WO2016056619A1 - 熱硬化性樹脂組成物及びその製造方法 - Google Patents

熱硬化性樹脂組成物及びその製造方法 Download PDF

Info

Publication number
WO2016056619A1
WO2016056619A1 PCT/JP2015/078580 JP2015078580W WO2016056619A1 WO 2016056619 A1 WO2016056619 A1 WO 2016056619A1 JP 2015078580 W JP2015078580 W JP 2015078580W WO 2016056619 A1 WO2016056619 A1 WO 2016056619A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
resin composition
temperature
viscosity
viscosity behavior
Prior art date
Application number
PCT/JP2015/078580
Other languages
English (en)
French (fr)
Inventor
正明 星山
豊和 発地
利章 榎本
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to KR1020177009762A priority Critical patent/KR102319292B1/ko
Priority to JP2016553150A priority patent/JP6657104B2/ja
Priority to US15/517,742 priority patent/US10388583B2/en
Publication of WO2016056619A1 publication Critical patent/WO2016056619A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/04Epoxynovolacs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3437Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a thermosetting resin composition for semiconductor encapsulation and a method for producing the same, and more particularly to a thermosetting resin composition for pre-feed type semiconductor encapsulation and a method for producing the same.
  • a capillary flow method using a capillary underfill (CUF) shown in FIG. 17 is known.
  • CCF capillary underfill
  • a semiconductor chip such as an IC chip having a solder layer is placed on the flux (FIG. 17B).
  • reflow soldering is performed (FIG. 17C).
  • the excess flux is washed (FIG. 17 (d)).
  • underfill is poured into the gap between the chip and the substrate by utilizing capillary action (FIG. 17E).
  • the underfill is thermally cured by heat treatment (FIG. 17 (f)).
  • TAB thermal compression bonding
  • PAM pre-applied underfill material
  • FIG. 18A a pre-applied type underfill such as non-conductive paste (NCP) is applied on a substrate terminal (FIG. 18A).
  • NCP non-conductive paste
  • FIG. 18B a semiconductor chip provided with solder balls is heat-pressed on the underfill
  • FIG. 18C the underfill is secondarily cured by heat treatment
  • Such a thermal compression bonding method does not use flux, and requires only three processes: an underfill coating process, a semiconductor chip thermocompression bonding process, and a heat treatment process. Therefore, it is possible to mount the semiconductor chip efficiently.
  • Patent Document 2 discloses (A) a liquid epoxy resin, (B) a thermoplastic resin, (C) a curing agent, (D) 50 to 50, as a preinstalled semiconductor sealing film used in flip chip bonding.
  • a pre-installed semiconductor sealing film characterized by containing a latent curing accelerator heat-treated at 100 ° C. and (E) an inorganic filler is described.
  • the above-described thermal compression bonding method has a problem that it is difficult to achieve both suppression of voids in the underfill and good solder connection in the thermocompression bonding process of the semiconductor chip shown in FIG.
  • thermocompression bonding process of the semiconductor chip shown in FIG. 18B when the viscosity of the primary cured underfill is too low, generation of outgas cannot be suppressed and voids are likely to occur. For this reason, in the thermocompression bonding process of the semiconductor chip, whether or not outgas is generated is determined depending on the viscosity of the underfill. When outgas is generated, voids are generated.
  • the underfill viscosity is too high in the semiconductor chip thermocompression bonding step shown in FIG. 18B, the connection between the solder ball and the substrate terminal is hindered by the underfill.
  • the underfill desirably exhibits a viscosity behavior that does not start thickening until the molten solder spreads wet. If the underfill begins to thicken before the solder spreads, the solder spread is inhibited, resulting in poor contact.
  • the temperature increase rate is increased to 260 ° C. at 1800 ° C./minute (about 30 ° C./second), for example.
  • voids are generated in the current underfill composition.
  • the resin has a high viscosity around a solder melting temperature of 220 ° C.
  • the underfill In the thermal compression bonding method, it is necessary to make the underfill have a composition exhibiting a viscosity behavior that achieves both void suppression and solder connection.
  • the viscosity behavior of the underfill following the temperature behavior during the semiconductor chip mounting process (for example, the temperature behavior at the heating rate of 1800 ° C./min described above). Therefore, in the conventional method, the viscosity behavior can only be predicted based on the temperature-dependent viscosity data measured with a rheometer at a rate of temperature increase of 3 ° C./min. However, this method could not suppress the voids.
  • the present invention has been made in view of the above problems.
  • the present invention is used as an underfill for obtaining a good solder connection while suppressing the generation of voids in the thermocompression bonding process of a semiconductor chip by a thermal compression bonding method when it is processed under a temperature rising condition required for the underfill. It aims at obtaining the thermosetting resin composition which can be manufactured, and its manufacturing method.
  • the present invention has the following configuration.
  • the present invention is a thermosetting resin composition having the following constitutions 1 to 14.
  • the present invention also provides a method for producing a thermosetting resin composition having the following constitutions 15 to 25.
  • Configuration 1 of the present invention is a thermosetting resin composition including a thermosetting resin, a curing agent, and a flux agent, and the temperature change rate of the viscosity when the temperature is increased with a predetermined temperature increase profile is 30 Pa ⁇ sec / second.
  • a thermosetting resin composition having a temperature of 200 to 250 ° C.
  • thermosetting resin composition of the present invention can be used as an underfill for obtaining good solder connection while suppressing the generation of voids when treated under the temperature rising condition required for the underfill.
  • Configuration 2 of the present invention is the thermosetting resin composition according to Configuration 1, wherein the thermosetting resin is a phenol novolac epoxy resin and / or a (meth) acrylate compound.
  • thermosetting resin is a phenol novolac type epoxy resin and / or a (meth) acrylate compound, generation of voids can be more reliably suppressed, and better solder connection can be achieved. Obtainable.
  • Configuration 3 of the present invention is the thermosetting resin composition according to Configuration 1 or 2, wherein the predetermined temperature increase profile is a temperature increase profile in which the temperature is increased from 145 ° C. to 258 ° C. in 6 seconds.
  • the predetermined temperature increase profile can be a profile close to the actual temperature increase profile, so that when processing is performed under the temperature increase condition required for underfill, generation of voids is suppressed. Meanwhile, a thermosetting resin composition that can be used as an underfill for obtaining good solder connection can be obtained.
  • Configuration 4 of the present invention is a temperature increase profile in which the predetermined temperature increase profile further includes a temperature increase from 152 ° C. to 152 ° C. over 1 second and then a temperature increase from 152 ° C. to 253 ° C. over 4 seconds.
  • thermosetting resin composition that can be used as an underfill for obtaining better solder connection can be obtained.
  • Configuration 5 of the present invention is the thermosetting resin composition according to configurations 1 to 4, wherein the thermosetting resin composition is a thermosetting resin composition for semiconductor encapsulation.
  • thermosetting resin composition of the present invention When the thermosetting resin composition of the present invention is processed under the temperature rising condition required for underfill in the heat compression bonding process of the semiconductor chip by the thermal compression bonding method, it suppresses the generation of voids and provides good solder connection. It can be used as an underfill for obtaining. Therefore, the thermosetting resin composition of the present invention can be used as a thermosetting resin composition for semiconductor encapsulation.
  • Configuration 6 of the present invention is the thermosetting resin composition according to any one of configurations 1 to 5, wherein the thermosetting resin composition is a film-like thermosetting resin composition further containing a filming agent. is there.
  • thermosetting resin composition of Configuration 6 of the present invention can be made into a film-like thermosetting resin composition by further including a filming agent. Therefore, it is easy to dispose an underfill made of the thermosetting resin composition of the present invention at a predetermined position in a semiconductor chip thermocompression bonding process by a thermal compression bonding method.
  • the temperature change rate of the viscosity when the temperature is increased with a predetermined temperature increase profile is the temperature change rate of the viscosity obtained by the viscosity behavior prediction method, and the viscosity behavior prediction method performs a predetermined step.
  • the viscosity behavior prediction method of the present invention includes a reaction rate measurement step of measuring the calorific value peak of the thermosetting resin composition under three or more types of temperature increase rates.
  • the viscosity behavior prediction method of the present invention includes a viscosity behavior measurement step of measuring the viscosity behavior of the thermosetting resin composition under three or more types of temperature increase rates.
  • the measurement data for each temperature increase rate obtained in the reaction rate measurement step is fitted to the Kamal model formula, and the heat amount, time, and heat amount of the thermosetting resin composition for each temperature increase rate.
  • a reaction rate fitting step of obtaining a Kamal model equation parameter determined by the material of the thermosetting resin composition.
  • the parameters of the Kamal model formula calculated in the reaction rate fitting step and the measurement data for each heating rate obtained in the viscosity behavior measurement step are fitted into the Castro-Macosko model formula, Viscosity behavior fitting step of obtaining the parameters of the Castro-Macosko model formula determined by the material of the thermosetting resin composition by obtaining the viscosity and time of the thermosetting resin composition and the viscosity and temperature fitting curves for each temperature rising rate including.
  • the viscosity behavior prediction method of the present invention calculates the virtual viscosity behavior of the thermosetting resin composition in a predetermined temperature increase profile by simulation based on each fitting curve for each temperature increase rate obtained in the viscosity behavior fitting step.
  • the viscosity behavior prediction method of the present invention calculates the temperature change rate of the viscosity of the thermosetting resin composition in a predetermined temperature rising profile from the virtual viscosity behavior of the thermosetting resin composition, and the temperature change rate of the viscosity is 30 Pa.
  • -It includes a viscosity temperature change rate calculating step for obtaining a temperature at which the temperature becomes seconds / ° C.
  • the temperature change rate of the viscosity when the temperature of the thermosetting resin composition is raised with a predetermined temperature increase profile can be predicted by a predetermined viscosity behavior prediction method. Therefore, even if there is no means to measure the viscosity behavior of the underfill following the temperature behavior during the semiconductor chip mounting process, the temperature of the viscosity when the temperature is raised with a predetermined temperature rise profile The rate of change can be obtained. As a result, it is possible to obtain a thermosetting resin composition that can be used as an underfill for obtaining good solder connection while suppressing generation of voids.
  • the structure 8 of this invention is a thermosetting resin composition of the structure 7 in which a reaction rate measurement process includes measuring the calorific value peak of a thermosetting resin composition with a differential scanning calorimeter.
  • thermosetting resin composition By measuring the calorific value peak of the thermosetting resin composition with a differential scanning calorimeter, the viscosity when the temperature of the thermosetting resin composition is raised with a predetermined temperature rise profile by a predetermined viscosity behavior prediction method The temperature change rate can be reliably predicted.
  • Configuration 9 of the present invention is the thermosetting resin composition according to Configuration 7 or 8, wherein the viscosity behavior measurement step includes measuring the viscosity behavior of the thermosetting resin composition with a viscoelasticity measuring device.
  • the temperature of the thermosetting resin composition is increased with a predetermined temperature increase profile by a predetermined viscosity behavior prediction method. This makes it possible to more reliably predict the rate of change in temperature of the viscosity.
  • Configuration 10 of the present invention is a configuration in which the Kamal model formula used in the reaction rate fitting step is a modified Kamal model formula of the following formula (2) in which the Kamal model formula of the following formula (1) is doubled.
  • the thermosetting resin composition according to any one of the above. (However, A 1 , E 1 , A 2 , E 2 , m, and n are parameters determined by the material of the thermosetting resin composition.) (However, A 1 , E 1 , A 2 , E 2 , m, n, B 1 , F 1 , B 2 , F 2 , p, q, T b are parameters determined by the material of the thermosetting resin composition. .)
  • the temperature change rate of the viscosity when the temperature of the thermosetting resin composition is raised with a predetermined temperature increase profile is predicted by a predetermined viscosity behavior prediction method. Can be more certain.
  • Configuration 10 of the present invention is the thermosetting according to any one of configurations 7 to 10, wherein three or more types of temperature increase rates are at least three types of 2 ° C./min, 5 ° C./min, and 10 ° C./min. It is an adhesive resin composition.
  • the temperature rising rate is at least 2 ° C./min, 5 ° C./min, and 10 ° C./min.
  • the temperature change rate of the viscosity when the temperature of the functional resin composition is increased with a predetermined temperature increase profile can be made more accurate.
  • thermosetting resin composition further includes at least one member selected from the group consisting of a curing accelerator, an elastomer, a filler, and a coupling agent. It is an adhesive resin composition.
  • thermosetting resin composition of the present invention further includes at least one member selected from the group consisting of a curing accelerator, an elastomer, a filler, and a coupling agent, whereby the temperature of the viscosity when the temperature is increased with a predetermined temperature increase profile. It becomes easy to obtain a thermosetting resin composition having a change rate of 30 Pa ⁇ sec / ° C. of 200 to 250 ° C. As a result, when processing under the temperature rise conditions required for underfill, a thermosetting resin composition that can be used as an underfill for obtaining good solder connection while reliably suppressing generation of voids is reliably obtained. be able to.
  • thermosetting resin according to any one of Structures 1 to 12, wherein the thermosetting resin is a phenol novolac type epoxy resin, and the thermosetting resin composition further includes a liquid epoxy resin. It is a composition.
  • thermosetting resin composition of the present invention further includes a liquid epoxy resin in addition to the phenol novolac type epoxy resin, the temperature change rate of the viscosity when the temperature is raised with a predetermined temperature rise profile. It becomes easier to obtain a thermosetting resin composition whose temperature reaching 30 Pa ⁇ sec / ° C. is 200 to 250 ° C. As a result, when processed under the temperature rising conditions required for underfill, a thermosetting resin composition that can be used as an underfill for obtaining a good solder connection while suppressing the generation of voids, more reliably. Obtainable.
  • thermosetting resin is a phenol novolac type epoxy resin
  • thermosetting resin composition is 20 to 120 parts by weight of a filming agent with respect to 100 parts by weight of the phenol novolac type epoxy resin. 30-100 parts by weight of curing agent, 3-20 parts by weight of elastomer, 5-50 parts by weight of liquid epoxy resin, 50-1000 parts by weight of filler, 1-10 parts by weight of coupling agent, 5-100 parts by weight of fluxing agent, and
  • the thermosetting resin composition according to Configuration 13, comprising 5 to 100 parts by weight of a curing accelerator.
  • thermosetting resin composition of the present invention contains a material having a predetermined composition
  • the temperature at which the temperature change rate of viscosity reaches 30 Pa ⁇ second / ° C. when the temperature is increased with a predetermined temperature increase profile is 200 to 200 ° C.
  • a thermosetting resin composition having a temperature of 250 ° C. can be obtained.
  • the structure 15 of this invention is a manufacturing method of the thermosetting resin composition for film-form semiconductor sealing containing a thermosetting resin, a hardening
  • the manufacturing method of this invention includes the process of selecting the material for thermosetting resin compositions containing a thermosetting resin, a hardening
  • the manufacturing method of this invention includes the process of mixing the material for thermosetting resin compositions.
  • the step of selecting the material for the thermosetting resin composition is such that the temperature at which the temperature change rate of the viscosity reaches 30 Pa ⁇ sec / ° C. when the temperature is raised with a predetermined temperature rise profile is 200 to 200 ° C. Selecting the material for the thermosetting resin composition to be 250 ° C.
  • thermocompression bonding process of the semiconductor chip by the thermal compression bonding method in order to obtain a good solder connection while suppressing the generation of voids when processed under the temperature rising condition required for the underfill.
  • a method for producing a thermosetting resin composition that can be used as an underfill can be obtained.
  • Configuration 16 of the present invention is the method for producing a thermosetting resin composition according to Configuration 15, wherein the thermosetting resin is a phenol novolac epoxy resin and / or a (meth) acrylate compound.
  • thermosetting resin is a phenol novolac type epoxy resin and / or a (meth) acrylate compound
  • generation of voids can be more reliably suppressed.
  • a better solder connection can be obtained.
  • Configuration 17 of the present invention is the method for producing a thermosetting resin composition according to Configuration 15 or 16, wherein the predetermined temperature increase profile is a temperature increase profile in which the temperature is increased from 145 ° C. to 258 ° C. in 6 seconds. .
  • the predetermined temperature increase profile can be a profile close to the actual temperature increase profile, generation of voids is suppressed when processing is performed under the temperature increase condition required for underfill.
  • the manufacturing method of the thermosetting resin composition which can be used as an underfill for obtaining favorable solder connection can be obtained.
  • Configuration 18 of the present invention is a temperature rise profile in which the predetermined temperature rise profile further includes raising the temperature from 152 ° C. to 152 ° C. over 1 second and then raising the temperature from 152 ° C. to 253 ° C. over 4 seconds. This is a method for producing a thermosetting resin composition as described in constitution 17.
  • the predetermined temperature increase profile can be made closer to the actual temperature increase profile. Therefore, when processed under the temperature rise conditions required for underfill, a method for producing a thermosetting resin composition that can be used as an underfill for obtaining better solder connection while suppressing the generation of voids. Obtainable.
  • the temperature change rate of the viscosity when the temperature is raised with a predetermined temperature increase profile is the temperature change rate of the viscosity obtained by the viscosity behavior prediction method, and the viscosity behavior prediction method performs the predetermined step.
  • the predetermined viscosity behavior prediction method includes a viscosity behavior measurement step of measuring the viscosity behavior of the thermosetting resin composition under three or more types of temperature increase rates.
  • the measurement data for each temperature increase rate obtained in the reaction rate measurement step is fitted to the Kamal model formula, and the heat amount, time, and heat amount of the thermosetting resin composition are determined for each temperature increase rate.
  • a reaction rate fitting step of obtaining a temperature fitting curve and calculating a parameter of the Kamal model formula determined by the material of the thermosetting resin composition is included.
  • the predetermined viscosity behavior prediction method is performed by fitting the parameters of the Kamal model formula calculated in the reaction rate fitting step and the measurement data for each temperature increase rate obtained in the viscosity behavior measurement step into the Castro-Macosko model formula, Viscosity behavior fitting step of obtaining parameters of the Castro-Macosko model formula determined by the thermosetting resin composition material by obtaining the viscosity and time and viscosity and temperature fitting curves of the thermosetting resin composition for each temperature speed. Including.
  • the predetermined viscosity behavior prediction method is a hypothetical method for calculating the virtual viscosity behavior of the thermosetting resin composition in a predetermined temperature increase profile by simulation based on each fitting curve for each temperature increase rate obtained in the viscosity behavior fitting step.
  • the predetermined viscosity behavior prediction method calculates the temperature change rate of the viscosity of the thermosetting resin composition in a predetermined temperature rising profile from the virtual viscosity behavior of the thermosetting resin composition, and the temperature change rate of the viscosity is 30 Pa ⁇
  • the temperature change rate of the viscosity when the temperature of the thermosetting resin composition is raised with a predetermined temperature increase profile can be predicted by a predetermined viscosity behavior prediction method. Therefore, even if there is no means to measure the viscosity behavior of the underfill following the temperature behavior during the semiconductor chip mounting process, the temperature of the viscosity when the temperature is raised with a predetermined temperature rise profile The rate of change can be obtained. As a result, it is possible to produce a thermosetting resin composition that can be used as an underfill for obtaining good solder connection while suppressing generation of voids.
  • Configuration 20 of the present invention is the thermosetting resin according to Configuration 19, wherein the reaction rate measurement step of the viscosity behavior prediction method includes measuring a calorific value peak of the thermosetting resin composition with a differential scanning calorimeter. It is a manufacturing method of a composition.
  • the temperature change rate can be reliably predicted.
  • Configuration 21 of the present invention is a method for producing a thermosetting resin composition according to Configuration 19 or 20, wherein the viscosity behavior measurement step includes measuring the viscosity behavior of the thermosetting resin composition with a viscoelasticity measuring device. It is.
  • the temperature of the thermosetting resin composition was increased with a predetermined temperature increase profile by a predetermined viscosity behavior prediction method.
  • the prediction of the temperature change rate of the viscosity can be made more reliably.
  • Configuration 22 of the present invention is a configuration in which the Kamal model formula used in the reaction rate fitting step is a modified Kamal model formula of the following formula (2) in which the Kamal model formula of the following formula (1) is doubled. It is a manufacturing method of the thermosetting resin composition in any one of. (However, A 1 , E 1 , A 2 , E 2 , m, and n are parameters determined by the material of the thermosetting resin composition.) (However, A 1 , E 1 , A 2 , E 2 , m, n, B 1 , F 1 , B 2 , F 2 , p, q, T b are parameters determined by the material of the thermosetting resin composition. .)
  • the temperature change rate of the viscosity when the temperature of the thermosetting resin composition is raised with a predetermined temperature increase profile is predicted by a predetermined viscosity behavior prediction method. You can be more certain.
  • Configuration 23 of the present invention is the thermosetting according to any one of configurations 19 to 22, wherein the three or more types of temperature increase rates are at least three types of 2 ° C./min, 5 ° C./min, and 10 ° C./min. It is a manufacturing method of an adhesive resin composition.
  • the temperature rising rate is at least 2 ° C./min, 5 ° C./min, and 10 ° C./min. Prediction of the temperature change rate of the viscosity when the temperature of the functional resin composition is increased with a predetermined temperature increase profile can be made more accurate.
  • thermosetting resin composition further includes a filming agent, and further includes at least one of the group consisting of a curing accelerator, an elastomer, a filler, and a coupling agent. It is a manufacturing method of the thermosetting resin composition in any one.
  • thermosetting resin composition further includes at least one member selected from the group consisting of a curing accelerator, an elastomer, a filler, and a coupling agent
  • the void is generated when the thermosetting resin composition is processed under a temperature rising condition required for underfill. While suppressing, a thermosetting resin composition that can be used as an underfill for obtaining good solder connection can be reliably produced.
  • Configuration 25 of the present invention is the method for producing a thermosetting resin composition according to any one of Configurations 15 to 24, wherein the thermosetting resin composition further includes a liquid epoxy resin.
  • thermosetting resin composition further includes a liquid epoxy resin in addition to the phenol novolac type epoxy resin, when it is processed under a temperature rising condition required for underfill, the generation of voids is suppressed.
  • a thermosetting resin composition that can be used as an underfill for obtaining good solder connection can be more reliably produced.
  • thermosetting resin composition has a film forming agent of 20 to 120 parts by weight, a curing agent of 30 to 100 parts by weight, an elastomer 3 with respect to 100 parts by weight of the phenol novolac type epoxy resin. -20 parts by weight, liquid epoxy resin 5-50 parts by weight, filler 50-1000 parts by weight, coupling agent 1-10 parts by weight, fluxing agent 5-100 parts by weight, and curing accelerator 5-100 parts by weight 25.
  • thermosetting resin composition contains a material of a predetermined composition and is processed under a temperature rising condition required for the underfill.
  • a thermosetting resin composition that can be used can be more reliably produced.
  • thermosetting resin composition which can be obtained, and its manufacturing method can be obtained.
  • FIG. 6A is a graph showing the measurement results of the reaction rate measurement step
  • FIG. 6B is a table showing the total calorific value for each temperature increase rate. It is a graph which shows the measurement result of the said viscosity behavior measurement process. It is a flowchart which shows the procedure of the reaction rate fitting process, viscosity behavior fitting process, and virtual viscosity behavior calculation process of the viscosity behavior prediction method of the said thermosetting resin composition.
  • FIG. 9 (a) is a graph showing the heat quantity and time measurement data of the thermosetting resin composition obtained in the reaction rate measurement step, and the fitting curve obtained in the reaction rate fitting step.
  • FIG. 9 (b) is a graph showing actual heat and temperature data of the thermosetting resin composition obtained in the reaction rate measurement step and a fitting curve obtained in the reaction rate fitting step.
  • FIG. 11A is a graph showing the measured data of the viscosity and time of the thermosetting resin composition obtained in the viscosity behavior measuring step, and the fitting curve obtained in the viscosity behavior fitting step.
  • FIG. 11B is a graph showing the measured data of the viscosity and temperature of the thermosetting resin composition obtained in the viscosity behavior measuring step and the fitting curve obtained in the viscosity behavior fitting step.
  • 4 is a list showing parameters of a Castro-Macosko model formula calculated from the results of the reaction rate fitting step.
  • FIG. 15A is a graph showing actual measurement data of the relationship between viscosity and time, and a fitting curve of predicted virtual viscosity behavior.
  • FIG. 15B is a graph showing measured data of the relationship between viscosity and temperature, and a fitting curve of predicted virtual viscosity behavior.
  • the said virtual viscosity behavior calculation process it is the graph which shows each fitting curve which set the temperature increase rate to 3 degree-C / min, 500 degree-C / min, 1800 degree-C / min, and 3000 degree-C / min, and predicted the virtual-viscosity behavior. is there.
  • FIGS. 17A to 17F are schematic views showing a series of steps in the capillary flow method.
  • FIGS. 18A to 18C are schematic views showing a series of steps in the thermal compression bonding method.
  • FIG. 23 is a graph showing changes in viscosity when the thermosetting resin compositions of Examples 1 to 6 and Comparative Examples 1 to 4 are heated according to the temperature rising profile shown in FIG.
  • FIG. 23 is a schematic diagram showing the temperature change rate of viscosity when the thermosetting resin compositions of Examples 1 to 6 are heated according to the temperature rising profile shown in FIG.
  • FIG. 23 is a schematic diagram showing the temperature change rate of viscosity when the thermosetting resin compositions of Comparative Examples 1 to 4 are heated according to the temperature rising profile shown in FIG.
  • FIG. 5 shows temperature rise profiles used for heating when manufacturing test pieces mounted with semiconductor chips in Examples 1 to 6 and Comparative Examples 1 to 4.
  • FIG. It is the value of time and temperature of the temperature rising profile shown in FIG.
  • the present invention is a thermosetting resin composition containing a thermosetting resin, a curing agent and a fluxing agent.
  • the thermosetting resin composition of the present invention has a viscosity behavior that the temperature at which the temperature change rate of viscosity reaches 30 Pa ⁇ sec / ° C. when the temperature is raised with a predetermined temperature rise profile is 200 to 250 ° C.
  • the present inventors have found that the temperature at which the temperature change rate of the viscosity of the thermosetting resin composition reaches 30 Pa ⁇ sec / ° C.
  • thermocompression bonding process of the semiconductor chip by the thermal compression bonding method when processing is performed under the temperature rising condition required for underfill, voids are generated.
  • the present invention has been found out that it can be used as an underfill for obtaining good solder connection while suppressing.
  • thermosetting resin composition of the present invention will be described more specifically.
  • the temperature at which the temperature change rate of viscosity reaches 30 Pa ⁇ sec / ° C. when the temperature is raised with a predetermined temperature rise profile is 200 to 250 ° C., preferably 230 to 250 ° C. More preferably, it has a viscosity behavior of 240 to 250 ° C.
  • the “predetermined temperature rise profile” is a temperature rise profile according to the temperature behavior during the semiconductor chip mounting process (for example, the temperature rise profile shown in FIGS. 22 and 23).
  • the predetermined temperature increase profile is, for example, a temperature increase profile including a temperature increase rate of about 100 to 5000 ° C./min when the temperature is increased from 145 ° C. to 260 ° C.
  • the predetermined temperature increase profile can be such that the average temperature increase rate from 145 ° C. to 260 ° C. is about 500 to 3000 ° C./min, preferably 800 to 2000 ° C./min. Further, the predetermined temperature increase profile preferably includes that the average temperature increase rate from 152 ° C. to 253 ° C. is about 1000 to 3000 ° C./min, preferably about 1300 to 2000 ° C./min.
  • the predetermined temperature rise profile is a temperature rise profile in which the temperature is raised from 145 ° C. to 258 ° C. in 6 seconds. More specifically, the predetermined temperature increase profile includes a temperature increase rate of about 100 to 5000 ° C./min at a temperature increase from 145 ° C. to 258 ° C., and in addition, a predetermined temperature increase profile from 145 ° C. to 152 ° C. for 1 second. It is preferable that the temperature rise profile includes a temperature rise from 152 ° C. to 253 ° C. in 4 seconds after the temperature is raised at ⁇ . As the predetermined temperature increase profile, a particularly preferable temperature increase profile is the temperature increase profile shown in FIGS.
  • the present inventors have found that the temperature at which the temperature change rate of the viscosity reaches 30 Pa ⁇ sec / ° C. when the temperature of the thermosetting resin composition is increased using the temperature increase profile shown in FIG. 22 and FIG.
  • a viscosity behavior of °C preferably 230 to 250 °C, more preferably 240 to 250 °C
  • a good solder while suppressing the generation of voids in the thermocompression bonding process of the semiconductor chip by the thermal compression bonding method It was specifically verified that it can be used as an underfill for obtaining a connection.
  • the temperature change rate of the viscosity when the temperature of the thermosetting resin composition is raised with a predetermined temperature increase profile can be measured by an arbitrary method.
  • the viscosity behavior of the thermosetting resin composition is measured following the temperature increase rate according to the temperature behavior during the semiconductor chip mounting process (for example, the temperature increase profile shown in FIGS. 22 and 23).
  • the temperature change rate of a predetermined viscosity can be obtained by a viscosity behavior prediction method described below.
  • thermosetting resin composition of the present invention the temperature change rate of the viscosity when the temperature is raised with a predetermined temperature rise profile is referred to as a viscosity behavior prediction method described below (referred to as “viscosity behavior prediction method of this embodiment”). Can be obtained.
  • the viscosity behavior prediction method of the present embodiment includes a reaction rate measurement step, a viscosity behavior measurement step, a reaction rate fitting step, a viscosity behavior fitting step, a virtual viscosity behavior calculation step, and a viscosity temperature change rate calculation step. Including.
  • the viscosity behavior prediction method of the present embodiment will be specifically described with reference to the drawings.
  • the reaction rate and the viscosity behavior are actually measured with respect to the thermosetting resin composition as an evaluation sample, for example, under three temperature rising rates.
  • a fitting curve relating to the viscosity behavior of each thermosetting resin composition for each temperature increase rate is generated. Based on these fitting curves related to the viscosity behavior, the viscosity behavior of the thermosetting resin composition in a predetermined temperature rise profile is predicted.
  • reference numeral 10 denotes a differential scanning calorimetry (DSC) measuring device for measuring the reaction rate of the thermosetting resin composition under three types of temperature rising rates.
  • the differential scanning calorimeter 10 measures a temperature-dependent calorific value peak of the thermosetting resin composition at three temperature rising rates.
  • DSC204F1 Phoenix registered trademark
  • NETZSCH NETZSCH
  • reference numeral 20 denotes a rheometer (viscoelasticity measuring device) for measuring the viscosity behavior of the thermosetting resin composition at three temperature rising rates.
  • the rheometer 20 measures the temperature-dependent viscosity behavior of the thermosetting resin composition at three temperature rising rates.
  • a rheometer 20 for example, “HAAKE MARSIII (trademark)” manufactured by Thermo SCIENTIFIC can be used.
  • the measurement data of the differential scanning calorimeter 10 and the rheometer 20 are respectively input to the computer 30 and analyzed by the simulation software of this embodiment installed in the computer 30.
  • the computer 30 includes a CPU (Central Processing Unit) 32, a RAM (Random Access Memory) 33, a ROM (Read Only Memory) 34, and an input / output interface circuit 35 connected to the input / output bus 31. ing.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the input / output interface circuit 35 of the computer 30 is connected to an image display device 30A such as a liquid crystal display and an input device 30B such as a keyboard and a mouse, and the differential scanning calorimeter 10 and the rheometer 20 described above. Yes. Further, the RAM 33 stores the simulation software of the present embodiment in an erasable manner, and the simulation software is executed by the CPU 32.
  • the user sets the measurement conditions of the differential scanning calorimeter 10 and the rheometer 20 through the computer 30 and actually measures the reaction rate and viscosity behavior of the thermosetting resin composition in the differential scanning calorimeter 10 and the rheometer 20. To do.
  • the measurement results of the differential scanning calorimeter 10 and the rheometer 20 are input to the computer 30 via the input / output interface circuit 35. Based on the input measurement result, the analysis processing result of the computer 30 according to the simulation software is output to the image display device 30A.
  • the simulation software is later downloaded to the RAM 33 of the general-purpose computer 30.
  • the present invention is not limited to this configuration, and the simulation software of the present embodiment is stored in the ROM 34.
  • the computer 30 may be stored as a dedicated machine for the viscosity behavior prediction method of the present embodiment.
  • the simulation software 40 of the present embodiment mainly includes a reaction rate fitting means 41, a viscosity behavior fitting means 42, and a virtual viscosity behavior calculating means 43.
  • the reaction rate fitting means 41 includes a fitting calculation processing means 41A, a fitting curve generating means 41B, and a parameter calculating means 41C.
  • the fitting calculation processing means 41A performs calculation processing for fitting the measurement data for each heating rate from the differential scanning calorimeter 10 shown in FIG. 1 into the Kamal model equation.
  • the fitting curve generating unit 41B generates a fitting curve of the heat amount and time, and the heat amount and temperature of the thermosetting resin composition for each temperature increase rate based on the result of the calculation processing of the fitting calculation processing unit 41A.
  • the parameter calculation unit 41C calculates a parameter of the Kamal model formula determined by the material of the thermosetting resin composition.
  • the viscosity behavior fitting unit 42 includes a fitting calculation processing unit 42A, a fitting curve generation unit 42B, and a parameter calculation unit 42C.
  • the fitting calculation processing means 42A is a calculation process for fitting the parameters of the Kamal model formula calculated by the reaction rate fitting means 41 and the measurement data for each temperature rising rate from the rheometer 20 shown in FIG. 1 into the Castro-Macosko model formula. I do.
  • the fitting curve generating unit 42B generates a fitting curve of the viscosity and time and the viscosity and temperature of the thermosetting resin composition for each temperature increase rate based on the result of the arithmetic processing by the fitting arithmetic processing unit 42A.
  • the parameter calculating means 42C calculates a parameter of a Castro-Macosko model formula determined by the material of the thermosetting resin composition.
  • the virtual viscosity behavior calculation unit 43 includes a viscosity behavior calculation processing unit 43A and a fitting curve generation unit 43B.
  • the viscosity behavior calculation processing means 43A is based on the viscosity and time of the thermosetting resin composition generated by the viscosity behavior fitting means 42 and the fitting curve of the viscosity and temperature, and the predetermined temperature rise profile other than the above three types is used.
  • the virtual viscosity behavior of the thermosetting resin composition is calculated by simulation.
  • the fitting curve generation unit 43B generates a fitting curve indicating the virtual viscosity behavior of the thermosetting resin composition in a predetermined temperature rising profile based on the calculation result of the viscosity behavior calculation processing unit 43A.
  • the differential scanning calorimeter 10 and the rheometer 20 are usually provided with dedicated measurement / analysis software.
  • the simulation software 40 of the present embodiment may include a program that analyzes the measurement data of the differential scanning calorimeter 10 and the rheometer 20 and causes the computer 30 to generate measurement results as shown in FIG. Good.
  • thermosetting resin composition ⁇ Method for predicting viscosity behavior of thermosetting resin composition> Next, a method for predicting the viscosity behavior of the thermosetting resin composition of the present embodiment using the above-described differential scanning calorimeter 10, rheometer 20, and computer 30 will be described in detail with reference to FIGS. .
  • the viscosity control at high temperature rise is necessary for the development of underfill used in the thermal compression bonding method.
  • the temperature increase rate of the thermal compression bonding method is too high at 500 to 3000 ° C./min.
  • a rheometer which is a conventional general viscosity measuring device, has a limit of measurement at a heating rate of 10 ° C./min, and it is impossible to actually measure the viscosity at a heating rate of 500 to 3000 ° C./min.
  • underfill also increases viscosity due to the start of gelation at elevated temperature, so the viscosity at high temperature rise of 500 to 3000 ° C / min is predicted from the behavior at low temperature rise of 10 ° C / min. It is extremely difficult.
  • viscosity prediction is performed taking into account the curing of the underfill at a high temperature rise. That is, in order to determine the degree of cure of the underfill, the differential scanning calorimetry apparatus 10 is used to fit the results measured for each of the three types of temperature increase rates to the Kamal model equation. Next, in order to obtain the temperature rise rate dependency of the underfill, the results measured by the rheometer 20 for each of the three types of temperature rise rates are fitted to the Castro-Macosko model equation. After that, the degree of cure of the underfill and the rate of temperature increase were combined, and these behaviors were integrated to enable prediction of the viscosity behavior.
  • reaction rate measurement process the calorific value peak of the thermosetting resin composition is measured under three or more types of temperature increase rates.
  • FIG. 4 is a flowchart showing a procedure of a reaction rate measurement step of a thermosetting resin composition as an evaluation sample.
  • the reaction rate of the thermosetting resin composition is measured under three or more types of temperature increase rates.
  • a pre-applied underfill material “XS8444-196” manufactured by Namix Co., Ltd., the applicant is used for the thermosetting resin composition, 2 ° C./min, 5 ° C./min, and 10 ° C.
  • the calorific value peak of the thermosetting resin composition is measured by the differential scanning calorimeter 10 shown in FIG. 1 under three kinds of temperature increase rates per minute (step S1 in FIG. 4).
  • three or more types of temperature increase rates are at least three types of 2 ° C./min, 5 ° C./min, and 10 ° C./min.
  • Each measurement data of the three types of temperature rising rates by the differential scanning calorimeter 10 is input to the computer 30 (step S2 in FIG. 4).
  • the computer 30 corrects the zero value of each measurement data in accordance with the dedicated software of the differential scanning calorimeter 10 or the simulation software program of the present embodiment, so that the heat quantity and temperature as shown in FIG. A graph showing the relationship (temperature-dependent reaction rate) with is generated.
  • a small initial peak appears at any of the heating rates of 2 ° C./min, 5 ° C./min, and 10 ° C./min, but the heating rate is It can be seen that a general reaction rate curve is drawn in which the peak temperature increases as the temperature increases.
  • the reason for measuring the reaction rate of the thermosetting resin composition under three or more heating rates is that the viscosity of the thermosetting resin composition depends on the temperature and the heating rate depends on the temperature. This is to identify the relationship between the variable amount and the viscosity change when both are made variable in order to make a single system that takes into consideration the properties. It is expected that the identification system will increase as there are more measurement data with 4 types, 5 types, 6 types, etc., with the temperature rise rate changed, but in reality, if there are 3 types of temperature rise rate measurement data, it is expected An identification formula is obtained.
  • the reason for measuring the calorific value peak of the thermosetting resin composition is as follows. That is, in the thermosetting resin composition, when a temperature and a time are given, a curing phenomenon occurs in which a reactive group of the resin is ring-opened and starts to react with the curing agent, so that the viscosity increases.
  • the calorific value peak of the thermosetting resin composition suggests the temperature and time at which the curing phenomenon proceeds most. Therefore, the relationship between temperature, time, and viscosity can be clarified from the heat generation amount peak of the thermosetting resin composition, and the change in viscosity due to curing can be known.
  • Viscosity behavior measurement process the viscosity behavior of the thermosetting resin composition is measured under three or more types of temperature increase rates.
  • the viscosity behavior of the thermosetting resin composition is measured under three or more types of temperature increase rates.
  • the viscosity behavior measuring step includes measuring the viscosity behavior of the thermosetting resin composition with a viscoelasticity measuring device.
  • FIG. 5 is a flowchart showing the procedure of the viscosity behavior measuring step of the thermosetting resin composition.
  • the viscosity behavior of the thermosetting resin composition is measured by the rheometer 20 shown in FIG. 1 under three temperature increase rates of 2 ° C./min, 5 ° C./min, and 10 ° C./min. Are respectively measured (step S1 in FIG. 5).
  • the thermosetting resin composition was in the form of a resin paste, and the conditions of the rheometer 20 were 1 Hz with a strain of 0.5% and Gap 500 ⁇ m with a 40 ⁇ parallel cone.
  • Each measurement data of the three types of viscosity behavior by the rheometer 20 is input to the computer 30 (step S2 in FIG. 5).
  • the computer 30 generates a graph representing the relationship between the viscosity and temperature (temperature-dependent viscosity) as shown in FIG. 7 according to the dedicated software of the rheometer 20 or the simulation software program of the present embodiment.
  • reaction rate fitting step of the viscosity behavior prediction method of the present embodiment the measurement data for each temperature increase rate obtained in the reaction rate measurement step is fitted to the Kamal model formula, and the thermosetting resin composition is determined for each temperature increase rate. Are obtained, and the parameters of the Kamal model formula determined by the material of the thermosetting resin composition are calculated.
  • reaction rate fitting means 41 described below is used.
  • FIG. 8 is a flowchart showing a procedure of a reaction rate fitting step, a viscosity behavior fitting step, and a virtual viscosity behavior calculating step in the method for predicting the viscosity behavior of the thermosetting resin composition. All of these processes are performed by the computer 30 based on the measurement data of the reaction rate measurement process and the viscosity behavior measurement process described above in accordance with the simulation software program of the present embodiment.
  • steps S21 to S23 of FIG. The steps of the reaction rate fitting process are shown in steps S21 to S23 of FIG.
  • the computer 30 corrects the measurement data obtained in the reaction rate measurement step of FIG. 4 to zero line and adjusts the data so that the total calorific value for each heating rate is as different as possible. To do. If there is a difference in the total calorific value for each temperature increase rate, an uncured part will be present in the thermosetting resin composition, so a decrease in accuracy is expected.
  • step S21 the computer 30 fits the measurement data for each temperature increase rate obtained in the reaction rate measurement step of FIG. 4 into the Kamal model equation of the following equation (1).
  • the Kamal model equation is a model of a reaction rate curve that is a relationship between the amount of heat generated and the temperature (or time) of the thermosetting resin composition measured under the conditions of a constant heating rate and a constant mass (converted per unit mass). It is an expression.
  • a 1, E 1, A 2, E 2, m, n is a parameter determined by the material of the thermosetting resin composition. In the case of thermosetting resin compositions having different types of materials and / or blending amounts of materials, these parameters need to be obtained for each of the thermosetting resin compositions.
  • FIG. 6B shows the total calorific value for each heating rate. As shown in FIG. 6 (b), it can be seen that the total calorific value for each rate of temperature increase varies by about 8% to 5%.
  • the Kamal model equation of the above equation (1) is used in order to cope with a case where there is a variation in the total calorific value for each heating rate, or a case where there are a plurality of heat generation amount peaks and a lot of noise.
  • a 1, E 1, A 2, E 2, m, n, B 1, F 1, B 2, F 2, p, q, T b is a parameter determined by the material of the thermosetting resin composition is there.
  • thermosetting resin compositions having different types of materials and / or blending amounts of materials these parameters need to be obtained for each of the thermosetting resin compositions.
  • the Kamal model formula of the above formula (1) is fitted with 6 parameters, but the modified Kamal model formula of the above formula (2) of the present embodiment is fitted with 12 parameters that is twice as much. To do. As a result, it becomes possible to fit a complicated model more flexibly.
  • the Kamal model formula used in the reaction rate fitting step is a modified Kamal model formula of the above formula (2) in which the Kamal model formula of the following formula (1) is doubled. It is preferable that
  • FIGS. 9A and 9B show the reaction rate fitting curves generated by the modified Kamal model equation of the above equation (2) for each temperature rising rate.
  • FIG. 9A shows measured data of the heat amount and time (time-dependent reaction rate) of the thermosetting resin composition obtained in step S1 of FIG. 5, and the fitting curve obtained in step S22 of FIG. It is a graph which shows.
  • FIG. 9B shows measured data of the heat amount and temperature (temperature-dependent reaction rate) of the thermosetting resin composition obtained in step S1 of FIG. 5, and a fitting curve obtained in step S22 of FIG. It is a graph which shows.
  • step S23 in FIG. 8 the computer 30 determines the parameter A 1 of the modified Kamal model equation (2) determined by the material of the thermosetting resin composition based on the fitting results of steps S21 and S22.
  • a list of these parameters is shown in FIG.
  • Viscosity behavior fitting process the parameters of the Kamal model equation calculated in the reaction rate fitting step and the measurement data for each temperature increase rate obtained in the viscosity behavior measurement step are measured using the Castro-Macosko. Fitting to a model formula. Further, for each temperature increase rate, the viscosity and time of the thermosetting resin composition and the fitting curve of the viscosity and temperature are obtained, and the parameters of the Castro-Macosko model formula determined by the material of the thermosetting resin composition are calculated. In the viscosity behavior fitting step, viscosity behavior fitting means 42 is used.
  • Steps S24 to S26 in FIG. 8 show the procedure of the viscosity behavior fitting process.
  • the computer 30 calculates the parameters of the modified Kamal model equation of the above equation (2) calculated in step S23 and the temperature rises obtained in the viscosity behavior measurement step (steps S11 and S12) of FIG.
  • the measurement data for each speed is fitted to the Castro-Macosko model formula of the following formula (4).
  • the Castro-Macosko model formula of the following formula (4) is obtained by applying the Castro model formula to the thermoplastic part of the Macosko model formula of the following formula (3).
  • the Macosko model formula of the following formula (3) is a formula that models a viscosity growth curve that represents the relationship between the viscosity of the thermosetting resin composition and time, measured under a constant temperature increase rate condition.
  • B, T B , ⁇ * , r, ⁇ , ⁇ gel , E, and F are parameters determined by the material of the thermosetting resin composition.
  • FIGS. 11A and 11B show the fitting curves of the viscosity behavior for each temperature rising rate generated by the Castro-Macosko model formula of the above formula (4).
  • FIG. 11A shows the actual amount of heat and time (time-dependent viscosity) of the thermosetting resin composition obtained in step S11 of FIG. 4 and the fitting curve obtained in step S25 of FIG. It is a graph to show.
  • FIG. 11B shows measured data of the heat amount and temperature (temperature-dependent viscosity) of the thermosetting resin composition obtained in step S11 of FIG. 4, and the fitting curve obtained in step S25 of FIG. It is a graph to show.
  • FIGS. 11 (a) and 11 (b) when the measured data of the viscosity behavior and the fitting curve are compared with each other, they almost coincide with each other. Therefore, there is no problem with the fitting curve.
  • step S26 the computer 30 determines the parameter B of the Castro-Macosko model formula (4) defined by the material of the thermosetting resin composition based on the fitting results of steps S24 and S25.
  • T B , ⁇ * , r, ⁇ , ⁇ gel , E, and F are calculated. A list of these parameters is shown in FIG.
  • Virtual viscosity behavior calculation process In the virtual viscosity behavior calculation step of the viscosity behavior prediction method of the present embodiment, based on each fitting curve for each temperature increase rate obtained in the viscosity behavior fitting step, the virtual thermosetting resin composition in a predetermined temperature rising profile is virtual. Viscosity behavior is calculated by simulation. In the virtual viscosity behavior calculation step, virtual viscosity behavior calculation means 43 described below is used.
  • step S27 the computer 30 calculates the virtual viscosity behavior of the thermosetting resin composition at an arbitrary temperature increase rate by simulation based on the fitting curves for each temperature increase rate obtained in steps S24 to S26. . Thereafter, the process proceeds to step S28, and the computer 30 generates a fitting curve representing the virtual viscosity behavior of the thermosetting resin composition at an arbitrary rate of temperature increase based on the calculation result of step S27.
  • the predetermined temperature increase profile can be obtained by combining fitting curves representing the virtual viscosity behavior of the thermosetting resin composition at an arbitrary temperature increase rate.
  • step S27 of the virtual viscosity behavior calculation step will be described with reference to the virtual viscosity behavior calculation subroutine shown in FIGS.
  • FIG. 13 shows the processing of the first reaction rate part
  • FIG. 14 shows the processing of the second viscosity behavior part.
  • the computer 30 selects an arbitrary temperature increase rate of the evaluation sample according to the user input.
  • the “arbitrary temperature increase rate” here may be a high temperature increase of 500 to 3000 ° C./min that cannot be measured by the rheometer 20, for example.
  • step S32 the process proceeds to step S32, and the computer 30 substitutes a temporary value corresponding to an arbitrary rate of temperature increase for each parameter of the Kamal model formula (the modified Kamal model formula described above in the present embodiment). And it progresses to step S33 and the computer 30 calculates the calorie
  • step S34 the computer 30 compares the calorie calculation result of the Kamal model equation with the calorie measurement data of the reaction rate measurement step (step S1) in FIG. (Whether it is within an allowable range). If it is determined that the coincidence rate is not good (NO), the process proceeds to step S36, and the computer 30 increases or decreases the provisional value to be substituted for each parameter of the Kamal model formula, and repeats the processes of steps S32 to S35. On the other hand, if it is determined that the matching rate is good (YES), the process proceeds to step S37, and the computer 30 determines each parameter of the Kamal model formula.
  • step S41 in FIG. 14, and the computer 30 substitutes a temporary value corresponding to an arbitrary rate of temperature increase into each parameter of the Castro-Macosko model formula.
  • step S42 the computer 30 calculates the viscosity at the same time as the viscosity behavior measuring step (step S11) of FIG. 5 from the Castro-Macosko model formula.
  • step S43 the computer 30 compares the calorific value calculation result of the Castro-Macosko model formula with the viscosity measurement data in the viscosity behavior measurement step (step S11) in FIG. Whether it is within the allowable range. If it is determined that the coincidence rate is not good (NO), the process proceeds to step S45, and the computer 30 increases or decreases the provisional value to be substituted for each parameter of the Castro-Macosko model formula, and repeats the processes of steps S41 to S44. On the other hand, if it is determined that the matching rate is good (YES), the process proceeds to step S46, and the computer 30 determines each parameter of the Castro-Macosko model formula.
  • step S47 the process proceeds to step S47, and the computer 30 fits each parameter of the Kamal model formula determined in step S37 of FIG. 13 and each parameter of the Castro-Macosko model formula determined in step S46 to the Castro-Macosko model formula. Then, a fitting curve of the virtual viscosity behavior is generated (step S48). The generated fitting curve is displayed, for example, on the image display device 30A of the computer 30 as shown in FIG. 16 (step S28 in FIG. 8).
  • Steps S29 and S30 in FIG. 8 show the procedure of the viscosity temperature change rate calculation step.
  • step S29 the virtual viscosity behavior (viscosity temperature change) in a predetermined temperature rise profile is calculated.
  • Viscosity behavior in a given temperature rising profile is calculated by combining the reaction rate derived from the actual measurement values obtained as described above and the fitting curve calculated from the fitting of the viscosity behavior.
  • the formula can be obtained. That is, for example, in the temperature increase profiles of FIGS. 22 and 23, the temperature increase rate changes with time, but the virtual viscosity behavior at the temperature increase rate for each predetermined elapsed time is the curve of the virtual viscosity behavior. It can be obtained by a calculation formula.
  • thermosetting resin in a predetermined temperature rising profile is calculated from the virtual viscosity behavior of the thermosetting resin composition.
  • the temperature change rate of the viscosity of the composition is calculated, and the temperature at which the temperature change rate of the viscosity is 30 Pa ⁇ sec / ° C. is obtained.
  • the temperature change rate of the viscosity is obtained by calculating the temperature change of the viscosity of the thermosetting resin composition based on the temperature increase rate for each predetermined elapsed time in the predetermined temperature increase profile, and calculating the derivative thereof. Can be obtained at a temperature of 30 Pa ⁇ sec / ° C.
  • thermosetting resin composition of the present invention includes a thermosetting resin, a curing agent, and a flux agent.
  • the thermosetting resin composition of the present invention is preferably a film-like thermosetting resin composition by further containing a filming agent.
  • the thermosetting resin composition may further include at least one of the group consisting of a curing accelerator, an elastomer, a filler, and a coupling agent.
  • thermosetting resin composition of the present invention contains a thermosetting resin.
  • the thermosetting resin is preferably an epoxy resin and / or a (meth) acrylate compound.
  • thermosetting resin contained in the thermosetting resin composition of the present invention is preferably an epoxy resin.
  • the epoxy resin contained in the thermosetting resin composition of the present invention preferably contains a phenol novolac type epoxy resin and further contains a liquid epoxy resin.
  • thermosetting resin composition of the present invention contains a phenol novolac type epoxy resin.
  • the epoxy resin contained in the thermosetting resin composition of the present invention is a phenol novolac type epoxy resin, when it is processed under a temperature rising condition required for underfill, it suppresses the generation of voids and is good solder
  • a thermosetting resin composition that can be used as an underfill for obtaining a connection can be obtained more reliably.
  • the liquid epoxy resin contained in the thermosetting resin composition of the present invention imparts curability, heat resistance and adhesiveness to a semiconductor sealing film, and imparts durability to a cured semiconductor sealing film.
  • Liquid epoxy resin includes liquid bisphenol A type epoxy resin, liquid bisphenol F type epoxy resin, liquid naphthalene type epoxy resin, liquid aminophenol type epoxy resin, liquid biphenyl type epoxy resin, liquid hydrogenated bisphenol type epoxy resin, liquid alicyclic Epoxy resin, liquid alcohol ether type epoxy resin, liquid cycloaliphatic type epoxy resin, liquid fluorene type epoxy resin and the like.
  • liquid epoxy resin liquid naphthalene type epoxy resin, liquid bisphenol F type epoxy resin, liquid bisphenol A type epoxy resin, liquid aminophenol type epoxy resin, and liquid biphenyl type epoxy resin are curable, heat resistant, adhesive, It is preferable from the viewpoint of durability.
  • the epoxy equivalent of the liquid epoxy resin is preferably 80 to 250 g / eq from the viewpoints of reactivity and cured density.
  • Commercially available products include DIC's bisphenol A type and bisphenol F type epoxy resin (product name: EXA835LV), Nippon Steel & Sumikin Chemical Co., Ltd. bisphenol A type epoxy resin (product name: YD-128), and Nippon Steel & Sumikin Chemical Co., Ltd. bisphenol.
  • a liquid epoxy resin may be individual or may use 2 or more types together.
  • thermosetting resin contained in the thermosetting resin composition of the present invention is preferably a (meth) acrylate compound.
  • a (meth) acrylate compound is an acrylate monomer and / or a methacrylic acid ester monomer or an oligomer thereof.
  • polyester acrylate and / or dimethylol tricyclodecane diacrylate it is preferable to use polyester acrylate and / or dimethylol tricyclodecane diacrylate.
  • acrylic acid ester monomer and / or methacrylic acid ester monomer or oligomer thereof usable in the present invention include tris (2-hydroxyethyl) isocyanurate diacrylate and / or dimethacrylate; tris (2-hydroxyethyl) isocyanate.
  • thermosetting resin contained in the thermosetting resin composition of the present invention is an epoxy resin
  • the curing agent only needs to have the above-described epoxy resin and liquid epoxy resin curing ability.
  • the curing agent include phenol-based curing agents, amine-based curing agents, and acid anhydride-based curing agents.
  • a phenolic curing agent is preferable from the viewpoints of reactivity and stability.
  • the phenolic curing agent include phenol novolak and cresol novolak, and phenol novolak is preferable.
  • the amine curing agent include a chain aliphatic amine, a cyclic aliphatic amine, a fatty aromatic amine, and an aromatic amine.
  • an aromatic amine is preferable.
  • acid anhydride curing agents include tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride, hydrogenated methylnadic acid anhydride, and trialkyltetrahydroanhydride.
  • Phthalic acid methylcyclohexene tetracarboxylic dianhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic dianhydride, ethylene glycol bisanhydro trimellitate, glycerin bis (anhydro trimelli Tate) Monoacetate, dodecenyl succinic anhydride, aliphatic dibasic acid polyanhydride, chlorendic anhydride, methylbutenyl tetrahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, methyl hymic anhydride, alkenyl Succinic anhydride substituted in, like glutaric anhydride and the like.
  • methylbutenyl tetrahydrophthalic anhydride is preferable.
  • Commercially available products include DIC cresol novolac type phenolic resin curing agent (product name: KA-1160), Meiwa Kasei phenol curing agent (product names: MEH8000, MEH8005), Nippon Kayaku Co., Ltd. amine curing agent (product name: Kayahard A-) A), acid anhydrides (grade: YH306, YH307), Hitachi Chemical Co., Ltd. 3 or 4-methyl-hexahydrophthalic anhydride (product name: HN-5500), and the like.
  • curing agent may be individual or may use 2 or more types together.
  • thermosetting resin contained in the thermosetting resin composition of the present invention is a (meth) acrylate compound
  • the curing agent polymerization initiator
  • An organic peroxide is preferably used as a curing agent for the acrylic resin.
  • the organic peroxide specifically, “Park Mill D” and / or “Perbutyl E” manufactured by NOF Corporation can be used.
  • An acrylic resin can be obtained by polymerizing the (meth) acrylate compound using a curing agent.
  • the organic peroxide that can be used as a curing agent for the (meth) acrylate compound contained in the thermosetting resin composition of the present invention may be any substance having an —O—O— bond in the molecule, There is no particular limitation.
  • peroxides include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, and peroxydicarbonates. In this, it is preferable to use peroxyester.
  • peroxyesters include 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-butyl And peroxyneodecanoate (t-Butyl peroxyneodecanoate).
  • thermosetting resin composition of the present invention contains a flux agent.
  • a flux agent a commercially available compound having a flux action can be used.
  • Oxyquinoline is preferably used as the fluxing agent from the viewpoint that better solder connection can be obtained.
  • the fluxing agent for example, oxyquinoline manufactured by Wako Pure Chemical Industries, Ltd. can be used.
  • thermosetting resin composition of the present invention preferably further contains a filming agent.
  • a filming agent When the thermosetting resin composition of the present invention further contains a filming agent, a film-like thermosetting resin composition can be obtained. By making it into a film, workability is improved, and supply to a semiconductor wafer is facilitated in addition to supply to a mounting substrate, and application to a wider range of construction methods becomes possible.
  • the filming agent imparts flexibility to a film-like thermosetting resin composition used as a semiconductor sealing film.
  • the filming agent include phenoxy resin, polyimide resin, polyethylene resin, polystyrene resin, polyester, polyether, polyamide, polyether ester amide, and acrylic resin (acrylic polymer). From the viewpoint of relaxation of internal stress of the thermosetting resin composition after curing, a phenoxy resin is preferable, and a bisphenol F-type phenoxy resin is particularly preferable.
  • the phenoxy resin is a polymer polyhydroxy polyether (thermoplastic resin) synthesized by a direct reaction of a dihydric phenol and epichlorohydrin or an addition polymerization reaction of a diglycidyl ether of a dihydric phenol and a dihydric phenol.
  • a polymer having a weight average molecular weight of 10,000 or more is preferably 10,000 to 100,000, more preferably 40,000 to 80,000.
  • the weight average molecular weight is a value obtained by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
  • Dihydric phenols include bisphenol A, bisphenol F, bisphenol S, dihydroxynaphthalene, bisphenol D, bisphenol E, bisphenol Z, bisphenol fluorene, biscresol fluorene, biphenol, catechol, resorcin, hydroquinone, 2,5-di-t Halogenated bisphenols such as butylhydroquinone or brominated bisphenol A, 10- (2,5-dihydroxyphenyl) -10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2, 7-dihydroxynaphthyl) -10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, diphenylphosphinylhydroquinone, diphenylphosphinylnaphtho Non, cyclooctylene phosphinyl-1,4-benzenediol or phosphine-containing phenols such as cyclo
  • the phenoxy resin examples include those produced by direct reaction of these dihydric phenols and epichlorohydrin, or those synthesized by addition polymerization reaction of the above dihydric phenols and their diglycidyl ether compounds.
  • the filming agent bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol A-bisphenol F copolymer type phenoxy resin, and the like are more preferable.
  • the filming agent is a phenoxy resin, the stress between the semiconductor chip and the substrate is relieved in order to relieve the internal stress of the pre-installed semiconductor sealing film after curing, and the film is formed between the semiconductor chip and the substrate. The presence of the agent is considered to improve the adhesion.
  • film forming agent Nippon Steel & Sumikin Chemical Co., Ltd. bis F type phenoxy resin (product name: FX-316) and the like can be mentioned.
  • Filming agents may be used alone or in combination of two or more.
  • thermosetting resin composition of the present invention preferably further contains an elastomer.
  • thermosetting resin contained in the thermosetting resin composition of the present invention is an epoxy resin
  • thermosetting resin composition of the present invention further contains an elastomer.
  • thermosetting resin composition of the present invention the elastomer (thermoplastic elastomer) contributes to film properties, adhesiveness, and heat resistance when used as an underfill in the thermocompression bonding process of a semiconductor chip.
  • the elastomer includes butadiene-acrylonitrile-methacrylic acid copolymer, styrene-butadiene block copolymer, styrene-ethylene / butylene-styrene block copolymer, styrene-isoprene-styrene block copolymer, polybutadiene,
  • at least one selected from the group consisting of styrene- (ethylene-ethylene / propylene) -styrene block copolymers can be used. Among these, only any 1 type may be used and 2 or more types may be used. Which of these is used can be appropriately selected according to the characteristics to be given to the underfill.
  • a styrene-ethylene / butylene-styrene block copolymer has high heat resistance because of high crystallinity of the -ethylene / butylene portion, and is preferable for imparting heat resistance to the underfill.
  • the styrene- (ethylene-ethylene / propylene) -styrene block copolymer has a crystallinity of the-(ethylene-ethylene / propylene)-moiety corresponding to that of the styrene-ethylene / butylene-styrene block copolymer.
  • the adhesive strength to the substrate is higher than that of the styrene-ethylene / butylene-styrene block copolymer.
  • the styrene-butadiene block copolymer has a low underfill elastic modulus and has good embedding of unevenness on the adherend surface during thermocompression of the underfill, the adhesive strength of the underfill Becomes higher. Also, the flexibility after curing of the underfill is excellent.
  • the elastomer content is preferably 3 to 20 parts by weight and more preferably 5 to 15 parts by weight with respect to 100 parts by weight of a thermosetting resin (for example, a phenol novolac type epoxy resin).
  • a thermosetting resin for example, a phenol novolac type epoxy resin.
  • the elastomer content is less than 3 parts by weight, the film properties of the thermosetting resin composition, specifically, the folding resistance of the film-like thermosetting resin composition alone is inferior.
  • the resin flow amount at the time of thermosetting becomes large, and the thickness of the film of the thermosetting resin composition tends to be non-uniform.
  • the content of the elastomer exceeds 20 parts by weight, the content of other materials of the thermosetting resin composition, in particular, the thermosetting resin (for example, phenol novolac type epoxy resin) is relatively Since it decreases, the heat resistance of the film of a thermosetting resin composition falls.
  • the compatibility of the thermosetting resin composition film with other materials is reduced, the composition of the thermosetting resin composition film becomes non-uniform, and the adhesiveness of the thermosetting resin composition film And mechanical strength decreases.
  • the content of the elastomer is preferably 3 to 20 parts by weight, more preferably 5 to 15 parts by weight with respect to 100 parts by weight of the thermosetting resin.
  • thermosetting resin composition of the present invention preferably further contains a filler.
  • the elastic modulus and thermal expansion coefficient of the film-like thermosetting resin composition for semiconductor encapsulation after curing (film for semiconductor encapsulation) are adjusted with the filler.
  • the filler include silica fillers such as colloidal silica, hydrophobic silica, fine silica, and nano silica, aluminum nitride, alumina, silicon nitride, and boron nitride. From the viewpoints of versatility and electrical characteristics, the filler is preferably a silica filler.
  • the average particle diameter of the filler (if it is not spherical, the average maximum diameter) is not particularly limited.
  • the average particle size of the filler is preferably from 0.05 to 50 ⁇ m in order to uniformly disperse the filler in the film-like thermosetting resin composition.
  • the average particle diameter of the filler is less than 0.05 ⁇ m, the viscosity of the thermosetting resin composition increases during mounting, and the fluidity may deteriorate.
  • the average particle size of the filler is more than 50 ⁇ m, it may be difficult to make the filler uniformly exist in the thermosetting resin composition, and it may be difficult to connect the semiconductor and the substrate.
  • the average particle diameter of the filler is more preferably from 0.1 to 30 ⁇ m, and further preferably from 0.1 to 5 ⁇ m. Commercially available products include silica manufactured by Sakai Chemical Industry Co., Ltd.
  • the average particle diameter of the filler is measured by a dynamic light scattering nanotrack particle size analyzer.
  • the filler may be used alone or in combination of two or more.
  • thermosetting resin composition of the present invention preferably further contains a coupling agent.
  • the liquid resin composition further contains a coupling agent
  • a coupling agent it is preferable from the viewpoint of adhesion of the liquid resin composition.
  • coupling agents phenylaminopropylsilane, 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, vinyltrimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyltrimethoxysilane , 3-acryloxypropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane, and the like.
  • the coupling agent is preferably phenylaminopropylsilane, 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltrimethoxysilane, and is preferably phenylaminopropylsilane. Is more preferable.
  • Examples of commercially available products include Shin-Etsu Chemical Co., Ltd. KBM573 (phenylaminopropylsilane), Shin-Etsu Chemical Co., Ltd. KBM403, KBE903, KBE9103, and the like, but the coupling agent is not limited to these product names.
  • a coupling agent may be used alone or in combination of two or more.
  • thermosetting resin composition of the present invention preferably further contains a curing accelerator.
  • thermosetting resin contained in the thermosetting resin composition of the present invention is an epoxy resin, it is preferable that the thermosetting resin composition of the present invention further contains a curing accelerator.
  • the reactivity of the thermosetting resin composition can be controlled by the curing accelerator.
  • the curing accelerator is preferably a latent curing accelerator from the viewpoint of workability.
  • the latent curing accelerator is microencapsulated using a urethane resin or the like as a shell and a curing accelerator as a core.
  • an epoxy resin for example, a bisphenol A liquid epoxy resin
  • a master batch are preferable from the viewpoints of workability, curing speed, and storage stability.
  • the epoxy resin and the masterbatch latent curing accelerator are considered to polymerize the urethane resin of the shell appropriately by heat treatment at 50 to 100 ° C. Further adjustment of workability, curing speed and storage stability Is possible.
  • the heat treatment temperature of the latent curing accelerator is less than 50 ° C., the stability during preheating and the connectivity of flip chip mounting are not sufficient.
  • the heat treatment temperature of the latent curing accelerator exceeds 100 ° C, the master batch of the epoxy resin and the latent curing accelerator is semi-cured or cured.
  • the heat treatment temperature of the curing accelerator is preferably 60 to 100 ° C., more preferably 70 to 100 ° C., and even more preferably 70 to 90 ° C.
  • the heat treatment time of the curing accelerator is preferably 6 to 72 hours.
  • the heat processing temperature of a hardening accelerator is 50 degreeC, it is preferable in it being 48 hours or more.
  • the heat treatment temperature of the curing accelerator is 90 ° C., it is preferably 48 hours or shorter, and more preferably 12 hours or shorter.
  • the curing accelerator preferably has a reaction start temperature of 110 to 150 ° C., more preferably 110 to 142 ° C.
  • the reaction start temperature is measured by DSC (differential scanning calorimetry).
  • the reaction start temperature is a temperature at which the curing accelerator is in the thermosetting resin composition and the latent curing agent starts the curing reaction. In DSC, it is observed as a temperature at which the curing accelerator starts to generate heat.
  • an imidazole compound curing accelerator microencapsulated with urethane resin or the like is preferable from the viewpoint of storage stability.
  • microcapsule-type modified imidazole and microencapsulated imidazole compound curing accelerators dispersed in a liquid epoxy resin such as liquid bisphenol A type and masterbatch from the viewpoint of workability, curing speed, and storage stability. More preferred.
  • imidazole compound curing accelerator examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2, 4-diamino-6- [2′-methylimidazolyl- (1 ′)] ethyl-s-triazine, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, Examples include 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole.
  • imidazole compound curing accelerators examples include 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)] ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1) -ethyl-s-triazine, 2,4-diamino-6- [2′-ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, etc. It is preferable from the viewpoint of moisture resistance.
  • a hardening accelerator may be individual or may use 2 or more types together.
  • thermosetting resin contained in the thermosetting resin composition of the present invention is an epoxy resin
  • the blending amount of the material is preferably the following blending amount. That is, the thermosetting resin composition of the present invention comprises 20 to 120 parts by weight of a filming agent, 30 to 100 parts by weight of a curing agent, 3 to 20 parts by weight of an elastomer, and 100 parts by weight with respect to 100 parts by weight of a phenol novolac type epoxy resin.
  • the filming agent is 40 to 90 parts by weight
  • the curing agent is 35 to 80 parts by weight
  • the elastomer is 5 to 15 parts by weight
  • the liquid epoxy resin is 8 to 40 parts by weight.
  • 100 to 600 parts by weight of a material 1.5 to 5 parts by weight of a coupling agent, 10 to 70 parts by weight of a fluxing agent, and 10 to 60 parts by weight of a curing accelerator.
  • the blending amount of the curing accelerator is the weight of the active ingredient as the curing accelerator excluding the epoxy resin when making a masterbatch.
  • thermosetting resin contained in the thermosetting resin composition of the present invention is a (meth) acrylate compound
  • the blending amount of each material is preferably the following blending amount. That is, the thermosetting resin composition of the present invention has a film forming agent of 50 to 120 parts by weight, a curing agent of 0.1 to 5 parts by weight, and a filler of 50 to 500 parts by weight with respect to 100 parts by weight of the (meth) acrylate compound. Parts, coupling agent 0.05 to 5 parts by weight, and fluxing agent 0.1 to 10 parts by weight.
  • the filming agent is 60 to 100 parts by weight
  • the curing agent is 0.5 to 5 parts by weight
  • the filler is 100 to 300 parts by weight
  • the coupling agent is 0.5 to 5 parts by weight
  • the fluxing agent is 0.1 to 10 parts. Including parts by weight.
  • thermosetting resin composition of this invention Next, the manufacturing method of the thermosetting resin composition of this invention is demonstrated.
  • the present invention is a process for producing a film-like thermosetting resin composition for semiconductor encapsulation, which contains a thermosetting resin, a curing agent, a fluxing agent, and a filming agent.
  • the manufacturing method of the thermosetting resin composition of this invention includes the process of selecting the material for thermosetting resin compositions, and the process of mixing the material for thermosetting resin compositions.
  • the thermosetting resin contained in the thermosetting resin composition of the present invention is preferably an epoxy resin and / or a (meth) acrylate compound.
  • thermosetting resin composition of this invention includes the process of selecting the material for thermosetting resin compositions.
  • the thermosetting resin composition material includes a material constituting the above-described thermosetting resin composition of the present invention.
  • heat should be applied so that the temperature at which the temperature change rate of viscosity reaches 30 Pa ⁇ sec / ° C. is 200 to 250 ° C.
  • a material for the curable resin composition is selected.
  • the temperature change rate of the viscosity when the temperature is increased with a predetermined temperature increase profile is obtained by the above-described viscosity behavior prediction method (viscosity behavior prediction method of the present embodiment). be able to.
  • the thermosetting resin composition comprises a curing accelerator, an elastomer, a filler, and a cup in addition to the thermosetting resin, the curing agent, the fluxing agent, and the filming agent. It is preferable to further include at least one member of the group consisting of ring agents.
  • a thermosetting resin contains an epoxy resin
  • a liquid epoxy resin is further included as an epoxy resin.
  • thermosetting resin composition of the present invention the temperature at which the temperature change rate of viscosity reaches 30 Pa ⁇ sec / ° C. when the temperature is raised with a predetermined temperature rise profile is 200 to 250 ° C.
  • the material for thermosetting resin compositions and its compounding can be selected suitably.
  • the method for producing the thermosetting resin composition of the present invention includes a step of mixing the thermosetting resin composition material.
  • the resin composition of the present invention can be produced by stirring, melting, mixing, and dispersing the above-described predetermined materials simultaneously or separately, with heat treatment as necessary.
  • the mixing, stirring, dispersing and the like devices are not particularly limited, and a raikai machine equipped with a stirring and heating device, a three-roll mill, a ball mill, a planetary mixer, a bead mill and the like can be used. . Moreover, you may use combining these apparatuses suitably.
  • thermosetting resin composition of the present invention can be produced.
  • the virtual viscosity behavior of the thermosetting resin composition was obtained by the viscosity behavior prediction method of the present embodiment described above. In order to confirm that the temperature change rate of the viscosity of the thermosetting resin composition at a predetermined temperature increase rate can be calculated from the virtual viscosity behavior, the following verification was performed.
  • the predetermined temperature rise profile is set to 3 ° C./min that can be measured by the rheometer 20, and the computer 30 The reproducibility of the calculated virtual viscosity behavior was verified. That is, the computer 30 uses the virtual curve of the thermosetting resin composition under the condition of a temperature increase rate of 3 ° C./min based on each fitting curve for each temperature increase rate obtained in steps S24 to S26 shown in FIG. The viscosity behavior was calculated.
  • the rheometer 20 was used to actually measure the viscosity behavior of the thermosetting resin composition at a temperature increase rate of 3 ° C./min, and the predicted fitting curve of the virtual viscosity behavior was compared with the measured data. .
  • FIGS. 15 (a) and 15 (b) The comparison results are shown in FIGS. 15 (a) and 15 (b).
  • FIG. 15A is a graph showing measured data of the relationship between viscosity and time (time-dependent viscosity) and a predicted fitting curve of virtual viscosity behavior
  • FIG. 15B is a graph showing the relationship between viscosity and temperature ( It is a graph which shows the measurement curve of the temperature dependence viscosity), and the fitting curve of the predicted virtual viscosity behavior.
  • the fitting curve calculated by the computer 30 is almost the same as the actual measurement data. I understand that.
  • the temperature rising rate is 1800 ° C./minute (about 30 ° C./second) up to 260 ° C. Raise the temperature.
  • a void occurs at tact 4 seconds.
  • FIG. 16 shows a fitting curve of a virtual viscosity behavior in which a temperature increase rate of 1800 ° C./min is predicted by the viscosity behavior prediction method of the thermosetting resin composition of the present embodiment.
  • prediction results of 3 ° C./min, 500 ° C./min, and 3000 ° C./min are also shown.
  • the viscosity rises from around 200 ° C., but according to the fitting curve of the virtual viscosity behavior predicted at a heating rate of 1800 ° C./min, the viscosity is very low without increasing the viscosity even around 200 ° C., and voids are generated. It is considered a thing. Therefore, the development of a thermosetting resin composition that suppresses the generation of voids suggests an improvement direction that increases the viscosity in the vicinity of 200 ° C., as indicated by the arrows in the figure.
  • the viscosity of the thermosetting resin composition in the predetermined temperature rising profile is determined from the virtual viscosity behavior of the thermosetting resin composition by the viscosity behavior prediction method of the above-described embodiment even in the predetermined temperature rising profile. It is suggested that the rate of temperature change can be calculated.
  • the predetermined temperature increase profile is not particularly limited, but it is preferable to use a temperature increase rate (temperature profile) that is actually used.
  • a temperature increase rate for example, in the case of a thermosetting resin composition for thermal compression, a heating rate (predetermined heating rate profile) applied at the time of thermal compression is suitable.
  • thermosetting resin composition according to the present embodiment, the development man-hour of the thermosetting resin composition as the underfill can be greatly shortened, and the thermosetting resin It has become clear that it is possible to develop improvements in consideration of the mechanism of the composition and development of resin materials having new advantages.
  • Examples 1 to 6 and Comparative Examples 1 to 4 Thermosetting resin compositions of Examples 1 to 6 and Comparative Examples 1 to 4 were prepared by blending the components (A) to (I) shown in Tables 1 and 2. Table 3 shows specific materials, manufacturing companies, and model numbers of the respective components.
  • HX3088 Asahi Kasei E-materials Co., Ltd.
  • HX3088 which is a curing accelerator, is a microcapsule-type modified imidazole in which 1/3 of its weight acts as a curing accelerator.
  • 3 was a bisphenol A type liquid epoxy resin used when making a masterbatch.
  • the “(I) Curing Accelerator” column indicates the weight of the microcapsule-type modified imidazole that acts as a curing accelerator.
  • the weight of the bisphenol A type liquid epoxy resin contained in HX3088 is shown as “(J) bisphenol A type liquid epoxy resin” in Tables 1 and 2.
  • (A) Filming agent, (B) phenol novolac type epoxy resin, (C) curing agent and (D) elastomer shown in Table 3 were dissolved to a concentration of 50 wt% with respect to methyl ethyl ketone. Next, each material dissolved in methyl ethyl ketone is mixed so that the total of these materials is the weight ratio of Table 1 and Table 2, and further, the weight ratio of Table 1 and Table 2 is (E) Liquid epoxy resin, (F) filler, (G) coupling agent and (H) flux agent were added and dispersed.
  • the film characteristics were evaluated by evaluating the crack resistance and surface flatness of the film-like thermosetting resin composition obtained as described above.
  • the crack resistance was evaluated by cutting a film formed on PET with a width of 10 mm using a film cutting machine and confirming the occurrence of cracks and chips (defects) on the side of the film. The case where no defect occurred was defined as “no defect”, and the case where a defect occurred was defined as “defect”.
  • the surface flatness was evaluated by visually observing a film formed on PET and confirming the occurrence of dents and streaks (defects). The case where no defect occurred was defined as “no defect”, and the case where a defect occurred was defined as “defect”.
  • the film-like thermosetting resin compositions of Examples 1 to 6 and Comparative Examples 1 to 4 had good crack resistance and surface flatness, and no defects were generated. . Therefore, it can be said that the film-like thermosetting resin compositions of Examples 1 to 6 and Comparative Examples 1 to 4 have film properties that can be used for mounting semiconductor chips.
  • ⁇ Temperature change rate of viscosity> Using the viscosity behavior prediction method of the present embodiment described above, the rate of temperature increase during thermal compression of the film-like thermosetting resin compositions of Examples 1 to 6 and Comparative Examples 1 to 4 (see FIGS. 22 and 23) The temperature change rate of the viscosity when the temperature was raised with the predetermined temperature rise profile shown) was calculated. From the calculated temperature change rate of the viscosity, the temperature at which the temperature change rate of the viscosity was 30 Pa ⁇ sec / ° C. was determined.
  • thermosetting resin composition is calculated under the conditions of a predetermined temperature increase profile based on each fitting curve for each temperature increase rate obtained in steps S24 to S26 shown in FIG. It was.
  • FIG. 19 shows the temperature change of the viscosity of the thermosetting resin composition in Examples 1 to 6 and Comparative Examples 1 to 4 with the predetermined temperature increase profiles shown in FIGS. 22 and 23 calculated in this way. Show.
  • FIG. 20 and 21 show the temperature change rates of the viscosities of the thermosetting resin compositions of Examples 1 to 6 and Comparative Examples 1 to 4.
  • FIGS. 20 and 21 show a case where the temperature at which the temperature change rate of viscosity is 30 Pa ⁇ sec / ° C. is 200 to 250 ° C. by dotted lines.
  • the temperature change rate of the viscosity of the thermosetting resin compositions of Examples 1 to 6 and Comparative Examples 1 to 4 when the temperature was raised with a predetermined temperature rise profile was obtained.
  • Table 4 shows the temperature (° C.) at which the rate of change in viscosity when the temperature is raised with a predetermined temperature rise profile reaches 30 Pa ⁇ sec / ° C.
  • the temperature at which the rate of change in viscosity at a predetermined temperature rise reached 30 Pa ⁇ sec / ° C. was in the range of 200 to 250 ° C.
  • the temperature at which the rate of change in viscosity at a predetermined temperature increase reached 30 Pa ⁇ sec / ° C. was in the range of 242.2 to 247.5 ° C.
  • the temperature change rate of the viscosity at the predetermined temperature increase did not reach 30 Pa ⁇ second / ° C. within the range up to 257 ° C.
  • the bumps are copper bumps with SnAg solder plated on the top.
  • an organic substrate having a thickness of 360 ⁇ m having electrodes corresponding to the bump pattern of the semiconductor chip was prepared. This substrate was heated and dried under a nitrogen atmosphere.
  • test pieces of Examples 1 to 6 and Comparative Examples 1 to 4 are cut into about 8 mm squares, placed on the substrate on the semiconductor chip mounting position, and a laminator (Meiki Seisakusho Co., Ltd.) (MLP, 500/600).
  • MLP melting Seisakusho Co., Ltd.
  • FCB3 flip chip bonder
  • Table 1 shows “(void test piece number) / (test piece number: 5)” in the “void” and “C-SAM” columns of “moisture absorption reflow”.
  • Example 7 Example 8, and Comparative Example 5
  • Thermosetting resin compositions of Example 8 and Comparative Example 5 were prepared.
  • Table 6 shows specific materials, manufacturing companies, and model numbers of the respective components.
  • the component (H) of Table 6 is the same as the component (H) of Table 2.
  • Components (b-1) and (b-2) in Tables 5 and 6 are acrylate compounds.
  • Table 5 shows the blending (parts by weight) of other components, with the total amount of acrylate compounds (b-1) and (b-2) being 100 parts by weight.
  • components (c-1) and (c-2) in Tables 5 and 6 are curing agents (polymerization initiators).
  • ⁇ Temperature change rate of viscosity> When the temperature is increased at a predetermined temperature increase rate during thermal compression of the film-like thermosetting resin compositions of Example 7, Example 8, and Comparative Example 5 using the viscosity behavior prediction method of the present embodiment described above.
  • the temperature change rate of the viscosity was calculated, and the temperature at which the temperature change rate of the viscosity was 30 Pa ⁇ sec / ° C. was determined.
  • the predetermined temperature increase rate is a temperature increase rate according to the temperature increase profile shown in FIG. 22 and FIG. 23, and is not exactly the same, but is the same as the temperature increase profile shown in FIG. 22 and FIG. It is a temperature rise profile that can be considered.
  • the virtual viscosity behavior of the thermosetting resin composition is calculated under the conditions of a predetermined temperature increase profile based on each fitting curve for each temperature increase rate obtained in steps S24 to S26 shown in FIG. It was.
  • Thermosetting properties of Example 7, Example 8, and Comparative Example 5 in a temperature rising profile (simply referred to as “predetermined temperature rising profile”) that can be regarded as the same as the predetermined temperature rising profile shown in FIG. 22 and FIG. FIG. 24 shows the temperature change of the viscosity of the resin composition. That is, in the predetermined temperature increase profiles of Example 7, Example 8, and Comparative Example 5, the temperature was increased from 145 ° C. to 258 ° C. in 6 seconds. More specifically, in a predetermined temperature increase profile, the temperature was increased from 145 ° C. to 152 ° C. over 1 second, and then increased from 152 ° C. to 253 ° C. over 4 seconds.
  • FIG. 25 shows a case where the temperature at which the rate of change in viscosity is 30 Pa ⁇ sec / ° C. is 200 to 250 ° C. by a dotted line. If the curves of Example 7, Example 8 and Comparative Example 5 cross the dotted line in FIG. 25, it can be said that the temperature at which the rate of temperature change in viscosity is 30 Pa ⁇ sec / ° C. is 200 to 250 ° C.
  • Example 7 shows the temperature (° C.) at which the temperature change rate of the viscosity reaches 30 Pa ⁇ sec / ° C. when the temperature is raised with a predetermined temperature rise profile.
  • the temperature at which the rate of change in viscosity at a predetermined temperature rise reaches 30 Pa ⁇ sec / ° C. is 220.4 ° C. and 224.1 ° C., respectively, and is 200 to 250 ° C. It was a range.
  • Comparative Example 5 the temperature at which the temperature change rate of the viscosity at the predetermined temperature increase reached 30 Pa ⁇ sec / ° C. was 198.4 ° C., not in the range of 200 to 250 ° C.
  • thermosetting resin compositions of Example 7, Example 8, and Comparative Example 5 a test piece on which a semiconductor chip was mounted was prepared as in Examples 1 to 6 and Comparative Examples 1 to 4 described above. Then, a mountability test was conducted. Further, as in Examples 1 to 6 and Comparative Examples 1 to 4 described above, an ultrasonic microscope (C) was applied to the test pieces of Examples 1 to 6 and Comparative Examples 1 to 4 on which semiconductor chips were mounted. The image was observed by -SAM) to observe whether voids were generated in the thermosetting resin composition under the semiconductor chip.
  • C ultrasonic microscope
  • ⁇ Moisture absorption reflow test> As a moisture absorption reflow test, as in the case of Examples 1 to 6 and Comparative Examples 1 to 4 described above, ultrasonic waves were applied after predetermined moisture absorption using the test pieces of Examples 7, 8 and Comparative Example 5. The occurrence of voids in the resin composition was evaluated by image observation with a microscope. Further, the continuity test was performed using the test pieces of Example 7, Example 8, and Comparative Example 5 in the same manner as in Examples 1 to 6 and Comparative Examples 1 to 4 described above.
  • Table 5 shows the test results. Summarizing the test results of Example 7, Example 8, and Comparative Example 5, in Example 7 and Example 8, no void was generated in the mountability test. Moreover, the electrical conductivity of Example 7 and Example 8 was favorable. Further, the results of the moisture absorption reflow test were also good and highly reliable. On the other hand, Comparative Example 5 in which the temperature change rate of the viscosity when the temperature is raised with a predetermined temperature rise profile reaches 30 Pa ⁇ sec / ° C. is not in the range of 200 to 250 ° C. is shown in the mountability test. Although no void was generated, the conductivity was lowered.
  • thermosetting resin composition of the present invention is in the form of a film excellent in workability, ease of handling and narrow pitch, and eliminates voids between the semiconductor chip and the substrate in a short time.
  • the wiring and the solder bump of the semiconductor chip can be soldered, and after curing, the generation of voids in the moisture absorption reflow test can be suppressed. Therefore, a highly reliable semiconductor device can be obtained by a low-cost, low-energy, pre-supplied flip chip bonding process, which is very useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Abstract

【課題】 サーマルコンプレッションボンディング工法による半導体チップの加熱圧着工程において、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできる熱硬化性樹脂組成物を得る。 【解決手段】 熱硬化性樹脂、硬化剤及びフラックス剤を含む熱硬化性樹脂組成物であって、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃である、熱硬化性樹脂組成物である。

Description

熱硬化性樹脂組成物及びその製造方法
 本発明は、半導体封止用の熱硬化性樹脂組成物及びその製造方法に関し、特に、先供給型半導体封止用の熱硬化性樹脂組成物及びその製造方法に関する。
 従来からフリップチップ実装法として、図17に示すキャピラリーアンダーフィル(CUF)を用いたキャピラリーフロー工法が知られている。このキャピラリーフロー工法では、まず、フラックスを塗布する(図17(a))。次いで、半田層を備えたICチップなどの半導体チップをフラックス上に載置する(図17(b))。その後、リフロー半田付けを実施する(図17(c))。その後、余剰フラックスを洗浄する(図17(d))。次に、毛管現象を利用して、チップと基板との隙間にアンダーフィルを流し込む(図17(e))。最後に、加熱処理によりアンダーフィルを熱硬化させる(図17(f))。
 しかし、このようなキャピラリーフロー工法では、アンダーフィル以外にフラックスの使用を必須とする。また、フラックスの塗布工程(図17(a))及び洗浄工程(図17(d))を行う必要がある。そのため、このようなキャピラリーフロー工法では、半導体チップを効率よく実装することができなかった。特に、洗浄工程(図17(d))において、余剰フラックスをきれいに洗い流すことができない場合があった。
 フラックス塗布・洗浄工程を用いないフリップチップ実装法として、図18に示すようなプレアプライドアンダーフィルマテリアル(PAM)を用いたサーマルコンプレッションボンディング(TCB)工法がある。この工法では、まず、基板端子上に、例えば、ノンコンダクティブペースト(NCP)などのプレアプライドタイプのアンダーフィルを塗布する(図18(a))。次いで、半田ボールを備えた半導体チップをアンダーフィル上に加熱圧着させる(図18(b))。この加熱圧着により半導体チップの半田ボールを溶融させるとともに、アンダーフィルを一次硬化させる。その後、加熱処理によりアンダーフィルを二次硬化させる(図18(c))。
 このようなサーマルコンプレッションボンディング工法は、フラックスを用いずに、アンダーフィルの塗布工程、半導体チップの加熱圧着工程、加熱処理工程の3工程で済む。そのため、半導体チップを効率よく実装することが可能である。
 また、特許文献2には、フリップチップボンディングで使用される先設置型半導体封止用フィルムとして、(A)液状エポキシ樹脂、(B)熱可塑性樹脂、(C)硬化剤、(D)50~100℃で加熱処理した潜在性硬化促進剤、および(E)無機フィラーを含むことを特徴とする、先設置型半導体封止用フィルムが記載されている。
特開平8-15119号公報 特開2014-55245号公報
 上述のサーマルコンプレッションボンディング工法では、図18(b)に示す半導体チップの加熱圧着工程において、アンダーフィルのボイド抑制と、良好な半田接続とを両立させることが困難であるという問題があった。
 すなわち、図18(b)に示す半導体チップの加熱圧着工程において、一次硬化されたアンダーフィルの粘度が低すぎると、アウトガスの発生を抑えることができず、ボイドが生じやすくなってしまう。このため、半導体チップの加熱圧着工程では、アンダーフィルの粘度の高さによって、アウトガスが発生するか否かが決まる。アウトガスが発生した場合はボイドが生じてしまう。
 その反面、図18(b)に示す半導体チップの加熱圧着工程において、アンダーフィルの粘度が高すぎると、半田ボールと基板端子との接続がアンダーフィルによって阻害されてしまう。アンダーフィルは、溶融した半田が濡れ広がるまでは増粘を開始しない粘度挙動を呈することが望ましい。半田が濡れ広がる前に、アンダーフィルが先に増粘を開始すると、半田の濡れ広がりが阻害されてしまい、接触不良が生じるのである。
 現在、アンダーフィルに求められる昇温条件として、例えば、実装タクトが4秒の条件の場合、昇温速度は、例えば1800℃/分(約30℃/秒)で260℃まで昇温する。この昇温条件の場合、現状のアンダーフィルの組成では、ボイドが発生してしまう。ボイドの抑制には、半田溶融温度220℃付近で樹脂が高粘度であることが有利であると考えられる。
 サーマルコンプレッションボンディング工法においては、アンダーフィルを、ボイド抑制と半田接続とが両立するような粘度挙動を呈する組成にする必要がある。しかしながら、現状では、半導体チップの実装工程中の、温度挙動(例えば、上述の1800℃/分の昇温速度の温度挙動)に追従して、アンダーフィルの粘度挙動を測定する手段が存在しない。そのため、従来の方法では、評価サンプルであるノンコンダクティブペーストを、3℃/分の昇温速度の下、レオメータで測定した温度依存性粘度データを元に粘度挙動を予測するしかない。しかしながら、この方法では、ボイドを抑制することができなかった。また、従来、半導体チップの実装工程に準じる昇温速度(例えば、上述の1800℃/分の昇温速度)におけるアンダーフィルの粘度挙動を予測することができなかった。そのため、サーマルコンプレッションボンディング工法による半導体チップの加熱圧着工程において、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制することができるアンダーフィルを得ることは困難だった。
 本発明は、上記問題点に鑑みてなされたものである。本発明は、サーマルコンプレッションボンディング工法による半導体チップの加熱圧着工程において、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできる熱硬化性樹脂組成物及びその製造方法を得ることを目的とする。
 本発明は、上記課題を解決するため、本発明は以下の構成を有する。本発明は、下記の構成1~14であることを特徴とする熱硬化性樹脂組成物である。また、本発明は、下記の構成15~25であることを特徴とする熱硬化性樹脂組成物の製造方法である。
(構成1)
 本発明の構成1は、熱硬化性樹脂、硬化剤及びフラックス剤を含む熱硬化性樹脂組成物であって、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃である、熱硬化性樹脂組成物である。
 本発明の熱硬化性樹脂組成物は、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることができる。
(構成2)
 本発明の構成2は、熱硬化性樹脂が、フェノールノボラック型エポキシ樹脂及び/又は(メタ)クリレート化合物である、構成1に記載の熱硬化性樹脂組成物である。
 本発明の構成2によれば、熱硬化性樹脂が、フェノールノボラック型エポキシ樹脂及び/又は(メタ)クリレート化合物であることにより、ボイドの発生の抑制をより確実にでき、より良好な半田接続を得ることができる。
(構成3)
 本発明の構成3は、所定の昇温プロファイルが、145℃から258℃まで6秒間で昇温する昇温プロファイルである、構成1又は2に記載の熱硬化性樹脂組成物である。
 本発明の構成3によれば、所定の昇温プロファイルを、実際の昇温プロファイルに近いプロファイルとすることができるので、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることができる熱硬化性樹脂組成物を得ることができる。
(構成4)
 本発明の構成4は、所定の昇温プロファイルが、さらに、145℃から152℃まで1秒間で昇温した後に、152℃から253℃まで4秒間で昇温することを含む昇温プロファイルである、構成3に記載の熱硬化性樹脂組成物である。
 本発明の構成4によれば、所定の昇温プロファイルを、実際の昇温プロファイルにより近いプロファイルとすることができるので、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生をより抑制しつつ、より良好な半田接続を得るためのアンダーフィルとして用いることができる熱硬化性樹脂組成物を得ることができる。
(構成5)
 本発明の構成5は、熱硬化性樹脂組成物が、半導体封止用の熱硬化性樹脂組成物である、構成1~4に記載の熱硬化性樹脂組成物である。
 本発明の熱硬化性樹脂組成物は、サーマルコンプレッションボンディング工法による半導体チップの加熱圧着工程において、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることができる。そのため、本発明の熱硬化性樹脂組成物は、半導体封止用の熱硬化性樹脂組成物として用いることができる。
(構成6)
 本発明の構成6は、熱硬化性樹脂組成物が、フィルム化剤をさら含むフィルム状の熱硬化性樹脂組成物である、構成1~5のいずれかに記載の熱硬化性樹脂組成物である。
 本発明の構成6の熱硬化性樹脂組成物は、フィルム化剤をさら含むことにより、フィルム状の熱硬化性樹脂組成物とすることができる。そのため、サーマルコンプレッションボンディング工法による半導体チップの加熱圧着工程において、本発明の熱硬化性樹脂組成物を材料としたアンダーフィルを所定位置に配置することが容易である。
(構成7)
 本発明の構成7は、所定の昇温プロファイルで昇温したときの粘度の温度変化率が、粘度挙動予測方法により得られる粘度の温度変化率であり、粘度挙動予測方法が、所定の工程を含む、構成1~6のいずれかに記載の熱硬化性樹脂組成物である。具体的には、本発明の構成7における粘度挙動予測方法は、次の工程を含む。本発明の粘度挙動予測方法は、3種以上の昇温速度の下で、熱硬化性樹脂組成物の発熱量ピークをそれぞれ測定する反応速度測定工程を含む。本発明の粘度挙動予測方法は、3種以上の昇温速度の下で、熱硬化性樹脂組成物の粘度挙動をそれぞれ測定する粘度挙動測定工程を含む。本発明の粘度挙動予測方法は、反応速度測定工程で得られた昇温速度別の測定データを、Kamalモデル式にフィッティングし、昇温速度別に、熱硬化性樹脂組成物の熱量と時間及び熱量と温度のフィッティングカーブを得て、熱硬化性樹脂組成物の材料によって定まるKamalモデル式のパラメータを算出する反応速度フィッティング工程を含む。本発明の粘度挙動予測方法は、反応速度フィッティング工程で算出されたKamalモデル式のパラメータ、及び粘度挙動測定工程で得られた昇温速度別の測定データを、Castro-Macoskoモデル式にフィッティングし、昇温速度別に、熱硬化性樹脂組成物の粘度と時間及び粘度と温度のフィッティングカーブを得て、熱硬化性樹脂組成物の材料によって定まるCastro-Macoskoモデル式のパラメータを算出する粘度挙動フィッティング工程を含む。本発明の粘度挙動予測方法は、粘度挙動フィッティング工程で得られた昇温速度別の各フィッティングカーブに基づいて、所定の昇温プロファイルにおける熱硬化性樹脂組成物の仮想粘度挙動をシミュレーションにより算出する仮想粘度挙動算出工程を含む。本発明の粘度挙動予測方法は、熱硬化性樹脂組成物の仮想粘度挙動から、所定の昇温プロファイルにおける熱硬化性樹脂組成物の粘度の温度変化率を算出し、粘度の温度変化率が30Pa・秒/℃となる温度を求めるための粘度の温度変化率算出工程を含む。
 本発明の構成7によれば、所定の粘度挙動予測方法により、熱硬化性樹脂組成物の、所定の昇温プロファイルで昇温したときの粘度の温度変化率を予測することができる。そのため、仮に、半導体チップの実装工程中の、温度挙動に追従した、アンダーフィルの粘度挙動を測定する手段が存在しない場合であっても、所定の昇温プロファイルで昇温したときの粘度の温度変化率を得ることができる。その結果、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできる熱硬化性樹脂組成物を得ることができる。
(構成8)
 本発明の構成8は、反応速度測定工程が、熱硬化性樹脂組成物の発熱量ピークを示差走査熱量測定装置により測定することを含む、構成7に記載の熱硬化性樹脂組成物である。
 熱硬化性樹脂組成物の発熱量ピークを示差走査熱量測定装置により測定することにより、所定の粘度挙動予測方法による、熱硬化性樹脂組成物の、所定の昇温プロファイルで昇温したときの粘度の温度変化率の予測を確実にできる。
(構成9)
 本発明の構成9は、粘度挙動測定工程が、熱硬化性樹脂組成物の粘度挙動を粘弾性測定装置により測定することを含む、構成7又は8に記載の熱硬化性樹脂組成物である。
 粘度挙動測定工程において、熱硬化性樹脂組成物の粘度挙動を粘弾性測定装置により測定することにより、所定の粘度挙動予測方法による、熱硬化性樹脂組成物の、所定の昇温プロファイルで昇温したときの粘度の温度変化率の予測を、より確実にできる。
(構成10)
 本発明の構成10は、反応速度フィッティング工程で用いられるKamalモデル式が、下記式(1)のKamalモデル式を二重に重ねた下記式(2)の修正Kamalモデル式である構成7~9のいずれかに記載の熱硬化性樹脂組成物である。
Figure JPOXMLDOC01-appb-M000005

(但し、A、E、A、E、m、nは、熱硬化性樹脂組成物の材料によって定まるパラメータである。)
Figure JPOXMLDOC01-appb-M000006

(但し、A、E、A、E、m、n、B、F、B、F、p、q、Tは、熱硬化性樹脂組成物の材料によって定まるパラメータである。)
 反応速度フィッティング工程において、修正Kamalモデル式を用いることにより、所定の粘度挙動予測方法による、熱硬化性樹脂組成物の、所定の昇温プロファイルで昇温したときの粘度の温度変化率の予測を、さらに確実にできる。
(構成11)
 本発明の構成10は、3種以上の昇温速度が、少なくとも2℃/分、5℃/分、及び10℃/分の3種である、構成7~10のいずれかに記載の熱硬化性樹脂組成物である。
 反応速度測定工程及び粘度挙動測定工程において、昇温速度が、少なくとも2℃/分、5℃/分、及び10℃/分の3種であることにより、所定の粘度挙動予測方法による、熱硬化性樹脂組成物の、所定の昇温プロファイルで昇温したときの粘度の温度変化率の予測を、より正確にすることができる。
(構成12)
 本発明の構成12は、熱硬化性樹脂組成物が、硬化促進剤、エラストマー、充填材及びカップリング剤からなる群の少なくとも1つをさらに含む、構成1~11のいずれかに記載の熱硬化性樹脂組成物である。
 本発明の熱硬化性樹脂組成物が、硬化促進剤、エラストマー、充填材及びカップリング剤からなる群の少なくとも1つをさらに含むことにより、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃である、熱硬化性樹脂組成物を得ることが容易となる。その結果、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできる熱硬化性樹脂組成物を、確実に得ることができる。
(構成13)
 本発明の構成13は、熱硬化性樹脂が、フェノールノボラック型エポキシ樹脂であり、熱硬化性樹脂組成物が、液状エポキシ樹脂をさらに含む、構成1~12のいずれかに記載の熱硬化性樹脂組成物である。
 本発明の熱硬化性樹脂組成物に含まれるエポキシ樹脂が、フェノールノボラック型エポキシ樹脂に加えて液状エポキシ樹脂をさらに含むことにより、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃である、熱硬化性樹脂組成物を得ることがより容易となる。その結果、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできる熱硬化性樹脂組成物を、より確実に得ることができる。
(構成14)
 本発明の構成14は、熱硬化性樹脂が、フェノールノボラック型エポキシ樹脂であり、熱硬化性樹脂組成物が、フェノールノボラック型エポキシ樹脂100重量部に対して、フィルム化剤20~120重量部、硬化剤30~100重量部、エラストマー3~20重量部、液状エポキシ樹脂5~50重量部、充填材50~1000重量部、カップリング剤1~10重量部、フラックス剤5~100重量部、及び硬化促進剤5~100重量部を含む、構成13に記載の熱硬化性樹脂組成物である。
 本発明の熱硬化性樹脂組成物が、所定の組成の材料を含むことにより、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃である、熱硬化性樹脂組成物を得ることができる。その結果、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできる熱硬化性樹脂組成物を、さらに確実に得ることができる。
(構成15)
 本発明の構成15は、熱硬化性樹脂、硬化剤、フラックス剤及びフィルム化剤を含む、フィルム状の半導体封止用の熱硬化性樹脂組成物の製造方法である。本発明の製造方法は、熱硬化性樹脂、硬化剤、フラックス剤及びフィルム化剤を含む熱硬化性樹脂組成物用材料を選択する工程を含む。本発明の製造方法は、熱硬化性樹脂組成物用材料を混合する工程を含む。本発明の製造方法では、熱硬化性樹脂組成物用材料を選択する工程が、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃であるように熱硬化性樹脂組成物用材料を選択することを含む。
 本発明の構成15によれば、サーマルコンプレッションボンディング工法による半導体チップの加熱圧着工程において、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできる熱硬化性樹脂組成物の製造方法を得ることができる。
(構成16)
 本発明の構成16は、熱硬化性樹脂が、フェノールノボラック型エポキシ樹脂及び/又は(メタ)クリレート化合物である、構成15に記載の熱硬化性樹脂組成物の製造方法である。
 本発明の構成16によれば、熱硬化性樹脂が、フェノールノボラック型エポキシ樹脂及び/又は(メタ)クリレート化合物であることにより、ボイドの発生の抑制をより確実にできる。その結果、より良好な半田接続を得ることができる。
(構成17)
 本発明の構成17は、所定の昇温プロファイルが、145℃から258℃まで6秒間で昇温する昇温プロファイルである、構成15又は16に記載の熱硬化性樹脂組成物の製造方法である。
 本発明の構成17によれば、所定の昇温プロファイルを、実際の昇温プロファイルに近いプロファイルとすることができるので、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることができる熱硬化性樹脂組成物の製造方法を得ることができる。
(構成18)
 本発明の構成18は、所定の昇温プロファイルが、さらに、145℃から152℃まで1秒間で昇温した後に、152℃から253℃まで4秒間で昇温することを含む昇温プロファイルである、構成17に記載の熱硬化性樹脂組成物の製造方法である。
 本発明の構成18によれば、所定の昇温プロファイルを、実際の昇温プロファイルにより近いプロファイルとすることができる。そのため、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生をより抑制しつつ、より良好な半田接続を得るためのアンダーフィルとして用いることができる熱硬化性樹脂組成物の製造方法を得ることができる。
(構成19)
 本発明の構成19は、所定の昇温プロファイルで昇温したときの粘度の温度変化率が、粘度挙動予測方法により得られる粘度の温度変化率であり、粘度挙動予測方法が、所定の工程を含む、構成15~18のいずれかに記載の熱硬化性樹脂組成物の製造方法である。具体的には、本発明の構成19における粘度挙動予測方法(所定の粘度挙動予測方法)は、3種以上の昇温速度の下で、熱硬化性樹脂組成物の発熱量ピークをそれぞれ測定する反応速度測定工程を含む。所定の粘度挙動予測方法は、3種以上の昇温速度の下で、熱硬化性樹脂組成物の粘度挙動をそれぞれ測定する粘度挙動測定工程を含む。所定の粘度挙動予測方法は、反応速度測定工程で得られた昇温速度別の測定データを、Kamalモデル式にフィッティングし、昇温速度別に、熱硬化性樹脂組成物の熱量と時間及び熱量と温度のフィッティングカーブを得て、熱硬化性樹脂組成物の材料によって定まるKamalモデル式のパラメータを算出する反応速度フィッティング工程を含む。所定の粘度挙動予測方法は、反応速度フィッティング工程で算出されたKamalモデル式のパラメータ、及び粘度挙動測定工程で得られた昇温速度別の測定データを、Castro-Macoskoモデル式にフィッティングし、昇温速度別に、熱硬化性樹脂組成物の粘度と時間及び粘度と温度のフィッティングカーブを得て、熱硬化性樹脂組成物の材料によって定まるCastro-Macoskoモデル式のパラメータを算出する粘度挙動フィッティング工程を含む。所定の粘度挙動予測方法は、粘度挙動フィッティング工程で得られた昇温速度別の各フィッティングカーブに基づいて、所定の昇温プロファイルにおける熱硬化性樹脂組成物の仮想粘度挙動をシミュレーションにより算出する仮想粘度挙動算出工程を含む。所定の粘度挙動予測方法は、熱硬化性樹脂組成物の仮想粘度挙動から、所定の昇温プロファイルにおける熱硬化性樹脂組成物の粘度の温度変化率を算出し、粘度の温度変化率が30Pa・秒/℃となる温度を求めるための粘度の温度変化率算出工程を含む。
 本発明の構成19によれば、所定の粘度挙動予測方法により、熱硬化性樹脂組成物の、所定の昇温プロファイルで昇温したときの粘度の温度変化率を予測することができる。そのため、仮に、半導体チップの実装工程中の、温度挙動に追従した、アンダーフィルの粘度挙動を測定する手段が存在しない場合であっても、所定の昇温プロファイルで昇温したときの粘度の温度変化率を得ることができる。その結果、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできる熱硬化性樹脂組成物を製造することができる。
(構成20)
 本発明の構成20は、粘度挙動予測方法の反応速度測定工程が、熱硬化性樹脂組成物の発熱量ピークを示差走査熱量測定装置により測定することを含む、構成19に記載の熱硬化性樹脂組成物の製造方法である。
 熱硬化性樹脂組成物の発熱量ピークを示差走査熱量測定装置により測定することにより、所定の粘度挙動予測方法によって、熱硬化性樹脂組成物を所定の昇温プロファイルで昇温したときの、粘度の温度変化率の予測を確実にできる。
(構成21)
 本発明の構成21は、粘度挙動測定工程が、熱硬化性樹脂組成物の粘度挙動を粘弾性測定装置により測定することを含む、構成19又は20に記載の熱硬化性樹脂組成物の製造方法である。
 粘度挙動測定工程において、熱硬化性樹脂組成物の粘度挙動を粘弾性測定装置により測定することにより、所定の粘度挙動予測方法によって、熱硬化性樹脂組成物を所定の昇温プロファイルで昇温したときの粘度の温度変化率の予測を、より確実にできる。
(構成22)
 本発明の構成22は、反応速度フィッティング工程で用いられるKamalモデル式が、下記式(1)のKamalモデル式を二重に重ねた下記式(2)の修正Kamalモデル式である構成19~21のいずれかに記載の熱硬化性樹脂組成物の製造方法である。
Figure JPOXMLDOC01-appb-M000007

(但し、A、E、A、E、m、nは、熱硬化性樹脂組成物の材料によって定まるパラメータである。)
Figure JPOXMLDOC01-appb-M000008

(但し、A、E、A、E、m、n、B、F、B、F、p、q、Tは、熱硬化性樹脂組成物の材料によって定まるパラメータである。)
 反応速度フィッティング工程において、修正Kamalモデル式を用いることにより、所定の粘度挙動予測方法によって、熱硬化性樹脂組成物を所定の昇温プロファイルで昇温したときの粘度の温度変化率の予測を、さらに確実にできる。
(構成23)
 本発明の構成23は、3種以上の昇温速度が、少なくとも2℃/分、5℃/分、及び10℃/分の3種である、構成19~22のいずれかに記載の熱硬化性樹脂組成物の製造方法である。
 反応速度測定工程及び粘度挙動測定工程において、昇温速度が、少なくとも2℃/分、5℃/分、及び10℃/分の3種であることにより、所定の粘度挙動予測方法によって、熱硬化性樹脂組成物を所定の昇温プロファイルで昇温したときの粘度の温度変化率の予測を、より正確にすることができる。
(構成24)
 本発明の構成24は、熱硬化性樹脂組成物が、フィルム化剤をさら含み、硬化促進剤、エラストマー、充填材及びカップリング剤からなる群の少なくとも1つをさらに含む、構成15~23のいずれかに記載の熱硬化性樹脂組成物の製造方法である。
 熱硬化性樹脂組成物が、硬化促進剤、エラストマー、充填材及びカップリング剤からなる群の少なくとも1つをさらに含むことにより、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできる熱硬化性樹脂組成物を、確実に製造することができる。
(構成25)
 本発明の構成25は、熱硬化性樹脂組成が、液状エポキシ樹脂をさらに含む、構成15~24のいずれかに記載の熱硬化性樹脂組成物の製造方法である。
 熱硬化性樹脂組成物に含まれるエポキシ樹脂が、フェノールノボラック型エポキシ樹脂に加えて液状エポキシ樹脂をさらに含むことにより、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできる熱硬化性樹脂組成物を、より確実に製造することができる。
(構成26)
 本発明は、本発明の構成26は、熱硬化性樹脂組成物が、フェノールノボラック型エポキシ樹脂100重量部に対して、フィルム化剤20~120重量部、硬化剤30~100重量部、エラストマー3~20重量部、液状エポキシ樹脂5~50重量部、充填材50~1000重量部、カップリング剤1~10重量部、フラックス剤5~100重量部、及び硬化促進剤5~100重量部を含む、構成25に記載の熱硬化性樹脂組成物の製造方法である。
 熱硬化性樹脂組成物が、所定の組成の材料を含むことにより、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできる熱硬化性樹脂組成物を、さらに確実に製造することができる。
 本発明により、サーマルコンプレッションボンディング工法による半導体チップの加熱圧着工程において、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできる熱硬化性樹脂組成物及びその製造方法を得ることができる。
本発明に用いることのできる、一つの実施形態に係る熱硬化性樹脂組成物の粘度挙動予測方法を実施するための装置を示す概略図である。 上記装置の構成を示すブロック図である。 上記熱硬化性樹脂組成物の粘度挙動予測方法を実施するためのシミュレーションソフトウエアの構成を示す機能ブロック図である。 上記熱硬化性樹脂組成物の粘度挙動予測方法の反応速度測定工程の手順を示すフローチャートである。 上記熱硬化性樹脂組成物の粘度挙動予測方法の粘度挙動測定工程の手順を示すフローチャートである。 図6(a)は上記反応速度測定工程の測定結果を示すグラフであり、図6(b)は各昇温速度別の総熱量値を示す表である。 上記粘度挙動測定工程の測定結果を示すグラフである。 上記熱硬化性樹脂組成物の粘度挙動予測方法の反応速度フィッティング工程、粘度挙動フィッティング工程及び仮想粘度挙動算出工程の手順を示すフローチャートである。 図9(a)は上記反応速度測定工程で得られた上記熱硬化性樹脂組成物の熱量と時間の実測データと、上記反応速度フィッティング工程で得られたフィッティングカーブを示すグラフである。図9(b)は上記反応速度測定工程で得られた上記熱硬化性樹脂組成物の熱量と温度の実測データと、上記反応速度フィッティング工程で得られたフィッティングカーブを示すグラフである。 上記反応速度フィッティング工程の結果により算出された修正Kamalモデル式のパラメータを示す一覧表である。 図11(a)は上記粘度挙動測定工程で得られた上記熱硬化性樹脂組成物の粘度と時間の実測データと、上記粘度挙動フィッティング工程で得られたフィッティングカーブを示すグラフである。図11(b)は上記粘度挙動測定工程で得られた上記熱硬化性樹脂組成物の粘度と温度の実測データと、上記粘度挙動フィッティング工程で得られたフィッティングカーブを示すグラフである。 上記反応速度フィッティング工程の結果により算出されたCastro-Macoskoモデル式のパラメータを示す一覧表である。 上記仮想粘度挙動算出工程における具体的な処理を示す仮想粘度挙動算出サブルーチンの前半(反応速度パート)のフローチャートである。 上記仮想粘度挙動算出工程における具体的な処理を示す仮想粘度挙動算出サブルーチンの後半(粘度挙動パート)のフローチャートである。 上記仮想粘度挙動算出工程において、昇温速度を3℃/分に設定し、その実測値と、予測した仮想粘度挙動のフィッティングカーブとを比較するものである。図15(a)は粘度と時間の関係の実測データ、及び予測した仮想粘度挙動のフィッティングカーブを示すグラフである。図15(b)は粘度と温度の関係の実測データ、及び予測した仮想粘度挙動のフィッティングカーブを示すグラフである。 上記仮想粘度挙動算出工程において、昇温速度を3℃/分、500℃/分、1800℃/分、及び3000℃/分に設定してその仮想粘度挙動を予測した各フィッティングカーブを示すグラフである。 図17(a)~(f)はキャピラリーフロー工法の一連の工程を示す概略図である。 図18(a)~(c)はサーマルコンプレッションボンディング工法の一連の工程を示す概略図である。 実施例1~6及び比較例1~4の熱硬化性樹脂組成物を、図22に示す昇温プロファイルで昇温した場合の、粘度の温度変化を示す図である。 実施例1~6の熱硬化性樹脂組成物を、図22に示す昇温プロファイルで昇温した場合の、粘度の温度変化率を示す模式図である。 比較例1~4の熱硬化性樹脂組成物を、図22に示す昇温プロファイルで昇温した場合の、粘度の温度変化率を示す模式図である。 実施例1~6及び比較例1~4の、半導体チップを実装した試験片の作製する際の加熱に用いた昇温プロファイルである。 図22に示す昇温プロファイルの時間及び温度の値である。 実施例7、実施例8及び比較例5の熱硬化性樹脂組成物を、図22と同様な昇温プロファイルで昇温した場合の、粘度の温度変化を示す図である。 実施例7、実施例8及び比較例5の熱硬化性樹脂組成物を、図22と同様な昇温プロファイルで昇温した場合の、粘度の温度変化率を示す模式図である。
 本発明は、熱硬化性樹脂、硬化剤及びフラックス剤を含む熱硬化性樹脂組成物である。本発明の熱硬化性樹脂組成物は、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃であるという粘度挙動を有する。本発明者らは、熱硬化性樹脂組成物が、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃、好ましくは230~250℃、より好ましくは240~250℃であるという粘度挙動を有する場合に、サーマルコンプレッションボンディング工法による半導体チップの加熱圧着工程において、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできることを見出し、本発明に至った。
 本発明の熱硬化性樹脂組成物について、さらに具体的に説明する。
 本発明の熱硬化性樹脂組成物は、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃、好ましくは230~250℃、より好ましくは240~250℃であるという粘度挙動を有する。「所定の昇温プロファイル」とは、半導体チップの実装工程中の温度挙動(例えば、図22及び図23に示す昇温プロファイル)に準じた昇温プロファイルである。所定の昇温プロファイルは、例えば、145℃から260℃までの昇温において、100~5000℃/分程度の昇温速度を含む昇温プロファイルである。所定の昇温プロファイルは、145℃から260℃までの平均昇温速度が500~3000℃/分程度、好ましくは800~2000℃/分であることができる。また、所定の昇温プロファイルは、152℃から253℃までの平均昇温速度が1000~3000℃/分程度、好ましくは1300~2000℃/分程度であることを含むことが好ましい。
 より具体的には、所定の昇温プロファイルは、145℃から258℃まで6秒間で昇温する昇温プロファイルである。さらに具体的には、所定の昇温プロファイルは、145℃から258℃までの昇温において、100~5000℃/分程度の昇温速度を含むことに加えて、145℃から152℃まで1秒間で昇温した後に、152℃から253℃まで4秒間で昇温することを含む昇温プロファイルであることが好ましい。所定の昇温プロファイルとして、特に好ましい昇温プロファイルは、図22及び図23に示す昇温プロファイルである。本発明者らは、図22及び図23に示す昇温プロファイルを用いて熱硬化性樹脂組成物を昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃、好ましくは230~250℃、より好ましくは240~250℃であるという粘度挙動を有する場合に、サーマルコンプレッションボンディング工法による半導体チップの加熱圧着工程において、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできることを具体的に検証した。
 熱硬化性樹脂組成物を所定の昇温プロファイルで昇温したときの粘度の温度変化率(単に、「所定の粘度の温度変化率」という。)は、任意の方法で測定することができる。しかしながら、現状では、半導体チップの実装工程中の温度挙動(例えば、図22及び図23に示す昇温プロファイル)に準じた昇温速度に追従した、熱硬化性樹脂組成物の粘度挙動を測定する手段が存在しない。そのため、所定の粘度の温度変化率を直接測定することは、極めて困難である。そこで、本発明の熱硬化性樹脂組成物を得るために、所定の粘度の温度変化率を、以下に説明する粘度挙動予測方法により得ることができる。
 本発明の熱硬化性樹脂組成物では、所定の昇温プロファイルで昇温したときの粘度の温度変化率を、以下に述べる粘度挙動予測方法(「本実施形態の粘度挙動予測方法」という。)により得ることができる。
 本実施形態の粘度挙動予測方法は、反応速度測定工程と、粘度挙動測定工程と、反応速度フィッティング工程と、粘度挙動フィッティング工程と、仮想粘度挙動算出工程と、粘度の温度変化率算出工程とを含む。以下、具体的に、本実施形態の粘度挙動予測方法について、図面を参照しつつ説明する。
<装置構成>
 まず、本実施形態に係る熱硬化性樹脂組成物の粘度挙動予測方法(本実施形態の粘度挙動予測方法)を実施するための装置について、図1及び図2を参照しつつ説明する。
 本実施形態に係る熱硬化性樹脂組成物の粘度挙動予測方法では、評価サンプルとしての熱硬化性樹脂組成物について、例えば3種の昇温速度の下で、反応速度と粘度挙動とを実際に測定し、この測定結果を、本実施形態に係る専用のシミュレーションソフトウエアで解析することにより、前記熱硬化性樹脂組成物の各昇温速度別の粘度挙動に関するフィッティングカーブを生成する。これら粘度挙動に関するフィッティングカーブに基づいて、所定の昇温プロファイルにおける前記熱硬化性樹脂組成物の粘度挙動を予測する。
 図1において、符号10は、3種の昇温速度の下で、前記熱硬化性樹脂組成物の反応速度を測定するための示差走査熱量(DSC:Differential scanning calorimetry)測定装置である。示差走査熱量測定装置10は、3種の昇温速度の下で、前記熱硬化性樹脂組成物の温度依存性の発熱量ピークを測定する。このような示差走査熱量測定装置10としては、例えば、NETZSCH社製の「DSC204F1 Phoenix(登録商標)」を使用することができる。
 図1において、符号20は、3種の昇温速度の下で、前記熱硬化性樹脂組成物の粘度挙動を測定するためのレオメータ(粘弾性測定装置)である。レオメータ20は、3種の昇温速度の下で、前記熱硬化性樹脂組成物の温度依存性の粘度挙動を測定する。このようなレオメータ20としては、例えば、Thermo SCIENTIFIC社製の「HAAKE MARSIII(商標)」を使用することができる。
 これら示差走査熱量測定装置10及びレオメータ20の測定データは、それぞれコンピュータ30に入力され、このコンピュータ30にインストールされた本実施形態のシミュレーションソフトウエアにより解析される。図2に示すように、コンピュータ30は、入出力バス31に接続されたCPU(Central Processing Unit)32、RAM(Random Access Memory)33、ROM(Read Only Memory)34及び入出力インターフェース回路35を備えている。
 コンピュータ30の入出力インターフェース回路35には、液晶ディスプレイなどの画像表示装置30A、キーボードやマウスなどの入力装置30Bが接続されているほか、上述した示差走査熱量測定装置10及びレオメータ20が接続されている。また、RAM33には、本実施形態のシミュレーションソフトウエアが消去可能に記憶されており、このシミュレーションソフトウエアは、CPU32により実行される。
 ユーザは、コンピュータ30を通じて、示差走査熱量測定装置10及びレオメータ20の測定条件を設定し、これら示差走査熱量測定装置10及びレオメータ20に、前記熱硬化性樹脂組成物の反応速度及び粘度挙動の実測を行わせる。示差走査熱量測定装置10及びレオメータ20の測定結果は、入出力インターフェース回路35を介してコンピュータ30に入力される。入力された測定結果に基づき、本シミュレーションソフトウエアに従ったコンピュータ30の解析処理の結果が、画像表示装置30Aに出力される。
 なお、本実施形態では、汎用のコンピュータ30のRAM33に、本シミュレーションソフトウエアを事後的にダウンロードする構成としているが、この構成に限定されるものではなく、本実施形態のシミュレーションソフトウエアをROM34に記憶させて、コンピュータ30を本実施形態の粘度挙動予測方法の専用機としてもよい。
<シミュレーションソフトウエア>
 次に、コンピュータ30のRAM33に記憶された本実施形態のシミュレーションソフトウエアの構成について、図3を参照しつつ説明する。
 図3において、本実施形態のシミュレーションソフトウエア40は、主として、反応速度フィッティング手段41と、粘度挙動フィッティング手段42と、仮想粘度挙動算出手段43とを含む構成となっている。
<<反応速度フィッティング手段>>
 反応速度フィッティング手段41は、フィッティング演算処理手段41Aと、フィッティングカーブ生成手段41Bと、パラメータ算出手段41Cとを含む構成となっている。フィッティング演算処理手段41Aは、図1に示す示差走査熱量測定装置10からの各昇温速度別の測定データを、Kamalモデル式にフィッティングする演算処理を行う。フィッティングカーブ生成手段41Bは、フィッティング演算処理手段41Aの演算処理の結果に基づいて、各昇温速度別に、前記熱硬化性樹脂組成物の熱量と時間及び熱量と温度のフィッティングカーブを生成する。パラメータ算出手段41Cは、前記熱硬化性樹脂組成物の材料によって定まるKamalモデル式のパラメータを算出する。
<<粘度挙動フィッティング手段>>
 粘度挙動フィッティング手段42は、フィッティング演算処理手段42Aと、フィッティングカーブ生成手段42Bと、パラメータ算出手段42Cとを含む構成となっている。フィッティング演算処理手段42Aは、反応速度フィッティング手段41が算出したKamalモデル式のパラメータ、及び図1に示すレオメータ20からの各昇温速度別の測定データを、Castro-Macoskoモデル式にフィッティングする演算処理を行う。フィッティングカーブ生成手段42Bは、フィッティング演算処理手段42Aの演算処理の結果に基づいて、各昇温速度別に、前記熱硬化性樹脂組成物の粘度と時間及び粘度と温度のフィッティングカーブを生成する。パラメータ算出手段42Cは、前記熱硬化性樹脂組成物の材料によって定まるCastro-Macoskoモデル式のパラメータを算出する。
<<仮想粘度挙動算出手段>>
 仮想粘度挙動算出手段43は、粘度挙動演算処理手段43Aと、フィッティングカーブ生成手段43Bとを含む構成となっている。粘度挙動演算処理手段43Aは、粘度挙動フィッティング手段42が生成した前記熱硬化性樹脂組成物の粘度と時間及び粘度と温度のフィッティングカーブに基づいて、前記3種以外の所定の昇温プロファイルにおける前記熱硬化性樹脂組成物の仮想粘度挙動をシミュレーションにより算出する。フィッティングカーブ生成手段43Bは、粘度挙動演算処理手段43Aの算出結果に基づいて、所定の昇温プロファイルにおける前記熱硬化性樹脂組成物の仮想粘度挙動を示すフィッティングカーブを生成する。
<<その他>>
 なお、示差走査熱量測定装置10及びレオメータ20には、通常、専用の測定・解析ソフトウエアが用意されている。本実施形態のシミュレーションソフトウエア40が、示差走査熱量測定装置10及びレオメータ20の測定データを解析し、図6(a)や図7に示すような測定結果をコンピュータ30に生成させるプログラムを含んでもよい。
<熱硬化性樹脂組成物の粘度挙動予測方法>
 次に、上述した示差走査熱量測定装置10、レオメータ20、及びコンピュータ30を用いた本実施形態の熱硬化性樹脂組成物の粘度挙動予測方法について、図4~図14を参照しつつ詳述する。
<<本測定方法の技術的意義>>
 サーマルコンプレッションボンディング工法は、一般に、1800~3000℃/分の高速昇温で行われるので、使用するアンダーフィル(熱硬化性樹脂組成物)の粘度挙動によってはボイドが発生してしまうという問題がある。また、半田の接続不良が生じてしまうという問題がある。すなわち、1800~3000℃/分の高速昇温に対して、使用するアンダーフィルの粘度を高くするとボイドの発生を抑えることができるが、半田の接続不良が生じやすくなる。これと逆に、1800~3000℃/分の高速昇温に対して、使用するアンダーフィルの粘度を低くすると半田の接続不良が生じなくなるが、ボイドが発生しやすくなる。
 このため、サーマルコンプレッションボンディング工法に使用するアンダーフィルの開発には、高速昇温時の粘度制御が必要となる。しかしながら、サーマルコンプレッションボンディング工法の昇温速度は500~3000℃/分とあまりにも高い。従来の一般的な粘度測定装置であるレオメータは、昇温速度10℃/分の測定が限界であり、昇温速度500~3000℃/分で粘度を実測することは到底できない。さらに、アンダーフィルは、昇温時にゲル化が始まることによる粘度上昇も起きるので、10℃/分といった低速昇温時の挙動から、500~3000℃/分の高速昇温時の粘度を予測することは極めて困難である。
 そこで、本実施形態の熱硬化性樹脂組成物の粘度挙動予測方法では、アンダーフィルの高速昇温時の硬化を加味した粘度予測を行っている。すなわち、アンダーフィルの硬化度依存を求めるために、示差走査熱量測定装置10によって、3種の昇温速度別に測定した結果をKamalモデル式にフィッティングする。次いで、アンダーフィルの昇温速度依存を求めるために、レオメータ20によって前記3種の昇温速度別に測定した結果をCastro-Macoskoモデル式にフィッティングする。その後、アンダーフィルの硬化度と昇温速度とを組み合わせ、これら挙動を統合して加味した粘度挙動の予測を可能とした。
<<反応速度測定工程>>
 本実施形態の粘度挙動予測方法の反応速度測定工程では、3種以上の昇温速度の下で、熱硬化性樹脂組成物の発熱量ピークをそれぞれ測定する。
 図4は、評価サンプルとしての熱硬化性樹脂組成物の反応速度測定工程の手順を示すフローチャートである。この反応速度測定工程では、3種以上の昇温速度の下で、前記熱硬化性樹脂組成物の反応速度をそれぞれ測定する。本実施形態では、前記熱硬化性樹脂組成物に、出願人であるナミックス株式会社製のプレアプライドアンダーフィルマテリアル「XS8448-196」を使用し、2℃/分、5℃/分、及び10℃/分の3種の昇温速度の下、図1に示す示差走査熱量測定装置10によって、前記熱硬化性樹脂組成物の発熱量ピークをそれぞれ測定している(図4のステップS1)。このように、反応速度測定工程は、3種以上の昇温速度が、少なくとも2℃/分、5℃/分、及び10℃/分の3種であることが好ましい。また、反応速度測定工程において、熱硬化性樹脂組成物の発熱量ピークを示差走査熱量測定装置により測定することが好ましい。
 示差走査熱量測定装置10による3種の昇温速度の各測定データは、それぞれコンピュータ30に入力される(図4のステップS2)。コンピュータ30は、差走査熱量測定装置10の専用ソフトウエア、又は本実施形態のシミュレーションソフトウエアのプログラムに従い、各測定データの0値を補正して、図6(a)に示すような熱量と温度との関係(温度依存性反応速度)を表すグラフを生成する。図6(a)の測定結果によれば、2℃/分、5℃/分、及び10℃/分のいずれの昇温速度の場合も、小さい初期ピークは出ているが、昇温速度が高くなるにつれ、ピーク温度も高くなるという一般的な反応速度カーブを描いていることが分かる。
 ここで、3種以上の昇温速度の下で、前記熱硬化性樹脂組成物の反応速度をそれぞれ測定する理由は、前記熱硬化性樹脂組成物の粘度の温度依存性と、昇温速度依存性とを考慮した単一式にするために、両者を可変させた際の可変量と粘度変化との関係を同定するためである。4種、5種、6種・・・と昇温速度を変えた測定データが多いほど同定制度は上がると期待されるが、実際は3種の昇温速度の測定データがあれば、期待される同定式が得られる。
 また、前記熱硬化性樹脂組成物の発熱量ピークを測定する理由は、次の通りである。すなわち、前記熱硬化性樹脂組成物は、温度及び時間を与えることで、樹脂の反応基が開環して硬化剤と反応を始める硬化現象が起きるため、その粘度が増加していく。前記熱硬化性樹脂組成物の発熱量ピークは、硬化現象が最も進む温度及び時間を示唆する。したがって、前記熱硬化性樹脂組成物の発熱量ピークから、温度、時間、及び粘度の関係性を明らかにし、硬化による粘度変化を知ることができる。
<<粘度挙動測定工程>>
 本実施形態の粘度挙動予測方法の粘度挙動測定工程では、3種以上の昇温速度の下で、熱硬化性樹脂組成物の粘度挙動をそれぞれ測定する。
 本実施形態の粘度挙動予測方法の粘度挙動測定工程では、3種以上の昇温速度の下で、熱硬化性樹脂組成物の粘度挙動をそれぞれ測定する。本発明の熱硬化性樹脂組成物は、粘度挙動測定工程が、熱硬化性樹脂組成物の粘度挙動を粘弾性測定装置により測定することを含むことが好ましい。
 図5は、前記熱硬化性樹脂組成物の粘度挙動測定工程の手順を示すフローチャートである。この粘度挙動測定工程では、2℃/分、5℃/分、及び10℃/分の3種の昇温速度の下、図1に示すレオメータ20によって、前記熱硬化性樹脂組成物の粘度挙動をそれぞれ測定している(図5のステップS1)。前記熱硬化性樹脂組成物は樹脂ペーストの状態とし、レオメータ20の諸条件としては、歪み0.5%で1Hz、40φパラレルコーンでGap500μmにて測定を行った。
 レオメータ20による3種の粘度挙動の各測定データは、それぞれコンピュータ30に入力される(図5のステップS2)。コンピュータ30は、レオメータ20の専用ソフトウエア、又は本実施形態のシミュレーションソフトウエアのプログラムに従い、図7に示すような粘度と温度との関係(温度依存性粘度)を表すグラフを生成する。
<<反応速度フィッティング工程>>
 本実施形態の粘度挙動予測方法の反応速度フィッティング工程では、反応速度測定工程で得られた昇温速度別の測定データを、Kamalモデル式にフィッティングし、昇温速度別に、熱硬化性樹脂組成物の熱量と時間及び熱量と温度のフィッティングカーブを得て、熱硬化性樹脂組成物の材料によって定まるKamalモデル式のパラメータを算出する。反応速度フィッティング工程では、以下に述べる反応速度フィッティング手段41を用いる。
 図8は、前記熱硬化性樹脂組成物の粘度挙動予測方法の反応速度フィッティング工程、粘度挙動フィッティング工程及び仮想粘度挙動算出工程の手順を示すフローチャートである。これら工程は、いずれもコンピュータ30が、本実施形態のシミュレーションソフトウエアのプログラムに従い、上述した反応速度測定工程及び粘度挙動測定工程の測定データに基づいて処理する。
 図8のステップS21~23に、反応速度フィッティング工程の手順を示す。ステップS21~23の前処理として、コンピュータ30は、図4の反応速度測定工程で得られた測定データをゼロライン補正し、各昇温速度別の総熱量値が可能な限り相違ないデータを調整する。仮に、各昇温速度別の総熱量値に相違が生じた場合は、前記熱硬化性樹脂組成物に未硬化部が存在することになるため、精度の低下が予測される。
 次いで、ステップS21に進み、コンピュータ30は、図4の反応速度測定工程で得られた各昇温速度別の測定データを、下記式(1)のKamalモデル式にフィッティングする。Kamalモデル式は、昇温速度一定、質量一定(単位質量あたりに換算)の条件下で測定された熱硬化性樹脂組成物の発熱量と温度(又は時間)の関係である反応速度曲線をモデル化した式である。
Figure JPOXMLDOC01-appb-M000009

 但し、A、E、A、E、m、nは、熱硬化性樹脂組成物の材料によって定まるパラメータである。これらのパラメータは、材料の種類及び/又は材料の配合量が異なる熱硬化性樹脂組成物の場合には、それらの熱硬化性樹脂組成物について、それぞれ求められる必要がある。
 ここで、発明者らは、当初、上記式(1)を用いて反応速度測定工程の測定データをフィッティングしたが、上記式(1)に対して、測定データを収束誤差範囲内に収めることができずに発散してしまった。この要因としては、各昇温速度別の総熱量値の相違があったためと考えられる。各昇温速度別の総熱量値を図6(b)に示す。図6(b)に示すように、各昇温速度別の総熱量値は、約8%~5%程度のばらつきがあることが分かる。
 そこで、本実施形態では、各昇温速度別の総熱量値にばらつきがある場合や、発熱量ピークが複数あってノイズが多い場合などに対応すべく、上記式(1)のKamalモデル式を二重に重ねた下記式(2)の修正Kamalモデル式によってフィッティングすることを試みた。
Figure JPOXMLDOC01-appb-M000010

 但し、A、E、A、E、m、n、B、F、B、F、p、q、Tは、熱硬化性樹脂組成物の材料によって定まるパラメータである。これらのパラメータは、材料の種類及び/又は材料の配合量が異なる熱硬化性樹脂組成物の場合には、それらの熱硬化性樹脂組成物について、それぞれ求められる必要がある。
 上記式(1)のKamalモデル式は、6個のパラメータでフィッティングするものであったが、本実施形態の上記式(2)の修正Kamalモデル式は、その2倍の12個のパラメータでフィッティングするものである。この結果、より柔軟に複雑なモデルをフィッティングすることが可能となる。
 そのため、本発明の熱硬化性樹脂組成物は、反応速度フィッティング工程で用いられるKamalモデル式が、下記式(1)のKamalモデル式を二重に重ねた上記式(2)の修正Kamalモデル式であることが好ましい。
 次いで、図8のステップS22に進み、コンピュータ30は、各昇温速度別の反応速度のフィッティングカーブを生成する。上記式(2)の修正Kamalモデル式により生成した、各昇温速度別の反応速度のフィッティングカーブを図9(a)及び(b)に示す。図9(a)は、図5のステップS1で得られた前記熱硬化性樹脂組成物の熱量と時間(時間依存性反応速度)の実測データと、図8のステップS22で得られたフィッティングカーブを示すグラフである。図9(b)は、図5のステップS1で得られた前記熱硬化性樹脂組成物の熱量と温度(温度依存性反応速度)の実測データと、図8のステップS22で得られたフィッティングカーブを示すグラフである。
 図9(a)及び(b)に示すように、反応速度の実測データとフィッティングカーブとを比較すると、両者は、ピーク付近での熱量値の差異は多少あるが、立ち上がり、立ち下りでの挙動はほぼ一致している。したがって、フィッティングカーブには問題がない。
 次いで、図8のステップS23に進み、コンピュータ30は、ステップS21及びS22のフィッティング結果に基づいて、前記熱硬化性樹脂組成物の材料によって定まる上記(2)の修正Kamalモデル式のパラメータA、E、A、E、m、n、B、F、B、F、p、q、Tを算出する。これらパラメータの一覧を図10に示す。
<<粘度挙動フィッティング工程>>
 本実施形態の粘度挙動予測方法の粘度挙動フィッティング工程では、反応速度フィッティング工程で算出されたKamalモデル式のパラメータ、及び粘度挙動測定工程で得られた昇温速度別の測定データを、Castro-Macoskoモデル式にフィッティングする。さらに、昇温速度別に、熱硬化性樹脂組成物の粘度と時間及び粘度と温度のフィッティングカーブを得て、熱硬化性樹脂組成物の材料によって定まるCastro-Macoskoモデル式のパラメータを算出する。粘度挙動フィッティング工程では、粘度挙動フィッティング手段42を用いる。
 図8のステップS24~26に、粘度挙動フィッティング工程の手順を示す。まず、コンピュータ30は、ステップS24において、ステップS23で算出された上記式(2)の修正Kamalモデル式のパラメータ、及び図5の粘度挙動測定工程(ステップS11、S12)で得られた各昇温速度別の測定データを、下記式(4)のCastro-Macoskoモデル式にフィッティングする。ここで、下記式(4)のCastro-Macoskoモデル式は、下記式(3)のMacoskoモデル式の熱可塑性パートに、Castroモデル式を適用したものである。下記式(3)のMacoskoモデル式は、一定昇温速度条件下で測定された、熱硬化性樹脂組成物の粘度と時間との関係を表す粘度成長曲線をモデル化した式である。
Figure JPOXMLDOC01-appb-M000011

 但し、B、T、τ、r、ω、αgel、E、Fは、熱硬化性樹脂組成物の材料によって定まるパラメータである。
 次いで、図8のステップS25に進み、コンピュータ30は、各昇温速度別の粘度挙動のフィッティングカーブを生成する。上記式(4)のCastro-Macoskoモデル式により生成した、各昇温速度別の粘度挙動のフィッティングカーブを図11(a)及び(b)に示す。図11(a)は、図4のステップS11で得られた前記熱硬化性樹脂組成物の熱量と時間(時間依存性粘度)の実測データと、図8のステップS25で得られたフィッティングカーブを示すグラフである。図11(b)は、図4のステップS11で得られた前記熱硬化性樹脂組成物の熱量と温度(温度依存性粘度)の実測データと、図8のステップS25で得られたフィッティングカーブを示すグラフである。図11(a)及び(b)に示すように、粘度挙動の実測データとフィッティングカーブとを比較すると、両者はほぼ一致している。したがって、フィッティングカーブには問題がない。
 次いで、図8のステップS26に進み、コンピュータ30は、ステップS24及びS25のフィッティング結果に基づいて、前記熱硬化性樹脂組成物の材料によって定まる上記(4)のCastro-Macoskoモデル式のパラメータB、T、τ、r、ω、αgel、E、Fを算出する。これらパラメータの一覧を図12に示す。
<<仮想粘度挙動算出工程>>
 本実施形態の粘度挙動予測方法の仮想粘度挙動算出工程では、粘度挙動フィッティング工程で得られた昇温速度別の各フィッティングカーブに基づいて、所定の昇温プロファイルにおける熱硬化性樹脂組成物の仮想粘度挙動をシミュレーションにより算出する。仮想粘度挙動算出工程では、以下に述べる仮想粘度挙動算出手段43を用いる。
 図8のステップS27、S28に、仮想粘度挙動算出工程の手順を示す。ステップS27において、コンピュータ30は、ステップS24~S26で得られた昇温速度別の各フィッティングカーブに基づいて、任意の昇温速度における前記熱硬化性樹脂組成物の仮想粘度挙動をシミュレーションにより算出する。その後、ステップS28に進み、コンピュータ30は、ステップS27の算出結果に基づいて、任意の昇温速度における前記熱硬化性樹脂組成物の仮想粘度挙動を表すフィッティングカーブを生成する。所定の昇温プロファイルは、任意の昇温速度における前記熱硬化性樹脂組成物の仮想粘度挙動を表すフィッティングカーブを組み合わせることによって得ることができる。
 ここで、仮想粘度挙動算出工程のステップS27で行われるシミュレーションの処理について、図13及び図14に示す仮想粘度挙動算出サブルーチンを参照しつつ説明する。図13は前半の反応速度パート、図14は後半の粘度挙動パートの処理を示す。
 まず、図13のステップS31において、コンピュータ30は、ユーザの入力に従って評価サンプルの任意の昇温速度を選定する。ここでいう「任意の昇温速度」とは、例えば、レオメータ20では測定することができない500~3000℃/分の高速昇温であってもよい。
 次いで、ステップS32に進み、コンピュータ30は、Kamalモデル式(本実施形態では、上述した修正Kamalモデル式)の各パラメータに、任意の昇温速度に応じた仮数値を代入する。そして、ステップS33に進み、コンピュータ30は、図4の反応速度測定工程(ステップS1)と同じ時間の熱量をKamalモデル式から算出する。
 その後、ステップS34において、コンピュータ30は、Kamalモデル式の熱量の算出結果と、図4の反応速度測定工程(ステップS1)の熱量の測定データとを比較し、これら値の一致率が良好か否か(許容範囲か否か)を判断する。一致率が良好でないと判別した場合(NO)は、ステップS36に進み、コンピュータ30は、Kamalモデル式の各パラメータに代入する仮数値を増減させ、ステップS32~S35の処理を繰り返す。一方、一致率が良好であると判別した場合(YES)は、ステップS37に進み、コンピュータ30は、Kamalモデル式の各パラメータを決定する。
 次いで、図14のステップS41に進み、コンピュータ30は、Castro-Macoskoモデル式の各パラメータに、任意の昇温速度に応じた仮数値を代入する。そして、ステップS42に進み、コンピュータ30は、図5の粘度挙動測定工程(ステップS11)と同じ時間の粘度をCastro-Macoskoモデル式から算出する。
 その後、ステップS43において、コンピュータ30は、Castro-Macoskoモデル式の熱量の算出結果と、図5の粘度挙動測定工程(ステップS11)の粘度の測定データとを比較し、これら値の一致率が良好か否か(許容範囲か否か)を判断する。一致率が良好でないと判別した場合(NO)は、ステップS45に進み、コンピュータ30は、Castro-Macoskoモデル式の各パラメータに代入する仮数値を増減させ、ステップS41~S44の処理を繰り返す。一方、一致率が良好であると判別した場合(YES)は、ステップS46に進み、コンピュータ30は、Castro-Macoskoモデル式の各パラメータを決定する。
 次いで、ステップS47に進み、コンピュータ30は、図13のステップS37で決定したKamalモデル式の各パラメータと、ステップS46で決定したCastro-Macoskoモデル式の各パラメータを、Castro-Macoskoモデル式にフィッティングし、仮想粘度挙動のフィッティングカーブを生成する(ステップS48)。生成されたフィッティングカーブは、例えば、後述する図16のように、コンピュータ30の画像表示装置30Aに表示される(図8のステップS28)。
<<粘度の温度変化率算出工程>>
 図8のステップS29、S30に、粘度の温度変化率算出工程の手順を示す。ステップS29において、所定の昇温プロファイルにおける仮想粘度挙動(粘度の温度変化)を算出する。所定の昇温プロファイルにおける粘度挙動は、上述のようにして得られた実測の数値から導きだされた反応速度と粘度挙動のフィッティングから算出されたフィッティングカーブを組み合わせることによって仮想粘度挙動のカーブの算出式を得ることができる。すなわち、例えば、図22及び図23の昇温プロファイルにおいて、昇温速度は時間の経過とともに変化しているが、所定の経過時間ごとの昇温速度における仮想粘度挙動は、仮想粘度挙動のカーブの算出式によって得ることができる。
 次に、本実施形態の粘度挙動予測方法の粘度の温度変化率算出工程では、図8のステップS30において、熱硬化性樹脂組成物の仮想粘度挙動から、所定の昇温プロファイルにおける熱硬化性樹脂組成物の粘度の温度変化率を算出し、粘度の温度変化率が30Pa・秒/℃となる温度を求める。
 具体的には、所定の昇温プロファイルにおける所定の経過時間ごとの昇温速度に基づいて熱硬化性樹脂組成物の粘度の温度変化を求め、その微分を算出することにより、粘度の温度変化率が30Pa・秒/℃となる温度を求めることができる。
<熱硬化性樹脂組成物の材料>
 本発明の熱硬化性樹脂組成物は、熱硬化性樹脂、硬化剤及びフラックス剤を含む。本発明の熱硬化性樹脂組成物は、フィルム化剤をさら含むことにより、フィルム状の熱硬化性樹脂組成物であることが好ましい。また、熱硬化性樹脂組成物は、硬化促進剤、エラストマー、充填材及びカップリング剤からなる群の少なくとも1つをさらに含むことができる。
<熱硬化性樹脂>
 本発明の熱硬化性樹脂組成物は、熱硬化性樹脂を含む。熱硬化性樹脂は、エポキシ樹脂及び/又は(メタ)クリレート化合物であることが好ましい。
<エポキシ樹脂>
 本発明の熱硬化性樹脂組成物に含まれる熱硬化性樹脂は、エポキシ樹脂であることが好ましい。本発明の熱硬化性樹脂組成物に含まれるエポキシ樹脂は、フェノールノボラック型エポキシ樹脂を含み、さらに液状エポキシ樹脂を含むことが好ましい。
 本発明の熱硬化性樹脂組成物は、フェノールノボラック型エポキシ樹脂を含む。本発明の熱硬化性樹脂組成物に含まれるエポキシ樹脂が、フェノールノボラック型エポキシ樹脂であることにより、アンダーフィルに求められる昇温条件で処理した場合、ボイドの発生を抑制しつつ、良好な半田接続を得るためのアンダーフィルとして用いることのできる熱硬化性樹脂組成物を、より確実に得ることができる。
 本発明の熱硬化性樹脂組成物に含まれる液状エポキシ樹脂は、半導体封止用フィルムに、硬化性、耐熱性、接着性を付与し、硬化後の半導体封止用フィルムに、耐久性を付与する。液状エポキシ樹脂としては、液状ビスフェノールA型エポキシ樹脂、液状ビスフェノールF型エポキシ樹脂、液状ナフタレン型エポキシ樹脂、液状アミノフェノール型エポキシ樹脂、液状ビフェニル型エポキシ樹脂、液状水添ビスフェノール型エポキシ樹脂、液状脂環式エポキシ樹脂、液状アルコールエーテル型エポキシ樹脂、液状環状脂肪族型エポキシ樹脂、液状フルオレン型エポキシ樹脂等が挙げられる。液状エポキシ樹脂としては、液状ナフタレン型エポキシ樹脂、液状ビスフェノールF型エポキシ樹脂、液状ビスフェノールA型エポキシ樹脂、液状アミノフェノール型エポキシ樹脂、及び液状ビフェニル型エポキシ樹脂が、硬化性、耐熱性、接着性、耐久性の観点から好ましい。また、液状エポキシ樹脂のエポキシ当量は、反応性、硬化密度の観点から、80~250g/eqが好ましい。市販品としては、DIC製ビスフェノールA型・ビスフェノールF型エポキシ樹脂(品名:EXA835LV)、新日鐵住金化学株式会社ビスフェノールA型エポキシ樹脂(品名:YD-128)、新日鐵住金化学株式会社ビスフェノールF型エポキシ樹脂(品名:YDF870GS)、三菱化学株式会社アミノフェノール型エポキシ樹脂(グレード:JER630、JER630LSD)、DIC製ナフタレン型エポキシ樹脂(品名:HP4032D)、モメンティブ・パフォーマンス・マテリアルズ・ジャパン製(品名:TSL9906)等が挙げられる。液状エポキシ樹脂は、単独でも2種以上を併用してもよい。
<(メタ)クリレート化合物>
 本発明の熱硬化性樹脂組成物に含まれる熱硬化性樹脂は、(メタ)クリレート化合物であることが好ましい。(メタ)クリレート化合物とは、アクリル酸エステルモノマー及び/又はメタクリル酸エステルモノマーあるいはこれらのオリゴマーのことである。本発明の熱硬化性樹脂組成物に含まれる(メタ)クリレート化合物として、ポリエステルアクリレート及び/又はジメチロールトリシクロデカンジアクリレートを用いることが好ましい。
 本発明に使用可能なアクリル酸エステルモノマー及び/又はメタクリル酸エステルモノマーあるいはこれらのオリゴマーとしては、トリス(2-ヒドロキシエチル)イソシアヌレートのジアクリレート及び/又はジメタクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレート及び/又はトリメタクリレート;トリメチロールプロパントリアクリレート及び/又はトリメタクリレート、又はそのオリゴマー;ペンタエリスリトールトリアクリレート及び/又はトリメタクリレート、又はそのオリゴマー;ジペンタエリスリトールのポリアクリレート及び/又はポリメタクリレート;トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(メタクリロキシエチル)イソシアヌレート;アルキル変性ジペンタエリスリトールのポリアクリレート及び/又はポリメタクリレート;カプロラクトン変性ジペンタエリスリトールのポリアクリレート及び/又はポリメタクリレートが挙げられる。これらは、1種単独で用いてもよく2種以上を組み合わせて用いてもよい。
<硬化剤>
 本発明の熱硬化性樹脂組成物に含まれる熱硬化性樹脂がエポキシ樹脂である場合、硬化剤は、上述のエポキシ樹脂、液状エポキシ樹脂の硬化能を有するものであればよい。硬化剤としては、フェノール系硬化剤、アミン系硬化剤、酸無水物系硬化剤が挙げられる。硬化剤としては、反応性、安定性の観点から、フェノール系硬化剤が好ましい。フェノール系硬化剤としては、フェノールノボラック、クレゾールノボラック等が挙げられ、フェノールノボラックが好ましい。アミン系硬化剤としては、鎖状脂肪族アミン、環状脂肪族アミン、脂肪芳香族アミン、芳香族アミン等が挙げられる。アミン系硬化剤としては、芳香族アミンが好ましい。酸無水物系硬化剤としては、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンテトラカルボン酸二無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、エチレングリコールビスアンヒドロトリメリテート、グリセリンビス(アンヒドロトリメリテート)モノアセテート、ドデセニル無水コハク酸、脂肪族二塩基酸ポリ無水物、クロレンド酸無水物、メチルブテニルテトラヒドロフタル酸無水物、アルキル化テトラヒドロフタル酸無水物、メチルハイミック酸無水物、アルケニル基で置換されたコハク酸無水物、グルタル酸無水物等が挙げられる。酸無水物系硬化剤としては、メチルブテニルテトラヒドロフタル酸無水物が好ましい。市販品としては、DIC製クレゾールノボラック型フェノール樹脂硬化剤(品名:KA-1160)、明和化成製フェノール硬化剤(品名:MEH8000、MEH8005)、日本化薬株式会社アミン硬化剤(品名:カヤハードA-A)、三菱化学株式会社酸無水物(グレード:YH306、YH307)、日立化成工業株式会社3 or 4-メチル-ヘキサヒドロ無水フタル酸(品名:HN-5500)等が挙げられる。硬化剤は、単独でも2種以上を併用してもよい。
 本発明の熱硬化性樹脂組成物に含まれる熱硬化性樹脂が(メタ)クリレート化合物である場合、硬化剤(重合反応開始剤)は、上述の(メタ)クリレート化合物の硬化能を有するものであればよい。アクリル樹脂の硬化剤として、有機過酸化物を用いることが好ましい。有機過酸化物として、具体的には、日油株式会社製の「パークミルD」及び/又は「パーブチルE」を用いることができる。(メタ)クリレート化合物を、硬化剤を用いて重合することにより、アクリル樹脂を得ることができる。
 本発明の熱硬化性樹脂組成物に含まれる(メタ)クリレート化合物の硬化剤として使用することのできる有機過酸化物としては、分子内に-O-O-結合を持つ物質であればよく、特に制限されるものではない。過酸化物の例として、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート等を挙げることができる。この中では、パーオキシエステルを用いることが好ましい。パーオキシエステルの具体的な例として、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(1,1,3,3-Tetramethylbutyl peroxy-2-ethylhexanoate)、t-ブチルパーオキシネオデカノエート(t-Butyl peroxyneodecanoate)、などを挙げることができる。
<フラックス剤>
 本発明の熱硬化性樹脂組成物は、フラックス剤を含む。本発明の熱硬化性樹脂組成物がフラックス剤を含むことにより、良好な半田接続を得ることができる。フラックス剤としては、市販のフラックス作用を有する化合物を用いることができる。より良好な半田接続を得ることができる点から、フラックス剤としてはオキシキノリンを用いることが好ましい。フラックス剤として、例えば、和光純薬工業株式会社製のオキシキノリンを用いることができる。
<フィルム化剤>
 本発明の熱硬化性樹脂組成物は、フィルム化剤をさら含むことが好ましい。本発明の熱硬化性樹脂組成物が、フィルム化剤をさら含むことにより、フィルム状の熱硬化性樹脂組成物を得ることができる。フィルム状にすることにより、作業性が向上し、実装基板への供給の他に、半導体ウエハへの供給も容易となり、より広範囲の工法への適用が可能となる。
 フィルム化剤は、半導体封止用フィルムとして用いられるフィルム状の熱硬化性樹脂組成物に、可撓性を付与する。フィルム化剤としては、フェノキシ樹脂、ポリイミド樹脂、ポリエチレン樹脂、ポリスチレン樹脂、ポリエステル、ポリエーテル、ポリアミド、ポリエーテルエステルアミド、アクリル系樹脂(アクリル系ポリマー)が挙げられる。硬化後の熱硬化性樹脂組成物の内部応力の緩和の観点から、フェノキシ樹脂が好ましく、特にビスフェノールF型フェノキシ樹脂が好ましい。ここで、フェノキシ樹脂は、二価フェノールとエピクロルヒドリンの直接反応による方法、又は二価フェノールのジグリシジルエーテルと二価フェノールの付加重合反応により合成される高分子ポリヒドロキシポリエーテル(熱可塑性樹脂)であり、重量平均分子量が10,000以上の高分子をいう。重量平均分子量は、10,000~100,000が好ましく、40,000~80,000がより好ましい。ここで、重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いた値とする。
 二価フェノール類としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシナフタレン、ビスフェノールD、ビスフェノールE、ビスフェノールZ、ビスフェノールフルオレン、ビスクレゾールフルオレン、ビフェノール、カテコール、レゾルシン、ハイドロキノン、2,5-ジ-t-ブチルハイドロキノン、もしくはブロム化ビスフェノールA等のハロゲン化ビスフェノール類、10-(2,5-ジヒドロキシフェニル)-10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(2,7-ジヒドロキシナフチル)-10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、ジフェニルホスフィニルハイドロキノン、ジフェニルホスフィニルナフトキノン、シクロオクチレンホスフィニル-1,4-ベンゼンジオール、もしくはシクロオクチレンホスフィニル-1,4-ナフタレンジオール等のホスフィン含有フェノール類等が挙げられる。フェノキシ樹脂としては、これらの二価フェノール類とエピクロルヒドリンの直接反応によって製造されたもの、又は上記二価フェノール類とそれらのジグリシジルエーテル化合物の付加重合反応によって合成されたもの等が挙げられる。フィルム化剤としては、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールA-ビスフェノールF共重合型フェノキシ樹脂等が、より好ましい。フィルム化剤がフェノキシ樹脂であると、硬化後の先設置型半導体封止用フィルムの内部応力を緩和するため、半導体チップ-基板間の応力が緩和され、また、半導体チップ-基板間にフィルム化剤が存在することで密着性が向上する、と考えられる。フィルム化剤の市販品としては、新日鐵住金化学株式会社ビスF型フェノキシ樹脂(品名:FX-316)等が挙げられる。フィルム化剤は、単独でも2種以上を併用してもよい。
<エラストマー>
 本発明の熱硬化性樹脂組成物は、エラストマーをさら含むことが好ましい。特に、本発明の熱硬化性樹脂組成物に含まれる熱硬化性樹脂がエポキシ樹脂である場合には、本発明の熱硬化性樹脂組成物が、エラストマーをさら含むことが好ましい。
 本発明の熱硬化性樹脂組成物において、エラストマー(熱可塑性エラストマー)は、半導体チップの加熱圧着工程のアンダーフィルとして用いる場合のフィルム性状、接着性、及び、耐熱性に寄与する。
 本発明において、エラストマーとしては、ブタジエン-アクリロニトリル-メタクリル酸共重合体、スチレン-ブタジエンブロック共重合体、スチレン-エチレン/ブチレン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、ポリブタジエン、及び、スチレン-(エチレン-エチレン/プロピレン)-スチレンブロック共重合体からなる群から選択される少なくとも1つを用いることができる。これらのうち、いずれか1種のみを用いてもよく、2種以上を用いてもよい。これらのうち、いずれを用いるかは、アンダーフィルに付与する特性に応じて適宜選択することができる。例えば、スチレン-エチレン/ブチレン-スチレンブロック共重合体は、-エチレン/ブチレン-の部分の結晶性が高いため耐熱性が高く、アンダーフィルに耐熱性を付与するうえで好ましい。一方、スチレン-(エチレン-エチレン/プロピレン)-スチレンブロック共重合体は、-(エチレン-エチレン/プロピレン)-の部分の結晶性が、スチレン-エチレン/ブチレン-スチレンブロック共重合体の対応する部分(-エチレン/ブチレン-の部分)に比べて低いため、スチレン-エチレン/ブチレン-スチレンブロック共重合体に比べて基板に対する接着強度が高い。また、スチレンーブタジエンブロック共重合体は、アンダーフィルの弾性率が低くなり、かつ、アンダーフィルの熱圧着時において、被接着面に存在する凹凸の埋め込み性がよいため、該アンダーフィルの接着強度が高くなる。また、アンダーフィルの硬化後の柔軟性も優れる。上述の性能を総合的に考慮すると、本発明の熱硬化性樹脂組成物のエラストマーとしては、ブタジエン-アクリロニトリル-メタクリル酸共重合体を用いることが好ましい。
 本発明において、エラストマーの含有量は、熱硬化性樹脂(例えばフェノールノボラック型エポキシ樹脂)100重量部に対して、3~20重量部であることが好ましく、5~15重量部であることがより好ましい。エラストマーの含有量が3重量部未満の場合には、熱硬化性樹脂組成物のフィルム性状、具体的には、フィルム状の熱硬化性樹脂組成物単体での耐折性に劣る。また、熱硬化時の樹脂流れ量が大きくなり、熱硬化性樹脂組成物のフィルムの厚さが不均一になりやすい。一方、エラストマーの含有量が20重量部超の場合には、熱硬化性樹脂組成物のフィルムの他の材料、特に、熱硬化性樹脂(例えばフェノールノボラック型エポキシ樹脂)の含有量が相対的に少なくなることから、熱硬化性樹脂組成物のフィルムの耐熱性が低下する。また、熱硬化性樹脂組成物のフィルムの他の材料との相溶性が低下するので、熱硬化性樹脂組成物のフィルムの組成が不均一になり、熱硬化性樹脂組成物のフィルムの接着性や機械的強度が低下する。上述の点から、本発明において、エラストマーの含有量は、熱硬化性樹脂100重量部に対して、3~20重量部であることが好ましく、5~15重量部であることがより好ましい。
<充填材>
 本発明の熱硬化性樹脂組成物は、充填材をさら含むことが好ましい。
 充填材により、硬化後の半導体封止用のフィルム状の熱硬化性樹脂組成物(半導体封止用フィルム)の弾性率及び熱膨張係数を、調整する。充填材としては、コロイダルシリカ、疎水性シリカ、微細シリカ、ナノシリカ等のシリカフィラー、窒化アルミニウム、アルミナ、窒化ケイ素、窒化ホウ素が挙げられる。汎用性、電気特性などの観点から、充填材はシリカフィラーであることが好ましい。また、充填材の平均粒径(球状でない場合は、その平均最大径)は、特に限定されない。充填材の平均粒径は、0.05~50μmであることが、フィルム状の熱硬化性樹脂組成物中にフィラーを均一に分散させるうえで好ましい。充填材の平均粒径が0.05μm未満である場合には、実装時に熱硬化性樹脂組成物の粘度が上昇して、流動性が悪化するおそれがある。充填材の平均粒径が50μm超である場合には、熱硬化性樹脂組成物中にフィラーを均一に存在させることが困難になり、かつ半導体と基板の接続が困難になるおそれがある。充填材の平均粒径は、0.1~30μmであることがより好ましく、0.1~5μmであることがさらに好ましい。市販品としては、堺化学工業株式会社製シリカ(品名:Sciqas、平均粒径:0.1μm)、アドマテックス製シリカ(製品名:SO-E2、平均粒径:0.5μm)、DENKA製シリカ(品名:FB-5D、平均粒径:5μm)、扶桑化学工業株式会社(製品名:SP03B、平均粒径:300nm)等が挙げられる。ここで、充填材の平均粒径は、動的光散乱式ナノトラック粒度分析計により測定する。充填材は、単独でも2種以上を併用してもよい。
<カップリング剤>
 本発明の熱硬化性樹脂組成物は、カップリング剤をさら含むことが好ましい。
 液状樹脂組成物は、さらに、カップリング剤を含有すると、液状樹脂組成物の密着性の観点から好ましい。カップリング剤としては、フェニルアミノプロピルシラン、3-グリシドキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、ビニルトリメトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。液状樹脂組成物密着性の観点から、カップリング剤は、フェニルアミノプロピルシラン、3-グリシドキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシランであることが好ましく、フェニルアミノプロピルシランであることがより好ましい。市販品としては、信越化学工業株式会社KBM573(フェニルアミノプロピルシラン)、信越化学工業株式会社KBM403、KBE903、KBE9103等が挙げられるが、カップリング剤は、これら品名に限定されるものではない。カップリング剤は、単独でも2種以上を併用してもよい。
<硬化促進剤>
 本発明の熱硬化性樹脂組成物は、硬化促進剤をさら含むことが好ましい。特に、本発明の熱硬化性樹脂組成物に含まれる熱硬化性樹脂がエポキシ樹脂である場合には、本発明の熱硬化性樹脂組成物が、硬化促進剤をさら含むことが好ましい。
 硬化促進剤により、熱硬化性樹脂組成物の反応性を制御することができる。また、硬化促進剤は作業性の観点から潜在性硬化促進剤であることが好ましい。ここで、潜在性硬化促進剤は、ウレタン樹脂などをシェルに、硬化促進剤をコアにして、マイクロカプセル化されたものである。潜在性硬化促進剤としては、エポキシ樹脂(例えば、ビスフェノールA型液状エポキシ樹脂)とマスターバッチ化されたものが、作業性、硬化速度、保存安定性の観点から、好ましい。エポキシ樹脂とマスターバッチ化された潜在性硬化促進剤は、50~100℃で加熱処理することにより、シェルのウレタン樹脂が適度に重合すると考えられ、作業性、硬化速度、保存安定性のさらなる調整が可能である。潜在性硬化促進剤の加熱処理温度が50℃未満では、プレヒート時での安定性、フリップチップ実装の接続性が十分ではなくなる。潜在性硬化促進剤の加熱処理温度が100℃を超えると、エポキシ樹脂と潜在性硬化促進剤とのマスターバッチが、半硬化又は硬化してしまう。硬化促進剤の加熱処理温度は、60~100℃であると好ましく、70~100℃であると、より好ましく、70~90℃であると、さらに好ましい。
 硬化促進剤の加熱処理時間は、6~72時間であると好ましい。なお、硬化促進剤の加熱処理温度が50℃の場合には、48時間以上であると好ましい。硬化促進剤の加熱処理温度が90℃の場合には、48時間以下であると好ましく、12時間以下であると、より好ましい。
 また、硬化促進剤は、反応開始温度が、110~150℃であると好ましく、110~142℃であると、より好ましい。ここで、反応開始温度は、DSC(示差走査熱量測定)で測定する。ここで、反応開始温度は、硬化促進剤が熱硬化性樹脂組成物中で、潜在性硬化剤が硬化反応を開始させる温度をいい、DSCでは、硬化促進剤の発熱が開始する温度として観察される。
 潜在性硬化促進剤としては、ウレタン樹脂などでマイクロカプセル化されたイミダゾール化合物硬化促進剤が、保存安定性の観点から好ましい。また、液状ビスフェノールA型等の液状エポキシ樹脂中に分散され、マスターバッチ化された、マイクロカプセル型変性イミダゾール及びマイクロカプセル化イミダゾール化合物硬化促進剤が、作業性、硬化速度、保存安定性の点からより好ましい。イミダゾール化合物硬化促進剤としては、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2,4-ジアミノ-6-〔2’-メチルイミダゾリル-(1’)]エチル-s-トリアジン、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール等を挙げることができる。イミダゾール化合物硬化促進剤としては、2,4-ジアミノ-6-〔2’-メチルイミダゾリル-(1’)]エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1)-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン等が、硬化速度、作業性、耐湿性の観点から好ましい。
 エポキシ樹脂とマスターバッチ化された潜在性硬化促進剤の市販品としては、旭化成イーマテリアルズ株式会社マイクロカプセル型変性イミダゾール(HX3088)、旭化成イーマテリアルズ株式会社マイクロカプセル化イミダゾール化合物硬化剤(品名:ノバキュア4982(極厚型)、ノバキュア3932(中厚型)、ノバキュア4921(薄型)、HX3722、HXA3932HP)等が挙げられる。エポキシ樹脂とマスターバッチ化された潜在性硬化促進剤の市販品としては、旭化成イーマテリアルズ株式会社マイクロカプセル化イミダゾール化合物硬化剤(品名:ノバキュア4982(極厚型))が好ましい。硬化促進剤は、単独でも2種以上を併用してもよい。
<材料の配合量>
 本発明の熱硬化性樹脂組成物に含まれる熱硬化性樹脂がエポキシ樹脂である場合には、本発明の熱硬化性樹脂組成物に含まれる上述の各材料の添加効果を得るために、各材料の配合量は次に示す配合量であることが好ましい。すなわち、本発明の熱硬化性樹脂組成物は、フェノールノボラック型エポキシ樹脂100重量部に対して、フィルム化剤20~120重量部、硬化剤30~100重量部、エラストマー3~20重量部、液状エポキシ樹脂5~50重量部、充填材50~1000重量部、カップリング剤1~10重量部、フラックス剤5~100重量部、及び硬化促進剤5~100重量部を含むことが好ましい。より好ましくは、フェノールノボラック型エポキシ樹脂100重量部に対して、フィルム化剤40~90重量部、硬化剤35~80重量部、エラストマー5~15重量部、液状エポキシ樹脂8~40重量部、充填材100~600重量部、カップリング剤1.5~5重量部、フラックス剤10~70重量部、及び硬化促進剤10~60重量部を含む。なお、上述の配合量において、硬化促進剤の配合量は、マスターバッチ化する際のエポキシ樹脂を除いた、硬化促進剤としての有効成分の重量である。
 本発明の熱硬化性樹脂組成物に含まれる熱硬化性樹脂が(メタ)クリレート化合物である場合には、本発明の熱硬化性樹脂組成物に含まれる上述の各材料の添加効果を得るために、各材料の配合量は次に示す配合量であることが好ましい。すなわち、本発明の熱硬化性樹脂組成物は、(メタ)クリレート化合物100重量部に対して、フィルム化剤50~120重量部、硬化剤0.1~5重量部、充填材50~500重量部、カップリング剤0.05~5重量部、及びフラックス剤0.1~10重量部を含むことが好ましい。より好ましくは、フィルム化剤60~100重量部、硬化剤0.5~5重量部、充填材100~300重量部、カップリング剤0.5~5重量部、及びフラックス剤0.1~10重量部を含む。
<熱硬化性樹脂組成物の製造方法>
 次に、本発明の熱硬化性樹脂組成物の製造方法について説明する。
 本発明は、熱硬化性樹脂、硬化剤、フラックス剤及びフィルム化剤を含む、フィルム状の半導体封止用の熱硬化性樹脂組成物の製造方法である。本発明の熱硬化性樹脂組成物の製造方法は、熱硬化性樹脂組成物用材料を選択する工程と、熱硬化性樹脂組成物用材料を混合する工程とを含む。本発明の熱硬化性樹脂組成物に含まれる熱硬化性樹脂は、エポキシ樹脂及び/又は(メタ)クリレート化合物であることが好ましい。
<熱硬化性樹脂組成物用材料を選択する工程>
 本発明の熱硬化性樹脂組成物の製造方法は、熱硬化性樹脂組成物用材料を選択する工程を含む。上述のように、熱硬化性樹脂組成物用材料は、上述の本発明の熱硬化性樹脂組成物を構成する材料を含む。熱硬化性樹脂組成物用材料を選択する際に、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃であるように熱硬化性樹脂組成物用材料を選択することを特徴とする。本発明の熱硬化性樹脂組成物の製造方法では、所定の昇温プロファイルで昇温したときの粘度の温度変化率を、上述の粘度挙動予測方法(本実施形態の粘度挙動予測方法)により得ることができる。
 本発明の熱硬化性樹脂組成物の製造方法では、熱硬化性樹脂組成物が、熱硬化性樹脂、硬化剤、フラックス剤及びフィルム化剤の他に、硬化促進剤、エラストマー、充填材及びカップリング剤からなる群の少なくとも1つをさらに含むことが好ましい。また、本発明の熱硬化性樹脂組成物の製造方法では、熱硬化性樹脂がエポキシ樹脂を含む場合には、エポキシ樹脂として、液状エポキシ樹脂をさらに含むことが好ましい。これらの材料については、本発明の熱硬化性樹脂組成物について説明したものと同様である。熱硬化性樹脂組成物の材料の配合についても、上述の通りである。なお、本発明の熱硬化性樹脂組成物の製造方法では、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃であるように、熱硬化性樹脂組成物用材料及びその配合を、適宜、選択することができる。
 本発明の熱硬化性樹脂組成物の製造方法は、熱硬化性樹脂組成物用材料を混合する工程を含む。本発明の樹脂組成物は、上述の所定の材料を同時に又は別々に、必要により加熱処理を加えながら、撹拌、溶融、混合、分散させることにより製造することができる。これらの混合、撹拌、分散等の装置としては、特に限定されるものではないが、撹拌、加熱装置を備えたライカイ機、3本ロールミル、ボールミル、プラネタリーミキサー、ビーズミル等を使用することができる。また、これら装置を適宜組み合わせて使用してもよい。
 以上述べたようにして、本発明の熱硬化性樹脂組成物を製造することができる。
 本発明について、実施例により説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、「部」、「%」はことわりのない限り、重量部、重量%を示す。
〔仮想粘度挙動の再現性の検証〕
 上述の本実施形態の粘度挙動予測方法により、熱硬化性樹脂組成物の仮想粘度挙動を得た。その仮想粘度挙動から、所定の昇温速度における熱硬化性樹脂組成物の粘度の温度変化率を算出ことができることを確認するために、以下の検証を行った。
 所定の熱硬化性樹脂組成物について、本実施形態の粘度挙動予測方法の仮想粘度挙動算出工程で、所定の昇温プロファイルをレオメータ20で測定可能な3℃/分に設定して、コンピュータ30が算出した仮想粘度挙動の再現性を検証した。すなわち、コンピュータ30には、図8に示すステップS24~S26で得られた昇温速度別の各フィッティングカーブに基づいて、昇温速度3℃/分の条件で前記熱硬化性樹脂組成物の仮想粘度挙動を算出させた。一方、レオメータ20を用いて、昇温速度3℃/分の条件で前記熱硬化性樹脂組成物の粘度挙動を実際に測定し、予測した仮想粘度挙動のフィッティングカーブと、実測データとを比較した。
 この比較結果を図15(a)及び(b)に示す。図15(a)は、粘度と時間の関係(時間依存性粘度)の実測データ、及び予測した仮想粘度挙動のフィッティングカーブを示すグラフであり、図15図(b)は粘度と温度の関係(温度依存性粘度)の実測データ、及び予測した仮想粘度挙動のフィッティングカーブを示すグラフである。これらグラフのうち、昇温速度3℃/分の実測データと、そのフィッティングカーブとに注目すると、コンピュータ30により算出した昇温速度3℃/分のフィッティングカーブが、実測データとほぼ一致していることが分かる。
 現在、サーマルコンプレッションボンディング工法で用いられているノンコンダクティブペーストに求められる条件として、例えば、タクト4秒の実装条件の場合、昇温速度は1800℃/分(約30℃/秒)で260℃まで昇温する。現状ではタクト4秒の際にボイドが発生している問題がある。本発明者らが鋭意検討した結果、ボイド抑制には、半田溶融温度である220℃付近で樹脂が高粘度であることが有利と考えるに至った。しかしながら、現状の測定方法では3℃/分の温度依存性粘度の実測データを元に検討するほかに手段がなく、粘度の判断も困難であった。
 そこで、本実施形態の熱硬化性樹脂組成物の粘度挙動予測方法により、昇温速度1800℃/分を予測した仮想粘度挙動のフィッティングカーブを図16に示す。比較のために、3℃/分、500℃/分、3000℃/分の予測結果も示す。粘度は200℃付近から上昇するが、昇温速度1800℃/分を予測した仮想粘度挙動のフィッティングカーブによれば、200℃付近でも増粘せずに非常に低粘度であり、ボイドが発生するものと考えられる。したがって、ボイドの発生を抑える熱硬化性樹脂組成物の開発には、図中の矢印に示すように200℃付近での粘度を上げるような改良の方向性が示唆される。
 本検証から、所定の昇温プロファイルにおいても上述の本実施形態の粘度挙動予測方法により、熱硬化性樹脂組成物の仮想粘度挙動から、所定の昇温プロファイルにおける熱硬化性樹脂組成物の粘度の温度変化率を算出することができることが示唆される。
 所定の昇温プロファイルは特に限定されないが、実際に使用される昇温速度(温度プロファイル)を用いることが好ましい。例えば、サーマルコンプレッション用の熱硬化性樹脂組成物であれば、サーマルコンプレッション時に適用される昇温速度(所定の昇温速度プロファイル)が好適である。
 このように、本実施形態に係る熱硬化性樹脂組成物の粘度挙動予測方法によれば、アンダーフィルとしての熱硬化性樹脂組成物の開発工数を大幅に短縮することができ、熱硬化性樹脂組成物のメカニズムを考慮した改善、及び新たな優位性を持つ樹脂材料の開発を展開することが可能となることが明らかとなった。
〔実施例1~6及び比較例1~4〕
 表1及び表2に示す成分(A)~(I)の配合で、実施例1~6及び比較例1~4の熱硬化性樹脂組成物を調製した。表3に、各成分の具体的な材料、製造会社及び型番を示す。なお、(I)硬化促進剤である旭化成イーマテリアルズ株式会社HX3088(以下、単に「HX3088」という。)は、その重量の1/3が硬化促進剤として作用するマイクロカプセル型変性イミダゾール、2/3がマスターバッチ化する際に用いられるビスフェノールA型液状エポキシ樹脂であった。そのため、表1及び表2において、「(I)硬化促進剤」欄には、硬化促進剤として作用するマイクロカプセル型変性イミダゾールの重量を示している。HX3088に含まれるビスフェノールA型液状エポキシ樹脂の重量は、表1及び表2に「(J)ビスフェノールA型液状エポキシ樹脂」として示している。
 表3に示す(A)フィルム化剤、(B)フェノールノボラック型エポキシ樹脂、(C)硬化剤及び(D)エラストマーを、メチルエチルケトンに対して50wt%の濃度となるように溶解させた。次に、これら材料の合計が表1及び表2の重量比率となるように、メチルエチルケトンに溶解させた各材料を混合し、さらに、表1及び表2の重量比率となるように、(E)液状エポキシ樹脂、(F)充填材、(G)カップリング剤及び(H)フラックス剤を添加して、分散させた。分散後、さらに(J)ビスフェノールA型液状エポキシ樹脂と(I)硬化促進剤の混合品(マスターバッチ)(HX3088)を添加し、均一になるように攪拌し、表1及び表2に示す材料が所定の重量比率である塗工用ワニスを得た。次に、この塗工用ワニスを離型処理された厚さ50μmのPET(ポリエチレンテレフタレート)上へ塗工し、80℃にて10分間乾燥してメチルエチルケトンを除去した。この結果、厚さ35μmのフィルム状の熱硬化性樹脂組成物を得た。
<フィルム特性>
 上述のようにして得られたフィルム状の熱硬化性樹脂組成物に対し、耐クラック性及び表面平坦性を評価することにより、フィルム特性を評価した。耐クラック性は、PET上に形成されたフィルムを、フィルム切断機にて10mm幅にて切断をし、フィルム側面に割れ及び欠け(欠陥)の発生を確認することにより評価した。欠陥の発生がないものを「無欠陥」、欠陥の発生あるものを「有欠陥」とした。
 表面平坦性は、PET上に形成されたフィルムを、目視にて観察し、凹み及びスジ(欠陥)の発生を確認することにより評価した。欠陥の発生がないものを「無欠陥」、欠陥の発生あるものを「有欠陥」とした。
 表1及び表2に示すように、実施例1~6及び比較例1~4のフィルム状の熱硬化性樹脂組成物の耐クラック性及び表面平坦性は良好であり、欠陥の発生がなかった。したがって、実施例1~6及び比較例1~4のフィルム状の熱硬化性樹脂組成物は、半導体チップの実装に用いることが可能な程度のフィルム特性を有するといえる。
<粘度の温度変化率>
 上述の本実施形態の粘度挙動予測方法を用いて、実施例1~6及び比較例1~4のフィルム状の熱硬化性樹脂組成物のサーマルコンプレッション時の昇温速度(図22及び図23に示す所定の昇温プロファイル)で昇温したときの粘度の温度変化率を算出した。算出した粘度の温度変化率から、粘度の温度変化率が30Pa・秒/℃となる温度を求めた。
 具体的には、図8に示すステップS24~S26で得られた昇温速度別の各フィッティングカーブに基づいて、所定の昇温プロファイルの条件で熱硬化性樹脂組成物の仮想粘度挙動を算出させた。図19に、実施例1~6及び比較例1~4の、このようにして算出した図22及び図23に示す所定の昇温プロファイルでの、熱硬化性樹脂組成物の粘度の温度変化を示す。
 次に、図19に示す粘度の温度変化のカーブの微分を算出し、所定の昇温プロファイルにおける熱硬化性樹脂組成物の粘度の温度変化率を求めた。図20及び図21に、実施例1~6及び比較例1~4の熱硬化性樹脂組成物の粘度の温度変化率を示す。図20及び図21に示す結果から、粘度の温度変化率が30Pa・秒/℃となる温度を求めた。なお、参考のため、図20及び図21に、粘度の温度変化率が30Pa・秒/℃となる温度が、200~250℃である場合を点線で示す。実施例1~6及び比較例1~4のカーブが図20及び図21の点線を横切るのであるならば、粘度の温度変化率が30Pa・秒/℃となる温度が、200~250℃であるといえる。
 以上のようにして、実施例1~6及び比較例1~4の熱硬化性樹脂組成物の、所定の昇温プロファイルで昇温したときの粘度の温度変化率を得た。表4に、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度(℃)を示す。実施例1~6並びに比較例1及び2は、所定の昇温の際の粘度の温度変化率が30Pa・秒/℃に達する温度は、200~250℃の範囲だった。実施例1~6の場合、所定の昇温の際の粘度の温度変化率が30Pa・秒/℃に達する温度は242.2~247.5℃の範囲だった。比較例3の場合、257℃までの範囲で、所定の昇温の際の粘度の温度変化率が30Pa・秒/℃に達することはなかった。
〔半導体チップを実装した試験片の作製〕
 30μmのバンプが、50μmピッチで544個形成された幅:7.3mm、長さ:7.3mm、高さ:125μmの半導体チップ(Siチップ)を準備した。バンプは、上部がSnAgはんだめっきされた銅バンプである。また、半導体チップのバンプパターンに対応した電極を有する厚さ:360μmの有機基板を準備した。この基板を、窒素雰囲気下にて加熱乾燥した。基板の加熱乾燥終了後、作製したフィルム(実施例1~6及び比較例1~4の試験片)を約8mm角に切り出し、基板の半導体チップ搭載位置へ載せ、ラミネータ(株式会社名機製作所社製、MLP500/600)にてラミネートを行った。ラミネートの後、パナソニックファクトリーソリューションズ製フリップチップボンダー(型番:FCB3)を用いて加熱し、半導体チップを接続した。加熱の際の温度プロファイルは、図22及び図23に示す通りである。また、半導体チップの接続の際、加熱とともに、100Nの荷重を印加した。その後、165℃で1時間加熱処理をすることにより、後硬化を行った。以上のようにして、実施例1~6及び比較例1~4の、半導体チップを実装した試験片を作製した。
〔実装性試験〕
<超音波顕微鏡(C-SAM)観察>
 半導体チップを実装した、実施例1~6及び比較例1~4の試験片を、超音波顕微鏡(C-SAM:Constant-depth mode Scanning Acoustic Microscope)により画像観察した。超音波顕微鏡は、日立パワーソリューションズ社製の型番FS300IIIを用いた。超音波顕微鏡によって、半導体チップ下の熱硬化性樹脂組成物にボイドが発生しているかを観察した。表1及び表2の「実装性試験」、「ボイド」の「C-SAM」欄に、「(ボイドが観察された試験片数)/(試験片数)」を示す。例えば、「0/7」は、試験片数7個のうち、0個の試験片にボイドが観察されたことを示す。この記載方法は、他の評価項目についても同様である。
<平面研磨テスト>
 半導体チップを実装した、実施例1~6及び比較例1~4の試験片(試験片数:各2個)のチップ部分を、研磨により除去し、半導体チップ周辺のソルダーレジスト開口部のボイドを光学顕微鏡により観察した。詳細には、試験片の半導体チップ周辺のソルダーレジスト開口部で、特に、配線間に跨るボイドに注意をして観察した。ソルダーレジスト開口部では、Organic Solderability Preservative(以下:OSP)で処理された銅の配線が、配線幅:30μm、配線ピッチ:50μmで形成されていた。表1及び表2の「実装性試験」、「ボイド」の「平面研磨」欄に、「(ボイドが観察された試験片数)/(試験片数:2)」を示す。
<導通性テスト>
 半導体チップを実装した試験片(試験片数:7)の抵抗値測定パッド間の抵抗値を測定した。半導体チップ-基板間の接続が良好な試験片の抵抗値測定パッド間の抵抗の設計値は、30Ωであった。抵抗値測定パッド間の抵抗値が28Ω以上~32Ω以下のものを合格とし、抵抗値が28Ω以上~32Ω以下でないものを不合格とした。表1及び表2に、「実装性試験」、「導通性」の「抵抗値」欄に、「(不合格の試験片数)/(試験片数:7)」を示す。
〔耐吸湿リフロー試験〕
<超音波顕微鏡(C-SAM)観察>
 半導体チップを実装した、実施例1~6の試験片(試験片数:5)を、超音波顕微鏡(C-SAM)により画像観察し、ボイドが発生していないことを確認した。超音波顕微鏡は、日立パワーソリューションズ社製の型番FS300IIIを用いた。その後、高温高湿層(温度:30℃、湿度:60%rh)中にて192時間吸湿させた。吸湿後、最高温度260℃のリフロー炉を3回繰り返し通過させ、再度同様の画像観察を行った。吸湿及びリフロー後に、樹脂組成物のボイドが発生しているものを不合格とした。表1に、「耐吸湿リフロー」の「ボイド」、「C-SAM」欄に、「(不合格の試験片数)/(試験片数:5)」を示す。
<導通性テスト>
 上記耐吸湿リフロー試験の超音波顕微鏡(C-SAM)観察と同じ処理を施した、実施例1~6の半導体チップを実装した試験片(試験片数:5)の抵抗値測定パッド間の抵抗値を測定した。抵抗値測定パッド間の抵抗値が28Ω以上~32Ω以下のものを合格とし、抵抗値が28Ω以上~32Ω以下でないものを不合格とした。表1に、「耐吸湿リフロー」の「導通性」、「抵抗値」欄に、「(不合格の試験片数)/(試験片数:5)」を示す。
 試験結果を表1に示す。試験結果をまとめると、実施例1~6の全てで、実装性試験でボイドが発生せず、導通性も良好であった。また、耐吸湿リフロー試験の結果も良好で、高信頼性であった。これに対して、(C)硬化剤が配合されていない比較例1は、実装性試験でボイドが発生した。また、(H)フラックス剤が配合されていない比較例2は、導通性が低下した。また、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃の範囲にはない比較例3及び4は、実装性試験でボイドが発生し、比較例3ではさらに導通性が低下した。
〔実施例7、実施例8及び比較例5〕
 表5に示す成分(a)、(b-1)、(b-2)、(c-1)、(c-2)、(f)、(g)及び(H)の配合で、実施例7、実施例8及び比較例5の熱硬化性樹脂組成物を調製した。表6に、各成分の具体的な材料、製造会社及び型番を示す。なお、表6の成分(H)は、表2の成分(H)と同じである。なお、表5及び表6の成分(b-1)及び(b-2)はアクリレート化合物である。表5は、アクリレート化合物(b-1)及び(b-2)の合計量を100重量部として、その他の成分の配合(重量部)を示している。また、表5及び表6の成分(c-1)及び(c-2)は、硬化剤(重合開始剤)である。
 表6に示す(A)フィルム化剤を、メチルエチルケトンに対して50wt%の濃度となるように溶解させた。次に、これら材料の合計が表5の重量比率となるように、(A)フィルム化剤が溶解されたメチルエチルケトンに各材料を添加し、混合して、分散させ、表5に示す材料が所定の重量比率である塗工用ワニスを得た。次に、この塗工用ワニスを離型処理された厚さ50μmのPET(ポリエチレンテレフタレート)上へ塗工し、70℃にて10分間乾燥してメチルエチルケトンを除去した。この結果、厚さ35μmのフィルム状の熱硬化性樹脂組成物を得た。
<フィルム特性>
 上述のようにして得られた実施例7、実施例8及び比較例5のフィルム状の熱硬化性樹脂組成物に対し、耐クラック性及び表面平坦性を評価することにより、フィルム特性を評価した。実施例7、実施例8及び比較例5のフィルム特性の評価は、上述の実施例1~6及び比較例1~4に対するフィルム特性の評価と同様に行った。
<粘度の温度変化率>
 上述の本実施形態の粘度挙動予測方法を用いて、実施例7、実施例8及び比較例5のフィルム状の熱硬化性樹脂組成物のサーマルコンプレッション時の所定の昇温速度で昇温したときの粘度の温度変化率を算出し、粘度の温度変化率が30Pa・秒/℃となる温度を求めた。なお、所定の昇温速度とは、図22及び図23に示す昇温プロファイルに準じる昇温速度であり、まったく同一でないものの、誤差の範囲で図22及び図23に示す昇温プロファイルと同一とみなせる昇温プロファイルである。したがって、実施例7、実施例8及び比較例5の粘度の温度変化率の算出、及び粘度の温度変化率が30Pa・秒/℃となる温度を求めることは、上述の実施例1~6及び比較例1~4の場合と同様に行ったものとみなすことができる。
 具体的には、図8に示すステップS24~S26で得られた昇温速度別の各フィッティングカーブに基づいて、所定の昇温プロファイルの条件で熱硬化性樹脂組成物の仮想粘度挙動を算出させた。図22及び図23に示す所定の昇温プロファイルと同一とみなせる昇温プロファイル(単に、「所定の昇温プロファイル」という。)での、実施例7、実施例8及び比較例5の熱硬化性樹脂組成物の粘度の温度変化を、図24に示す。すなわち、実施例7、実施例8及び比較例5の所定の昇温プロファイルでは、145℃から258℃まで6秒間で昇温した。さらに具体的には、所定の昇温プロファイルでは、145℃から152℃まで1秒間で昇温した後に、152℃から253℃まで4秒間で昇温した。
 次に、図24に示す粘度の温度変化のカーブの微分を算出し、所定の昇温プロファイルにおける熱硬化性樹脂組成物の粘度の温度変化率を求めた。図25に、実施例7、実施例8及び比較例5の熱硬化性樹脂組成物の粘度の温度変化率を示す。図25に示す結果から、粘度の温度変化率が30Pa・秒/℃となる温度を求めた。なお、参考のため、図25に、粘度の温度変化率が30Pa・秒/℃となる温度が、200~250℃である場合を点線で示す。実施例7、実施例8及び比較例5のカーブが図25の点線を横切るのであるならば、粘度の温度変化率が30Pa・秒/℃となる温度が、200~250℃であるといえる。
 以上のようにして実施例7、実施例8及び比較例5の熱硬化性樹脂組成物の、所定の昇温プロファイルで昇温したときの粘度の温度変化率を得た。表7に、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度(℃)を示す。実施例7及び実施例8の場合、所定の昇温の際の粘度の温度変化率が30Pa・秒/℃に達する温度はそれぞれ、220.4℃及び224.1℃であり、200~250℃の範囲だった。比較例5の場合には、所定の昇温の際の粘度の温度変化率が30Pa・秒/℃に達する温度は、198.4℃であり、200~250℃の範囲ではなかった。
 実施例7、実施例8及び比較例5の熱硬化性樹脂組成物を用いて、上述の実施例1~6及び比較例1~4の場合と同様に、半導体チップを実装した試験片を作製し、実装性試験を行った。さらに、上述の実施例1~6及び比較例1~4の場合と同様に、半導体チップを実装した、実施例1~6及び比較例1~4の試験片に対して、超音波顕微鏡(C-SAM)により画像観察して、半導体チップ下の熱硬化性樹脂組成物にボイドが発生しているかを観察した。
<平面研磨テスト及び導通性テスト>
 半導体チップを実装した、実施例7、実施例8及び比較例5の試験片を用いて、上述の実施例1~6及び比較例1~4の場合と同様に、平面研磨テスト及び導通性テストを行った。
<耐吸湿リフロー試験>
 耐吸湿リフロー試験として、上述の実施例1~6及び比較例1~4の場合と同様に、実施例7、実施例8及び比較例5の試験片を用いて、所定の吸湿後、超音波顕微鏡による画像観察により、樹脂組成物のボイドの発生を評価した。さらに、上述の実施例1~6及び比較例1~4の場合と同様に、実施例7、実施例8及び比較例5の試験片を用いて、導通性テストを行った。
 試験結果を表5に示す。実施例7、実施例8及び比較例5の試験結果をまとめると、実施例7及び実施例8では、実装性試験でボイドが発生しなかった。また、実施例7及び実施例8の導通性は良好だった。また、耐吸湿リフロー試験の結果も良好で、高信頼性であった。これに対して、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃の範囲にはない比較例5は、実装性試験でボイドが発生しなかったものの、導通性が低下した。
 上記のように、本発明の熱硬化性樹脂組成物は、作業性、ハンドリングの容易性、狭ピッチ化対応に優れるフィルム状で、短時間で半導体チップ-基板間のボイドをなくしつつ、基板の配線と半導体チップのはんだバンプとをはんだ接続でき、硬化後には、耐吸湿リフロー試験でのボイドの発生を抑制することができる。このため、低コストで、低エネルギーの先供給型フリップチップボンディングプロセスで、高信頼性の半導体装置を得ることができ、大変有用である。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
[符号の説明]
 10 示差走査熱量測定装置
 20 レオメータ(粘弾性測定装置)
 30 コンピュータ
 30A 画像表示装置
 30B 入力装置
 31 入出力バス
 32 CPU
 33 RAM
 34 ROM
 35 入出力インターフェース回路
 40 シミュレーションソフトウエア
 41 反応速度フィッティング手段
 41A フィッティング演算処理手段
 41B フィッティングカーブ生成手段
 41C パラメータ算出手段
 42 粘度挙動フィッティング手段
 42A フィッティング演算処理手段
 42B フィッティングカーブ生成手段
 42C パラメータ算出手段
 43 仮想粘度挙動算出手段
 43A 粘度挙動演算処理手段
 43B フィッティングカーブ生成手段

Claims (26)

  1.  熱硬化性樹脂、硬化剤及びフラックス剤を含む熱硬化性樹脂組成物であって、
     所定の昇温速度所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃である、熱硬化性樹脂組成物。
  2.  熱硬化性樹脂が、フェノールノボラック型エポキシ樹脂及び/又は(メタ)アクリレート化合物である、請求項1に記載の熱硬化性樹脂組成物。
  3.  所定の昇温プロファイルが、145℃から258℃まで6秒間で昇温する昇温プロファイルである、請求項1又は2に記載の熱硬化性樹脂組成物。
  4.  所定の昇温プロファイルが、さらに、145℃から152℃まで1秒間で昇温した後に、152℃から253℃まで4秒間で昇温することを含む昇温プロファイルである、請求項3に記載の熱硬化性樹脂組成物。
  5.  熱硬化性樹脂組成物が、半導体封止用の熱硬化性樹脂組成物である、請求項1~4のいずれか1項に記載の熱硬化性樹脂組成物。
  6.  熱硬化性樹脂組成物が、フィルム化剤をさら含むフィルム状の熱硬化性樹脂組成物である、請求項1~5のいずれか1項に記載の熱硬化性樹脂組成物。
  7.  所定の昇温プロファイルで昇温したときの粘度の温度変化率が、粘度挙動予測方法により得られる粘度の温度変化率であり、
     粘度挙動予測方法が、
     3種以上の昇温速度の下で、熱硬化性樹脂組成物の発熱量ピークをそれぞれ測定する反応速度測定工程と、
     3種以上の昇温速度の下で、熱硬化性樹脂組成物の粘度挙動をそれぞれ測定する粘度挙動測定工程と、
     反応速度測定工程で得られた昇温速度別の測定データを、Kamalモデル式にフィッティングし、昇温速度別に、熱硬化性樹脂組成物の熱量と時間及び熱量と温度のフィッティングカーブを得て、熱硬化性樹脂組成物の材料によって定まるKamalモデル式のパラメータを算出する反応速度フィッティング工程と、
     反応速度フィッティング工程で算出されたKamalモデル式のパラメータ、及び粘度挙動測定工程で得られた昇温速度別の測定データを、Castro-Macoskoモデル式にフィッティングし、昇温速度別に、熱硬化性樹脂組成物の粘度と時間及び粘度と温度のフィッティングカーブを得て、熱硬化性樹脂組成物の材料によって定まるCastro-Macoskoモデル式のパラメータを算出する粘度挙動フィッティング工程と、
     粘度挙動フィッティング工程で得られた昇温速度別の各フィッティングカーブに基づいて、所定の昇温プロファイルにおける熱硬化性樹脂組成物の仮想粘度挙動をシミュレーションにより算出する仮想粘度挙動算出工程と、
     熱硬化性樹脂組成物の仮想粘度挙動から、所定の昇温プロファイルにおける熱硬化性樹脂組成物の粘度の温度変化率を算出し、粘度の温度変化率が30Pa・秒/℃となる温度を求めるための粘度の温度変化率算出工程を含む工程とを含む、請求項1~6のいずれか1項に記載の熱硬化性樹脂組成物。
  8.  反応速度測定工程が、熱硬化性樹脂組成物の発熱量ピークを示差走査熱量測定装置により測定することを含む、請求項7に記載の熱硬化性樹脂組成物。
  9.  粘度挙動測定工程が、熱硬化性樹脂組成物の粘度挙動を粘弾性測定装置により測定することを含む、請求項7又は8に記載の熱硬化性樹脂組成物。
  10.  反応速度フィッティング工程で用いられるKamalモデル式が、下記式(1)のKamalモデル式を二重に重ねた下記式(2)の修正Kamalモデル式である請求項7~9のいずれか1項に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-M000001

    (但し、A、E、A、E、m、nは、熱硬化性樹脂組成物の材料によって定まるパラメータである。)
    Figure JPOXMLDOC01-appb-M000002

    (但し、A、E、A、E、m、n、B、F、B、F、p、q、Tは、熱硬化性樹脂組成物の材料によって定まるパラメータである。)
  11.  3種以上の昇温速度が、少なくとも2℃/分、5℃/分、及び10℃/分の3種である、請求項7~10のいずれか1項に記載の熱硬化性樹脂組成物。
  12.  熱硬化性樹脂組成物が、硬化促進剤、エラストマー、充填材及びカップリング剤からなる群の少なくとも1つをさらに含む、請求項1~11のいずれか1項に記載の熱硬化性樹脂組成物。
  13.  熱硬化性樹脂が、フェノールノボラック型エポキシ樹脂であり、熱硬化性樹脂組成物が、液状エポキシ樹脂をさらに含む、請求項1~12のいずれか1項に記載の熱硬化性樹脂組成物。
  14.  熱硬化性樹脂が、フェノールノボラック型エポキシ樹脂であり、熱硬化性樹脂組成物が、フェノールノボラック型エポキシ樹脂100重量部に対して、フィルム化剤20~120重量部、硬化剤30~100重量部、エラストマー3~20重量部、液状エポキシ樹脂5~50重量部、充填材50~1000重量部、カップリング剤1~10重量部、フラックス剤5~100重量部、及び硬化促進剤5~100重量部を含む、請求項13に記載の熱硬化性樹脂組成物。
  15.  熱硬化性樹脂、硬化剤、フラックス剤及びフィルム化剤を含む、フィルム状の半導体封止用の熱硬化性樹脂組成物の製造方法であって、
     熱硬化性樹脂、硬化剤、フラックス剤及びフィルム化剤を含む熱硬化性樹脂組成物用材料を選択する工程と、
     熱硬化性樹脂組成物用材料を混合する工程とを含み、
     熱硬化性樹脂組成物用材料を選択する工程が、所定の昇温プロファイルで昇温したときの粘度の温度変化率が30Pa・秒/℃に達する温度が、200~250℃であるように熱硬化性樹脂組成物用材料を選択することを含む、熱硬化性樹脂組成物の製造方法。
  16.  熱硬化性樹脂が、フェノールノボラック型エポキシ樹脂及び/又は(メタ)アクリレート化合物である、請求項15に記載の熱硬化性樹脂組成物の製造方法。
  17.  所定の昇温プロファイルが、145℃から258℃まで6秒間で昇温する昇温プロファイルである、請求項15又は16に記載の熱硬化性樹脂組成物の製造方法。
  18.  所定の昇温プロファイルが、さらに、145℃から152℃まで1秒間で昇温した後に、152℃から253℃まで4秒間で昇温することを含む昇温プロファイルである、請求項17に記載の熱硬化性樹脂組成物の製造方法。
  19.  所定の昇温プロファイルで昇温したときの粘度の温度変化率が、粘度挙動予測方法により得られる粘度の温度変化率であり、
     粘度挙動予測方法が、
     3種以上の昇温速度の下で、熱硬化性樹脂組成物の発熱量ピークをそれぞれ測定する反応速度測定工程と、
     3種以上の昇温速度の下で、熱硬化性樹脂組成物の粘度挙動をそれぞれ測定する粘度挙動測定工程と、
     反応速度測定工程で得られた昇温速度別の測定データを、Kamalモデル式にフィッティングし、昇温速度別に、熱硬化性樹脂組成物の熱量と時間及び熱量と温度のフィッティングカーブを得て、熱硬化性樹脂組成物の材料によって定まるKamalモデル式のパラメータを算出する反応速度フィッティング工程と、
     反応速度フィッティング工程で算出されたKamalモデル式のパラメータ、及び粘度挙動測定工程で得られた昇温速度別の測定データを、Castro-Macoskoモデル式にフィッティングし、昇温速度別に、熱硬化性樹脂組成物の粘度と時間及び粘度と温度のフィッティングカーブを得て、熱硬化性樹脂組成物の材料によって定まるCastro-Macoskoモデル式のパラメータを算出する粘度挙動フィッティング工程と、
     粘度挙動フィッティング工程で得られた昇温速度別の各フィッティングカーブに基づいて、所定の昇温プロファイルにおける熱硬化性樹脂組成物の仮想粘度挙動をシミュレーションにより算出する仮想粘度挙動算出工程と、
     熱硬化性樹脂組成物の仮想粘度挙動から、所定の昇温プロファイルにおける熱硬化性樹脂組成物の粘度の温度変化率を算出し、粘度の温度変化率が30Pa・秒/℃となる温度を求めるための粘度の温度変化率算出工程と、
    を含む、請求項15~18のいずれか1項に記載の熱硬化性樹脂組成物の製造方法。
  20.  粘度挙動予測方法の反応速度測定工程が、熱硬化性樹脂組成物の発熱量ピークを示差走査熱量測定装置により測定することを含む、請求項19に記載の熱硬化性樹脂組成物の製造方法。
  21.  粘度挙動測定工程が、熱硬化性樹脂組成物の粘度挙動を粘弾性測定装置により測定することを含む、請求項19又は20に記載の熱硬化性樹脂組成物の製造方法。
  22.  反応速度フィッティング工程で用いられるKamalモデル式が、下記式(1)のKamalモデル式を二重に重ねた下記式(2)の修正Kamalモデル式である請求項19~21のいずれか1項に記載の熱硬化性樹脂組成物の製造方法。
    Figure JPOXMLDOC01-appb-M000003

    (但し、A、E、A、E、m、nは、熱硬化性樹脂組成物の材料によって定まるパラメータである。)
    Figure JPOXMLDOC01-appb-M000004

    (但し、A、E、A、E、m、n、B、F、B、F、p、q、Tは、熱硬化性樹脂組成物の材料によって定まるパラメータである。)
  23.  3種以上の昇温速度が、少なくとも2℃/分、5℃/分、及び10℃/分の3種である、請求項19~22のいずれか1項に記載の熱硬化性樹脂組成物の製造方法。
  24.  熱硬化性樹脂組成物が、フィルム化剤をさら含み、硬化促進剤、エラストマー、充填材及びカップリング剤からなる群の少なくとも1つをさらに含む、請求項15~23のいずれか1項に記載の熱硬化性樹脂組成物の製造方法。
  25.  熱硬化性樹脂組成物が、液状エポキシ樹脂をさらに含む、請求項15~24のいずれか1項に記載の熱硬化性樹脂組成物の製造方法。
  26.  熱硬化性樹脂組成物が、フェノールノボラック型エポキシ樹脂100重量部に対して、フィルム化剤20~120重量部、硬化剤30~100重量部、エラストマー3~20重量部、液状エポキシ樹脂5~50重量部、充填材50~1000重量部、カップリング剤1~10重量部、フラックス剤5~100重量部、及び硬化促進剤5~100重量部を含む、請求項25に記載の熱硬化性樹脂組成物の製造方法。
PCT/JP2015/078580 2014-10-10 2015-10-08 熱硬化性樹脂組成物及びその製造方法 WO2016056619A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177009762A KR102319292B1 (ko) 2014-10-10 2015-10-08 열경화성 수지 조성물 및 그의 제조 방법
JP2016553150A JP6657104B2 (ja) 2014-10-10 2015-10-08 熱硬化性樹脂組成物及びその製造方法
US15/517,742 US10388583B2 (en) 2014-10-10 2015-10-08 Thermosetting resin composition and method of producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-209207 2014-10-10
JP2014209207 2014-10-10

Publications (1)

Publication Number Publication Date
WO2016056619A1 true WO2016056619A1 (ja) 2016-04-14

Family

ID=55653225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078580 WO2016056619A1 (ja) 2014-10-10 2015-10-08 熱硬化性樹脂組成物及びその製造方法

Country Status (4)

Country Link
US (1) US10388583B2 (ja)
JP (1) JP6657104B2 (ja)
KR (1) KR102319292B1 (ja)
WO (1) WO2016056619A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065309A1 (ja) * 2017-09-28 2019-04-04 株式会社新川 ボンディングの際の半導体チップの加熱条件設定方法及び非導電性フィルムの粘度測定方法ならびにボンディング装置
KR20200030501A (ko) * 2017-07-14 2020-03-20 나믹스 가부시끼가이샤 가압 실장용 ncf, 그 경화물 및 이를 사용한 반도체 장치

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589638B2 (ja) * 2014-12-08 2019-10-16 東レ株式会社 接着剤組成物、その硬化物を含む半導体装置およびそれを用いた半導体装置の製造方法
US9929121B2 (en) * 2015-08-31 2018-03-27 Kulicke And Soffa Industries, Inc. Bonding machines for bonding semiconductor elements, methods of operating bonding machines, and techniques for improving UPH on such bonding machines
JP7126129B2 (ja) * 2017-03-07 2022-08-26 パナソニックIpマネジメント株式会社 アンダーフィル用熱硬化性組成物及び半導体装置
CN111527593B (zh) * 2017-12-25 2021-05-04 住友电木株式会社 电子装置的制造方法
KR20220070426A (ko) * 2019-09-30 2022-05-31 쇼와덴코머티리얼즈가부시끼가이샤 반도체용 접착제, 반도체용 접착제 시트, 및 반도체 장치의 제조 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337999A (ja) * 1992-06-05 1993-12-21 Toyota Motor Corp 溶融材料の型充填時に生じるボイドの挙動を解析する方法
WO2008004287A1 (fr) * 2006-07-05 2008-01-10 Ablestik (Japan) Co., Ltd. Adhésif conducteur
WO2010052871A1 (ja) * 2008-11-06 2010-05-14 住友ベークライト株式会社 電子装置の製造方法および電子装置
WO2011033743A1 (ja) * 2009-09-16 2011-03-24 住友ベークライト株式会社 接着フィルム、多層回路基板、電子部品及び半導体装置
WO2011048774A1 (ja) * 2009-10-19 2011-04-28 住友ベークライト株式会社 電子装置の製造方法、電子装置および電子装置の製造装置
JP2012238702A (ja) * 2011-05-11 2012-12-06 Hitachi Chem Co Ltd 半導体装置の製造方法、及び半導体ウェハ積層体の製造方法
JP2013171927A (ja) * 2012-02-20 2013-09-02 Denso Corp 電子装置の製造方法
JP2014211363A (ja) * 2013-04-18 2014-11-13 ナミックス株式会社 熱硬化性樹脂の粘度挙動予測方法、シミュレーションソフトウエア、熱硬化性樹脂の製造方法、及びこの製造方法により製造したアンダーフィル
JP2015137299A (ja) * 2014-01-21 2015-07-30 住友ベークライト株式会社 樹脂組成物、接着シート、ダイシングテープ一体型接着シート、バックグラインドテープ一体型接着シート、バックグラインドテープ兼ダイシングテープ一体型接着シート、および電子装置
JP2015168691A (ja) * 2014-03-04 2015-09-28 ナミックス株式会社 樹脂組成物、先供給型半導体封止剤、半導体封止用フィルムおよび半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3388889B2 (ja) 1994-07-04 2003-03-24 住友ベークライト株式会社 熱硬化性樹脂の流動予測方法
JPWO2010027017A1 (ja) * 2008-09-05 2012-02-02 住友ベークライト株式会社 導電接続材料およびそれを用いた端子間の接続方法ならびに接続端子の製造方法
JP2012089750A (ja) * 2010-10-21 2012-05-10 Hitachi Chem Co Ltd 半導体封止充てん用熱硬化性樹脂組成物及び半導体装置
JP6106389B2 (ja) 2012-09-13 2017-03-29 ナミックス株式会社 先設置型半導体封止用フィルム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337999A (ja) * 1992-06-05 1993-12-21 Toyota Motor Corp 溶融材料の型充填時に生じるボイドの挙動を解析する方法
WO2008004287A1 (fr) * 2006-07-05 2008-01-10 Ablestik (Japan) Co., Ltd. Adhésif conducteur
WO2010052871A1 (ja) * 2008-11-06 2010-05-14 住友ベークライト株式会社 電子装置の製造方法および電子装置
WO2011033743A1 (ja) * 2009-09-16 2011-03-24 住友ベークライト株式会社 接着フィルム、多層回路基板、電子部品及び半導体装置
WO2011048774A1 (ja) * 2009-10-19 2011-04-28 住友ベークライト株式会社 電子装置の製造方法、電子装置および電子装置の製造装置
JP2012238702A (ja) * 2011-05-11 2012-12-06 Hitachi Chem Co Ltd 半導体装置の製造方法、及び半導体ウェハ積層体の製造方法
JP2013171927A (ja) * 2012-02-20 2013-09-02 Denso Corp 電子装置の製造方法
JP2014211363A (ja) * 2013-04-18 2014-11-13 ナミックス株式会社 熱硬化性樹脂の粘度挙動予測方法、シミュレーションソフトウエア、熱硬化性樹脂の製造方法、及びこの製造方法により製造したアンダーフィル
JP2015137299A (ja) * 2014-01-21 2015-07-30 住友ベークライト株式会社 樹脂組成物、接着シート、ダイシングテープ一体型接着シート、バックグラインドテープ一体型接着シート、バックグラインドテープ兼ダイシングテープ一体型接着シート、および電子装置
JP2015168691A (ja) * 2014-03-04 2015-09-28 ナミックス株式会社 樹脂組成物、先供給型半導体封止剤、半導体封止用フィルムおよび半導体装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200030501A (ko) * 2017-07-14 2020-03-20 나믹스 가부시끼가이샤 가압 실장용 ncf, 그 경화물 및 이를 사용한 반도체 장치
US11485848B2 (en) * 2017-07-14 2022-11-01 Namics Corporation NCF for pressure mounting, cured product thereof, and semiconductor device including same
KR102545377B1 (ko) 2017-07-14 2023-06-19 나믹스 가부시끼가이샤 가압 실장용 ncf, 그 경화물 및 이를 사용한 반도체 장치
WO2019065309A1 (ja) * 2017-09-28 2019-04-04 株式会社新川 ボンディングの際の半導体チップの加熱条件設定方法及び非導電性フィルムの粘度測定方法ならびにボンディング装置
CN111149195A (zh) * 2017-09-28 2020-05-12 株式会社新川 接合时的半导体晶片的加热条件设定方法以及非导电性膜的粘度测量方法以及接合装置
JPWO2019065309A1 (ja) * 2017-09-28 2020-06-18 株式会社新川 ボンディングの際の半導体チップの加熱条件設定方法及び非導電性フィルムの粘度測定方法ならびにボンディング装置
TWI705120B (zh) * 2017-09-28 2020-09-21 日商新川股份有限公司 接合時之半導體晶片的加熱條件設定方法以及非導電性膜之黏度測量方法以及接合裝置
US11201132B2 (en) 2017-09-28 2021-12-14 Shinkawa Ltd. Method for setting conditions for heating semiconductor chip during bonding, method for measuring viscosity of non-conductive film, and bonding apparatus
JP7008348B2 (ja) 2017-09-28 2022-01-28 株式会社新川 ボンディングの際の半導体チップの加熱条件設定方法及び非導電性フィルムの粘度測定方法ならびにボンディング装置

Also Published As

Publication number Publication date
JPWO2016056619A1 (ja) 2017-07-27
JP6657104B2 (ja) 2020-03-04
US10388583B2 (en) 2019-08-20
KR102319292B1 (ko) 2021-11-01
US20170301597A1 (en) 2017-10-19
KR20170066424A (ko) 2017-06-14

Similar Documents

Publication Publication Date Title
WO2016056619A1 (ja) 熱硬化性樹脂組成物及びその製造方法
JP5598343B2 (ja) 半導体封止用液状エポキシ樹脂組成物及び半導体装置
JP6340762B2 (ja) アンダーフィル材を用いた電子部品装置の製造方法、アンダーフィル材、及び電子部品装置
JP2015032639A (ja) 先塗布型熱硬化性アンダーフィル組成物、電子部品装置及び電子部品装置の製造方法
JP6800140B2 (ja) フリップチップ実装体の製造方法、フリップチップ実装体、および先供給型アンダーフィル用樹脂組成物
JP2004207483A (ja) 電子部品装置
TWI481685B (zh) Adhesive for electronic parts
JP6115929B2 (ja) エポキシ樹脂組成物
JP6106389B2 (ja) 先設置型半導体封止用フィルム
JP2009256466A (ja) 電子部品用接着剤
JP6715634B2 (ja) 樹脂組成物
JP2015032637A (ja) 電子部品装置の製造方法及び電子部品装置
JP2004204047A (ja) 液状エポキシ樹脂組成物
JP2003212963A (ja) 熱硬化性液状封止樹脂組成物及び半導体装置
JP6857837B2 (ja) 封止用熱硬化性樹脂組成物、半導体装置の製造方法及び半導体装置
JP2017143310A (ja) 先塗布型熱硬化性アンダーフィル組成物、電子部品装置及び電子部品装置の製造方法
KR102269234B1 (ko) 수지 조성물 및 반도체 장치
US9963587B2 (en) Epoxy resin composition for semiconductor encapsulation and method for manufacturing semiconductor device
JP2010144144A (ja) アンダーフィル用液状エポキシ樹脂組成物、及び半導体装置
JP2010209266A (ja) 半導体封止用液状エポキシ樹脂組成物、及びそれをアンダーフィル材として用いて封止したフリップチップ型半導体装置
JP2016178104A (ja) アンダーフィル材、電子部品装置の製造方法及び電子部品装置
JP2013107993A (ja) 半導体封止用液状樹脂組成物とそれを用いた半導体装置
JP6844680B2 (ja) 先供給型アンダーフィル材、先供給型アンダーフィル材の硬化物、電子部品装置及び電子部品装置の製造方法
WO2016059980A1 (ja) 液状エポキシ樹脂組成物
JP2008169241A (ja) フリップチップ接続用熱圧接着剤およびそれを用いた実装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016553150

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15517742

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177009762

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15848525

Country of ref document: EP

Kind code of ref document: A1