WO2016052641A1 - 赤外線透過性暗色インキ及びそれを用いた赤外線透過性シート - Google Patents

赤外線透過性暗色インキ及びそれを用いた赤外線透過性シート Download PDF

Info

Publication number
WO2016052641A1
WO2016052641A1 PCT/JP2015/077789 JP2015077789W WO2016052641A1 WO 2016052641 A1 WO2016052641 A1 WO 2016052641A1 JP 2015077789 W JP2015077789 W JP 2015077789W WO 2016052641 A1 WO2016052641 A1 WO 2016052641A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
pigment
layer
dark
transparent
Prior art date
Application number
PCT/JP2015/077789
Other languages
English (en)
French (fr)
Inventor
山中 直人
仁 西川
慶太 在原
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020227023395A priority Critical patent/KR102589206B1/ko
Priority to CN202110634869.1A priority patent/CN113380914B/zh
Priority to EP22178471.3A priority patent/EP4086319A1/en
Priority to CN202110634064.7A priority patent/CN113354975B/zh
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to EP15847770.3A priority patent/EP3202861B1/en
Priority to CN201580052911.1A priority patent/CN106795383B/zh
Priority to ES15847770T priority patent/ES2922547T3/es
Priority to KR1020237034568A priority patent/KR20230145546A/ko
Priority to US15/515,880 priority patent/US10407579B2/en
Priority to JP2016552129A priority patent/JP6565921B2/ja
Priority to KR1020177010156A priority patent/KR102256555B1/ko
Priority to KR1020217015185A priority patent/KR102419975B1/ko
Publication of WO2016052641A1 publication Critical patent/WO2016052641A1/ja
Priority to US16/519,852 priority patent/US11078373B2/en
Priority to US17/363,964 priority patent/US20210324212A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/05Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/009After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using thermal means, e.g. infrared radiation, heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B56/00Azo dyes containing other chromophoric systems
    • C09B56/14Phthalocyanine-azo dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/328Inkjet printing inks characterised by colouring agents characterised by dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to an infrared transparent dark ink. More specifically, the present invention relates to an infrared transmitting dark ink mainly used for an infrared reflecting sheet for a solar cell module.
  • a solar cell module that constitutes a solar cell has a configuration in which a transparent front substrate, a sealing material, a solar cell element, a sealing material, and a back surface protection sheet are laminated in order from the light receiving surface side. It has a function of generating electricity by being incident on the battery element.
  • an ink having a black appearance may be required from the viewpoint of design.
  • a method for darkening the appearance there is a method of providing an ink containing carbon black, but carbon black causes an increase in temperature by absorbing near infrared rays. It is not necessarily preferable.
  • the temperature of the solar cell module is raised during use, and as a result, the power generation efficiency of the solar cell module is lowered.
  • a black resin layer containing an organic pigment such as an oxazine pigment having infrared transparency in order to suppress heat generation in the dark color layer and further improve the power generation efficiency by making reflected light incident on the solar cell element.
  • a white resin layer having infrared reflectivity, a back surface protective layer having weather resistance, etc., and a back surface protection sheet for a solar cell module produced by adhering a plurality of these layers with an adhesive or the like has been developed. ing. (Patent Document 1).
  • An infrared transmissive dark ink containing an oxazine pigment and a curing agent becomes an infrared transmissive dark ink with high adhesion durability (Patent Document 1 [0057]).
  • the oxazine pigment transmits light having a wavelength of 700 to 800 nm
  • the oxazine pigment itself is a pigment that is close to purple rather than black.
  • the infrared transmissive dark ink in which the oxazine pigment is contained in the resin is close to purple, and is not necessarily preferable when a black appearance is required from the viewpoint of design.
  • An object of the present invention is to provide an excellent infrared transmissive dark color ink that can impart a dark appearance to a back surface protective sheet for a solar cell module and has a high near infrared transmittance. is there.
  • the present invention provides the following.
  • An infrared transmissive dark ink that transmits near infrared rays having a wavelength of 750 nm to 1500 nm, and includes a resin component and a pigment component, and the pigment component includes a brown pigment and a phthalocyanine pigment.
  • a dark pigment, and the brown pigment is benzimidazolone pigment, 4-[(2,5-dichlorophenyl) azo] -3-hydroxy-N- (2,5-dimethoxyphenyl) -2 Naphthalenecarboxamide, 1-[(4-nitrophenyl) azo] -2-naphthalenol, bis [3-hydroxy-4- (phenylazo) -2-naphthalenecarboxylic acid] copper salt, C.I.
  • the content of the dark pigment in the pigment component is 80% by mass or more, (1)
  • the transmittance of light at a wavelength of 425 nm in the light transmittance test of the infrared transparent dark ink is 5% to 30%, and the transmittance of light at a wavelength of 675 nm is 4% to 30%. Infrared transparent dark ink.
  • An infrared reflective sheet in which an infrared transmissive dark color layer is laminated on the surface of a reflective layer that reflects near infrared rays of 750 nm or more and 1500 nm or less, wherein the infrared transmissive dark color layer includes a base resin having a hydroxyl group and an isocyanate group And a pigment component, wherein the pigment component comprises a brown pigment and a dark pigment composed of a phthalocyanine pigment, and the brown pigment is a benzimidazolone pigment 4-[(2,5-dichlorophenyl) azo] -3-hydroxy-N- (2,5-dimethoxyphenyl) -2-naphthalenecarboxamide, 1-[(4-nitrophenyl) azo] -2-naphthalenol, Bis [3-hydroxy-4- (phenylazo) -2-naphthalenecarboxylic acid] copper salt, C.I.
  • An infrared reflective sheet in which an infrared transmissive dark color layer and a transparent resin layer are sequentially laminated on the surface of a reflective layer that reflects near infrared rays of 750 nm to 1500 nm, wherein the infrared transmissive dark color layer has a hydroxyl group.
  • Pigment Brown 7 N, N′-bis (2,4-dinitrophenyl) -3,3′-dimethoxy-1,1′-biphenyl-4,4′-diamine, 3,4,9,10-perylenetetracarboxylic sun Diimide, ⁇ 2,2 ′ (1H, 1′H) -binaphtho [2,1-b] thiophene-1,1′-dione and N, N ′-(10,15,16,17-tetrahydro-5,10 , 15,17-tetraoxo) -5H-dinaphtho [2,3-a: 2′3′-i] carbazole-4,9-diyl) bis (benzamide) at least one pigment selected from the group consisting of There is an infrared reflective sheet.
  • the infrared reflective sheet according to (6), wherein the coating amount in terms of solid content of the infrared transmitting dark ink forming the infrared transmitting dark color layer is 5 g / m 2 or more and 15 g / m 2 or less.
  • the color difference ⁇ E * ab between the color tone of the infrared transmission dark color layer and the color tone of carbon black measured under the conditions of a D65 light source and a 10 ° viewing angle is 10 or less (4)
  • a back surface protection sheet for a solar cell module which is formed by laminating a plurality of layers including at least a transparent adhesion layer that transmits all rays and a reflection layer that reflects near infrared rays of 750 nm to 1500 nm.
  • Two of the layers laminated between the transparent adhesion layer and the reflective layer are an infrared transmission dark color layer and a transparent adhesive layer, and the infrared transmission dark color layer includes a base resin having a hydroxyl group, A curing agent having an isocyanate group and a pigment component, and the pigment component contained in the infrared transmission dark color layer is 20 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the main resin.
  • the pigment component comprises a brown pigment and a dark pigment composed of a phthalocyanine pigment, and the brown pigment is a benzimidazolone pigment, 4-[(2,5- Chlorophenyl) azo] -3-hydroxy-N- (2,5-dimethoxyphenyl) -2-naphthalenecarboxamide, 1-[(4-nitrophenyl) azo] -2-naphthalenol, bis [3-hydroxy-4- ( Phenylazo) -2-naphthalenecarboxylic acid] copper salt, C.I. I.
  • Pigment Brown 7 N, N′-bis (2,4-dinitrophenyl) -3,3′-dimethoxy-1,1′-biphenyl-4,4′-diamine, 3,4,9,10-perylenetetracarboxylic sun Diimide, ⁇ 2,2 ′ (1H, 1′H) -binaphtho [2,1-b] thiophene-1,1′-dione and N, N ′-(10,15,16,17-tetrahydro-5,10 , 15,17-tetraoxo) -5H-dinaphtho [2,3-a: 2′3′-i] carbazole-4,9-diyl) bis (benzamide) at least one pigment selected from the group consisting of An infrared reflective sheet having an NCO / OH ratio of 1.0 to 2.0, which is a ratio of the NCO value of the curing agent to the OH value of the main resin.
  • An infrared transmission coating layer containing a dark organic pigment is laminated on a surface of the reflection layer opposite to the lamination surface of the infrared transmission dark color layer, and the infrared transmission coating layer has a thickness of 750 nm to 1500 nm.
  • the infrared reflective sheet according to any one of (4) to (12), which transmits near infrared rays.
  • a solar cell module obtained by laminating the infrared reflecting sheet according to any one of (4) to (13) on the non-light-receiving surface side of the solar cell element.
  • the infrared transparent dark ink of the present invention can suppress heat generation due to absorption of near infrared rays even in an environment where sunlight is irradiated.
  • the infrared reflective sheet of the present invention using the infrared transparent dark ink of the present invention as an infrared reflective sheet (back surface protective sheet) for solar cell modules sufficiently absorbs near infrared rays while sufficiently satisfying the design. It is an excellent infrared reflecting sheet that suppresses heat generation due to the above and contributes to an increase in power generation efficiency of the solar cell module when used as a back surface protection sheet for the solar cell module.
  • FIG. 4 is a graph showing infrared reflectances of Example 1 and Comparative Example 1.
  • FIG. 6 is a diagram showing color coordinates in Examples 2 to 4.
  • FIG. 6 is a diagram showing color coordinates of Comparative Examples 2 to 6.
  • FIG. 10 is a diagram showing color coordinates of Examples 13 to 15.
  • the infrared transparent dark ink of the present invention can be used for coloring an infrared back protective sheet for a solar cell module in a dark color from the viewpoint of design.
  • the infrared transparent dark ink of the present invention has high near infrared transmittance, it is possible to suppress heat generation due to absorption of near infrared.
  • the infrared transmissive dark color layer 60 with the infrared transmissive dark color ink of the present invention on the surface of a reflection sheet capable of reflecting near infrared rays, the near infrared rays can be reflected while making the appearance dark.
  • An infrared reflective sheet can be manufactured.
  • the infrared transparent dark ink of the present invention becomes an infrared transparent dark ink capable of bonding sheets together by containing a curing agent in the infrared transparent dark ink.
  • an infrared transmitting dark color layer can be formed by applying an infrared transmitting dark ink containing a curing agent on a sheet, laminating other sheets, and curing the infrared transmitting dark ink.
  • the infrared reflecting sheet 6 may be manufactured by sequentially laminating the infrared transmitting dark color layer 60 and the transparent adhesion layer 62 on the surface of the reflecting layer 61 that reflects near infrared rays.
  • it can also be used as a back surface protection sheet for solar cell modules by disposing the infrared reflecting sheet 6 of the present invention on the non-light receiving surface side of the solar cell element.
  • the infrared reflecting sheet 6 is required to be partially colored in order to give a pattern such as patterning without making the entire surface of the infrared reflecting sheet 6 dark.
  • the back surface protection sheet is excellent in design and maintains high power generation efficiency as in the past. It becomes the back surface protection sheet for the solar cell module which can be done.
  • the infrared reflecting sheet 6 of the embodiment of FIG. 6 will be described later.
  • the infrared reflecting sheet is formed by curing an infrared transparent dark ink applied on the upper surface of the reflective layer 61 or the lower surface of the transparent adhesion layer 62 facing the upper surface after lamination. Can do.
  • the infrared transmitting dark color layer 60 By forming the infrared transmitting dark color layer 60 at a position between the reflective layer 61 and the transparent adhesion layer 62, the infrared reflective sheet 6 can be made preferable in terms of design.
  • the infrared transmitting dark ink forming the infrared transmitting dark color layer 60 has an appearance of black or a dark color close thereto, that is, has a property of absorbing visible light and transmitting near infrared light. is important.
  • near-infrared is the region closest to the visible region in the infrared region, but the detailed wavelength range varies depending on the literature.
  • the near infrared ray in the present invention refers to an electromagnetic wave having a wavelength range of 750 nm to 2200 nm. Among them, the wavelength that promotes heat storage is 1000 nm or more and 1500 nm or less.
  • an infrared transparent dark ink having a characteristic of transmitting light having a wavelength of 750 nm to 1500 nm in a cured state is used.
  • “transmitting light having a wavelength of 750 nm to 1500 nm” means that 15% or more of light having a wavelength of 750 nm to 1500 nm is transmitted in the infrared transmitting dark color layer 60, preferably 50% or more, and more preferably 60% or more. It means to do.
  • the infrared transmitting dark ink used for the infrared transmitting dark color layer 60 can be used for the purpose of bonding sheets together.
  • the infrared transparent dark ink is preferably a two-component type comprising a main agent and a curing agent.
  • a solvent is suitably contained as a composition from a viewpoint of applicability
  • the pigment component contained in the infrared transparent dark ink of the present invention contains a dark pigment composed of a brown pigment and a phthalocyanine pigment described in detail below.
  • the infrared transmitting dark ink of the present invention containing a pigment component containing such a dark pigment is an excellent ink having a dark appearance and high infrared transmittance.
  • the brown pigment means a benzimidazolone pigment, 4-[(2,5-dichlorophenyl) azo] -3-hydroxy-N- (2,5-dimethoxyphenyl) -2-naphthalenecarboxamide.
  • the brown pigment is preferably a benzimidazolone pigment from the viewpoint of the dispersibility of the pigment in the adhesive layer, the adhesiveness of the adhesive layer, and the like.
  • the benzimidazolone pigment is a pigment having a benzimidazolone skeleton represented by the following general formula (1).
  • the primary particle size of the benzimidazolone pigment is preferably 0.01 ⁇ m or more and 0.20 ⁇ m or less. By setting the primary particle size of the benzimidazolone pigment in such a range, the dispersibility of the pigment in the ink can be improved.
  • brown pigments other than benzimidazolone pigments will be described.
  • 4-[(2,5-dichlorophenyl) azo] -3-hydroxy-N- (2,5-dimethoxyphenyl) -2-naphthalenecarboxamide is specifically exemplified by C.I. I. Pigment Brown 1 etc. are mentioned.
  • 1-[(4-Nitrophenyl) azo] -2-naphthalenol is specifically exemplified by C.I. I. Pigment Brown 2 and the like.
  • the bis [3-hydroxy-4- (phenylazo) -2-naphthalenecarboxylic acid] copper salt is specifically exemplified by C.I. I. Pigment Brown 5 etc. are mentioned.
  • N, N'-bis (2,4-dinitrophenyl) -3,3'-dimethoxy-1,1'-biphenyl-4,4'-diamine is specifically exemplified by C.I. I. PigmentBrown22 etc. are mentioned.
  • C.I. I. PigmentBrown22 etc. are mentioned.
  • 3,4,9,10-perylenetetracarboxylic acid diimide is C.I. I. PigmentBrown26 etc. are mentioned.
  • ⁇ 2,2 ′ (1H, 1′H) -binaphtho [2,1-b] thiophene-1,1′-dione is specifically exemplified by C.I. I. Pigment Brown 27 and the like.
  • N, N ′-(10,15,16,17-tetrahydro-5,10,15,17-tetraoxo-5H-dinaphtho [2,3-a: 2′3′-i] carbazole-4,9-diyl ) Bis (benzamide) is specifically C.I. I. PigmentBrown28 etc. are mentioned. In addition to the brown pigment, C.I. I. Pigment Brown 7 may be used.
  • a phthalocyanine pigment is a pigment having a phthalocyanine skeleton, and includes a phthalocyanine coordinated with various metals. Specifically, C.I. I. PigmentGreen 7, C.I. I. PigmentGreen 36, C.I. I. Pigment Green 37, C.I. I. PigmentBlue 16, C.I. I. PigmentBlue 75, or C.I. I. Pigment Blue 15 and the like can be mentioned, but the invention is not limited to this. It is preferable to use an amorphous phthalocyanine pigment and a blue pigment.
  • the primary particle size of the phthalocyanine pigment is preferably 0.15 ⁇ m or more and 0.20 ⁇ m or less. By setting it as such a range, the dispersibility of the phthalocyanine pigment in an ink can be improved.
  • the content of the brown pigment of the infrared transmissive dark ink is 43 parts by mass or more and 233 parts by mass or less with respect to 100 parts by mass of the phthalocyanine pigment (the content ratio of the brown pigment and the phthalocyanine pigment is 30 by mass). : 70 to 70:30), preferably 66 parts by weight or more and 150 parts by weight or less (the content ratio of the brown pigment to the phthalocyanine pigment is in the range of 40:60 to 60:40 by mass ratio) ) Is more preferable.
  • the infrared transparent dark ink can be preferable in terms of design and infrared transmission.
  • the content of the brown pigment in the infrared transparent dark ink can be specified by the light transmittance of a specific wavelength in the light transmittance test.
  • the content of brown pigments such as benzimidazolone pigments and the content of phthalocyanine pigments are included in infrared transparent dark ink.
  • the brown pigment such as benzimidazolone pigment and the phthalocyanine pigment are 80% by mass or more in the total amount of the pigment component, and the transmittance of light having a wavelength of 425 nm in the light transmittance test of the infrared transmissive dark ink is 5%.
  • the transmittance of light having a wavelength of 675 nm is preferably 4% or more and 20% or less.
  • the phthalocyanine pigment has a property of transmitting a certain amount of light having a wavelength of 425 nm and not transmitting light having a wavelength of 675 nm.
  • a brown pigment such as a benzimidazolone pigment has a property of transmitting a certain amount of light having a wavelength of 675 nm, and has a property of not transmitting light having a wavelength of 425 nm.
  • the content of brown pigments such as benzimidazolone pigments and the content of phthalocyanine pigments
  • the content ratio with the amount can be specified.
  • permeability of said infrared rays transparent dark ink can be measured with the following method, for example.
  • the infrared transparent dark ink 5 g / m 2 of hardening agent is contained on a white PET (188 [mu] m) was gravure coating, a polyethylene (60 [mu] m) was laminated thereon, 45 ° C. 55 °C or more or less, the aging process of 168 hours
  • An infrared reflecting sheet is prepared by overheating and curing.
  • dissolved the infrared transmission dark color layer (infrared transmission dark ink) using methyl ethyl ketone The concentration is about 0.01 g or more and 0.5 or less for pigment with respect to 100 g of methyl ethyl ketone.
  • a measurement sample is injected into a quartz glass cell, and a spectrophotometer (for example, UV spectrophotometer “V-670” manufactured by JASCO Corporation or “U-4100” manufactured by Hitachi High-Technologies Corporation) is used with a wavelength of 300 nm to By measuring the transmittance (%) of light at 1200 nm and determining the transmittance of light at a wavelength of 425 nm and light at a wavelength of 675 nm, the content of the brown pigment in the infrared transmissive dark ink can be estimated.
  • a spectrophotometer for example, UV spectrophotometer “V-670” manufactured by JASCO Corporation or “U-4100” manufactured by Hitachi High-Technologies Corporation
  • permeability of the infrared rays transparent dark layer formed with said infrared rays transparent dark ink The infrared transparent dark ink 5 g / m 2 of hardening agent is contained on the fluorine film is transparent substrate (100 [mu] m) and gravure coating, and laminating the same fluorine film (100 [mu] m) thereon, was dry lamination
  • a sample for measuring transmittance is prepared by aging for 45 hours to 45 ° C. and 168 hours, followed by overheating.
  • a measurement sample was injected into a quartz glass cell, and a wavelength of 300 nm to 1200 nm was measured with a spectrophotometer (for example, UV spectrophotometer “V-670” manufactured by JASCO Corporation or “U-4100” manufactured by Hitachi High-Technologies Corporation).
  • the light transmittance (%) is measured, and the transmittance of light having a wavelength of 425 nm and that of light having a wavelength of 675 nm are respectively determined.
  • the pigment component is contained in the infrared transmitting dark ink of the present invention. It is preferable that the infrared ray transmitting dark ink contains 20 to 40 parts by mass of the pigment component with respect to 100 parts by mass of the resin component.
  • the infrared transparent dark ink contains a pigment component containing an organic pigment such as an oxazine pigment
  • the content of the pigment component is 30 parts by mass or more, the adhesion of the curing agent is improved. It is known that the adhesiveness of the infrared transmitting dark color layer 60 is lowered due to an adverse effect. For this reason, it was thought that it was difficult to use infrared rays transparent dark ink especially as a use which adhere
  • brown pigments and phthalocyanine pigments have higher dispersibility than other pigments and have a small effect on the adhesiveness of the curing agent. Therefore, even when the ratio of the pigment component content is 30 parts by mass or more with respect to 100 parts by mass of the resin component, the decrease in the adhesiveness and adhesion durability of the infrared transmitting dark color layer 60 is suppressed to a very small range. be able to. As will be described later, the infrared transmissive dark ink can stabilize the color tone of the infrared transmissive dark color layer 60 with a smaller coating amount by increasing the blending ratio of the pigment component.
  • the infrared transmissive dark color layer 60 formed by the infrared transmissive dark ink of the present invention has adhesiveness and The infrared transmission dark color layer 60 having adhesion stability can be obtained.
  • the infrared transmissive dark ink of the present invention may contain a curing agent as necessary.
  • the infrared transmitting dark layer 60 having good adhesion to the resin sheet can be formed by the infrared transmitting dark ink of the present invention containing the curing agent.
  • attach sheets can be formed by adjusting content of the hardening
  • the main agent and the curing agent will be described as one embodiment that can constitute the resin component contained in the infrared transmissive dark ink.
  • the resin component regarding this invention is not necessarily limited to the following embodiment.
  • a polyurethane / polycarbonate diol system containing a mixture of polyurethane diol and aliphatic polycarbonate diol can be used.
  • Both the polyurethane diol and the aliphatic polycarbonate diol constituting the main agent are polyols having a hydroxyl group, and react with a curing agent having an isocyanate group to constitute an adhesive layer.
  • the adhesiveness and weather resistance of the infrared transmission dark color layer 60 can be improved by making the main ingredient a mixture containing a specific amount of a specific polyurethane diol and an aliphatic polycarbonate diol.
  • the polyurethane diol that can be used as the main component is a polyurethane having a urethane structure as its repeating unit and having hydroxyl groups at both ends.
  • the number average molecular weight of the polyurethane diol is preferably 7000 or more and 13000 or less. When it is 7000 or more, it is preferable because the reactivity with the curing agent is good, and when it is 13000 or less, dissolution in a solvent is improved, which is preferable.
  • the hydroxyl value of the polyurethane diol is preferably in the range of 10 mgKOH / g to 50 mgKOH / g.
  • the hydroxyl value of the polyurethane diol is 10 mg KOH / g or more, most of the added curing agent component reacts with the hydroxyl group contained in the main component, and when it is 50 mg KOH / g or less, the reaction with the curing agent is more likely. This is preferable because it proceeds.
  • Polyurethane diol is characterized by being obtained by reacting aliphatic polycarbonate diol, 1,6 hexanediol and isophorone diisocyanate as a main ingredient component of an adhesive in order to improve its adhesion and weather resistance.
  • aliphatic polycarbonate diol, 1,6 hexanediol and isophorone diisocyanate which are components of the polyurethane diol, will be described.
  • Aliphatic polycarbonate diol is a constituent of polyurethane diol that can react with the following isophorone diisocyanate.
  • the aliphatic polycarbonate diol has a carbonate structure as a repeating unit and has hydroxyl groups at both ends. The hydroxyl groups at both ends can be cured with an isocyanate group.
  • the aliphatic polycarbonate diol can be produced by a method using an alkylene carbonate and a diol as raw materials or a method using a dialkyl carbonate or a diaryl carbonate and a diol.
  • the aliphatic polycarbonate diol used in the present embodiment can be produced by appropriately selecting the above production method according to the performance required for the main component.
  • alkylene carbonate that can be used for the production of the aliphatic polycarbonate diol
  • alkylene carbonate diol examples include ethylene carbonate, trimethylene carbonate, 1,2-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,2-pentylene carbonate, and the like. Is mentioned.
  • dialkyl carbonate examples include dimethyl carbonate, diethyl carbonate, and dipropyl carbonate.
  • diaryl carbonate include diphenyl carbonate.
  • Diols having no side chain such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, Diols having side chains such as 2-methyl-1,8-octanediol, neopentyl glycol, 2-ethyl-1,6-hexanediol, and cyclic diols such as 1,3-cyclohexanediol and 1,4-cyclohexanediol Can be mentioned.
  • One type of diol may be used, or a copolymerized polycarbonate diol using two or more types of diol as raw materials may be used.
  • the number average molecular weight of the aliphatic polycarbonate diol is preferably 1000 or more and 2000 or less. When it is 1000 or more, it is preferable because a curing reaction with diisocyanate easily occurs, and when it is 2000 or less, solubility in a solvent as an adhesive component is improved. In the production of polycarbonate diol, the reactivity of the monomer is high and the molecular weight is easily increased. Therefore, in order to obtain a polycarbonate diol having a predetermined number average molecular weight, it is necessary to control the reaction rate and the like.
  • aliphatic polycarbonate diol can also be used.
  • an aliphatic polycarbonate diol having a number average molecular weight of 1000 manufactured by Asahi Kasei Chemicals, trade name “Duranol T5651”
  • number average molecular weight 2000 aliphatic polycarbonate diol manufactured by Asahi Kasei Chemicals Corporation, trade name “Duranol T5662”
  • Duranol T5662 number average molecular weight 2000 aliphatic polycarbonate diol
  • 1,6 hexanediol is an aliphatic diol, and can react with the following isophorone diisocyanate to form a polyurethane diol.
  • 1,6 hexanediol is liquid at room temperature and can be dissolved in a solvent as an adhesive component.
  • Polyester diol can be used together with 1,6 hexanediol.
  • Polyester diol is a polyol having two or more hydroxyl groups like 1,6 hexanediol, but it can also be an ester with a carboxylic acid having a bulky aromatic ring in its basic skeleton, so it reacts with isophorone diisocyanate.
  • the polyurethane diol obtained in this way can be imparted with an excellent curing speed and cohesive force.
  • polyester diols include aromatic polyester diols produced using isophthalic acid.
  • the polyester diol can be produced by adopting a predetermined combination of a carboxylic acid compound and a diol according to a conventional method.
  • the number average molecular weight of the polyester diol is preferably 3000 or more and 4000 or less.
  • the reactivity with the curing agent is improved, and when the number average molecular weight of the polyester diol is 4000 or less, the solubility in a solvent is improved.
  • Isophorone diisocyanate is a constituent of polyurethane diol and is an alicyclic polyisocyanate. Isophorone diisocyanate reacts with the hydroxyl group of the aliphatic polycarbonate diol, 1,6 hexanediol or polyester diol to form a polyurethane diol which is a main component.
  • the above-described aliphatic polycarbonate diol, aliphatic diol and isophorone diisocyanate are dissolved in a solvent, mixed and heated to reflux to obtain a solution of a polyurethane diol as a main component.
  • the hydroxyl groups at both ends of each of the aliphatic polycarbonate diol and the aliphatic diol react with the isocyanate group of isophorone diisocyanate to form a urethane bond and cure.
  • the blending amount of 1,6 hexanediol in the reaction system for producing the main component polyurethane diol is preferably 5 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the aliphatic polycarbonate diol. The following is more preferable.
  • the amount of 1,6 hexanediol is 5 parts by mass or more, a durable adhesive component can be obtained, and when it is 15 parts by mass or less, solubility in a solvent is improved.
  • the compounding quantity of the polyester diol in the reaction system which manufactures polyurethane diol is 50 to 100 mass parts with respect to 100 mass parts of aliphatic polycarbonate diol.
  • the blending amount of the polyester diol is 50 parts by mass or more, a durable adhesive component can be obtained, and when it is 100 parts by mass or less, the solubility in a solvent is improved.
  • a solvent which can be used when reacting aliphatic polycarbonate diol, aliphatic diol and isophorone diisocyanate these compounds can be dissolved, and the solvent is not particularly limited as long as it does not react with the solvent.
  • carboxylic acid ester type solvents such as ethyl acetate can be mentioned.
  • the aliphatic polycarbonate diol which is the main component, reacts with the curing agent component having an isocyanate group.
  • the same aliphatic polycarbonate diol as used in the production of the polyurethane diol can be used.
  • the main component is a mixture of the above-described polyurethane diol and aliphatic polycarbonate diol.
  • the mass ratio of the polyurethane diol and the aliphatic polycarbonate diol in the mixture is preferably 10 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polyurethane diol.
  • the amount of the aliphatic polycarbonate diol is 10 parts by mass or more, the adhesion is suitably reduced, and when it is 20 parts by mass or less, the reaction between the polyurethane diol and the curing agent is likely to occur.
  • a tackifier In addition to the main component polyurethane diol and aliphatic polycarbonate diol, if necessary, a tackifier, a stabilizer, a filler, a plasticizer, a softening point improver, a catalyst and the like are added to the main agent.
  • tackifiers include rosin resins and terpene resins.
  • stabilizer include an antioxidant and an ultraviolet ray inhibitor.
  • the filler include inorganic fillers.
  • Examples of the curing agent that can be used in the infrared transmissive dark ink include those having a polyisocyanate compound as a main component.
  • the polyisocyanate compound is a compound having two or more isocyanate groups in one molecule, and the isocyanate group reacts with a hydroxyl group in the polyurethane diol compound as the main agent to crosslink the polyurethane diol compound.
  • Such a polyisocyanate compound is not particularly limited as long as it can crosslink the main polyurethane diol compound.
  • HDI polyurethane diisocyanate, hexamethylene diisocyanate
  • examples thereof include isocyanurate-modified isophorone diisocyanate (hereinafter, “nurate-modified IPDI”).
  • a mixture of HDI and nurate-modified IPDI is preferable from the viewpoint of improving the reactivity with respect to hydroxyl groups.
  • the curing agent is a mixture of HDI and nurate-modified IPDI, it is preferable to use HDI and nurate-modified IPDI in the range of 70:30 to 50:50 (mass ratio).
  • the blending ratio of the main agent and the curing agent is (isocyanate group derived from polyisocyanate compound) / (polyurethane diol)
  • the ratio of the hydroxyl group derived from the compound is preferably in the range of 1.0 to 3.5, and more preferably in the range of 1.2 to 3.0.
  • silane coupling agents In addition to the above, if necessary, a silane coupling agent, a tackifier, a stabilizer, a filler, a plasticizer, a softening point improver, a catalyst, and the like can be mixed as additives.
  • the silane coupling agent include silane monomers such as methyltrimethoxysilane and methyltriethoxysilane, vinylsilanes such as vinyltriethoxysilane and vinyltrimethoxysilane, 3-methacryloxypropylethoxysilane, and 3-methacryloxypropylmethoxy.
  • epoxysilanes such as methacrylic silanes such as silane, 3-glycidoxypropyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • tackifiers include rosin resins and terpene resins.
  • stabilizer include an antioxidant and an ultraviolet ray inhibitor.
  • filler include inorganic fillers.
  • the addition amount of the said silane coupling agent is 1 mass% or more and 3 mass% or less of silane coupling agents with respect to 100 mass parts in total of the main ingredient and hardening
  • the addition amount of the silane coupling agent is 1% by mass or more, the adhesion is good, and when the addition amount is 3% by mass or less, the durability is improved.
  • solvent component it is preferable to add a solvent component as a composition of the above infrared transmissive dark ink in order to obtain good coating properties and handling suitability.
  • a solvent component include, but are not limited to, carboxylic acid esters such as ethyl acetate, methyl acetate, and methyl propionate.
  • carboxylic acid esters such as ethyl acetate, methyl acetate, and methyl propionate.
  • curing agent are each selected independently, and may be the same or different.
  • composition of the infrared transmissive dark ink is not limited to this, and may be any composition form such as an aqueous type, a solution type, an emulsion type, and a dispersion type.
  • the properties may be any of film / sheet, powder, solid, adhesive and the like.
  • the bonding mechanism may be any form such as a chemical reaction type, a solvent volatilization type, a heat melting type, and a hot pressure type.
  • An infrared reflective sheet can be produced by using the infrared transmissive dark ink.
  • Examples of the infrared reflection sheet include a laminate in which a transparent adhesion layer 62, an infrared transmission dark color layer 60, and a reflection layer 61 are stacked as in the infrared reflection sheet 6 of FIG.
  • the infrared reflective sheet 6 of FIG. 2 is used as a back surface protection sheet for solar cell modules, the use application of the infrared reflective sheet of this invention is not necessarily limited to the back surface protection sheet for solar cell modules. .
  • each layer constituting the infrared reflecting sheet will be described.
  • the infrared transmitting dark color layer 60 relating to the present embodiment is a layer containing a main resin having a hydroxyl group, a curing agent having an isocyanate group, and a pigment component.
  • the infrared transmitting dark color layer 60 relating to the present embodiment contains a main resin having a hydroxyl group and a curing agent having an isocyanate group, and has a function of bonding sheets together.
  • the infrared transmitting dark color layer 60 relating to the present embodiment is formed by applying or laminating the infrared transmitting dark ink containing the curing agent described above on the reflective layer 61 and / or the transparent adhesion layer 62 and drying and curing it. be able to.
  • a coating method it can be applied by a coating method such as a roll coating method, a gravure roll coating method, a kiss coating method, or the like, or a printing method.
  • the coating amount needs to be 10 g / m 2 or more.
  • the range is from 5 g / m 2 to 15 g / m 2 , preferably from 5 g / m 2 to 7 g / m 2 . They can be made compatible with the application amount.
  • the pigment component is 20 parts by mass or more and 40 parts by mass or less, preferably 30 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the resin component. It is because it can be made. This also increases the yield of the infrared reflecting sheet manufactured using the infrared transmitting dark ink of the present invention and improves the productivity.
  • the thickness of the infrared transmitting dark color layer 60 is preferably in the range of 5 ⁇ m to 15 ⁇ m, and more preferably in the range of 5 ⁇ m to 7 ⁇ m.
  • the reflective layer 61 is a white resin layer that includes a resin sheet containing a white pigment or a resin sheet on which a coat layer (coating film or printed film) containing a white pigment is formed, and reflects near infrared rays.
  • the reflective layer 61 has a function of reflecting near infrared light transmitted through the infrared transmitting dark color layer 60. Therefore, for example, when the infrared reflective sheet 6 of the present embodiment is used as a back surface protection sheet for a solar cell module, the infrared reflective sheet 6 of the present embodiment is sufficient for improving the power generation efficiency of the solar cell module 1. It becomes the infrared reflective sheet (back surface protection sheet) 6 which can contribute to.
  • the term “resin sheet” is used as the name of a resin processed into a sheet shape, but this term is used as a concept including a resin film.
  • Examples of the resin sheet constituting the reflective layer 61 include fluorine resins such as PTFE (polytetrafluoroethylene) and ETFE (tetrafluoroethylene / ethylene copolymer), poly (meth) acrylic resins, and PET (polyethylene terephthalate).
  • a resin sheet such as a polyester-based resin can be preferably used.
  • the reflective layer 61 is arrange
  • the reflective layer 61 needs to have a function of reflecting near infrared rays. Therefore, it is preferable to use a white resin layer containing a white pigment having a particle size of 0.5 ⁇ m or more and 1.5 ⁇ m or less, and more preferably a particle size of 0.8 ⁇ m or more and 1.2 ⁇ m or less.
  • the white pigment particles having a particle size of 0.8 ⁇ m or more and 1.2 ⁇ m or less are preferably 80% by mass or more of the particles of all white pigments.
  • the infrared reflective sheet of this invention when used as a back surface protection sheet for solar cell modules, the said white pigment contributes to the power generation efficiency improvement of a solar cell module.
  • Reflecting near infrared rays means a function in which the integrated reflectance is 85% or more in a wavelength region of about 750 nm to 2200 nm.
  • a typical example of a white pigment having a particle size of 0.5 ⁇ m or more and 1.5 ⁇ m or less is titanium oxide.
  • the white pigment it is preferable to use titanium oxide as the white pigment.
  • the titanium oxide includes surface-treated titanium oxide.
  • the white pigment in the particle size range is titanium oxide, the production can be performed as follows.
  • a hydrous titanium oxide is used as a raw material, and 0.1 mass% or more and 0.5 mass% or less of an aluminum compound in terms of aluminum oxide and 0.1 mass% or more and 0.5 mass% or less in terms of potassium carbonate based on the titanium oxide content.
  • Examples of the method for producing the reflective layer 61 include a method of forming a coat layer containing a white pigment on a resin sheet, and a method of kneading a white pigment in the resin sheet. Any of them can be produced by a conventionally known method without any limitation.
  • a coating layer (coating film or printing film) containing a white pigment is formed on a resin sheet
  • a normal paint or ink vehicle is the main component, and a white pigment is added thereto.
  • an ultraviolet absorber, a crosslinking agent, and other additives are optionally added to prepare a paint or ink composition, and a normal coating method or printing method is used on the surface of the base film.
  • the coating film or the printing film can be formed by coating or printing.
  • a resin constituting the resin sheet is a main component, and a white pigment is added thereto. Furthermore, if necessary, other additives are optionally added to adjust the resin composition, for example, a sheet formed by kneading a white pigment by a film forming method such as an extrusion method or a T-die method. Can be manufactured.
  • the transparent adhesive layer 62 is a layer that transmits near infrared light and is disposed as the outermost layer of the infrared reflecting sheet 6.
  • the transparent adhesive layer 62 is a layer having adhesiveness with other resin layers, such as an ethylene-vinyl acetate alcohol copolymer resin (EVA resin) or a resin layer containing a polyolefin such as polyethylene. It is a layer which has property. Therefore, the back sealing material layer 5 and the transparent adhesion layer 62 can be laminated and adhered as in the transparent adhesion layer 62 of FIG.
  • the transparent adhesive layer 62 relating to the present embodiment is required to transmit near infrared rays reflected by the reflective layer 61 and to be transparent or translucent from the request for design.
  • the transparent adhesive layer 62 is preferably made of a polyolefin resin such as polyethylene resin or polypropylene resin, or polyethylene terephthalate (PET).
  • a weathering layer made of a fluorine-based resin, polyethylene terephthalate (PET), or the like is provided on the outermost side of the infrared reflection sheet 6 on the opposite side of the laminated surface of the transparent adhesion layer 62 of the reflection layer 61. Furthermore, it may be laminated. In this case, the weather-resistant layer may be dark for improving the design. Or you may provide the other transparent reinforcement layer (not shown) for increasing the intensity
  • an infrared transmission coating layer containing a dark organic pigment may be further laminated on the surface of the reflection layer 61 opposite to the lamination surface of the infrared transmission dark color layer 60.
  • the infrared transmission coating layer is a layer that transmits near infrared rays having a wavelength of 750 nm to 1500 nm, similarly to the infrared transmission dark color layer 60, thereby generating heat due to absorption of near infrared rays having a wavelength of 750 nm to 1500 nm. Can be suppressed.
  • dark organic pigments contained in the infrared transmission coating layer include oxazine, benzimidazolone, pyrrole, quinacridone, azo, perylene, dioxane, isoindolinone, and induslen. Quinophthalone, perinone, phthalocyanine, and the like.
  • organic pigments based on oxazine or benzimidazolone pigments 4-[(2,5-dichlorophenyl) azo] -3-hydroxy-N- (2,5-dimethoxyphenyl) -2-naphthalene Carboxamide, 1-[(4-nitrophenyl) azo] -2-naphthalenol, bis [3-hydroxy-4- (phenylazo) -2-naphthalenecarboxylic acid] copper salt, C.I. I.
  • Pigment Brown 7 N, N′-bis (2,4-dinitrophenyl) -3,3′-dimethoxy-1,1′-biphenyl-4,4′-diamine, 3,4,9,10-perylenetetracarboxylic acid Diimide, ⁇ 2,2 ′ (1H, 1′H) -binaphtho [2,1-b] thiophene-1,1′-dione and N, N ′-(10,15,16,17-tetrahydro-5,10 , 15,17-tetraoxo-5H-dinaphtho [2,3-a: 2′3′-i] carbazole-4,9-diyl) bis (benzamide), and at least one pigment selected from the group consisting of A dark pigment composed of a phthalocyanine pigment can be preferably used.
  • a dark film or dark color sheet having a high design property similar to the infrared transmissive dark color layer 60 can be produced.
  • these dark color films or dark color sheets can be used as the infrared transmission dark color layer in the multilayer sheet.
  • the content of the brown pigment in the pigment component is 43 parts by mass or more and 233 parts by mass or less (100 parts by mass with respect to 100 parts by mass of the phthalocyanine pigment).
  • the content ratio of the brown pigment to the phthalocyanine pigment is in the range of 30:70 to 70:30 by mass ratio, more preferably 66 parts by mass or more and 150 parts by mass or less (the content of the brown pigment and the phthalocyanine pigment)
  • the mass ratio is preferably 40:60 to 60:40 in terms of mass ratio.
  • the thermoplastic resin constituting the base film is the main component
  • an ultraviolet absorber a plasticizer, a light stabilizer, an antioxidant, an antistatic agent, a crosslinking agent, a curing agent, a filler, a lubricant, a reinforcing agent, a reinforcing agent,
  • additives such as flame retardants, flame retardants, foaming agents, fungicides, colorants such as pigments and dyes, and other additives are optionally added.
  • thermoplastic resin composition thus adjusted can be used, for example, by using an extruder, a T-die extruder, a cast molding machine, an inflation molding machine, etc., an extrusion method, a T-die method, a cast molding method, an inflation method, etc.
  • the dark color film or dark color sheet can be produced by a film forming method such as the above. Furthermore, if necessary, these films or sheets can be produced by stretching in a uniaxial or biaxial direction using, for example, a tenter system or a tubular system.
  • an adhesive layer for adhering each layer may be formed at a plurality of positions.
  • an adhesive layer on the transparent adhesive layer side of the reflective layer 61 among the plurality of adhesive layers By setting it as the infrared transmission dark layer 60, it can be set as the infrared reflective sheet provided with sufficient weather resistance and durability, making an external appearance dark color.
  • the infrared reflective sheet of this embodiment is diverted to the back surface protection sheet for solar cell modules, it can be set as the back surface protection sheet which can fully contribute to the improvement of the power generation efficiency of a solar cell module.
  • Such an infrared reflective sheet (back surface protective sheet) is also within the scope of the present invention.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of the layer structure of a solar cell module.
  • the solar cell module 1 constituting the solar cell includes a transparent front substrate 2, a front sealing material layer 3, a solar cell element 4, a back sealing material layer 5, from the light receiving surface side of the incident light 7. It is the structure by which the back surface protection sheet (infrared reflective sheet) 6 was laminated
  • the back surface protection sheet 6 includes an infrared transmission dark color layer 60, a reflection layer 61, and a transparent adhesion layer 62.
  • the reflective layer 61 and the transparent adhesive layer 62 are bonded via the infrared transmitting dark color layer 60.
  • the reflective layer 61 is disposed on the outermost layer side of the module
  • the transparent adhesion layer 62 is disposed on the inner layer side of the module, that is, on the back sealing material layer 5 side.
  • the sealing materials for solar cell modules are generally transparent or translucent. Therefore, when the solar cell module 1 is viewed from the transparent front substrate 2 side, the color of the infrared transmitting dark color layer 60 can be seen through the transparent adhesion layer 62 for the gap portion where the solar cell element 4 is not disposed. .
  • the solar cell element 4 often has a black surface or a dark color close thereto. In particular, for thin-film solar cell elements, for which demand is increasing in recent years, the surface of most products is black or a dark color close thereto.
  • the back surface protective sheet 6 has the infrared transmitting dark color layer 60 of black or a dark color close thereto, the appearance of many solar cell modules, particularly thin-film solar cell modules equipped with thin-film solar cell elements, is black or it. It can be unified with a near dark color, which is preferable in terms of design.
  • the back surface protection sheet (infrared reflective sheet) 6 in black or a dark color close thereto, for example, an infrared transmission dark color layer measured according to JIS-Z8722 under the conditions of a D65 light source and a 10 ° viewing angle.
  • the color difference ⁇ E * ab between the color tone of 60 and the color tone of carbon black is preferably 10 or less, and more preferably 7 or less.
  • the solar cell element 4 In the back surface protective sheet 6, sunlight that has not been absorbed by the solar cell element 4 enters from the transparent adhesive layer 62 side. Most of the near infrared rays contained in the incident light passes through the infrared transmission dark color layer 60 without being absorbed, and thus reaches the reflection layer 61. Since the reflective layer 61 reflects near infrared rays, most of the infrared rays that reach the reflective layer 61 are reflected back to the infrared transmitting dark color layer 60. The reflected infrared light passes through the infrared transmitting dark color layer 60 and is further reflected and absorbed by the solar cell element 4.
  • the infrared transmitting dark color layer 60 does not absorb infrared rays, heat generation due to absorption of near infrared rays can be suppressed. As a result, it is possible to prevent a decrease in power generation efficiency due to heat generation of the solar cell module 1.
  • the infrared transmitting dark ink of the present invention contains a brown pigment and a phthalocyanine pigment in a predetermined ratio. Therefore, the near-infrared transmittance is higher than that in the case of using the conventional infrared transparent dark ink. Thereby, while suppressing near-infrared absorption, the temperature rise of a solar cell module can be suppressed, and the power generation efficiency of a solar cell module can be further increased by using infrared rays for power generation. Therefore, the power generation efficiency of the solar cell module using the infrared reflective sheet of this embodiment as the back surface protective sheet is further improved.
  • the surface temperature is preferably increased to 50 ° C. or higher and 70 ° C. or lower.
  • the infrared reflective sheet of this embodiment is used as a back surface protective sheet, near infrared rays reflected by the reflective layer 61 are limited to the appearance of black or a dark color close thereto in order to satisfy the design requirements.
  • the solar cell element 4 can be absorbed without loss without storing heat inside the back surface protection sheet 6. Thereby, the surface temperature of the thin-film solar cell element which is black or dark can be efficiently raised to the above temperature.
  • the infrared reflective sheet of the present invention can be particularly preferably used as a back surface protective sheet of a thin film solar cell module.
  • the back surface protective sheet 6 can be manufactured by providing an infrared transmitting dark color layer 60 between the reflective layer 61 and the transparent adhesion layer 62 and performing dry lamination. By providing other layers, even when the adhesive layer becomes a plurality of layers, the respective layers can be adhered and laminated in the same manner.
  • the method for producing the solar cell module 1 constituting the solar cell can be exemplified by a method in which the respective members constituting the solar cell are sequentially laminated and integrated by vacuum heat laminating.
  • the laminating temperature at this time is preferably in the range of 130 ° C. or higher and 190 ° C. or lower.
  • the laminating time is preferably in the range of 5 minutes to 60 minutes, particularly preferably in the range of 8 minutes to 40 minutes.
  • the solar cell module 1 can be manufactured by thermocompression-bonding each member constituting the solar cell as an integral molded body.
  • the infrared transmissive dark color layer 60 has the function to adhere
  • the infrared reflective sheet with the dark color layer laminated may be referred to as “infrared reflective sheet of the above embodiment.”
  • the infrared transmitting dark color layer 60 of the infrared reflective sheet of the present embodiment has a function of bonding sheets together.
  • the infrared transmitting dark color layer 60 and the transparent adhesive layer 63 are the infrared transmitting dark color layer 60 and the transparent adhesive layer 63. From the viewpoint of design, there is a case where a partially colored infrared reflecting sheet is required in order to give a pattern such as patterning without making the entire surface of the sheet dark.
  • an infrared transmitting dark ink having infrared transmitting properties is applied in advance to a resin sheet such as a transparent adhesion layer and / or a reflecting layer
  • Infrared transmitting dark color layer 60 is formed by curing partially applied infrared transmitting dark ink, and then a transparent adhesive not mixed with pigment is applied and cured to form a transparent adhesive layer.
  • an infrared reflective sheet having a pattern such as patterning can be produced by being partially colored.
  • an infrared reflective sheet in which an infrared transmissive dark color layer and a transparent easy adhesive layer that transmits all rays are laminated in this order on the surface of the reflective layer. Even so, by partially applying infrared transmissive dark ink to the reflective layer and curing the infrared transmissive dark ink to form the infrared transmissive dark layer 60, a pattern such as patterning can be similarly formed.
  • the infrared reflective sheet which has can be manufactured. Laminating the transparent easy-adhesive layer instead of the transparent adhesive layer and the transparent adhesive layer makes it possible to reduce the layer of the infrared reflective sheet, which is preferable from the viewpoint of productivity.
  • the infrared transmitting dark color layer 60 is made of infrared transmitting dark ink, it transmits near infrared light. Since the transparent adhesive layer does not contain a pigment that absorbs infrared rays, it transmits near infrared rays.
  • the reflective layer that reflects near infrared rays of 750 nm to 1500 nm can reflect the near infrared rays that have passed through the infrared transmitting dark color layer 60 and the transparent adhesive layer. Therefore, even when the infrared reflective sheet of this embodiment is used as a back surface protective sheet for a solar cell module, it is possible to reuse the near infrared light transmitted through the infrared transmitting dark color layer 60 and the transparent adhesive layer as power generation.
  • the back surface protective sheet of this embodiment is excellent in design and excellent in maintaining high power generation efficiency as in the past. It becomes the back surface protection sheet for solar cell modules.
  • the infrared transmitting dark color layer 60 is mainly disposed as a laminate between the reflective layer 61 and the transparent adhesion layer 62.
  • the infrared transmission dark color layer 60 may be laminated on the entire surface of the transparent adhesion layer and / or the reflection layer, or may be laminated only on a part of the surface of the transparent adhesion layer and / or the reflection layer.
  • the infrared reflective sheet in which the infrared transmitting dark color layer 60 is laminated only on part of the surface of the transparent adhesion layer and / or the reflective layer is an infrared reflective sheet having high design properties.
  • the infrared transmitting dark color layer 60 may be adhered to the transparent adhesion layer 62 as shown in FIG. 6, for example, as long as it is closer to the light receiving surface than the reflective layer 61. It may be laminated on the inner side of the reflective layer 61 so as to be in contact with the surface.
  • the infrared transmitting dark color layer 60 has a hydroxyl group-containing main resin (hereinafter also simply referred to as “main resin”), as in the infrared reflecting sheet of the above embodiment. It is comprised by the crosslinked resin bridge
  • the infrared transmitting dark color layer 60 is obtained by applying an infrared transmitting dark ink composed of a main component resin, a curing agent, a solvent, and a pigment component containing a brown pigment and a phthalocyanine pigment to the surface of the resin sheet, and applying the applied infrared ray. It can be formed by drying and curing a transparent dark ink.
  • the pigment component with respect to 100 parts by mass of the main resin component Is preferably 20 parts by mass or more and 50 parts by mass or less, and more preferably 35 parts by mass or more and 45 parts by mass or less. By adjusting the content of the pigment component within this range, the color tone can be stabilized.
  • the infrared transmitting dark color layer 60 can be formed with a small amount of infrared transmitting dark ink, even if the infrared transmitting dark color layer 60 is laminated only on a part of the surface of the resin sheet, the infrared transmitting The difference in level between the surface on which the dark color layer 60 is laminated and the surface on which the infrared transmission dark color layer 60 is not laminated is small. Therefore, it becomes possible to laminate
  • an infrared reflective sheet in which an infrared transmissive dark color layer and a transparent easy adhesive layer that transmits all rays are laminated in this order on the surface of the reflective layer. Even so, it is possible to stack the reflective layer 61 and other layers such as the back sealing material layer 5 with a small amount of primer agent, and an infrared reflective sheet can be manufactured at low cost.
  • the resin sheet on which the infrared transmitting dark color layer is formed is once exposed on the outermost surface in the previous process of applying the transparent adhesive or primer agent. Therefore, the infrared transmission dark color layer relating to the present embodiment that does not have a function of bonding sheets to each other is required to have blocking resistance.
  • the mixing ratio of the main agent and the curing agent in the infrared reflective sheet of the present embodiment is such that the NCO / OH ratio, which is the ratio of the NCO value of the curing agent to the OH value of the main resin, is in the range of 1.0 to 2.0. Is preferred.
  • the NCO / OH ratio is in the range of 1.0 to 2.0. Is preferred.
  • the number of polyurethane diols is preferably 6000 or more and 8000 or less, and the hydroxyl value of the polyurethane diol is preferably 15 mgKOH / g.
  • the curing agent it is preferable to use a mixture in which the isocyanurate modified product of hexamethylene diisocyanate (HDI nurate product) and the TMP adduct modified product of isophorone diisocyanate (IPDI) are 1: 1 (mass ratio).
  • the coating amount of the infrared transmissive dark ink in the infrared reflective sheet of the present embodiment is preferably in the range of 3 g / m 2 to 7 g / m 2 .
  • the application amount of the infrared transmissive dark ink is 3 g / m 2 or more, the color of the infrared transmissive dark color layer 60 can be made sufficient.
  • the application amount of the infrared transmissive dark ink is 7 g / m 2 or less, the level difference between the surface on which the infrared transmissive dark color layer 60 is laminated and the surface on which the infrared transmissive dark color layer 60 is not laminated becomes small. . Therefore, the reflective layer 61 and the transparent adhesive layer 62 can be laminated via the transparent adhesive layer 63 with a small amount of transparent adhesive, and an infrared reflective sheet can be manufactured at low cost.
  • the transparent adhesive layer 63 is an adhesive layer provided mainly for joining the reflective layer 61 and the transparent adhesion layer 62.
  • the transparent adhesive layer 63 is formed by curing a transparent adhesive applied to the upper surface of the reflective layer 61 or the lower surface of the transparent adhesion layer 62 facing the upper surface after lamination.
  • the transparent adhesive layer 63 is required to have sufficient adhesion and adhesion durability, and to have a property of transmitting near infrared rays in order to reflect near infrared rays.
  • the transparent adhesive forming the transparent adhesive layer 63 it is preferable to use a transparent adhesive having a characteristic of transmitting light having a wavelength of 750 nm or more and 1500 nm or less when cured like the infrared transmissive dark ink of the present embodiment. .
  • the adhesive composition used for the transparent adhesive layer 63 is preferably a two-component type composed of a main agent and a curing agent, as in the infrared transmitting dark ink of the present embodiment. From the viewpoint of applicability and handling properties, Appropriately includes a solvent.
  • the main resin component of the transparent adhesive used for the transparent adhesive layer is preferably a polyurethane / polycarbonate diol system containing a mixture of a polyurethane diol and an aliphatic polycarbonate diol, like the infrared transmitting dark ink of this embodiment. Adhesiveness and weather resistance of the transparent adhesive layer are improved by using a mixture of a specific amount of a specific polyurethane diol and an aliphatic polycarbonate diol as the main agent.
  • the adhesive composition used for the transparent adhesive layer 63 relating to the present embodiment is mainly composed of the main agent and the curing agent, but the mixing ratio of the main agent and the curing agent is used for the infrared reflecting sheet of the above embodiment. It may be the same as the infrared transmissive dark ink to be used. It is preferable that the blending ratio of the polyurethane diol compound as the main component and the polyisocyanate compound as the curing agent component is in the above range because an adhesive capable of firmly bonding the respective substrates can be obtained.
  • a silane coupling agent, a tackifier, a stabilizer, a filler, a plasticizer, a softening point improver, a catalyst, and the like can be mixed as additives.
  • the adhesive is configured as a two-component type of a main agent and a curing agent, but the solvent component used in the main agent and the solvent component used in the curing agent are independently selected and the same. But it can be different.
  • the transparent adhesive composition is not limited to this, and may be any composition form such as an aqueous type, a solution type, an emulsion type, and a dispersion type, and the properties are film / sheet type, powder type, solid type, etc.
  • the bonding mechanism may be any form such as a chemical reaction type, a solvent volatilization type, a heat melting type, and a hot pressure type.
  • the transparent adhesive layer 63 can be formed by applying or laminating, for example, the adhesive composition described above on the reflective layer 61 and / or the transparent adhesion layer 62 and drying and curing.
  • Transparent adhesive layer As the transparent adhesive layer related to this embodiment, the same layer as that used for the transparent adhesive layer used in the infrared reflective sheet of the above-described embodiment can be used.
  • the transparent adhesion layer regarding this embodiment can use the film and sheet which were manufactured by film forming methods, such as an extrusion method and a T-die method.
  • a transparent easy adhesive layer may be formed between the back sealing material layer 5 and the infrared transmitting dark color layer 60.
  • the transparent easy-adhesive layer is a so-called primer layer, and the primer composition constituting the transparent easy-adhesive layer contains, for example, an olefin-based resin and an aqueous medium, and a primer composition that does not substantially contain an organic solvent. Can be used. Laminating the transparent easy-adhesive layer instead of the transparent adhesive layer and the transparent adhesive layer makes it possible to reduce the layer of the infrared reflective sheet, which is preferable from the viewpoint of productivity.
  • the olefin resin contained in the primer composition (hereinafter also simply referred to as “primer composition”) used to form the transparent easy-adhesive layer comprises an olefin component and an unsaturated carboxylic acid component.
  • An acid-modified polyolefin resin is preferable.
  • the acid-modified polyophine resin preferably has an MFR of 0.01 g / 10 min or more and less than 100 g / 10 min at 190 ° C. and a load of 2.16 kg measured according to JIS K7210. As a result, it is possible to form a transparent adhesive layer 62 that retains good dispersibility in an aqueous medium at the primer composition stage and is excellent in adhesion to the olefin-based resin that forms the back sealing material 5. .
  • the primer composition for example, the primer composition described in JP2013-74172A can be used. Strong adhesiveness can be expressed between the back sealing material layer 5 and the infrared transmitting dark color layer.
  • the infrared reflecting sheet of the present embodiment is manufactured by dry laminating using, for example, a reflective layer 61 or a transparent adhesion layer 62 in which an infrared transmitting dark color layer 60 is laminated in advance, and a transparent adhesive layer 60 therebetween. Can do.
  • a reflective layer 61 or a transparent adhesion layer 62 in which an infrared transmitting dark color layer 60 is laminated in advance, and a transparent adhesive layer 60 therebetween.
  • a transparent adhesive layer 60 therebetween.
  • each layer can be adhered and laminated by the same method.
  • the infrared reflecting sheet of the present embodiment can be manufactured by sequentially laminating the members constituting the solar cell in the same manner as in the method for manufacturing the solar cell module, and integrating them by, for example, vacuum heat laminating.
  • an infrared reflecting sheet capable of partially coloring the surface of the infrared reflecting sheet such as the infrared reflecting sheet of the present embodiment
  • a back surface protective sheet for a solar cell module Since most of the sealing materials for solar battery modules are transparent or semi-transparent, in a plan view from the surface side where the solar battery cells are arranged, the gap portion where the solar battery cells 4 are not arranged (non-cell region) ), The color of the back surface protection sheet 6 for the solar cell module can be visually recognized.
  • the average reflectance at a wavelength of 400 nm to 700 nm is 10 by coloring the portion of the cell region gap (non-cell region) where the solar cells 4 are arranged in plan view. % Or less dark system area. Further, by not coloring the cell region where the solar battery cells are arranged, it is possible to obtain a reflection region in which the average reflectance from a wavelength of 1000 nm to 1200 nm is 80% or more.
  • each ink was produced by the following method. An infrared reflection sheet and a pseudo module sample using the ink were prepared.
  • the main agent was prepared by mixing 100 parts by mass of the above polyurethane diol and 15 parts by mass of the aliphatic polycarbonate diol (B) (PDC1000).
  • a mixture of hexamethylene diisocyanate (HDI adduct: bifunctional) and isocyanurate-modified isophorone diisocyanate (nurate-modified IPDI) was used.
  • the mixing ratio of the adduct-modified HDI and the nurate-modified IPDI (HDI adduct) / (nurate-modified IPDI) was 6: 4 (mass ratio).
  • Pigment Brown pigment (benzimidazolone pigment (Pigment Brown 25, particle size 0.08 ⁇ m)), phthalocyanine pigment (amorphous phthalocyanine pigment blue (Pigment Blue 15, particle size 0.15 to 0.20 ⁇ m))
  • Solvent ethyl acetate
  • the main agent solid content 50% by mass
  • the curing agent solid content 10% by mass
  • the brown pigment benzimidazolone pigment
  • the phthalocyanine pigment amorphous phthalocyanine type
  • Pigment content ratio of benzimidazolone pigment and phthalocyanine pigment is 52.5: 47.5, pigment component is 35 parts by mass with respect to 100 parts by mass of resin component
  • the organic pigment was adjusted in the same manner as Ink 1 except that the organic pigment was adjusted so as to have a solid content coating amount of 10 g / m 2 to 20 g / m 2 (thickness after curing: 10 ⁇ m to 20 ⁇ m).
  • Pigment 16.7% by mass of dioxazine compound (the pigment component is 20 parts by mass with respect to 100 parts by mass of the resin component)
  • the following resin was used as a resin base material used as a reflection layer.
  • Reflective layer manufactured by Toray, white PET, 188 ⁇ m
  • the following resin was used as a resin base material which becomes a transparent adhesion layer.
  • Transparent adhesion layer polyethylene, 60 ⁇ m
  • Example 1 Ink 1 was gravure coated on the sheet made of the reflective layer (coating amount: 5 g / m 2 ), and an adhesive layer having a thickness of 5 ⁇ m (dry state) was formed thereon. The layers were laminated, subjected to aging treatment at 45 ° C. or higher and 55 ° C. or lower for 168 hours, and overheated to prepare an infrared reflecting sheet.
  • Ink 2 was gravure-coated on the sheet made of the reflective layer (the coating amount was 12 g / m 2 ), and an adhesive layer having a thickness of 12 ⁇ m (dry state) was transparently adhered thereon.
  • the layers were laminated, subjected to aging treatment at 45 ° C. to 55 ° C. for 168 hours, and then heat-cured to prepare an infrared reflecting sheet.
  • the infrared reflecting sheet of Example 1 from FIG. 3 is provided with an infrared transmitting dark color layer 60 containing a predetermined amount of a brown pigment (benzimidazolone pigment) and a phthalocyanine pigment, and thereby has an energy higher than about 1000 nm or higher.
  • the infrared transmittance around 900 nm is particularly improved. Therefore, it can be seen that this is an infrared transmissive dark ink having a high transmittance in the vicinity of about 800 nm to 900 nm as compared with the case where a conventional organic black pigment is added.
  • the polyethylene and white PET of the infrared reflecting sheet of Example 1 were peeled off, the infrared transmitting dark color layer was dissolved using methyl ethyl ketone, and a transmittance measurement sample was prepared.
  • a measurement sample is injected into a quartz glass cell, and a spectrophotometer (for example, UV spectrophotometer “V-670” manufactured by JASCO Corporation or “U-4100” manufactured by Hitachi High-Technologies Corporation) is used with a wavelength of 300 nm to The transmittance (%) of light at 1200 nm was measured.
  • a spectrophotometer for example, UV spectrophotometer “V-670” manufactured by JASCO Corporation or “U-4100” manufactured by Hitachi High-Technologies Corporation
  • the transmittance (%) of light at 1200 nm was measured.
  • the transmittance of light having a wavelength of 425 nm was 11.6%
  • the transmittance of light having a wavelength of 675 nm was 10.0%.
  • the infrared reflecting sheet of Example 1 almost absorbs in the visible region (380 nm to 780 nm), whereas the infrared reflecting sheet of Comparative Example 1 reflects light in the visible region near 700 nm to 750 nm. . Therefore, although the ink of Example 1 has a black appearance and is excellent in design, the ink of Comparative Example 1 is more purple than black because it transmits light in the visible region near 700 nm to 750 nm. It can be seen that the ink has a dark appearance and is poor in design.
  • Example creation> [Examples 2 to 4]
  • an infrared reflecting sheet was prepared by gravure-coating ink 1 with each coating amount. Thereafter, a pseudo module was newly created using each infrared reflecting sheet as a back surface protection sheet.
  • the pseudo module glass as a transparent front substrate, 450 ⁇ m of ethylene-vinyl acetate alcohol copolymer resin (EVA) as a sealing material layer, a sample according to this example as an infrared reflecting sheet (back surface protection sheet), a transparent front surface A substrate / front sealing material layer / back sealing material layer / infrared reflective sheet (back surface protection sheet) were laminated in this order, and were prepared by vacuum lamination. (Vacuum lamination conditions: temperature 150 ° C., vacuum time 5 minutes, press time 9 minutes)
  • EVA ethylene-vinyl acetate alcohol copolymer resin
  • Infrared reflective sheets were prepared by performing gravure coating with dark color ink 2 in each of the coating amounts instead of dark color ink 1 in Examples 2 to 4. Thereafter, a pseudo module was newly prepared in the same manner as in Examples 2 to 4 using each infrared reflection sheet as a back surface protection sheet.
  • the sample of the comparative example has less variation in color tone for each coating amount than the variation of a * and b * of the coating amount of 10 to 20 g / m 2 .
  • the value of L * of the coating amount 15 g / m 2 of Comparative Example 4 and the coating amount of 5 g / m 2 of Example 2 are substantially equal. From these results, the infrared-transmissive dark ink of the example has a color tone close to that of carbon black, and the variation of the color coordinate with respect to the solid content coating amount of the adhesive is small. Therefore, it turns out that it is an infrared rays transparent dark ink with a high yield and high productivity. Moreover, it turns out that it is an infrared rays transparent dark color ink which can exhibit sufficient design property also with a small coating amount compared with the sample of a comparative example.
  • the color difference ( ⁇ E * ab) from carbon was determined from the measurement results.
  • Table 2 shows the measurement results of the color coordinates obtained by this test and the color difference ( ⁇ E * ab) from carbon black.
  • the description of “content of brown pigment” in Table 2 means the content of brown pigment with respect to 100 parts by mass of phthalocyanine pigment.
  • each of the inks according to Examples 5 to 9 and Test Examples 1 to 4 was gravure coated with 5 g / m 2 on a fluorine film (Asahi Glass Co., Ltd. fluorine film Aflex 100 ⁇ m) as a transparent substrate.
  • a fluorine film Alignment Film
  • the same transparent base material was laminated, dry lamination was performed, and an aging treatment was performed at 45 ° C. or higher and 55 ° C. or lower for 168 hours, followed by overheating curing to prepare a transmittance measurement sample.
  • the infrared transmissive dark inks of Examples 5 to 9 are close to the color of carbon, so that they can exhibit sufficient design properties. It can be seen that the ink is a dark ink.
  • Example 10 The coating amount of the Example 1 in the same manner as Ink 1 and 7 g / m 2, was prepared infrared reflecting sheet by gravure coating. Thereafter, a pseudo module was newly prepared in the same manner as in Examples 2 to 4 using each infrared reflection sheet as a back surface protection sheet.
  • the sample was stored at 170 ° C. for 14 hours, and the color tone after storage was measured.
  • the color tone was determined by measuring the color coordinates of each sample of the example and the comparative example according to JIS Z8722 and using a D65 light source and a 10 ° viewing angle. Each sample was measured using a KONICA MINOLTA spectrocolorimeter CM-700d.
  • the color difference of the sample of Example 10 is smaller than that of the sample of Comparative Example 7.
  • the other layers are not discolored even in an environment exposed to a poor environment at 170 ° C. Therefore, it turns out that the laminated body which laminated
  • the infrared reflective sheet of the present embodiment is used as a back surface protective sheet for a solar cell module, a sealing layer formed by the dark color pigment contained in the infrared transmitting dark color layer 60 of the back surface protective sheet being transferred to the sealing layer. No discoloration occurs. Therefore, it turns out that the solar cell module excellent in the storage stability without the fall of the power generation efficiency resulting from discoloration of a sealing layer can be manufactured.
  • Example creation> The samples for adhesion measurement of Example 11 and Reference Example were prepared by bonding with Ink 1 and Ink 2, respectively.
  • an infrared reflecting sheet was prepared by gravure-coating the ink 1 in the same manner as in Example 1 (the coating amount of the ink 1 was 5 g / m 2 and the thickness was 5 ⁇ m (dry state)).
  • an infrared reflection sheet was prepared by gravure-coating ink 2 in the same manner as in Comparative Example 1 (the coating amount of ink 2 was 10 g / m 2 and the thickness was 10 ⁇ m (dry state)).
  • Example 11 and the reference example Tests on adhesiveness were performed on the samples of Example 11 and the reference example by the following method, and the adhesiveness was evaluated based on the measurement results. All specimens are 15 mm wide.
  • Adhesion test In accordance with JIS K6854-2, in the 180 degree peel test method, the peel strength (N) of each sample of Example 11 and the reference example is the initial value and the value after each endurance test described below. This was done by measuring. For each sample measurement, measurement was performed at 23 ° C. under a peeling condition of 50 mm / min using a peeling test apparatus (trade name “TENSILON RTA-1150-H” manufactured by A & D Co., Ltd.). It was.
  • the infrared transmissive dark ink according to Example 11 has the same adhesiveness as that of the dark ink according to the reference example containing a dioxazine compound having a high adhesion durability, and an adhesion durability close to the same. I understand that.
  • the infrared transmissive dark ink according to the present embodiment has higher infrared transmittance while having the same adhesiveness as the dark ink containing the dioxazine compound and the adhesive durability close to the equivalent.
  • the present invention is an infrared-transmitting dark ink having a good design property even at a very small coating amount, a good yield, and a very high productivity.
  • a back surface protection sheet for a solar cell module using an infrared reflecting sheet manufactured with an infrared transmitting dark ink according to the present invention generates heat due to absorption of infrared rays due to its high infrared transmitting property. It can be suppressed more and more near infrared rays can be used for power generation. Therefore, the solar cell module using the infrared transmissive dark ink according to the present embodiment is an extremely excellent solar cell module capable of improving the power generation efficiency of the solar cell module as compared with the conventional one.
  • the amount of glycol modification is the mass (mass ratio%) of the alkylene diol compound (in this example, a mixture of 1,6 hexanediol and octanediol) with respect to the total mass of the main resin component.
  • the IPDI modified amount is the mass (mass of the modified isocyanate compound (in this example, trimethylolpropane (TMP) adduct modified from isophorone diisocyanate (IPDI)) with respect to the total mass of the main resin component. %).
  • TMP trimethylolpropane
  • IPDI isophorone diisocyanate
  • a curing agent comprising a hexamethylene diisocyanate (HDI) nurate (40 parts by mass) and isophorone diisocyanate (IPDI) trimethylolpropane (TMP) adduct modification product (60 parts by mass) was prepared. Further, the NCO / OH ratio, which is the ratio of the NCO value of the polyisocyanate compound and the OH value of the crosslinkable main resin, was respectively blended so as to be in Table 5.
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • TMP trimethylolpropane
  • Pigment Brown pigment (benzimidazolone pigment (Pigment Brown 25, particle size 0.08 ⁇ m)), phthalocyanine pigment (amorphous phthalocyanine pigment blue (Pigment Blue 15, particle size 0.15 to 0.20 ⁇ m))
  • Solvent ethyl acetate
  • the main agent, the curing agent, the brown pigment (benzimidazolone pigment) and the phthalocyanine pigment (brown pigment and phthalocyanine pigment content ratio is 52.5: 47.5
  • main agent Ink 3 was prepared by dissolving 40 parts by mass of a pigment component in 100 parts by mass of the resin component in the solvent.
  • the main agent was prepared by mixing 100 parts by mass of the above polyurethane diol and 15 parts by mass of the aliphatic polycarbonate diol (B) (PDC1000). The same curing agent as ink 3 was used. Solvent: ethyl acetate The main agent (solid content: 50% by mass), the curing agent (solid content: 10% by mass), the dioxazine compound 16.7% by mass (the pigment component is 20 parts by mass with respect to 100 parts by mass of the main resin component). )
  • Solvent ethyl acetate
  • the main agent of the transparent adhesive, the curing agent of the transparent adhesive, and the solvent were adjusted at a mass ratio of 18: 3.4: 5.4.
  • Blocking resistance test The samples of Examples 12 to 15 and Comparative Examples 8 to 10 were tested for blocking resistance by the following method, and the blocking resistance was evaluated based on the measurement results. All specimens are 15 mm wide.
  • the sample of this embodiment in which the NCO / OH ratio of the infrared transparent dark ink is 1.0 or more and 2.0 or less has high blocking resistance and adhesion. Therefore, since the infrared rays transparent ink used for this invention has favorable blocking resistance and adhesiveness, it turns out that it is preferable when manufacturing the back surface protection sheet for solar cell modules of this invention.
  • Example creation> [Examples 13 to 15]: An infrared transparent dark ink solution was applied to the surface of white PET (white PET thickness 188 ⁇ m, manufactured by Toray Industries Inc.) with a bar coater (the coating amount is shown in Table 6). The processed ink liquid was dried at 120 ° C. for 2 minutes to form a dark ink layer on the substrate surface. Then, a transparent adhesive is gravure-coated on the surface of the dark ink layer immediately after drying (coating amount is 5.0 g / m 2 ), and an adhesive layer having a thickness of 5.0 ⁇ m (dried state) is formed on the polyethylene resin (thickness). 60 ⁇ m) was laminated, an aging treatment was performed at 45 ° C. to 55 ° C. for 168 hours, and a back protection sheet was prepared by overheating and a pseudo module was newly prepared from the back protection sheet.
  • the pseudo module glass as a transparent front substrate, 450 ⁇ m of ethylene-vinyl acetate alcohol copolymer resin (EVA) as a sealing material layer, a sample according to this example as a back surface protection sheet, a transparent front substrate / front sealing
  • EVA ethylene-vinyl acetate alcohol copolymer resin
  • the layers were laminated in the order of material layer / back surface sealing material layer / back surface protective sheet, and prepared by vacuum lamination. (Vacuum lamination conditions: temperature 150 ° C., vacuum time 5 minutes, press time 9 minutes)
  • the sample of the comparative example has a smaller variation in the coating amount than the variation of a * and b * in the sample of the comparative example with the coating amount of 10 g / m 2 or more and 20 g / m 2 or less. From this result, it can be seen that the infrared transparent dark ink of the example has a small dependency on the color coordinate with respect to the solid content coating amount of the adhesive, and the variation of the color coordinate with respect to the solid content coating amount is small.
  • the coating amount was 3 g / m 2 or more and 7 g / m 2 or less
  • L * was smaller than that of Comparative Example 5 in which the coating amount was 15 g / m 2, and carbon black and Even if compared, the coating amount has a sufficiently low brightness. From this experimental result, it is found that the infrared transmitting dark layer formed by the infrared transmitting dark ink containing the pigment component including the brown pigment and the phthalocyanine pigment component has a sufficient design property even if the thickness is small. I understand.
  • the infrared reflective sheet of this invention is the outstanding infrared reflective sheet which can improve the fall of cost and productivity.
  • Example creation> On the surface of white PET (white PET manufactured by Toray Industries Inc., 188 ⁇ m), an infrared transparent dark ink liquid was applied with a bar coater (application amount is 4 g / m 2 ), and the applied ink liquid was applied at 120 ° C. It was dried for 2 minutes to form an infrared transmitting dark color layer on the substrate surface.
  • the above transparent adhesive is gravure coated (coating amount is 5.0 g / m 2 ), a transparent adhesive layer having a thickness of 5.0 ⁇ m (dry state), and a polyethylene resin (60 ⁇ m) are laminated thereon,
  • a sample of an infrared reflecting sheet was prepared by performing an aging treatment at 45 ° C. or more and 55 ° C. or less for 168 hours and curing it by heating.
  • Example 12 is a sample having higher adhesion and adhesion durability than Comparative Example 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Optical Filters (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)

Abstract

 意匠性にかかる需要者の要求を満たすために、黒色の外観を有する意匠性の高い赤外線透過性暗色インクでありながら、十分な赤外線透過性を有する赤外線透過性暗色インクを提供すること。 波長750nm以上1500nm以下の近赤外線を透過する赤外線透過性暗色インキであって、樹脂成分と、ベンズイミダゾロン系顔料等の茶色系顔料並びにフタロシアニン系顔料を含んでなる顔料成分と、を含有する赤外線透過性暗色インキである。

Description

赤外線透過性暗色インキ及びそれを用いた赤外線透過性シート
 本発明は、赤外線透過性暗色インキに関する。より具体的には、主に太陽電池モジュール用の赤外線反射シート等に用いられる赤外線透過性暗色インキに関する。
 近年、環境問題に対する意識の高まりから、クリーンなエネルギー源としての太陽電池が注目されている。一般に、太陽電池を構成する太陽電池モジュールは、受光面側から、透明前面基板、封止材、太陽電池素子、封止材及び裏面保護シートが順に積層された構成であり、太陽光が上記太陽電池素子に入射することにより発電する機能を有している。
 例えば太陽電池モジュール等に用いられるインキにおいて、意匠性の観点から外観を黒色にしたインキが求められる場合がある。外観を暗色にするための方法としては、カーボンブラックを含むインキを設ける方法があるが、カーボンブラックは近赤外線を吸収することで温度の上昇を招くため、例えば太陽電池モジュール等に用いる場合には必ずしも好ましいとはいえない。
 太陽電池モジュール用の裏面保護シートとして用いた場合には、使用時に太陽電池モジュールの温度を上昇させてしまい、その結果、太陽電池モジュールの発電効率は低下する。
 そこで、暗色層における発熱を抑え、更に、反射光を太陽電池素子に入射させて、発電効率を向上させるために、赤外線透過性を有するオキサジン系顔料等の有機顔料が含まれた黒色系樹脂層と赤外線反射性とを有する白色系樹脂層と、耐候性を有する裏面保護層等を備え、これらの複数の層を接着剤等で接着して製造する太陽電池モジュール用の裏面保護シートが開発されている。(特許文献1)。
 オキサジン系顔料と硬化剤とが含まれた赤外線透過性暗色インキは、接着耐久性の高い赤外線透過性暗色インキとなる(特許文献1[0057])。しかし、オキサジン系顔料は、700~800nmの波長の光を透過するため、オキサジン系顔料自体は黒色というよりは紫色に近い顔料である。そのため、オキサジン系顔料が樹脂に含まれた赤外線透過性暗色インクは紫色に近いものとなり、意匠性の観点から外観を黒色のものが求められる場合には必ずしも好ましいものとはいえない。
 特に、太陽電池モジュール用の裏面保護シートに用いる場合には、太陽電池モジュールの発電効率に対する要求は、更に強くなっているため、より赤外線を透過、反射する赤外線透過性暗色インクであることが求められる。近赤外線の吸収を抑えることで太陽電池モジュールの温度上昇を抑えるとともに、赤外線を発電に利用することで太陽電池モジュールの発電効率を更に上昇することができるためである。そのため、より赤外線を透過する赤外線透過性暗色インクを用いることが重要となる。
特開2012-216689号公報
 本発明の目的は、太陽電池モジュール用の裏面保護シートに暗色の外観を付与しうるインキであって、尚且つ、近赤外透過率が高い、優れた赤外線透過性暗色インキを提供することである。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、所定の茶色系顔料及びフタロシアニン系顔料を含んでなる顔料成分を含有する赤外線透過性暗色インキにより、上記課題を解決することができることを見出し、本発明を完成するに至った。より具体的には、本発明は、以下のものを提供する。
 (1)波長750nm以上1500nm以下の近赤外線を透過する赤外線透過性暗色インキであって、樹脂成分と、顔料成分と、を含有し、前記顔料成分は、茶色系顔料と、フタロシアニン系顔料からなる暗色顔料と、を含んでなり、前記茶色系顔料は、ベンズイミダゾロン系顔料、4-[(2,5-ジクロロフェニル)アゾ]-3-ヒドロキシ-N-(2,5-ジメトキシフェニル)-2-ナフタレンカルボキサミド、1-[(4-ニトロフェニル)アゾ]-2-ナフタレノール、ビス[3-ヒドロキシ-4-(フェニルアゾ)-2-ナフタレンカルボン酸]銅塩、C.I.PigmentBrown7、N,N’-ビス(2,4-ジニトロフェニル)-3,3’-ジメトキシ-1,1’-ビフェニル-4,4’-ジアミン、3,4,9,10-ペリレンテトラカルボンサンジイミド、Δ2,2’(1H,1’H)-ビナフト[2,1-b]チオフェン-1,1’-ジオン及びN、N’-(10,15,16,17-テトラヒドロ-5,10,15,17-テトラオキソ)-5H-ジナフト[2,3-a:2’3’-i]カルバゾール-4,9-ジイル)ビス(ベンズアミド)からなる群より選ばれた少なくとも一種以上の顔料である、赤外線透過性暗色インキ。
 (2)前記顔料成分中における、前記暗色顔料の含有量が80質量%以上であって、
 前記赤外線透過性暗色インキの光透過率試験における波長425nmの光の透過率が5%以上30%以下であり、波長675nmの光の透過率が4%以上30%以下である(1)に記載の赤外線透過性暗色インキ。
 (3)前記樹脂成分100質量部に対して前記顔料成分が20質量部以上40質量部以下である(1)又は(2)に記載の赤外線透過性暗色インキ。
 (4)750nm以上1500nm以下の近赤外線を反射する反射層の表面に赤外線透過暗色層が積層されてなる赤外線反射シートであって、前記赤外線透過暗色層は、水酸基を有する主剤樹脂と、イソシアネート基を有する硬化剤と、顔料成分とを、を含有し、前記顔料成分は、茶色系顔料と、フタロシアニン系顔料からなる暗色顔料と、を含んでなり、前記茶色系顔料は、ベンズイミダゾロン系顔料、4-[(2,5-ジクロロフェニル)アゾ]-3-ヒドロキシ-N-(2,5-ジメトキシフェニル)-2-ナフタレンカルボキサミド、1-[(4-ニトロフェニル)アゾ]-2-ナフタレノール、ビス[3-ヒドロキシ-4-(フェニルアゾ)-2-ナフタレンカルボン酸]銅塩、C.I.PigmentBrown7、N,N’-ビス(2,4-ジニトロフェニル)-3,3’-ジメトキシ-1,1’-ビフェニル-4,4’-ジアミン、3,4,9,10-ペリレンテトラカルボンサンジイミド、Δ2,2’(1H,1’H)-ビナフト[2,1-b]チオフェン-1,1’-ジオン及びN、N’-(10,15,16,17-テトラヒドロ-5,10,15,17-テトラオキソ)-5H-ジナフト[2,3-a:2’3’-i]カルバゾール-4,9-ジイル)ビス(ベンズアミド)からなる群より選ばれた少なくとも一種以上の顔料である、赤外線反射シート。
 (5)前記赤外線反射シートの前記赤外線透過暗色層の積層側の表面に、更に透明易接着剤層が積層されてなる(4)に記載の赤外線反射シート。
 (6)750nm以上1500nm以下の近赤外線を反射する反射層の表面に赤外線透過暗色層と、透明樹脂層とが順次積層されてなる赤外線反射シートであって、前記赤外線透過暗色層は、水酸基を有する主剤樹脂と、イソシアネート基を有する硬化剤と、顔料成分とを、を含有し、前記主剤樹脂100質量部に対して前記顔料成分が20質量部以上40質量部以下であり、前記顔料成分は、茶色系顔料と、フタロシアニン系顔料からなる暗色顔料と、を含んでなり、前記茶色系顔料は、ベンズイミダゾロン系顔料、4-[(2,5-ジクロロフェニル)アゾ]-3-ヒドロキシ-N-(2,5-ジメトキシフェニル)-2-ナフタレンカルボキサミド、1-[(4-ニトロフェニル)アゾ]-2-ナフタレノール、ビス[3-ヒドロキシ-4-(フェニルアゾ)-2-ナフタレンカルボン酸]銅塩、C.I.PigmentBrown7、N,N’-ビス(2,4-ジニトロフェニル)-3,3’-ジメトキシ-1,1’-ビフェニル-4,4’-ジアミン、3,4,9,10-ペリレンテトラカルボンサンジイミド、Δ2,2’(1H,1’H)-ビナフト[2,1-b]チオフェン-1,1’-ジオン及びN、N’-(10,15,16,17-テトラヒドロ-5,10,15,17-テトラオキソ)-5H-ジナフト[2,3-a:2’3’-i]カルバゾール-4,9-ジイル)ビス(ベンズアミド)からなる群より選ばれた少なくとも一種以上の顔料である、赤外線反射シート。
 (7)前記赤外線透過暗色層を形成する赤外線透過性暗色インキの固形分換算の塗布量が5g/m以上15g/m以下である(6)に記載の赤外線反射シート。
 (8)JIS-Z8722に準拠して、D65光源、10°視野角の条件によって測定した前記赤外線透過暗色層の色調とカーボンブラックとの色調との色差ΔEabが10以下である(4)から(7)のいずれかに記載の赤外線反射シート。
 (9)全光線を透過する透明密着層と、750nm以上1500nm以下の近赤外線を反射する反射層と、を、少なくとも含む複数の層を積層してなる太陽電池モジュール用の裏面保護シートであって、前記透明密着層と前記反射層との間に積層される層のうち2つの層が、赤外線透過暗色層及び透明接着剤層であり、前記赤外線透過暗色層は、水酸基を有する主剤樹脂と、イソシアネート基を有する硬化剤と、顔料成分とを、を含み、前記赤外線透過暗色層に含まれる前記顔料成分は、前記主剤樹脂100質量部に対して前記顔料成分が20質量部以上50質量部以下であり、前記顔料成分は、茶色系顔料と、フタロシアニン系顔料からなる暗色顔料と、を含んでなり、前記茶色系顔料は、ベンズイミダゾロン系顔料、4-[(2,5-ジクロロフェニル)アゾ]-3-ヒドロキシ-N-(2,5-ジメトキシフェニル)-2-ナフタレンカルボキサミド、1-[(4-ニトロフェニル)アゾ]-2-ナフタレノール、ビス[3-ヒドロキシ-4-(フェニルアゾ)-2-ナフタレンカルボン酸]銅塩、C.I.PigmentBrown7、N,N’-ビス(2,4-ジニトロフェニル)-3,3’-ジメトキシ-1,1’-ビフェニル-4,4’-ジアミン、3,4,9,10-ペリレンテトラカルボンサンジイミド、Δ2,2’(1H,1’H)-ビナフト[2,1-b]チオフェン-1,1’-ジオン及びN、N’-(10,15,16,17-テトラヒドロ-5,10,15,17-テトラオキソ)-5H-ジナフト[2,3-a:2’3’-i]カルバゾール-4,9-ジイル)ビス(ベンズアミド)からなる群より選ばれた少なくとも一種以上の顔料であって、前記主剤樹脂のOH価に対する前記硬化剤のNCO価の比であるNCO/OH比が1.0以上2.0以下である赤外線反射シート。
 (10)前記赤外線透過暗色層を形成する赤外線透過性暗色インキの固形分換算の塗布量が3g/m以上7g/m以下である(9)に記載の赤外線反射シート。
 (11)前記イソシアネート基を有する硬化剤がジイソシアネート化合物である(9)又は(10)に記載の赤外線反射シート。
 (12)前記赤外線透過暗色層が前記透明密着層及び/又は前記反射層の表面の一部のみに積層されている(9)から(11)のいずれかに記載の赤外線反射シート。
 (13)前記反射層の前記赤外線透過暗色層の積層面の反対側の面に暗色系の有機顔料が含まれた赤外線透過コート層が積層され、前記赤外線透過コート層は、750nm以上1500nm以下の近赤外線を透過する(4)から(12)のいずれかに記載の赤外線反射シート。
 (14)(4)から(13)のいずれかに記載の赤外線反射シートを、太陽電池素子の非受光面側に積層してなる太陽電池モジュール。
 本発明の赤外線透過性暗色インキは、太陽光が照射される環境下であっても近赤外線の吸収に起因する発熱を抑えることができる。又、本発明の赤外線透過性暗色インキを太陽電池モジュール用の赤外線反射シート(裏面保護シート)に用いてなる本発明の赤外線反射シートは、意匠性を十分満たすものでありながら、近赤外線の吸収に起因する発熱を抑え、且つ、太陽電池モジュール用の裏面保護シートとして用いられた場合に太陽電池モジュールの発電効率の上昇にも寄与する優れた赤外線反射シートである。
太陽電池モジュールについて、その層構成の一例を示す断面の模式図である。 赤外線反射シートの層構成の説明に供する図であり、赤外線反射シートを太陽電池モジュール用の裏面保護シートとして使用した場合に、赤外線反射シートが、太陽電池モジュールと一体化した状態における断面の拡大模式図である。 実施例1及び比較例1の赤外線反射率を示すグラフである。 実施例2~4の色座標を示す図である。 比較例2~6の色座標を示す図である。 他の実施形態の赤外線反射シートの層構成の説明に供する図であり、赤外線反射シートを太陽電池モジュール用の裏面保護シートとして使用した場合に、赤外線反射シートが、太陽電池モジュールと一体化した状態における断面の拡大模式図である。 実施例13~15の色座標を示す図である。
 以下、本発明の赤外線透過性暗色インキについて詳細に説明する。本発明は以下に記載される実施形態に限定されるものではない。
 <赤外線透過性暗色インキ>
 本発明の赤外線透過性暗色インキは、太陽電池モジュール用の赤外裏面保護シート等を、意匠性の観点から暗色に着色する用途で用いることができる。又、本発明の赤外線透過性暗色インキは、近赤外線の透過率が高いため、近赤外線の吸収に起因する発熱を抑えることができる。例えば、近赤外線を反射することができる反射シートの表面に本発明の赤外線透過性暗色インキにより赤外線透過暗色層60を形成することで、その外観を暗色としながら、近赤外線を反射することのできる赤外線反射シートを製造することができる。
 又、本発明の赤外線透過性暗色インキは、赤外線透過性暗色インキに硬化剤を含有することによって、シート同士を接着可能な赤外線透過性暗色インキとなる。例えば、シート上に硬化剤を含有する赤外線透過性暗色インキを塗布して、他のシートを積層し、赤外線透過性暗色インキを硬化させることによって赤外線透過暗色層を形成することができる。
 更に、近赤外線を反射する反射層61の表面に赤外線透過暗色層60と透明密着層62とを順次積層することによって赤外線反射シート6を製造しても良い。例えば、本発明の赤外線反射シート6を太陽電池素子の非受光面側に配置することで太陽電池モジュール用の裏面保護シートとして用いることもできる。
 又、意匠性の観点から、赤外線反射シート6の表面全面を暗色にはせず、例えば、パターニングのような模様等を施すために、部分的に着色させたような赤外線反射シート6が求められる場合がある。図6の実施形態の赤外線反射シート6を太陽電池モジュール用の裏面保護シートとして用いた場合には、その裏面保護シートは、意匠性にも優れ、従来と同様に高い発電効率を維持することのできる優れた太陽電池モジュール用の裏面保護シートとなる。図6の実施形態の赤外線反射シート6については後述する。
 図2又は図6に示す通り、赤外線反射シートは反射層61の上面、又は、該上面に対向する透明密着層62の下面に塗布した赤外線透過性暗色インキを積層後に硬化させることによって形成することができる。赤外線透過暗色層60が反射層61と透明密着層62の間の位置に形成することで、赤外線反射シート6を、意匠性の面において好ましいものとすることができる。
 赤外線透過暗色層60を形成する赤外線透過性暗色インキは、その外観が黒色又はそれに近い暗色であること、即ち、可視光線を吸収し、且つ、近赤外線を透過する性質を有するものであることが重要である。
 ここで、近赤外線とは、赤外線領域の内、もっとも可視領域に近い領域であるがその詳しい波長域は文献によっても値が様々である。本発明における近赤外線とは750nm以上2200nm以下の波長域の電磁波を指す。その内、特に蓄熱を促進する波長は1000nm以上1500nm以下である。
 赤外線透過暗色層60を形成する赤外線透過性暗色インキには、硬化した状態において波長750nm以上1500nm以下の光線を透過する特性を有する赤外線透過性暗色インキを用いる。尚、「波長750nm以上1500nm以下の光線を透過する」とは、赤外線透過暗色層60において波長750nm以上1500nm以下の光線を15%以上透過、好ましくは50%以上透過、更に好ましくは60%以上透過することを意味する。
 赤外線透過暗色層60に用いる赤外線透過性暗色インキは、シート同士を接着する用途で用いることができる。赤外線透過性暗色インキをこのように用いる場合には、主剤と硬化剤からなる2液タイプであることが好ましい。又、塗布性、ハンドリング性の観点から、組成物としては適宜溶剤が含まれる。
 [有機顔料]
 本発明の赤外線透過性暗色インキに含まれる顔料成分は、以下にその詳細を説明する茶色系顔料と、フタロシアニン系顔料とからなる暗色顔料を含有する。このような暗色顔料を含んでなる顔料成分を含有する本発明の赤外線透過性暗色インキは、外観が暗色であって、赤外線透過率が高い優れたインキである。
 本明細書内において、茶色系顔料とは、ベンズイミダゾロン系顔料、4-[(2,5-ジクロロフェニル)アゾ]-3-ヒドロキシ-N-(2,5-ジメトキシフェニル)-2-ナフタレンカルボキサミド、1-[(4-ニトロフェニル)アゾ]-2-ナフタレノール、ビス[3-ヒドロキシ-4-(フェニルアゾ)-2-ナフタレンカルボン酸]銅塩、N,N’-ビス(2,4-ジニトロフェニル)-3,3’-ジメトキシ-1,1’-ビフェニル-4,4’-ジアミン、3,4,9,10-ペリレンテトラカルボン酸ジイミド、Δ2,2’(1H,1’H)-ビナフト[2,1-b]チオフェン-1,1’-ジオン及びN、N’-(10,15,16,17-テトラヒドロ-5,10,15,17-テトラオキソ-5H-ジナフト[2,3-a:2’3’-i]カルバゾール-4,9-ジイル)ビス(ベンズアミド)からなる群より選ばれた少なくとも一種以上の顔料をいうものとする。茶色系顔料は、接着層中の顔料の分散性や接着層の接着性等の観点からベンズイミダゾロン系顔料であることが好ましい。ベンズイミダゾロン系顔料とは、下記一般式(1)で表されるベンズイミダゾロン骨格を有する顔料である。具体的には、PigmentYellow120、PigmentYellow151、PigmentYellow154、PigmentYellow175、PigmentYellow180、PigmentYellow181、PigmentYellow194、PigmentRed175、PigmentRed176、PigmentRed185、PigmentRed208、PigmentViolet32、PigmentOrange36、PigmentOrange62、PigmentOrange72、PigmentBrown25等が挙げられるが、これに限るものではない。色域の観点からC.I.PigmentBrown25がより好ましい。
Figure JPOXMLDOC01-appb-C000001
 又、ベンズイミダゾロン系顔料の一次粒径は0.01μm以上0.20μm以下であることが好ましい。ベンズイミダゾロン系顔料の一次粒径をこのような範囲とすることで、インキ中の顔料の分散性を向上させることが可能となる。
 又、ベンズイミダゾロン系顔料以外の茶色系顔料について説明する。4-[(2,5-ジクロロフェニル)アゾ]-3-ヒドロキシ-N-(2,5-ジメトキシフェニル)-2-ナフタレンカルボキサミドとは、具体的には、C.I.PigmentBrown1等が挙げられる。1-[(4-ニトロフェニル)アゾ]-2-ナフタレノールとは、具体的には、C.I.PigmentBrown2等が挙げられる。ビス[3-ヒドロキシ-4-(フェニルアゾ)-2-ナフタレンカルボン酸]銅塩とは、具体的には、C.I.PigmentBrown5等が挙げられる。N,N’-ビス(2,4-ジニトロフェニル)-3,3’-ジメトキシ-1,1’-ビフェニル-4,4’-ジアミンとは、具体的に、C.I.PigmentBrown22等が挙げられる。3,4,9,10-ペリレンテトラカルボン酸ジイミドとは、具体的に、C.I.PigmentBrown26等が挙げられる。Δ2,2’(1H,1’H)-ビナフト[2,1-b]チオフェン-1,1’-ジオンとは、具体的に、C.I.PigmentBrown27等が挙げられる。N、N’-(10,15,16,17-テトラヒドロ-5,10,15,17-テトラオキソ-5H-ジナフト[2,3-a:2’3’-i]カルバゾール-4,9-ジイル)ビス(ベンズアミド)とは、具体的に、C.I.PigmentBrown28等が挙げられる。又、茶色系顔料には、上記茶色系顔料の他、C.I.PigmentBrown7を使用しても良い。
 フタロシアニン系顔料とは、フタロシアニン骨格を有する顔料であり、各種金属が配位されたフタロシアニンをも含む概念である。具体的には、C.I.PigmentGreen7、C.I.PigmentGreen36、C.I.PigmentGreen37、C.I.PigmentBlue16、C.I.PigmentBlue75、又はC.I.PigmentBlue15等が挙げられるが、これに限るものではない。非晶質のフタロシアニン系顔料であって青系のものを用いることが好ましい。
 又、フタロシアニン系顔料の一次粒径は0.15μm以上0.20μm以下であることが好ましい。このような範囲とすることで、インキ中のフタロシアニン系顔料の分散性を向上させることができる。
 赤外線透過性暗色インキの茶色系顔料の含有量は、フタロシアニン系顔料100質量部に対して43質量部以上233質量部以下(茶色系顔料とフタロシアニン系顔料との含有量比が、質量比で30:70~70:30の範囲)とすることが好ましく、66質量部以上150質量部以下(茶色系顔料とフタロシアニン系顔料との含有量比が、質量比で40:60~60:40の範囲)とすることがより好ましい。含有量比をこのような範囲にすることで、赤外線透過性暗色インキは、意匠性の面及び赤外線透過性の面で好ましいものとすることができる。
 赤外線透過性暗色インキの茶色系顔料の含有量は、光透過率試験の特定の波長の光の透過率によって特定することができる。又、ベンズイミダゾロン系顔料等の茶色系顔料の含有量とフタロシアニン系顔料の含有量とを意匠性の面及び赤外線透過性の面で好ましいものとするには、赤外線透過性暗色インキに含まれるベンズイミダゾロン系顔料等の茶色系顔料及びフタロシアニン系顔料が顔料成分全量中80質量%以上であって、且つ、赤外線透過性暗色インキの光透過率試験における波長425nmの光の透過率が5%以上30%以下であり、波長675nmの光の透過率が4%以上20%以下であることが好ましい。フタロシアニン系顔料は波長425nmの光を一定量透過し、波長675nmの光を透過しない性質を有する。ベンズイミダゾロン系顔料等の茶色系顔料は波長675nmの光を一定量透過する性質を有し、波長425nmの光を透過しない性質を有する。そのため、光透過率試験における波長425nmの光の透過率と、波長675nmの光の透過率と、を特定することによって、ベンズイミダゾロン系顔料等の茶色系顔料の含有量とフタロシアニン系顔料の含有量との含有量比を特定することができる。
 尚、上記の赤外線透過性暗色インキの透過率の測定方法は、例えば以下の方法により測定することができる。白色PET(188μm)上に硬化剤が含有された赤外線透過性暗色インキ5g/mをグラビアコートし、その上にポリエチレン(60μm)を積層し、45℃以上55℃以下、168時間のエージング処理をして過熱硬化させることにより赤外線反射シートを作成する。そして、赤外線反射シートのポリエチレンと白色PETとを剥離し、メチルエチルケトンを用いて赤外線透過暗色層(赤外線透過性暗色インキ)を溶解させた溶液の透過率の測定サンプル(一例として、測定サンプルの顔料の濃度は、メチルエチルケトン100gに対して顔料が0.01g以上0.5以下程度である。)を作成する。測定サンプルを石英ガラスセルに注入し、分光光度計(例えば、日本分光社製、紫外分光光度計「V-670」又は株式会社日立ハイテクノロジーズ製、「U-4100」)にて、波長300nm~1200nmの光の透過率(%)を測定し、波長425nmの光及び波長675nmの光の透過率をそれぞれ求めることで赤外線透過性暗色インキの茶色系顔料の含有量を推定することができる。
 又、上記の赤外線透過性暗色インキによって形成された赤外線透過暗色層の透過率の測定方法として以下の方法によって測定することができる。透明基材であるフッ素フィルム(100μm)上に硬化剤が含有された赤外線透過性暗色インキ5g/mをグラビアコートし、その上に同様のフッ素フィルム(100μm)を積層し、ドライラミネートを行い、45℃以上55℃以下、168時間のエージング処理をして過熱硬化させることにより透過率測定用サンプルを作成する。測定サンプルを石英ガラスセルに注入し分光光度計(例えば、日本分光社製、紫外分光光度計「V-670」又は株式会社日立ハイテクノロジーズ製、「U-4100」)にて、波長300nm~1200nmの光の透過率(%)を測定し、波長425nmの光及び波長675nmの光の透過率をそれぞれ求めることで測定することができる。
 本発明の赤外線透過性暗色インキには、顔料成分が含有される。赤外線透過性暗色インキを、樹脂成分100質量部に対して顔料成分が20質量部以上40質量部以下含有されているものとすることが好ましい。ここで、赤外線透過性暗色インキが、オキサジン系顔料等の有機顔料を含む顔料成分を含有するものである場合には、当該顔料成分の含有量が30質量部以上とすると硬化剤の接着性に悪影響を与えて、赤外線透過暗色層60の接着性が低下することが知られている。このため、特にシート同士を接着する用途として赤外線透過性暗色インキを用いることは困難であると考えられていた。しかし、茶色系顔料やフタロシアニン系顔料は、他の顔料と比べて分散性が高く、又、硬化剤の接着性に与える影響が小さい。そのため、顔料成分の含有量の割合を樹脂成分100質量部に対して30質量部以上とした場合であっても、赤外線透過暗色層60の接着性及び接着耐久性の低下をごく小さな範囲に抑えることができる。又、後述するように、赤外線透過性暗色インキは、その顔料成分の配合比を高くすることにより、より少ない塗布量で、赤外線透過暗色層60の色調を安定させることができる。尚、赤外線透過性暗色インキの顔料成分を樹脂成分100質量部に対して40質量部以下とすることで、本発明の赤外線透過性暗色インキにより形成される赤外線透過暗色層60は、接着性及び接着安定性を有する赤外線透過暗色層60とすることができる。
 本発明の赤外線透過性暗色インキには、必要に応じて硬化剤を含有させることもできる。硬化剤が含有された本発明の赤外線透過性暗色インキによって、樹脂シートに対して良好な密着性を有する赤外線透過暗色層60を形成することができる。又、赤外線透過性暗色インキに含有される硬化剤の含有量を調整することで、シート同士を接着可能な赤外線透過暗色層60を形成することができる。以下、赤外線透過性暗色インキに含有される樹脂成分を構成することのできる一実施形態として主剤と硬化剤とについてそれぞれ説明する。尚、本発明に関する樹脂成分は、以下の実施形態に限定されるわけではない。
 [主剤成分]
 樹脂成分の主剤成分は、例えばポリウレタンジオールと脂肪族ポリカーボネートジオールとの混合物を含む、ポリウレタン/ポリカーボネートジオール系を用いることができる。主剤を構成するポリウレタンジオール及び脂肪族ポリカーボネートジオールは、ともに水酸基を有するポリオールであり、イソシアネート基を有する硬化剤と反応して、接着剤層を構成するものである。本実施形態においては、主剤を特定のポリウレタンジオールと脂肪族ポリカーボネートジオールを所定量配合した混合物とすることによって、赤外線透過暗色層60の接着性及び耐候性を向上させることができる。
 主剤成分に用いることができるポリウレタンジオールは、ウレタン構造をその繰り返し単位とし、その両末端に水酸基を有するポリウレタンである。ポリウレタンジオールの数平均分子量は、7000以上13000以下であることが好ましい。7000以上であると、硬化剤との反応性が良いため好ましく、13000以下であると溶剤への溶解が向上するため好ましい。
 ポリウレタンジオールの水酸基価は、10mgKOH/g以上50mgKOH/g以下の範囲であることが好ましい。ポリウレタンジオールの水酸基価が10mgKOH/g以上であると、添加された硬化剤成分の多くが主剤成分に含まれる水酸基と反応することとなり好ましく、50mgKOH/g以下であると硬化剤との反応がより進行するため好ましい。
 ポリウレタンジオールは、接着剤の主剤成分として、その接着性及び耐候性を向上させるため、脂肪族ポリカーボネートジオールと、1,6ヘキサンジオールとイソホロンジイソシアネートを反応させて得られることを特徴としている。以下、ポリウレタンジオールの構成成分である脂肪族ポリカーボネートジオール、1,6ヘキサンジオール及びイソホロンジイソシアネートについて説明する。
 脂肪族ポリカーボネートジオールは、下記のイソホロンジイソシアネートと反応することができるポリウレタンジオールの構成成分である。脂肪族ポリカーボネートジオールは、カーボネート構造を繰り返し単位とし、その両末端に水酸基を有するものである。その両末端の水酸基は、イソシアネート基と硬化反応することができる。
 脂肪族ポリカーボネートジオールは、アルキレンカーボネートとジオールを原料に用いて製造する方法、又は、ジアルキルカーボネートやジアリールカーボネートとジオールを用いて製造する方法等を用いて製造することができる。本実施形態において使用される脂肪族ポリカーボネートジオールは、主剤成分に必要とされる性能に応じて、上記製造方法を適宜選択することにより製造することができる。
 脂肪族ポリカーボネートジオールの製造に使用できるアルキレンカーボネートとしては、エチレンカーボネート、トリメチレンカーボネート、1,2-プロピレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,2-ペンチレンカーボネート等が挙げられる。又、ジアルキルカーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等が、ジアリールカーボネートとしては、ジフェニルカーボネート等が挙げられる。
 ジオールとしては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール等の側鎖を持たないジオール、2-メチル-1,8オクタンジオール、ネオペンチルグリコール、2-エチル-1,6-ヘキサンジオール等の側鎖を持ったジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール等の環状ジオールを挙げることができる。尚、1種類のジオールを使用しても良いし、2種類以上のジオールを原料とした共重合ポリカーボネートジオールでも良い。
 脂肪族ポリカーボネートジオールの数平均分子量は、1000以上2000以下であることが好ましい。1000以上であると、ジイソシネートとの硬化反応が起こり易いため好ましく、2000以下であると接着剤成分である溶剤への溶解性が向上するため好ましい。ポリカーボネートジオールの製造においては、モノマーの反応性が高く、高分子量化し易いため、所定の数平均分子量を有するポリカーボネートジオールを得るためには、反応速度等の制御が必要となる。
 脂肪族ポリカーボネートジオールは、市販のものを用いることもできる。耐久性、耐候性、耐熱性、耐加水分解性に優れた接着剤を得るため、例えば、数平均分子量1000の脂肪族ポリカーボネートジオール(旭化成ケミカルズ社製、商品名「デュラノールT5651」)、数平均分子量2000の脂肪族ポリカーボネートジオール(旭化成ケミカルズ社製、商品名「デュラノールT5662」)を好適に用いることができる。
 1,6ヘキサンジオールは、脂肪族ジオールであり、下記イソホロンジイソシアネートと反応してポリウレタンジオールを形成することができる。1,6ヘキサンジオールは、常温で液状を示すもので、接着剤成分である溶剤に溶解し得るものである。
 1,6ヘキサンジオールとともにポリエステルジオールを用いることができる。ポリエステルジオールは、1,6ヘキサンジオールと同様に水酸基を2つ以上有するポリオールであるが、その基本骨格に嵩高い芳香族環を有するカルボン酸とのエステルとすることもできることから、イソホロンジイソシアネートと反応して得られるポリウレタンジオールに優れた硬化速度と凝集力を付与することができる。ポリエステルジオールとしては、例えば、イソフタル酸を使用して製造した芳香族ポリエステルジオールを挙げることができる。尚、本実施形態においてポリエステルジオールは、定法に従って、所定のカルボン酸化合物とジオールの組み合わせを採択することによって製造することができる。
 ポリエステルジオールの数平均分子量は、3000以上4000以下であることが好ましい。ポリエステルジオールの数平均分子量が3000以上であると、硬化剤との反応性が良くなるため好ましく、ポリエステルジオールの数平均分子量が4000以下であると溶剤への溶解性が向上するため好ましい。
 イソホロンジイソシアネートは、ポリウレタンジオールの構成成分であり、脂環族系ポリイソシアネートである。イソホロンジイソシアネートは、上記脂肪族ポリカーボネートジオール、1,6ヘキサンジオール又はポリエステルジオールの水酸基と反応し、主剤成分であるポリウレタンジオールを形成する。
 以上説明した脂肪族ポリカーボネートジオールと、脂肪族ジオールとイソホロンジイソシアネートを溶剤に溶解させ、混合し加熱還流することにより反応させて、主剤成分であるポリウレタンジオールの溶液を得ることができる。上記反応においては、脂肪族ポリカーボネートジオールと脂肪族ジオールのそれぞれが有する両末端の水酸基がイソホロンジイソシアネートのイソシアネート基と反応し、ウレタン結合を形成して硬化する。
 主剤成分であるポリウレタンジオールを製造する反応系における1,6ヘキサンジオールの配合量は、脂肪族ポリカーボネートジオール100質量部に対し、5質量部以上15質量部以下が好ましく、2質量部以上8質量部以下であることがより好ましい。1,6ヘキサンジオールの配合量が5質量部以上であると、耐久性のある接着剤成分を得ることができるため好ましく、15質量部以下であると溶剤への溶解性が向上するため好ましい。
 又、ポリウレタンジオールを製造する反応系におけるポリエステルジオールの配合量は、脂肪族ポリカーボネートジオール100質量部に対し、50質量部以上100質量部以下であることが好ましい。ポリエステルジオールの配合量が50質量部以上であると、耐久性のある接着剤成分を得ることができるため好ましく、100質量部以下であると溶剤への溶解性が向上するため好ましい。
 尚、脂肪族ポリカーボネートジオールと、脂肪族ジオールとイソホロンジイソシアネートを反応させる場合に用いることができる溶剤としては、これらの化合物を溶解させることができ、溶剤と反応しないものであれば、特に制限されるものではないが、溶剤等との相溶性とラミネート時の加工性の観点より酢酸エチル等のカルボン酸エステル系の溶剤を挙げることができる。
 主剤成分である脂肪族ポリカーボネートジオールは、イソシアネート基を有する硬化剤成分と反応する。脂肪族ポリカーボネートジオールは、ポリウレタンジオールを製造する際に使用した上記の脂肪族ポリカーボネートジオールと同一のものを用いることができる。
 主剤成分は、上記説明したポリウレタンジオールと脂肪族ポリカーボネートジオールとの混合物である。混合物中におけるポリウレタンジオールと脂肪族ポリカーボネートジオールの質量比率は、ポリウレタンジオール100質量部に対して、脂肪族ポリカーボネートジオール10質量部以上20質量部以下であることが好ましい。脂肪族ポリカーボネートジオールの量が10質量部以上であると、密着力が適度に低下するため好ましく、20質量部以下であると、ポリウレタンジオールと硬化剤との反応が起こり易くなるため好ましい。
 尚、主剤には、主剤成分であるポリウレタンジオール、脂肪族ポリカーボネートジオールの他に、必要に応じて、粘着付与剤、安定化剤、充填剤、可塑剤、軟化点向上剤、触媒等を添加剤として混合することができる。粘着付与剤としては、ロジン系樹脂、テルペン系樹脂等が挙げられる。安定化剤としては、酸化防止剤、紫外線防止剤等が挙げられる。充填剤としては、無機フィラー等が挙げられる。
 [硬化剤]
 赤外線透過性暗色インキに用いることができる硬化剤は、例えばポリイソシアネート化合物を主成分とするものが挙げられる。ポリイソシアネート化合物は、1分子中に2以上のイソシアネート基を有する化合物であり、このイソシアネート基が上記主剤のポリウレタンジオール化合物中の水酸基と反応することにより、ポリウレタンジオール化合物を架橋する。このようなポリイソシアネート化合物としては、上記主剤のポリウレタンジオール化合物を架橋することができるものであれば特に限定されるものではないが、例えば、ポリウレタンジイソシアネート、ヘキサメチレンジイソシアネート(以下、「HDI」)、イソシアヌレート変性のイソホロンジイソシアネート(以下、「ヌレート変性IPDI」)等を例示することができる。これらのポリイソシアネート化合物の中でも、HDIとヌレート変性IPDIとを組み合わせた混合物が水酸基に対する反応性を向上させる観点より好ましい。尚、硬化剤をHDIとヌレート変性IPDIとの混合物とする場合、HDIとヌレート変性IPDIは、70:30~50:50(質量比)の範囲で用いることが好ましい。
 [主剤と硬化剤の配合]
 赤外線透過性暗色インキの成分は、硬化剤を含有し基材等同士を接合するものとする場合には、主剤と硬化剤の配合比率は、(ポリイソシアネート化合物由来のイソシアネート基)/(ポリウレタンジオール化合物由来の水酸基)の比が1.0以上3.5以下の範囲であることが好ましく、更に、1.2以上3.0以下の範囲にあることが好ましい。主剤成分のポリウレタンジオール化合物と硬化剤成分のポリイソシアネート化合物との配合比率が上記範囲にあることにより、各基材を強固に接合することができる赤外線透過性暗色インキを得ることができるため好ましい。
 [シランカップリング剤等の添加剤]
 上記の他、必要に応じてシランカップリング剤、粘着付与剤、安定化剤、充填剤、可塑剤、軟化点向上剤、触媒等を添加剤として混合することができる。シランカップリング剤としては、例えば、メチルトリメトキシラン、メチルトリエトキシシラン等のシランモノマー、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニルシラン、3-メタクリロキシプロピルエトキシシラン、3-メタクリロキシプロピルメトキシシラン等のメタクリルシラン、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシランを挙げることができる。粘着付与剤としては、ロジン系樹脂、テルペン系樹脂等が挙げられる。安定化剤としては、酸化防止剤、紫外線防止剤等が挙げられる。充填剤としては、無機フィラー等が挙げられる。
 尚、上記シランカップリング剤の添加量は、赤外線透過性暗色インキの主剤と硬化剤との合計100質量部に対し、1質量%以上3質量%以下のシランカップリング剤であることが好ましい。シランカップリング剤の添加量が1質量%以上であると密着力が良好となるため好ましく、3質量%以下であると耐久性が向上するため好ましい。
 [溶剤]
 上記の赤外線透過性暗色インクの組成物として、良好な塗布性及びハンドリング適正を得るために、溶剤成分を添加することが好ましい。このような溶剤成分としては、上記酢酸エチル、酢酸メチル、プロピオン酸メチル等のカルボン酸エステルを挙げることができるがこれに限定されない。尚、主剤と硬化剤の2液剤として構成される場合には、主剤で使用される溶剤成分と硬化剤で使用される溶剤成分はそれぞれ独立に選択され、同一でも異なっていても良い。
 尚、赤外線透過性暗色インクの組成物はこれに限らず、水性型、溶液型、エマルジョン型、分散型等のいずれの組成物形態でも良い。又、その性状は、フィルム・シート状、粉末状、固形状、接着剤等のいずれの形態でも良い。更に、接着機構については、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれの形態でも良い。
 <赤外線反射シート>
 上記赤外線透過性暗色インクを用いることにより、赤外線反射シートを製造することができる。赤外線反射シートとは、図2の赤外線反射シート6のように、透明密着層62と赤外線透過暗色層60と反射層61とが積層された積層体を例示することができる。尚、図2の赤外線反射シート6は太陽電池モジュール用の裏面保護シートとして用いられているが、本発明の赤外線反射シートの使用用途が太陽電池モジュール用の裏面保護シートに限定されるわけではない。以下、赤外線反射シートを構成する各層について各々説明する。
 [赤外線透過暗色層]
 本実施形態に関する赤外線透過暗色層60は、水酸基を有する主剤樹脂と、イソシアネート基を有する硬化剤と、顔料成分とを、を含有する層である。本実施形態に関する赤外線透過暗色層60は、水酸基を有する主剤樹脂と、イソシアネート基を有する硬化剤と、を含有しており、シート同士を接着する機能を有する。
 本実施形態に関する赤外線透過暗色層60は、以上説明した硬化剤を含有した赤外線透過性暗色インクを、反射層61及び/又は透明密着層62上に塗布又は積層して乾燥硬化することにより形成することができる。塗布の方法としては、ロールコート法、グラビアロールコート法、キスコート法、その他等のコート法、或いは、印刷法等によって塗布することができる。
 ここで、オキサジン系化合物等の従来の暗色系の有機顔料を含有する赤外線透過性暗色インクを用いる場合は、意匠性、赤外線透過性、及び積層部材に必要な接着性及び接着安定性を両立するには、その塗布量を10g/m以上にする必要がある。しかし、本実施形態の硬化剤を含有する赤外線透過性暗色インクを用いる場合には、5g/m以上15g/m以下の範囲、好ましくは5g/m以上7g/m以下の範囲の塗布量で十分それらを両立させることができる。これは、樹脂成分100質量部に対して顔料成分が20質量部以上40質量部以下好ましくは30質量部以上40質量部以とすることで、従来よりも少ない塗布量においても十分に色調を安定させることができるからである。尚、このことは、本発明の赤外線透過性暗色インクを用いて製造された赤外線反射シートの歩留りを高めて、生産性を向上させるにも結びつく。
 又、茶色系顔料及びフタロシアニン系顔料は他の顔料と比べて分散性が高く、且つ、硬化剤の接着性に与える影響が小さいため、顔料を含有することによる接着性及び接着安定性の低下を抑えることができる。尚、赤外線透過暗色層60の厚さは、5μm以上15μm以下の範囲であることが好ましく、5μm以上7μm以下の範囲であることがより好ましい。
 [反射層]
 反射層61は、白色顔料を含む樹脂シート又は白色顔料を含むコート層(塗布膜や印刷膜)を形成した樹脂シートからなり、近赤外線を反射する白色樹脂層である。反射層61は、赤外線透過暗色層60を透過してきた近赤外線を反射する機能を有する。そのため、例えば、本実施形態の赤外線反射シート6が、太陽電池モジュール用の裏面保護シートとして用いられた場合には、本実施形態の赤外線反射シート6は、太陽電池モジュール1の発電効率向上に十分に寄与することのできる赤外線反射シート(裏面保護シート)6となる。尚、本明細書では、樹脂をシート状に加工したものの名称として樹脂シートという用語を使用するが、この用語は、樹脂フィルムも含む概念として使用する。
 反射層61を構成する樹脂シートとしては、PTFE(ポリテトラフルオロエチレン)、ETFE(四フッ化エチレン・エチレン共重合体)等のフッ素系樹脂、ポリ(メタ)アクリル系樹脂、PET(ポリエチレンテレフタレート)等のポリエステル系樹脂等の樹脂シートを好ましく用いることができる。ここで、本実施形態では反射層61は太陽電池モジュール1における最外層に配置されるため、高い耐候性、バリア性、耐加水分解性が求められる。そのような観点から、以上のうちでも、ETFEに代表されるフッ素系樹脂、或いは、PETに代表されるポリエステル系樹脂を用いることが特に好ましい。
 反射層61は、近赤外線を反射する機能を有する必要がある。そのために、粒径が0.5μm以上1.5μm以下の白色顔料を含む白色樹脂層を用いることが好ましく、粒径が0.8μm以上1.2μm以下であることがより好ましい。又、反射層61においては、粒径が0.8μm以上1.2μm以下の白色顔料の粒子が、全白色顔料の粒子中の80質量%以上であることが好ましい。白色顔料の粒径及び配分比を上記の範囲にすることにより、白色樹脂層は近赤外線を効率良く反射することができる。又、本発明の赤外線反射シートが、太陽電池モジュール用の裏面保護シートとして用いられた場合には、上記白色顔料は太陽電池モジュールの発電効率向上に寄与する。「近赤外線を反射」とは、およそ750nm以上2200nm以下の波長領域において、積分反射率が85%以上である機能を意味する。
 粒径が0.5μm以上1.5μm以下の白色顔料の代表例は酸化チタンであり、本発明においても、白色顔料として、酸化チタンを用いることが好ましい。ここで、酸化チタンには表面処理された酸化チタンも含まれる。例えば、上記粒径範囲の白色顔料が酸化チタンである場合、その製造は、以下のようにして行うことができる。
 含水酸化チタンを原料とし、そこに酸化チタン分に対して酸化アルミニウム換算で0.1質量%以上0.5質量%以下のアルミニウム化合物と炭酸カリウム換算で0.1質量%以上0.5質量%以下のカリウム化合物、及び、酸化亜鉛換算で0.2質量%以上1.0質量%以下の亜鉛化合物を添加し、乾燥、焙焼することによって、主として酸化チタンからなる上記粒径範囲の白色顔料を製造することができる。
 反射層61の製造方法については、例えば、樹脂シート上に白色顔料を含むコート層を形成する方法、樹脂シート中に白色顔料を練り込む方法が挙げられる。いずれも、特に限定はなく従来公知の方法により製造することができる。
 樹脂シート上に白色顔料を含むコート層(塗布膜や印刷膜)を形成する場合は、通常の塗料用ないしインキ用ビヒクルを主成分とし、これに、白色顔料を添加する。更に、必要に応じて、紫外線吸収剤、架橋剤、その他の添加剤を任意に添加し、塗料ないしインキ組成物を調整し、基材フィルムの表面に、通常のコーティング法或いは印刷法等を用いて塗布ないし印刷し、その塗布膜或いは印刷膜を形成することができる。
 樹脂シート中に白色顔料を練り込む場合は、樹脂シートを構成する樹脂を主成分とし、これに、白色顔料を添加する。更に、必要に応じて、その他等の添加剤を任意に添加し、樹脂組成物を調整し、例えば、押し出し法、Tダイ法等のフィルム成形法により、白色顔料を練り込み加工してなるシートを製造することができる。
 [透明密着層]
 本実施形態に関する透明密着層62は、近赤外光を透過し、赤外線反射シート6の最外層に配置される層である。又、透明密着層62は、他の樹脂層と密着性を有する層であり、例えば、エチレン-酢酸ビニルアルコール共重合体樹脂(EVA樹脂)、又はポリエチレン等のポリオレフィンが含有される樹脂層と密着性を有する層である。そのため、図2の透明密着層62のように、背面封止材層5と透明密着層62とを積層させ、密着させることができる。
 本実施形態に関する透明密着層62には、反射層61で反射された近赤外線を透過するものであること、又、意匠性の要請より透明若しくは半透明であることが求められる。このような観点から、透明密着層62には、ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂、ポリエチレンテレフタレート(PET)を用いることが好ましい。
 [その他の層]
 本実施形態の赤外線反射シート6には、本発明の効果を害さない範囲で、その他の層を設けても良い。例えば、上記の反射層61の透明密着層62の積層面の反対側であって、赤外線反射シート6の最外側にフッ素系樹脂やポリエチレンテレフタレート(PET)等からなる耐候層(図示せず)を更に積層されていても良い。この場合は意匠性向上のために耐候層を暗色としても良い。或いは、反射層61と透明密着層62の間に、例えば裏面保護シート6の強度を増すための他の透明な補強層(図示せず)を設けても良い。
 又、反射層61の赤外線透過暗色層60の積層面の反対側の面には、暗色系の有機顔料が含まれる赤外線透過コート層が更に積層されていても良い。赤外線透過暗色層と赤外線透過コート層がそれぞれ積層されることによって、赤外線反射シートの両面を暗色系の色で統一させることができる。本実施形態の赤外線反射シートは、両面を暗色系の色で統一された赤外線反射シートであるため、意匠性の面から好ましい。
 更に、本実施形態に関する赤外線透過コート層を赤外線透過暗色層60同様に、波長750nm以上1500nm以下の近赤外線を透過する層とすることにより、波長750nm以上1500nm以下の近赤外線の吸収に起因する発熱を抑えることができる。
 赤外線透過コート層に含有される暗色系の有機顔料の具体例としては、オキサジン系、ベンズイミダゾロン系、ピロール系、キナクリドン系、アゾ系、ペリレン系、ジオキサン系、イソインドリノン系、インダスレン系、キノフタロン系、ペリノン系、フタロシアニン系等が挙げられる。耐UV性の観点から、オキサジン系の有機顔料又はベンズイミダゾロン系顔料、4-[(2,5-ジクロロフェニル)アゾ]-3-ヒドロキシ-N-(2,5-ジメトキシフェニル)-2-ナフタレンカルボキサミド、1-[(4-ニトロフェニル)アゾ]-2-ナフタレノール、ビス[3-ヒドロキシ-4-(フェニルアゾ)-2-ナフタレンカルボン酸]銅塩、C.I.PigmentBrown7、N,N’-ビス(2,4-ジニトロフェニル)-3,3’-ジメトキシ-1,1’-ビフェニル-4,4’-ジアミン、3,4,9,10-ペリレンテトラカルボン酸ジイミド、Δ2,2’(1H,1’H)-ビナフト[2,1-b]チオフェン-1,1’-ジオン及びN、N’-(10,15,16,17-テトラヒドロ-5,10,15,17-テトラオキソ-5H-ジナフト[2,3-a:2’3’-i]カルバゾール-4,9-ジイル)ビス(ベンズアミド)からなる群より選ばれた少なくとも一種以上の顔料と、フタロシアニン系顔料と、からなる暗色顔料を好ましく用いることができる。
 尚、赤外線透過性暗色インキに含有される顔料成分を基材フィルム中に練り込むことによって、赤外線透過暗色層60と同様に意匠性の高い、暗色フィルム又は暗色シートを製造することができる。又、これらの暗色フィルム又は暗色シートを、多層シートにおける赤外線透過暗色層とすることができる。この基材フィルム中への練り込みよる暗色フィルム又は暗色シートの製造においては、上記顔料成分における茶色系顔料の含有量は、フタロシアニン系顔料100質量部に対して43質量部以上233質量部以下(茶色系顔料とフタロシアニン系顔料との含有量比が、質量比で30:70~70:30の範囲)、より好ましくは66質量部以上150質量部以下(茶色系顔料とフタロシアニン系顔料との含有量比が、質量比で40:60~60:40の範囲)とすることが好ましい。
 上記のように、顔料成分を基材フィルム中に練り込むことによって、上記の暗色フィルム又は暗色シートを形成する場合、先ず、基材フィルムを構成する熱可塑性樹脂を主成分とし、これに、上記の顔料成分を添加し、更に、必要に応じて、紫外線吸収剤、可塑剤、光安定剤、酸化防止剤、帯電防止剤、架橋剤、硬化剤、充填剤、滑剤、強化剤、補強剤、難燃剤、耐炎剤、発泡剤、防カビ剤、顔料・染料等の着色剤、その他等の添加剤の1種ないし2種以上を任意に添加する。更に、必要に応じて、溶剤、希釈剤等を添加し、十分に混練して熱可塑性樹脂組成物を調整する。このようにして調整した熱可塑性樹脂組成物を例えば、押し出し機、Tダイ押出機、キャスト成形機、インフレーション成形機等を使用して、押し出し法、Tダイ法、キャスト成形法、インフレーション法、その他等のフィルム成形法により、上記の暗色フィルム又は暗色シートを製造することができる。更に、必要に応じて、例えば、テンター方式、或いは、チューブラー方式等を利用して1軸ないし2軸方向に延伸してこれらのフィルム又はシートを製造することもできる。
 赤外線反射シートにその他の層を設ける場合には、各層を接着するための接着剤層が複数の位置に形成される場合がある。このとき透明密着層62と赤外線透過暗色層60の間に配置される各層が透明であれば、複数の接着剤層のうち、反射層61よりも透明密着層側にある任意の接着剤層を赤外線透過暗色層60とすることにより、外観を暗色としつつ、十分な耐候性及び耐久性を備えた赤外線反射シートとすることができる。又、本実施形態の赤外線反射シートを太陽電池モジュール用の裏面保護シートに転用すれば、太陽電池モジュールの発電効率の向上に充分に寄与しうる裏面保護シートとすることができる。このような赤外線反射シート(裏面保護シート)も本発明の範囲である。
 [太陽電池モジュール用の裏面保護シート]
 本実施形態の赤外線反射シートの好ましい使用例について説明する。例えば、本実施形態の赤外線反射シート6を、太陽電池モジュールの太陽電池素子の非受光面側に配置することで、太陽電池モジュール用の裏面保護シートとして用いることができる。図1は、太陽電池モジュ-ルについて、その層構成の一例を例示する断面の模式図である。太陽電池を構成する太陽電池モジュール1は、図1に示すように入射光7の受光面側から、透明前面基板2、前面封止材層3、太陽電池素子4、背面封止材層5、裏面保護シート(赤外線反射シート)6が順に積層された構成である。
 裏面保護シートを、図2を用いて説明する。裏面保護シート6は、赤外線透過暗色層60と、反射層61と、透明密着層62とを有する。反射層61と透明密着層62は赤外線透過暗色層60を介して接着される。太陽電池モジュール1においては、反射層61がモジュールの最外層側に、透明密着層62がモジュールの内層側、即ち、背面封止材層5の側に配置される。
 ここで、一般的に太陽電池モジュール用の封止材の多くは透明或いは半透明である。よって、太陽電池モジュール1を透明前面基板2側から見た場合、太陽電池素子4が配置されていない隙間の部分については、透明密着層62を通して、赤外線透過暗色層60の色が見えることになる。又、太陽電池素子4については、表面が黒色又はそれに近い暗色である場合が多い。特に近年需要が増えている薄膜系の太陽電池素子については、ほとんどの製品においてその表面は黒色又はそれに近い暗色である。裏面保護シート6は、赤外線透過暗色層60が黒色又はそれに近い暗色であるため、多くの太陽電池モジュール、とりわけ、薄膜系の太陽電池素子を搭載した薄膜型太陽電池モジュールの外観を、黒色又はそれに近い暗色で統一し、意匠性の面で好ましいものとすることができる。
 裏面保護シート(赤外線反射シート)6の外観を黒色又はそれに近い暗色で統一するためには、例えば、JIS-Z8722に準拠して、D65光源、10°視野角の条件によって測定した赤外線透過暗色層60の色調とカーボンブラックとの色調との色差ΔEabが10以下であることが好ましく、7以下であることがより好ましい。
 裏面保護シート6においては、透明密着層62側から太陽電池素子4に吸収されなかった太陽光が入射する。入射光に含まれる近赤外線の多くは、赤外線透過暗色層60に吸収されることなく透過するため、反射層61まで到達する。反射層61は近赤外線を反射するものであるため、反射層61まで到達した赤外線の多くは、赤外線透過暗色層60に戻るように反射される。反射した赤外線は、赤外線透過暗色層60を透過し、更に反射して太陽電池素子4に吸収される。赤外線透過暗色層60が赤外線を吸収しないため、近赤外線の吸収に起因する発熱を抑えることができる。この結果、太陽電池モジュール1の発熱による発電効率低下を防ぐことができる。
 更に本発明の赤外線透過性暗色インキは、茶色系顔料及びフタロシアニン系顔料を所定の比率で含有している。そのため、従来の赤外線透過性暗色インキを用いた場合よりも近赤外線の透過率がより高い。これにより、近赤外線の吸収を抑えることで太陽電池モジュールの温度上昇を抑えるとともに、赤外線を発電に利用することで太陽電池モジュールの発電効率を更に上昇させることができる。従って、本実施形態の赤外線反射シートを裏面保護シートとして用いた太陽電池モジュールは、発電効率がより向上する。
 尚、薄膜型太陽電池モジュールにおいては、必ずしもモジュール内の全ての構成要素の発熱を抑えることが発電効率の向上に寄与するわけではなく、アニール効果との関係により、黒色又は暗色である太陽電池素子の表面温度については50℃以上70℃以下にまで高めることが好ましい。本実施形態の赤外線反射シートを裏面保護シートとして用いた場合には、意匠性に係る要求を満たすためにその外観を黒色又はそれに近い暗色に限定しながらも、反射層61で反射した近赤外線を裏面保護シート6の内部において蓄熱することなく、太陽電池素子4へとロスなく吸収させることができる。これにより、黒色又は暗色である薄膜系の太陽電池素子の表面温度を効率良く上記温度に高めることができる。そのような点からも、本発明の赤外線反射シートは、薄膜系の太陽電池モジュールの裏面保護シートとして特に好ましく用いることができる。
 [太陽電池モジュール用の裏面保護シートの製造方法]
 裏面保護シート6は、反射層61と透明密着層62の間に赤外線透過暗色層60を設けて、ドライラミネート加工により製造することができる。尚、その他の層を設けることにより、接着剤層が複数の層となる場合にも、同様の方法で各層を密着させて積層することができる。
 [太陽電池モジュールの製造方法]
 太陽電池を構成する太陽電池モジュール1の製造方法は、太陽電池を構成する各部材を順次積層し、真空熱ラミネート加工により一体化する方法を例示することができる。この際のラミネート温度は、130℃以上190℃以下の範囲内とすることが好ましい。又、ラミネート時間は、5分以上60分以下の範囲内が好ましく、特に8分以上40分以下の範囲内が好ましい。このようにして、太陽電池を構成する各部材を一体成形体として加熱圧着成形して、太陽電池モジュール1を製造することができる。
 <赤外線反射シートの他の実施形態>
 本発明の赤外線反射シートの他の実施形態について図6を用いて説明する。(尚、必要に応じて、図6の本実施形態の赤外線反射シート6と区別するために、図2の赤外線反射シート6ように赤外線透過暗色層60がシート同士を接着する機能を有する赤外線透過暗色層が積層された赤外線反射シートについて、「上記の実施形態の赤外線反射シート」と表記することがある。)本実施形態の赤外線反射シートの赤外線透過暗色層60は、シート同士を接着する機能を有しない赤外線透過暗色層60であり、透明密着層62と反射層61との間に積層される層のうち2つの層が、赤外線透過暗色層60及び透明接着剤層63である。意匠性の観点からシートの全面を暗色にはせず、例えば、パターニングのような模様等を施すために、部分的に着色された赤外線反射シートが求められる場合がある。このような赤外線反射シートを製造する際には、例えば、予め、赤外線透過性を有する赤外線透過性暗色インキを、透明密着層及び/又は反射層のような樹脂シートに部分的に塗布し、このように部分的に塗布された赤外線透過性暗色インキを硬化させることによって赤外線透過暗色層60を形成し、その後顔料を混入させていない透明接着剤を塗布及び硬化させて透明接着剤層を形成し、反射層と透明密着層とを積層することで、部分的に着色されていることによってパターニングのような模様等を有する赤外線反射シートを製造することができる。
 又、透明密着層62及び透明接着剤層32の代わりに、反射層の表面に、赤外線透過暗色層と、全光線を透過する透明易接着剤層と、がこの順に積層されてなる赤外線反射シートであっても、反射層に部分的に赤外線透過性暗色インキを塗布し、赤外線透過性暗色インキを硬化させることによって赤外線透過暗色層60を形成することで、同様にパターニングのような模様等を有する赤外線反射シートを製造することができる。透明接着剤層及び透明密着層の代わりに、透明易接着剤層を積層することにより、赤外線反射シートの層を減らすことが可能になるため、生産性の面から好ましい。
 赤外線透過暗色層60は赤外線透過性暗色インキにより形成されているため、近赤外線を透過する。透明接着剤層も赤外線を吸収する顔料が含有していないため近赤外線を透過する。750nm以上1500nm以下の近赤外線を反射する反射層は、赤外線透過暗色層60及び透明接着剤層を透過した近赤外線を反射することができる。そのため、この実施形態の赤外線反射シートを太陽電池モジュール用の裏面保護シートとして用いた場合にも、やはり、赤外線透過暗色層60及び透明接着剤層を透過した近赤外線を発電として再利用することができる(図6参照)。本実施形態の赤外線反射シートを太陽電池モジュール用の裏面保護シートとして用いた場合には、その裏面保護シートは、意匠性にも優れ、従来と同様に高い発電効率を維持することのできる優れた太陽電池モジュール用の裏面保護シートとなる。
 [赤外線透過暗色層]
 以下、この実施形態における赤外線反射シートについて、この実施形態に特有の部分を中心に説明する。赤外線透過暗色層60は、主として、反射層61と透明密着層62の間に積層体として配置される。赤外線透過暗色層60は、透明密着層及び/又は反射層表面の全面に積層されていても良いし、透明密着層及び/又は反射層表面の一部にのみに積層されていても良い。透明密着層及び/又は反射層表面の一部にのみに赤外線透過暗色層60が積層された赤外線反射シートは、意匠性の高い赤外線反射シートである。尚、この赤外線透過暗色層60は、反射層61より受光面側であれば、例えば図6に示すように透明密着層62に接着させても良いし、図6に示すもの以外でも反射層61と接触させる形で反射層61の内側に積層させても良い。
 又、本実施形態の赤外線反射シートにおいては、上記の実施形態の赤外線反射シートと同様に赤外線透過暗色層60は、水酸基を有する主剤樹脂(以下単に「主剤樹脂」とも言う)がイソシアネート系の硬化剤により架橋されている架橋樹脂によって構成される。赤外線透過暗色層60は、主剤樹脂、硬化剤、溶剤、及び茶色系顔料及びフタロシアニン系顔料を含んでなる顔料成分からなる赤外線透過性暗色インキを、樹脂シートの表面に塗布し、塗布された赤外線透過性暗色インキを乾燥硬化させることにより形成することができる。
 本実施形態の赤外線透過性暗色インキのように、透明密着層及び/又は反射層表面に赤外線透過暗色層を形成する赤外線透過性暗色インキの場合は、主剤樹脂成分100質量部に対して顔料成分が20質量部以上50質量部以下とすることが好ましく、35質量部以上45質量部以下とすることがより好ましい。顔料成分の含有量をこの範囲にすることにより色調を安定させることができる。又、少量の赤外線透過性暗色インキにより赤外線透過暗色層60を形成することができるようになるため、赤外線透過暗色層60が樹脂シートの表面の一部のみに積層されている場合でも、赤外線透過暗色層60が積層されている表面と赤外線透過暗色層60が積層されていない表面との段差は小さいものとなる。そのため、少量の透明接着剤により透明密着層62と反射層61と透明接着剤層63を介して積層することが可能となり、低コストで赤外線反射シートを製造することができる。又、透明密着層62及び透明接着剤層32の代わりに、反射層の表面に、赤外線透過暗色層と、全光線を透過する透明易接着剤層と、がこの順に積層されてなる赤外線反射シートであっても、少量のプライマー剤により反射層61と背面封止材層5等の他の層とを介して積層することが可能となり、低コストで赤外線反射シートを製造することができる。
 本実施形態の赤外線反射シートの製造工程において、赤外線透過暗色層が形成された樹脂シートは、透明接着剤又はプライマー剤を塗布する前工程において、一度最外面に露出する。そのため、シート同士を接着する機能を有しない本実施形態に関する赤外線透過暗色層は、耐ブロッキング性が要求される。
 本実施形態の赤外線反射シートにおける主剤と硬化剤の配合比率は、主剤樹脂のOH価に対する硬化剤のNCO価の比であるNCO/OH比が1.0以上2.0以下の範囲とすることが好ましい。NCO/OH比を2.0以下とすることで、赤外線透過暗色層60の耐ブロッキング性を向上させることができる。NCO/OH比を1.0以上とすることで、赤外線透過暗色層60と樹脂シートとの密着性を向上させることができる。
 又、赤外線透過暗色層60と樹脂シートとの密着性及び赤外線透過暗色層60の耐ブロッキング性の観点から、樹脂成分の主剤成分としてポリウレタン/ポリカーボネートジオール系を用いた場合には、ポリウレタンジオールの数平均分子量は、6000以上8000以下、ポリウレタンジオールの水酸基価は、15mgKOH/gであることが好ましい。又、硬化剤としては、ヘキサメチレンジイソシアネートのイソシアヌレート変性体(HDIヌレート体)とイソホロンジイソシアネート(IPDI)のTMPアダクト変性体とが、1:1(質量比)である混合物を用いることが好ましい。
 本実施形態の赤外線反射シートにおける赤外線透過性暗色インクの塗布量は3g/m以上7g/m以下の範囲であることが好ましい。赤外線透過性暗色インクの塗布量は3g/m以上であることで、赤外線透過暗色層60の色味を十分なものにすることができる。赤外線透過性暗色インクの塗布量が7g/m以下であることで、赤外線透過暗色層60が積層されている表面と赤外線透過暗色層60が積層されていない表面との段差は小さいものとなる。そのため、少量の透明接着剤により反射層61と透明密着層62とを透明接着剤層63を介して積層することが可能となり、低コストで赤外線反射シートを製造することができる。
 [透明接着剤層]
 透明接着剤層63は、主として反射層61と透明密着層62を接合するために設けられる接着剤層である。本実施形態において透明接着剤層63は、反射層61の上面、又は、該上面に対向する透明密着層62の下面に塗布された透明接着剤が積層後に硬化することによって形成される。
 透明接着剤層63には、十分な接着性と接着耐久性が求められ、かつ、近赤外線を反射するために、この近赤外線を透過する性質を有するものであるものが好ましい。
 透明接着剤層63を形成する透明接着剤には、本実施形態の赤外線透過性暗色インキ同様に硬化した状態において波長750nm以上1500nm以下の光線を透過する特性を有する透明接着剤を用いることが好ましい。
 透明接着剤層63に用いる接着剤組成物は、本実施形態の赤外線透過性暗色インキ同様に好ましくは主剤と硬化剤からなる2液タイプであり、塗布性、ハンドリング性の観点から、組成物としては適宜溶剤が含まれる。
 透明接着剤層に用いられる透明接着剤の主剤樹脂成分は、本実施形態の赤外線透過性暗色インキ同様にポリウレタンジオールと脂肪族ポリカーボネートジオールとの混合物を含む、ポリウレタン/ポリカーボネートジオール系が好ましい。主剤を特定のポリウレタンジオールと脂肪族ポリカーボネートジオールを所定量配合した混合物とすることによって、透明接着剤層の接着性及び耐候性を向上させている。
 本実施形態に関する透明接着剤層63に用いる接着剤組成物は、主剤と硬化剤を主成分とするものであるが、主剤と硬化剤の配合比率は、上記の実施形態の赤外線反射シートに用いられる赤外線透過性暗色インキ同様で良い。主剤成分のポリウレタンジオール化合物と硬化剤成分のポリイソシアネート化合物との配合比率が上記範囲にあることにより、各基材を強固に接合することができる接着剤を得ることができるため好ましい。尚、上記の他、必要に応じてシランカップリング剤、粘着付与剤、安定化剤、充填剤、可塑剤、軟化点向上剤、触媒等を添加剤として混合することができる。
 上記の透明接着剤組成物として、良好な塗布性及びハンドリング適正を得るために、溶剤成分を添加することが好ましい。このような溶剤成分としては、上記酢酸エチル、酢酸メチル、プロピオン酸メチル等のカルボン酸エステルを挙げることができるがこれに限定されない。尚、既に述べたように上記接着剤は、主剤と硬化剤の2液タイプとして構成されるが、主剤で使用される溶剤成分と硬化剤で使用される溶剤成分はそれぞれ独立に選択され、同一でも異なっていても良い。
 尚、透明接着剤組成物はこれに限らず、水性型、溶液型、エマルジョン型、分散型等のいずれの組成物形態でも良く、又、その性状は、フィルム・シート状、粉末状、固形状等のいずれの形態でも良く、更に、接着機構については、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれの形態でも良い。
 以上説明した接着剤組成物を例えば反射層61及び/又は透明密着層62上に塗布又は積層して乾燥硬化することにより透明接着剤層63を形成することができる。
 [透明密着層]
 本実施形態に関する透明密着層は、上記の実施形態の赤外線反射シートに用いられる透明密着層に用いられる層と同様のものを用いることができる。本実施形態に関する透明密着層は、押し出し法、Tダイ法等のフィルム成形法により製造されたフィルムやシートを使用することができる。
 [透明易接着剤層]
 又、透明接着剤層及び透明密着層の代わりに、透明易接着剤層が、背面封止材層5と赤外線透過暗色層60との間に形成されていても良い。透明易接着剤層とは、いわゆるプライマー層であり、透明易接着剤層を構成するプライマー組成物を、例えばオレフィン系樹脂と水性媒体を含有してなり、有機溶剤を実質的に含有しないプライマー組成物を用いることができる。透明接着剤層及び透明密着層の代わりに、透明易接着剤層を積層することにより、赤外線反射シートの層を減らすことが可能になるため、生産性の面から好ましい。
 透明易接着剤層を形成するために用いる上記のプライマー組成物(以下、単に「プライマー組成物」とも言う)に含まれるオレフィン系樹脂は、オレフィン成分と不飽和カルボン酸成分とを含んでなる、酸変性ポリオフィン樹脂であることが好ましい。又、当該酸変性ポリオフィン樹脂は、JIS K7210に準拠して測定した190℃、荷重2.16kgにおけるMFRが0.01g/10min以上100g/10min未満であることが好ましい。これによりプライマー組成物段階での水性媒体への良好な分散性を保持し、尚且つ、背面封止材5を形成するオレフィン系樹脂への接着性に優れる透明密着層62を形成することができる。
 プライマー組成物は、例えば、特開2013-74172号公報に記載のプライマー組成物を用いることができる。背面封止材層5と赤外線透過暗色層との間において強固な接着性を発現することができる。
 [その他の層]
 本実施形態の赤外線反射シートには、上記の実施形態の赤外線反射シートと同様に本発明の効果を害さない範囲で、その他の層を設けても良い。
 [太陽電池モジュール用の裏面保護シート]
 本実施形態の赤外線反射シートは、例えば赤外線透過暗色層60を予め積層した反射層61又は透明密着層62を用いてそれらの間に透明接着剤層60を介して、ドライラミネート加工により製造することができる。尚、その他の層を設けることにより、透明接着剤層が複数の層となる場合にも、同様の方法で各層を密着させて積層することができる。
 [太陽電池モジュール]
 本実施形態の赤外線反射シートは、上記の太陽電池モジュールの製造方法と同様に太陽電池を構成する各部材を順次積層し、例えば真空熱ラミネート加工により一体化することにより製造することができる。
 本実施形態の赤外線反射シートのように、赤外線反射シートの表面を部分的に着色可能な赤外線反射シートを太陽電池モジュール用の裏面保護シートに用いる一使用例を説明する。太陽電池モジュール用の封止材の多くは透明或いは半透明であるので、太陽電池セルが配置される面側からの平面視において、太陽電池セル4が配置されていない隙間の部分(非セル領域)については、太陽電池モジュール用の裏面保護シート6の色が視認できるようになる。本実施形態の赤外線反射シートを用いることにより、平面視において、太陽電池セル4が配置されるセル領域隙間の部分(非セル領域)に着色することにより、波長400nmから700nmの平均反射率が10%以下の暗色系領域することができる。又、太陽電池セルが配置されるセル領域に着色しないことにより、波長1000nmから1200nmの平均反射率が80%以上の反射領域とすることができる。
 以下、実施例、比較例により本発明を更に具体的に説明するが、本発明は、以下の実施例等に限定されるものではない。
 本実施形態に係る赤外線透過性暗色インキの近赤外線透過率、色座標-塗布量依存性、高温変色性、接着性、接着耐久性を評価するために、以下に示す方法で各インキを製造し、該インキを用いた赤外線反射シート及び疑似モジュールサンプルを作成した。
 [主剤]
 窒素雰囲気下、攪拌機、窒素ガス導入管を備えたフラスコに、エチレングリコール(32.3質量部)、2,2-ジメチル-1,3-プロパンジオール(270.8質量部)、1,6-ヘキサンジオール(122.9質量部)、アジピン酸(228.1質量部)、イソフタル酸(664質量部)を加え、180℃から220℃にて窒素にてバブリングさせ、酸価2mgKOH/gまで反応させ、酢酸エチル(860質量部)を加え、ポリエステルジオールHの50%溶液を得た。得られた樹脂の水酸基価は、32mgKOH/gであり、数平均分子量は約3500であった。
 窒素雰囲気下、攪拌機を備えたフラスコに数平均分子量1000の脂肪族ポリカーボネートジオール(旭化成ケミカルズ社製、商品名「デュラノールT5651」以下、「PDC1000」と略す。)を100質量部、上記ポリエステルジオールH(50質量部)、1,6-ヘキサンジオール(2質量部)、イソホロンジイソシアネート(23.8質量部)、酢酸エチル(175.8質量部)を加え、赤外線吸収スペクトルにて、2270cm-1のイソシアネートの吸収が消失するまで加熱還流させ、ポリウレタンジオールの50%溶液を得た。得られた樹脂の水酸基価は、14mgKOH/gであり、数平均分子量は約8000であった。
 上記のポリウレタンジオール100質量部と脂肪族ポリカーボネートジオール(B)(PDC1000)の15質量部を混合して主剤を調整した。
 [硬化剤]
 ヘキサメチレンジイソシアネート(HDIアダクト:2官能)とイソシアヌレート変性のイソホロンジイソシアネート(ヌレート変性IPDI)の混合物を使用した。上記アダクト変性HDI及びヌレート変性IPDIの混合比(HDIアダクト)/(ヌレート変性IPDI)を6:4(質量比)とした。
 [赤外線透過性暗色インキ(インキ1)]
 顔料:茶色系顔料(ベンズイミダゾロン系顔料(PigmentBrown25、粒径0.08μm))、フタロシアニン系顔料(非晶質型フタロシアニン系顔料青(PigmentBlue15、粒径0.15~0.20μm))
 溶剤:酢酸エチル
 上記主剤(固形分率50質量%)、上記硬化剤(固形分率10質量%)、上記茶色系顔料(ベンズイミダゾロン系顔料)、上記フタロシアニン系顔料(非晶質型フタロシアニン系顔料)(ベンズイミダゾロン系顔料とフタロシアニン系顔料との含有量比が52.5:47.5、樹脂成分100質量部に対して顔料成分が35質量部)を、上記溶剤に溶解させて調整した。
 [暗色インキ(インキ2)]
 有機顔料を以下のようにし、固形分塗布量10g/m以上20g/m以下(硬化後厚さ10μm以上20μm以下)となるように調整した以外はインキ1同様に調整した。
顔料:ジオキサジン化合物16.7質量%(樹脂成分100質量部に対して顔料成分が20質量部)
 (分光透過率の測定)
 本実施形態に係る赤外線透過性暗色インキの近赤外線の反射性(透過性)を評価するために、実施例及び比較例として、以下に示す方法で、透過性測定用試料を作製した。
 反射層となる樹脂基材として下記の樹脂を用いた。
反射層:東レ製、白色PET、188μm
 透明密着層となる樹脂基材として下記の樹脂を用いた。
透明密着層:ポリエチレン、60μm
 <サンプル作成>
 [実施例1]:上記反射層からなるシート上に、インキ1をグラビアコートし(塗布量は5g/m)、厚さ5μm(乾燥状態)の接着剤層を、その上に上記透明密着層を積層し、45℃以上55℃以下、168時間のエージング処理をして過熱硬化させることにより赤外線反射シートを作成した。
 [比較例1]:上記反射層からなるシート上に、インキ2をグラビアコートし(塗布量は12g/m)し、厚さ12μm(乾燥状態)の接着剤層を、その上に透明密着層を積層し、45℃~55℃、168時間のエージング処理をして過熱硬化させることにより赤外線反射シートを作成した。
 <評価>
 分光光度計(株式会社日立ハイテクノロジーズ製、「U-4100」)を用いて、実施例1及び比較例1の赤外線反射シート試料について光を入射したときの、波長300nm~1200nmの光の反射率(%)を評価した。評価結果を図3に示した。
 図3から実施例1の赤外線反射シートは、茶色系顔料(ベンズイミダゾロン系顔料)とフタロシアニン系顔料を所定量含む赤外線透過暗色層60を備えることにより、1000nm以上よりもエネルギーの高い約800nm~900nm付近での赤外線透過率が特に向上している。そのため、従来の有機系黒色顔料を添加した場合と比較して、約800nm~900nm付近の透過率が高い、赤外線透過性暗色インキであることが分かる。
 尚、実施例1の赤外線反射シートのポリエチレンと白色PETとを剥離し、メチルエチルケトンを用いて赤外線透過暗色層を溶解させ、透過率の測定サンプルを作成した。測定サンプルを石英ガラスセルに注入し、分光光度計(例えば、日本分光社製、紫外分光光度計「V-670」又は株式会社日立ハイテクノロジーズ製、「U-4100」)にて、波長300nm~1200nmの光の透過率(%)を測定した。その結果、波長425nmの光の透過率は11.6%であり、波長675nmの光の透過率は10.0%であった。
 又、実施例1の赤外線反射シートは、可視領域(380nm~780nm)においてほぼ吸収しているのに対し、比較例1の赤外線反射シートは700nm~750nm付近の可視領域における光が反射している。そのため、実施例1のインキは黒色の外観を有するものであり意匠性に優れるが、比較例1のインキは、700nm~750nm付近の可視領域の光を透過しているため、黒色よりは紫かかった暗色の外観を有することとなり、意匠性の劣るインキであることが分かる。
 (色座標-塗布量依存性試験1)
 <サンプル作成>
 [実施例2~4]:実施例1と同様にインキ1を各塗布量によりグラビアコートすることで赤外線反射シートを作成した。その後、各赤外線反射シートを裏面保護シートとして疑似モジュールを新たに作成した。
 疑似モジュールは、透明前面基板としてガラスを、封止材層としてエチレン-酢酸ビニルアルコール共重合体樹脂(EVA)450μmを、赤外線反射シート(裏面保護シート)として本実施例に係るサンプルを、透明前面基板/前面封止材層/背面封止材層/赤外線反射シート(裏面保護シート)の順番で積層させ、真空ラミネートにより作成した。(真空ラミネート条件:温度150℃、真空時間5分間、プレス時間9分間)
 [比較例2~6]:実施例2~4において暗色インキ1の代わりに暗色インキ2を各塗布量によりグラビアコートすることで赤外線反射シートを作成した。その後、各赤外線反射シートを裏面保護シートとして疑似モジュールを実施例2~4同様に新たに作成した。
 <評価>
 JIS Z8722に準拠し、D65光源、10°視野角の条件によって、KONICA MINOLTA分光測色計CM-700dを用いて各サンプルを透明樹脂層側から光源を当てることで測定を行った。本試験により得られた色座標の結果を表1、図4及び図5に示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び図4、5から、比較例のサンプルは塗布量を10~20g/mのa及びbの変動に比べ実施例のサンプルは塗布量ごとの色調の変動は小さい。又、表1から塗布量15g/m比較例4と塗布量5g/mの実施例2のLの値がほぼ等しい。本結果から、実施例の赤外線透過性暗色インキは、カーボンブラックとの色調が近く、接着剤の固形分塗布量に対する色座標の変動が小さい。そのため、歩留りが高く生産性の高い赤外線透過性暗色インキであることが分かる。又、比較例のサンプルに比べ、少量の塗布量においても十分な意匠性を発揮することのできる赤外線透過性暗色インキであることが分かる。
 (色座標-塗布量依存性試験2)
 インキ1の茶色系顔料(ベンズイミダゾロン系顔料(表2中、茶と表記))とフタロシアニン系顔料(表2中、青と表記)との含有量比を表2になるように配合比(質量比)を変更したインクを、塗布量を5g/mとして上記色座標-塗布量依存性試験1同様に疑似モジュールを作成し、JIS Z8722に準拠し、D65光源、10°視野角の条件によって、KONICA MINOLTA分光測色計CM-700dを用いて各サンプルを透明樹脂層側から光源を当てることで測定を行った。又、測定結果からカーボンとの色差(ΔEab)をそれぞれ求めた。本試験により得られた色座標の測定結果及びカーボンブラックとの色差(ΔEab)を表2に示す。尚、表2中の「茶色系顔料の含有量」の記載は、フタロシアニン系顔料100質量部に対する茶色系顔料の含有量を意味する。
 又、表2中実施例5~9、16,17、比較例11、12に係る各インクについて、波長425nmの光及び波長675nmの光の透過率(%)をそれぞれ求めた。具体的には、実施例5~9、試験例1~4に係る各インクを透明基材であるフッ素フィルム(旭硝子社製フッ素フィルム アフレックス 100μm)に5g/mをグラビアコートし、その上に同様の透明基材を積層し、ドライラミネートを行い、45℃以上55℃以下、168時間のエージング処理をして過熱硬化させることにより透過率測定用サンプルを作成した。そして、分光光度計(株式会社日立ハイテクノロジーズ製、「U-4100」)を用いて、波長300nm~1200nmの光の透過率(%)から、波長425nmの光の透過率と、波長675nmの光の透過率をそれぞれ求めた。
Figure JPOXMLDOC01-appb-T000003
 本試験結果から、フタロシアニン系顔料100質量部に対して43質量部以上233質量部以下(茶色系顔料とフタロシアニン系顔料との含有量比が、質量比で30:70~70:30の範囲)、好ましくは66質量部以上150質量部以下(茶色系顔料とフタロシアニン系顔料との含有量比が、質量比で40:60~60:40の範囲)の範囲にある赤外線透過性暗色インキは、当該範囲を外れた赤外線透過性暗色インキに比べ、カーボンブラックとの色差(ΔEab)が小さい。このため、実施例16、17及び比較例11,12のインキに比べ、実施例5~9の赤外線透過性暗色インキはカーボンの色調に近いことから十分な意匠性を発揮することのできる赤外線透過性暗色インキであることが分かる。
 (高温変色試験)
 <サンプル作成>
 [実施例10]:実施例1と同様にインキ1の塗布量を7g/mとし、グラビアコートすることで赤外線反射シートを作成した。その後、各赤外線反射シートを裏面保護シートとして疑似モジュールを実施例2~4同様に新たに作成した。
 [比較例12]:インキ1と同様にインキ2の塗布量を7g/mとし、グラビアコートすることで試料を作成した。その後、各シートサンプルから疑似モジュールを実施例2~4同様に新たに作成した。
 <評価>
 上記サンプルを170℃14時間保管し、保管後の色調を測定した。色調は、JIS Z8722に準拠し、D65光源、10°視野角の条件によって、実施例、及び比較例の各試料の色座標を測定することにより行った。各試料測定には、KONICA MINOLTA分光測色計CM-700dを用いて測定を行った。
 実施例及び比較例の保管前後の色調変化をそれぞれ3回測定し、その平均値の変化量を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 表3から、比較例7のサンプルに比べ実施例10のサンプルの色差が小さい。このことから、本実施形態の赤外線透過性暗色インキを用いて作製された積層体は170℃の劣悪な環境に晒される環境下においても、他の層が変色していない。そのため、本実施形態の赤外線透過性暗色インキを積層させた積層体は、高温環境下においても意匠性の変化の無い優れた積層体であることが分かる。特に本実施形態の赤外線反射シートを太陽電池モジュール用の裏面保護シートとして用いた場合には、裏面保護シートの赤外線透過暗色層60に含まれる暗色顔料が封止層に移行することによる封止層の変色が起こらない。そのため、封止層の変色に起因する発電効率の低下の無い保存安定性に優れた太陽電池モジュールを製造することができることが分かる。
 (層間強度-耐久性試験)
 <サンプル作成>
 インキ1、及びインキ2により接着して、実施例11、及び参考例の接着性測定用試料をそれぞれ作成した。試料作成は、実施例11は、実施例1と同様にインキ1をグラビアコートすることで赤外線反射シートを作成した(インキ1の塗布量は5g/m厚さ5μm(乾燥状態))。参考例は、比較例1と同様にインキ2をグラビアコートすることで赤外線反射シートを作成した(インキ2の塗布量は10g/m厚さ10μm(乾燥状態))。
 実施例11、及び参考例の試料に対して下記の方法で接着性に関する試験を行い、測定結果により接着性を評価した。試験片は全て15mm 幅である。(接着性試験) JIS K6854-2に準拠し、180度剥離試験方法において、実施例11、及び参考例の各試料の剥離強度(N)を初期値及び下記の各耐久試験実施後の値を測定することにより行った。各試料測定には、剥離試験装置(「株式会社エー・アンド・デイ」社製、商品名「TENSILON RTA-1150-H」)を用いて、剥離条件50mm/minで23℃にて測定を行った。
 (湿熱耐久(PCT)試験)
 プレッシャークッカー試験機(平山製作所製:HASTTEST)にて120℃、85%RH、1.6atmの条件に設定し、上記各試料を一定時間(表4中、投入前を0h、24時間投入後を24h等と表記)投入した。その後、上記剥離試験を3回行った。投入前及び一定時間投入後の各測定結果の平均値を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 表4から、実施例11に係る赤外線透過性暗色インキは、接着耐久性の高いジオキサジン化合物を含有させた参考例に係る暗色インキと同等の接着性及び同等に近い接着耐久性を有していることが分かる。
 以上の結果から、本実施形態に係る赤外線透過性暗色インキは、ジオキサジン化合物を含有させた暗色インキと同等の接着性及び同等に近い接着耐久性を有しながら、より高い赤外線透過性を有し、かつ極めて少量の塗布量においても良好な意匠性を有し、歩留りが良好であり生産性の極めて高い赤外線透過性暗色インキであることが分かる。
 そのため、例えば、本実発明に係る赤外線透過性暗色インキにより製造された赤外線反射シートを用いた太陽電池モジュール用の裏面保護シートは、その赤外線透過性の高さから赤外線を吸収することによる発熱をより抑えることができ、かつ、より多くの近赤外線を発電に利用することができるようになる。そのため、本実施形態に係る赤外線透過性暗色インキを用いた太陽電池モジュールは、太陽電池モジュールの発電効率を従来のものより向上することのできる極めて優れた太陽電池モジュールである。
 <他の実施形態における実施例>
 本実施形態に係る裏面保護シートの接着性、接着耐久性、耐ブロッキング性、密着性、色座標-塗布量依存性を評価するために、以下に示す方法で接着剤を製造し、該接着剤を用いた接着性測定用試料を作成した。
 [赤外線透過性暗色インキ(インキ3)の製造]
 [主剤]
 攪拌機、温度計、窒素ガス導入管を備えた丸底フラスコに数平均分子量1000の脂肪族ポリカーボネートジオール(50質量部)と、1,6ヘキサンジオール(70質量部)と、1,8-オクタンジオール(30質量部)と、イソホロンジイソシアネート(IPDI)(176.6質量部)、イソホロンジイソシアネート(IPDI)のトリメチロールプロパン(TMP)アダクト変性物(10質量部)と、酢酸エチル(333.6質量部)を仕込み、窒素ガス導入下にて、赤外線吸収スペクトルにて2270cm-1のイソシアネートの吸収が消失するまで加熱環流させ、グリコール変性量:10%、IPDI変性量:2%の実施例1の主剤樹脂を調整した。尚、本実施例において、グリコール変性量とは、上記の主剤樹脂成分の全成分質量に対するアルキレンジオール化合物(本実施例においては、1,6ヘキサンジオールとオクタンジオールの混合物)の質量(質量比%)をいい、IPDI変性量とは、上記の主剤樹脂成分の全成分質量に対する変性イソシアネート化合物(本実施例においては、イソホロンジイソシアネート(IPDI)のトリメチロールプロパン(TMP)アダクト変性物)の質量(質量比%)をいう。
 グリコール変性量を10%及びIPDI変性量を3%となるように、1,6ヘキサンジオールと1,8-オクタンジオールの合計添加量、及び、イソホロンジイソシアネート(IPDI)のトリメチロールプロパン(TMP)アダクト変性物の添加量を適宜調整した。
 [硬化剤]
 ヘキサメチレンジイソシアネート(HDI)のヌレート体(40質量部)とイソホロンジイソシアネート(IPDI)のトリメチロールプロパン(TMP)アダクト変性物(60質量部)とからなる硬化剤を調整した。又、ポリイソシアネート化合物のNCO価と架橋性主剤樹脂のOH価の比であるNCO/OH比がそれぞれ表5になるようにそれぞれ配合した。
 顔料:茶色系顔料(ベンズイミダゾロン系顔料(PigmentBrown25、粒径0.08μm))、フタロシアニン系顔料(非晶質型フタロシアニン系顔料青(PigmentBlue15、粒径0.15~0.20μm))
 溶剤:酢酸エチル
 上記主剤、上記硬化剤、上記茶色系顔料(ベンズイミダゾロン系顔料)及び上記フタロシアニン系顔料(茶色系顔料とフタロシアニン系顔料との含有量比が52.5:47.5、主剤樹脂成分100質量部に対して顔料成分が40質量部)を、上記溶剤に溶解させてそれをインキ3とした。
 [透明接着剤の製造]
 [主剤]
 窒素雰囲気下、攪拌機、窒素導入管を備えたフラスコに、エチレングリコール(32.3質量部)、2,2-ジメチル-1,3-プロパンジオール(270.8質量部)、1,6-ヘキサンジオール(122.9質量部)、アジピン酸(228.1質量部)、イソフタル酸(664質量部)を加え、180℃から220℃にて窒素にてバブリングさせ、酸価2mgKOH/gまで反応させ、酢酸エチル(860質量部)を加え、ポリエステルジオールHの50%溶液を得た。得られた樹脂のOH価は、32mgKOH/gであり、数平均分子量は約3500であった。
 窒素雰囲気下、攪拌機を備えたフラスコに数平均分子量1000の脂肪族ポリカーボネートジオール(旭化成ケミカルズ社製、商品名「デュラノールT5651」以下、「PDC1000」と略す。)を100質量部、上記ポリエステルジオールH(50質量部)、1,6-ヘキサンジオール(2質量部)、イソホロンジイソシアネート(23.8質量部)、酢酸エチル(175.8質量部)を加え、赤外線吸収スペクトルにて、2270cm-1のイソシアネートの吸収が消失するまで加熱還流させ、ポリウレタンジオールの50%溶液を得た。得られた樹脂のOH価は、14mgKOH/gであり、数平均分子量は約8000であった。
 上記のポリウレタンジオール100質量部と脂肪族ポリカーボネートジオール(B)(PDC1000)の15質量部を混合して主剤を調整した。尚、硬化剤は、インキ3と同様のものを用いた。
 溶剤:酢酸エチル
 上記主剤(固形分率50質量%)、上記硬化剤(固形分率10質量%)、ジオキサジン化合物16.7質量%(主剤樹脂成分100質量部に対して顔料成分が20質量部)
 溶剤:酢酸エチル
 上記透明接着剤の主剤と上記透明接着剤の硬化剤と上記溶剤を質量比で18:3.4:5.4で調整した。
 (耐ブロッキング性試験)
 実施例12~15、比較例8~10の試料に対して下記の方法で耐ブロッキング性に関する試験を行い、測定結果により耐ブロッキングを評価した。試験片は全て15mm幅である。
 白PET(東レ社製白PET、188μm)フィルムの表面に、赤外線透過性暗色インキ液をバーコーターにて塗工し、塗工されたインキ液を120℃で2分間乾燥させて基材表面に暗色インキ層を形成した。そして乾燥直後の暗色インキ層表面に、白PET(東レ社製白PET、188μm)を重ね合わせて接触させた状態で50℃、3日間養生したものを、耐ブロッキング性評価用試料とした。各耐ブロッキング性評価用試料の重ね合わせた部分を剥がすことでブロッキング状態を評価する方法で耐ブロッキング性の試験を行い、下記の基準で評価した。評価結果を表5に示す。尚、表5中のNCO/OH比は、主剤樹脂のOH価に対する硬化剤のNCO価の比である。
 [評価基準]
 ○:暗色インキ層の転移なく、自然にシート同士が剥離する
 △:暗色インキ層の転移なく、シート同士の剥離時の若干の密着手ごたえ有り
 ×:暗色インキ層の転移あり、及び/又は、シート同士の剥離時に密着手ごたえ有り
 (密着性試験)
 実施例12~15、比較例8~10の試料に対して下記の方法で耐ブロッキング性に関する試験を行い、測定結果により耐ブロッキングを評価した。試験片は全て15mm幅である。
 ASTM D3359、JIS 5400に準じた密着試験を行い、密着性を以下の基準で評価した。結果については、「接着性」として、下記表5に示す。
 [評価基準]
 ○:0%のコーティング剥離 
 △:0%超15%以下のコーティング剥離 
 ×:15%超のコーティング剥離
Figure JPOXMLDOC01-appb-T000006
 表5から、赤外線透過性暗色インキのNCO/OH比を1.0以上2.0以下とした本実施形態のサンプルは、耐ブロッキング性及び密着性が高い。そのため、本発明に用いられる赤外線透過性インキは、良好な耐ブロッキング性及び密着性を有するため、本発明の太陽電池モジュール用裏面保護シートの製造する上で好ましいものであることが分かる。
 (色座標-塗布量依存性試験)
 <サンプル作成>
 [実施例13~15]:白PET(東レ社製白PET厚さ188μm)フィルムの表面に、赤外線透過性暗色インキ液をバーコーターにて塗工し(塗布量は表6に記載)、塗工されたインキ液を120℃で2分間乾燥させて基材表面に暗色インキ層を形成した。そして乾燥直後の暗色インキ層表面に透明接着剤をグラビアコートし(塗布量は5.0g/m)、厚さ5.0μm(乾燥状態)の接着剤層を、その上にポリエチレン樹脂(厚さ60μm)を積層し、45℃~55℃、168時間のエージング処理をして過熱硬化させることにより裏面保護シートを作成し、裏面保護シートから疑似モジュールを新たに作成した。
 疑似モジュールは、透明前面基板としてガラスを、封止材層としてエチレン-酢酸ビニルアルコール共重合体樹脂(EVA)450μmを、裏面保護シートとして本実施例に係るサンプルを、透明前面基板/前面封止材層/背面封止材層/裏面保護シートの順番で積層させ、真空ラミネートにより作成した。(真空ラミネート条件:温度150℃、真空時間5分間、プレス時間9分間)
 <評価>
 JIS-Z8722に準拠し、D65光源、10°視野角の条件によって、KONICA MINOLTA分光測色計CM-700dを用いて各サンプルを透明樹脂層側から光源を当てることで測定を行った。本試験により得られた色座標の結果を表6に示す。
Figure JPOXMLDOC01-appb-T000007
 表6、図5、図7から、比較例のサンプルは塗布量を10g/m以上20g/m以下のa及びbの変動に比べ実施例のサンプルは塗布量の変動は小さい。本結果から、実施例の赤外線透過性暗色インキは、接着剤の固形分塗布量に対する色座標への依存性が小さく、固形分塗布量に対する色座標のばらつきが小さいことが分かる。又、実施例のサンプルは、塗布量が3g/m以上7g/m以下にも関わらず、Lが塗布量を15g/mとしている比較例5と比べても小さく、カーボンブラックと比べても少ない塗布量十分に低い明度を有している。本実験結果から、茶色系顔料及びフタロシアニン系顔料成分を含んでなる顔料成分を含む赤外線透過性暗色インキにより形成された赤外線透過暗色層はその厚さが小さくても十分な意匠性を有することが分かる。そのため、例えば意匠性の観点から透明密着層及び/又は反射層の部分的に着色させるような目的で赤外線透過暗色層を積層させたような場合でも透明接着剤の使用量を減らすことが可能となる。よって、本発明の赤外線反射シートは、コストの低下及び生産性を向上させることのできる優れた赤外線反射シートであることが分かる。
 (密着性試験)
 <サンプル作成>
 白PET(東レ社製白PET、188μm)フィルムの表面に、赤外線透過性暗色インキ液をバーコーターにて塗工し(塗布量は4g/m)、塗工されたインキ液を120℃で2分間乾燥させて基材表面に赤外線透過暗色層を形成した。に上記透明接着剤をグラビアコートし(塗布量は5.0g/m)し、厚さ5.0μm(乾燥状態)の透明接着剤層を、その上にポリエチレン樹脂(60μm)を積層し、45℃以上55℃以下、168時間のエージング処理をして過熱硬化させることにより赤外線反射シートのサンプルを作成した。
 プレッシャークッカー試験機(平山製作所製:HASTTEST)にて120℃、85%RH、1.6atmの条件に設定し、上記各試料を一定時間(表7中、投入前を0h、24時間投入後を24h等と表記)投入した。その後、上記剥離試験を3回行った。投入前及び一定時間投入後の各測定結果の平均値を表7に示す。尚、表7中のNCO/OH比は、主剤樹脂のOH価に対する硬化剤のNCO価の比である。
Figure JPOXMLDOC01-appb-T000008
 表7から、実施例12のNCO/OH比が1.0以上2.0以下のサンプルは、比較例10に比べ、接着性及び接着耐久性の高いサンプルであることが分かる。
 1  太陽電池モジュール
 2  透明前面基板
 3  前面封止材層
 4  太陽電池素子
 5  背面封止材層
 6  赤外線反射シート(裏面保護シート)
 7  入射光
 60 赤外線透過暗色層
 61 反射層
 62 透明密着層
 63 透明接着剤層
 

Claims (14)

  1.  波長750nm以上1500nm以下の近赤外線を透過する赤外線透過性暗色インキであって、
     樹脂成分と、顔料成分と、を含有し、
     前記顔料成分は、茶色系顔料と、フタロシアニン系顔料からなる暗色顔料と、を含んでなり、
     前記茶色系顔料は、ベンズイミダゾロン系顔料、4-[(2,5-ジクロロフェニル)アゾ]-3-ヒドロキシ-N-(2,5-ジメトキシフェニル)-2-ナフタレンカルボキサミド、1-[(4-ニトロフェニル)アゾ]-2-ナフタレノール、ビス[3-ヒドロキシ-4-(フェニルアゾ)-2-ナフタレンカルボン酸]銅塩、C.I.PigmentBrown7、N,N’-ビス(2,4-ジニトロフェニル)-3,3’-ジメトキシ-1,1’-ビフェニル-4,4’-ジアミン、3,4,9,10-ペリレンテトラカルボンサンジイミド、Δ2,2’(1H,1’H)-ビナフト[2,1-b]チオフェン-1,1’-ジオン及びN、N’-(10,15,16,17-テトラヒドロ-5,10,15,17-テトラオキソ)-5H-ジナフト[2,3-a:2’3’-i]カルバゾール-4,9-ジイル)ビス(ベンズアミド)からなる群より選ばれた少なくとも一種以上の顔料である、赤外線透過性暗色インキ。
  2.  前記顔料成分中における、前記暗色顔料の含有量が80質量%以上であって、
     前記赤外線透過性暗色インキの光透過率試験における波長425nmの光の透過率が5%以上30%以下であり、波長675nmの光の透過率が4%以上30%以下である請求項1に記載の赤外線透過性暗色インキ。
  3.  前記樹脂成分100質量部に対して前記顔料成分が20質量部以上40質量部以下である請求項1又は2に記載の赤外線透過性暗色インキ。
  4.  750nm以上1500nm以下の近赤外線を反射する反射層の表面に赤外線透過暗色層が積層されてなる赤外線反射シートであって、
     前記赤外線透過暗色層は、水酸基を有する主剤樹脂と、イソシアネート基を有する硬化剤と、顔料成分とを、を含有し、
     前記顔料成分は、茶色系顔料と、フタロシアニン系顔料からなる暗色顔料と、を含んでなり、
     前記茶色系顔料は、ベンズイミダゾロン系顔料、4-[(2,5-ジクロロフェニル)アゾ]-3-ヒドロキシ-N-(2,5-ジメトキシフェニル)-2-ナフタレンカルボキサミド、1-[(4-ニトロフェニル)アゾ]-2-ナフタレノール、ビス[3-ヒドロキシ-4-(フェニルアゾ)-2-ナフタレンカルボン酸]銅塩、C.I.PigmentBrown7、N,N’-ビス(2,4-ジニトロフェニル)-3,3’-ジメトキシ-1,1’-ビフェニル-4,4’-ジアミン、3,4,9,10-ペリレンテトラカルボンサンジイミド、Δ2,2’(1H,1’H)-ビナフト[2,1-b]チオフェン-1,1’-ジオン及びN、N’-(10,15,16,17-テトラヒドロ-5,10,15,17-テトラオキソ)-5H-ジナフト[2,3-a:2’3’-i]カルバゾール-4,9-ジイル)ビス(ベンズアミド)からなる群より選ばれた少なくとも一種以上の顔料である、赤外線反射シート。
  5.  前記赤外線反射シートの前記赤外線透過暗色層の積層側の表面に、更に透明易接着剤層が積層されてなる請求項4に記載の赤外線反射シート。
  6.  750nm以上1500nm以下の近赤外線を反射する反射層の表面に赤外線透過暗色層と、透明樹脂層とが順次積層されてなる赤外線反射シートであって、
     前記赤外線透過暗色層は、水酸基を有する主剤樹脂と、イソシアネート基を有する硬化剤と、顔料成分とを、を含有し、
     前記主剤樹脂100質量部に対して前記顔料成分が20質量部以上40質量部以下であり、
     前記顔料成分は、茶色系顔料と、フタロシアニン系顔料からなる暗色顔料と、を含んでなり、
     前記茶色系顔料は、ベンズイミダゾロン系顔料、4-[(2,5-ジクロロフェニル)アゾ]-3-ヒドロキシ-N-(2,5-ジメトキシフェニル)-2-ナフタレンカルボキサミド、1-[(4-ニトロフェニル)アゾ]-2-ナフタレノール、ビス[3-ヒドロキシ-4-(フェニルアゾ)-2-ナフタレンカルボン酸]銅塩、C.I.PigmentBrown7、N,N’-ビス(2,4-ジニトロフェニル)-3,3’-ジメトキシ-1,1’-ビフェニル-4,4’-ジアミン、3,4,9,10-ペリレンテトラカルボンサンジイミド、Δ2,2’(1H,1’H)-ビナフト[2,1-b]チオフェン-1,1’-ジオン及びN、N’-(10,15,16,17-テトラヒドロ-5,10,15,17-テトラオキソ)-5H-ジナフト[2,3-a:2’3’-i]カルバゾール-4,9-ジイル)ビス(ベンズアミド)からなる群より選ばれた少なくとも一種以上の顔料である、赤外線反射シート。
  7.  前記赤外線透過暗色層を形成する赤外線透過性暗色インキの固形分換算の塗布量が5g/m以上15g/m以下である請求項6に記載の赤外線反射シート。
  8.  JIS-Z8722に準拠して、D65光源、10°視野角の条件によって測定した前記赤外線透過暗色層の色調とカーボンブラックとの色調との色差ΔEabが10以下である請求項4から7のいずれかに記載の赤外線反射シート。
  9.  全光線を透過する透明密着層と、
     750nm以上1500nm以下の近赤外線を反射する反射層と、を、
     少なくとも含む複数の層を積層してなる太陽電池モジュール用の裏面保護シートであって、
     前記透明密着層と前記反射層との間に積層される層のうち2つの層が、赤外線透過暗色層及び透明接着剤層であり、
     前記赤外線透過暗色層は、水酸基を有する主剤樹脂と、イソシアネート基を有する硬化剤と、顔料成分とを、を含み、
     前記赤外線透過暗色層に含まれる前記顔料成分は、前記主剤樹脂100質量部に対して前記顔料成分が20質量部以上50質量部以下であり、
     前記顔料成分は、茶色系顔料と、フタロシアニン系顔料からなる暗色顔料と、を含んでなり、
     前記茶色系顔料は、ベンズイミダゾロン系顔料、4-[(2,5-ジクロロフェニル)アゾ]-3-ヒドロキシ-N-(2,5-ジメトキシフェニル)-2-ナフタレンカルボキサミド、1-[(4-ニトロフェニル)アゾ]-2-ナフタレノール、ビス[3-ヒドロキシ-4-(フェニルアゾ)-2-ナフタレンカルボン酸]銅塩、C.I.PigmentBrown7、N,N’-ビス(2,4-ジニトロフェニル)-3,3’-ジメトキシ-1,1’-ビフェニル-4,4’-ジアミン、3,4,9,10-ペリレンテトラカルボンサンジイミド、Δ2,2’(1H,1’H)-ビナフト[2,1-b]チオフェン-1,1’-ジオン及びN、N’-(10,15,16,17-テトラヒドロ-5,10,15,17-テトラオキソ)-5H-ジナフト[2,3-a:2’3’-i]カルバゾール-4,9-ジイル)ビス(ベンズアミド)からなる群より選ばれた少なくとも一種以上の顔料であって、
     前記主剤樹脂のOH価に対する前記硬化剤のNCO価の比であるNCO/OH比が1.0以上2.0以下である赤外線反射シート。
  10.  前記赤外線透過暗色層を形成する赤外線透過性暗色インキの固形分換算の塗布量が、3g/m以上7g/m以下である請求項9に記載の赤外線反射シート。
  11.  前記イソシアネート基を有する硬化剤が、ジイソシアネート化合物である請求項9又は10に記載の赤外線反射シート。
  12.  前記赤外線透過暗色層が、前記透明密着層及び/又は前記反射層の表面の一部のみに積層されている請求項9から11のいずれかに記載の赤外線反射シート。
  13.  前記反射層における前記赤外線透過暗色層の積層面の反対側の面には、赤外線透過コート層が積層されていて、
     前記赤外線透過コート層は、暗色系の有機顔料を含んでなり、750nm以上1500nm以下の近赤外線を透過する層である、請求項4から12のいずれかに記載の赤外線反射シート。
  14.  請求項4から13のいずれかに記載の赤外線反射シートを、太陽電池素子の非受光面側に積層してなる太陽電池モジュール。

     
PCT/JP2015/077789 2014-09-30 2015-09-30 赤外線透過性暗色インキ及びそれを用いた赤外線透過性シート WO2016052641A1 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CN201580052911.1A CN106795383B (zh) 2014-09-30 2015-09-30 红外线反射片和使用其的太阳电池模块
EP22178471.3A EP4086319A1 (en) 2014-09-30 2015-09-30 Infrared-light-transmitting ink of dark color, and infrared-light-reflecting sheet obtained using same
CN202110634064.7A CN113354975B (zh) 2014-09-30 2015-09-30 红外线反射片和使用其的太阳电池模块
KR1020237034568A KR20230145546A (ko) 2014-09-30 2015-09-30 적외선 투과성 암색 잉크 및 그것을 사용한 적외선 반사 시트
EP15847770.3A EP3202861B1 (en) 2014-09-30 2015-09-30 Infrared-light-transmitting ink of dark color, and infrared-light-transmitting sheet obtained using same
CN202110634869.1A CN113380914B (zh) 2014-09-30 2015-09-30 红外线反射片和使用其的太阳电池模块
ES15847770T ES2922547T3 (es) 2014-09-30 2015-09-30 Tinta de color oscuro transmisora de luz infrarroja, y lámina transmisora de luz infrarroja obtenida mediante el uso de la misma
KR1020227023395A KR102589206B1 (ko) 2014-09-30 2015-09-30 적외선 투과성 암색 잉크 및 그것을 사용한 적외선 반사 시트
US15/515,880 US10407579B2 (en) 2014-09-30 2015-09-30 Infrared-light-transmitting ink of dark color, and infrared-light-reflecting sheet obtained using same
JP2016552129A JP6565921B2 (ja) 2014-09-30 2015-09-30 赤外線反射シート及びそれを用いた太陽電池モジュール
KR1020177010156A KR102256555B1 (ko) 2014-09-30 2015-09-30 적외선 투과성 암색 잉크 및 그것을 사용한 적외선 반사 시트
KR1020217015185A KR102419975B1 (ko) 2014-09-30 2015-09-30 적외선 투과성 암색 잉크 및 그것을 사용한 적외선 투과성 시트
US16/519,852 US11078373B2 (en) 2014-09-30 2019-07-23 Infrared-light-transmitting ink of dark color, and infrared-light-reflecting sheet obtained using same
US17/363,964 US20210324212A1 (en) 2014-09-30 2021-06-30 Infrared-light-transmitting ink of dark color, and infrared-light-reflecting sheet obtained using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014202550 2014-09-30
JP2014-202550 2014-09-30
JP2014-202661 2014-09-30
JP2014202661 2014-09-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/515,880 A-371-Of-International US10407579B2 (en) 2014-09-30 2015-09-30 Infrared-light-transmitting ink of dark color, and infrared-light-reflecting sheet obtained using same
US16/519,852 Continuation US11078373B2 (en) 2014-09-30 2019-07-23 Infrared-light-transmitting ink of dark color, and infrared-light-reflecting sheet obtained using same

Publications (1)

Publication Number Publication Date
WO2016052641A1 true WO2016052641A1 (ja) 2016-04-07

Family

ID=55630665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077789 WO2016052641A1 (ja) 2014-09-30 2015-09-30 赤外線透過性暗色インキ及びそれを用いた赤外線透過性シート

Country Status (9)

Country Link
US (3) US10407579B2 (ja)
EP (2) EP3202861B1 (ja)
JP (6) JP6565921B2 (ja)
KR (4) KR20230145546A (ja)
CN (3) CN113380914B (ja)
ES (1) ES2922547T3 (ja)
HU (1) HUE059389T2 (ja)
TW (3) TWI705110B (ja)
WO (1) WO2016052641A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106433315A (zh) * 2016-10-09 2017-02-22 蓝思旺科技(深圳)有限公司 一种用于玻璃盖板的半透明黑色油墨及其制作方法
JP2019001129A (ja) * 2017-06-19 2019-01-10 大日本印刷株式会社 化粧シート及び該化粧シートを備える化粧部材
JP2019110174A (ja) * 2017-12-15 2019-07-04 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート
JP2019110172A (ja) * 2017-12-15 2019-07-04 大日本印刷株式会社 太陽電池モジュール、及び、その製造方法
JP2020023604A (ja) * 2018-08-06 2020-02-13 花王株式会社 水系顔料分散体
JP2020061438A (ja) * 2018-10-09 2020-04-16 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート
JP2020061439A (ja) * 2018-10-09 2020-04-16 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート
JP2020129670A (ja) * 2014-09-30 2020-08-27 大日本印刷株式会社 赤外線反射シート
JP2020191438A (ja) * 2019-05-20 2020-11-26 大日本印刷株式会社 太陽電池モジュール用裏面保護シート及び太陽電池モジュール
US20200376801A1 (en) * 2017-09-01 2020-12-03 Dic Corporation Black sheet and black adhesive tape
WO2023022199A1 (ja) * 2021-08-18 2023-02-23 積水化学工業株式会社 近赤外線透過黒色粒子
US11616155B2 (en) * 2017-05-23 2023-03-28 AGC Inc. Cover glass for solar cell module and solar cell module

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255907B (zh) * 2017-08-17 2021-01-22 京东方科技集团股份有限公司 一种补偿装置、曝光装置及曝光补偿方法
JP6962109B2 (ja) * 2017-09-27 2021-11-05 大日本印刷株式会社 化粧シート及びこれを用いた化粧材
JP6962108B2 (ja) * 2017-09-27 2021-11-05 大日本印刷株式会社 化粧シート及びこれを用いた化粧材
IT201800003348A1 (it) * 2018-03-07 2019-09-07 Coveme S P A Foglio multistrato preformato riflettente per modulo fotovoltaico e metodo di realizzazione
CN109633804B (zh) * 2018-12-20 2020-11-17 业成科技(成都)有限公司 红外线透光板及其制造方法和红外线透光结构
CN111650674B (zh) * 2020-06-08 2022-07-12 苏州奥浦迪克光电技术有限公司 近红外、可见光双波段深色透光膜片及其制备方法、透光模组
WO2022045343A1 (ja) * 2020-08-31 2022-03-03 積水化学工業株式会社 近赤外線反射性黒色粒子及び近赤外線反射性積層体
CN112778602A (zh) * 2020-12-29 2021-05-11 金发科技股份有限公司 一种遮光透红外聚乙烯复合材料及其制备方法和应用
WO2023054673A1 (ja) * 2021-09-30 2023-04-06 大日本印刷株式会社 太陽電池モジュール用バリア性積層体および太陽電池モジュール

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216689A (ja) * 2011-03-31 2012-11-08 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート
WO2013183658A1 (ja) * 2012-06-07 2013-12-12 東洋アルミニウム株式会社 太陽電池用裏面保護シート
JP2014156501A (ja) * 2013-02-14 2014-08-28 Clariant Internatl Ltd 黒色顔料組成物

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1148437A (ja) * 1997-08-01 1999-02-23 Dainippon Printing Co Ltd 外装用化粧材
JP2001044474A (ja) 1999-08-04 2001-02-16 Tdk Corp 太陽電池モジュール
JP2002060698A (ja) * 2000-08-15 2002-02-26 Origin Electric Co Ltd 赤外線透過層形成用組成物及び赤外線反射体並びに処理物
TW593569B (en) * 2000-12-21 2004-06-21 Dainichiseika Color Chem Near-infrared reflecting composite pigments
DE10102789A1 (de) * 2001-01-22 2002-08-01 Gerd Hugo Beschichtung mit geringer solarer Absorption
WO2009089236A2 (en) 2008-01-08 2009-07-16 Certainteed Corporation Photovoltaic module
JP2009256459A (ja) * 2008-04-16 2009-11-05 Bridgestone Corp 太陽電池用封止膜及びこれを用いた太陽電池
WO2010044393A1 (ja) * 2008-10-15 2010-04-22 大日精化工業株式会社 アゾ顔料、着色組成物、着色方法および着色物品
JP2010199551A (ja) 2008-12-16 2010-09-09 Techno Polymer Co Ltd 太陽電池用バックシート及びそれを備える太陽電池モジュール
JP2010199552A (ja) 2008-12-16 2010-09-09 Techno Polymer Co Ltd 太陽電池用バックシート及びそれを備える太陽電池モジュール
JP5805921B2 (ja) * 2009-03-17 2015-11-10 東洋アルミニウム株式会社 赤外線反射着色組成物、この着色組成物を塗布する赤外線反射方法及び塗布物
JP2011139035A (ja) * 2009-12-02 2011-07-14 Toyobo Co Ltd 太陽電池用易接着性ポリエステルフィルムおよびそれを用いたバックシート
JP5007453B2 (ja) * 2010-06-11 2012-08-22 株式会社タムラ製作所 黒色硬化性樹脂組成物
BR112013013243B1 (pt) * 2010-12-03 2020-09-24 3G Mermet Corporation Composição refletora próxima ao infravermelho e coberturas para aberturas arquitetônicas incorporando as mesmas e método para formação da cobertura
JP5866299B2 (ja) * 2010-12-28 2016-02-17 大日精化工業株式会社 黒色アゾ色素、製造方法、着色組成物、着色方法及び着色物品類
WO2012092337A2 (en) 2010-12-28 2012-07-05 E. I. Du Pont De Nemours And Company Multi-layer composite
JP5899755B2 (ja) 2011-09-28 2016-04-06 大日本印刷株式会社 易接着性裏面保護シート及びそれを用いた太陽電池モジュール
JP2013093410A (ja) * 2011-10-25 2013-05-16 Toppan Printing Co Ltd 太陽電池用バックシートおよび太陽電池モジュール
EP2803483A4 (en) 2012-01-13 2015-09-09 Keiwa Inc SOLAR CELL MODULE REAR PANEL, METHOD FOR PRODUCING SOLAR CELL MODULE FRONT PANEL AND SOLAR CELL MODULE
JP6055276B2 (ja) * 2012-11-05 2016-12-27 クラリアント・インターナシヨナル・リミテツド 遮熱塗料用黒色顔料組成物、それを用いた遮熱塗料、並びに調色、塗装のためのそれの使用
CN103832038B (zh) 2014-03-07 2016-01-06 江苏昊华光伏科技有限公司 黑色红外反射聚偏二氟乙烯太阳能电池背板复合膜及其制造方法
WO2016043335A1 (ja) * 2014-09-18 2016-03-24 大日本印刷株式会社 太陽電池モジュール用裏面保護シート
CN113380914B (zh) 2014-09-30 2024-04-05 大日本印刷株式会社 红外线反射片和使用其的太阳电池模块
WO2016104413A1 (ja) * 2014-12-26 2016-06-30 大日本印刷株式会社 太陽電池モジュール用の集電シート

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216689A (ja) * 2011-03-31 2012-11-08 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート
WO2013183658A1 (ja) * 2012-06-07 2013-12-12 東洋アルミニウム株式会社 太陽電池用裏面保護シート
JP2014156501A (ja) * 2013-02-14 2014-08-28 Clariant Internatl Ltd 黒色顔料組成物

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020129670A (ja) * 2014-09-30 2020-08-27 大日本印刷株式会社 赤外線反射シート
JP7022358B2 (ja) 2014-09-30 2022-02-18 大日本印刷株式会社 赤外線反射シート
CN106433315A (zh) * 2016-10-09 2017-02-22 蓝思旺科技(深圳)有限公司 一种用于玻璃盖板的半透明黑色油墨及其制作方法
US11616155B2 (en) * 2017-05-23 2023-03-28 AGC Inc. Cover glass for solar cell module and solar cell module
JP2019001129A (ja) * 2017-06-19 2019-01-10 大日本印刷株式会社 化粧シート及び該化粧シートを備える化粧部材
US20200376801A1 (en) * 2017-09-01 2020-12-03 Dic Corporation Black sheet and black adhesive tape
US11840650B2 (en) * 2017-09-01 2023-12-12 Dic Corporation Black sheet and black adhesive tape
JP2019110172A (ja) * 2017-12-15 2019-07-04 大日本印刷株式会社 太陽電池モジュール、及び、その製造方法
JP7155515B6 (ja) 2017-12-15 2024-02-02 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート
JP2019110174A (ja) * 2017-12-15 2019-07-04 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート
JP2022132333A (ja) * 2017-12-15 2022-09-08 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート
JP7155515B2 (ja) 2017-12-15 2022-10-19 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート
JP7388488B2 (ja) 2017-12-15 2023-11-29 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート
JP2020023604A (ja) * 2018-08-06 2020-02-13 花王株式会社 水系顔料分散体
JP7144231B2 (ja) 2018-08-06 2022-09-29 花王株式会社 水系顔料分散体
JP2020061438A (ja) * 2018-10-09 2020-04-16 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート
JP7234564B2 (ja) 2018-10-09 2023-03-08 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート
JP7176340B2 (ja) 2018-10-09 2022-11-22 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート
JP2020061439A (ja) * 2018-10-09 2020-04-16 大日本印刷株式会社 太陽電池モジュール用の裏面保護シート
JP7356646B2 (ja) 2019-05-20 2023-10-05 大日本印刷株式会社 太陽電池モジュール用裏面保護シート及び太陽電池モジュール
JP2020191438A (ja) * 2019-05-20 2020-11-26 大日本印刷株式会社 太陽電池モジュール用裏面保護シート及び太陽電池モジュール
WO2023022199A1 (ja) * 2021-08-18 2023-02-23 積水化学工業株式会社 近赤外線透過黒色粒子

Also Published As

Publication number Publication date
KR20210060674A (ko) 2021-05-26
JP6721092B2 (ja) 2020-07-08
JP2023107849A (ja) 2023-08-03
CN106795383B (zh) 2021-06-22
CN113380914B (zh) 2024-04-05
EP3202861B1 (en) 2022-06-15
KR102256555B1 (ko) 2021-05-26
JP6565921B2 (ja) 2019-09-04
JP2020129670A (ja) 2020-08-27
US10407579B2 (en) 2019-09-10
HUE059389T2 (hu) 2022-11-28
CN113380914A (zh) 2021-09-10
TW202102618A (zh) 2021-01-16
JP7294390B2 (ja) 2023-06-20
TWI767706B (zh) 2022-06-11
TW202236694A (zh) 2022-09-16
KR102589206B1 (ko) 2023-10-13
US20190345349A1 (en) 2019-11-14
JP2022036985A (ja) 2022-03-08
US20170298239A1 (en) 2017-10-19
TWI705110B (zh) 2020-09-21
EP3202861A1 (en) 2017-08-09
JP7022358B2 (ja) 2022-02-18
TWI730877B (zh) 2021-06-11
KR20220101762A (ko) 2022-07-19
CN113354975B (zh) 2022-11-08
CN113354975A (zh) 2021-09-07
US20210324212A1 (en) 2021-10-21
JPWO2016052641A1 (ja) 2017-07-13
KR20230145546A (ko) 2023-10-17
TW202132480A (zh) 2021-09-01
KR102419975B1 (ko) 2022-07-13
JP2019091081A (ja) 2019-06-13
TW201631060A (zh) 2016-09-01
ES2922547T3 (es) 2022-09-16
KR20170063719A (ko) 2017-06-08
EP4086319A1 (en) 2022-11-09
JP2019208057A (ja) 2019-12-05
JP6614375B2 (ja) 2019-12-04
CN106795383A (zh) 2017-05-31
EP3202861A4 (en) 2018-03-21
US11078373B2 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
JP6614375B2 (ja) 赤外線反射シート
JP6927391B2 (ja) 太陽電池モジュール用裏面保護シート
JP2012216689A (ja) 太陽電池モジュール用裏面保護シート
JP2015170664A (ja) 太陽電池モジュール用裏面保護シート
JP6464890B2 (ja) 太陽電池モジュール用の裏面保護シート
TWI840806B (zh) 紅外線反射薄片、太陽能電池模組用之背面保護薄片及太陽能電池模組
JP2016069586A (ja) 赤外線透過性暗色インキ及びそれを用いた赤外線透過性シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847770

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016552129

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15515880

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177010156

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015847770

Country of ref document: EP