WO2016056155A1 - 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法 - Google Patents

非水電解質二次電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法 Download PDF

Info

Publication number
WO2016056155A1
WO2016056155A1 PCT/JP2015/003831 JP2015003831W WO2016056155A1 WO 2016056155 A1 WO2016056155 A1 WO 2016056155A1 JP 2015003831 W JP2015003831 W JP 2015003831W WO 2016056155 A1 WO2016056155 A1 WO 2016056155A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
electrolyte secondary
secondary battery
Prior art date
Application number
PCT/JP2015/003831
Other languages
English (en)
French (fr)
Inventor
博道 加茂
広太 高橋
貴一 廣瀬
浩一朗 渡邊
古屋 昌浩
吉川 博樹
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020177009249A priority Critical patent/KR102413870B1/ko
Priority to EP15849280.1A priority patent/EP3206244B8/en
Priority to CN201580053966.4A priority patent/CN106797026B/zh
Priority to US15/511,075 priority patent/US10396353B2/en
Publication of WO2016056155A1 publication Critical patent/WO2016056155A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a negative electrode active material for a nonaqueous electrolyte secondary battery, a negative electrode for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery, and a method for producing a negative electrode material for a nonaqueous electrolyte secondary battery.
  • This secondary battery is not limited to a small electronic device, but is also considered to be applied to a large-sized electronic device represented by an automobile or the like, or an electric power storage system represented by a house.
  • lithium ion secondary batteries are highly expected because they are small in size and easy to increase in capacity, and can obtain higher energy density than lead batteries and nickel cadmium batteries.
  • the lithium ion secondary battery includes an electrolyte solution together with a positive electrode, a negative electrode, and a separator.
  • This negative electrode contains a negative electrode active material involved in the charge / discharge reaction.
  • a negative electrode active material As a negative electrode active material, while carbon materials are widely used, further improvement in battery capacity is required due to recent market demands.
  • silicon As an element for improving battery capacity, the use of silicon as a negative electrode active material has been studied. This is because the theoretical capacity of silicon (4199 mAh / g) is 10 times or more larger than the theoretical capacity of graphite (372 mAh / g), so that significant improvement in battery capacity can be expected.
  • the development of a siliceous material as a negative electrode active material has been examined not only for silicon itself but also for compounds represented by alloys and oxides. The shape of the active material is studied from a standard coating type of carbon material to an integrated type directly deposited on a current collector.
  • the negative electrode active material particles expand and contract during charge / discharge, and therefore, they tend to break mainly near the surface layer of the negative electrode active material particles. Further, an ionic material is generated inside the active material, and the negative electrode active material particles are easily broken. When the negative electrode active material surface layer is cracked, a new surface is generated and the reaction area of the active material is increased. At this time, a decomposition reaction of the electrolytic solution occurs on the new surface, and a coating film that is a decomposition product of the electrolytic solution is formed on the new surface, so that the electrolytic solution is consumed. For this reason, the cycle characteristics are likely to deteriorate.
  • silicon and amorphous silicon dioxide are simultaneously deposited using a vapor phase method (see, for example, Patent Document 1). Further, in order to obtain a high battery capacity and safety, a carbon material (electron conductive material) is provided on the surface layer of the silicon oxide particles (see, for example, Patent Document 2). Furthermore, in order to improve cycle characteristics and obtain high input / output characteristics, an active material containing silicon and oxygen is produced, and an active material layer having a high oxygen ratio in the vicinity of the current collector is formed (for example, (See Patent Document 3). Further, in order to improve the cycle characteristics, oxygen is contained in the silicon active material, the average oxygen content is 40 at% or less, and the oxygen content is increased at a location close to the current collector. (For example, see Patent Document 4).
  • Si phase (for example, see Patent Document 5) by using a nanocomposite containing SiO 2, M y O metal oxide in order to improve the initial charge and discharge efficiency.
  • a Li-containing material is added to the negative electrode, and pre-doping is performed to decompose Li and return Li to the positive electrode when the negative electrode potential is high (see, for example, Patent Document 6).
  • the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the molar ratio of oxygen amount to silicon amount in the vicinity of the interface between the active material and the current collector The active material is controlled in a range where the difference between the maximum value and the minimum value is 0.4 or less (see, for example, Patent Document 8).
  • a metal oxide containing lithium is used (see, for example, Patent Document 9).
  • a hydrophobic layer such as a silane compound is formed on the surface of the siliceous material (see, for example, Patent Document 10).
  • Patent Document 11 silicon oxide is used and conductivity is imparted by forming a graphite film on the surface layer (see, for example, Patent Document 11).
  • Patent Document 11 with respect to the shift value obtained from the Raman spectra for graphite coating, with broad peaks appearing at 1330 cm -1 and 1580 cm -1, their intensity ratio I 1330 / I 1580 is 1.5 ⁇ I 1330 / I 1580 ⁇ 3.
  • particles having a silicon microcrystalline phase dispersed in silicon dioxide are used to improve high battery capacity and cycle characteristics (see, for example, Patent Document 12). Further, in order to improve overcharge and overdischarge characteristics, silicon oxide in which the atomic ratio of silicon and oxygen is controlled to 1: y (0 ⁇ y ⁇ 2) is used (for example, see Patent Document 13). .
  • non-aqueous electrolyte secondary batteries particularly lithium ion secondary batteries, which are the main power source
  • development of a non-aqueous electrolyte secondary battery including a negative electrode using a siliceous material as a main material is desired.
  • non-aqueous electrolyte secondary batteries using a siliceous material are desired to have cycle characteristics close to those of a non-aqueous electrolyte secondary battery using a carbon material.
  • the present invention has been made in view of such problems, and an object thereof is to provide a negative electrode active material for a non-aqueous electrolyte secondary battery capable of increasing battery capacity and improving cycle characteristics and battery initial efficiency. That is. Another object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery using the negative electrode active material and a non-aqueous electrolyte secondary battery using the negative electrode. Another object of the present invention is to provide a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery that increases battery capacity and is excellent in cycle characteristics and battery initial efficiency.
  • the present invention has a negative electrode active material particle, and the negative electrode active material particle contains a silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6).
  • a negative electrode active material for a battery wherein the negative electrode active material particles are coated with a carbon film made of a substance containing carbon at least partially, and the density of the carbon film is 1.2 g / cm 3 or more and 1.9 g. / Cm 3 or less, and the negative electrode active material particles have an adsorption / desorption isotherm obtained by measurement of adsorption / desorption isotherm with nitrogen gas having the characteristics of type II or type III in the IUPAC classification.
  • a negative electrode active material for a non-aqueous electrolyte secondary battery wherein the negative electrode active material particles are coated with a carbon film made of a substance containing carbon at least partially, and the density of the carbon film is 1.2 g / cm 3 or more and 1.9 g. / Cm 3 or less, and the negative electrode active material
  • the negative electrode active material of the present invention contains the negative electrode active material particles as described above, the negative electrode active material has appropriate conductivity, and the conductivity of the particle surface and the compatibility with the binder are appropriately adjusted. In this case, the capacity retention rate and initial efficiency are excellent. Moreover, since it is a negative electrode active material mainly composed of a silicon compound, the battery capacity can be remarkably increased as compared with the case where a carbon-based active material is mainly employed.
  • the content of the carbon coating is preferably 0.1% by mass or more and 25% by mass or less based on the total of the silicon compound and the carbon coating.
  • the carbon coating is provided at such a ratio, a high-capacity silicon compound can be contained at an appropriate ratio, and a sufficient battery capacity can be ensured.
  • the carbon coating detects a fragment of the C y H z compound based on TOF-SIMS, and 6 ⁇ y ⁇ 2, 2y + 2 ⁇ z ⁇ 2y ⁇ 2 as the fragment of the C y H z compound. It is preferable that those satisfying the above range are detected at least partially.
  • the surface state is such that a compound fragment such as a C y Hz- based fragment is detected by TOF-SIMS (time-of-flight secondary ion mass spectrometry), it can be compared with a negative electrode binder such as CMC (carboxymethylcellulose) or polyimide. Compatibility is improved and battery characteristics are improved.
  • a negative electrode binder such as CMC (carboxymethylcellulose) or polyimide.
  • the fragment of the C y H z compound detected by the carbon coating has a detection intensity D of C 4 H 9 and a detection intensity E of C 3 H 5 of 2.5 ⁇ D / E ⁇ in TOF-SIMS. It is preferable that the relationship of 0.3 is satisfied.
  • the conductivity improving effect by the carbon coating can be made more effective.
  • the negative electrode active material particles have a resistivity in the range of 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm to 1.0 ⁇ 10 1 ⁇ ⁇ cm when compressed to 1.5 g / cm 3. It is preferable that
  • the specific surface area of the negative electrode active material particles is preferably 1.0 m 2 / g or more and 15 m 2 / g or less.
  • both the impregnation property and the binding property of the electrolyte when the battery is constructed can be made excellent.
  • the negative electrode active material particles have a negative zeta potential in a 0.1% carboxymethylcellulose aqueous solution.
  • the slurry at the time of preparing the negative electrode material can be stabilized.
  • the carbon film is, in the Raman spectrum analysis, have a scattering peak at 1330 cm -1 and 1580 cm -1, their intensity ratio I 1330 / I 1580 is 0.7 ⁇ I 1330 / I 1580 ⁇ 2.0 It is preferable that
  • the ratio of the carbon material having a diamond structure and the carbon material having a graphite structure contained in the carbon film is determined. Can be optimized.
  • the average thickness of the carbon coating in the silicon compound is 5 nm or more and 500 nm or less.
  • the carbon coating satisfies such an average thickness, sufficient conductivity can be imparted and the ratio of the silicon compound can be increased.
  • the average coverage of the carbon coating in the silicon compound is preferably 30% or more.
  • the carbon component works particularly effectively in improving the conductivity when a negative electrode active material including such negative electrode active material particles is used as a negative electrode active material of a lithium ion secondary battery.
  • the carbon coating is preferably obtained by pyrolyzing a compound containing carbon.
  • the carbon film obtained by such a method has a high average coverage on the surface of the silicon compound.
  • the peak area A of the amorphous silicon region given at ⁇ 20 to ⁇ 74 ppm and the crystalline silicon given at ⁇ 75 to ⁇ 94 ppm It is preferable that the peak area B of the region and the peak area C of the silica region given to ⁇ 95 to ⁇ 150 ppm satisfy the formula (1).
  • the silicon compound contained in the negative electrode active material particles has a peak area ratio satisfying the above formula (1) in the 29 Si-MAS-NMR spectrum, the proportion of amorphous silicon in which expansion associated with insertion of Li can be suppressed Therefore, expansion of the negative electrode is suppressed, and better cycle characteristics can be obtained. Moreover, if it is such, since the ratio of a silica component with respect to a silicon component is small, the fall of the electronic conductivity in a silicon compound can be suppressed.
  • the half width (2 ⁇ ) of the diffraction peak due to the (111) crystal plane obtained by X-ray diffraction of the silicon compound is 1.2 ° or more, and the crystallite size due to the crystal plane Is preferably 7.5 nm or less.
  • the silicon compound having such a half width and crystallite size has low crystallinity and a small amount of Si crystals, the battery characteristics can be improved.
  • the presence of such a low-crystallinity silicon compound makes it possible to generate a stable Li compound.
  • the median diameter of the silicon compound is preferably 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode active material contains a silicon compound having such a median diameter, lithium ions are easily occluded and released during charge and discharge, and the particles are difficult to break. As a result, the capacity maintenance rate can be improved.
  • the linear carbon component exerts an effect on the conductivity between the active materials, so that the battery characteristics can be improved.
  • the negative electrode active material particles contain a massive carbon component
  • the massive carbon component exerts an effect on the conductivity around the active material, so that the battery characteristics can be improved.
  • the present invention includes any one of the above-described negative electrode active materials for nonaqueous electrolyte secondary batteries as a negative electrode active material, and has a charge / discharge capacity derived from the carbon coating, A negative electrode for a battery is provided.
  • the negative electrode using the negative electrode active material of the present invention can increase battery capacity and improve cycle characteristics and initial charge / discharge characteristics when used in a non-aqueous electrolyte secondary battery.
  • the negative electrode active material contained in the negative electrode contains Li, the initial efficiency is improved. As a result, the discharge cutoff voltage of the negative electrode in the case of a nonaqueous electrolyte secondary battery is lowered, and the maintenance ratio is improved.
  • the negative electrode of the present invention preferably further contains a carbon-based active material as the negative electrode active material.
  • a negative electrode containing a carbon-based active material can provide better cycle characteristics and initial charge / discharge characteristics while increasing the capacity of the negative electrode.
  • the ratio of the silicon compound to the total amount of the carbon-based active material and the silicon compound is preferably 5% by mass or more.
  • the battery capacity can be further increased.
  • the median diameter F of the carbon-based active material and the median diameter G of the silicon-based active material satisfy the relationship of 25 ⁇ F / G ⁇ 0.5.
  • the composite material layer can be prevented from being broken. Moreover, when a carbon type active material becomes large with respect to a silicon compound, the negative electrode volume density at the time of charge and initial stage efficiency will improve, and a battery energy density will improve.
  • the carbon-based active material is preferably a graphite material.
  • Graphite materials are preferable because they can exhibit better initial efficiency and capacity retention than other carbon-based active materials.
  • the present invention also provides a non-aqueous electrolyte secondary battery using any one of the above negative electrodes for non-aqueous electrolyte secondary batteries.
  • the non-aqueous electrolyte secondary battery using the negative electrode of the present invention has high capacity and good cycle characteristics and initial charge / discharge characteristics.
  • the present invention is a method for manufacturing a negative electrode material for non-aqueous electrolyte secondary battery including the anode active material particles, to produce a silicon compound represented by SiO x (0.5 ⁇ x ⁇ 1.6 )
  • producing a negative electrode material for a non-aqueous electrolyte secondary battery using the selected silicon compound coated with the carbon coating as negative electrode active material particles.
  • the non-aqueous electrolyte secondary battery that exhibits high capacity and excellent capacity retention and initial efficiency by using the silicon compound selected as described above as negative electrode active material particles A negative electrode material can be produced.
  • the negative electrode active material of the present invention When the negative electrode active material of the present invention is used as a negative electrode active material of a lithium ion secondary battery, a high capacity and good cycle characteristics and initial charge / discharge characteristics can be obtained. Moreover, the same characteristic can be acquired also in the negative electrode using the negative electrode active material for nonaqueous electrolyte secondary batteries of this invention, and the secondary battery using the negative electrode. Moreover, the same effect can be acquired also in the electronic device, electric tool, electric vehicle, electric power storage system, etc. which used the secondary battery of this invention.
  • a negative electrode material for a non-aqueous electrolyte secondary battery having good cycle characteristics and initial charge / discharge characteristics can be produced.
  • the non-aqueous electrolyte secondary battery using this siliceous material is expected to have cycle characteristics similar to those of the non-aqueous electrolyte secondary battery using the carbon material, but the non-aqueous electrolyte secondary battery using the carbon material and A negative electrode material exhibiting equivalent cycle stability has not been proposed.
  • the silicon compound containing oxygen has a lower initial efficiency than the carbon material, so that the battery capacity has been limited to that extent.
  • the present inventors have made extensive studies on a negative electrode active material that can provide good cycle characteristics and initial efficiency when used in a negative electrode of a non-aqueous electrolyte secondary battery, and have arrived at the present invention.
  • the negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention has negative electrode active material particles, and the negative electrode active material particles contain a silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6). It is a negative electrode active material for electrolyte secondary batteries.
  • the negative electrode active material particles are coated with a carbon film made of a substance containing carbon at least partially, and the density of the carbon film is 1.2 g / cm 3 or more and 1.9 g / cm 3 or less. It is.
  • the negative electrode active material particles have an adsorption / desorption isotherm obtained by measurement of adsorption / desorption isotherm with nitrogen gas having the characteristics of type II or type III in the IUPAC classification.
  • the negative electrode active material of the present invention has excellent conductivity when the negative electrode active material particles are coated with a carbon film made of a substance containing carbon at least in part.
  • the density of the carbon coating exceeds 1.9 g / cm 3 , the carbon coating on the surface of the silicon compound becomes excessively dense, the impregnation of the electrolytic solution up to the internal silicon compound is poor, cycle characteristics and Battery characteristics such as initial charge / discharge characteristics deteriorate.
  • the density is less than 1.2 g / cm 3 , the specific surface area of the negative electrode active material particles is increased, and when the negative electrode is produced, the binder is excessively adsorbed to reduce the effect of the binder, Battery characteristics deteriorate.
  • the negative electrode active material of the present invention can increase battery capacity and improve cycle characteristics and battery initial efficiency.
  • FIG. 1 shows a cross-sectional configuration of a negative electrode for a nonaqueous electrolyte secondary battery (hereinafter sometimes simply referred to as “negative electrode”) according to an embodiment of the present invention.
  • the negative electrode 10 is configured to have a negative electrode active material layer 12 on a negative electrode current collector 11.
  • the negative electrode active material layer 12 may be provided on both surfaces or only one surface of the negative electrode current collector 11. Furthermore, the negative electrode current collector 11 may be omitted as long as the negative electrode active material of the present invention is used.
  • the negative electrode current collector 11 is an excellent conductive material and is made of a material that is excellent in mechanical strength.
  • Examples of the conductive material that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).
  • the negative electrode current collector 11 preferably contains carbon (C) or sulfur (S) in addition to the main element. This is because the physical strength of the negative electrode current collector is improved.
  • the current collector contains the above-described element, there is an effect of suppressing electrode deformation including the current collector.
  • content of said content element is not specifically limited, Especially, it is preferable that it is 100 ppm or less. This is because a higher deformation suppressing effect can be obtained.
  • the surface of the negative electrode current collector 11 may be roughened or not roughened.
  • the roughened negative electrode current collector is, for example, a metal foil subjected to electrolytic treatment, embossing treatment, or chemical etching.
  • the non-roughened negative electrode current collector is, for example, a rolled metal foil.
  • the negative electrode active material layer 12 includes a plurality of negative electrode active material particles capable of occluding and releasing lithium ions, and may further include other materials such as a negative electrode binder and a conductive additive in terms of battery design. .
  • the negative electrode active material for a nonaqueous electrolyte secondary battery of the present invention is a material constituting the negative electrode active material layer 12.
  • the negative electrode active material particles contained in the negative electrode active material of the present invention contain a silicon compound that can occlude and release lithium ions.
  • the negative electrode active material particles contained in the negative electrode active material of the present invention are silicon oxide materials containing a silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6), and the composition of the silicon compound is such that x is close to 1. Is preferred. This is because high cycle characteristics can be obtained. Moreover, the siliceous material composition in the present invention does not necessarily mean 100% purity, and may contain a trace amount of impurity elements.
  • the negative electrode active material particles contained in the negative electrode active material of the present invention are coated with a carbon coating, and the density of the carbon coating is 1.2 g / cm 3 or more and 1.9 g / cm 3 or less. belongs to.
  • the negative electrode active material particles have an adsorption / desorption isotherm obtained by measurement of adsorption / desorption isotherm with nitrogen gas having the characteristics of type II or type III in the IUPAC classification.
  • the negative electrode active material particles have a resistivity in the range of 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm to 1.0 ⁇ 10 1 ⁇ ⁇ cm when compressed to 1.5 g / cm 3 . It is preferable.
  • the compression resistivity is 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or more, the negative electrode active material particles have appropriate conductivity and Li precipitation is unlikely to occur, so that battery characteristics are improved.
  • the compression resistivity is 1.0 ⁇ 10 1 ⁇ ⁇ cm or less, sufficient conductivity can be secured, and battery characteristics are improved.
  • the compression resistivity of the negative electrode active material particles can be measured, for example, under the following conditions.
  • the specific surface area of the negative electrode active material particles is preferably 1.0 m 2 / g or more and 15 m 2 / g or less.
  • the specific surface area is 1.0 m 2 / g or more, the battery characteristics are improved because the electrolyte can be sufficiently impregnated in the battery.
  • the specific surface area is 15 m 2 / g or less, the amount of the binder adsorbed on the negative electrode active material particles becomes appropriate, and the binding property is improved, so that the battery characteristics are improved.
  • a specific surface area can be calculated
  • the negative electrode active material particles have a negative zeta potential in a 0.1% carboxymethylcellulose aqueous solution.
  • This zeta potential can be measured, for example, by the following method. First, 1% of negative electrode active material particles containing a silicon compound having a carbon coating is added to a 0.1% carboxymethylcellulose (CMC) aqueous solution, and the mixture is stirred with a handy mixer for 30 seconds. Then, it is immersed in an ultrasonic bath for 10 minutes, and the electrophoretic mobility is measured at 25 ° C. Then, the zeta potential can be calculated from the obtained electrophoretic mobility using the Smoluchowski equation.
  • CMC carboxymethylcellulose
  • Negative electrode active material particles 1% Negative electrode active material particles 1%, CMC 0.1% aqueous solution (CMC can use Serogen WS-C of Daiichi Kogyo Seiyaku etc.)
  • Measuring device ELSZ-1000Z manufactured by Otsuka Electronics
  • the negative electrode active material of the present invention preferably contains a linear carbon component in at least a part of the negative electrode active material particles.
  • the linear carbon component exhibits an effect on the conductivity between the active materials and can improve the battery characteristics.
  • the negative electrode active material of the present invention preferably contains a massive carbon component in at least a part of the negative electrode active material particles.
  • the massive carbon component exhibits an effect on the conductivity around the active material and can improve battery characteristics.
  • the linear carbon component and the massive carbon component can be detected by a composition image by SEM (scanning electron microscope) and a local composition analysis by EDX (energy dispersive X-ray spectroscopy).
  • the median diameter of the silicon compound contained in the negative electrode active material particles is not particularly limited, but is preferably 0.5 ⁇ m or more and 20 ⁇ m or less. This is because, within this range, lithium ions are easily occluded and released during charging and discharging, and the particles are difficult to break. If this median diameter is 0.5 ⁇ m or more, the surface area will not increase, and the battery irreversible capacity can be reduced. On the other hand, if the median diameter is 20 ⁇ m or less, it is preferable because the particles are difficult to break and a new surface is difficult to appear.
  • the half-value width (2 ⁇ ) of the diffraction peak resulting from the (111) crystal plane obtained by X-ray diffraction of the silicon compound is 1.2 ° or more, and the crystallite size resulting from the crystal plane is It is preferable that it is 7.5 nm or less.
  • a silicon compound having such a half width and crystallite size has low crystallinity. By using a silicon compound having low crystallinity and a small amount of Si crystals, battery characteristics can be improved. In addition, the presence of such a low-crystallinity silicon compound makes it possible to generate a stable Li compound.
  • the peak area A of the amorphous silicon region given by ⁇ 20 to ⁇ 74 ppm and the crystallinity given by ⁇ 75 to ⁇ 94 ppm It is preferable that the peak area B of the silicon region and the peak area C of the silica region given to ⁇ 95 to ⁇ 150 ppm satisfy the formula (1).
  • the chemical shift is based on tetramethylsilane. Formula (1): 5.0 ⁇ A / B ⁇ 0.01, 6.0 ⁇ (A + B) /C ⁇ 0.02
  • the 29 Si-MAS-NMR spectrum can be measured, for example, under the following conditions.
  • the negative electrode active material particles of the present invention have a carbon film formed on at least a part of the surface thereof.
  • the carbon film is, in the Raman spectrum analysis, have a scattering peak at 1330 cm -1 and 1580 cm -1, their intensity ratio I 1330 / I 1580 is 0.7 ⁇ I 1330 / I 1580 ⁇ 2. It is preferable that 0 is satisfied. Thereby, the ratio of the carbon material having a diamond structure and the carbon material having a graphite structure contained in the carbon film can be optimized. As a result, when a negative electrode active material including negative electrode active material particles having the above carbon coating is used as a negative electrode of a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery with good battery characteristics can be obtained.
  • the ratio of the carbon material having a diamond structure (carbon film or carbon-based material) and the carbon material having a graphite structure can be obtained from a Raman spectrum obtained by microscopic Raman analysis (that is, Raman spectrum analysis). That is, diamond shows a sharp peak with a Raman shift of 1330 cm ⁇ 1 and graphite with a Raman shift of 1580 cm ⁇ 1 , and the ratio of the carbon material having a diamond structure and the carbon material having a graphite structure is simply determined from the intensity ratio. Can do.
  • Diamond has high strength, high density, and high insulation, and graphite has excellent electrical conductivity. Therefore, the carbon coating satisfying the above strength ratio is optimized for each of the above characteristics, and as a result, can prevent electrode destruction due to expansion / contraction of the electrode material accompanying charge / discharge, and has a negative electrode active material having a conductive network Become.
  • Examples of the method for forming the carbon film include a method of coating a silicon compound with a carbon material (carbon compound) such as graphite.
  • covers a silicon compound is 0.1 to 25 mass% with respect to the sum total of a silicon compound and a carbon film.
  • the carbon film content is more preferably 4% by mass or more and 20% by mass or less.
  • the coating method of these carbon compounds is not particularly limited, a sugar carbonization method and a thermal decomposition method of hydrocarbon gas are preferable. This is because these methods can improve the coverage of the carbon film on the surface of the silicon compound.
  • the average thickness of the carbon film in the silicon compound is preferably 5 nm or more and 500 nm or less. If average thickness is 5 nm or more, sufficient electroconductivity will be acquired and a battery characteristic will improve with an electroconductive improvement. Further, if the average thickness is 500 nm or less, the carbon coating thickness is 10% or less with respect to the particle size of the negative electrode active material particles, so that the silicon compound ratio in the negative electrode active material can be maintained high, The energy density in the case of a nonaqueous electrolyte secondary battery is improved. Note that the average thickness of the carbon coating in the negative electrode active material particles can be determined by cross-sectional observation using FIB-TEM (Focused Ion Beam-Transmission Electron Microscope).
  • the average coverage of the carbon coating in the silicon compound is preferably 30% or more.
  • the carbon component works particularly effectively for improving the conductivity, and the battery characteristics are improved.
  • the average coverage was defined as surface (carbon detection intensity) / (silicon detection intensity) by local composition analysis by SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscope).
  • the C y H z compound fragment is detected by TOF-SIMS in the carbon coating, and 6 ⁇ y ⁇ 2, 2y + 2 ⁇ z ⁇ 2y ⁇ is obtained as the fragment of the C y H z compound.
  • Those satisfying the range of 2 are preferably detected at least partially. If the surface state is such that a compound fragment such as a C y H z- based fragment is detected, compatibility with a negative electrode binder such as CMC or polyimide is improved, and battery characteristics are improved.
  • the fragment of the C y H z compound detected in the carbon film has a detection intensity D of C 4 H 9 and a detection intensity E of C 3 H 5 of 2.5 ⁇ D / E in TOF-SIMS. It is preferable that the relationship of ⁇ 0.3 is satisfied. If the ratio D / E of the detected intensity is 2.5 or less, the electrical resistance of the surface is small, so that the conductivity is improved and the battery characteristics are improved. Further, if the ratio D / E of the detected intensity is 0.3 or more, the carbon coating on the surface is sufficiently formed, so that the conductivity is improved by the carbon coating on the entire surface, and the battery characteristics are improved. improves. In addition, the type and amount of the C y H z -based compound fragment to be detected can be adjusted by changing the CVD conditions (gas, temperature) and subsequent processing conditions.
  • TOF-SIMS can be measured, for example, under the following conditions.
  • PHI TRIFT 2 made by ULVAC-PHI ⁇ Primary ion source: Ga -Sample temperature: 25 ° C ⁇ Acceleration voltage: 5 kV ⁇ Spot size: 100 ⁇ m ⁇ 100 ⁇ m Sputtering: Ga, 100 ⁇ m ⁇ 100 ⁇ m, 10 s ⁇ Anion mass spectrum ⁇ Sample : Powder pellet
  • Examples of the negative electrode conductive aid include one or more of carbon materials such as carbon black, acetylene black, and graphite such as flaky graphite, and carbon materials (carbon-based materials) such as ketjen black, carbon nanotubes, and carbon nanofibers.
  • These conductive assistants are preferably in the form of particles having a median diameter smaller than that of the silicon compound.
  • the negative electrode active material layer 12 in FIG. 1 may further contain a carbon material (carbon-based active material) in addition to the negative electrode active material of the present invention.
  • a carbon material carbon-based active material
  • the electrical resistance of the negative electrode active material layer 12 can be reduced and the expansion stress associated with charging can be reduced.
  • the carbon-based active material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, and carbon blacks.
  • the carbon-based active material is preferably a graphite material. The graphite material can exhibit better initial efficiency and capacity retention than other carbon-based active materials.
  • the negative electrode of the present invention preferably has a silicon compound ratio of 5% by mass or more based on the total amount of the carbon-based active material and the silicon compound. Moreover, it is preferable that the ratio of a silicon compound is less than 90 mass%. With such a negative electrode for a non-aqueous electrolyte secondary battery, the initial efficiency and capacity retention rate do not decrease.
  • the median diameter F of the carbon-based active material and the median diameter G of the silicon-based active material satisfy the relationship of 25 ⁇ F / G ⁇ 0.5. That is, it is desirable that the median diameter of the carbon-based active material is equal to or greater than the median diameter of the silicon-based active material. This is because the destruction of the composite layer can be prevented when the silicon compound that expands and contracts with insertion / extraction of Li is equal to or smaller than that of the carbon-based active material.
  • the negative electrode volume density at the time of charge and initial efficiency will improve, and a battery energy density will improve.
  • the negative electrode of the present invention contains the negative electrode active material of the present invention. In that case, it is preferable to have the charge / discharge capacity derived from the carbon film contained in the negative electrode active material. By having a carbon film having a charge / discharge capacity, Li ion conductivity to the inside of the negative electrode active material particles is improved, and battery characteristics are improved.
  • the charge / discharge capacity of the carbon coating can be measured as follows, for example. First, a silicon compound having a carbon coating is reacted in a 20% aqueous sodium hydroxide solution at 50 ° C. for 24 hours to remove the silicon component. Thereafter, a negative electrode is produced using, for example, a mixture of carboxymethyl cellulose (CMC) and styrene butadiene rubber (hereinafter also referred to as SBR) as a binder. Next, a charge / discharge capacity of the carbon coating can be measured by preparing a coin battery with the negative electrode and the counter electrode Li and measuring the charge / discharge capacity.
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • the negative electrode of the present invention preferably contains Li as at least a part of the negative electrode active material.
  • Li may be doped into a silicon compound.
  • Examples of a method for doping Li into a silicon compound include a thermal doping method in which a silicon compound and metallic lithium are mixed and heated, and an electrochemical method. By including the Li compound in the silicon compound, the initial efficiency is improved. As a result, the discharge cutoff voltage of the negative electrode in the case of a nonaqueous electrolyte secondary battery is lowered, and the maintenance ratio is improved.
  • the coating method is a method in which a negative electrode active material particle and the above-described binder, and the like, and a conductive additive and a carbon material are mixed as necessary, and then dispersed and coated in an organic solvent or water.
  • the manufacturing method of the negative electrode material contained in a negative electrode is demonstrated.
  • a silicon compound represented by SiO x (0.5 ⁇ x ⁇ 1.6) is produced.
  • the surface of the silicon compound is coated with a carbon film.
  • the silicon compound may be modified by generating the Li compound on the surface, inside, or both of the silicon compound.
  • the density of the carbon coating is 1.2 g / cm 3 or more and 1.9 g / cm 3 or less, and the adsorption / desorption isotherm obtained by the adsorption / desorption isotherm measurement using nitrogen gas is II type or A silicon compound having the characteristics of type III is selected.
  • the negative electrode material for nonaqueous electrolyte secondary batteries is produced using the silicon compound by which the selected carbon film was coat
  • the negative electrode material can be manufactured, for example, by the following procedure.
  • a raw material for generating silicon oxide gas (vaporization starting material) is heated in the temperature range of 900 ° C. to 1600 ° C. in the presence of an inert gas or under reduced pressure to generate silicon oxide gas.
  • the raw material is a mixture of metal silicon powder and silicon dioxide powder, and considering the surface oxygen of the metal silicon powder and the presence of trace amounts of oxygen in the reactor, the mixing molar ratio is 0.8 ⁇ metal silicon powder / It is desirable that the silicon dioxide powder is in the range of ⁇ 1.3.
  • the Si crystallites in the particles are controlled by changing the preparation range and vaporization temperature, and by heat treatment after generation.
  • the generated gas is deposited on the adsorption plate. The deposit is taken out with the temperature in the reactor lowered to 100 ° C. or lower, and pulverized and powdered using a ball mill, a jet mill or the like.
  • Pyrolysis CVD is desirable as a method for producing a carbon film on the surface of the obtained powder material.
  • Pyrolysis CVD sets a powder material in a furnace, fills with hydrocarbon gas, and raises the furnace temperature.
  • the decomposition temperature is not particularly limited, but is particularly preferably 1200 ° C. or lower. More desirably, the temperature is 950 ° C. or lower, and disproportionation of the active material particles can be suppressed.
  • a carbon film satisfying a desired peak intensity ratio I 1330 / I 1580 in the Raman spectrum is formed on the surface of the powder material by adjusting the pressure and temperature in the furnace. be able to. Also, the amount of carbon coating, thickness, coverage, adsorption / desorption isotherm classification, and change in specific surface area are controlled by adjusting the CVD temperature, time, and degree of stirring of the powder material (silicon compound powder) during CVD. it can.
  • the density of the carbon coating is 1.2 g / cm 3 or more and 1.9 g / cm 3 or less, and the adsorption / desorption isotherm obtained by the adsorption / desorption isotherm measurement using nitrogen gas is II type or A silicon compound having the characteristics of type III is selected.
  • the density of the carbon film is the carbon film content (% by mass) of the carbon film with respect to the total amount of the silicon compound and the carbon film, and the density of the particles comprising the silicon compound and the carbon film
  • the adsorption / desorption isotherm can be measured by adsorbing and desorbing nitrogen as an adsorbed molecule on an adsorbent (here, negative electrode active material particles).
  • an adsorbent here, negative electrode active material particles.
  • BELSORP-mini manufactured by Nippon Bell Co., Ltd.
  • nitrogen adsorption when the maximum history difference ⁇ V of nitrogen adsorption amount at the same pressure during adsorption / desorption is p / p 0 0.9.
  • ⁇ V / V ⁇ 0.05 compared with the amount V the history is due to measurement error, and the adsorption / desorption isotherm can be classified as type II or type III, assuming that there is substantially no history.
  • p / p 0 is the relative pressure, which is the equilibrium pressure divided by the saturated vapor pressure.
  • the negative electrode active material particles having different classifications into the adsorption isotherm type As a method for separating the negative electrode active material particles having different classifications into the adsorption isotherm type, for example, when separating the negative electrode active material particles having the type II and the IV type, first, the negative electrode active material particles have a humidity of 80%. In the environment of 10 hours (stir 3 times or more in the middle). Next, the powder is filled in the cylindrical container so that the bulk density is 5% with respect to the space in the cylindrical container, and after stirring the cylindrical container for 2 hours, the cylindrical container is set up and allowed to stand. The operation of allowing to stand until deposition is repeated twice. In the obtained powder, 20% (type II) deposited on the top and 20% (type IV) deposited on the bottom can be separated, respectively, to separate type II and type IV. it can.
  • a negative electrode material for a non-aqueous electrolyte secondary battery is produced using the silicon compound having the carbon coating thus selected as negative electrode active material particles.
  • the negative electrode material and other materials such as a negative electrode binder and a conductive additive are mixed to form a negative electrode mixture, and then an organic solvent or water is added to obtain a slurry.
  • a slurry of the negative electrode mixture is applied to the surface of the negative electrode current collector and dried to form the negative electrode active material layer 12 shown in FIG.
  • a heating press or the like may be performed as necessary.
  • a negative electrode can be manufactured.
  • acetylene black when a carbon-based material having a median diameter smaller than that of a silicon compound is added as a conductive additive, for example, acetylene black can be selected and added.
  • Hydrocarbon gas is not particularly limited, 3 ⁇ n of C n H m composition it is desirable. This is because the manufacturing cost can be lowered and the physical properties of the decomposition product are good.
  • Lithium ion secondary battery> a lithium ion secondary battery using the above-described negative electrode for a lithium ion secondary battery will be described.
  • a laminated film type secondary battery 20 shown in FIG. 2 is one in which a wound electrode body 21 is accommodated mainly in a sheet-like exterior member 25.
  • This wound body has a separator between a positive electrode and a negative electrode and is wound.
  • a separator is provided between the positive electrode and the negative electrode and a laminate is accommodated.
  • the positive electrode lead 22 is attached to the positive electrode
  • the negative electrode lead 23 is attached to the negative electrode.
  • the outermost peripheral part of the electrode body is protected by a protective tape.
  • the positive and negative electrode leads are led out in one direction from the inside of the exterior member 25 to the outside, for example.
  • the positive electrode lead 22 is formed of a conductive material such as aluminum
  • the negative electrode lead 23 is formed of a conductive material such as nickel or copper.
  • the exterior member 25 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order.
  • the laminate film is formed by fusing two films so that the fusion layer faces the electrode body 21.
  • the outer peripheral edge portions in the adhesion layer are bonded together with an adhesive or the like.
  • the fused part is, for example, a film such as polyethylene or polypropylene, and the metal part is aluminum foil or the like.
  • the protective layer is, for example, nylon.
  • An adhesion film 24 is inserted between the exterior member 25 and the positive and negative electrode leads to prevent intrusion of outside air.
  • This material is, for example, polyethylene, polypropylene, or polyolefin resin.
  • the positive electrode has, for example, a positive electrode active material layer on both sides or one side of the positive electrode current collector, similarly to the negative electrode 10 of FIG.
  • the positive electrode current collector is made of, for example, a conductive material such as aluminum.
  • the positive electrode active material layer includes one or more positive electrode materials capable of occluding and releasing lithium ions, and includes other materials such as a binder, a conductive additive, and a dispersant depending on the design. You can leave. In this case, details regarding the binder and the conductive additive are the same as, for example, the negative electrode binder and the negative electrode conductive additive already described.
  • a lithium-containing compound is desirable.
  • the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, or a phosphate compound having lithium and a transition metal element.
  • compounds having at least one of nickel, iron, manganese and cobalt are preferable.
  • These chemical formulas are represented by, for example, Li x M 1 O 2 or Li y M 2 PO 4 .
  • M 1 and M 2 represent at least one transition metal element.
  • the values of x and y vary depending on the battery charge / discharge state, but are generally expressed as 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ y ⁇ 1.10.
  • Examples of the composite oxide having lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and phosphoric acid having lithium and a transition metal element.
  • Examples of the compound include a lithium iron phosphate compound (LiFePO 4 ) and a lithium iron manganese phosphate compound (LiFe 1-u Mn u PO 4 (u ⁇ 1)). This is because, when these positive electrode materials are used, a high battery capacity can be obtained and excellent cycle characteristics can be obtained.
  • the negative electrode has the same configuration as the above-described negative electrode 10 for a lithium ion secondary battery in FIG. 1.
  • the negative electrode has negative electrode active material layers 12 on both surfaces of the current collector 11.
  • the negative electrode preferably has a negative electrode charge capacity larger than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material agent. This is because the deposition of lithium metal on the negative electrode can be suppressed.
  • the positive electrode active material layer is provided on a part of both surfaces of the positive electrode current collector, and the negative electrode active material layer is also provided on a part of both surfaces of the negative electrode current collector.
  • the negative electrode active material layer provided on the negative electrode current collector is provided with a region where there is no opposing positive electrode active material layer. This is for a stable battery design.
  • the non-opposing region that is, the region where the negative electrode active material layer and the positive electrode active material layer are not opposed to each other, there is almost no influence of charge / discharge. Therefore, the state of the negative electrode active material layer is maintained as it is immediately after formation. This makes it possible to accurately examine the composition with good reproducibility without depending on the presence or absence of charge / discharge, such as the composition of the negative electrode active material.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass through while preventing current short-circuiting due to bipolar contact.
  • This separator is formed of, for example, a porous film made of synthetic resin or ceramic, and may have a laminated structure in which two or more kinds of porous films are laminated.
  • the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
  • Electrode At least a part of the active material layer or the separator is impregnated with a liquid electrolyte (electrolytic solution).
  • This electrolytic solution has an electrolyte salt dissolved in a solvent, and may contain other materials such as additives.
  • a nonaqueous solvent for example, a nonaqueous solvent can be used.
  • the nonaqueous solvent include the following materials. Ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, 1,2-dimethoxyethane, or tetrahydrofuran.
  • At least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is desirable. This is because better characteristics can be obtained. In this case, more advantageous characteristics can be obtained by combining a high viscosity solvent such as ethylene carbonate or propylene carbonate and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate. This is because the dissociation property and ion mobility of the electrolyte salt are improved.
  • the solvent additive contains an unsaturated carbon bond cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolyte can be suppressed.
  • unsaturated carbon bond cyclic ester carbonate include vinylene carbonate and vinyl ethylene carbonate.
  • sultone cyclic sulfonic acid ester
  • solvent additive examples include propane sultone and propene sultone.
  • the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved.
  • the acid anhydride include propanedisulfonic acid anhydride.
  • the electrolyte salt can contain, for example, any one or more of light metal salts such as lithium salts.
  • the lithium salt include the following materials. Examples thereof include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).
  • the content of the electrolyte salt is preferably 0.5 mol / kg or more and 2.5 mol / kg or less with respect to the solvent. This is because high ionic conductivity is obtained.
  • a positive electrode is manufactured using the positive electrode material described above.
  • a positive electrode active material and, if necessary, a binder, a conductive additive and the like are mixed to form a positive electrode mixture, and then dispersed in an organic solvent to form a positive electrode mixture slurry.
  • the mixture slurry is applied to the positive electrode current collector with a coating apparatus such as a die coater having a knife roll or a die head, and dried with hot air to obtain a positive electrode active material layer.
  • the positive electrode active material layer is compression molded with a roll press or the like. At this time, heating may be performed. Further, compression and heating may be repeated a plurality of times.
  • a negative electrode is produced by forming a negative electrode active material layer on the negative electrode current collector using the same operating procedure as the production of the negative electrode 10 for lithium ion secondary batteries described above.
  • a positive electrode and a negative electrode are produced by the same production procedure as described above.
  • each active material layer is formed on both surfaces of the positive electrode and the negative electrode current collector.
  • the active material application length of both surface portions may be shifted in either electrode (see FIG. 1).
  • the positive electrode lead 22 is attached to the positive electrode current collector and the negative electrode lead 23 is attached to the negative electrode current collector by ultrasonic welding or the like. Then, a positive electrode and a negative electrode are laminated
  • the adhesion film 24 is inserted between the positive electrode lead 22 and the negative electrode lead 23 and the exterior member 25.
  • a predetermined amount of the adjusted electrolytic solution is introduced from the release portion, and vacuum impregnation is performed. After impregnation, the release part is bonded by a vacuum heat fusion method.
  • the laminate film type secondary battery 20 can be manufactured.
  • Example 1-1 The laminate film type secondary battery 20 shown in FIG. 2 was produced by the following procedure.
  • the positive electrode active material is a mixture of 95 parts by mass of LiCoO 2 which is a lithium cobalt composite oxide, 2.5 parts by mass of a positive electrode conductive additive, and 2.5 parts by mass of a positive electrode binder (polyvinylidene fluoride: PVDF).
  • a positive electrode mixture was obtained.
  • the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone: NMP) to obtain a paste slurry.
  • NMP N-methyl-2-pyrrolidone
  • the slurry was applied to both surfaces of the positive electrode current collector with a coating apparatus having a die head, and dried with a hot air drying apparatus. At this time, the positive electrode current collector had a thickness of 15 ⁇ m.
  • compression molding was performed with a roll press.
  • a negative electrode was prepared.
  • a raw material in which metallic silicon and silicon dioxide were mixed was placed in a reaction furnace, deposited under a vacuum of 10 Pa, sufficiently cooled, and then the deposit was taken out and pulverized with a ball mill. After adjusting the particle diameter, pyrolytic CVD was performed to obtain a carbon coating.
  • the prepared powder was subjected to bulk modification using an electrochemical method in a 1: 1 mixed solvent of propylene carbonate and ethylene carbonate (containing 1.3 mol / kg of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt). It was. The obtained material was dried under a carbon dioxide atmosphere.
  • the negative active material, the precursor of the negative electrode binder (polyamic acid), the conductive additive 1 (flaky graphite), and the conductive additive 2 (acetylene black) are in a dry mass ratio of 80: 8: 10: 2. And then diluted with NMP to obtain a paste-like negative electrode mixture slurry.
  • NMP was used as a solvent for the polyamic acid.
  • a solvent (4-fluoro-1,3-dioxolan-2-one (FEC), ethylene carbonate (EC) and dimethyl carbonate (DMC)) is mixed, and then an electrolyte salt (lithium hexafluorophosphate: LiPF) is mixed. 6 ) was dissolved to prepare an electrolytic solution.
  • a secondary battery was assembled as follows. First, an aluminum lead was ultrasonically welded to one end of the positive electrode current collector, and a nickel lead was welded to the negative electrode current collector. Subsequently, a positive electrode, a separator, a negative electrode, and a separator were laminated in this order and wound in the longitudinal direction to obtain a wound electrode body. The end portion was fixed with a PET protective tape. As the separator, a laminated film of 12 ⁇ m sandwiched between a film mainly composed of porous polyethylene and a film mainly composed of porous polypropylene was used.
  • the outer peripheral edges except for one side were heat-sealed, and the electrode body was housed inside.
  • an aluminum laminated film in which a nylon film, an aluminum foil, and a polypropylene film were laminated was used.
  • the prepared electrolyte was injected from the opening, impregnated in a vacuum atmosphere, and then heat-sealed and sealed.
  • Example 1-2 to Example 1-5 Comparative Example 1-1 to Comparative Example 1-2
  • a secondary battery was fabricated in the same manner as in Example 1-1 except that the oxygen amount of the silicon compound represented by SiOx was adjusted.
  • the silicon compounds all had the following physical properties.
  • the median diameter D 50 of the silicon compound was 5.1 .mu.m.
  • the full width at half maximum (2 ⁇ ) of the diffraction peak attributable to the (111) crystal plane obtained by X-ray diffraction was 1.85 °, and the crystallite size attributable to the crystal plane (111) was 4.62 nm.
  • the carbon coating content was 5%
  • the average thickness of the carbon coating was 110 nm
  • the average coating of the carbon coating was 110 nm
  • the rate was 90%
  • the density of the carbon film was 1.6 g / cm 3
  • the charge / discharge capacity of the carbon film was 280 mAh / g.
  • the carbon coating contained a linear carbon component and a massive carbon component.
  • Such adsorption / desorption isotherm of the negative electrode active material particles had the characteristics of type II in the IUPAC classification.
  • the negative electrode active material particles had a compression resistivity (at 1.5 g / cm 3 ) of 0.12 ⁇ ⁇ cm and a zeta potential in a 0.1% CMC aqueous solution of ⁇ 50 mV.
  • the specific surface area measured by the BET method was 5.1 m 2 / g.
  • the cycle characteristics were examined as follows. First, in order to stabilize the battery, charge / discharge was performed for 2 cycles in an atmosphere at 25 ° C., and the discharge capacity at the second cycle was measured. Subsequently, charge and discharge were performed until the total number of cycles reached 100, and the discharge capacity was measured each time. Finally, the discharge capacity at the 100th cycle was divided by the discharge capacity at the 2nd cycle (because it is expressed in% ⁇ 100), and the capacity maintenance rate was calculated. As cycling conditions, a constant current density until reaching 4.3V, and charged at 2.5 mA / cm 2, the current density at 4.3V constant voltage at the stage of reaching the voltage charged to reach 0.25 mA / cm 2 . During discharging, discharging was performed at a constant current density of 2.5 mA / cm 2 until the voltage reached 3.0V.
  • the initial efficiency (%) (initial discharge capacity / initial charge capacity) ⁇ 100 was calculated.
  • the ambient temperature was the same as when the cycle characteristics were examined.
  • the charge / discharge conditions were 0.2 times the cycle characteristics. That is, a constant current density until reaching 4.3V, and charged at 0.5 mA / cm 2, at 4.3V constant voltage at the stage where the voltage reaches 4.3V until the current density reached 0.05 mA / cm 2
  • the battery was charged and discharged at a constant current density of 0.5 mA / cm 2 until the voltage reached 3.0V.
  • the maintenance ratios and initial efficiency shown in Tables 1 to 9 below do not contain a carbon-based active material such as natural graphite (for example, a median diameter of 20 ⁇ m), and only a silicon compound having a carbon coating is used as the negative electrode active material.
  • the maintenance rate and initial efficiency when used that is, the maintenance rate and initial efficiency of the silicon-based compound are shown. This makes it possible to measure changes in the retention rate and initial efficiency that depend only on changes in the silicon-based compound (changes in oxygen content, crystallinity, median diameter, etc.) or changes in the carbon coating (content, composition, etc.). It was.
  • Example 1-3 Example 1-3, except that the density, content, average thickness, average coverage, and IUPAC adsorption / desorption isotherm classification of the negative electrode active material particles and the specific surface area were changed.
  • a secondary battery was manufactured. Carbon coating density, content, average thickness, average coverage, classification of IUPAC adsorption / desorption isotherm of negative electrode active material particles, specific surface area adjusts CVD temperature, time and agitation of silicon compound powder during CVD Can be controlled.
  • the adsorption / desorption isotherm has characteristics classified as type II or type III, thereby improving battery characteristics. This is because the surface is non-porous, so that the consumption of the binder is minimized, and the silicon-based active material having a large expansion / contraction amount has an excellent effect on the binding. Further, when the density of the carbon coating was larger than 1.9 g / cm 3 (Comparative Example 2-1) and less than 1.2 g / cm 3 (Comparative Example 2-2), the battery characteristics deteriorated.
  • the content of the carbon coating is 0.1 to 25% by mass, particularly 4 to 20% by mass, both the maintenance rate and the initial efficiency are improved. If the carbon coating content is 0.1% by mass or more, the electron conductivity of the negative electrode active material particles is improved, and if it is 25% by mass or less, the decrease in ionic conductivity of the negative electrode active material particles can be suppressed. Good maintenance rate and initial efficiency in range.
  • the thickness of the carbon coating is preferably 500 nm or less. Moreover, if the average coverage is 30% or more, the carbon component works more effectively by improving the conductivity, so that the battery characteristics are improved.
  • the specific surface area a good characteristic that it is less 1.0 m 2 / g or more 15 m 2 / g.
  • Example 3-1 to Example 3-6 A secondary battery was manufactured in the same manner as in Example 1-3, except that the ratio of Si component to SiO 2 component in the silicon compound (ratio of Si to silica) and the degree of disproportionation were changed.
  • the ratio of the Si component to the SiO 2 component was changed in Examples 3-1 to 3-6 by changing the charged amounts of metal silicon and silica at the time of forming SiO.
  • the silicon compound (SiO x ) the peak area A and ⁇ 75 to ⁇ of the amorphous silicon (a-Si) region given by ⁇ 20 to ⁇ 74 ppm as the chemical shift value obtained from the 29 Si-MAS-NMR spectrum.
  • the ratio A / B with the peak area B of the crystalline silicon (c-Si) region given at 94 ppm was adjusted by controlling the degree of disproportionation by heat treatment.
  • (A + B) / C is 0.02 or more, the conductivity is improved, and both the maintenance ratio and the initial efficiency are improved.
  • the initial efficiency is higher than when both the above ranges of A / B and (A + B) / C are satisfied.
  • the maintenance rate is slightly lowered.
  • the maintenance ratio is compared to the case where both the above ranges of A / B and (A + B) / C are satisfied. Decreases slightly.
  • Example 4-1 to 4-5 A secondary battery was manufactured in the same manner as in Example 1-3 except that the crystallinity of the silicon compound was changed.
  • the change in crystallinity can be controlled by heat treatment in a non-atmospheric atmosphere.
  • the crystallite size is calculated to be 1.542 nm, but it is a result of fitting using analysis software, and a peak is not substantially obtained. Therefore, it can be said that the silicon compound of Example 4-1 is substantially amorphous.
  • Example 5-1 to Example 5-3 Change the surface state of the anode active material particles, that in the Raman spectrum analysis of carbon film, 1330 cm -1 and 1580cm intensity ratio of scattering peak of -1 I 1330 / I 1580, and changing the charge-discharge capacity of the carbon component Except for this, a secondary battery was manufactured in the same manner as in Example 1-3.
  • the intensity ratio I 1330 / I 1580 of the scattering peak and the charge / discharge capacity of the carbon component were performed by changing the temperature and gas pressure during CVD.
  • Example 6-1 to 6-6 Comparative Examples 6-1 and 6-2
  • a secondary battery was fabricated in the same manner as in Example 1-3 except that the state of the carbon film on the surface of the silicon compound was adjusted. That is, in Example 6-1 to Example 6-6, the C y H z fragment detected from the carbon film by TOF-SIMS, the detection intensity D of C 4 H 9 and the detection of C 3 H 5 in TOF-SIMS The intensity ratio D / E of the intensity E and the zeta potential were changed. In this case, the gas type, the CVD temperature, and the post-CVD temperature used for CVD of the silicon compound are adjusted. Moreover, negative electrode active material particles having a positive zeta potential were obtained by baking the silicon compound in ammonia gas. In Comparative Examples 6-1 and 6-2, the carbon coating was not applied.
  • the battery characteristics were improved when a fragment of the C y H z compound was detected and when the relationship of 2.5 ⁇ D / E ⁇ 0.3 was satisfied. Further, as in Comparative Examples 6-1 and 6-2, when there is no carbon coating, the electrical conductivity at the negative electrode is deteriorated, so that the maintenance ratio and the initial efficiency are deteriorated. In addition, when a C y H z compound fragment satisfying the range of 6 ⁇ y ⁇ 2, 2y + 2 ⁇ z ⁇ 2y ⁇ 2 was detected, the battery characteristics were improved.
  • the battery characteristics are improved because it is difficult to aggregate in the negative electrode mixture slurry for producing the negative electrode and does not become lumps.
  • the zeta potential ⁇ [mV] is negative and ⁇ 800 ⁇ [mV] ⁇ 0, the repulsion between the negative electrode active materials does not become too large, and the composition in the negative electrode cannot be uneven. Therefore, battery characteristics are improved.
  • Example 6-4 when the zeta potential was positive, the retention rate was sufficiently high, but the initial efficiency was slightly lower than when the zeta potential was negative.
  • Example 7-1 to 7-3 The shape of the carbon component contained in the negative electrode active material particles was adjusted.
  • the shape of the carbon-only component was achieved by adjusting the iron concentration of impurities contained in the silicon compound and adjusting the pressure during CVD.
  • Example 8-1 to 8-5 A secondary battery was manufactured in the same manner as in Example 1-3 except that the median system of the silicon compound was adjusted. The median system was adjusted by changing the grinding time and classification conditions in the production process of the silicon compound. When the cycle characteristics, initial charge / discharge characteristics, and SiO initial efficiency% of the secondary batteries of Examples 8-1 to 8-5 were examined, the results shown in Table 8 were obtained.
  • Example 9-1 and 9-2 A secondary battery was made in the same manner as in Example 1-3, except that the silicon compound was doped with Li and the negative electrode active material contained Li.
  • Li doping was performed using a thermal doping method, and in Example 9-2 using an electrochemical method.
  • the initial efficiency was improved by adding Li to the negative electrode active material.
  • the negative electrode cut-off voltage at the time of discharging in the case of a secondary battery decreased, and the maintenance rate also improved.
  • Example 10-1 to Example 10-6 a secondary battery was manufactured basically in the same manner as in Example 1-3.
  • the negative electrode active material a carbon-based active material (artificial graphite and natural graphite was used).
  • Graphite is mixed at a mass ratio of 1: 1), and the ratio of the content of the silicon compound and the carbon-based active material in the negative electrode (the ratio of the silicon compound (SiO material) to the entire active material) is changed.
  • the binder was also changed according to the ratio.
  • a mixture of styrene butadiene rubber (indicated as SBR in Table 10) and CMC was used as the binder.
  • polyimide indicated as PI in Table 10) was used as the binder.
  • the relative power capacity density shown in Table 10 is such that the ratio of the silicon compound is 0 as described above and combined with the NCA (lithium nickel cobalt aluminum composite oxide) positive electrode material, and the discharge cutoff voltage in the battery is 2.
  • the power capacity density (Comparative Example 10-1) at 5 V is used as a reference. If the ratio of the silicon compound is reduced, the initial efficiency and the maintenance ratio are improved, but the power capacity density is reduced.
  • the ratio of the silicon compound is 5% by mass or more, a sufficient improvement in power capacity density is observed.
  • Example 11-1 to Example 11-8 Similar to Example 10-2 except that the ratio F / G was changed by changing the median diameter F of the carbon-based active material and the median diameter G of the silicon-based active material in the negative electrode active material layer. A secondary battery was manufactured.
  • the carbon-based active material in the negative electrode active material layer is equal to or larger than the silicon compound, that is, F / G ⁇ 0.5.
  • the silicon compound that expands and contracts is equal to or smaller than that of the carbon-based negative electrode material, the composite material layer can be prevented from being broken.
  • the carbon-based negative electrode material is larger than the silicon compound, the negative electrode volume density and initial efficiency during charging are improved, and the battery energy density is improved. In particular, by satisfying the range of 25 ⁇ F / G ⁇ 0.5, the initial efficiency and the maintenance rate are further improved.
  • Example 12-1 to Example 12-4 A secondary battery was manufactured in the same manner as in Example 10-2 except that the type of the carbon-based active material in the negative electrode was changed.
  • the carbon-based active material in the negative electrode active material layer desirably contains a graphite-based material such as artificial graphite or natural graphite. This is because, since the initial efficiency and maintenance rate of the graphite-based carbon material are high, the battery characteristics are relatively improved when the silicon compound and the negative electrode are formed.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、負極活物質粒子を有し、該負極活物質粒子はケイ素化合物(SiO:0.5≦x≦1.6)を含有する非水電解質二次電池用負極活物質であって、負極活物質粒子は、少なくとも一部に炭素を含む物質から成る炭素被膜で被覆されており、該炭素被膜の密度が1.2g/cm以上1.9g/cm以下のものであり、負極活物質粒子は、窒素ガスによる吸脱着等温線測定により得られる吸脱着等温線が、IUPAC分類におけるII型又はIII型の特徴を有するものであることを特徴とする非水電解質二次電池用負極活物質である。これにより、電池容量を増加させ、サイクル特性及び電池初期効率を向上させることが可能な非水電解質二次電池用負極活物質が提供される。

Description

非水電解質二次電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
 本発明は、非水電解質二次電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法に関する。
 近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
 その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。
 リチウムイオン二次電池は、正極及び負極、セパレータと共に電解液を備えている。この負極は充放電反応に関わる負極活物質を含んでいる。
 負極活物質としては、炭素材料が広く使用されている一方で、最近の市場要求から、電池容量のさらなる向上が求められている。電池容量向上の要素として、負極活物質材として、ケイ素を用いることが検討されている。ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。活物質形状は炭素材で標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
 しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質粒子が膨張収縮するため、主に負極活物質粒子の表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質粒子が割れやすくなる。負極活物質表層が割れることで新生面が生じ、活物質の反応面積が増加する。この時、新生面において電解液の分解反応が生じるとともに、新生面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
 これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、電極構成についてさまざまな検討が成されている。
 具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。更に、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性を向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば、特許文献4参照)。
 また、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、初回充放電効率を改善するためにLi含有物を負極に添加し、負極電位が高いところでLiを分解しLiを正極に戻すプレドープを行っている(例えば特許文献6参照)。
 また、サイクル特性改善のため、SiOx(0.8≦x≦1.5、粒径範囲=1μm~50μm)と炭素材を混合し高温焼成している(例えば特許文献7参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1~1.2とし、活物質と集電体との界面近傍における、ケイ素量に対する酸素量のモル比の最大値と最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば、特許文献8参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献9参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば、特許文献10参照)。
 また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば、特許文献11参照)。この場合、特許文献11では、黒鉛被膜に関するラマンスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3である。
 また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば、特許文献12参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)と制御したケイ素酸化物を用いている(例えば、特許文献13参照)。
特開2001-185127号公報 特開2002-042806号公報 特開2006-164954号公報 特開2006-114454号公報 特開2009-070825号公報 特表2013-513206号公報 特開2008-282819号公報 特開2008-251369号公報 特開2008-177346号公報 特開2007-234255号公報 特開2009-212074号公報 特開2009-205950号公報 特許第2997741号公報
 上述のように、近年、電子機器に代表される小型のモバイル機器は高性能化、多機能化がすすめられており、その主電源である非水電解質二次電池、特にリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなる非水電解質二次電池の開発が望まれている。また、ケイ素材を用いた非水電解質二次電池は炭素材を用いた非水電解質二次電池と同等に近いサイクル特性が望まれている。
 本発明はかかる問題点に鑑みてなされたもので、その目的は、電池容量を増加させ、サイクル特性、電池初期効率を向上させることが可能な非水電解質二次電池用負極活物質を提供することである。また、本発明は、その負極活物質を用いた非水電解質二次電池用負極及びその負極を用いた非水電解質二次電池を提供することをも目的とする。また、本発明は、電池容量を増加させ、サイクル特性及び電池初期効率に優れる非水電解質二次電池用負極材を製造する方法を提供することをも目的とする。
 上記目的を達成するために、本発明は、負極活物質粒子を有し、該負極活物質粒子はケイ素化合物(SiO:0.5≦x≦1.6)を含有する非水電解質二次電池用負極活物質であって、前記負極活物質粒子は、少なくとも一部に炭素を含む物質から成る炭素被膜で被覆されており、該炭素被膜の密度が1.2g/cm以上1.9g/cm以下のものであり、前記負極活物質粒子は、窒素ガスによる吸脱着等温線測定により得られる吸脱着等温線が、IUPAC分類におけるII型又はIII型の特徴を有するものであることを特徴とする非水電解質二次電池用負極活物質を提供する。
 本発明の負極活物質は、上記のような負極活物質粒子を含有するため、適度な導電性を持つとともに、粒子表面の導電性および結着剤との相性が適切に調整されており、負極としたときに、優れた容量維持率および初回効率を発揮する。また、ケイ素化合物を主体とする負極活物質であるので、炭素系活物質を主体として用いた場合より電池容量を格段に大きくすることができる。
 このとき、前記炭素被膜の含有率が、前記ケイ素化合物及び前記炭素被膜の合計に対し0.1質量%以上25質量%以下であることが好ましい。
 このような割合で炭素被膜を有すれば、高容量のケイ素化合物を適切な割合で含むことができ十分な電池容量を確保することができる。
 またこのとき、前記炭素被膜は、TOF-SIMSによって、C系化合物のフラグメントが検出され、該C系化合物のフラグメントとして、6≧y≧2、2y+2≧z≧2y-2の範囲を満たすものが少なくとも一部に検出されることが好ましい。
 TOF-SIMS(飛行時間型二次イオン質量分析法)によって、C系フラグメントのような化合物フラグメントが検出される表面状態であれば、CMC(カルボキシメチルセルロース)やポリイミドなどの負極バインダーとの相性がよくなり、電池特性が向上する。
 このとき、前記炭素被膜で検出されるC系化合物のフラグメントは、TOF-SIMSにおけるCの検出強度DとCの検出強度Eが2.5≧D/E≧0.3の関係を満たすものであることが好ましい。
 CとCの検出強度の比が、上記範囲を満たすものであれば、炭素被膜による導電性向上効果をより効果的なものとすることができる。
 またこのとき、前記負極活物質粒子が、1.5g/cmに圧縮した時の抵抗率が1.0×10-2Ω・cm以上1.0×10Ω・cm以下の範囲のものであることが好ましい。
 負極活物質粒子を1.5g/cmに圧縮した時の抵抗率である圧縮抵抗率が、上記範囲であれば、十分かつ適度な導電性を有することができる。
 このとき、前記負極活物質粒子の比表面積は、1.0m/g以上15m/g以下であることが好ましい。
 負極活物質粒子の比表面積が、上記範囲であれば、電池を構成したときの電解液の含浸性と、結着性をともに優れたものとすることができる。
 またこのとき、前記負極活物質粒子の、0.1%カルボキシメチルセルロース水溶液中でのゼータ電位が負であることが好ましい。
 負極活物質粒子を上記水溶液に分散したときのゼータ電位がこのようなものであれば、負極材作製時のスラリーを安定したものとすることができる。
 このとき、前記炭素被膜が、ラマンスペクトル分析において、1330cm-1と1580cm-1に散乱ピークを有し、それらの強度比I1330/I1580が0.7<I1330/I1580<2.0を満たすものであることが好ましい。
 本発明の負極活物質に含まれる負極活物質粒子が有する炭素被膜が、上記強度比を満たすものであれば、炭素被膜に含まれるダイヤモンド構造を有する炭素材とグラファイト構造を有する炭素材の割合を最適化することができる。
 またこのとき、前記ケイ素化合物における前記炭素被膜の平均厚さが、5nm以上500nm以下のものであることが好ましい。
 炭素被膜がこのような平均厚さを満たすものであれば、十分な導電性を付与できるとともに、ケイ素化合物の割合を高くすることができる。
 このとき、前記ケイ素化合物における前記炭素被膜の平均被覆率が、30%以上のものであることが好ましい。
 上記の平均被覆率とすることで、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池の負極活物質として用いた際に、炭素成分が導電性向上に特に有効に働く。
 またこのとき、前記炭素被膜は、炭素を含む化合物を熱分解することで得られたものであることが好ましい。
 このような手法で得られた炭素被膜は、ケイ素化合物表面において、高い平均被覆率を有するものとなる。
 このとき、前記ケイ素化合物において、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として、-20~-74ppmで与えられるアモルファスシリコン領域のピーク面積Aと-75~-94ppmで与えられる結晶性シリコン領域のピーク面積Bと-95~-150ppmに与えられるシリカ領域のピーク面積Cが式(1)を満たすことが好ましい。
 式(1):5.0≧A/B≧0.01、6.0≧(A+B)/C≧0.02
 負極活物質粒子に含まれるケイ素化合物が、29Si-MAS-NMR スペクトルにおいて、上記式(1)を満たすピーク面積比を有するものであれば、Liの挿入に伴う膨張が抑えられるアモルファスシリコンの割合が高いため、負極の膨張が抑えられ、より良好なサイクル特性が得られる。また、このようなものであれば、シリコン成分に対してシリカ成分の割合が小さいので、ケイ素化合物内での電子伝導性の低下を抑制できる。
 またこのとき、前記ケイ素化合物が、X線回折により得られる(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であると共に、その結晶面に起因する結晶子サイズが7.5nm以下であることが好ましい。
 このような半値幅及び結晶子サイズを有するケイ素化合物は、結晶性が低くSi結晶の存在量が少ないため、電池特性を向上させることができる。また、このような結晶性の低いケイ素化合物が存在することで、安定的なLi化合物の生成を行うことができる。
 このとき、前記ケイ素化合物のメディアン径は、0.5μm以上20μm以下であることが好ましい。
 このようなメディアン径のケイ素化合物を含む負極活物質であれば、充放電時においてリチウムイオンの吸蔵放出がされやすくなるとともに、粒子が割れにくくなる。その結果、容量維持率を向上させることができる。
 またこのとき、前記負極活物質粒子の少なくとも一部に、線状炭素成分を含有することが好ましい。
 負極活物質粒子が線状炭素成分を含有すれば、線状炭素成分が活物質同士の導電性に効果を発揮するため、電池特性を向上させることができる。
 このとき、前記負極活物質粒子の少なくとも一部に、塊状炭素成分を含有することが好ましい。
 負極活物質粒子が塊状炭素成分を含有すれば、塊状炭素成分が活物質周囲の導電性に効果を発揮するため、電池特性を向上させることができる。
 また、本発明は、上記のいずれかの非水電解質二次電池用負極活物質を負極活物質として含有し、前記炭素被膜に由来する充放電容量を有することを特徴とする非水電解質二次電池用負極を提供する。
 上記本発明の負極活物質を用いた負極は、非水電解質二次電池に用いた場合に、電池容量を増加させることができ、かつ、サイクル特性及び初回充放電特性を向上させることができる。
 このとき、前記負極活物質の少なくとも一部に、Liを含有することが好ましい。
 負極に含まれる負極活物質がLiを含有すれば、初回効率が向上し、その結果、非水電解質二次電池とした場合の負極の放電カットオフ電圧が低下し、維持率が向上する。
 またこのとき、本発明の負極は、前記負極活物質として、さらに、炭素系活物質を含有することが好ましい。
 本発明の負極活物質に加え、さらに、炭素系活物質を含有する負極であれば、負極の容量を増やしつつ、より良好なサイクル特性及び初期充放電特性が得られる。
 このとき、前記炭素系活物質と前記ケイ素化合物の総量に対する、前記ケイ素化合物の割合が5質量%以上のものであることが好ましい。
 ケイ素化合物の割合が上記のようなものであれば、より電池容量を増加させることができる。
 またこのとき、前記炭素系活物質のメディアン径Fと前記ケイ素系活物質のメディアン径Gが、25≧F/G≧0.5の関係を満たすことが好ましい。
 炭素系活物質のメディアン径Fと前記ケイ素系活物質のメディアン径Gが上記のような関係を満たすことで、合材層の破壊を防止することができる。また、炭素系活物質がケイ素化合物に対して大きくなると、充電時の負極体積密度、初期効率が向上し、電池エネルギー密度が向上する。
 このとき、前記炭素系活物質は、黒鉛材料であることが好ましい。
 黒鉛材料は、他の炭素系活物質よりも良好な初回効率、容量維持率を発揮することができるため好適である。
 また、本発明は、上記のいずれかの非水電解質二次電池用負極を用いたことを特徴とする非水電解質二次電池を提供する。
 本発明の負極電極を用いた非水電解質二次電池であれば、高容量であるとともに良好なサイクル特性及び初期充放電特性が得られる。
 また、本発明は、負極活物質粒子を含む非水電解質二次電池用負極材の製造方法であって、SiO(0.5≦x≦1.6)で表されるケイ素化合物を作製する工程と、前記ケイ素化合物の表面を、少なくとも一部に炭素を含む物質から成る炭素被膜で被覆する工程と、前記炭素被膜が被覆されたケイ素化合物から、前記炭素被膜の密度が1.2g/cm以上1.9g/cm以下であり、かつ、窒素ガスによる吸脱着等温線測定により得られる吸脱着等温線が、IUPAC分類におけるII型又はIII型の特徴を有するものを選別する工程を有し、該選別した前記炭素被膜が被覆されたケイ素化合物を負極活物質粒子として、非水電解質二次電池用負極材を製造することを特徴とする非水電解質二次電池用負極材の製造方法を提供する。
 このような製造方法であれば、上記のように選別したケイ素化合物を負極活物質粒子として使用することで、高容量であるとともに優れた容量維持率および初回効率を発揮する非水電解質二次電池用負極材を製造することができる。
 本発明の負極活物質は、リチウムイオン二次電池の負極活物質として用いた際に、高容量で良好なサイクル特性及び初期充放電特性が得られる。また、本発明の非水電解質二次電池用負極活物質を使用した負極及びその負極を使用した二次電池においても同様の特性を得ることができる。また、本発明の二次電池を用いた電子機器、電動工具、電気自動車及び電力貯蔵システム等でも同様の効果を得ることができる。
 また、本発明の負極材の製造方法であれば、良好なサイクル特性及び初期充放電特性を有する非水電解質二次電池用負極材を製造することができる。
本発明の一実施形態における非水電解質二次電池用負極の構成を示す概略断面図である。 本発明の一実施形態の二次電池(ラミネートフィルム型)の構成を示す分解図である。 本発明におけるケイ素化合物の炭素被膜の密度を求めるためのプロット図である。
 前述のように、非水電解質二次電池の電池容量を増加させる1つの手法として、ケイ素材を主材として用いた負極を非水電解質二次電池の負極として用いることが検討されている。
 このケイ素材を用いた非水電解質二次電池は、炭素材を用いた非水電解質二次電池と同等に近いサイクル特性が望まれているが、炭素材を用いた非水電解質二次電池と同等のサイクル安定性を示す負極材は提案されていなかった。また、特に酸素を含むケイ素化合物は、炭素材と比較し初回効率が低いため、その分電池容量の向上は限定的であった。
 そこで、本発明者等は、非水電解質二次電池の負極に用いた際に、良好なサイクル特性および初回効率が得られる負極活物質について鋭意検討を重ね、本発明に至った。
 本発明の非水電解質二次電池用負極活物質は、負極活物質粒子を有し、該負極活物質粒子はケイ素化合物(SiO:0.5≦x≦1.6)を含有する非水電解質二次電池用負極活物質である。本発明において、負極活物質粒子は、少なくとも一部に炭素を含む物質から成る炭素被膜で被覆されており、該炭素被膜の密度が1.2g/cm以上1.9g/cm以下のものである。また、本発明において、負極活物質粒子は、窒素ガスによる吸脱着等温線測定により得られる吸脱着等温線が、IUPAC分類におけるII型又はIII型の特徴を有するものである。
 本発明の負極活物質は、負極活物質粒子が少なくとも一部に炭素を含む物質から成る炭素被膜で被覆されていることで、優れた導電性を有するものとなる。また、炭素被膜の密度が、1.9g/cmを超える密度であると、ケイ素化合物の表面の炭素被膜が過剰に緻密になり、内部のケイ素化合物まで電解液の含浸が悪く、サイクル特性や初期充放電特性などの電池特性が悪化する。また、密度が1.2g/cm未満であると、負極活物質粒子の比表面積が大きくなり、負極を製造する際に結着剤を過剰に吸着して結着剤の効果を低下させ、電池特性が悪化する。また、吸脱着等温線が、II型又はIII型であれば、負極活物質粒子の表面が無孔性であるため、負極を製造する際に結着剤の消費を最小限に抑えることができ、また、結着剤が過剰に吸着しないので、膨張収縮量の大きなケイ素化合物の結着に優れた効果をなすことができる。従って、本発明の負極活物質は、電池容量を増加させ、サイクル特性、電池初期効率を向上させることができる。
 <1.非水電解質二次電池用負極>
 本発明の非水電解質二次電池用負極材を用いた非水電解質二次電池用負極について説明する。図1は、本発明の一実施形態における非水電解質二次電池用負極(以下、単に「負極」と称することがある。)の断面構成を表している。
[負極の構成]
 図1に示したように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。この負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていても良い。さらに、本発明の負極活物質が用いられたものであれば、負極集電体11はなくてもよい。
[負極集電体]
 負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)があげられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
 負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、100ppm以下であることが好ましい。より高い変形抑制効果が得られるからである。
 負極集電体11の表面は、粗化されていても、粗化されていなくても良い。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は化学エッチングされた金属箔などである。粗化されていない負極集電体は例えば、圧延金属箔などである。
[負極活物質層]
 負極活物質層12は、リチウムイオンを吸蔵、放出可能な複数の負極活物質粒子を含んでおり、電池設計上、さらに負極結着剤や導電助剤など、他の材料を含んでいても良い。本発明の非水電解質二次電池用負極活物質は、この負極活物質層12を構成する材料となる。
 本発明の負極活物質に含まれる負極活物質粒子はリチウムイオンを吸蔵、放出可能なケイ素化合物を含有している。
 本発明の負極活物質が含有する負極活物質粒子はケイ素化合物(SiO:0.5≦x≦1.6)を含む酸化ケイ素材であり、ケイ素化合物の組成としてはxが1に近い方が好ましい。これは、高いサイクル特性が得られるからである。また、本発明におけるケイ素材組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいても良い。
 また、上述のように、本発明の負極活物質に含まれる負極活物質粒子は、炭素被膜で被覆されており、該炭素被膜の密度が1.2g/cm以上1.9g/cm以下のものである。
 さらに、上述のように、本発明において、負極活物質粒子は、窒素ガスによる吸脱着等温線測定により得られる吸脱着等温線が、IUPAC分類におけるII型又はIII型の特徴を有するものである。
 また、本発明において、負極活物質粒子は、1.5g/cmに圧縮した時の抵抗率が1.0×10-2Ω・cm以上1.0×10Ω・cm以下の範囲のものであることが好ましい。圧縮抵抗率が1.0×10-2Ω・cm以上であれば、負極活物質粒子は、適度な導電性を持ち、Liの析出が起こり難いため、電池特性が向上する。また、圧縮抵抗率が1.0×10Ω・cm以下であれば、導電性を十分に確保でき、電池特性が向上する。
 負極活物質粒子の圧縮抵抗率は、例えば下記条件で測定を行うことができる。
・装置:三菱化学アナリテック製 粉体抵抗測定システム MCP-PD型
・4探針法
・仕込み:1.5g
・加圧・測定:20Nまで加圧、5Nごとに粉体抵抗を測定し、得られた測定値を外挿し、1.5g/cm時の圧縮抵抗率を算出。
 また、負極活物質粒子の比表面積は、1.0m/g以上15m/g以下であることが好ましい。比表面積が1.0m/g以上であれば、電池とした場合に電解液の含浸性を十分に得られるため、電池特性が向上する。また、比表面積が15m/g以下であれば、負極活物質粒子に吸着する結着剤の量が適当となり、結着性が向上するため、電池特性が向上する。なお、比表面積は、例えば1点測定によるBET法を用いて求めることができる。
 また、負極活物質粒子の、0.1%カルボキシメチルセルロース水溶液中でのゼータ電位が負であることが好ましい。これにより、負極を作製するための水系スラリー作製時に、他の活物質との凝集等を抑制することができる。従って、良好な負極塗膜を作製できるため、電池特性が良好となる。
 このゼータ電位は例えば下記の方法で測定できる。まず、0.1%カルボキシメチルセルロース(CMC)水溶液に、炭素被膜を有するケイ素化合物を含む負極活物質粒子を1%加え、ハンディミキサーで30秒撹拌する。その後、超音波浴に10分浸し、25℃で電気泳動移動度を測定する。そして、得られた電気泳動移動度から、Smoluchowskiの式を用いてゼータ電位を算出できる。
 ・溶液:負極活物質粒子1%、CMC0.1%水溶液(CMCは第一工業製薬のセロゲンWS-C等を使用できる。)
 ・測定装置: 大塚電子製 ELSZ-1000Z
 また、本発明の負極活物質は、負極活物質粒子の少なくとも一部に、線状炭素成分を含有することが好ましい。線状炭素成分は活物質同士の導電性に効果を発揮し、電池特性を向上させることができる。
 また、本発明の負極活物質は、負極活物質粒子の少なくとも一部に、塊状炭素成分を含有することが好ましい。塊状炭素成分は、活物質周囲の導電性に効果を発揮し、電池特性を向上させることができる。
 線状炭素成分及び塊状炭素成分は、SEM(走査型電子顕微鏡)による組成像及びEDX(エネルギー分散型X線分光)による局所組成分析によって検出することができる。
 負極活物質粒子に含まれるケイ素化合物のメディアン径は特に限定されないが、中でも0.5μm以上20μm以下であることが好ましい。この範囲であれば、充放電時においてリチウムイオンの吸蔵放出がされやすくなるとともに、粒子が割れにくくなるからである。このメディアン径が0.5μm以上であれば表面積が増加することがないため、電池不可逆容量を低減することができる。一方、メディアン径が20μm以下であれば、粒子が割れにくく、新生面が出にくいため好ましい。
 また、本発明において、ケイ素化合物のX線回折により得られる(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であり、その結晶面に起因する結晶子サイズが7.5nm以下であることが好ましい。このような半値幅及び結晶子サイズを有するケイ素化合物は結晶性の低いものである。このように結晶性が低くSi結晶の存在量が少ないケイ素化合物を用いることにより、電池特性を向上させることができる。また、このような結晶性の低いケイ素化合物が存在することで、安定的なLi化合物の生成を行うことができる。
 また、本発明のケイ素化合物において、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として、-20~-74ppmで与えられるアモルファスシリコン領域のピーク面積Aと-75~-94ppmで与えられる結晶性シリコン領域のピーク面積Bと-95~-150ppmに与えられるシリカ領域のピーク面積Cが式(1)を満たすことが好ましい。なお、ケミカルシフトはテトラメチルシランを基準としたものである。
 式(1):5.0≧A/B≧0.01、6.0≧(A+B)/C≧0.02
 Liの挿入に伴う膨張が抑えられるアモルファスシリコンの割合が高いほど、電池とした時に、負極の膨張が抑えられ、サイクル特性が向上する。また、上記式(1)の範囲を満たすものであれば、アモルファスシリコンや結晶性シリコンといったシリコン成分に対してシリカ成分の割合が小さいので、ケイ素化合物内での電子伝導性の低下を抑制できるため、電池特性を向上させることができる。
 29Si-MAS-NMR スペクトルは、例えば下記条件で測定を行うことができる。
29Si MAS NMR(マジック角回転核磁気共鳴)
・装置: Bruker社製700NMR分光器
・プローブ: 4mmHR-MASローター 50μL
・試料回転速度: 10kHz
・測定環境温度: 25℃
 また、上記したように、本発明の負極活物質粒子は、その表面の少なくとも一部に炭素被膜が形成されたものである。
 本発明において、この炭素被膜が、ラマンスペクトル分析において、1330cm-1と1580cm-1に散乱ピークを有し、それらの強度比I1330/I1580が0.7<I1330/I1580<2.0を満たすものであることが好ましい。これにより、炭素被膜に含まれるダイヤモンド構造を有する炭素材とグラファイト構造を有する炭素材の割合を最適化することができる。その結果、上記の炭素被膜を有する負極活物質粒子を含む負極活物質を非水電解質二次電池の負極として用いた場合、電池特性が良好な非水電解質二次電池を得ることができる。
 ここで、ラマンスペクトル分析の詳細について以下に示す。顕微ラマン分析(即ち、ラマンスペクトル分析)で得られるラマンスペクトルにより、ダイヤモンド構造を有する炭素材(炭素被膜又は炭素系材料)とグラファイト構造を有する炭素材の割合を求めることができる。即ち、ダイヤモンドはラマンシフトが1330cm-1、グラファイトはラマンシフトが1580cm-1に鋭いピークを示し、その強度比により簡易的にダイヤモンド構造を有する炭素材とグラファイト構造を有する炭素材の割合を求めることができる。
 ダイヤモンドは高強度、高密度、高絶縁性であり、グラファイトは電気伝導性に優れている。そのため、上記の強度比を満たす炭素被膜は、上記のそれぞれの特徴が最適化され、結果として充放電時に伴う電極材料の膨張・収縮による電極破壊を防止でき、かつ導電ネットワークを有する負極活物質となる。
 上記の炭素被膜の形成方法としては、黒鉛等の炭素材(炭素系化合物)によってケイ素化合物を被覆する方法を挙げることができる。
 また、ケイ素化合物を被覆する炭素被膜の含有率が、ケイ素化合物及び炭素被膜の合計に対し0.1質量%以上25質量%以下であることが好ましい。この炭素被膜の含有率は、より好ましくは4質量%以上20質量%以下である。
 この含有率が0.1質量%以上であれば、電気伝導性を確実に向上させることが可能である。また、含有率が25質量%以下であれば、電池特性が向上し、電池容量が大きくなる。これらの炭素系化合物の被覆手法は特に限定されないが、糖炭化法、炭化水素ガスの熱分解法が好ましい。これらの方法であれば、ケイ素化合物の表面における、炭素被膜の被覆率を向上させることができるからである。
 また、本発明においては、ケイ素化合物における炭素被膜の平均厚さが、5nm以上500nm以下のものであることが好ましい。平均厚さが5nm以上であれば、十分な導電性が得られ、導電性の向上に伴い、電池特性は向上する。また、平均厚さが500nm以下であれば、負極活物質粒子の粒径に対し、炭素被膜の厚さが1割以下の割合となるため、負極活物質中のケイ素化合物割合を高く維持でき、非水電解質二次電池とした場合のエネルギー密度が向上する。なお、負極活物質粒子における、炭素被膜の平均厚さは、FIB-TEM(Focused Ion Beam - Transmission Electron Microscope)による断面観察により求めることができる。
 また、本発明において、ケイ素化合物における前記炭素被膜の平均被覆率が、30%以上のものであることが好ましい。平均被覆率が30%以上であれば、炭素成分が導電性向上に特に有効に働き、電池特性が向上する。なお、平均被覆率は、SEM-EDX(Scanning Electron Microscope - Energy Dispersive X-ray Spectroscope)による局所組成解析により、表面の(炭素の検出強度)/(ケイ素の検出強度)として定義した。
 また、本発明において、炭素被膜は、TOF-SIMSによって、C系化合物のフラグメントが検出され、該C系化合物のフラグメントとして、6≧y≧2、2y+2≧z≧2y-2の範囲を満たすものが少なくとも一部に検出されることが好ましい。C系フラグメントのような化合物フラグメントが検出される表面状態であれば、CMCやポリイミドなどの負極バインダーとの相性がよくなり、電池特性が向上する。
 この場合、特に、炭素被膜で検出されるC系化合物のフラグメントは、TOF-SIMSにおけるCの検出強度DとCの検出強度Eが2.5≧D/E≧0.3の関係を満たすものであることが好ましい。上記検出強度の比D/Eが2.5以下であれば、表面の電気抵抗が小さいため、導電性が向上し、電池特性が向上する。また、上記検出強度の比D/Eが0.3以上であれば、表面の炭素被膜を十分に形成できている状態であるため、表面全体で炭素被膜により導電性が向上し、電池特性が向上する。また、検出されるC系化合物のフラグメントの種類および量は、CVD条件(ガス、温度)及びその後処理条件を変えることで調整可能である。
 TOF-SIMSは、例えば下記条件で測定を行うことができる。
アルバック・ファイ社製 PHI TRIFT 2
・一次イオン源:Ga
・試料温度:25℃
・加速電圧:5kV
・スポットサイズ:100μm×100μm
・スパッタ:Ga、100μm×100μm、10s
・陰イオン質量スペクトル
・サンプル:圧粉ペレット
 負極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、鱗片状黒鉛等の黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料(炭素系材料)のいずれか1種以上があげられる。これらの導電助剤は、ケイ素化合物よりもメディアン径の小さい粒子状のものであることが好ましい。
 本発明において、図1の負極活物質層12は、本発明の負極活物質に加え、さらに、炭素材料(炭素系活物質)を含んでもよい。これにより、負極活物質層12の電気抵抗を低下するとともに、充電に伴う膨張応力を緩和することが可能となる。この炭素系活物質としては、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、カーボンブラック類などがある。中でも、炭素系活物質は、黒鉛材料であることが好ましい。黒鉛材料は、他の炭素系活物質よりも良好な初回効率、容量維持率を発揮することができる。
 この場合、本発明の負極は、炭素系活物質とケイ素化合物の総量に対する、ケイ素化合物の割合が5質量%以上のものであることが好ましい。また、ケイ素化合物の割合は、90質量%未満であることが好ましい。このような非水電解質二次電池用負極であれば、初回効率、容量維持率が低下することがない。
 また、炭素系活物質のメディアン径Fとケイ素系活物質のメディアン径Gが、25≧F/G≧0.5の関係を満たすことが好ましい。すなわち、炭素系活物質のメディアン径が、ケイ素系活物質のメディアン径と同等以上の大きさであることが望ましい。これは、Li挿入・脱離に伴い膨張収縮するケイ素化合物が炭素系活物質に対して同等以下の大きさである場合、合材層の破壊を防止することができるからである。このように、炭素系活物質がケイ素化合物に対して大きくなると、充電時の負極体積密度、初期効率が向上し、電池エネルギー密度が向上する。
 また、本発明の負極は、本発明の負極活物質を含有するものである。その際、その負極活物質に含まれる炭素被膜に由来する充放電容量を有することが好ましい。充放電容量を持つ炭素被膜を有することにより、負極活物質粒子の内部へのLiイオン伝導性が向上し、電池特性が向上する。
 炭素被膜の充放電容量は例えば以下のように測定できる。まず、炭素被膜を有するケイ素化合物を、20%水酸化ナトリウム水溶液中50℃で24時間反応させ、ケイ素成分を除く。この後、結着剤として、例えばカルボキシメチルセルロース(CMC)とスチレンブタジエンゴム(以下、SBRとも称する)の混合物を使用して負極を作製する。次に、この負極と対極Liでコイン電池を作製し、充放電容量を測定することで、炭素被膜の充放電容量を測定できる。
 また本発明の負極は、負極活物質の少なくとも一部に、Liを含有することが好ましい。負極活物質にLiを含有させるには、Liをケイ素化合物にドープすればよい。Liをケイ素化合物にドープする方法としては、例えば、ケイ素化合物と金属リチウムを混合して加熱する熱ドープ法や、電気化学的方法があげられる。ケイ素化合物に、Li化合物が含まれていることにより、初回効率が向上し、その結果非水電解質二次電池とした場合の負極の放電カットオフ電圧が低下し、維持率が向上する。
 図1の負極活物質層12は、例えば塗布法で形成される。塗布法とは負極活物質粒子と上記した結着剤など、また必要に応じて導電助剤、炭素材料を混合したのち、有機溶剤や水などに分散させ塗布する方法である。
[負極の製造方法]
 本発明の負極を製造する方法について説明する。
 最初に、負極に含まれる負極材の製造方法を説明する。まず、SiO(0.5≦x≦1.6)で表されるケイ素化合物を作製する。次に、ケイ素化合物の表面を炭素被膜で被覆する。ここで、ケイ素化合物にLiを挿入することにより、該ケイ素化合物の表面若しくは内部又はその両方にLi化合物を生成させて該ケイ素化合物を改質してもよい。次に、炭素被膜の密度が1.2g/cm以上1.9g/cm以下であり、かつ、窒素ガスによる吸脱着等温線測定により得られる吸脱着等温線が、IUPAC分類におけるII型又はIII型の特徴を有するケイ素化合物を選別する。そして、負極活物質粒子として、選別した炭素被膜が被覆されたケイ素化合物を用いて、非水電解質二次電池用負極材を作製する。
 より具体的には、負極材は、例えば、以下の手順により製造することができる。
 まず、酸化珪素ガスを発生する原料(気化出発材)を不活性ガスの存在下もしくは減圧下900℃~1600℃の温度範囲で加熱し、酸化ケイ素ガスを発生させる。この場合、原料は金属珪素粉末と二酸化珪素粉末との混合であり、金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<金属珪素粉末/二酸化珪素粉末<1.3の範囲であることが望ましい。粒子中のSi結晶子は仕込み範囲や気化温度の変更、また生成後の熱処理で制御される。発生したガスは吸着板に堆積される。反応炉内温度を100℃以下に下げた状態で堆積物を取出し、ボールミル、ジェットミルなどを用いて粉砕、粉末化を行う。
 次に、得られた粉末材料の表面に炭素被膜を被覆する。得られた粉末材料の表面に炭素被膜を生成する手法としては、熱分解CVDが望ましい。熱分解CVDは炉内に粉末材料をセットし、炭化水素ガスを充満させ炉内温度を昇温させる。分解温度は特に限定しないが特に1200℃以下が望ましい。より望ましいのは950℃以下であり、活物質粒子の不均化を抑制することが可能である。
 熱分解CVDによって炭素被膜を生成する場合、例えば、炉内の圧力、温度を調節することによって、ラマンスペクトルにおいて所望のピーク強度比I1330/I1580を満たす炭素被膜を粉末材料の表面に形成することができる。また、炭素被膜の量、厚み、被覆率、吸脱着等温線の分類、比表面積の変化は、CVD温度、時間及びCVD時の粉末材料(ケイ素化合物粉体)の攪拌度を調節することで制御できる。
 次に、炭素被膜の密度が1.2g/cm以上1.9g/cm以下であり、かつ、窒素ガスによる吸脱着等温線測定により得られる吸脱着等温線が、IUPAC分類におけるII型又はIII型の特徴を有するケイ素化合物を選別する。
 ここで、炭素被膜の密度は、例えば、図3に示すように、ケイ素化合物と炭素被膜の総量に対する炭素被膜の炭素被膜の含有率(質量%)とケイ素化合物と炭素被膜から成る粒子の密度とのプロットを数か所作成し、線形近似で炭素被膜の含有率が100質量%となる点の外挿を行い、炭素被膜のみの密度を算出することで求めることができる。
 また、吸脱着等温線は、吸着剤(ここでは、負極活物質粒子)に、吸着分子として窒素を吸脱着させることにより測定することができる。測定装置としては、日本ベル株式会社製BELSORP-miniを用いることができる。なお、窒素の吸脱着時の履歴(ヒステリシス)がある場合、吸着・脱着時の同じ圧力での窒素の吸着量の最大履歴差ΔVが、p/p=0.9の場合の窒素の吸着量Vと比較し、ΔV/V≦0.05であれば、履歴は測定誤差によるものとし、実質的に履歴がないものとして、吸脱着等温線をII型又はIII型と分類することができる。ここで、p/pは相対圧力であり、平衡圧力を飽和蒸気圧で割ったものである。
 吸着等温線型に分類が異なる負極活物質粒子を分別する方法として、例えばII型とIV型の分類を有する負極活物質粒子を分別する場合は、まず、負極活物質粒子の粉体を湿度80%の環境で10時間放置(途中で3回以上撹拌)する。次に、円筒容器中に、粉体を円筒容器内の空間に対し嵩密度で5%となるように充填し、円筒容器を2時間撹拌後、円筒容器を立て、静置して粉体が堆積するまで静置する操作を2回繰り返す。得られた粉体のうち、上に堆積した20%分(II型)と、下に堆積した20%分(IV型)をそれぞれ分取することで、II型とIV型を分別することができる。
 このようにして選別した炭素被膜を有するケイ素化合物を負極活物質粒子として、非水電解質二次電池用負極材を作製する。
 続いて、負極材と負極結着剤、導電助剤など他の材料とを混合し負極合剤としたのち、有機溶剤又は水などを加えてスラリーとする。
 次に、負極集電体の表面に負極合剤のスラリーを塗布し、乾燥させて図1に示す負極活物質層12を形成する。この時、必要に応じて加熱プレスなどを行っても良い。このようにして負極を製造できる。
 また、ケイ素化合物よりメディアン径の小さい炭素系材料を導電助剤として添加する場合、例えば、アセチレンブラックを選択して添加することができる。
 炭化水素ガスは特に限定することはないが、C組成のうち3≧nが望ましい。製造コストを低くすることができ、分解生成物の物性が良いからである。
<2.リチウムイオン二次電池>
 次に、上記したリチウムイオン二次電池用負極を用いたリチウムイオン二次電池について説明する。
[ラミネートフィルム型二次電池の構成]
 図2に示すラミネートフィルム型二次電池20は、主にシート状の外装部材25の内部に巻回電極体21が収納されたものである。この巻回体は正極、負極間にセパレータを有し、巻回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード22が取り付けられ、負極に負極リード23が取り付けられている。電極体の最外周部は保護テープにより保護されている。
 正負極リードは、例えば外装部材25の内部から外部に向かって一方向で導出されている。正極リード22は、例えば、アルミニウムなどの導電性材料により形成され、負極リード23は、例えば、ニッケル、銅などの導電性材料により形成される。
 外装部材25は、例えば融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が電極体21と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。
 外装部材25と正負極リードとの間には、外気侵入防止のため密着フィルム24が挿入されている。この材料は、例えばポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。
 [正極]
 正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
 正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。
 正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいても良い。この場合、結着剤、導電助剤に関する詳細は、例えば既に記述した負極結着剤、負極導電助剤と同様である。
 正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又はリチウムと遷移金属元素を有するリン酸化合物があげられる。これらの正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、LiあるいはLiPOで表される。式中、M、Mは少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。
 リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)、リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnPO(u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量が得られるとともに、優れたサイクル特性も得られるからである。
[負極]
 負極は、上記した図1のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、集電体11の両面に負極活物質層12を有している。この負極は、正極活物質剤から得られる電気容量(電池として充電容量)に対して、負極充電容量が大きくなることが好ましい。負極上でのリチウム金属の析出を抑制することができるためである。
 正極活物質層は、正極集電体の両面の一部に設けられており、負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。安定した電池設計を行うためである。
 非対向領域、即ち、上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため負極活物質層の状態が形成直後のまま維持される。これによって負極活物質の組成など、充放電の有無に依存せずに再現性良く組成などを正確に調べることができる。
[セパレータ]
 セパレータは正極、負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレンあるいはポリエチレンなどが挙げられる。
[電解液]
 活物質層の少なくとも一部、又はセパレータには液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
 溶媒は、例えば非水溶媒を用いることができる。非水溶媒としては、例えば、次の材料が挙げられる。炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2-ジメトキシエタン、あるいはテトラヒドロフランである。
 中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上が望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせるとより優位な特性を得ることができる。電解質塩の解離性やイオン移動度が向上するためである。
 溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどがあげられる。
 また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。
 さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。
 電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、次の材料があげられる。六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などが挙げられる。
 電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。
[ラミネートフィルム型二次電池の製造方法]
 最初に上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて結着剤、導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロールまたはダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱を行っても良い。また、圧縮、加熱を複数回繰り返しても良い。
 次に、上記したリチウムイオン二次電池用負極10の作製と同様の作業手順を用い、負極集電体に負極活物質層を形成し負極を作製する。
 正極及び負極を上記した同様の作製手順により作製する。この場合、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていても良い(図1を参照)。
 続いて、電解液を調整する。続いて、超音波溶接などにより、正極集電体に正極リード22を取り付けると共に、負極集電体に負極リード23を取り付ける。続いて、正極と負極とをセパレータを介して積層、又は巻回させて巻回電極体を作成し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回体を成型する。続いて、折りたたんだフィルム状の外装部材25の間に巻回電極体を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ解放状態にて、巻回電極体を封入する。正極リード22、及び負極リード23と外装部材25の間に密着フィルム24を挿入する。解放部から上記調整した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により接着させる。
 以上のようにして、ラミネートフィルム型二次電池20を製造することができる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1-1)
 以下の手順により、図2に示したラミネートフィルム型の二次電池20を作製した。
 最初に正極を作製した。正極活物質はリチウムコバルト複合酸化物であるLiCoOを95質量部と、正極導電助剤2.5質量部と、正極結着剤(ポリフッ化ビニリデン:PVDF)2.5質量部とを混合し正極合剤とした。続いて正極合剤を有機溶剤(N-メチル-2-ピロリドン:NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時、正極集電体は厚み15μmを用いた。最後にロールプレスで圧縮成型を行った。
 次に、負極を作成した。負極活物質を作製するため、まず、金属ケイ素と二酸化ケイ素を混合した原料を反応炉へ設置し、10Paの真空下で堆積し、十分に冷却した後、堆積物を取出しボールミルで粉砕した。粒径を調整した後、熱分解CVDを行うことで炭素被膜を得た。作成した粉末はプロピレンカーボネート及びエチレンカーボネートの1:1混合溶媒(電解質塩として、六フッ化リン酸リチウム(LiPF)を1.3mol/kg含む)中で電気化学法を用いバルク改質を行った。得られた材料は炭酸雰囲気下で乾燥処理を行った。
 続いて、負極活物質と負極結着剤の前駆体(ポリアミック酸)と導電助剤1(鱗片状黒鉛)と導電助剤2(アセチレンブラック)とを80:8:10:2の乾燥質量比で混合した後、NMPで希釈してペースト状の負極合剤スラリーとした。この場合には、ポリアミック酸の溶媒としてNMPを用いた。続いて、コーティング装置で負極集電体の両面に負極合剤スラリーを塗布してから乾燥させた。この負極集電体としては、電解銅箔(厚さ=15μm)を用いた。最後に、真空雰囲気中で400℃×1時間焼成した。これにより、負極結着剤(ポリイミド)が形成される。
 次に、溶媒(4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、エチレンカーボネート(EC)及びジメチルカーボネート(DMC))を混合したのち、電解質塩(六フッ化リン酸リチウム:LiPF)を溶解させて電解液を調製した。この場合には、溶媒の組成を体積比でFEC:EC:DMC=10:20:70とし、電解質塩の含有量を溶媒に対して1.2mol/kgとした。
 次に、以下のようにして二次電池を組み立てた。最初に正極集電体の一端にアルミリードを超音波溶接し、負極集電体にはニッケルリードを溶接した。続いて正極、セパレータ、負極、セパレータをこの順に積層し、長手方向に巻回させ巻回電極体を得た。その捲き終わり部分をPET保護テープで固定した。セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムに挟まれた積層フィルム12μmを用いた。続いて、外装部材間に電極体を挟んだのち、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔、及びポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。続いて、開口部から調整した電解液を注入し、真空雰囲気下で含浸した後、熱融着し封止した。
(実施例1-2~実施例1-5、比較例1-1~比較例1-2)
 SiOxで表わされるケイ素化合物において、酸素量を調整した以外は、実施例1-1と同様に、二次電池を作製した。
 実施例1-1~実施例1-5、比較例1-1~比較例1-2における、ケイ素化合物はいずれも以下の物性を有していた。ケイ素化合物の29Si-MAS-NMRによるピーク面積比A/B=0.6、(A+B)/C=0.32であった。また、ケイ素化合物のメディアン径D50は5.1μmであった。X線回折により得られる(111)結晶面に起因する回折ピークの半値幅(2θ)は1.85°であり、その結晶面(111)に起因する結晶子サイズは4.62nmであった。
 また、実施例1-1~実施例1-5、比較例1-1~比較例1-2における、炭素被膜の含有率は5%、炭素被膜の平均厚さは110nm、炭素被膜の平均被覆率は90%、炭素被膜の密度は1.6g/cm、炭素被膜の充放電容量は280mAh/gであった。ラマンスペクトルの強度比I1330/I1580=1.1であった。TOF-SIMSによって、y=2、3、4、z=2y-3、2y-1、2y+1であるC系化合物のフラグメントが検出された。また、Cの検出強度DとCの検出強度Eの強度比D/E=0.8であった。また、炭素被膜には線状炭素成分、塊状炭素成分が含まれていた。
 このような負極活物質粒子の吸脱着等温線は、IUPAC分類におけるII型の特徴を有していた。また、負極活物質粒子の圧縮抵抗率(1.5g/cm時)は0.12Ω・cm、0.1%CMC水溶液中でのゼータ電位は-50mVであった。また、BET法により測定された比表面積は5.1m/gであった。
 実施例1-1~実施例1-5、比較例1-1~比較例1-2の二次電池のサイクル特性(維持率%)、初回充放電特性(初期効率%)を調べたところ、表1に示した結果が得られた。
 サイクル特性については、以下のようにして調べた。最初に電池安定化のため25℃の雰囲気下、2サイクル充放電を行い、2サイクル目の放電容量を測定した。続いて総サイクル数が100サイクルとなるまで充放電を行い、その都度放電容量を測定した。最後に100サイクル目の放電容量を2サイクル目の放電容量で割り(%表示のため×100)、容量維持率を算出した。サイクル条件として、4.3Vに達するまで定電流密度、2.5mA/cmで充電し、電圧に達した段階で4.3V定電圧で電流密度が0.25mA/cmに達するまで充電した。また放電時は2.5mA/cmの定電流密度で電圧が3.0Vに達するまで放電した。
 初回充放電特性を調べる場合には、初回効率(%)=(初回放電容量/初回充電容量)×100を算出した。雰囲気温度は、サイクル特性を調べた場合と同様にした。充放電条件はサイクル特性の0.2倍で行った。すなわち、4.3Vに達するまで定電流密度、0.5mA/cmで充電し、電圧が4.3Vに達した段階で4.3V定電圧で電流密度が0.05mA/cmに達するまで充電し、放電時は0.5mA/cmの定電流密度で電圧が3.0Vに達するまで放電した。
 尚、下記表1から表9に示される維持率及び初回効率は、天然黒鉛(例えば、メディアン径20μm)等の炭素系活物質を含有せず、炭素被膜を有するケイ素化合物のみを負極活物質として使用した場合の維持率及び初回効率、すなわち、ケイ素系化合物の維持率及び初回効率を示す。これにより、ケイ素系化合物の変化(酸素量、結晶性、メディアン径の変化など)又は炭素被膜の変化(含有率、組成など)のみに依存した維持率及び初回効率の変化を測定することができた。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、SiOxで表わされるケイ素化合物において、xの値が、0.5≦x≦1.6の範囲外の場合、電池特性が悪化した。例えば、比較例1-1に示すように、酸素が十分にない場合(x=0.3)初回効率が向上するが、容量維持率が著しく悪化する。一方、比較例1-2に示すように、酸素量が多い場合(x=1.8)導電性の低下が生じ維持率、初回効率とも低下し、測定不可となった。
(実施例2-1~実施例2-7、比較例2-1~比較例2-3)
 ケイ素化合物表面の炭素被膜の密度、含有率、平均厚さ、平均被覆率、及び負極活物質粒子のIUPAC吸脱着等温線の分類、比表面積を変化させた以外は、実施例1-3と同様に二次電池の製造を行った。炭素被膜の密度、含有率、平均厚さ、平均被覆率、及び負極活物質粒子のIUPAC吸脱着等温線の分類、比表面積はCVD温度、時間およびCVD時のケイ素化合物紛体の撹拌度を調節することで制御可能である。
 実施例2-1~実施例2-7、比較例2-1~比較例2-3の二次電池のサイクル特性及び初回充放電特性を調べたところ、表2に示した結果が得られた。
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、また、吸脱着等温線は、II型又はIII型に分類される特徴を持つことで電池特性が向上する。これは表面が無孔性であることで、結着剤の消費を最小限に抑え、膨張収縮量の大きなケイ素系活物質の結着に優れた効果をなすためである。また、炭素被膜の密度が1.9g/cmより大きい場合(比較例2-1)及び1.2g/cm未満の場合(比較例2-2)は、電池特性は悪化した。
 また、炭素被膜の含有率は、0.1質量%以上25質量%以下、特に4質量%以上20質量%以下の場合に、維持率、初回効率がともに向上する。炭素被膜の含有率が0.1質量%以上であれば負極活物質粒子の電子伝導性が向上し、25質量%以下であれば負極活物質粒子のイオン導電性の低下を抑制できるため、上記範囲でよい維持率、初回効率が得られる。また、炭素被膜の厚さは500nm以下であることが好ましい。また、平均被覆率は30%以上あれば、炭素成分が導電性向上により有効に働くため、電池特性が向上する。また、比表面積が、1.0m/g以上15m/g以下であることで良い特性となる。
(実施例3-1~実施例3-6)
 ケイ素化合物内のSi成分とSiO成分の比(Siとシリカの比)及び不均化度を変化させたことを除き、実施例1-3と同様に、二次電池の製造を行った。Si成分とSiO成分の比は、SiO作成時の金属ケイ素およびシリカの仕込み量を変更させることによって、実施例3-1~実施例3-6で変化させた。また、ケイ素化合物(SiO)において、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として、-20~-74ppmで与えられるアモルファスシリコン(a-Si)領域のピーク面積Aと-75~-94ppmで与えられる結晶性シリコン(c-Si)領域のピーク面積Bとの比率A/Bは熱処理によって不均化度を制御することによって調整した。
 実施例3-1~3-6の二次電池のサイクル特性及び初回充放電特性を調べたところ、表3に示した結果が得られた。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、5.0≧A/B≧0.01、6.0≧(A+B)/C≧0.02の範囲を満たす場合(実施例1-3、3-3、3-4)、維持率、初回効率ともに良い特性となった。a-Si成分が増加すると初回効率が低下するが、維持率は向上する。そのバランスが、5.0≧A/B≧0.01の範囲で保たれるためである。また、Si成分とSiO成分の比(A+B)/Cが6以下であれば、Li挿入に伴う膨張を小さく抑制できるため、維持率が向上する。また、(A+B)/Cが0.02以上であれば、導電性が向上し、維持率、初回効率ともに向上する。5.0≧A/B≧0.01のみを満たす場合(実施例3-1、3-6)では、A/B及び(A+B)/Cの上記範囲を両方とも満たす場合に比べ、初期効率及び維持率が若干低下する。0≧(A+B)/C≧0.02のみを満たす場合(実施例3-2、3-5)では、A/B及び(A+B)/Cの上記範囲を両方とも満たす場合に比べ、維持率が若干低下する。
(実施例4-1~4-5)
 ケイ素化合物の結晶性を変化させた他は、実施例1-3と同様に二次電池の製造を行った。結晶性の変化は非大気雰囲気下の熱処理で制御可能である。実施例4-1では結晶子サイズを1.542nmと算出しているが、解析ソフトを用いフィッティングした結果であり、実質的にピークは得られていない。よって実施例4-1のケイ素化合物は実質的に非晶質であると言える。
 実施例4-1~実施例4-5の二次電池のサイクル特性及び初回充放電特性を調べたところ、表4に示した結果が得られた。
Figure JPOXMLDOC01-appb-T000004
 表4からわかるように、ケイ素化合物の結晶性を変化させたところ、それらの結晶性に応じて容量維持率及び初回効率が変化した。特にSi(111)面に起因する結晶子サイズ7.5nm以下の低結晶性材料で高い初回効率が可能となる。特に非結晶領域では最も良い特性が得られる。
(実施例5-1~実施例5-3)
 負極活物質粒子の表面状態を変化させ、炭素被膜のラマンスペクトル分析における、1330cm-1と1580cm-1の散乱ピークの強度比I1330/I1580、及び炭素成分の充放電容量を変化させたこと除き、実施例1-3と同様に、二次電池の製造を行った。なお、散乱ピークの強度比I1330/I1580、及び炭素成分の充放電容量は、CVD時の温度およびガス圧力を変化させることによって行った。
 実施例5-1~5-3の二次電池のサイクル特性及び初回充放電特性を調べたところ、表5に示した結果が得られた。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、ラマンスペクトルにおける、散乱ピークの強度比I1330/I1580が2.0未満である場合は、表面にI1330に由来する乱雑な結合様式をもつ炭素成分が少なく、電子伝導性が高いため、維持率、初回効率が向上する。また、I1330/I1580が0.7より大きい場合は、表面にI1580に由来する黒鉛等の炭素成分が少なく、イオン電導性及び炭素被膜のケイ素化合物のLi挿入に伴う膨張への追随性が向上し、容量維持率が向上する。また、炭素被膜が充放電容量を持つ実施例1-3、5-1、5-2では、負極活物質内部へのLiイオン伝導性が向上し、維持率の向上がみられた。
(実施例6-1~実施例6-6、比較例6-1、6-2)
 ケイ素化合物表面の炭素被膜の状態を調整したこと以外は、実施例1-3と同様に、二次電池を作製した。すなわち、実施例6-1~実施例6-6では、TOF-SIMSによって炭素被膜から検出されるCフラグメント、TOF-SIMSにおけるCの検出強度DとCの検出強度Eの強度比D/E、及びゼータ電位を変化させた。この場合、ケイ素化合物へのCVDの際に用いるガス種、CVD温度、及びCVD後処理温度を調整している。また、アンモニアガス中でケイ素化合物の焼成処理を行うことで、ゼータ電位が正の負極活物質粒子を得た。また、比較例6-1、6-2では炭素被膜の被覆を行わなかった。
 実施例6-1~実施例6-6、比較例6-1、6-2の二次電池のサイクル特性及び初回充放電特性を調べたところ、表6に示した結果が得られた。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、C系化合物のフラグメントが検出された場合、及び2.5≧D/E≧0.3の関係を満たす場合は、電池特性が向上した。また、比較例6-1、6-2のように、炭素被膜が無い場合は、負極での電気伝導性が悪化するため、維持率、初回効率が悪化する。また、6≧y≧2、2y+2≧z≧2y-2の範囲を満たすC系化合物のフラグメントが検出された場合、電池特性が向上した。
 また、ゼータ電位が負であると、負極を作製するための負極合剤スラリー中で凝集し難く、ダマにならないため、電池特性が向上した。また、ゼータ電位ζ[mV]が負であり、かつ、-800<ζ[mV]<0である場合は、負極活物質同士の反発が大きくなり過ぎず、負極中での組成にムラができないため、電池特性が向上する。実施例6-4のように、ゼータ電位が正である場合には、維持率は十分に高くなったが、ゼータ電位が負である場合に比べて、初期効率はやや低くなった。
(実施例7-1~7-3)
 負極活物質粒子に含まれる炭素成分の形状を調整した。炭素のみの成分の形状は、ケイ素化合物に含まれる不純物の鉄濃度を調整することや、CVD時の圧力を調整することで行った。
 実施例7-1~7-3の二次電池のサイクル特性及び初回充放電特性を調べたところ、表7に示した結果が得られた。
Figure JPOXMLDOC01-appb-T000007
 表7からわかるように、塊状炭素成分を含む場合、線状炭素成分を含む場合、その両方の炭素成分を含む場合で、これら炭素成分を含まない場合と比較し、初回効率および維持率の向上がみられた。
(実施例8-1~8-5)
 ケイ素化合物のメディアン系を調節した他は、実施例1-3と同様に二次電池を製造した。メディアン系の調節はケイ素化合物の製造工程における粉砕時間、分級条件を変化させることによって行った。実施例8-1~8-5の二次電池のサイクル特性、初回充放電特性及びSiO初回効率%を調べたところ、表8に示した結果が得られた。
Figure JPOXMLDOC01-appb-T000008
 表8からわかるように、ケイ素化合物のメディアン径を変化させたところ、それに応じて維持率および初回効率が変化した。実施例8-2~8-4に示すように、ケイ素化合物粒子のメディアン径が0.5μm~20μmであると容量維持率がより高くなった。特にメディアン径が0.5μm以上12μm以下の場合、維持率の向上がみられた。
(実施例9-1~9-2)
 ケイ素化合物にLiドープを行い、負極活物質にLiを含有させたこと以外は、実施例1-3と同様に、二次電池を作成した。実施例9-1では熱ドープ法を用いて、実施例9-2では電気化学的手法を用いてLiドープを行った。
 実施例9-1~9-2の二次電池のサイクル特性及び初回充放電特性を調べたところ、表9に示した結果が得られた。
Figure JPOXMLDOC01-appb-T000009
 表9からわかるように、負極活物質にLiを含有させたことによって、初回効率が向上した。それに伴い、二次電池とした際の放電時の負極カットオフ電圧が低下し、維持率もともに向上した。
(実施例10-1~実施例10-6)
 実施例10-1~実施例10-6では、基本的に実施例1-3と同様に二次電池の製造を行ったが、負極活物質として、さらに、炭素系活物質(人造黒鉛と天然黒鉛を1:1の質量比で混合したもの)を加え、負極中のケイ素化合物及び炭素系活物質材の含有量の比(ケイ素化合物(SiO材)の活物質全体に占める割合)を変化させ、その割合に応じて結着剤も変更した。実施例10-1~10-3では、結着剤として、スチレンブタジエンゴム(表10では、SBRと表記)とCMCを混合したものを使用した。実施例10-4~10-6では、結着剤として、ポリイミド(表10では、PIと表記)を使用した。
(比較例10-1)
 本発明の負極活物質を含有せず、実施例10-1~実施例10-6でも使用した炭素系活物質のみを負極活物質とし、リチウムニッケルコバルトアルミニウム複合酸化物を正極材として使用した他は、実施例1-3と同様に二次電池を製造した。
 実施例10-1~10-6、比較例10-1の二次電池のサイクル特性及び初回充放電特性を調べた。また、実施例10-1~10-6、比較例10-1の二次電池の電力容量密度(mAh/cm)を測定し、比較例10-1の二次電池の電力容量密度を基準とした場合の、相対的な電力容量密度を各々の場合で算出した。これらの結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10からわかるように、ケイ素化合物の割合を増やすと負極の容量は増加するが、初回効率、維持率の低下がみられる。また、表10中に示す相対電力容量密度は、上記のようにケイ素化合物の割合が0、かつNCA(リチウムニッケルコバルトアルミニウム複合酸化物)正極材と組み合わせ、電池での放電カットオフ電圧を2.5Vとした場合の電力容量密度(比較例10-1)を基準としている。ケイ素化合物の割合を減らすと、初回効率、維持率は向上するが、電力容量密度が小さくなる。特に、比較例10-1のように炭素系活物質のみを負極活物質として使用する場合、高い電力容量密度のリチウムイオン二次電池を得ることはできない。特に、ケイ素化合物の割合が5質量%以上であると、十分な電力容量密度の向上が見られる。
(実施例11-1~実施例11-8)
 負極活物質層中の炭素系活物質のメディアン径Fとケイ素系活物質のメディアン径Gを変化させて、これらの比F/Gを変化させたことを除き、実施例10-2と同様に、二次電池の製造を行った。
 実施例11-1~11-8の二次電池のサイクル特性及び初回充放電特性を調べたところ、表11に示した結果が得られた。
Figure JPOXMLDOC01-appb-T000011
 表11からわかるように、負極活物質層中の炭素系活物質は、ケイ素化合物に対し同等以上の大きさであること、すなわち、F/G≧0.5であることが望ましい。膨張収縮するケイ素化合物が炭素系負極材に対して同等以下の大きさである場合、合材層の破壊を防止することができる。炭素系負極材がケイ素化合物に対して大きくなると、充電時の負極体積密度、初期効率が向上し、電池エネルギー密度が向上する。また、特に、25≧F/G≧0.5の範囲を満たすことで、初回効率、及び維持率がより向上する。
(実施例12-1~実施例12-4)
 負極中の炭素系活物質材の種類を変化させたことを除き、実施例10-2と同様に、二次電池の製造を行った。
 実施例12-1~12-4の二次電池のサイクル特性及び初回充放電特性を調べたところ、表12に示した結果が得られた。
Figure JPOXMLDOC01-appb-T000012
 表12からわかるように、負極活物質層中の炭素系活物質は、人造黒鉛や天然黒鉛などの黒鉛系材料が含まれていることが望ましい。これは、黒鉛系炭素材の初回効率、維持率が高いため、ケイ素化合物と負極を作成した際、電池特性が相対的に向上するためである。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (24)

  1.  負極活物質粒子を有し、該負極活物質粒子はケイ素化合物(SiO:0.5≦x≦1.6)を含有する非水電解質二次電池用負極活物質であって、
     前記負極活物質粒子は、少なくとも一部に炭素を含む物質から成る炭素被膜で被覆されており、該炭素被膜の密度が1.2g/cm以上1.9g/cm以下のものであり、
     前記負極活物質粒子は、窒素ガスによる吸脱着等温線測定により得られる吸脱着等温線が、IUPAC分類におけるII型又はIII型の特徴を有するものであることを特徴とする非水電解質二次電池用負極活物質。
  2.  前記炭素被膜の含有率が、前記ケイ素化合物及び前記炭素被膜の合計に対し0.1質量%以上25質量%以下であることを特徴とする請求項1に記載の非水電解質二次電池用負極活物質。
  3.  前記炭素被膜は、TOF-SIMSによって、C系化合物のフラグメントが検出され、該C系化合物のフラグメントとして、6≧y≧2、2y+2≧z≧2y-2の範囲を満たすものが少なくとも一部に検出されることを特徴とする請求項1又は請求項2に記載の非水電解質二次電池用負極活物質。
  4.  前記炭素被膜で検出されるC系化合物のフラグメントは、TOF-SIMSにおけるCの検出強度DとCの検出強度Eが2.5≧D/E≧0.3の関係を満たすものであることを特徴とする請求項3に記載の非水電解質二次電池用負極活物質。
  5.  前記負極活物質粒子が、1.5g/cmに圧縮した時の抵抗率が1.0×10-2Ω・cm以上1.0×10Ω・cm以下の範囲のものであることを特徴とする請求項1から請求項4のいずれか1項に記載の非水電解質二次電池用負極活物質。
  6.  前記負極活物質粒子の比表面積は、1.0m/g以上15m/g以下であることを特徴とする請求項1から請求項5のいずれか1項に記載の非水電解質二次電池用負極活物質。
  7.  前記負極活物質粒子の、0.1%カルボキシメチルセルロース水溶液中でのゼータ電位が負であることを特徴とする請求項1から請求項6のいずれか1項に記載の非水電解質二次電池用負極活物質。
  8.  前記炭素被膜が、ラマンスペクトル分析において、1330cm-1と1580cm-1に散乱ピークを有し、それらの強度比I1330/I1580が0.7<I1330/I1580<2.0を満たすものであることを特徴とする請求項1から請求項7のいずれか1項に記載の非水電解質二次電池用負極活物質。
  9.  前記ケイ素化合物における前記炭素被膜の平均厚さが、5nm以上500nm以下のものであることを特徴とする請求項1から請求項8のいずれか1項に記載の非水電解質二次電池用負極活物質。
  10.  前記ケイ素化合物における前記炭素被膜の平均被覆率が、30%以上のものであることを特徴とする請求項1から請求項9のいずれか1項に記載の非水電解質二次電池用負極活物質。
  11.  前記炭素被膜は、炭素を含む化合物を熱分解することで得られたものであることを特徴とする請求項1から請求項10のいずれか1項に記載の非水電解質二次電池用負極活物質。
  12.  前記ケイ素化合物において、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として、-20~-74ppmで与えられるアモルファスシリコン領域のピーク面積Aと-75~-94ppmで与えられる結晶性シリコン領域のピーク面積Bと-95~-150ppmに与えられるシリカ領域のピーク面積Cが式(1)を満たすことを特徴とする請求項1から請求項11のいずれか1項に記載の非水電解質二次電池用負極活物質。
     式(1):5.0≧A/B≧0.01、6.0≧(A+B)/C≧0.02
  13.  前記ケイ素化合物が、X線回折により得られる(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であると共に、その結晶面に起因する結晶子サイズが7.5nm以下であることを特徴とする請求項1から請求項12のいずれか1項に記載の非水電解質二次電池用負極活物質。
  14.  前記ケイ素化合物のメディアン径は、0.5μm以上20μm以下であることを特徴とする請求項1から請求項13のいずれか1項に記載の非水電解質二次電池用負極活物質。
  15.  前記負極活物質粒子の少なくとも一部に、線状炭素成分を含有することを特徴とする請求項1から請求項14のいずれか1項に記載の非水電解質二次電池用負極活物質。
  16.  前記負極活物質粒子の少なくとも一部に、塊状炭素成分を含有することを特徴とする請求項1から請求項15のいずれか1項に記載の非水電解質二次電池用負極活物質。
  17.  請求項1から請求項16のいずれか1項に記載の非水電解質二次電池用負極活物質を負極活物質として含有し、前記炭素被膜に由来する充放電容量を有することを特徴とする非水電解質二次電池用負極。
  18.  前記負極活物質の少なくとも一部に、Liを含有することを特徴とする請求項17に記載の非水電解質二次電池用負極。
  19.  前記負極活物質として、さらに、炭素系活物質を含有することを特徴とする請求項17又は請求項18に記載の非水電解質二次電池用負極。
  20.  前記炭素系活物質と前記ケイ素化合物の総量に対する、前記ケイ素化合物の割合が5質量%以上のものであることを特徴とする請求項19に記載の非水電解質二次電池用負極。
  21.  前記炭素系活物質のメディアン径Fと前記ケイ素系活物質のメディアン径Gが、25≧F/G≧0.5の関係を満たすことを特徴とする請求項19又は請求項20に記載の非水電解質二次電池用負極。
  22.  前記炭素系活物質は、黒鉛材料であることを特徴とする請求項19から請求項21のいずれか1項に記載の非水電解質二次電池用負極。
  23.  請求項17から請求項22のいずれか1項に記載の非水電解質二次電池用負極を用いたことを特徴とする非水電解質二次電池。
  24.  負極活物質粒子を含む非水電解質二次電池用負極材の製造方法であって、
     SiO(0.5≦x≦1.6)で表されるケイ素化合物を作製する工程と、
     前記ケイ素化合物の表面を、少なくとも一部に炭素を含む物質から成る炭素被膜で被覆する工程と、
     前記炭素被膜が被覆されたケイ素化合物から、前記炭素被膜の密度が1.2g/cm以上1.9g/cm以下であり、かつ、窒素ガスによる吸脱着等温線測定により得られる吸脱着等温線が、IUPAC分類におけるII型又はIII型の特徴を有するものを選別する工程を有し、
     該選別した前記炭素被膜が被覆されたケイ素化合物を負極活物質粒子として、非水電解質二次電池用負極材を製造することを特徴とする非水電解質二次電池用負極材の製造方法。
PCT/JP2015/003831 2014-10-08 2015-07-30 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法 WO2016056155A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177009249A KR102413870B1 (ko) 2014-10-08 2015-07-30 비수전해질 이차 전지용 부극 활물질, 비수전해질 이차 전지용 부극, 비수전해질 이차 전지 및 비수전해질 이차 전지용 부극재의 제조 방법
EP15849280.1A EP3206244B8 (en) 2014-10-08 2015-07-30 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode material for non-aqueous electrolyte secondary battery
CN201580053966.4A CN106797026B (zh) 2014-10-08 2015-07-30 非水电解质二次电池、其负极、其负极活性物质及其负极材料的制造方法
US15/511,075 US10396353B2 (en) 2014-10-08 2015-07-30 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014207514A JP6312211B2 (ja) 2014-10-08 2014-10-08 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
JP2014-207514 2014-10-08

Publications (1)

Publication Number Publication Date
WO2016056155A1 true WO2016056155A1 (ja) 2016-04-14

Family

ID=55652803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003831 WO2016056155A1 (ja) 2014-10-08 2015-07-30 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法

Country Status (7)

Country Link
US (1) US10396353B2 (ja)
EP (1) EP3206244B8 (ja)
JP (1) JP6312211B2 (ja)
KR (1) KR102413870B1 (ja)
CN (1) CN106797026B (ja)
TW (1) TWI669848B (ja)
WO (1) WO2016056155A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183286A1 (ja) * 2016-04-18 2017-10-26 信越化学工業株式会社 負極活物質、混合負極活物質材料、負極活物質の製造方法
JP2019145292A (ja) * 2018-02-20 2019-08-29 Tdk株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446837B2 (en) * 2015-02-26 2019-10-15 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for a non-aqueous electrolyte secondary battery
JP6704327B2 (ja) * 2016-10-21 2020-06-03 信越化学工業株式会社 負極活物質、負極、リチウムイオン二次電池、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
EP3654423B1 (en) 2017-08-18 2021-11-24 LG Chem, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery comprising same
JP6917872B2 (ja) * 2017-11-22 2021-08-11 株式会社Gsユアサ 蓄電装置及びその使用方法
JP2021506059A (ja) * 2017-12-05 2021-02-18 デジュ・エレクトロニック・マテリアルズ・カンパニー・リミテッドDaejoo Electronic Materials Co., Ltd. 非水電解質二次電池用負極活物質、及びその製造方法
CN108427049A (zh) * 2018-03-09 2018-08-21 合肥国轩高科动力能源有限公司 一种基于晶粒尺寸判断锂离子电池材料性能的方法
WO2019182150A1 (ja) * 2018-03-22 2019-09-26 Tdk株式会社 負極及びリチウムイオン二次電池
CN113207315B (zh) * 2019-12-03 2024-05-10 宁德时代新能源科技股份有限公司 复合石墨材料、二次电池、装置及制备方法
CN111755684B (zh) * 2020-07-06 2022-05-24 马鞍山科达普锐能源科技有限公司 一种锂离子电池用硅碳负极材料及其制备方法
CN113066985A (zh) * 2021-03-29 2021-07-02 贝特瑞新材料集团股份有限公司 复合负极材料及其制备方法、锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047404A (ja) * 2002-05-17 2004-02-12 Shin Etsu Chem Co Ltd 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP2005025991A (ja) * 2003-06-30 2005-01-27 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2012523674A (ja) * 2009-04-13 2012-10-04 エルジー・ケム・リミテッド リチウム2次電池用負極活物質、その製造方法、及びこれを含むリチウム2次電池
JP2014175071A (ja) * 2013-03-06 2014-09-22 Sony Corp 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) * 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
US20030021571A1 (en) * 2001-07-25 2003-01-30 Motorola, Inc. Structure of and method for fabricating electro-optic devices utilizing a compliant substrate
TWI278429B (en) * 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP4367311B2 (ja) 2004-10-18 2009-11-18 ソニー株式会社 電池
JP4994634B2 (ja) 2004-11-11 2012-08-08 パナソニック株式会社 リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP4911990B2 (ja) 2006-02-27 2012-04-04 三洋電機株式会社 リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP5108355B2 (ja) 2007-03-30 2012-12-26 パナソニック株式会社 リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
KR100913177B1 (ko) 2007-09-17 2009-08-19 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이의 제조 방법
JP5196149B2 (ja) 2008-02-07 2013-05-15 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP5555978B2 (ja) 2008-02-28 2014-07-23 信越化学工業株式会社 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP5329858B2 (ja) 2008-07-10 2013-10-30 株式会社東芝 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
US20120007708A1 (en) * 2009-01-12 2012-01-12 Redemptive Technologies Limited Solid state rotary field electric power cogeneration unit
JP2010225494A (ja) * 2009-03-25 2010-10-07 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池
US20110135810A1 (en) 2009-12-03 2011-06-09 Marina Yakovleva Finely deposited lithium metal powder
JP5558312B2 (ja) * 2010-10-27 2014-07-23 信越化学工業株式会社 非水電解質二次電池用負極材の製造方法
WO2013054481A1 (ja) * 2011-10-12 2013-04-18 株式会社豊田自動織機 リチウムイオン二次電池、リチウムイオン二次電池用負極及びリチウムイオン二次電池用負極材料
IN2014MN00954A (ja) * 2011-10-24 2015-04-24 Lg Chemical Ltd
CN104737336A (zh) 2012-10-26 2015-06-24 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
US10446837B2 (en) 2015-02-26 2019-10-15 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for a non-aqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047404A (ja) * 2002-05-17 2004-02-12 Shin Etsu Chem Co Ltd 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP2005025991A (ja) * 2003-06-30 2005-01-27 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2012523674A (ja) * 2009-04-13 2012-10-04 エルジー・ケム・リミテッド リチウム2次電池用負極活物質、その製造方法、及びこれを含むリチウム2次電池
JP2014175071A (ja) * 2013-03-06 2014-09-22 Sony Corp 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3206244A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183286A1 (ja) * 2016-04-18 2017-10-26 信越化学工業株式会社 負極活物質、混合負極活物質材料、負極活物質の製造方法
JP2017195015A (ja) * 2016-04-18 2017-10-26 信越化学工業株式会社 負極活物質、混合負極活物質材料、負極活物質の製造方法
CN109075331A (zh) * 2016-04-18 2018-12-21 信越化学工业株式会社 负极活性物质、混合负极活性物质材料、负极活性物质的制备方法
US10862122B2 (en) 2016-04-18 2020-12-08 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, method for producing negative electrode active material
CN109075331B (zh) * 2016-04-18 2021-12-03 信越化学工业株式会社 负极活性物质、混合负极活性物质材料、负极活性物质的制备方法
JP2019145292A (ja) * 2018-02-20 2019-08-29 Tdk株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池

Also Published As

Publication number Publication date
KR102413870B1 (ko) 2022-06-28
CN106797026A (zh) 2017-05-31
JP2016076449A (ja) 2016-05-12
KR20170057309A (ko) 2017-05-24
US20170288216A1 (en) 2017-10-05
US10396353B2 (en) 2019-08-27
EP3206244B8 (en) 2022-03-02
EP3206244B1 (en) 2022-01-26
JP6312211B2 (ja) 2018-04-18
CN106797026B (zh) 2020-04-17
TWI669848B (zh) 2019-08-21
EP3206244A1 (en) 2017-08-16
TW201635621A (zh) 2016-10-01
EP3206244A4 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
TWI697148B (zh) 非水電解質二次電池用負極活性物質及非水電解質二次電池、以及非水電解質二次電池用負極材料之製造方法
JP6312211B2 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
JP6268293B2 (ja) 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
JP6448525B2 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
WO2015118846A1 (ja) 非水電解質二次電池用負極材、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池
WO2015107581A1 (ja) 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
JP6196183B2 (ja) 非水電解質二次電池用負極材及びその製造方法、並びに非水電解質二次電池用負極活物質層、非水電解質二次電池用負極、非水電解質二次電池
JP6239476B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP6445956B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池
JP2016207446A (ja) 非水電解質二次電池用負極活物質及びその製造方法、並びにその負極活物質を用いた非水電解質二次電池及び非水電解質二次電池用負極材の製造方法
JP2019029297A (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
WO2018008260A1 (ja) 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
WO2018221258A1 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP6215804B2 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに負極活物質粒子の製造方法
JP6680531B2 (ja) 負極活物質の製造方法及びリチウムイオン二次電池の製造方法
WO2018168196A1 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP6496864B2 (ja) 非水電解質二次電池用負極材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15511075

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015849280

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015849280

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177009249

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE