他のシリンダ装置は、たとえば、シリンダと、シリンダ内に摺動自在に挿入されるピストンと、シリンダ内に挿入されてピストンに連結されるロッドと、シリンダ内にピストンで区画したロッド側室とピストン側室と、タンクと、ロッド側室とピストン側室とを連通する第一通路の途中に設けた第一開閉弁と、ピストン側室とタンクとを連通する第二通路の途中に設けた第二開閉弁と、ロッド側室をタンクへ接続する排出通路と、排出通路の途中に設けた可変リリーフ弁と、を備えて構成されたものがある(たとえば、JP2000-238637A参照)。
 このシリンダ装置によれば、第一開閉弁と第二開閉弁を適宜開閉させて出力する減衰力の方向を決定し、可変リリーフ弁のリリーフ圧を調節しシリンダ内の圧力を制御して、所望する大きさの減衰力を出力できるようになっている。
 他方、このようなシリンダ装置が適用される鉄道車両にあっては、台車に対して車体が左右方向に移動する際に、際限なく車体の移動を許容すると、対面車両への接触或いはトンネル走行時にトンネル内壁への接触が考えら得るため、車体の左右方向の移動限界が決められている。
 具体的には、車体が下方に中心ピンが設けられており、台車側には、この中心ピンの左右両側に離間した位置に一対のストッパが設けられている。そして、車体が台車に対して左右方向に移動した際に、移動限界に達すると中心ピンがストッパに衝突し、車体の台車に対する移動が規制されるようになっている。
 従来のシリンダ装置で鉄道車両の車体の横方向の振動を抑制する場合を考えると、車体の横方向の加速度を加速度センサで検出し、検出した加速度に拮抗する推力或いは減衰力をシリンダ装置で出力すれば、車体の振動を抑制できる。
 しかしながら、在来線車両では、曲線区間走行時においてカント不足によりストッパに中心ピンが衝突する機会が多く、衝突時の加速度がフィードバックされる。このため、シリンダ装置が出力する力が過大となって台車に対して車体を大きく動かしてしまい、ストッパに中心ピンが頻繁にあたって車両における乗り心地を悪化させてしまう場合がある。
 台車に対して車体の移動量を規制するようにシリンダ装置を制御するためには、台車に対する車体の変位をフィードバックして、変位を小さくするようにシリンダ装置を制御すればよい。しかし、この場合には、シリンダ装置内にストロークセンサを設ける必要があり、シリンダ装置が大型化または長尺化する。また、可変リリーフ弁には電磁弁が使用されているため、シリンダ装置にストロークセンサを設けると、センサ信号に電磁弁からのノイズが重畳されるので、精度良い制御を期待できなくなってしまう。さらに、変位制御を実施すると、シリンダ装置が台車に対して車体を中央付近に維持しようと車体と台車間の剛性が上がるために剛体の棒のように機能してしまって、車体の振動の絶縁という乗り心地を良好にする目的を達成できなくなってしまう問題が新たに生じる。
 本発明は、鉄道車両における乗り心地を向上できるシリンダ装置を提供することを目的とする。
 本発明のある態様によれば、シリンダ装置は、シリンダと、シリンダ内に摺動自在に挿入されるピストンと、シリンダ内に挿入されてピストンに連結されるロッドと、シリンダ内にピストンで区画した伸側室と圧側室と、タンクと、タンクから伸側室へ向かう液体の通過のみを許容する伸側吸込通路と、タンクから圧側室へ向かう液体の通過のみを許容する圧側吸込通路と、ピストンとシリンダの一方に設けられ、ピストンとシリンダの他方に臨む凹部と、ピストンに設けられて伸側室から凹部へ向かう液体の流れのみを許容する伸側排出通路とピストンに設けられて圧側室から凹部へ向かう液体の流れのみを許容する圧側排出通路と、凹部を介して伸側排出通路と圧側排出通路をタンクに連通するタンク側排出通路と伸長時に通過する液体の流れに抵抗を与えて減衰力を発揮する伸側減衰力発生通路と、収縮時に通過する液体の流れに抵抗を与えて減衰力を発揮する圧側減衰力発生通路と、を備える。
図1は、第1実施形態におけるシリンダ装置の概略図である。 図2は、第1実施形態におけるシリンダ装置を鉄道車両の車体と台車との間に介装した状態を示す図である。 図3は、第1実施形態の一変形例におけるシリンダ装置の概略図である。 図4は、第1実施形態の他の変形例におけるシリンダ装置の概略図である。 図5は、第2実施形態におけるシリンダ装置の概略図である。 図6は、第3実施形態におけるシリンダ装置の概略図である。 図7は、第4実施形態におけるシリンダ装置の概略図である。 図8は、第5実施形態におけるシリンダ装置の概略図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。各実施の形態について、共通する部材には同一の符号を付し、説明の重複を避けるため、一の実施形態のシリンダ装置と他のシリンダ装置で共通する部材を備えている場合、一の実施形態のシリンダ装置の説明において説明済みの部材に関し、他の実施形態のシリンダ装置における説明では詳しい説明を省略する。
 <第1実施形態>
 第1実施形態におけるシリンダ装置C1は、図1に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入されるピストン2と、シリンダ1内に挿入されてピストン2に連結されるロッド3と、シリンダ1内にピストン2で区画した伸側室R1と圧側室R2と、タンクTと、タンクTから伸側室R1へ向かう液体の通過のみを許容する伸側吸込通路4と、タンクTから圧側室R2へ向かう液体の通過のみを許容する圧側吸込通路5と、ピストン2の外周に設けられシリンダ1に臨む凹部2aと、ピストン2に設けられて伸側室R1から凹部2aへ向かう液体の流れのみを許容する伸側排出通路6と、ピストン2に設けられて圧側室R2から凹部2aへ向かう液体の流れのみを許容する圧側排出通路7と、シリンダ1に開口して凹部2aを介して伸側排出通路6と圧側排出通路7をタンクTに連通するタンク側排出通路8と、伸側室R1からタンクTへ向かう液体の流れに抵抗を与える伸側減衰力発生通路としての伸側減衰通路9と、圧側室R2からタンクTへ向かう液体の流れに抵抗を与える圧側減衰力発生通路としての圧側減衰通路10とを備える。伸側室R1と圧側室R2には作動油等の液体が充填されるとともに、タンクTには、液体のほかに気体が充填されている。なお、タンクT内は、特に、気体を圧縮充填して加圧状態とする必要は無いが加圧するようにしてもよい。
 以下、各部について詳細に説明する。シリンダ1は筒状であって、シリンダ1の一端(図1における右端)は蓋15によって閉塞され、他端(図1における左端)には環状のロッドガイド16が取り付けられる。また、ロッドガイド16内には、シリンダ1内に移動自在に挿入されるロッド3が摺動自在に挿入される。ロッド3は、一端をシリンダ1外へ突出させ、シリンダ1内の他端をシリンダ1内に摺動自在に挿入されているピストン2に連結される。
 ロッド3の外周とロッドガイド16の内周との間およびロッドガイド16の外周とシリンダ1との間は図示を省略したシール部材によってシールされる。これにより、シリンダ1内は密閉状態に維持されている。シリンダ1内においてピストン2によって区画される伸側室R1と圧側室R2には、前述のように液体として作動油が充填されている。
 ロッド3の一端(図1における左端)と、シリンダ1の一端(図1における右端)を閉塞する蓋15には、図2に示すように、それぞれ取付部3a,15aが設けられる。シリンダ装置C1は、取付部3a,15aによって制振対象である鉄道車両の車体Bの中心ピンPと台車Wに連結される。また、シリンダ装置C1とは別に、中心ピンPと台車Wとの間には、アクチュエータAが介装される。さらに、台車Wには、中心ピンPから離間して中心ピンPの左右に配置される一対のストッパS,Sが設けられる。ストッパS,Sは、弾性を備えており、中心ピンPにストッパSが当接すると圧縮されて、弾発力を発揮して中心ピンPがストッパSを圧縮する方向の変位を抑制する。よって、車体Bが台車Wに対してストローク中心から距離Lsを以上ストロークすると中心ピンPにストッパSが当接して、徐々に弾発力を高めつつ車体Bの移動を抑制し、最圧縮されると車体Bのそれ以上の変位を規制して車体Bを停止させる。
 図1に示すように、伸側吸込通路4は、ロッドガイド16から開口して伸側室R1をタンクTに連通する。伸側吸込通路4の途中には、タンクTから伸側室R1へ向かう液体の流れのみを許容する逆止弁4aが設けられる。これにより、伸側吸込通路4は、タンクTから伸側室R1へ向かう液体の通過のみを許容する一方通行の通路に設定される。
 さらに、伸側室R1は、ロッドガイド16に開口する伸側減衰通路9を通じてタンクTに連通する。伸側減衰通路9の途中には、減衰力発生要素としてのリリーフ弁9aが設けられる。リリーフ弁9aは、パッシブな減衰弁であって、開弁圧に達すると伸側減衰通路9を開放して、伸側室R1からタンクTへ向かう液体の流れのみを許容しつつ、通過する液体の流れに抵抗を与える。
 圧側吸込通路5は、蓋15から開口して圧側室R2をタンクTに連通する。圧側吸込通路5の途中には、タンクTから圧側室R1へ向かう液体の流れのみを許容する逆止弁5aが設けられる。これにより、圧側吸込通路5は、タンクTから圧側室R2へ向かう液体の通過のみを許容する一方通行の通路に設定される。
 さらに、圧側室R2は、蓋15に開口する圧側減衰通路10を通じてタンクTに連通する。圧側減衰通路10の途中には、減衰力発生要素としてのリリーフ弁10aが設けられる。リリーフ弁10aは、パッシブな減衰弁であって、開弁圧に達すると圧側減衰通路10を開放して、圧側室R2からタンクTへ向かう液体の流れのみを許容しつつ、通過する液体の流れに抵抗を与える。
 また、ピストン2の外周には、環状溝として形成された凹部2aが設けられる。凹部2aの軸方向幅L1は、車体Bが台車Wに対してストローク中心に配置された状態での中心ピンPとストッパSの間の距離Lsの2倍の長さに設定されている。ピストン2には、伸側室R1側の端部に開口し伸側室R1と凹部2aを連通する伸側排出通路6が設けられる。伸側排出通路6には、途中に、伸側室R1から凹部2aへ向かう液体の流れのみを許容する逆止弁6aが設けられる。これにより、伸側排出通路6は、伸側室R1から凹部2aへ向かう液体の流れのみを許容する通路に設定される。さらに、ピストン2には、圧側室R2側の端部に開口し圧側室R2と凹部2aを連通する圧側排出通路7が設けられる。圧側排出通路7は、途中に、圧側室R2から凹部2aへ向かう液体の流れのみを許容する逆止弁7aが設けられる。これにより、圧側排出通路7は、圧側室R2から凹部2aへ向かう液体の流れのみを許容する通路に設定される。なお、伸側排出通路6および圧側排出通路7の全部を、ピストン2内に設けるのではなく、一部をロッド3内に設けてもよい。
 タンク側排出通路8は、シリンダ1の内周から開口してタンクTに通じている。具体的には、シリンダ1には、シリンダ1を径方向に貫通しタンク側排出通路8の一部を形成するポート1aが設けられる。ピストン2がシリンダ1に対して中立位置から図1中左方へL1/2以上変位すると、それ以上のピストン変位に対してポート1aは一旦ピストン2の外周によって閉塞され、その後、ピストン変位がさらに進むとポート1aが圧側室R2に連通する。反対に、ピストン2がシリンダ1に対して中立位置から図1中右方へL1/2以上変位すると、それ以上のピストン変位に対してポート1aは一旦ピストン2の外周によって閉塞され、その後、ピストン変位がさらに進むとポート1aが伸側室R1に連通する。ポート1aがピストン2の凹部2aに対向する状態では、タンク側排出通路8は、凹部2aを介して伸側排出通路6および圧側排出通路7をタンクTに連通する。また、ピストン2がポート1aよりも図1中左方側にある場合には、タンク側排出通路8のみで圧側室R2をタンクTに連通し、ピストン2がポート1aよりも図1中右方側にある場合には、タンク側排出通路8のみで伸側室R1をタンクTに連通する。なお、ピストン2のシリンダ1に対する中立位置は、必ずしもシリンダ1の中央でなくともよく、シリンダ装置C1を鉄道車両の車体Bと台車Wとの間に取り付けて中心ピンPがストッパS,S間の中間に位置する際に、ピストン2がシリンダ1に対して配置される位置を中立位置とすればよい。
 タンク側排出通路8の途中には、タンク側排出通路8を開放および遮断する開閉弁17が設けられる。開閉弁17は、タンク側排出通路8を開放する連通ポジションとタンク側排出通路8を遮断する遮断ポジションとを備えた弁本体17aと、弁本体17aを附勢して遮断ポジションに位置決めるばね17bと、通電時にばね17bの附勢力に抗して弁本体17aを連通ポジションに切換えるソレノイド17cと、を備えた電磁式開閉弁である。
 シリンダ装置C1は以上のように構成される。以下、シリンダ装置C1の作動について説明する。まず、開閉弁17がタンク側排出通路8を遮断する場合について説明する。この場合、シリンダ1に対してピストン2が図1中左方向へ移動する、つまり、シリンダ装置C1が伸長作動すると、伸側室R1が圧縮され、伸側室R1から伸側減衰通路9を通じてタンクTへ排出される液体の流れはリリーフ弁9aによって抵抗が与えられ、伸側室R1内の圧力はリリーフ弁9aの圧力損失に見合って上昇する。他方、拡大される圧側室R2には、圧側吸込通路5における逆止弁5aが開弁してタンクTから液体が供給され、圧側室R2内の圧力はタンク圧となる。これにより、伸側室R1の圧力が圧側室R2の圧力よりも高くなり、シリンダ装置C1は、伸側室R1の圧力と圧側室R2の圧力の差に見合った大きさで伸長を抑制する方向の減衰力を発揮する。これに対して、シリンダ1に対してピストン2が図1中右方向へ移動する、つまり、シリンダ装置C1が収縮作動すると、圧側室R2が圧縮される。このとき、圧側室R2から圧側減衰通路10を通じてタンクTへ排出される液体の流れにはリリーフ弁10aによって抵抗が与えられるため、圧側室R2内の圧力はリリーフ弁10aの圧力損失に見合って上昇する。他方、拡大される伸側室R1には、伸側吸込通路4における逆止弁4aが開弁してタンクTから液体が供給され、伸側室R1内の圧力はタンク圧となる。これにより、圧側室R2の圧力が伸側室R1の圧力よりも高くなり、シリンダ装置C1は、圧側室R2の圧力と伸側室R1の圧力の差に見合った大きさで収縮を抑制する方向の減衰力を発揮する。したがって、開閉弁17がタンク側排出通路8を遮断する場合、シリンダ装置C1は、一般的なダンパと同様に、伸長作動および収縮作動の両行程において、ストローク中は減衰力を発揮できる。
 次に、開閉弁17がタンク側排出通路8を連通する場合について説明する。ピストン2がシリンダ1に対して中立位置から距離L1/2以内の範囲でストロークする場合、タンク側排出通路8のポート1aは常に凹部2aに連通される。この範囲でピストン2が左方へストロークすると、伸側排出通路6、凹部2aおよびタンク側排出通路8を介して、圧縮される伸側室R1からタンクTへ液体が排出され、伸側室R1はタンク圧に維持される。拡大する圧側室R2にも圧側吸込通路5を介してタンクTから液体が供給されて、圧側室R2もタンク圧に維持される。このとき、伸側室R1とタンクTとで差圧がほとんど生じないので伸側減衰通路9は遮断状態に置かれる。反対に、中立位置から距離L1/2以内の範囲でピストン2が右方へストロークすると、圧側排出通路7、凹部2aおよびタンク側排出通路8を介して、圧縮される圧側室R2からタンクTへ液体が排出され、圧側室R2はタンク圧に維持される。拡大する伸側室R1にも伸側吸込通路4を介してタンクTから液体が供給されて、伸側室R1もタンク圧に維持される。このとき、圧側室R2とタンクTとで差圧がほとんど生じないので圧側減衰通路10は遮断状態に置かれる。このように、ピストン2がシリンダ1に対して中立位置から距離L1/2以内の範囲でストロークして、常に、タンク側排出通路8のポート1aが凹部2aに連通状態に維持される場合には、シリンダ装置C1は、振動入力に対して減衰力をほとんど発揮しない状態となる。シリンダ装置C1が減衰力をほとんど発揮しないストローク範囲は、凹部2aとポート1aとの連通によって実現される。したがって、凹部2aの軸方向幅の設定によって減衰力をほとんど発揮しないストローク範囲が設定される。そして、この範囲は、本実施形態のシリンダ装置C1では、凹部2aの軸方向幅L1を、中心ピンPがストローク中心にある状態におけるストッパSと中心ピンPとの間の距離Lsの2倍の値に設定される。これにより、中心ピンPがストッパSに当接するまでは、シリンダ装置C1は減衰力をほとんど出さない状態に維持される。
 これに対して、ピストン2がシリンダ1に対して中立位置から距離L1/2以内の範囲を超えてストロークする場合であって、タンク側排出通路8のポート1aがピストン2によって閉塞される状況では、開閉弁17が閉じた状態と同じ状態となるので、シリンダ装置C1は、伸縮に対して減衰力を発揮する。また、ポート1aは、ピストン2の変位が進むと徐々にポート1aが閉じられるので、シリンダ装置C1は、ピストン2の変位が進むとポート1aが完全に閉塞されるまで徐々に減衰力を高める。
 よって、中心ピンPがストッパSに当接し、ピストン2がポート1aと閉塞する範囲では、シリンダ装置C1は減衰力を発揮して、中心ピンPがストローク中心から離間するのを抑制する減衰力を発揮する。このように、シリンダ装置C1は、ストロークセンサを設けずに、車体Bの台車Wに対する位置に依存して減衰力を発揮できる。そして、シリンダ装置C1は、中心ピンPがストッパSに衝突する場合に、減衰力を発揮して車体Bの台車Wに対する変位を徐々に抑制して、ストロークエンドで車体Bに不快な振動を与えなくなり、良好な乗り心地を確保できる。さらに、シリンダ装置C1は、中心ピンPがストッパSに当接するまでは、車体Bの台車Wに対する変位を抑制する力を発揮しない。したがって、中心ピンPがストッパSに当接しない範囲において、シリンダ装置C1に併設されるアクチュエータAが車体Bの振動を抑制する制御力の発揮中に、シリンダ装置C1がこの制御力に対抗する減衰力を発揮しないので、鉄道車両における乗り心地を阻害せず、アクチュエータAのエネルギ消費を軽減できる。
 なお、ピストン2がタンク側排出通路8のポート1aよりも図1中左方側にあって、ピストン2が伸側室R1を圧縮する方向、つまり、図1中左方向へストロークする際には、伸側室R1が圧縮されて伸側室R1から伸側減衰通路9を介してタンクTへ排出される液体の流れにはリリーフ弁9aによって抵抗が与えられ、拡大する圧側室R2にはタンクTからタンク側排出通路8および圧側吸込通路5を介して液体が供給される。これにより、シリンダ装置C1は伸長に対抗する減衰力を発揮する。これに対して、ピストン2がタンク側排出通路8のポート1aよりも図1中左方側にあって、ピストン2が圧側室R2を圧縮する方向、つまり、図1中右方向へストロークする際には、圧側室R2がタンク側排出通路8を介してタンクTに連通されているため、圧縮される圧側室R2から液体がタンク側排出通路8を介してタンクTへ排出される。よって、圧側室R2内の圧力がタンク圧となり、拡大される伸側室R1にも伸側吸込通路4を介してタンクTから液体が供給されるため伸側室R1内もタンク圧となる。したがって、伸側室R1の圧力と圧側室R2の圧力に差ができず、シリンダ装置C1は減衰力を殆ど発揮しない。この状態は、ピストン2がポート1aに対向してタンク側排出通路8を塞ぐまで維持されるから、ピストン2がタンク側排出通路8のポート1aよりも図1中左方側にある状態からピストン2が圧側室R2を圧縮する方向へストロークして、ピストン2がタンク側排出通路8を塞ぐまでは、シリンダ装置C1は減衰力を発揮しない。
 また、ピストン2がタンク側排出通路8のポート1aよりも図1中右方側にあって、ピストン2が圧側室R2を圧縮する方向、つまり、図1中右方向へストロークする際には、圧側室R2が圧縮されて圧側室R2から圧側減衰通路10を介してタンクTへ排出される液体の流れにリリーフ弁10aによって抵抗が与えられ、拡大する伸側室R1にはタンクTからタンク側排出通路8および伸側吸込通路4を介して液体が供給される。これにより、シリンダ装置C1は収縮に対抗する減衰力を発揮する。これに対して、ピストン2がタンク側排出通路8のポート1aよりも図1中右方側にあって、ピストン2が伸側室R1を圧縮する方向、つまり、図1中左方向へストロークする際には、伸側室R1がタンク側排出通路8を介してタンクTに連通されているため、圧縮される伸側室R1から液体がタンク側排出通路8を介してタンクTへ排出される。よって、伸側室R1内の圧力がタンク圧となり、拡大される圧側室R2にも圧側吸込通路5を介してタンクTから液体が供給されるため圧側室R2内もタンク圧となる。したがって、伸側室R1の圧力と圧側室R2の圧力に差ができず、シリンダ装置C1は減衰力を殆ど発揮しない。この状態は、ピストン2がポート1aに対向してタンク側排出通路8を塞ぐまで維持されるから、ピストン2がタンク側排出通路8のポート1aよりも図1中右方側にある状態からピストン2が伸側室R1を圧縮する方向へストロークして、ピストン2がタンク側排出通路8を塞ぐまでは、シリンダ装置C1は減衰力を発揮しない。
 このように、シリンダ装置C1は、タンク側排出通路8が凹部2aに対向する範囲内でストロークする場合、この範囲を推力低減ストローク範囲として減衰力を低減、つまり、減衰力を発揮しない不感帯としている。また、シリンダ装置C1は、ピストン2がこのストローク範囲を超えてストロークする場合には、中立位置から離間する方向のストロークに対してはこれを中立位置へ戻す方向の減衰力を発揮するとともに、ピストン2が中立位置へ戻る方向のストロークに対し、タンク側排出通路8を閉塞する位置に戻るまではこれを阻害する減衰力を発揮しない。
 このように、シリンダ装置C1は、不感帯の範囲でのストローク、つまり、車体Bの中心ピンPがストッパSに当接するまでは減衰力を低減して、アクチュエータAの制御力による車体Bの振動抑制制御を邪魔しない。
 さらに、不感帯の範囲を超えてストロークする場合、つまり、中心ピンPがストッパSに当接すると、ストッパSによる弾発力による車体Bの変位の抑制を助成する減衰力を発揮して、車体Bのそれ以上の変位を抑制する。したがって、車体Bのストロークエンド側への移動速度が遅くなり、車体Bのストロークエンドでの衝撃が緩和される。また、不感帯の範囲を超えてストロークする場合であって、アクチュエータAが車体Bをストロークエンド側へ移動させる場合には、これを抑制する減衰力を発揮して車体Bの変位を抑制できるとともに、車体Bがストローク中心側へ戻る方向へ移動する場合にはこれを妨げる減衰力を発揮しないので、車体Bを速やかにストローク中心側へ戻すことができる。また、ストロークセンサを設けて変位をセンシングする必要もなく、シリンダ装置C1に、減衰力を低減する推力低減ストローク範囲を設定できるので、動作が常に安定する。よって、シリンダ装置C1によれば、鉄道車両における乗り心地を向上できる。
 また、前述したところでは、タンク側排出通路8に開閉弁17を設けており、この開閉弁17を設けるとタンク側排出通路8の有効と無効を切換えできる。開閉弁17の閉弁によってタンク側排出通路8が無効とされる場合には、シリンダ装置C1は推力低減ストローク範囲を持たない一般的なパッシブなダンパとして機能でき、開閉弁17が開弁すると、シリンダ装置C1は、減衰力を発揮しない不感帯である推力低減ストローク範囲を備えたダンパとして機能できるようになる。さらに、開閉弁17が非通電時に遮断ポジションをとるようになっており、何らかの理由で通電不能または弁の切換えが不能となる失陥時には、開閉弁17が遮断ポジションをとるので、車体Bの振動を常時抑制するモードへ自動的に移行できる。また、シリンダ装置C1だけでなく、これに併設されるアクチュエータAも失陥状態になっていても、車体Bの振動を抑制できる利点がある。ただし、シリンダ装置C1に減衰力を発揮しない推力低減ストローク範囲を持つダンパとして機能させるうえでは、開閉弁17を設けなくともよい。また、タンク側排出通路8に図1中の破線で示すように、減衰力発生要素としての絞り弁8aを設けると、シリンダ装置C1は、推力低減ストローク範囲でのストロークの際にも伸側減衰通路9および圧側減衰通路10で発生する減衰力よりも低い減衰力を発揮できる。さらに、図1中の破線で示すように、タンク側排出通路8に開閉弁17に並列して、或いは開閉弁17を廃止する場合には絞り弁8aに並列して減衰力発生要素としてのリリーフ弁8bを設け、リリーフ弁8bでタンク側排出通路8を液体が流れる際に抵抗を与えるようにすれば、シリンダ装置C1が推力低減ストローク範囲外でストロークする場合にはストロークの方向によらず必ず減衰力を発揮するように設定できる。タンク側排出通路8に減衰力発生要素を設ければ、シリンダ装置C1は、推力低減ストローク範囲において低減衰力を発揮して、中心ピンPとストッパSの衝突機会を低減できる。
 なお、前述した実施形態では、凹部2aの軸方向幅L1は、ストッパSと中心ピンPとの間の距離Lsの2倍の値に設定されているが、ストッパSに中心ピンPが衝突する前にシリンダ装置C1に減衰力を発揮させたい場合には、L1<Ls×2に設定すればよく、ストッパSに中心ピンPが衝突してからシリンダ装置C1に減衰力を発揮させたい場合には、L1>Ls×2に設定すればよい。凹部2aの軸方向幅の設定によって、シリンダ装置C1における推力が低減される推力低減ストローク範囲を設定できるので、当該範囲のチューニングが非常に容易になる。さらに、推力低減ストローク範囲では、車体B、台車W間の剛性が上がらないので、台車Wの振動を車体Bへ伝達せず、振動を絶縁できる。凹部2aの軸方向幅L1は、ストッパSの剛性、中心ピンPに当接してから最圧縮されて中心ピンPを停止させるまでの中心ピンPのストローク量などから、車体Bの乗り心地が最適となるように設定すればよい。
 また、凹部2aは、ピストン2の外周に環状溝を設けて形成されているが、図3に示すように、ピストン2を構成してもよい。具体的には、ピストン2は、ロッド3に設けられてシリンダ1に摺接する円盤状の第一ピストン形成部材18と、ロッド3に第一ピストン形成部材18と離間して設けられてシリンダ1に摺接する円盤状の第二ピストン形成部材19と、で構成されている。そして、凹部20は、第一ピストン形成部材18と第二ピストン形成部材19との間に形成される環状隙間で形成される。このように、ピストン2を二つの円盤状の第一ピストン形成部材18と第二ピストン形成部材19とで構成して、これら第一ピストン形成部材18と第二ピストン形成部材19の間に伸側室R1と圧側室R2から仕切られる凹部20を設けてもよい。そして、伸側室R1と凹部20とを仕切る第一ピストン形成部材18に伸側排出通路6を設け、圧側室R2と凹部20とを仕切る第二ピストン形成部材19に圧側排出通路7を設ければよい。凹部20の幅の調整は、ロッド3の外周であって第一ピストン形成部材18と第二ピストン形成部材19の間に筒状のスペーサ40の設置で容易に調整可能である。さらに、凹部20の軸方向長さを長くする必要がある場合、単一のピストン2の外周にこのような凹部を形成するとピストン2の軸方向長さが長くなって重量が重くなるが、第一ピストン形成部材18と第二ピストン形成部材19でピストン2を構成すると凹部20の軸方向長さを長くしても重量増加を招かない。また、第一ピストン形成部材18と第二ピストン形成部材19でピストン2を構成すると伸側排出通路6および圧側排出通路7の設置も容易となる。なお、伸側排出通路6および圧側排出通路7は、それぞれ、第一ピストン形成部材18と第二ピストン形成部材19に設けるのではなく、ロッド3に設けてもよい。ただし、逆止弁6aをリーフバルブで構成する場合には、第一ピストン形成部材18に伸側排出通路6の通路を形成するポートを設けて、第一ピストン形成部材18の凹部側にロッド3の外周に装着されるリーフバルブを積層すれば、伸側排出通路6を容易に構成できる。また、逆止弁7aをリーフバルブで構成する場合には、第二ピストン形成部材19に圧側排出通路7の通路を形成するポートを設けて、第二ピストン形成部材19の凹部側にロッド3の外周に装着されるリーフバルブを積層すれば、圧側排出通路7についても容易に構成できる。
 さらに、図4に示すように、ピストン2に凹部2aを設けるのではなく、シリンダ1の内周にポート1aの設ける代わりに環状溝を設けて凹部1bを形成し、この凹部1bをタンク側排出通路8によってタンクTに連通させるとともに、ピストン2に伸側排出通路6と圧側排出通路7とを設けて、これらの出口ポート2cをピストン2の外周に設けるようにしてもよい。なお、この場合にあっても、伸側排出通路6および圧側排出通路7の全部をピストン2内に設けるのではなく、一部をロッド3内に設けてもよい。このようにしても、凹部1bが出口ポート2cに対面している状態では、伸側排出通路6および圧側排出通路7とタンク側排出通路8が連通状態に置かれるので、シリンダ装置C1は減衰力を発揮しない。よって、シリンダ1に凹部1bを設けたシリンダ装置C1にあっても、図1に示したシリンダ装置C1と同様の作動を呈し、同様の効果が得られる。ただし、ピストン2の軸方向長さは、凹部1bの軸方向長さの2倍以上の長さに設定する必要がある。
 このように、凹部2a,1bは、ピストン2の外周に設けた環状溝で形成してもよいし、シリンダ1の内周に設けた環状溝で形成してもよい。また、凹部2a,1b,20が環状であるので、ピストン2がシリンダ1に対して周方向に回転しても、凹部2a,1b,20を通じて、伸側排出通路6および圧側排出通路7とタンク側排出通路8の連通が確保される。
 また、リリーフ弁9a,10a,8bは、減衰力の発生を可能とすればよいので、開弁圧の設定の無い減衰弁、絞り弁に変更できる。
 <第2実施形態>
 次に、第2実施形態におけるシリンダ装置C2について説明する。シリンダ装置C2は、図5に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入されるピストン2と、シリンダ1内に挿入されてピストン2に連結されるロッド3と、シリンダ1内にピストン2で区画した伸側室R1と圧側室R2と、タンクTと、タンクTから伸側室R1へ向かう液体の通過のみを許容する伸側吸込通路4と、タンクTから圧側室R2へ向かう液体の通過のみを許容する圧側吸込通路5と、ピストン2の外周に設けられてシリンダ1に臨む凹部2aと、ピストン2に設けられて伸側室R1から凹部2aへ向かう液体の流れのみを許容する伸側排出通路6と、ピストン2に設けられて圧側室R2から凹部2aへ向かう液体の流れのみを許容する圧側排出通路7と、シリンダ1に開口して凹部2aを介して伸側排出通路6と圧側排出通路7をタンクTに連通するタンク側排出通路8と、伸側室R1から圧側室R2へ向かう液体の流れに抵抗を与える伸側減衰力発生通路としての伸側連絡通路21と、圧側室R2からタンクTへ向かう液体の流れに抵抗を与える圧側減衰力発生通路としての圧側減衰通路10と、を備える。このように、シリンダ装置C2は、第1実施形態のシリンダ装置C1の構成から伸側減衰通路9を廃止して、代わりに伸側連絡通路21を設けた他は、シリンダ装置C1と同様の構成を備えている。
 伸側連絡通路21は、伸側室R1と圧側室R2を連通し、途中にリリーフ弁21aを備える。リリーフ弁21aは、パッシブな減衰弁であって、開弁圧に達すると伸側連絡通路21を開放して、伸側室R1から圧側室R2へ向かう液体の流れのみを許容しつつ、通過する液体の流れに抵抗を与える。
 次に、シリンダ装置C2の作動について説明する。まず、開閉弁17がタンク側排出通路8を遮断する場合について説明する。この場合、シリンダ1に対してピストン2が図5中左方向へ移動する、つまり、シリンダ装置C2が伸長作動すると、伸側室R1が圧縮される。このとき、伸側室R1から伸側連絡通路21を通じて圧側室R2へ向かう液体の流れにはリリーフ弁21aによって抵抗が与えられため、伸側室R1内の圧力はリリーフ弁21aの圧力損失に見合って上昇する。他方、拡大される圧側室R2には、伸側室R1から伸側連絡通路21を介して液体が供給されるが、ロッド3がシリンダ1内から退出する体積分の液体が不足するので、圧側吸込通路5を介してタンクTから液体が供給される。よって、圧側室R2内の圧力はタンク圧となる。これによって、伸側室R1の圧力が圧側室R2の圧力よりも高くなり、シリンダ装置C2は、伸側室R1の圧力と圧側室R2の圧力の差に見合った大きさで伸長を抑制する方向の減衰力を発揮する。
 これに対して、シリンダ1に対してピストン2が図5中右方向へ移動する、つまり、シリンダ装置C2が収縮作動すると、圧側室R2が圧縮される。このとき、圧側室R2から圧側減衰通路10を通じてタンクTへ排出される液体の流れにリリーフ弁10aによって抵抗が与えられるため、圧側室R2内の圧力はリリーフ弁10aの圧力損失に見合って上昇する。他方、拡大される伸側室R1には、伸側吸込通路4における逆止弁4aが開弁してタンクTから液体が供給され、伸側室R1内の圧力はタンク圧となる。これによって、圧側室R2の圧力が伸側室R1の圧力よりも高くなり、シリンダ装置C2は、圧側室R2の圧力と伸側室R1の圧力の差に見合った大きさで収縮を抑制する方向の減衰力を発揮する。したがって、開閉弁17がタンク側排出通路8を遮断する場合、シリンダ装置C2は、一般的なダンパと同様に、伸長作動および収縮作動の両行程において、ストローク中は減衰力を発揮する。
 次に、開閉弁17がタンク側排出通路8を連通する場合について説明する。ピストン2がシリンダ1に対して中立位置から距離L1/2以内の範囲でストロークする場合、タンク側排出通路8のポート1aは常に凹部2aに連通される。この範囲でピストン2が左方へストロークすると、伸側排出通路6、凹部2aおよびタンク側排出通路8を介して、圧縮される伸側室R1からタンクTへ液体が排出され、伸側室R1はタンク圧に維持される。拡大する圧側室R2にも圧側吸込通路5を介してタンクTから液体が供給されて、圧側室R2もタンク圧に維持される。このとき、伸側室R1と圧側室R2とで差圧がほとんど生じないので伸側連絡通路21は遮断状態に置かれる。反対に、中立位置から距離L1/2以内の範囲でピストン2が右方へストロークすると、圧側排出通路7、凹部2aおよびタンク側排出通路8を介して、圧縮される圧側室R2からタンクTへ液体が排出され、圧側室R2はタンク圧に維持される。拡大する伸側室R1にも伸側吸込通路4を介してタンクTから液体が供給されて、伸側室R1もタンク圧に維持される。このとき、圧側室R2とタンクTとで差圧がほとんど生じないので圧側減衰通路10は遮断状態に置かれる。このように、ピストン2がシリンダ1に対して中立位置から距離L1/2以内の範囲でストロークして、常に、タンク側排出通路8のポート1aが凹部2aに連通状態に維持される場合には、シリンダ装置C2は、振動入力に対して減衰力をほとんど発揮しない状態となる。よって、シリンダ装置C2にあっても、シリンダ装置C1と同様に、凹部2aとポート1aとの連通によって減衰力をほとんど発揮しない推力低減ストローク範囲が設けられており、この推力低減ストローク範囲は、凹部2aの軸方向幅によって設定される。
 これに対して、ピストン2がシリンダ1に対して中立位置から距離L1/2以内の範囲を超えてストロークする場合であって、タンク側排出通路8のポート1aがピストン2によって閉塞される状況では、開閉弁17が閉じた状態と同じ状態となるので、シリンダ装置C2は、伸縮に対して減衰力を発揮する。また、ポート1aは、ピストン2の変位が進むと徐々にポート1aが閉じられるので、シリンダ装置C2は、ピストン2の変位が進むとポート1aが完全に閉塞されるまで徐々に減衰力を高める。
 よって、中心ピンPがストッパSに当接し、ピストン2がポート1aと閉塞する範囲では、シリンダ装置C2は減衰力を発揮して、中心ピンPがストローク中心から離間するのを抑制する減衰力を発揮する。このように、シリンダ装置C2は、ストロークセンサを設けずに、車体Bの台車Wに対する位置に依存して減衰力を発揮できる。そして、シリンダ装置C2は、中心ピンPがストッパSに衝突する場合に、減衰力を発揮して車体Bの台車Wに対する変位を徐々に抑制して、ストロークエンドで車体Bに不快な振動を与えず、良好な乗り心地を確保できる。さらに、シリンダ装置C2は、中心ピンPがストッパSに当接するまでは、車体Bの台車Wに対する変位を抑制する力を発揮しない。したがって、中心ピンPがストッパSに当接しない範囲において、シリンダ装置C2に併設されるアクチュエータAが車体Bの振動を抑制する制御力の発揮中に、シリンダ装置C2がこの制御力に対抗する減衰力を発揮しないので、鉄道車両における乗り心地を阻害せず、アクチュエータAのエネルギ消費を軽減できる。
 なお、ピストン2がタンク側排出通路8のポート1aよりも図5中左方側にあって、ピストン2が伸側室R1を圧縮する方向、つまり、図5中左方向へストロークする際には、伸側室R1が圧縮されて伸側室R1から伸側連絡通路21を介して圧側室R2へ排出される液体の流れにはリリーフ弁21aによって抵抗が与えられ、拡大する圧側室R2にはタンクTからタンク側排出通路8および圧側吸込通路5を介して液体が供給されるので、シリンダ装置C2は伸長に対抗する減衰力を発揮する。これに対して、ピストン2がタンク側排出通路8のポート1aよりも図5中左方側にあって、ピストン2が圧側室R2を圧縮する方向、つまり、図5中右方向へストロークする際には、圧側室R2がタンク側排出通路8を介してタンクTに連通されているため、圧縮される圧側室R2から液体がタンク側排出通路8を介してタンクTへ排出される。よって、圧側室R2内の圧力がタンク圧となり、拡大される伸側室R1にも伸側吸込通路4を介してタンクTから液体が供給されるため伸側室R1内もタンク圧となり、伸側室R1の圧力と圧側室R2の圧力に差ができず、シリンダ装置C2は減衰力を殆ど発揮しない。この状態は、ピストン2がポート1aに対向してタンク側排出通路8を塞ぐまで維持されるから、ピストン2がタンク側排出通路8のポート1aよりも図5中左方側にある状態からピストン2が圧側室R2を圧縮する方向へストロークして、ピストン2がタンク側排出通路8を塞ぐまでは、シリンダ装置C2は減衰力を発揮しない。
 また、ピストン2がタンク側排出通路8のポート1aよりも図5中右方側にあって、ピストン2が圧側室R2を圧縮する方向、つまり、図5中右方向へストロークする際には、圧側室R2が圧縮されて圧側室R2から圧側減衰通路10を介してタンクTへ排出される液体の流れにはリリーフ弁10aによって抵抗が与えられ、拡大する伸側室R1にはタンクTからタンク側排出通路8および伸側吸込通路4を介して液体が供給されるため、シリンダ装置C2は収縮に対抗する減衰力を発揮する。これに対して、ピストン2がタンク側排出通路8のポート1aよりも図5中右方側にあって、ピストン2が伸側室R1を圧縮する方向、つまり、図5中左方向へストロークする際には、伸側室R1がタンク側排出通路8を介してタンクTに連通されているため、圧縮される伸側室R1から液体がタンク側排出通路8を介してタンクTへ排出される。よって、伸側室R1内の圧力がタンク圧となり、拡大される圧側室R2にも圧側吸込通路5を介してタンクTから液体が供給されるため圧側室R2内もタンク圧となり、伸側室R1の圧力と圧側室R2の圧力に差ができず、シリンダ装置C2は減衰力を殆ど発揮しない。この状態は、ピストン2がポート1aに対向してタンク側排出通路8を塞ぐまで維持されるから、ピストン2がタンク側排出通路8のポート1aよりも図5中右方側にある状態からピストン2が伸側室R1を圧縮する方向へストロークして、ピストン2がタンク側排出通路8を塞ぐまでは、シリンダ装置C2は減衰力を発揮しない。
 このように、シリンダ装置C2は、タンク側排出通路8が凹部2aに対向する範囲内でストロークする場合、この範囲を推力低減ストローク範囲として減衰力を発揮しない不感帯としている。また、シリンダ装置C2は、ピストン2がこのストローク範囲を超えてストロークする場合には、中立位置から離間する方向のストロークに対してはこれを中立位置へ戻す方向の減衰力を発揮するとともに、ピストン2が中立位置へ戻る方向のストロークに対し、タンク側排出通路8を閉塞する位置に戻るまではこれを阻害する減衰力を発揮しない。
 よって、シリンダ装置C2は、シリンダ装置C1と同様に作動するとともに同様の効果を奏するので、鉄道車両における乗り心地を向上できる。
 なお、シリンダ装置C2にあっても、開閉弁17の廃止、絞り弁8aの設置と非設置、リリーフ弁8bの設置と非設置は、シリンダ装置C1と同様に選択できる。また、リリーフ弁21a,10a,8bは、減衰力の発生を可能とすればよいので、開弁圧の設定の無い減衰弁、絞り弁に変更できる。
 <第3実施形態>
 次に、第3実施形態におけるシリンダ装置C3について説明する。シリンダ装置C3は、図6に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入されるピストン2と、シリンダ1内に挿入されてピストン2に連結されるロッド3と、シリンダ1内にピストン2で区画した伸側室R1と圧側室R2と、タンクTと、タンクTから伸側室R1へ向かう液体の通過のみを許容する伸側吸込通路4と、タンクTから圧側室R2へ向かう液体の通過のみを許容する圧側吸込通路5と、ピストン2の外周に設けられてシリンダ1に臨む凹部2aと、ピストン2に設けられて伸側室R1から凹部2aへ向かう液体の流れのみを許容する伸側排出通路6と、ピストン2に設けられて圧側室R2から凹部2aへ向かう液体の流れのみを許容する圧側排出通路7と、シリンダ1に開口して凹部2aを介して伸側排出通路6と圧側排出通路7をタンクTに連通するタンク側排出通路8と、伸側室R1からタンクTへ向かう液体の流れに抵抗を与える伸側減衰力発生通路としての伸側減衰通路9と、圧側室R2から伸側室R1へ向かう液体の流れに抵抗を与える圧側減衰力発生通路としての圧側連絡通路22と、を備える。このように、シリンダ装置C3は、第1実施形態のシリンダ装置C1の構成から圧側減衰通路10を廃止して、代わりに圧側連絡通路22を設けた他は、シリンダ装置C1と同様の構成を備えている。
 圧側連絡通路22は、圧側室R2と伸側室R1を連通しており、途中にリリーフ弁22aを備える。リリーフ弁22aは、パッシブな減衰弁であって、開弁圧に達すると圧側連絡通路22を開放して、圧側室R2から伸側室R1へ向かう液体の流れのみを許容しつつ、通過する液体の流れに抵抗を与える。
 次に、シリンダ装置C3の作動について説明する。まず、開閉弁17がタンク側排出通路8を遮断する場合について説明する。この場合、シリンダ1に対してピストン2が図6中左方向へ移動する、つまり、シリンダ装置C3が伸長作動すると、伸側室R1が圧縮され、伸側室R1から伸側減衰通路9を通じてタンクTへ向かう液体の流れにはリリーフ弁9aによって抵抗を与えられる。これにより、伸側室R1内の圧力はリリーフ弁9aの圧力損失に見合って上昇する。他方、拡大される圧側室R2には、圧側吸込通路5を介してタンクTから液体が供給される。よって、圧側室R2内の圧力はタンク圧となる。これによって、伸側室R1の圧力が圧側室R2の圧力よりも高くなり、シリンダ装置C3は、伸側室R1の圧力と圧側室R2の圧力の差に見合った大きさで伸長を抑制する方向の減衰力を発揮する。これに対して、シリンダ1に対してピストン2が図5中右方向へ移動する、つまり、シリンダ装置C3が収縮作動すると、圧側室R2が圧縮され、圧側室R2から圧側連絡通路22を通じて伸側室R1へ移動する液体の流れにはリリーフ弁22aによって抵抗が与えられる。これにより、圧側室R2内の圧力はリリーフ弁22aの圧力損失に見合って上昇する。他方、拡大される伸側室R1には、伸側吸込通路4における逆止弁4aが開弁してタンクTから液体が供給され、伸側室R1内の圧力はタンク圧となる。これによって、圧側室R2の圧力が伸側室R1の圧力よりも高くなり、シリンダ装置C3は、圧側室R2の圧力と伸側室R1の圧力の差に見合った大きさで収縮を抑制する方向の減衰力を発揮する。したがって、開閉弁17がタンク側排出通路8を遮断する場合、シリンダ装置C3は、一般的なダンパと同様に、伸長作動および収縮作動の両行程において、ストローク中は減衰力を発揮する。
 次に、開閉弁17がタンク側排出通路8を連通する場合について説明する。ピストン2がシリンダ1に対して中立位置から距離L1/2以内の範囲でストロークする場合、タンク側排出通路8のポート1aは常に凹部2aに連通される。この範囲でピストン2が左方へストロークすると、伸側排出通路6、凹部2aおよびタンク側排出通路8を介して、圧縮される伸側室R1からタンクTへ液体が排出され、伸側室R1はタンク圧に維持される。拡大する圧側室R2にも圧側吸込通路5を介してタンクTから液体が供給されて、圧側室R2もタンク圧に維持される。このとき、伸側室R1とタンクTとで差圧がほとんど生じないので伸側減衰通路9は遮断状態に置かれる。反対に、中立位置から距離L1/2以内の範囲でピストン2が右方へストロークすると、圧側排出通路7、凹部2aおよびタンク側排出通路8を介して、圧縮される圧側室R2からタンクTへ液体が排出され、圧側室R2はタンク圧に維持される。拡大する伸側室R1にも伸側吸込通路4を介してタンクTから液体が供給されて、伸側室R1もタンク圧に維持される。このとき、圧側室R2と伸側室R1とで差圧がほとんど生じないので圧側連絡通路22は遮断状態に置かれる。よって、ピストン2がシリンダ1に対して中立位置から距離L1/2以内の範囲でストロークして、常に、タンク側排出通路8のポート1aが凹部2aに連通状態に維持される場合には、シリンダ装置C3は、振動入力に対して減衰力をほとんど発揮しない状態となる。このように、シリンダ装置C3にあっても、シリンダ装置C1と同様に、凹部2aとポート1aとの連通によって減衰力をほとんど発揮しない推力低減ストローク範囲が設けられており、この推力低減ストローク範囲は、凹部2aの軸方向幅によって設定される。
 これに対して、ピストン2がシリンダ1に対して中立位置から距離L1/2以内の範囲を超えてストロークする場合であって、タンク側排出通路8のポート1aがピストン2によって閉塞される状況では、開閉弁17が閉じた状態と同じ状態となるので、シリンダ装置C3は、伸縮に対して減衰力を発揮する。また、ポート1aは、ピストン2の変位が進むと徐々にポート1aが閉じられるので、シリンダ装置C3は、ピストン2の変位が進むとポート1aが完全に閉塞されるまで徐々に減衰力を高める。
 よって、中心ピンPがストッパSに当接し、ピストン2がポート1aと閉塞する範囲では、シリンダ装置C3は減衰力を発揮して、中心ピンPがストローク中心から離間するのを抑制する減衰力を発揮する。このように、シリンダ装置C3は、ストロークセンサを設けずに、車体Bの台車Wに対する位置に依存して減衰力を発揮できる。そして、シリンダ装置C3は、中心ピンPがストッパSに衝突する場合に、減衰力を発揮して車体Bの台車Wに対する変位を徐々に抑制して、ストロークエンドで車体Bに不快な振動を与えず、良好な乗り心地を確保できる。さらに、シリンダ装置C3は、中心ピンPがストッパSに当接するまでは、車体Bの台車Wに対する変位を抑制する力を発揮しない。したがって、中心ピンPがストッパSに当接しない範囲において、シリンダ装置C3に併設されるアクチュエータAが車体Bの振動を抑制する制御力の発揮中に、シリンダ装置C3がこの制御力に対抗する減衰力を発揮しないので、鉄道車両における乗り心地を阻害せず、アクチュエータAのエネルギ消費を軽減できる。
 なお、ピストン2がタンク側排出通路8のポート1aよりも図6中左方側にあって、ピストン2が伸側室R1を圧縮する方向、つまり、図6中左方向へストロークする際には、伸側室R1が圧縮されて伸側室R1から伸側減衰通路9を介してタンクTへ排出される液体の流れにはリリーフ弁9aによって抵抗が与えられ、拡大する圧側室R2にはタンクTからタンク側排出通路8および圧側吸込通路5を介して液体が供給されるので、シリンダ装置C3は伸長に対抗する減衰力を発揮する。これに対して、ピストン2がタンク側排出通路8のポート1aよりも図6中左方側にあって、ピストン2が圧側室R2を圧縮する方向、つまり、図6中右方向へストロークする際には、圧側室R2がタンク側排出通路8を介してタンクTに連通されているため、圧縮される圧側室R2から液体がタンク側排出通路8を介してタンクTへ排出される。よって、圧側室R2内の圧力がタンク圧となり、拡大される伸側室R1にも伸側吸込通路4を介してタンクTから液体が供給されるため伸側室R1内もタンク圧となり、伸側室R1の圧力と圧側室R2の圧力に差ができず、シリンダ装置C3は減衰力を殆ど発揮しない。この状態は、ピストン2がポート1aに対向してタンク側排出通路8を塞ぐまで維持されるから、ピストン2がタンク側排出通路8のポート1aよりも図6中左方側にある状態からピストン2が圧側室R2を圧縮する方向へストロークして、ピストン2がタンク側排出通路8を塞ぐまでは、シリンダ装置C3は減衰力を発揮しない。
 また、ピストン2がタンク側排出通路8のポート1aよりも図6中右方側にあって、ピストン2が圧側室R2を圧縮する方向、つまり、図6中右方向へストロークする際には、圧側室R2が圧縮されて圧側室R2から圧側連絡通路22を介して伸側室R1へ排出される液体の流れにはリリーフ弁22aによって抵抗が与えられ、拡大する伸側室R1にはタンクTからタンク側排出通路8および伸側吸込通路4を介して液体が供給されるので、シリンダ装置C3は収縮に対抗する減衰力を発揮する。これに対して、ピストン2がタンク側排出通路8のポート1aよりも図6中右方側にあって、ピストン2が伸側室R1を圧縮する方向、つまり、図6中左方向へストロークする際には、伸側室R1がタンク側排出通路8を介してタンクTに連通されているため、圧縮される伸側室R1から液体がタンク側排出通路8を介してタンクTへ排出される。よって、伸側室R1内の圧力がタンク圧となり、拡大される圧側室R2にも圧側吸込通路5を介してタンクTから液体が供給されるため圧側室R2内もタンク圧となり、伸側室R1の圧力と圧側室R2の圧力に差ができず、シリンダ装置C3は減衰力を殆ど発揮しない。この状態は、ピストン2がポート1aに対向してタンク側排出通路8を塞ぐまで維持されるから、ピストン2がタンク側排出通路8のポート1aよりも図6中右方側にある状態からピストン2が伸側室R1を圧縮する方向へストロークして、ピストン2がタンク側排出通路8を塞ぐまでは、シリンダ装置C3は減衰力を発揮しない。
 このように、シリンダ装置C3は、タンク側排出通路8が凹部2aに対向する範囲内でストロークする場合、この範囲を推力低減ストローク範囲として減衰力を発揮しない不感帯としている。また、シリンダ装置C3は、ピストン2がこのストローク範囲を超えてストロークする場合には、中立位置から離間する方向のストロークに対してはこれを中立位置へ戻す方向の減衰力を発揮するとともに、ピストン2が中立位置へ戻る方向のストロークに対し、タンク側排出通路8を閉塞する位置に戻るまではこれを阻害する減衰力を発揮しない。
 よって、シリンダ装置C3は、シリンダ装置C1と同様に作動するとともに同様の効果を奏するので、鉄道車両における乗り心地を向上できる。
 なお、シリンダ装置C3にあっても、開閉弁17の廃止、絞り弁8aの設置と非設置、リリーフ弁8bの設置と非設置は、シリンダ装置C1と同様に選択できる。また、リリーフ弁9a,22a,8bは、減衰力の発生を可能とすればよいので、開弁圧の設定の無い減衰弁、絞り弁に変更できる。
 <第4実施形態>
 次に、第4実施形態におけるシリンダ装置C4について説明する。シリンダ装置C4は、図7に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入されるピストン2と、シリンダ1内に挿入されるとともに両端がシリンダ1から外方に突出して中央にピストン2が連結されるロッド23と、シリンダ1内にピストン2で区画した伸側室R1と圧側室R2と、タンクTと、タンクTから伸側室R1へ向かう液体の通過のみを許容する伸側吸込通路4と、タンクTから圧側室R2へ向かう液体の通過のみを許容する圧側吸込通路5と、ピストン2の外周に設けられてシリンダ1に臨む凹部2aと、ピストン2に設けられて伸側室R1から凹部2aへ向かう液体の流れのみを許容する伸側排出通路6と、ピストン2に設けられて圧側室R2から凹部2aへ向かう液体の流れのみを許容する圧側排出通路7と、シリンダ1に開口して凹部2aを介して伸側排出通路6と圧側排出通路7をタンクTに連通するタンク側排出通路8と、伸側室R1から圧側室R2へ向かう液体の流れに抵抗を与える伸側減衰力発生通路としての伸側連絡通路21と、圧側室R2から伸側室R1へ向かう液体の流れに抵抗を与える圧側減衰力発生通路としての圧側連絡通路22と、を備える。このように、シリンダ装置C4は、第1実施形態のシリンダ装置C1の構成から、伸側減衰通路9および圧側減衰通路10を廃止して、代わりに伸側連絡通路21および圧側連絡通路22を設けるとともに、ロッド23の両端がシリンダ1の両側から外方に突出する両ロッド型として構成される。
 シリンダ装置C4では、ロッド23がシリンダ1の両側から外方へ突出するため、シリンダ1の右端には、蓋15の代わりに環状のロッドガイド24を装着して、ロッドガイド24内にロッド23を挿通させてロッド23の右端をシリンダ1外へ突出させている。このように、シリンダ装置C4は両ロッド型であるため、ロッド23がシリンダ1内で左右に移動しても、シリンダ1内でのロッド23の押しのけ容積は変化しない。したがって、シリンダ1とタンクTとの間における体積補償のための液体のやり取りは不要となる。ただし、温度変化による液体の体積変化が生じるので、タンクTと伸側室R1或いは圧側室R2とを連通して途中に極小径のオリフィスを備える温度補償用の通路を設けておくとよい。ピストン2は、ロッド23の中央に設けられているが、ロッド23の両端が全ストローク範囲において必ずシリンダ1の両端から外方へ突出するようになっていれば、設置位置は中央に限られない。
 伸側連絡通路21は、第2実施形態のシリンダ装置C2で説明したように、途中にリリーフ弁21aを備えており、伸側室R1から圧側室R2へ向かう液体の流れのみを許容しつつ、通過する液体の流れに抵抗を与えるようになっている。
 圧側連絡通路22は、第3実施形態のシリンダ装置C3で説明したように、途中にリリーフ弁22aを備えており、圧側室R2から伸側室R1へ向かう液体の流れのみを許容しつつ、通過する液体の流れに抵抗を与えるようになっている。
 次に、シリンダ装置C4の作動について説明する。まず、開閉弁17がタンク側排出通路8を遮断する場合について説明する。この場合、シリンダ1に対してピストン2が図7中左方向へ移動する、つまり、シリンダ装置C4が伸長作動すると、伸側室R1が圧縮され、伸側室R1から伸側連絡通路21を通じて圧側室R2へ向かう液体の流れにはリリーフ弁21aによって抵抗が与えられる。すると、伸側室R1内の圧力はリリーフ弁21aの圧力損失に見合って上昇する。他方、拡大される圧側室R2には、伸側室R1から伸側連絡通路21を通じて液体が流入する。よって、伸側室R1の圧力が圧側室R2の圧力よりも高くなり、シリンダ装置C4は、伸側室R1の圧力と圧側室R2の圧力の差に見合った大きさで伸長を抑制する方向の減衰力を発揮する。これに対して、シリンダ1に対してピストン2が図7中右方向へ移動する、つまり、シリンダ装置C4が収縮作動すると、圧側室R2が圧縮され、圧側室R2から圧側連絡通路22を通じて伸側室R1へ向かう液体の流れにはリリーフ弁22aによって抵抗が与えられる。すると、圧側室R2内の圧力はリリーフ弁22aの圧力損失に見合って上昇する。拡大される伸側室R1には、圧側連絡通路22を介して液体が供給される。よって、圧側室R2の圧力が伸側室R1の圧力よりも高くなり、シリンダ装置C4は、圧側室R2の圧力と伸側室R1の圧力の差に見合った大きさで収縮を抑制する方向の減衰力を発揮する。したがって、開閉弁17がタンク側排出通路8を遮断する場合、シリンダ装置C4は、一般的なダンパと同様に、伸長作動および収縮作動の両行程において、ストローク中は減衰力を発揮する。
 次に、開閉弁17がタンク側排出通路8を連通する場合について説明する。ピストン2がシリンダ1に対して中立位置から距離L1/2以内の範囲でストロークする場合、タンク側排出通路8のポート1aは常に凹部2aに連通される。この範囲でピストン2が左方へストロークすると、伸側排出通路6、凹部2aおよびタンク側排出通路8を介して、圧縮される伸側室R1からタンクTへ液体が排出され、伸側室R1はタンク圧に維持される。拡大する圧側室R2にも圧側吸込通路5を介してタンクTから液体が供給されて、圧側室R2もタンク圧に維持される。反対に、中立位置から距離L1/2以内の範囲でピストン2が右方へストロークすると、圧側排出通路7、凹部2aおよびタンク側排出通路8を介して、圧縮される圧側室R2からタンクTへ液体が排出され、圧側室R2はタンク圧に維持される。拡大する伸側室R1にも伸側吸込通路4を介してタンクTから液体が供給されて、伸側室R1もタンク圧に維持される。よって、ピストン2がシリンダ1に対して中立位置から距離L1/2以内の範囲でストロークして、常に、タンク側排出通路8のポート1aが凹部2aと連通状態に維持される場合には、シリンダ装置C4は、振動入力に対して減衰力をほとんど発揮しない状態となる。このように、シリンダ装置C4が中立位置から距離L1/2以内の範囲でストロークする場合、伸側室R1と圧側室R2とで差圧がほとんど生じないために、伸側連絡通路21および圧側連絡通路22は閉じた状態となる。よって、シリンダ装置C4にあっても、シリンダ装置C1と同様に、凹部2aとポート1aとの連通によって減衰力をほとんど発揮しない推力低減ストローク範囲が設けられており、この推力低減ストローク範囲は、凹部2aの軸方向幅によって設定される。
 これに対して、ピストン2がシリンダ1に対して中立位置から距離L1/2以内の範囲を超えてストロークする場合であって、タンク側排出通路8のポート1aがピストン2によって閉塞される状況では、開閉弁17が閉じた状態と同じ状態となるので、シリンダ装置C4は、伸縮に対して減衰力を発揮する。また、ポート1aは、ピストン2の変位が進むと徐々にポート1aが閉じられるので、シリンダ装置C4は、ピストン2の変位が進むとポート1aが完全に閉塞されるまで徐々に減衰力を高める。
 よって、中心ピンPがストッパSに当接し、ピストン2がポート1aと閉塞する範囲では、シリンダ装置C4は減衰力を発揮して、中心ピンPがストローク中心から離間するのを抑制する減衰力を発揮する。このように、シリンダ装置C4は、ストロークセンサを設けずに、車体Bの台車Wに対する位置に依存して減衰力を発揮できる。そして、シリンダ装置C4は、中心ピンPがストッパSに衝突する場合に、減衰力を発揮して車体Bの台車Wに対する変位を徐々に抑制して、ストロークエンドで車体Bに不快な振動を与えず、良好な乗り心地を確保できる。さらに、シリンダ装置C4は、中心ピンPがストッパSに当接するまでは、車体Bの台車Wに対する変位を抑制する力を発揮しない。したがって、中心ピンPがストッパSに当接しない範囲において、シリンダ装置C4に併設されるアクチュエータAが車体Bの振動を抑制する制御力の発揮中に、シリンダ装置C4がこの制御力に対抗する減衰力を発揮しないので、鉄道車両における乗り心地を阻害せず、アクチュエータAのエネルギ消費を軽減できる。
 なお、ピストン2がタンク側排出通路8のポート1aよりも図7中左方側にあって、ピストン2が伸側室R1を圧縮する方向、つまり、図7中左方向へストロークする際には、伸側室R1が圧縮されて伸側室R1から伸側連絡通路21を介して圧側室R2へ排出される液体の流れにはリリーフ弁21aによって抵抗が与えられ、拡大する圧側室R2には伸側室R1から液体が供給される。すると、伸側室R1の圧力が圧側室R2の圧力よりも大きくなり、シリンダ装置C4は伸長に対抗する減衰力を発揮する。これに対して、ピストン2がタンク側排出通路8のポート1aよりも図7中左方側にあって、ピストン2が圧側室R2を圧縮する方向、つまり、図7中右方向へストロークする際には、圧側室R2がタンク側排出通路8を介してタンクTに連通されているため、圧縮される圧側室R2から液体がタンク側排出通路8を介してタンクTへ排出される。よって、圧側室R2内の圧力がタンク圧となり、拡大される伸側室R1にも伸側吸込通路4を介してタンクTから液体が供給されるため伸側室R1内もタンク圧となり、伸側室R1の圧力と圧側室R2の圧力に差ができず、シリンダ装置C4は減衰力を殆ど発揮しない。この状態は、ピストン2がポート1aに対向してタンク側排出通路8を塞ぐまで維持されるから、ピストン2がタンク側排出通路8のポート1aよりも図7中左方側にある状態からピストン2が圧側室R2を圧縮する方向へストロークして、ピストン2がタンク側排出通路8を塞ぐまでは、シリンダ装置C4は減衰力を発揮しない。
 また、ピストン2がタンク側排出通路8のポート1aよりも図7中右方側にあって、ピストン2が圧側室R2を圧縮する方向、つまり、図7中右方向へストロークする際には、圧側室R2が圧縮されて圧側室R2から圧側連絡通路22を介して伸側室R1へ排出される液体の流れにリリーフ弁22aによって抵抗が与えられ、拡大する伸側室R1には圧側室R2から液体が供給される。すると、圧側室R2の圧力が伸側室R1の圧力よりも大きくなり、シリンダ装置C4は収縮に対抗する減衰力を発揮する。これに対して、ピストン2がタンク側排出通路8のポート1aよりも図7中右方側にあって、ピストン2が伸側室R1を圧縮する方向、つまり、図7中左方向へストロークする際には、伸側室R1がタンク側排出通路8を介してタンクTに連通されているため、圧縮される伸側室R1から液体がタンク側排出通路8を介してタンクTへ排出される。よって、伸側室R1内の圧力がタンク圧となり、拡大される圧側室R2にも圧側吸込通路5を介してタンクTから液体が供給されるため圧側室R2内もタンク圧となり、伸側室R1の圧力と圧側室R2の圧力に差ができず、シリンダ装置C4は減衰力を殆ど発揮しない。この状態は、ピストン2がポート1aに対向してタンク側排出通路8を塞ぐまで維持されるから、ピストン2がタンク側排出通路8のポート1aよりも図7中右方側にある状態からピストン2が伸側室R1を圧縮する方向へストロークして、ピストン2がタンク側排出通路8を塞ぐまでは、シリンダ装置C4は減衰力を発揮しない。
 このように、シリンダ装置C4は、タンク側排出通路8が凹部2aに対向する範囲内でストロークする場合、この範囲を推力低減ストローク範囲として減衰力を発揮しない不感帯としている。また、シリンダ装置C4は、ピストン2がこのストローク範囲を超えてストロークする場合には、中立位置から離間する方向のストロークに対してはこれを中立位置へ戻す方向の減衰力を発揮するとともに、ピストン2が中立位置へ戻る方向のストロークに対し、タンク側排出通路8を閉塞する位置に戻るまではこれを阻害する減衰力を発揮しない。
 よって、シリンダ装置C4は、シリンダ装置C1と同様の作動を呈するとともに同様の効果を奏するので、鉄道車両における乗り心地を向上できる。
 なお、シリンダ装置C4にあっても、開閉弁17の廃止、絞り弁8aの設置と非設置、リリーフ弁8bの設置と非設置は、シリンダ装置C1と同様に選択できる。また、リリーフ弁21a,22a,8bは、減衰力の発生を可能とすればよいので、開弁圧の設定の無い減衰弁、絞り弁に変更できる。
 以上、シリンダ装置C1では、伸側減衰通路9と圧側減衰通路10のみを備えているが、この構成に、伸側連絡通路21と圧側連絡通路22の一方または両方を設けてもよい。このように構成する場合、伸長行程で減衰力を発揮する伸側減衰通路9と伸側連絡通路21のいずれか一方を、伸側室R1内の圧力が許容圧力を超えないように圧力を逃がすリリーフ通路として機能させてシステムを保護できる。圧側も同様に、収縮行程で減衰力を発揮する圧側減衰通路10と圧側連絡通路22のいずれか一方を、圧側室R2内の圧力が許容圧力を超えないように圧力を逃がすリリーフ通路として機能させてシステムを保護できる。
 さらに、シリンダ装置C2では、伸側連絡通路21と圧側減衰通路10のみを備えているが、この構成に、圧側連絡通路22を設けてもよい。シリンダ装置C3では、伸側減衰通路9と圧側連絡通路22のみを備えているが、この構成に、伸側連絡通路21を設けてもよい。シリンダ装置C4では、伸側連絡通路21と圧側連絡通路22のみを備えているが、この構成に、伸側減衰通路9と圧側減衰通路10の一方または両方を設けてもよい。このようにすると、シリンダ1内の過剰圧力からシリンダ装置C2,C3,C4のシステムの保護が可能となる。
 <第5実施形態>
 次に、第5実施形態のシリンダ装置C5について説明する。シリンダ装置C5は、図8に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入されるピストン2と、シリンダ1内に挿入されてピストン2に連結されるロッド3と、シリンダ1内にピストン2で区画した伸側室R1と圧側室R2と、タンクTと、タンクTから伸側室R1へ向かう液体の通過のみを許容する伸側吸込通路4と、タンクTから圧側室R2へ向かう液体の通過のみを許容する圧側吸込通路5と、ピストン2の外周に設けられてシリンダ1に臨む凹部2aと、ピストン2に設けられて伸側室R1から凹部2aへ向かう液体の流れのみを許容する伸側排出通路6と、ピストン2に設けられて圧側室R2から凹部2aへ向かう液体の流れのみを許容する圧側排出通路7と、シリンダ1に開口して凹部2aを介して伸側排出通路6と圧側排出通路7をタンクTに連通するタンク側排出通路8と、伸側室R1からタンクTへ向かう液体の流れに抵抗を与える伸側減衰力発生通路としての伸側減衰通路9と、圧側室R2からタンクTへ向かう液体の流れに抵抗を与える圧側減衰力発生通路としての圧側減衰通路10と、伸側室R1と圧側室R2の双方に同じ流量で液体を供給するタンデムポンプ30と、を備える。シリンダ装置C5は、第1実施形態のシリンダ装置C1の構成にタンデムポンプ30を加えた他は、シリンダ装置C1と同様の構成を備えている。
 タンデムポンプ30は、モータ31によって駆動される。タンデムポンプ30は、モータ31によって駆動される駆動軸を共通にしてタンクTから液体を吸い上げて同一の吐出量で液体を吐出する二つのポンプ30a,30bを備える。
 一方のポンプ30aは、吐出口がロッドガイド16に開口して伸側室R1に通じる供給通路32に接続される。ポンプ30aは、モータ31によって駆動されると、タンクTから液体を吸込んで伸側室R1へ液体を供給する。他方のポンプ30bは、吐出口が蓋15に開口して圧側室R2に通じる供給通路33に接続される。ポンプ30bは、モータ31によって駆動されると、タンクTから液体を吸込んで圧側室R2へ液体を供給する。ポンプ30a,30bは、一つのモータ31によって駆動されて、互いに吐出量を同じくして液体を吐出する。つまり、タンデムポンプ30は、伸側室R1および圧側室R2へ等量の液体を供給する。
 なお、供給通路32,33の途中には、伸側室R1および圧側室R2からポンプ30aおよびポンプ30bへの液体の逆流を阻止する逆止弁34,35が設けられている。
 次に、シリンダ装置C5の作動について説明する。まず、開閉弁17がタンク側排出通路8を遮断する場合について説明する。タンデムポンプ30が駆動中の場合、シリンダ1に対してピストン2が図8中左方向へ移動する、つまり、シリンダ装置C5が伸長作動すると、伸側室R1が圧縮され、圧側室R2が拡大するが、双方に供給される液体流量は等しいので、伸側室R1の圧力が圧側室R2の圧力よりも大きくなるため、シリンダ装置C5は、伸長作動に対抗する推力を発揮する。タンデムポンプ30が駆動中の場合、シリンダ1に対してピストン2が図8中右方向へ移動する、つまり、シリンダ装置C5が収縮作動すると、圧側室R2が圧縮され、伸側室R1が拡大するが、双方に供給される液体流量は等しいので、圧側室R2の圧力が伸側室R1の圧力よりも大きくなる。したがって、シリンダ装置C5は、収縮作動に対抗する推力を発揮する。
 他方、シリンダ装置C5は、タンデムポンプ30をシリンダ装置C1に追加した構成であるから、開閉弁17がタンク側排出通路8を遮断する場合であってタンデムポンプ30が駆動していない状態では、シリンダ装置C1と同様に作動し、一般的なダンパと同じく、伸長作動および収縮作動の両行程において、ストローク中は推力を発揮する。
 次に、開閉弁17がタンク側排出通路8を連通し、タンデムポンプ30が駆動中である場合について説明する。ピストン2がシリンダ1に対して中立位置から距離L1/2以内の推力低減ストローク範囲でストロークする場合、タンク側排出通路8のポート1aは常に凹部2aに連通される。タンデムポンプ30から伸側室R1および圧側室R2へ液体が供給されても、伸側排出通路6、圧側排出通路7、凹部2aおよびタンク側排出通路8を介して供給された液体は、伸側室R1および圧側室R2から全てタンクTへ排出され、伸側室R1および圧側室R2はタンク圧に維持される。よって、シリンダ装置C5は、タンデムポンプ30が駆動中であっても、伸長方向へも収縮方向へも推力を発揮しない。また、推力低減ストローク範囲でピストン2が左方へストロークしても、伸側排出通路6、圧側排出通路7、凹部2aおよびタンク側排出通路8を介してタンデムポンプ30から供給された液体は、伸側室R1および圧側室R2から全てタンクTへ排出され、伸側室R1および圧側室R2はタンク圧に維持される。よって、シリンダ装置C5は、タンデムポンプ30が駆動中であっても、推力低減ストローク範囲で伸長しても推力を発揮しない。反対に、推力低減ストローク範囲でピストン2が右方へストロークしても、伸側排出通路6、圧側排出通路7、凹部2aおよびタンク側排出通路8を介してタンデムポンプ30から供給された液体は、伸側室R1および圧側室R2から全てタンクTへ排出され、伸側室R1および圧側室R2はタンク圧に維持される。よって、シリンダ装置C5は、タンデムポンプ30が駆動中であっても、推力低減ストローク範囲で収縮しても推力を発揮しない。
 他方、シリンダ装置C5は、タンデムポンプ30をシリンダ装置C1に追加した構成であるから、開閉弁17がタンク側排出通路8を連通する場合であってタンデムポンプ30が駆動していない状態では、推力低減ストローク範囲でストロークする限り、シリンダ装置C1と同様に作動するから、伸長作動および収縮作動の両行程において推力を発揮しない。
 これに対して、ピストン2がシリンダ1に対して中立位置から距離L1/2以内の範囲を超えてストロークする場合であって、タンク側排出通路8のポート1aがピストン2によって閉塞される状況では、開閉弁17が閉じた状態と同じ状態となるので、タンデムポンプ30の駆動の有無に限らず、シリンダ装置C5は、伸縮に対してこれを抑制する推力を発揮する。ポート1aは、ピストン2の変位が進むと徐々にポート1aが閉じられるので、シリンダ装置C5は、ピストン2の変位が進むとポート1aが完全に閉塞されるまで徐々に伸縮を抑制する推力を高める。
 よって、中心ピンPがストッパSに当接し、ピストン2がポート1aと閉塞する範囲では、シリンダ装置C5は推力を発揮して、中心ピンPがストローク中心から離間するのを抑制する推力を発揮する。このように、シリンダ装置C5は、ストロークセンサを設けずに、車体Bの台車Wに対する位置に依存して推力を発揮できる。そして、シリンダ装置C5は、中心ピンPがストッパSに衝突する場合に、推力を発揮して車体Bの台車Wに対する変位を徐々に抑制して、ストロークエンドで車体Bに不快な振動を与えず、良好な乗り心地を確保できる。さらに、シリンダ装置C5は、中心ピンPがストッパSに当接するまでは、車体Bの台車Wに対する変位を抑制する力を発揮しない。したがって、中心ピンPがストッパSに当接しない範囲において、シリンダ装置C5に併設されるアクチュエータAが車体Bの振動を抑制する制御力の発揮中に、シリンダ装置C5がこの制御力に対抗する推力を発揮しないので、鉄道車両における乗り心地を阻害せず、アクチュエータAのエネルギ消費を軽減できる。
 開閉弁17がタンク側排出通路8を連通していて、タンデムポンプ30が駆動中である場合、ピストン2がタンク側排出通路8のポート1aよりも図8中左方側にあると、伸側室R1内からは液体が伸側減衰通路9を介してタンクTへ排出されるが、圧側室R2内からは液体が圧側排出通路7およびタンク側排出通路8を介してタンクTへ排出される。よって、伸側室R1内の圧力は、タンク圧に等しくなる圧側室R2の圧力よりも大きくなるので、シリンダ装置C5は、ピストン2を中立位置へ戻す方向の推力を常に発揮する。対して、開閉弁17がタンク側排出通路8を連通していて、タンデムポンプ30が駆動中である場合、ピストン2がタンク側排出通路8のポート1aよりも図8中右方側にあると、圧側室R2内からは液体が圧側減衰通路10を介してタンクTへ排出されるが、伸側室R1内からは液体が伸側排出通路6およびタンク側排出通路8を介してタンクTへ排出される。よって、圧側室R2内の圧力は、タンク圧に等しくなる伸側室R1の圧力よりも大きくなるので、シリンダ装置C5は、ピストン2を中立位置へ戻す方向の推力を常に発揮する。
 なお、開閉弁17がタンク側排出通路8を連通していて、タンデムポンプ30が停止中である場合は、シリンダ装置C5は、シリンダ装置C1と同様に作動する。つまり、ピストン2がタンク側排出通路8のポート1aよりも図8中左方側にあって、ピストン2が伸側室R1を圧縮する方向へストロークする際には、シリンダ装置C5は伸長に対抗する推力を発揮し、ピストン2がタンク側排出通路8のポート1aよりも図8中左方側にあって、ピストン2が圧側室R2を圧縮する方向へストロークする際には、ピストン2がタンク側排出通路8を塞ぐまでは、シリンダ装置C5は推力を殆ど発揮しない。反対に、ピストン2がタンク側排出通路8のポート1aよりも図8中右方側にあって、ピストン2が圧側室R2を圧縮する方向へストロークする際には、シリンダ装置C5は収縮に対抗する推力を発揮し、ピストン2がタンク側排出通路8のポート1aよりも図8中右方側にあって、ピストン2が伸側室R1を圧縮する方向へストロークする際には、ピストン2がタンク側排出通路8を塞ぐまでは、シリンダ装置C5は推力を発揮しない。
 このように、シリンダ装置C5にあっても、タンデムポンプ30が駆動中であっても停止中であっても、タンク側排出通路8が凹部2aに対向する範囲内でストロークする場合、この範囲を推力低減ストローク範囲として推力を発揮しない不感帯としている。また、シリンダ装置C5は、ピストン2がこのストローク範囲を超えてストロークする場合には、タンデムポンプ30が駆動中であれば、常に、ピストン2を中立位置へ戻す方向の推力を発揮するので、いち早く、車体Bを台車Wに対してストローク中心へ戻せる。よって、ストッパSと中心ピンPが長時間に亘って当接する状態となって車体Bの振動抑制が困難になる状況を回避できる。タンデムポンプ30を停止状態とすれば、シリンダ装置C5は、シリンダ装置C1と同様に、ピストン2が中立位置から離間する方向のストロークに対してはこれを中立位置へ戻す方向の推力を発揮するとともに、ピストン2が中立位置へ戻る方向のストロークに対し、タンク側排出通路8を閉塞する位置に戻るまではこれを阻害する推力を発揮しない。
 よって、シリンダ装置C5は、シリンダ装置C1と同様に、推力低減ストローク範囲で推力を発揮しないパッシブなダンパとして作動するだけでなく、タンデムポンプ30を備えることにより、ピストン2を中立位置へ積極的に戻す推力の発揮も可能となる。よって、より一層、鉄道車両における乗り心地を向上できる。
 なお、シリンダ装置C5にあっても、開閉弁17の廃止、絞り弁8aの設置と非設置、リリーフ弁8bの設置と非設置は、シリンダ装置C1と同様に選択できる。また、リリーフ弁9a,10a,8bは、推力の発生を可能とすればよいので、開弁圧の設定の無い減衰弁、絞り弁に変更できる。さらに、タンデムポンプ30は、第2実施形態のシリンダ装置C2、第3実施形態のシリンダ装置C3、さらには、第4実施形態のシリンダ装置C4にも適用可能である。シリンダ装置C2,C3,C4にタンデムポンプ30を設けると、ピストン2を中立位置へ積極的に戻す推力の発揮も可能となって、より一層、鉄道車両における乗り心地を向上できる。
 以上、シリンダ装置C5では、伸側減衰通路9と圧側減衰通路10のみを備えているが、この構成に、伸側連絡通路21と圧側連絡通路22の一方または両方を設けてもよい。このように構成する場合、伸長行程で減衰力を発揮する伸側減衰通路9と伸側連絡通路21のいずれか一方を、伸側室R1内の圧力が許容圧力を超えないように圧力を逃がすリリーフ通路として機能させてシステムを保護できる。圧側も同様に、収縮行程で減衰力を発揮する圧側減衰通路10と圧側連絡通路22のいずれか一方を、圧側室R2内の圧力が許容圧力を超えないように圧力を逃がすリリーフ通路として機能させてシステムを保護できる。
 さらに、タンデムポンプ30をシリンダ装置C2に適用して、伸側室R1および圧側室R2へ液体を供給するようにする場合にあっても、シリンダ装置C2の構成に、圧側連絡通路22を設けてもよい。タンデムポンプ30をシリンダ装置C3に適用して、伸側室R1および圧側室R2へ液体を供給するようにする場合にあっても、この構成に、伸側連絡通路21を設けてもよい。さらに、タンデムポンプ30をシリンダ装置C4に適用して、伸側室R1および圧側室R2へ液体を供給するようにする場合にあっても、この構成に、伸側減衰通路9と圧側減衰通路10の一方または両方を設けてもよい。このようにすると、シリンダ1内の過剰圧力からシリンダ装置C2,C3,C4のシステムの保護が可能となる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は、2014年10月17日に日本国特許庁に出願された特願2014-212398号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (12)

  1.  シリンダと、
     前記シリンダ内に摺動自在に挿入されるピストンと、
     前記シリンダ内に挿入されて前記ピストンに連結されるロッドと、
     前記シリンダ内に前記ピストンで区画した伸側室と圧側室と、
     タンクと、
     前記タンクから前記伸側室へ向かう液体の通過のみを許容する伸側吸込通路と、
     前記タンクから前記圧側室へ向かう液体の通過のみを許容する圧側吸込通路と、
     前記ピストンと前記シリンダの一方に設けられ、前記ピストンと前記シリンダの他方に臨む凹部と、
     前記ピストンに設けられて前記伸側室から前記凹部へ向かう液体の流れのみを許容する伸側排出通路と
     前記ピストンに設けられて前記圧側室から前記凹部へ向かう液体の流れのみを許容する圧側排出通路と、
     前記凹部を介して前記伸側排出通路と前記圧側排出通路を前記タンクに連通するタンク側排出通路と
     伸長時に通過する液体の流れに抵抗を与えて減衰力を発揮する伸側減衰力発生通路と、
     収縮時に通過する液体の流れに抵抗を与えて減衰力を発揮する圧側減衰力発生通路と、を備えたシリンダ装置。
  2.  請求項1に記載のシリンダ装置であって、
     前記伸側減衰力発生通路は、前記伸側室から前記タンクへ向かう液体の流れに抵抗を与える伸側減衰通路であり、
     前記圧側減衰力発生通路は、前記圧側室から前記タンクへ向かう液体の流れに抵抗を与える圧側減衰通路であるシリンダ装置。
  3.  請求項1に記載のシリンダ装置であって、
     前記伸側減衰力発生通路は、前記伸側室から前記圧側室へ向かう液体の流れに抵抗を与える伸側連絡通路であり、
     前記圧側減衰力発生通路は、前記圧側室から前記タンクへ向かう液体の流れに抵抗を与える圧側減衰通路であるシリンダ装置。
  4.  請求項1に記載のシリンダ装置であって、
     前記伸側減衰力発生通路は、前記伸側室から前記タンクへ向かう液体の流れに抵抗を与える伸側減衰通路であり、
     前記圧側減衰力発生通路は、前記圧側室から前記伸側室へ向かう液体の流れに抵抗を与える圧側連絡通路であるシリンダ装置。
  5.  請求項1に記載のシリンダ装置であって、
     前記ロッドは、前記シリンダ内に挿入されて両端が前記シリンダ外に突出されて中間に前記ピストンが連結され、
     前記伸側減衰力発生通路は、前記伸側室から前記圧側室へ向かう液体の流れに抵抗を与える伸側連絡通路であり、
     前記圧側減衰力発生通路は、前記圧側室から前記伸側室へ向かう液体の流れに抵抗を与える圧側連絡通路であるシリンダ装置。
  6.  請求項1に記載のシリンダ装置であって、
     前記凹部の軸方向幅の設定で推力が低減される推力低減ストローク範囲が設定されるシリンダ装置。
  7.  請求項1に記載のシリンダ装置であって、
     前記凹部は、前記ピストンの外周に設けた環状溝で形成され、
     前記伸側排出通路は、前記伸側室と前記環状溝とを連通し、
     前記圧側排出通路は、前記圧側室と前記環状溝とを連通するシリンダ装置。
  8.  請求項1に記載のシリンダ装置であって、
     前記ピストンは、
     前記ロッドに設けられて前記シリンダに摺接する第一ピストン形成部材と、
     前記ロッドに前記第一ピストン形成部材に離間して設けられ前記シリンダに摺接する第二ピストン形成部材と、を備え、
     前記凹部は、前記第一ピストン形成部材と前記第二ピストン形成部材に形成される環状隙間で形成され、
     前記伸側排出通路は、前記伸側室と前記環状隙間とを連通し、
     前記圧側排出通路は、前記圧側室と前記環状隙間とを連通するシリンダ装置。
  9.  請求項1に記載のシリンダ装置であって、
     前記凹部は、前記シリンダの内周に設けた環状溝で形成され、
     前記タンク側排出通路は、前記タンクと前記凹部とを連通するシリンダ装置。
  10.  請求項1に記載のシリンダ装置であって、
     前記タンク側排出通路の途中に、前記凹部と前記タンクとを連通および遮断する開閉弁を備えたシリンダ装置。
  11.  請求項1に記載のシリンダ装置であって、
     前記タンク側排出通路の途中に前記シリンダ内から前記タンクへ向かう液体の流れに抵抗与える減衰力発生要素を設けたシリンダ装置。
  12.  請求項1に記載のシリンダ装置であって、
     前記伸側室と前記圧側室の双方に同じ流量で液体を供給するタンデムポンプを備えたシリンダ装置。
PCT/JP2015/078668 2014-10-17 2015-10-08 シリンダ装置 WO2016060066A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2941878A CA2941878C (en) 2014-10-17 2015-10-08 Cylinder device
CN201580014343.6A CN106104066B (zh) 2014-10-17 2015-10-08 作动缸装置
US15/124,866 US9945441B2 (en) 2014-10-17 2015-10-08 Cylinder device
KR1020167024673A KR101825863B1 (ko) 2014-10-17 2015-10-08 실린더 장치
EP15850577.6A EP3109504B1 (en) 2014-10-17 2015-10-08 Cylinder device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-212398 2014-10-17
JP2014212398A JP6363934B2 (ja) 2014-10-17 2014-10-17 シリンダ装置

Publications (1)

Publication Number Publication Date
WO2016060066A1 true WO2016060066A1 (ja) 2016-04-21

Family

ID=55746612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078668 WO2016060066A1 (ja) 2014-10-17 2015-10-08 シリンダ装置

Country Status (7)

Country Link
US (1) US9945441B2 (ja)
EP (1) EP3109504B1 (ja)
JP (1) JP6363934B2 (ja)
KR (1) KR101825863B1 (ja)
CN (1) CN106104066B (ja)
CA (1) CA2941878C (ja)
WO (1) WO2016060066A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220154796A1 (en) * 2019-06-20 2022-05-19 Crrc Qingdao Sifang Co., Ltd. Active control type anti-yaw damper, damping system and vehicle
EP4197830A1 (en) * 2021-12-20 2023-06-21 Fox Factory, Inc. Electronically controlled sway bar damper link
US11926189B2 (en) 2017-09-29 2024-03-12 Fox Factory, Inc. Electronically controlled sway bar damping link

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013110370B4 (de) 2013-06-04 2014-12-11 Grammer Ag Fahrzeugsitz
DE102013110924B4 (de) * 2013-10-01 2018-02-08 Grammer Ag Fahrzeug mit kraftgesteuertem Dämpfer mit Regelventil
DE102013110920B4 (de) 2013-10-01 2018-08-16 Grammer Ag Fahrzeugsitz mit kraftgesteuertem Dämpfer (2-Rohr-Dämpfer)
DE102013110923B4 (de) 2013-10-01 2019-07-04 Grammer Ag Fahrzeugsitz oder Fahrzeugkabine mit einer Federungseinrichtung und Nutzkraftfahrzeug
DE102013021561B4 (de) 2013-12-16 2020-09-03 Grammer Ag Fahrzeugsitz mit einer horizontal beweglichen Sitzfläche zum Aufnehmen einer Person
DE102014012694B3 (de) * 2014-09-01 2016-02-25 Böhner-EH GmbH Hydraulische Vorrichtung
DE112016002019B4 (de) * 2015-05-29 2021-07-29 Hitachi Astemo, Ltd. Schwingungsdämpferanordnung
US20180266104A1 (en) * 2015-09-15 2018-09-20 The Regents Of The University Of California Control system and method for mitigating the effects of natural hazards
JP6879695B2 (ja) * 2016-08-30 2021-06-02 Kyb株式会社 セミアクティブダンパ
US10746251B2 (en) 2018-05-11 2020-08-18 Itt Manufacturing Enterprises Llc Load damping assembly with gapping feature
DE102022002548A1 (de) 2022-07-12 2024-01-18 Günther Zimmer Feder-Dämpfer-System mit kolbenhubabhängigem Drosselrückschlagventil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073723A (ja) * 1993-06-14 1995-01-06 Ohbayashi Corp 橋桁のダンパー装置
JP2003322193A (ja) * 2002-04-26 2003-11-14 Kayaba Ind Co Ltd 油圧緩衝器
JP2009137424A (ja) * 2007-12-06 2009-06-25 Kayaba Ind Co Ltd アクチュエータ
JP2013001305A (ja) * 2011-06-20 2013-01-07 Kyb Co Ltd 鉄道車両用制振装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2954755A (en) * 1957-10-23 1960-10-04 Ibm Hydraulic positioning device
JP2000177586A (ja) * 1998-12-21 2000-06-27 Nippon Sharyo Seizo Kaisha Ltd 鉄道車両の振動抑制装置
JP3895491B2 (ja) 1999-02-23 2007-03-22 カヤバ工業株式会社 鉄道車両の横揺れ制振用ダンパ及び制振方法
CH694426A5 (de) * 2000-06-13 2005-01-14 Curtiss Wright Antriebstechnik Vorrichtung zur Querzentrierung und Schwingungsdämpfung bei Schienenfahrzeugen.
JP2003042216A (ja) * 2001-07-31 2003-02-13 Tokico Ltd 油圧ダンパ
JP4058298B2 (ja) * 2002-06-06 2008-03-05 カヤバ工業株式会社 油圧緩衝器
JP2005299450A (ja) 2004-04-08 2005-10-27 Toyota Industries Corp ポンプ制御装置
JP4733481B2 (ja) * 2005-09-09 2011-07-27 カヤバ工業株式会社 シリンダ装置
JP5364323B2 (ja) * 2008-09-12 2013-12-11 カヤバ工業株式会社 シリンダ装置
JP5667482B2 (ja) 2011-03-17 2015-02-12 カヤバ工業株式会社 シリンダ装置
JP5517368B2 (ja) 2012-09-03 2014-06-11 カヤバ工業株式会社 アクチュエータ
JP5552174B1 (ja) * 2013-02-15 2014-07-16 カヤバ工業株式会社 アクチュエータ
JP5572236B1 (ja) * 2013-02-18 2014-08-13 カヤバ工業株式会社 アクチュエータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073723A (ja) * 1993-06-14 1995-01-06 Ohbayashi Corp 橋桁のダンパー装置
JP2003322193A (ja) * 2002-04-26 2003-11-14 Kayaba Ind Co Ltd 油圧緩衝器
JP2009137424A (ja) * 2007-12-06 2009-06-25 Kayaba Ind Co Ltd アクチュエータ
JP2013001305A (ja) * 2011-06-20 2013-01-07 Kyb Co Ltd 鉄道車両用制振装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3109504A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11926189B2 (en) 2017-09-29 2024-03-12 Fox Factory, Inc. Electronically controlled sway bar damping link
US20220154796A1 (en) * 2019-06-20 2022-05-19 Crrc Qingdao Sifang Co., Ltd. Active control type anti-yaw damper, damping system and vehicle
US11859689B2 (en) * 2019-06-20 2024-01-02 Crrc Qingdao Sifang Co., Ltd. Active control type anti-yaw damper, damping system and vehicle
EP4197830A1 (en) * 2021-12-20 2023-06-21 Fox Factory, Inc. Electronically controlled sway bar damper link

Also Published As

Publication number Publication date
JP6363934B2 (ja) 2018-07-25
KR20160119820A (ko) 2016-10-14
EP3109504A4 (en) 2017-11-15
CA2941878A1 (en) 2016-04-21
KR101825863B1 (ko) 2018-02-05
CN106104066B (zh) 2017-10-10
EP3109504A1 (en) 2016-12-28
CN106104066A (zh) 2016-11-09
US9945441B2 (en) 2018-04-17
US20170023086A1 (en) 2017-01-26
CA2941878C (en) 2018-04-24
EP3109504B1 (en) 2018-12-26
JP2016080080A (ja) 2016-05-16

Similar Documents

Publication Publication Date Title
WO2016060066A1 (ja) シリンダ装置
KR101671607B1 (ko) 액추에이터
JP5731453B2 (ja) ダンパ
WO2016042996A1 (ja) 鉄道用制振装置
JP5543996B2 (ja) アクチュエータ
JP2010065797A (ja) シリンダ装置
JP5552174B1 (ja) アクチュエータ
JP5572236B1 (ja) アクチュエータ
JP2011201333A (ja) 鉄道車両用制振装置
JP6514608B2 (ja) 緩衝装置
WO2015178089A1 (ja) シリンダ装置
JP6654943B2 (ja) 鉄道車両用制振装置
TWI640702B (zh) Cylinder device
JP2012076668A (ja) 鉄道車両の制振用ダンパ
JP2003322193A (ja) 油圧緩衝器
JP2023119628A (ja) シリンダ装置
JP6143517B2 (ja) ダンパ
KR101594074B1 (ko) 중장비용 카운터 밸런스 밸브
JP2018071769A (ja) バルブブロック
JP4541119B2 (ja) 懸架装置
JP2019183979A (ja) 鉄道車両用ダンパ
JP7022951B2 (ja) ダンパ
JP6875961B2 (ja) 免震用ダンパ
JP2019183978A (ja) 鉄道車両用ダンパ
JP2014074443A (ja) 緩衝装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2941878

Country of ref document: CA

Ref document number: 20167024673

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15124866

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015850577

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015850577

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE