WO2016059812A1 - 漏油検出装置と方法 - Google Patents

漏油検出装置と方法 Download PDF

Info

Publication number
WO2016059812A1
WO2016059812A1 PCT/JP2015/059542 JP2015059542W WO2016059812A1 WO 2016059812 A1 WO2016059812 A1 WO 2016059812A1 JP 2015059542 W JP2015059542 W JP 2015059542W WO 2016059812 A1 WO2016059812 A1 WO 2016059812A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
ultraviolet light
light source
oil leakage
light
Prior art date
Application number
PCT/JP2015/059542
Other languages
English (en)
French (fr)
Inventor
莉 呂
六戸 敏昭
森山 智広
淳 額賀
明 山岸
泰智 齋藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to KR1020177006344A priority Critical patent/KR101952524B1/ko
Priority to US15/519,301 priority patent/US10113933B2/en
Priority to MX2017004962A priority patent/MX2017004962A/es
Publication of WO2016059812A1 publication Critical patent/WO2016059812A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6465Angular discrimination

Definitions

  • the present invention relates to an oil leakage detection method and apparatus for oil-filled equipment such as transformers, capacitors, GIS hydraulic actuators, and rectifiers.
  • oil storage tanks and transformers have been concerned about oil leaks (leakage) due to deterioration or accidents. Since oil leakage can lead to environmental pollution and disasters, a technique for detecting a small amount of oil leakage at the initial stage of deterioration has been demanded.
  • a technique for detecting a minute amount of oil leakage there is a technique for detecting fluorescence (self-luminous) emitted from the oil leakage when irradiated with ultraviolet light including the absorption wavelength of the oil leakage from the outside.
  • black light is used as the external light source for ultraviolet light, but the light irradiated with black light may contain a visible light component having a wavelength close to that of ultraviolet light in addition to ultraviolet light.
  • the strong reflected light (noise light) of the visible light component contained in the light source is also detected together with the fluorescence, and there is a concern that the detection may be hindered, and it is necessary to improve detection diagnosis accuracy by removing noise.
  • Patent Document 1 a wavelength selective element that irradiates oil with pulsed laser light and uses a bandpass filter; There is a method of improving detection accuracy by observing only fluorescence with an image intensifier having a high-speed shutter function for detecting only fluorescence and an image doubling function.
  • Patent Document 1 has problems such as concern that the structure of the detector is complicated and that it is necessary to replace the band-pass filter for each type of oil. Moreover, since it becomes a precision instrument, when it was always installed locally, it was necessary to put effort into the management of the instrument.
  • an oil leakage detection device is arranged to illuminate an oil-filled device from a plurality of different incident angles, and performs oil on and off in turn at each incident angle.
  • An ultraviolet light source including a wavelength to be excited, an imager that captures an oil-filled device irradiated with ultraviolet light from the ultraviolet light source during the lighting, and a recording unit that records each of the images captured by the imager , Comparing each of the images, determining that the part where the light emission position does not always change is an oil leakage part, and displaying each of the images in order to determine a part that may emit light and a part that may not emit light as a noise light part It has a display part.
  • FIG. 10 is a schematic diagram illustrating a photographed image, which is a sixth embodiment of the oil leakage detection method and apparatus according to the present invention.
  • FIG. 10 is a schematic diagram showing an image taken after a preset time interval according to a sixth embodiment of the oil leakage detection method and apparatus of the present invention. It is a flowchart explaining the oil leak detection operation
  • FIG. 17 is a top view of FIG. 16.
  • Embodiments relating to the oil leakage detection method and apparatus of the present invention will be described below with reference to FIGS. It should be noted that this embodiment described in this specification does not limit the present invention.
  • an oil leakage detection method and apparatus will be described using an insulating oil (mineral oil, vegetable ester oil, etc.) commonly used in transformers as an example.
  • the present invention is widely applicable and is not limited to a transformer.
  • the present invention can be applied to detection of oil leakage in a tank or a pipeline for storing fuel oil.
  • FIG. 1 is a diagram showing a first embodiment specifically showing an oil leakage detection method and apparatus according to the present invention.
  • the oil leakage detection device 100 includes a first ultraviolet light source 1a, a second ultraviolet light source 1b, a fixedly arranged image pickup device 2, a first ultraviolet light source 1a, a second ultraviolet light source 1b, and an image pickup device 2.
  • a control unit 3 that controls the operation, a recording unit 4 that records the captured image, and a display unit 5 that displays the image stored in the recording unit 4 are provided.
  • an ultraviolet light source including an absorption wavelength of oil is used as the first ultraviolet light source 1a and the second ultraviolet light source 1b.
  • black light having an emission peak of 365 nm ⁇ 50 nm it is particularly preferable to use black light having an emission peak of 365 nm ⁇ 50 nm.
  • the image pickup device 2 may be a general-purpose device that can output image data to the outside, such as a digital camera that captures visible light. It is desirable to arrange the first ultraviolet light source 1a and the second ultraviolet light source 1b with the image pickup device 2 interposed therebetween.
  • the oil leakage 11 emits fluorescence 9 when irradiated with the ultraviolet light component 7a or 7b from the first ultraviolet light source 1a and the second ultraviolet light source 1b. Since the fluorescence 9 is visible light, it can be photographed with the imaging device 2 for visible light.
  • black light which is an ultraviolet light source, contains a visible light component in addition to an ultraviolet light component, so that the visible light is reflected by the surface of the object to be imaged 13.
  • the reflected light is divided into diffuse reflected light and specular reflected light. Since the reflected light is visible light, the image is captured by the visible light imaging device 2.
  • the intensity of the captured visible light is generally lower than the intensity of the fluorescence 9, so that the emission of the fluorescence 9 appears remarkably and cannot interfere with the detection of the leaked oil 11. .
  • the intensity of the reflected light that has been photographed may be approximately the same as the intensity of the fluorescence 9 depending on the position of the imaging device 2.
  • the specular reflection light 10a of the visible light component 8a of the light irradiated by the first ultraviolet light source 1a is applied to the surface portion 12a of the object to be imaged 13. Is the maximum when the incident angle ⁇ a and the reflection angle ⁇ a ′ are equal. That is, when the imaging device 2 is positioned in the incident direction of the specular reflected light 10a, high-intensity visible light is captured from the surface portion 12a of the imaging target 13. The intensity is comparable to the intensity of the fluorescence 9, and it becomes difficult to detect oil leakage.
  • the specular reflection light of the visible light component of the ultraviolet light source reflected on the image pickup device 2 will be described as noise light.
  • the specular reflection light 10a is described as noise light 10a.
  • the surface portion 12a of the imaging target 13 is a position where the noise light 10a is emitted.
  • the fluorescence 9 is emitted by the ultraviolet light component 7b of the irradiation light and the visible light component 8b causes the imaging target 13 to be irradiated.
  • Noise light 10b is emitted from the surface portion 12b.
  • the incident angle ⁇ b and the reflection angle ⁇ b ′ are in the same relationship.
  • FIG. 1 only the ultraviolet light components 7a and 7b irradiated from the ultraviolet light sources 1a and 1b and the visible light components 8a and 8b emitting specular reflection are shown as irradiation light for easy understanding.
  • the ultraviolet light sources 1a and 1b irradiate the entire area of the imaging target 13.
  • the fluorescent light 9 generated from the ultraviolet light components 7a and 7b and the visible light components 8a and 8b and the noise light 10a and 10b due to specular reflection it becomes diffusely reflected light and forms a high-intensity luminescent image on the image pickup device 2. is not.
  • the imaging device 2 since the imaging device 2 is fixed and the fluorescence 9 is self-luminous, the arrangement position of the first ultraviolet light source 1 a and the second ultraviolet light source 1 b and the irradiation angle to the imaging target 13 are determined. Regardless, the emission position of the fluorescence 9 by the oil leak 11 on the image photographed by the image pickup device 2 does not change.
  • the light is always emitted at the same position on the image. Can be detected and identified as the position of the leaked oil 11 and the position where the light emission is observed at a different position in each image (OR condition) as the noise light generation position.
  • the imaging target 13 is irradiated with the first ultraviolet light source 1a.
  • the oil leakage 11 is irradiated with the ultraviolet light component 7a of the irradiation light
  • the oil leakage 11 emits fluorescence 9 and is reflected in the image pickup device 2 as shown in FIGS.
  • the noise light 10 a from the surface portion 12 a on the imaging target 13 is also reflected in the imaging device 2.
  • the image A taken by the image pickup device 2 is stored in the recording unit.
  • the sites where the intensity of visible light in the image A is strong are the fluorescence 9 site (the site of the oil leak 11) and the surface site 12a.
  • the object to be imaged 13 is irradiated with the second ultraviolet light source 1b.
  • the oil leakage 11 is irradiated with the ultraviolet light component 7b of the irradiation light
  • the oil leakage 11 emits fluorescence 9 and is reflected in the image pickup device 2 as shown in FIGS.
  • the noise light 10 b from the surface portion 12 b on the imaged object 13 is also reflected in the image pickup device 2.
  • the image B taken by the image pickup device 2 is stored in the recording unit.
  • the sites where the intensity of visible light in the image B is strong are the fluorescence 9 site (the site of the oil leak 11) and the surface site 12b.
  • the images A and B photographed in STEP 2 and STEP 5 are simultaneously displayed on the display unit 5. Since light emission appears at the same place in any image in the portion of the oil leak 11 where the fluorescence 9 occurs, it is determined that the oil leaks (AND condition). On the other hand, since the surface part 12a and the surface part 12b emit light at different positions for each image, the operator displays the state of light emission on the display and visually confirms it, and determines that it is a noise light generation part (OR condition). In this way, the oil leak 11 can be easily detected and identified regardless of the skill of the operator.
  • FIG. 5 is a diagram showing a second embodiment of the oil leakage detection method and apparatus according to the present invention.
  • the image processing unit 6 calls the image recorded by the recording unit 4 and automatically determines the oil leakage 11. The determined result is displayed on the display unit 5.
  • FIG. 6 is a flowchart when the oil leak 11 is automatically detected by the oil leak detection method and apparatus according to the second embodiment. Note that the operations from STEP 1 to STEP 6 are the same as those in the first embodiment.
  • the photographed image A is called, the R, G, and B values of each pixel are extracted, and the luminance Y n is calculated.
  • Y n 0.299R + 0.587G + 0.114B (1) and so on.
  • the brightness Y 1 of the image A is compared with a brightness threshold value determined to be the oil leakage 11 preset in the image processing unit 6, and a part equal to or higher than the threshold value is recorded.
  • the luminance of each pixel of the image B is calculated using the formula (1).
  • the threshold value for determining the oil leakage 11 set in advance in the image processing unit 6 is compared, and a part equal to or higher than the threshold value is recorded.
  • luminance with respect to the image A and the image B is the 1st ultraviolet light source 1a with respect to the state without the oil leak 11 at the time of the new installation of a transformer, and the state which adhered oil artificially.
  • the second ultraviolet light source 1b are measured and evaluated in advance and set in the image processing unit 6 as back data.
  • the parts of the image A and the image B that are equal to or higher than the threshold of brightness are compared.
  • the oil leakage 11 is determined if the luminance Y 1 and the luminance Y 2 are equal to or higher than the respective luminance threshold values in both images.
  • luminance differs for every image is determined as a part from which noise light 10a and 10b are emitted.
  • FIG. 7 is a diagram showing a third embodiment of the oil leakage detection method and apparatus according to the present invention. Since the control unit 3, the recording unit 4, and the display unit 5 are the same as those in the first and second embodiments, and the image processing unit 6 is the same as that in the second embodiment, the description thereof is omitted.
  • the first ultraviolet light source 1a and the second ultraviolet light source 1b are arranged to detect and identify the portions that emit the fluorescence 9 and the noise lights 10a and 10b. Only the ultraviolet light source 1a is arranged, and the first ultraviolet light source 1a is moved by the light source moving means arranged around the transformer to move to the arrangement position of the second ultraviolet light source 1b described in the first and second embodiments.
  • the other parts are the same as those in Examples 1 and 2.
  • the light source moving means is preferably a rail or a robot arm, but is not limited thereto.
  • FIG. 8 is a flowchart when oil leakage is automatically detected by the oil leakage detection method and apparatus according to the third embodiment.
  • FIG. 8 additional items in the embodiment will be described.
  • the portions other than STEP 4 in FIG. 8 are the same as those in the second embodiment.
  • the first ultraviolet light source 1a is moved by the method described above.
  • FIG. 9 is a diagram showing a fourth embodiment of the oil leakage detection method and apparatus according to the present invention. Since the control unit 3, the recording unit 4, and the display unit 5 are the same as those in the first and second embodiments, and the image processing unit 6 is the same as that in the second embodiment, the description thereof is omitted.
  • the same components as those in the above embodiment are denoted by the same reference numerals, description thereof is omitted, and only different portions will be described.
  • the ultraviolet light source 1c is disposed, and the image pickup devices 2a and 2b are disposed.
  • the noise light 10c due to the visible light component 8c of the irradiation light of the ultraviolet light source 1c is reflected on the image pickup device 2a but is not reflected on the image pickup device 2b with respect to the surface portion 12c of the image pickup object 13.
  • the noise light 10c due to the visible light component 8c is not reflected on the image pickup device 2a but reflected on the image pickup device 2b with respect to the surface portion 12d.
  • FIG. 10 is a flowchart when the oil leakage 11 is automatically detected by the detection method and apparatus according to the fourth embodiment.
  • the imaging target 13 is irradiated with the ultraviolet light source 1c.
  • the image A 1 photographed by the imaging device 2 a is stored in the recording unit 4.
  • the portions showing high-intensity visible light are the portion of the oil leak 11 and the surface portion 12 c.
  • the image B 1 captured by the image pickup device 2 b is stored in the recording unit 4.
  • the portions showing high-intensity visible light are the portion of the oil leak 11 and the surface portion 12 d.
  • the images A 1 and B 1 are read from the recording unit 4 and the image processing unit 6 performs image processing. Since the object to be imaged 13 is taken from a location where the two image pickup devices 2a and 2b are different, the position of the image to be imaged 13 is corrected so that the images A 1 and B 1 have the same position.
  • a correction coefficient by using a plurality of pre-characterized spots of the imaging target 13 as marks so that the image position can be easily corrected. Further, if the image pickup device 2a and the image pickup device 2b are arranged at the same distance from the surface of the object to be imaged 13 and parallel to the surface of the object to be imaged 13, the position can be corrected more easily. That is, if arranged in this way, a plurality of corrections such as enlargement and reduction of the image become unnecessary.
  • FIG. 11 is a diagram showing a fifth embodiment of the oil leakage detection method and apparatus according to the present invention. Since the control unit 3, the recording unit 4, and the display unit 5 are the same as those in the first and second embodiments, and the image processing unit 6 is the same as that in the second embodiment, the description thereof is omitted.
  • the same constituent elements as those in the fourth embodiment are denoted by the same reference numerals, description thereof is omitted, and only different portions will be described.
  • the image pickup devices 2a and 2b are installed, but in this embodiment, only the image pickup device 2a is installed.
  • the image pickup device 2a is moved by the moving means of the image pickup device 2a arranged around the transformer and moved to the installation location of the image pickup device 2b of the fourth embodiment.
  • a rail or a robot arm is suitable as in the third embodiment, but is not limited thereto.
  • FIG. 12 is a flowchart when the oil leak 11 is automatically detected by the oil leak detection method and apparatus according to the fifth embodiment. Since portions other than STEP 3 are the same as those in the fourth embodiment, description thereof is omitted.
  • STEP 3 after the image A 1 is completely captured in STEP 2, the image pickup device 2 a is moved by the method described above.
  • the object to be imaged 13 is photographed at a preset time interval using the fixed first ultraviolet light source 1a and the image pickup device 2.
  • This is a technique for detecting a change in the shape of the leaked oil 11 and identifying a site that emits the leaked oil 11 and the noise light 10a with respect to the image.
  • 13 and 14 are schematic views showing two images taken at a preset time interval.
  • FIG. 13 the parts where high-intensity visible light is imaged with respect to the imaging target 13 are a part 12e (referred to as an oil leakage part) and a part 12f (referred to as a part where noise light occurs).
  • the shape of the leaked oil 11 changes with time due to the influence of gravity.
  • FIG. 14 is a schematic diagram of an image of the imaging target 13 taken through a preset time interval. Since the oil leakage 11 flows downward along the side surface of the device, the shape changes as shown by a broken line.
  • the part 12f is a part where the noise light 10a is generated, the shape does not change regardless of the change of time. By comparing these images, the part 12f where the light emission shape does not change can be detected and identified as the part emitting the noise light 10a, and the part where the light emission shape changes can be detected and identified as the part of the oil leak 11.
  • FIG. 15 is a flowchart when oil leakage is automatically detected by the detection method and apparatus according to the fifth embodiment.
  • the imaging target 13 is irradiated with the first ultraviolet light source 1a.
  • the image A 2 captured by the image pickup device 2 is stored in the recording unit 4.
  • the portions where the high-intensity visible light is imaged on the surface of the imaging target 13 are the surface portion 12 e and the surface portion 12 f of the oil leak 11.
  • the image pickup device 2 takes a picture again at a preset time interval, and the obtained image B 2 is stored in the recording unit 4.
  • the portions where high-intensity visible light is imaged are the surface portion 12 e and the surface portion 12 f of the oil leak 11.
  • STEP 4 the first ultraviolet light source 1a is turned off. Since STEP5 and STEP6 are the same as those of the second embodiment, description thereof is omitted.
  • the portions of the images A 2 and B 2 that are equal to or higher than the luminance threshold value are compared.
  • a 2 when the number of parts equal to or greater than the threshold value of B 2 increases and the shape of the part changes, it is determined as oil leak 11. Moreover, when there is no change, it determines with the site
  • This embodiment has a bushing 14, a tank 15, a radiator 16, an upper pipe 17 a and a lower pipe 17 b that connect the tank 15 and the radiator 16, and an upper pipe connection 18 a and a lower pipe connection 18 b, as shown in FIG. 16.
  • An oil-filled transformer which is generally used for electric power equipment, will be described as an example, and a method and apparatus for detecting the oil leakage 11 in the connection portion 18b between the radiator 15 and the lower pipe will be described.
  • the oil-filled transformer has a structure in which the bushing 14, the tank 15, the radiator 16, the upper pipe 17a and the lower pipe 17b are filled with insulating oil.
  • the upper and lower pipe connections 18a and 18b are generally packed. It is fixed with bolts and nuts.
  • FIG. 16 is a side view of the first ultraviolet light source 1a, the second ultraviolet light source 1b, and the image pickup device 2 arranged around the transformer.
  • FIG. 17 is a top view of FIG.
  • the first ultraviolet light source 1 a and the image pickup device 2 are arranged at a location away from the side surface of the radiator 16. Further, the second ultraviolet light source 1 b is disposed at a location away from the front of the radiator 16.
  • the first ultraviolet light source 1a, the second ultraviolet light source 1b, and the image pickup device 2 are lower than the bottom surface height of the radiator 16, and at a position and height that can irradiate the lower portion of the radiator 16 and the bottom portion of the connecting portion 18b of the lower pipe. Install.
  • the connection portion between the radiator 16 and the lower pipe irradiated with the first ultraviolet light source 1a and the second ultraviolet light source 1b It is possible to detect the oil leak 11 with respect to the part 18b.
  • the details of the method and apparatus for detecting the leaked oil 11 are the same as the method described in the second embodiment, and a description thereof will be omitted. Further, as a result of intensive studies by the inventor, it was possible to improve the oil leakage detection sensitivity when the illuminance in the surrounding environment of the oil leakage detection target device is 50 lx or less. Therefore, detection sensitivity can be enhanced by detecting oil leakage after the shadow or sunset of the transformer, especially at night.
  • the introduction cost of the detection device can be reduced.
  • the power supply of the said detection apparatus not only this but a battery etc. may be utilized.
  • Visible light component 8c of light Visible light component 9 of irradiation light by ultraviolet light source 1c: Fluorescence 10a: Specular reflection light (noise light) of visible light component of light irradiated by first ultraviolet light source 1a 10b ...

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

 装置を複雑化することなく、ノイズ光の影響を除去した検出精度の高い漏油検出装置及びその方法を実現する。複数の異なる入射角度から油入機器を照らすように配置され、それぞれの入射角度で順番に点灯及び消灯を行う、油を励起する波長を含む紫外光源(1a、1b)と、点灯の際に紫外光源(1a、1b)からの紫外光により照射された油入機器を撮影する撮像機(2)と、撮像機(2)により撮影された画像それぞれを記録する記録部(4)と、画像それぞれを表示する表示部(5)とで漏油検出装置を構成する。画像それぞれを比較し、常に発光する位置が変わらない部位を漏油部位と判定し、発光する場合と発光しない場合がある部位をノイズ光部位と判定する。

Description

漏油検出装置と方法
 本発明は、変圧器、コンデンサ、GISの油圧操作器、整流器などの油入機器の漏油検出方法及び装置に関する。
 従来から、貯油タンクや変圧器等では、劣化あるいは事故等により、油漏れ(漏油)が発生する懸念があった。漏油は環境汚染及び災害につながる可能性があるため、劣化の初期段階における微量な漏油を検出する技術が求められてきた。微量な漏油を検出する従来技術としては、漏油の吸収波長を含む紫外光を外部より照射した際に、漏油から放出される蛍光(自発光)を検出するものがある。
 一般に当該紫外光の外部照射光源には、ブラックライトが用いられるが、ブラックライトの照射光には、紫外光の他に、紫外光に近い波長の可視光成分が含まれることがある。その結果、光源に含まれる可視光成分の強反射光(ノイズ光)も蛍光と共に検出され、検出の妨げとなる懸念があり、ノイズ除去による検出診断精度の向上が必要であった。
 この問題を解決するための従来技術としては特開平09-304281(特許文献1)に記載されているように、パルスレーザ光を漏油に照射し、バンドパスフィルタを利用した波長選択素子と、蛍光のみを検出する高速シャッタ機能と映像倍増機能を有するイメージインテンシファイアで蛍光のみを観察することによって、検出精度を向上する方法がある。
特開平09-304281号公報
 しかしながら、特許文献1に記載の技術では、検出器の構造が複雑化する懸念や、油の種別毎に、バンドパスフィルタを取りかえる必要があること等の問題があった。また、精密機器となるため、現地に常時設置した場合には、機器の管理等に労力を注ぐ必要があった。
 上記課題を解決するために、本発明に係る漏油検出装置は、複数の異なる入射角度から油入機器を照らすように配置され、それぞれの前記入射角度で順番に点灯及び消灯を行う、油を励起する波長を含む紫外光源と、前記点灯の際に前記紫外光源からの紫外光により照射された油入機器を撮影する撮像機と、前記撮像機により撮影された画像それぞれを記録する記録部と、前記画像それぞれを比較し、常に発光する位置が変わらない部位を漏油部位と判定し、発光する場合と発光しない場合がある部位をノイズ光部位と判定するために、前記画像それぞれを表示する表示部を有することを特徴とする。
 本発明によれば、装置を複雑化することなく、ノイズ光の影響を除去した検出精度の高い漏油検出方法とその装置を実現できる。
本発明による漏油検出装置の第1の実施形態を示す図である。 第1の実施形態の漏油検出動作を説明するフローチャートである。 第1の実施形態での第一の紫外光源を照射した際に得られる漏油とノイズ光を含む撮像の模式図である。 第1の実施形態での第二の紫外光源を照射した際に得られる漏油とノイズ光を含む撮像の模式図である 本発明による漏油検出方法および装置の第2の実施形態を示す図である。 第2の実施形態の漏油検出動作を説明するフローチャートである。 本発明による漏油検出方法および装置の第3の実施形態を示す図である。 第3の実施形態の漏油検出動作を説明するフローチャートである。 本発明による漏油検出方法および装置の第4の実施形態を示す図である。 第4の実施形態の漏油検出動作を説明するフローチャートである。 本発明による漏油検出方法および装置の第5の実施形態を示す図である。 第5の実施形態の漏油検出動作を説明するフローチャートである。 本発明による漏油検出方法および装置の第6の実施形態であり、撮影された画像を示す模式図である。 本発明による漏油検出方法および装置の第6の実施形態であり、予め設定した時間間隔の後で撮影された画像を示す模式図である。 第6の実施形態の漏油検出動作を説明するフローチャートである。 本発明による漏油検出方法および装置の第7の実施形態を示す図である。 図16の上視図である。
 以下、本発明の漏油検出方法と装置に関する実施の形態を、図面図1~図17に基づき説明する。なお、本明細書に記載するこの実施の形態が本発明を限定するものではない。以降の実施例では変圧器で一般的に使用される絶縁油(鉱油、植物エステル油等)を例にとり、漏油検出方法と装置について説明するが、油入機器全般の漏油検出方法と装置に関しても本発明は広く適用可能であり、変圧器に限定されるものではない。例えば、燃料油を保存するタンクやパイプライン等の漏油検出においても本発明を適用することが可能である。
 図1は、本発明による漏油検出方法と装置を具体的に示す第1の実施形態を示す図である。
 漏油検出装置100は第一の紫外光源1aと、第二の紫外光源1bと、固定配置された撮像機2と、第一の紫外光源1aと第二の紫外光源1b、および撮像機2の動作を制御する制御部3と、撮影された画像を記録する記録部4と、記録部4に格納された画像を表示する表示部5とを備えている。
 ここで、第一の紫外光源1aおよび第二の紫外光源1bとしては油の吸収波長を含む紫外光源を用いる。具体的には、発光ピークがそれぞれ265nm±50nm、275nm±50nm、345nm±50nm、365nm±50nmのブラックライトを用いることが可能である。この中でも、とりわけ、発光ピークが365nm±50nmのブラックライトを用いるのが好ましい。
 撮像機2は画像データを外部出力できる、例えば可視光を撮影するデジタルカメラ等の汎用的なものであっても良い。第一の紫外光源1aと第二の紫外光源1bは撮像機2を挟んで配置するのが望ましい。
 漏油11は第一の紫外光源1aと第二の紫外光源1bからの紫外光成分7a又は7bが照射されると、蛍光9を放出する。蛍光9は可視光であるため、可視光用の撮像機2で撮影することができる。
 一般に、紫外光源であるブラックライトは紫外光成分の他に可視光成分を含有するため、当該可視光が被撮像物13の表面で反射される。被撮像物13の表面状態により、反射光は拡散反射光と鏡面反射光に分けられる。反射光は可視光のため、可視光用の撮像機2で撮影されることになる。
 拡散反射光のみが撮影される場合には、撮影された可視光の強度は一般に蛍光9の強度より低いため、蛍光9による発光が顕著に現れ、漏油11の検出の妨げにはなり得ない。しかし、鏡面反射光が生じる場合には、撮像機2の配置位置により、撮影された反射光の強度は蛍光9の強度と同程度となる場合がある。
 例えば、第一の紫外光源1aを被撮像物13に照射する時には、被撮像物13の表面部位12aに対して、当該第一の紫外光源1aによる照射光の可視光成分8aの鏡面反射光10aの強度は入射角度θaと反射角度θa’が等しくなった場合に最大となる。つまり、鏡面反射光10aの入射方向に撮像機2が位置する場合には、被撮像物13の表面部位12aから高強度の可視光が撮影されることになる。その強度は蛍光9の強度と同程度となり、漏油を検出することが困難になってしまう。以下、このように撮像機2に映り込む紫外光源の可視光成分の鏡面反射光をノイズ光として記述する。例えば、鏡面反射光10aはノイズ光10aと記述する。
 以上で説明したように、例えば、第一の紫外光源1aと撮像機2を用いて撮影された画像においては、被撮像物13の表面部位12aがノイズ光10aを発する位置となる。
 同じように、第二の紫外光源1bを被撮像物13に照射する場合には、当該照射光の紫外光成分7bにより、蛍光9が放出されると共に、可視光成分8bによって被撮像物13の表面部位12bからは、ノイズ光10bが発せされる。ここで、入射角度θbと反射角度θb’は等しい関係にある。
 なお、図1では、説明を分かりやすくするために、紫外光源1aおよび1bから照射される紫外光成分7aおよび7bと、鏡面反射を発する可視光成分8aおよび8bのみを照射光として示しているが、当該紫外光源1aおよび1bからは当然、被撮像物13の全域に亘って照射されている。しかしながら、当該紫外光成分7aおよび7bと可視光成分8aおよび8bから生じる蛍光9と鏡面反射によるノイズ光10aおよび10b以外は、拡散反射光となり、撮像機2に高強度の発光画像を形成するものではない。
 ここで、撮像機2が固定されていること、および蛍光9が自発光であるため、第一の紫外光源1aと第二の紫外光源1bの配置位置、および被撮像物13への照射角度によらず、撮像機2で撮影した画像上の漏油11による蛍光9の発光位置は変わらない。
 したがって、第一の紫外光源1aのみを照射する場合に撮影された画像と、第二の紫外光源1bのみを照射する場合に撮影された画像を比較することにより、画像上で常に同じ位置に発光が観測される部位(AND条件)を漏油11の位置として、また、ぞれぞれの画像で異なる位置に発光が観測される位置(OR条件)をノイズ光発生位置として検出および識別できる。
 以下、図1、図2、図3、図4を用いて本実施形態の漏油検出装置の動作を詳細に説明する。
 先ず、STEP1では、第一の紫外光源1aを被撮像物13に照射する。当該照射光の紫外光成分7aが漏油11に照射されると、図1、3に示すように漏油11は蛍光9を放出し撮像機2に映り込む。また、同時に、被撮像物13上の表面部位12aからのノイズ光10aも撮像機2に映り込む。
 STEP2では、撮像機2で撮影し、且つ得られた画像Aを記録部に保存する。画像Aでの可視光の強度が強い部位は蛍光9の部位(漏油11の部位)と表面部位12aである。
 STEP3では、当該光源1aを消灯する。
 STEP4では、第ニの紫外光源1bを被撮像物13に照射する。当該照射光の紫外光成分7bが漏油11に照射されると、図1、4に示すように漏油11は蛍光9を放出し撮像機2に映り込む。また同時に、被撮像物13上の表面部位12bからのノイズ光10bも撮像機2に映り込む。
 STEP5では、撮像機2で撮影し、且つ得られた画像Bを記録部に保存する。画像Bでの可視光の強度が強い部位は蛍光9の部位(漏油11の部位)と表面部位12bである。
 STEP6では、当該光源1bを消灯する。
 STEP7では、STEP2とSTEP5で撮影した画像A、およびBを表示部5に同時に表示する。蛍光9が生じる漏油11の部位は何れの画像においても同じ場所に発光が現れるので、漏油と判定する(AND条件)。一方、表面部位12aと表面部位12bは画像ごとに異なる位置で発光するため、オペレーターが発光の様子を表示器で表示して目視により確認し、ノイズ光発生部位と判定する(OR条件)。このように、オペレーターの技量によらず、漏油11を簡単に視覚的に検出および識別できる。
 図5は、本発明による漏油検出方法および装置の第2の実施形態を示す図である。ここでは実施例1と同一の要素には同一の符号を付して説明を省略し、異なる部分についてのみ説明する。画像処理部6では、記録部4で記録した画像を呼び出して、漏油11を自動判定する。判定した結果は表示部5に表示する。
 図6は、実施例2の漏油検出方法および装置で、漏油11を自動検出する際のフローチャートである。なお、STEP1からSTEP6の動作は、第1の実施形態と同じである。
 STEP7では、撮影された画像Aを呼び出して、各ピクセルのR、G、B値を抽出し、輝度Ynを計算する。Ynの計算式としては、例えば一般的に知られているYn=0.299R+0.587G+0.114B (1)
などがある。ここで、nはSTEP7ではn=1、後述するSTEP8ではn=2として区別する。
 画像Aの輝度Y1と、画像処理部6に予め設定された漏油11と判定する輝度の閾値とを比較し、当該閾値以上の部位を記録する。
 STEP8では、式(1)を利用して、画像Bの各ピクセルの輝度を算出する。次にSTEP7と同様に画像処理部6に予め設定された漏油11と判定する輝度の閾値とを比較し、当該閾値以上の部位を記録する。
 なお、画像Aおよび画像Bに対するそれぞれの輝度の閾値は、変圧器の新規据付時などの漏油11のない状態と、人為的に油を付着させた状態に対して、第一の紫外光源1a、および第二の紫外光源1bを用いて予め測定、評価し、バックデータとして画像処理部6に設定しておけば良い。
 STEP9では、画像Aと画像Bのそれぞれの輝度の閾値以上の部位を比較する。画像Aと画像Bにおいて、両方の画像で輝度Y1、およびY2がそれぞれの輝度の閾値以上の部位が一致すれば漏油11と判定する。画像ごとに輝度の閾値以上の部位が異なる部位をノイズ光10aおよび10bが発せられる部位と判定する。
 上記の通り、本実施例では、輝度の閾値を利用することで、漏油の自動判定と検出精度の向上を同時に行うことが可能となる。
 図7は、本発明による漏油検出方法および装置の第3の実施形態を示す図である。制御部3と、記録部4と、表示部5は前記実施例1および実施例2と同じであり、また、画像処理部6は前記実施例2と同じであるため省略する。
 実施例1と2では第一の紫外光源1aと第二の紫外光源1bを配置することで、蛍光9とノイズ光10aおよび10bを発する部位を検出・識別するが、本実施例では第一の紫外光源1aのみを配置し、第一の紫外光源1aを変圧器周辺に配置した光源移動手段によって移動させて、実施例1および2で説明した第二の紫外光源1bの配置位置へ移動する。それ以外の部分は実施例1および2と同じである。なお、光源移動手段としては、レールやロボットアーム等が好適であるが、この限りではない。
 図8は、実施例3での漏油検出方法および装置で、漏油を自動検出する際のフローチャートである。ここでは、図6と対比して、本実施例の形態での追加項目について説明する。
 図8のSTEP4以外の部分は実施例2と同じである。図8のSTEP4では、図8のSTEP3で画像Aの撮影が完了した後に、第一の紫外光源1aを上述した方法で移動する。
 なお、ここでは一例として実施例3のフローチャートを用いて示したが、図2に示す実施例1のフローチャートでは、図2のSTEP3とSTEP4の間に本実施例の図8に示すSTEP4を追加して紫外光源を一台とすれば良い。
 図9は、本発明による漏油検出方法および装置の第4の実施形態を示す図である。制御部3と、記録部4と、表示部5は実施例1および実施例2と同じであり、また、画像処理部6は実施例2と同じであるため省略する。ここでは上記実施例と同一の構成要素には同一の符号を付して説明を省略し、異なる部分についてのみ説明する。
 本実施例では、紫外光源1cのみを配置し、また撮像機2aと2bを配置する。被撮像物13の表面部位12cに対して、紫外光源1cの照射光の可視光成分8cによるノイズ光10cは撮像機2aに映り込むが、撮像機2bに映り込まない。同じように、表面部位12dに対して、可視光成分8cによるノイズ光10cは撮像機2aに映り込まないが、撮像機2bに映り込む。
 図10は実施例4における検出方法および装置で漏油11を自動検出する際のフローチャートである。
 STEP1では、紫外光源1cを被撮像物13に照射する。
 STEP2では、撮像機2aで撮影し、且つ得られた画像A1を記録部4に保存する。画像A1において、高強度な可視光を示す部位は漏油11の部位と表面部位12cとなる。
 STEP3では、撮像機2bで撮影し、且つ得られた画像B1を記録部4に保存する。画像B1において、高強度な可視光を示す部位は漏油11の部位と表面部位12dとなる。
 STEP4では、紫外光源1cを消灯する。
 STEP5では、画像A1とB1を記録部4から読み出して、画像処理部6で画像処理を行う。撮像機2aと2bの二台が異なる場所から被撮像物13を撮影するので、被撮像物13の位置が画像A1とB1で同じ位置となるように画像の位置補正を行う。
 なお、画像位置を簡単に補正できるように被撮像物13の予め特徴のある複数のスポットを目印として、補正係数を求めておくなどしておけば好適である。また、撮像機2aと撮像機2bは被撮像物13の表面から同じ距離、且つ被撮像物13の表面と平行に配置すれば、より簡単に位置補正が可能となる。つまり、このように配置すれば、画像の拡大や縮小などの複数の補正が不要となる。
 画像処理部6に画像B1を補正した画像B1’および画像A1を保存する。
 STEP6からSTEP8では、A1とB1’を利用して、漏油の自動判定を行う。自動判定方法は実施例2と同じであるため説明を省略する。
 図11は、本発明による漏油検出方法および装置の第5の実施形態を示す図である。制御部3と、記録部4と、表示部5は実施例1および実施例2と同じであり、また画像処理部6は前記実施例2と同じであるため省略する。ここでは実施例4と同一の構成要素には同一の符号を付して説明を省略し、異なる部分についてのみ説明する。
 実施例4では撮像機2aと2bを設置するが、本実施例では、撮像機は2aのみ設置する。撮像機2aを変圧器周辺に配置した撮像機2aの移動手段によって移動させて実施例4の撮像機2bの設置場所へ移動する。なお、撮像機の移動手段としては、実施例3と同様にレールやロボットアームが好適であるが、この限りではない。
 図12は、実施例5における漏油検出方法および装置で漏油11を自動検出する際のフローチャートである。STEP3の以外の部分は実施例4と同じであるため説明を省略する。STEP3において、STEP2で画像A1の撮影が完了した後に、撮像機2aを上述した方法で移動する。
 本実施例は変圧器の側面に付着した油を検出する時に、固定した第一の紫外光源1aと撮像機2を利用して、予め設定した時間間隔で被撮像物13を撮影し、得られた画像に対して、漏油11の形状の変化を検出し漏油11とノイズ光10aを発する部位を識別する手法である。図13および図14は、予め設定した時間間隔で撮影された二枚の画像を示す模式図である。
 図13での被撮像物13に対する高強度の可視光が撮影された部位は、部位12e(漏油部位とする)と部位12f(ノイズ光が生じる部位とする)である。漏油11は重力の影響により、時間の経過と共に形状が変化する。図14は予め設定した時間間隔を経て撮影された被撮像物13の画像の模式図である。漏油11は機器の側面を伝って下向きに流れるため、破線で示すように形状が変化する。一方、部位12fはノイズ光10aが生じる部位であるため、時間の変化によらず、形状に変化はない。これらの画像を比較することにより、発光形状が変化しない部位12fはノイズ光10aを発する部位として、また、発光形状が変化する部位は漏油11の部位として検出・識別できる。
 図15は実施例5における検出方法および装置で漏油を自動検出する際のフローチャートである。 STEP1では、第一の紫外光源1aを被撮像物13に照射する。
 STEP2では、撮像機2で撮影し、且つ得られた画像A2を記録部4に保存する。画像A2で、被撮像物13の表面に高強度の可視光が撮影される部位は、漏油11の表面部位12eと表面部位12fである。
 STEP3では、予め設定した時間間隔をおいて撮像機2で再度撮影し、得られた画像B2を記録部4に保存する。画像B2で、高強度の可視光が撮影される部位は、漏油11の表面部位12eと表面部位12fである。
 STEP4では、第一の紫外光源1aを消灯する。STEP5とSTEP6では、第二の実施形態と同じであるため説明は省略する。
 STEP7では、画像A2とB2の輝度の閾値以上の部分を比較する。A2と比べて、B2の閾値以上の部位が増加し、且つ当該部位の形状に変化が生じた場合には漏油11と判定する。また、変化がない場合にはノイズ光10aを発する部位と判定する。
 本実施例は、図16に示すブッシング14、タンク15、ラジエータ16、タンク15とラジエータ16を繋ぐ上部配管17aと下部配管17b、および上部配管の接続部18aと下部配管の接続部18bを有する、一般的に電力設備に用いられる、油入変圧器を例にとり、ラジエータ15と下部配管の接続部18bの漏油11を検出する方法及び装置について示す。
 油入変圧器はその名の通り、ブッシング14、タンク15、ラジエータ16、上部配管17aと下部配管17bが絶縁油で満たされた構造であり、上・下部配管の接続部18aおよび18bは一般にパッキンを介してボルトとナットで固定されている。
 図16は、第一の紫外光源1a、第二の紫外光源1bと撮像機2を上記変圧器の周辺に配置した状態での側面図である。
 図17は図16の上視図である。第一の紫外光源1aと撮像機2はラジエータ16の側面から離れた場所に配置する。また、第二の紫外光源1bはラジエータ16の正面から離れた場所に配置する。
 第一の紫外光源1a、第二の紫外光源1bおよび撮像機2はラジエータ16の底面高さより低く、且つラジエータ16の下部と、下部配管の接続部18bの底部を照射可能な位置および高さに設置する。
 以上の配置によれば、紫外光源1a、1b二台と撮像機2の一台の構成で、第一の紫外光源1aと第二の紫外光源1bが照射されるラジエータ16と下部配管の接続部18bの部位に対して、漏油11を検出することが可能である。漏油11の検出方法および装置の詳細については、実施例2で説明した方法と同じであるため、説明を省略する。また発明者が鋭意検討した結果、漏油検出対象機器の周辺環境の照度が50lx以下の場合に漏油の検出感度を高めることができた。そこで、変圧器の影や日没後、特に夜間時を利用して漏油を検出すれば、検出感度を高めることができる。
 さらに、変電所内の監視カメラを撮像機2として利用したり、漏油検出対象機器が設置されている構内の、例えば監視用の赤外センサーなどに給電している既設電源を利用することによって、当該検出装置の導入費用を低減できる。なお、当該検出装置の電源に関しては、この限りではなく、バッテリーなどを利用しても良い。
100・・・漏油検出装置
1a・・・第一の紫外光源
1b・・・第二の紫外光源
1c・・・紫外光源
2・・・撮像機
2a・・・撮像機
2b・・・撮像機
3・・・制御部
4・・・記録部
5・・・表示部
6・・・画像処理部
7a・・・漏油に照射される第一の紫外光源1aの照射光の紫外光成分
7b・・・漏油に照射される第二の紫外光源1bの照射光の紫外光成分
8a・・・第一の紫外光源1aによる照射光の可視光成分
8b・・・第二の紫外光源1bによる照射光の可視光成分
8c・・・紫外光源1cによる照射光の可視光成分
9・・・蛍光
10a・・・第一の紫外光源1aによる照射光の可視光成分の鏡面反射光(ノイズ光)
10b・・・第二の紫外光源1bによる照射光の可視光成分の鏡面反射光(ノイズ光)
10c・・・紫外光源1cによる照射光の可視光成分の鏡面反射光(ノイズ光)
11・・・漏油
12a・・・被撮像物13の表面部位
12b・・・被撮像物13の表面部位
12c・・・被撮像物13の表面部位
12d・・・被撮像物13の表面部位
12e・・・被撮像物13の表面部位
12f・・・被撮像物13の表面部位
13・・・被撮像物
14・・・変圧器ブッシング
15・・・変圧器タンク
16・・・変圧器ラジエータ
17a・・・変圧器タンクとラジエータを繋ぐ上部配管
17b・・・変圧器タンクとラジエータを繋ぐ下部配管
18a・・・上部配管の接続部
18b・・・下部配管の接続部

Claims (9)

  1.  複数の異なる入射角度から油入機器を照らすように配置され、それぞれの前記入射角度で順番に点灯及び消灯を行う、油を励起する波長を含む紫外光源と、
     前記点灯の際に前記紫外光源からの紫外光により照射された油入機器を撮影する撮像機と、
     前記撮像機により撮影された画像それぞれを記録する記録部と、
     前記画像それぞれを比較し、常に発光する位置が変わらない部位を漏油部位と判定し、発光する場合と発光しない場合がある部位をノイズ光部位と判定するために、前記画像それぞれを表示する表示部を有する漏油検出装置。
  2.  請求項1において、
     前記油を励起する波長を含む紫外光源は、発光ピークが265nm±50nm、275nm±50nm、345nm±50nm、365nm±50nmのいずれかであることを特徴とする漏油検出装置。
  3.  請求項1において、
     さらに、前記漏油部位と前記ノイズ光部位の光量を定量的に判定するための画像処理部を有することを特徴とする漏油検出方装置。
  4.  請求項3において、
     前記画像処理部の前記光量を定量的に判定するために、輝度による閾値の判定機能を有することを特徴とする漏油検出装置。
  5.  請求項4において、
     前記判定機能は予め漏油のない状態での前記光量をバックデータとして有することを特徴とする漏油検出装置。
  6.  請求項1において、
     前記紫外光源は移動手段を有することを特徴とする漏油検出装置。
  7.  請求項1において、
     さらに、前記画像それぞれを位置補正する位置補正手段を有することを特徴とする漏油検出装置。
  8.  複数の異なる入射角度から油入機器を照らすように、油を励起する波長を含む紫外光源を配置し、
     前記紫外光源を前記それぞれの入射角度で順番に点灯及び消灯し、
     前記点灯した際に前記紫外光源からの紫外光により照射された油入機器をそれぞれ撮影し、
     前記撮影した画像それぞれを比較し、常に発光する位置が変わらない部位を漏油部位と判定し、発光する場合と発光しない場合がある部位をノイズ光部位と判定する漏油検出方法。
  9.  請求項8において、
     前記油を励起する波長を含む紫外光源は、発光ピークが265nm±50nm、275nm±50nm、345nm±50nm、365nm±50nmのいずれかであることを特徴とする漏油検出方法。
PCT/JP2015/059542 2014-10-17 2015-03-27 漏油検出装置と方法 WO2016059812A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177006344A KR101952524B1 (ko) 2014-10-17 2015-03-27 누유 검출 장치와 방법
US15/519,301 US10113933B2 (en) 2014-10-17 2015-03-27 Leakage oil detector system and method
MX2017004962A MX2017004962A (es) 2014-10-17 2015-03-27 Sistema y metodo detector de fugas de aceite.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-212189 2014-10-17
JP2014212189A JP6411856B2 (ja) 2014-10-17 2014-10-17 漏油検出装置と方法

Publications (1)

Publication Number Publication Date
WO2016059812A1 true WO2016059812A1 (ja) 2016-04-21

Family

ID=55746366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059542 WO2016059812A1 (ja) 2014-10-17 2015-03-27 漏油検出装置と方法

Country Status (6)

Country Link
US (1) US10113933B2 (ja)
JP (1) JP6411856B2 (ja)
KR (1) KR101952524B1 (ja)
MX (1) MX2017004962A (ja)
TW (1) TWI550264B (ja)
WO (1) WO2016059812A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674503A (zh) * 2022-05-30 2022-06-28 中海石油(中国)有限公司 一种水下沉箱漏油检测装置
US11494888B2 (en) * 2018-01-18 2022-11-08 Hitachi, Ltd. Work terminal, oil leakage detection apparatus, and oil leakage detection method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6498552B2 (ja) * 2015-07-15 2019-04-10 株式会社日立製作所 漏油検出システム
JP6611843B2 (ja) * 2018-03-07 2019-11-27 東芝エレベータ株式会社 油圧エレベータ内の油漏れ検出システム
JP7096780B2 (ja) * 2019-02-14 2022-07-06 株式会社日立製作所 漏油検出装置及び漏油検出方法
JP7245703B2 (ja) * 2019-03-29 2023-03-24 一般財団法人電力中央研究所 Pcbを含む油の検出方法、及びpcbを含む油の除去方法
US11685226B2 (en) * 2019-07-08 2023-06-27 Basden Francis Automobile air conditioning unit leak detection device
US20220291072A1 (en) * 2021-03-10 2022-09-15 Dell Products, Lp Optical liquid coolant leak detector
CN113514193B (zh) * 2021-07-13 2022-12-02 江铃汽车股份有限公司 基于图像识别的汽车碰撞燃油泄漏检测方法
RU2769597C1 (ru) * 2021-09-09 2022-04-04 Вячеслав Владимирович Антюфеев Установка для обнаружения утечек технологических жидкостей
RU2770070C1 (ru) * 2021-09-09 2022-04-14 Вячеслав Владимирович Антюфеев Способ обнаружения утечек технологических жидкостей
KR102427355B1 (ko) * 2022-01-13 2022-07-29 (주)엠씨마스터스 오일 누출 자동 검지 장치
GB2619772B (en) * 2022-06-17 2024-06-19 Foster & Freeman Ltd Apparatus and methods for identifying compounds of interest
CN117686153B (zh) * 2024-02-04 2024-04-09 江苏中创机械装备制造有限公司 一种轨道车辆转向架检验系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07503317A (ja) * 1991-12-23 1995-04-06 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド Pcb又はpcb鉱物油のこぼれ輪郭測定のためのビデオ蛍光モニタ
JPH08128916A (ja) * 1994-10-31 1996-05-21 Mitsubishi Electric Corp 油漏れ検出装置
JP5351081B2 (ja) * 2010-03-09 2013-11-27 株式会社四国総合研究所 漏油遠隔監視装置および方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897551A (en) * 1988-04-11 1990-01-30 Spectral Sciences, Inc. Leak detector
JPH09304281A (ja) 1996-05-09 1997-11-28 Tokyo Electric Power Co Inc:The 油検知装置
KR100264458B1 (ko) * 1997-09-18 2001-03-02 홍선표 지하매설탱크의 누유측정 장치
KR100275825B1 (ko) * 1998-09-02 2001-03-02 이계철 관로의 누수위치 검사장치
JP2004361329A (ja) * 2003-06-06 2004-12-24 Ushio Inc パターン検査方法および装置
CN2629019Y (zh) * 2003-07-18 2004-07-28 上海亿邦工贸有限公司 用于荧光示踪检漏的紫外检漏灯
US20050076706A1 (en) * 2003-10-08 2005-04-14 The Boeing Company Apparatus and method for use in detecting a seal and paint failure
CN101387568A (zh) * 2007-09-11 2009-03-18 上海电缆研究所 六氟化硫泄漏点的定位方法及其定位系统
NO329675B1 (no) * 2009-03-12 2010-11-29 Integrated Optoelectronics As Fremgangsmate og system for maling/detektering av kjemikaliesol
US8796627B2 (en) * 2010-12-07 2014-08-05 Techwell Consulting Llc Apparatus and method for detecting the presence of water on a remote surface
DK2866047T3 (da) * 2013-10-23 2021-03-29 Ladar Ltd Detekteringssystem til detektering af en genstand på en vandoverflade
US9322716B2 (en) * 2014-01-07 2016-04-26 Panasonic Intellectual Property Corporation Of America Component measuring apparatus and moving body
TWM479415U (zh) * 2014-01-15 2014-06-01 meng-da Guo 螢光自動光學檢查機
US9898830B2 (en) * 2015-03-17 2018-02-20 Hitachi, Ltd. Oil leakage detector and oil leakage detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07503317A (ja) * 1991-12-23 1995-04-06 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド Pcb又はpcb鉱物油のこぼれ輪郭測定のためのビデオ蛍光モニタ
JPH08128916A (ja) * 1994-10-31 1996-05-21 Mitsubishi Electric Corp 油漏れ検出装置
JP5351081B2 (ja) * 2010-03-09 2013-11-27 株式会社四国総合研究所 漏油遠隔監視装置および方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAHIKO KUROKI ET AL.: "A Technique to Visualize Tranparent Oil Using Pulsed Fluorescence Method", IEEJ TRANSACTIONS ON SENSORS AND MICROMACHINES, vol. 118, no. 10, October 1998 (1998-10-01), pages 449 - 454 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11494888B2 (en) * 2018-01-18 2022-11-08 Hitachi, Ltd. Work terminal, oil leakage detection apparatus, and oil leakage detection method
CN114674503A (zh) * 2022-05-30 2022-06-28 中海石油(中国)有限公司 一种水下沉箱漏油检测装置

Also Published As

Publication number Publication date
KR101952524B1 (ko) 2019-02-26
MX2017004962A (es) 2017-06-20
KR20170039737A (ko) 2017-04-11
TW201616112A (zh) 2016-05-01
JP6411856B2 (ja) 2018-10-24
JP2016082075A (ja) 2016-05-16
US20170234762A1 (en) 2017-08-17
TWI550264B (zh) 2016-09-21
US10113933B2 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
JP6411856B2 (ja) 漏油検出装置と方法
JP6944014B2 (ja) 油入機器の漏油検出装置、油入機器の漏油検出方法および油入機器の漏油検出装置の画像処理部
JP5077872B2 (ja) 太陽電池のフォトルミネセンスによる欠陥検査装置及び方法
US10755442B2 (en) Oil leakage detector and oil leakage detection method and image processing unit
KR101949257B1 (ko) 디스플레이 모듈 검사장치 및 검사방법
JP5557368B2 (ja) 半導体検査装置及び半導体検査方法
JP2011185757A (ja) 漏油遠隔監視装置および方法
WO2013175703A1 (ja) 表示装置の検査方法、および表示装置の検査装置
WO2019176467A1 (ja) 集光型太陽光発電装置の検査システム及び受光部の検査方法
JP5589888B2 (ja) 表面検査装置の評価装置及び表面検査装置の評価方法
JP6775332B2 (ja) 検査装置および生産管理方法
JP2015158433A (ja) 漏油確認方法および漏油確認用スコープ
JP6807259B2 (ja) 変圧器の絶縁油劣化診断システム及び方法
JP5566516B2 (ja) 軌道変位測定装置
US11994448B2 (en) Leakage oil detection device and leakage oil detection method
KR101351000B1 (ko) 복수 개의 검사 모드를 가지는 인라인 카메라 검사 장치
KR101351004B1 (ko) 상하 이동이 가능한 결함 검출용 카메라 어레이가 구비된 이송장치
JP2009075044A (ja) 有機elパネル基板の導電性ポリマー層の膜厚不良検査装置及びそれを用いた膜厚不良検査方法
CN110987939A (zh) 检测方法及检测装置
JP2010014430A (ja) 蛍光体検査装置
KR101446757B1 (ko) 디스플레이 패널 검사장치
JP6030833B2 (ja) X線検査装置
CN104101482A (zh) 发光模块检测装置以及发光模块检测方法
JP2008232789A (ja) 表示体の欠陥検査装置および欠陥検査方法
KR20180052155A (ko) 표시 장치의 검사 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177006344

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15519301

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/004962

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851102

Country of ref document: EP

Kind code of ref document: A1